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"As I give thought to the matter, I find four causes for the apparent misery of 

old age; first, it withdraws us from active accomplishments; second, it renders 

the body less powerful; third, it deprives us of almost all forms of enjoyment; 

fourth, it stands not far from death." 

Marcus Tullius Cicero 



Pharmacogenetics of ageing and neurodegeneration 

 6 

I dedicate this work to my beautiful family: 

my father Jorge Ivan Castillo Riverol, 

my mother Ana Maria Quan Hulse, and 

my sister Stacey Marie Castillo Quan 

You are my strong fortress and inspiration. 

I would also like to dedicate this work to the pillars of our family 

My great grandparents: 

Fabian Castillot 

Bartola Castillot (76 years) 

Marcelo Riverolt (92 years) 

Franscisca Riverolt (94 years) 

Alfonso Quant (73 years) 

Estella Quant (101 years) 

Ernesto Hulset (72 years) 

Dionicia Hulset (92 yeas) 

My grandparents: 

Romeo Castillo (76 years) 

Herlinda Castillo (76 years) 

Ignacio Quan (80 years) 

Norma Quan (75 years) 

Age brought you wisdom and gave me the opportunity 

to share special moments with you (though not with all). 

I appreciate your genes, but overall 

I am thankful for your love and support. 

To my extensive family and friends. 



Pharmacogenetics of ageing and neurodegeneration 

 7 

Acknowledgements 

First of all I would like to thank my mentors Linda Partridge and John Hardy for their support and 

guidance. It was a definite pleasure to learn from you. You are great examples of what I would like 

to achieve in the future. I also thank my tertiary supervisor David Rubinsztein for his comments 

during my upgrade. 

Both my master's work and the one presented here would have not been possible without the trust, 

guidance and support of Ivana Bjedov Thanks for taking a chance on me and showing me the road 

to become a great scientist. I truly admire you and I hope we can work together again in the near 

future. 

To my dearest friend Kerni Kinghorn who was always there for me to guide me, assist me and keep 

me grounded and focused. I truly enjoyed your mentorship and support. 

To my three masters students who gave me the chance to supervise them: Li Li, Michelle Briffa 

and Michael Shannack. It was great fun to have you around Thank you for your hard work and 

dedication. 

Thanks to Dobril Ivanov, Helena Cocheme and Fernando Bartolome Robledo for helping me when 

I need it the most. You are true stars. 

A special thank you to my PhD examiners Prof. Ralf Stanewsky and Prof. Aurelio Teleman for 

reading and improving the thesis with your comments, suggestions and corrections. 

Thanks to my office mates (past and present) Yila de la Guardia, Sahar Emran, Lucia Bettedi, 

Cassandra Coburn, lain Rogers, Peter Rennert, Elly Tyler, Grahamme Fisher, Oyinkan Sofola-

Adesakin, Fiona Kerr, Jennifer Tullet and Ann Gilliat. It was a great pleasure to share laughter, 

stress and frustration, but overall the good times. 

Thanks to the extensive family at the Institute of Healthy Ageing (past and present): Filipe 

Cabreiro, Anna Tillmann, Nathan Woodling, Andrea Foley, Nazif Alic, Matthew Piper, Cathy 

Slack, Hrovje Augustin, Pedro Martinezt, Sara Valentini, Giovanna Vinti, Caroline Araiz, Carolina 

Soto Palma, Teresa Niccoli, Ekin Bolukbasi, David Gems, Charalampos Rallis, Dan Ackerman, 

Jenny Regan, James Catterson, Melissa Cabecinha, Mobina Khericha, Jelle Zandveld, Irma Feist, 

Jennifer Addcott, Marcia Merrick, Arj Rajasingam, Pirkko Salmiheimo, Mumtaz Ahmad, Caroline 

Reuter, John Davies, Matt Hoddinott, Michael Wright, Julie Black, Adam Dobson, Mingyao Yang, 

Xiaoli He, Alexandre Benedetto, Catherine Au, Marina Ezcurra, Lazaros Foukas, Daniel Pearce 

and Eugene Schuster. Fly pushing, molecular lab work, lunch, all those cakes and desserts, and 

Christmas parties were special because of you. Thanks! 

My Mexican Family in London has played an important part in keeping me sane Thanks to Anaily 

Castellanos Valderrama, Gabriela Gonzalez Blancarte, Lucia Magis Weinberg, Sofia Collignon, 

Santiago Suarez, David Perez Espada, Pilar Astorga, Vanessa Sousa and Isabel Lopez Estrada. 

And to all my Mates from Goodenough College: Rodrigo Tones, Ennio Fermi, Andres Neira, 

Ricardo Silva, Tommer Marcus, Marcela Delgado, Veronica Porro, Angela Quintero, Omar 

Quesada, Rodrigo Aguilar, Nara Lara, Pavi Rallapalli and Matko Bosnjak. Thanks for all the 

amazing times together. 

Last but not least to all my friends in and out of London, especially to Naveen Kishore, Yasmine 

Asi, Maria Megalogeni, Panagiotis Kassavetis and Emmanouil Konstantinidis. 



Pharmacogenetics of ageing and neurodegeneration 

 8 

Contents 

Abstract ................................................................................................................................................. 12 
List of figures  ..................................................................................................................................................... 13 
List of tables ................................................................................................................................................ .16 
Publications arising from this thesis .......................................................................................................... 17 
Abbreviations ........................................................................................................................................ 18 

Chapter 1 Introduction: Genetics and Pharmacology of Ageing ............................ 20 
1.1 Gerontology: socioeconomic and biologic principles ................................................................ 22 

1.1.1 Epidemiological data of human longevity .......................................................................................................... 23 
1.1.2 Ageing in Biology and Medicine .......................................................................................................................... 26 
1.1.3 Measurements of Ageing .................................................................................................................................................28 
1.1.4 Ageing in model organisms including Drosophila ..................................................................................... 29 

1.2 Biology of Ageing: the origins of the ageing process ................................................................. 33 
1.2.1 Evolutionary Theories of Ageing.......................................................................................................................... 34 
1.2.2 Mechanistic Theories of Ageing ........................................................................................................................... 37 

1.3 Molecular Basis of the Ageing Process ........................................................................................ 39 
1.3.1 Dysfunctional molecular fidelity as a driver of ageing.............................................................................. 39 
1.3.2 Mitochondria' Dysfunction and Mitohormesis ................................................................................................. 43 
1.3.3 Dietary Restriction and the Nutrient Sensing Network .................................................................................. 45 

1.4 Diseases of ageing a problem of an ageing population .............................................................. 60 
1.4.1 Geriatric medicine: common problems of old-age ........................................................................................... 60 
1.4.2 Neurodegeneration and Alzheimer's disease .................................................................................................... 61 

1.5 Treating ageing? .....................................................................................................................................62 
1.5.1 Healthy ageing: how to achieve it? ....................................................................................................................... 62 
1.5.2 In pursuit of the DR mimetic .........................................................................................................................................63 
1.5.3 Drugs to improve ageing .................................................................................................................................................65 

1.6 Thesis Outline................................................................................................................................................. 69 

1.6.1 Is lithium a DR mimetic (Chapter 3)? .................................................................................................................. 70 
1.6.2 What are the mechanisms of lithium to promote healthy ageing (Chapter 4)? ......................................... 71 
1.6.3 Is GSK-3 involved in lithium's ability to extend lifespan (Chapter 5)? ...................................................... 72 

1.6.4 What drives neurodegeneration in Drosophila neurons expressing A131_42 (Chapter 6)? ...........................72 

Chapter 2 General methodology ............................................................................ 73 
2.1 Drosophila melanogaster: strains and genetics ........................................................................ 73 

2.1.1 White Dahomey (wpah) ................................................................................................................................................................ 73 

2.1.2 White 1118 (w1118) 

 .................................................................................................................................. 73 
2.1.3 Backcrossing .............................................................................................................................................................. 74 
2.1.4 GAL4-UAS system .................................................................................................................................................. 74 
2.1.5 Gene-switch system ................................................................................................................................................. 75 

2.2 Drosophila food medium ................................................................................................................ 75 
2.2.1 Sugar-yeast medium (SY) .............................................................................................................................. 75 
2.2.2 Grape juice medium ................................................................................................................................................ 76 
2.2.3 Starvation medium ................................................................................................................................................... 76 
2.2.4 Dietary restriction (DR) regime ............................................................................................................................ 76 

2.3 Fly husbandry and culturing .................................................................................................... 76 
2.3.1 Male and female separation .................................................................................................................................... 76 
2.3.2 Virgin collection .............................................................................................................................................. 77 

2.4 Drosophila handling and survival ............................................................................................. 77 
2.4.1 Lifespan assay .................................................................................................................................................. 77 
2.4.2 Stress assays ...................................................................................................................................................... 78 

2.5 Behavioural investigations ............................................................................................................. 78 
2.5.1 Feeding assay ................................................................................................................................................... 78 



Pharmacogenetics of ageing and neurodegeneration 

 9 

2.5.2 Fecundity assay ......................................................................................................................................................... 78 
2.5.3 Climbing assay (negative geotaxis) ............................................................................................................... 79 

2.6 Drugs and other chemicals ................................................................................................................... 79 
2.6.1 Mifepristone (RU486) ............................................................................................................................................. 79 
2.6.2 Paraquat ...................................................................................................................................................................... 80 
2.6.3 Hydrogen Peroxide (H202) ............................................................................................................................................ 80 
2.6.4 Chloroquine ......................................................................................................................................................................... 80 
2.6.5 Phenobarbital ....................................................................................................................................................................... 80 
2.6.6 DDT................................................................................................................................................................................................... 80 

2.7 Biochemistry and molecular biology methods ............................................................................ 81 
2.7.1 Triglyceride assay (TAG) ............................................................................................................................... 81 
2.7.2 DNA extraction and Single-Fly Polymerase Chain Reaction (PCR) .......................................................... 81 
2.7.3 Gel electrophoresis .................................................................................................................................................. 82 
2.7.4 Quantitative Real Time PCR (qRT-PCR) .......................................................................................................... 82 
2.7.5 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) ......................................... 82 
2.7.6 Western blotting ....................................................................................................................................................... 83 
2.7.7 Protein Quantification ...................................................................................................................................................... 83 

Chapter 3 Pharmacology of Lithium for Ageing: a DR mimetic? ............................. 84 
3.1 Abstract ..............................................................................................................................................84 

3.2 Introduction .............................................................................................................................. 84 

3.2.1 The use of drugs in the ageing-field .................................................................................................................... 85 
3.2.2 Lithium as a therapeutic agent .............................................................................................................................. 86 
3.2.3 Pharmacology of lithium ........................................................................................................................................ 87 
3.2.4 Is lithium a potential drug for anti-ageing interventions? .............................................................................. 89 

3.3 Methodology and experimental design ............................................................................................. 90 
3.3.1 Drosophila strains .................................................................................................................................................... 90 
3.3.2 Dietary restriction ..................................................................................................................................................... 90 
3.3.3 Lithium preparation and delivery ......................................................................................................................... 91 
3.3.4 Rapamycin preparation and delivery ................................................................................................................... 91 
3 3 5 Immunoblot analyses ........................................................................................................................................................ 91 

3.4 Results ........................................................................................................................................ 92 
3.4.1 Lithium modulated lifespan in a dose-dependent manner ............................................................................. 92 
3.4.2 Lithium extended lifespan independent of sex, genetic background and fecundity ................................. 93 
3.4.3 Lithium ameliorated age-related locomotor decline ........................................................................................ 95 
3.4.4 Lithium reduced triglyceride levels and sensitised against starvation .................................................... 97 
3.4.5 Lithium extended lifespan beyond dietary restriction ..................................................................................... 98 
3.4.6 Lithium did not alter mTOR activity ................................................................................................................ 100 
3.4.7 Lithium did not require the transcription factor dFOXO to extend lifespan ............................................. 101 
3.4.8 Lithium further extended lifespan of an insulin mutant and has additive effects with rapamycin ... 102 
3.4.9 Lithium blocked the effect of rapamycin to increase triglycerides ........................................................... 104 
3.4.10Lithium extended lifespan when supplemented late in life ........................................................................ 105 
3.4.11 Lithium extended lifespan when fed for a brief period .................................................................................... 106 

3.5 Discussion ............................................................................................................................... 108 
3.5.1 Lithium is a pro-longevity drug ......................................................................................................................... 108 
3.5.2 Lithium extends lifespan when administered late in life or briefly in early adulthood ..................... 109 
3.5.3 Lithium regulates metabolism and the response to starvation .................................................................. 112 
3.5.4 Lithium is unlikely to be a DR mimetic .......................................................................................................... 114 
3.5.5 Lithium and Rapamycin: a polypill? ........................................................................................................... 115 

Chapter 4 Genome-wide -OMICS of lithium for ageing: identifying a molecular 
mechanism 118 

4.1 Abstract ............................................................................................................................................ 118 

4.2 Introduction: pharmacogenetics and pharmacogenomics ..................................................... 119 
4.2.1 The molecular targets of lithium: the use of microarrays ........................................................................... 119 
4.2.2 The use of transcriptomics in ageing ............................................................................................................... 121 
4.2.3 Transcriptional response to lithium in yeast, C. elegans and Drosophila ............................................ 123 
4.2.4 Stress and ageing: longevity and resilience ................................................................................................ 125 
4.2.5 Hormesis: from toxicology to longevity .......................................................................................................... 126 

4.3 Methodology and experimental design ...................................................................................... 127 



 Pharmacogenetics of ageing and neurodegeneration 

 10 

4.3.1 Gene-expression microarrays ..............................................................................................................................127 
4.3.2 Polysome-profile microarrays .............................................................................................................................127 
4.3.3 Gene-Ontology (Catmap analysis) .....................................................................................................................128 
4.3.4 Mitochondria' Isolation.........................................................................................................................................128 
4.3.5 Mitochondria' Physiology Measurements ........................................................................................................128 
4 3 6 Immunoblotting .............................................................................................................................................................. 129 

4.4 Results .................................................................................................................................................. 130 
4.4.1 Lithium and IIS/FOXO do not share a transcriptional response .................................................................. 130 
4.4.2 Transcriptional response from lithium did not overlap with the transcriptional response of flies 
overexpressing HR96 ................................................................................................................................................................ 132 
4.4.3 The transcriptional response of cncC/NRF-2 over-expression overlaps with that from lithium ......134 
4.4.4 Lithium activates the cncC/NRF-2 pathway ...................................................................................................136 
4.4.5 Lithium modifies survival in the presence of different stressors ...............................................................136 
4.4.6 Transcriptomic and translatomic response of lithium showed enrichment for mitochondria' 
complex-1 ..................................................................................................................................................................................... 139 
4.4.7 Lithium uncouples mitochondrial complex-1, but does not alter its oxygen consumption .................140 

4.5 Discussion ............................................................................................................................................ 141 

4.5.1 Lithium elicits a transcriptional signature of detoxification .................................................................. 141 
4.5.2 Mitochondria' respiratory chain complex I was down-regulated in flies treated with lithium ........ 143 
4.5.3 Does lithium induce a hormesis response? Is it a hormetin?......................................................................144 

Chapter 5 GSK-3 in ageing and neurodegeneration ............................................... 146 
5.1 Abstract ................................................................................................................................................ 146 

5.2 Introduction ........................................................................................................................................ 147 
5.2.1 GSK-3 in cellular signalling ......................................................................................................................... 147 
5.2.2 Regulation of GSK-3 and its inhibition by lithium .......................................................................................149 
5.2.3 The role of GSK-3 in ageing ................................................................................................................................150 
5.2.4 Lithium and the inositol depletion hypothesis.................................................................................................152 
5.2.5 Alzheimer's disease: clinical and pathological principles ...................................................................... 153 
5.2.6 Drosophila models of Alzheimer's disease ............................................................................................... 157 

5.3 Methodology and experimental design ............................................................................................... 159 
5.3.1 Drosophila strains ..................................................................................................................................................159 
5 3 2 Immunoblotting ............................................................................................................................................................... 159 
5.3.3 Myo-Inositol supplementation ............................................................................................................................159 

5.4 Results .................................................................................................................................................. 160 

5.4.1 Lithium inhibited shaggy across a wide range of concentrations ..............................................................160 
5.4.2 Different shaggy transgenes modified tau phosphorylation levels ............................................................160 
5.4.3 Shaggy transgenes that increased tau phosphorylation reduced lifespan .................................................162 
5.4.4 Early or late-onset over-expression of shaggy reduced lifespan ................................................................163 
5.4.5 Shaggy-RNAi extended lifespan and protected against paraquat ..............................................................164 
5.4.6 Genetic manipulations of shaggy did not consistently alter hypoxia, armadillo and the IIS 
pathways ........................................................................................................................................................... 165 
5.4.7 Lithium partially rescued from the detrimental effects of shaggy over-expression ..............................168 
5.4.8 Lithium treatment and shaggy-RNAi were epistatic for lifespan ..............................................................168 
5.4.9 Lithium and myo-inositol were epistatic for lifespan....................................................................................169 
5.4.10IMPase-RNAi extended lifespan .............................................................................................................................. 171 
5.4.11IIS or mTOR down-regulation rescued the deleterious lifespan effects of shaggy over-expression172 
5.4.12 Genetic manipulation of shaggy did not modulate age-related locomotor decline ................................. 175 
5.4.13 Over-expression of shaggy did not alter feeding behaviour or fecundity ................................................... 176 
5.4.14 Over-expression of shaggy in neurons, but not in gut/fat body extended lifespan ................................ 178 
5.4.15 Over-expression of shaggy in neurons protected against age-related locomotor decline ...................180 
5.4.16Lithium treatment and neuronal over-expression of shaggy were additive for lifespan .......................181 
5.4.17 Over-expression of a kinase dead shaggy did not affect lifespan when expressed ubiquitously or 
in neurons. .................................................................................................................................................................................... 183 
5.4.18Lithium and shaggy over-expression additively extended lifespan of flies expressing A131_42............... 184 
5.4.19Lithium and shaggy over-expression additively improved locomotor function of flies expressing 
Ap1_42185 

5.5 Discussion ............................................................................................................................................ 186 

5.5.1 Shaggy/GSK-3 regulates ageing in Drosophila ........................................................................................ 186 
5.5.2 Shaggy/GSK-3 and lithium act in the same molecular pathway ...............................................................188 



 Pharmacogenetics of ageing and neurodegeneration 

 11 

5.5.3 Shaggy regulates ageing in a tissue-specific manner .............................................................................. 189 
5.5.4 Shaggy and lithium modulate neurodegeneration: overlapping mechanisms? ....................................... 190 
5.5.5 GSK-3/NRF2 pathway: is there a connection? .................................................................................................... 191 
5.5.6 Circadian clocks in ageing: the role of lithium and GSK-3 ......................................................................... 192 

Chapter 6 The anorexic and stressed fly: neurodegeneration in an Alzheimer's 
Drosophila model .......................................................................................................... 195 

6.1 Abstract ............................................................................................................................................ 195 

6.2 Introduction .............................................................................................................................195 
6.2.1 The role of oxidative stress in Alzheimer's disease ................................................................................. 196 
6.2.2 Age-related anorexia in flies and humans ................................................................................................. 197 

6.3 Methodology and experimental design ...................................................................................... 199 
6.3.1 ATP measurement .......................................................................................................................................................... 199 
6.3.2 Paraquat injections ................................................................................................................................................. 199 
6.3.3 Essential amino acids supplementation ............................................................................................................. 199 
6.3.4 Holidic medium ...................................................................................................................................................... 199 
6 3 5 Immunoblotting ............................................................................................................................................................... 200 

6.4 Results .......................................................................................................................................201 
6.4.1 A131_42 elicited a transcriptionally response enriched for oxidative stress and metabolism ..................... 201 
6.4.2 A131_42 protected against H202 and paraquat when delivered orally ....................................................................... 202 
6.4.3 Flies expressing A131_42 showed acceleration of age-related anorexia ............................................................ 203 
6.4.4 A131_42 sensitized flies against injected PQ ........................................................................................................................ 205 
6.4.5 /4142-induced anorexia did not modify sensitivity to xenobiotics ............................................................... 205 
6.4.6 A131_42 repressed genes involved in oxidative and xenobiotic stress ................................................................ 206 
6.4.7 Chronic expression of A131_42 correlated with starvation resistance ................................................................ 209 
6.4.8 /4142—induced starvation resistance was secondary to a nutrition deficiency ............................................ 210 
6.4.9 Reduced feeding behaviour lead to impaired lipid metabolism ................................................................. 213 
6.4.10 Supplementation of EAA partially restored the lipid profile .......................................................................... 214 
6.4.11 Supplementation of EAA increased the lifespan of flies expressing A131_42.  ................................................ 215 
6.4.12/4142 and starvation share a common transcriptional response ...................................................................... 216 

6.5 Discussion....................................................................................................................................... 218 
6.5.1 Anorexia is the earliest sign of neurodegeneration due to A131_42 ........................................................................................................................ 218 
6.5.2 A01_42-expressing flies are nutritionally deprived and lived longer when supplemented with EAA219 
6.5.3 /4142-induced anorexia altered the response to orally-delivered toxins: implications for drug 
studies 219 
6.5.4 A131_42 induced starvation resistance through alterations in lipid metabolism .............................................. 220 
6.5.5 What underlies the behavioural and metabolic alterations induced by A131-42? ........................................ 221 

Chapter 7 Final thoughts: drugs in ageing and age-related diseases .................. 223 
7.1 General conclusions: treating ageing ......................................................................................... 223 
7.2 Lithium and GSK-3 in ageing and neurodegeneration: an integrative perspective ......... 225 
7.3 Are drugs the way forward in the ageing field? .................................................................... 227 

References 228 

Appendix 258 



 Pharmacogenetics of ageing and neurodegeneration 

 12 

Abstract 

Genetic manipulations and dietary restriction in model organisms have proven that lifespan 

extension is achievable. Moreover these same interventions can protect against age-related diseases 

and improve general healthiness. Therefore, current efforts are being put forward to identify drugs 

that mimic healthy lifespan. Lithium has been documented to be able to extend the lifespan of the 

worm Caenorhabditis elegans, reduce mortality in Drosophila and a recent report has suggested 

that lithium concentrations in drinking water correlate with reduced mortality for all causes in a 

human population. The main objective of the project presented here was to determine the anti- 

ageing properties of lithium using the fruit fly and to determine the mechanism by which lithium 

exerts its broad health benefits and anti-ageing properties. My results showed that lithium extended 

lifespan independent of sex and genetic background. Lithium treated flies were also resistant to 

multiple stressors and showed reduced triglyceride levels. Lithium did not modify fecundity and it 

further extended lifespan of DR flies. The pro-longevity effects seemed to also be independent of 

the nutrient sensing network as it could further extend lifespan of flies with reduced signalling 

though the insulin/IGF-1 and the mechanistic target of rapamycin (mTOR) network. I performed 

transcriptional and translational microarrays in lithium treated flies and found out that lithium up- 

regulated a transcriptional response to stress regulated by the transcription factor 

cap'n'collar/NRF-2 and down-regulated functional categories implicated in mitochondrial complex 

I. By performing epistasis experiments I found out that lithium and shaggy, the fly homologue of 

GSK-3, regulate ageing by acting in the same molecular pathway. However, shaggy seemed to 

modulate ageing in a tissue-specific manner The combination of lithium and genetic 

manipulations of shaggy revealed a very complex regulation of ageing and neurodegeneration. 

I also explored the nature of neurodegeneration induced by over-expression of A131_42 and 

found out that some of the changes induced by A13142 impact general physiology and not only 

neurons. For example, our results suggest that altered metabolism is a prominent feature of the 

toxicity of Ar3 1-42 in Drosophila. 
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Chapter 1 

Introduction: Genetics and Pharmacology of Ageing 

"No scientist is admired for failing in the attempt to solve problems that lie beyond his 

competence. The most he can hope for is the kindly contempt earned by the Utopian 

politician. If politics is the art of the possible, research is surely the art of the soluble. 

Both are immensely practical-minded affairs." 

Peter B. Medawar' 

Ageing is a universal deleterious trait. Even when lifespan differences across taxa can vary 

by as much as 1,000,000 fold, an increase in mortality and decrease in fecundity with age 

is observable (Kirkwood and Austad, 2000). These deleterious traits are used by 

evolutionary biology to define ageing (Partridge and Barton, 1993). However, it should be 

mentioned that it is apparent that some organisms show negligible senescence, which 

represents the minor changes in mortality over extended periods of time documented in 

some organisms (Finch, 2009). An example of this negligible senescence was reported 

after a 4 year follow up study that described that the Hydra did not show age-related 

mortality or reproduction decline (Martinez, 1998). However, most organisms seem to age, 

this is particularly evident when organisms are taken from the wild and studied under 

laboratory conditions (Hayflick, 2000a). This might suggest that ageing can be a 

laboratory artefact of comfort and perhaps unique to humans. From an evolutionary 

perspective ageing in the wild is rare given that most organisms seem to succumb to 

external hazards like temperature changes, famine, predation, etc., before the establishment 

of functional decline (Comfort, 1961; Hayflick, 2000a; Kirkwood and Austad, 2000). 

These arguments have their origin, as I will describe bellow, in the seminal discussions by 

Peter Medawar and Alex Comfort, both scientist at University College London (Nussey et 

al., 2013). 

"Whether animals can, or cannot, reveal an innate deterioration is almost literally a 

domestic problem; the fact is that under the exactions of natural life they do not do so. 

1 Quote taken from (Medawar, 1999). 
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They simply do not live that long." Peter Medawar (italics in original).2 

However, a recent evaluation of long-term field studies, indeed showed evidence 

that senescence is encountered in nature (Nussey et al., 2013). The universality of ageing 

has made it interesting-enough that its field of study ranges from philosophy to sociology 

to biology and even economics. The study of the biology of ageing or biogerontology is 

fairly recent, at least the part of the field experimentally testing the mechanisms underlying 

the ageing process. Even more recent is the field of interventional biogerontology where 

ageing researchers actively explore for ways to improve health at older ages and prolong 

lifespan in model organisms (Partridge, 2010). However, the pursuit of youthfulness is not 

new, my mentor Linda Partridge often exemplifies this by reminding us of Robert Boyle's 

to-do list (Figure 1.1). Robert Boyle wrote a list of things he hoped could be achieved 

through scientific research and at the very top of his wish list he wrote "The Prolongation 

of Life" and "The Recovery of Youth" (Henderson, 2010). 

Figure 1.1. Robert Boyle, FRS 
wrote this to-do list. The first two 
items read as follow: The 
Prolongation of Life (1st line) and, 
The Recovery of Youth, or at least 
some of the Marks of it, as new 
Teeth, new Hair colour'd as in 
youth (2nd and 3rd lines). For the 
complete list and transcript see 
(Henderson, 2010) 

In the reminder of this chapter I will explore what is ageing, or at least how 

different trains of thought have defined it, and most importantly, I will also describe the 

mechanisms thought to underlie the ageing process, i.e., how do we age. These types of 

questions have transformed biology, not only because of what we think and get to know 

2 Quote extracted from (Nussey et al., 2013). 
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about life, but also because of what we, as a species, have been able to achieve with this 

knowledge. Simple questions are usually the beginning of great discoveries. For example, 

Schriidinger's book 'What is life?' has been credited by both Francis Crick and James 

Watson, co-discoverer's of the structure of DNA, as an inspiration for embarking on the 

quest that finalised (our should instead say 'started') in the description of the DNA 

structure, opening a new era in the field of molecular biology (Watson, 2000). Although 

Schriidinger's exploration of the idea of genetic flow of information was not novel, even at 

its time, it inspired some of the greatest minds to engage in the quest of the identification 

of the DNA architecture (Schrodinger, 1967). The discovery of DNA has also inspired and 

transformed other fields. The relevance of genetic information and signalling mechanisms 

became central for neuroscience, especially for the fields of learning and memory, when it 

was discovered that signalling events between neurons and the synthesis of proteins is 

central for the reinforcement of synaptic communication (Kandel, 2006). The concept of 

signalling events is now central to the understanding of biological mechanisms governing 

the ageing process. These signalling pathways (particularly the nutrient-sensing network, 

discussed later in this chapter) were identified following the discovery of single genes 

capable of modifying lifespan and healthspan (Kenyon, 2010; Partridge, 2010). Genetics 

and signalling pathways regulating gene expression have become central to the study of 

the biology of ageing, not only in model organisms where I carry out my research, but also 

in human populations, especially those that have been fortunate to live through advanced- 

age. 

1.1 Gerontology: socioeconomic and biologic principles 

Gerontology refers to the integral study of ageing, is a broad specialty as it covers social, 

psychological and biological aspects of ageing. Gerontology should not be confused with 

geriatrics, which refers to a sub-specialty of Internal and Family Medicine that focuses on 

medical aspects (mainly pathologies) of older people (Fillit et al., 2010). In the context of 

this dissertation, I will only consider ageing in its biological terms; however it is important 

to note that ageing can also be studied from other perspectives. Human ageing is 

multidimensional, as it comprises not only its biology, but also psychological and social 

aspects. These broader aspects of gerontology keep the research we do in biogerontology 

oriented towards its biomedical implications. 
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As I will describe in the next section, life expectancy has been increasing steadily 

since the second half of the last century in most parts of the world; this has occurred with 

no intervention of biogerontology. However, it has uncovered that alongside the great 

achievement of longer lifespans, our older populations are experiencing the devastating 

effects of age-related diseases. This has made the idea of living longer not only 

unattractive to most people, but perhaps even thoughtless 'selfish' and irresponsible. 

Though biogerontologists have been able to prolong lifespan of model organisms (as 

Boyle wished), there is no clear evidence to suggest that this will translate into increased 

lifespan in humans. Moreover, most if not all research in model organisms has shown that 

interventions that extend lifespan in the laboratory also significantly extend healthspan, as 

measured by their increased locomotor capacity, resistance to environmental stressors and 

to ageing-related diseases. The goal of biogerontology is first and foremost to promote 

healthspan during ageing. We do not aim to extend the decrepit moribund period of life. 

However, extending healthspan is likely to increase lifespan as interventions identified in 

model organisms suggest (Hayflick, 2000a; Juengst et al., 2003). 

Although the ethical implications of ageing research escape the scope of this 

dissertation, it is of great relevance to realise that our research has direct implication to 

human health. This not only obliges us towards careful scientific practice, but to also be 

wary of the perception of our findings by the general public. This does not mean that 

scientific findings in biogerontology (or in any field) should be kept from the general 

public, but to be cautious of not overindulging our findings in the aim of securing funding 

or attracting media attention. Our responsibility as scientists should not end with the 

publication of our results, but we should be accountable for making sure that the public is 

aware of our results and its implications first-hand. Is not easy to translate research from 

model organisms like yeast and flies to humans, but it has become apparent in recent years 

that the mass media easily makes careless correlations, potentially damaging the 

perception of our field (Le Bourg, 2000; Juengst et al., 2003). We should be aiming to 

avoid miscommunication between the scientific finding and the general public. 

1.1.1 Epidemiological data of human longevity 

For most part of our history (99.9% of it) our average life expectancy has fluctuated 

between 20 and 30 years of age, based on estimations from skeletal remains (Hayflick, 

2000a; Klein, 2000). However, just in the first 70 years of the last century, life expectancy 
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increased by 27 years, and the remainder of the century saw a 6-year increase (Hayflick, 

2000a). This has had two major consequences, first the 'greying' of our population and, 

second, uncovering the consequences of chronic diseases like diabetes, cancer and 

Alzheimer's disease (Hayflick, 2000b). 

Figure 1.2 World population by age group according to the UN, 2009. Taken from (Bloom et al., 2011) 

The world's population is estimated to be above 7 billion (Bloom, 2011; Lee, 

2011). Approximations of population growth do not seem to favour a significant 

deceleration in the future (Figure 1.2). The Division of the Department of Economic and 

Social Affairs of the United Nations (UN) estimates the world population will reach 9.3 

billion in 2050 and 10.1 billion in 2100 (Bloom, 2011). Importantly, almost the entire 

population growth (97%) between now and 2050 will occur in the less developed regions 

of the world, with 38% taking place in the least developed countries. The two most 

populated countries by this time will be India and China, with estimated populations of 

1.69 and 1.30 billion respectively. 
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According to the UN Population Division currently 800 million people are over the 

age of 60 years and comprise 11% of the world's population. By 2050 this percentage will 

double to 22%, meaning 2 billion people worldwide will be over the age of 60 years 

(Bloom, 2011). By 2050 Japan, currently housing one of world's oldest populations (31% 

being over the age of 60 years) and with the greatest life expectancy (83 years), will drop 

out of the top ten of most populated countries. However, by 2050 42% of the Japanese 

population will be over the age of 60 years (Bloom, 2011; Sanderson and Scherbov, 2005). 

Increased population ageing is influenced by three main events: migration, 

increased life expectancy, and decreased birth rate. However, two important 

epidemiological events from the 20th century also account for the world's current 

longevity. First, the so-called epidemiological transition resulted in the reduction of early 

death due to improved perinatal care, vaccination and control of infectious diseases 

through antibiotics (Manton, 2010; Timiras, 2003). The second event comprised the 

reduction in deaths due to age-related diseases, this has been more progressive (having 

started in the 1970s to 1980s), but has had a clear impact on mortality at older ages 

(Timiras, 2003). The greatest reduction in mortality has been in diseases such as ischemic 

heart disease and stroke, especially in developed countries such as the United States of 

America (Alzheimer's Association, 2012). 

In spite of the morbidity compression, the prevalence of ageing diseases, as the 

population continues to grow, has increased. Diseases of old age have become a central 

issue of public health in developed countries (Figure 1.3). Moreover, as developing 

economies transition to economical stability they encounter the worst of the two worlds, 

the diseases of the developing world (increased at-birth mortality, infections, etc.) and also 

the diseases of ageing from the established economies. 

A England cardiovascular disease B Europe dementia rates C UK cancer rates 

rates 

 
Current Biology 

Figure 1.3 Ageing and Disease. (A) Incidence of cardiovascular disease in England, 2006; (B) Prevalence 
of dementia in countries from the European Union, 2006; (C) Age-specific mortality rate per 100,000 
population, UK. Taken from (Niccoli and Partridge, 2012) 
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Thus, understanding of the biological principles that govern the ageing process 

should become an integral part of the public health effort to tackle the increasing burden of 

ageing related pathologies. 

1.1.2 Ageing in Biology and Medicine 

Ageing is a stochastic process that occurs after reproduction maturity and is the 

consequence of the diminished capacity of organisms to maintain molecular fidelity. The 

reduced capacity of the organism to sustain homeostasis often leads to age-related 

pathologies. Hence, the ageing process, or the decline in homeostatic capacity, is the major 

risk factor for chronic age-related diseases. The ensuing increase in systemic molecular 

disorder ends up in death (Hayflick, 2000a). Hayflick has suggested that no one actually 

dies of the diseases found in their death certificates. This is likely to be accurate since if a 

patient was admitted to hospital for renal failure secondary to diabetes mellitus, and in the 

course of treatment developed hyperkalaemia (high levels of circulating potassium) with 

hypocalcaemia (low circulating levels of calcium), the patient would probably die of 

cardiac arrest secondary to cardiac arrhythmia. In the death certificate the medic validating 

cause of death would probably write in order of appearance (suggesting the order of 

progression from primary to immediate cause of death): type II diabetes mellitus, end- 

stage renal failure secondary to diabetic nephropathy, cardiac arrhythmia secondary to 

electrolyte imbalance and cardiopulmonary arrest. In this scenario neither the primary 

cause of the disease (the origin of the insulin resistance), nor the ultimate dysfunction that 

led to cardiac arrest would be properly diagnosed. Our understanding of the molecular 

mechanisms behind disease and cause of death need to improve dramatically. Hayflick has 

emphasized that even if we were to fmd cures for three of the major killers of our time 

(namely cardiovascular disease, cancer and stroke), we would only increase life 

expectancy by about 15 years. And then we would probably find out what is the ultimate 

cause of death when no disease is present, i.e., what leads to death when the capacity of the 

organism to cope with molecular disorder ceases (Hayflick, 2000a). 

In spite of the efforts of many biogerontologist to classify ageing as a disease, as a 

health care professional, I have not encountered convincing arguments. Gems argues that 

ageing should be considered as a disease or syndrome because it is characterised by a 

broad-spectrum of age-related pathologies that lead to death. Additionally he argues that 

no one dies of ageing (Gems, 2014). Even for those that age 'gracefully' functional decline 



 Pharmacogenetics of ageing and neurodegeneration 

 27 

is imminent. Hence, ageing is associated with deterioration and therefore is undesirable. In 

the same vein is the consideration that this decline should be treated, thus enabling the 

concept of anti-ageing medicine (Gems, 2014). One cannot "treat" any other thing that is 

not a disease. Although treating ageing sounds rather logical, I wonder if the train of 

thought followed by Gems would hold when analysed from the perspective of 

developmental biology and embryology. Alterations during development also cause 

syndromes and disease, most of which lead to death due to severity. The main difference 

between diseases during ageing and development is that during the former functional 

decline allows for a broad spectrum and greater incidence of pathology than during 

development in which the system is trying to maximise fitness. 

Treatments for diseases are regulated by agencies that approve and regulate their 

use. As of now, anti-ageing products are not regulated and are classified as supplements, 

unless they are actual treatments for disease that have been repurposed. If ageing was to be 

considered a disease, then all anti-ageing interventions would be under the scrutiny of 

appropriate agencies ensuring efficacy and safety (Juengst et al., 2003). This in my opinion 

calls action into changing the regulation of products with nutritional relevance (this would 

not only include supplements, but also junk food and drinks). I consider that what needs to 

change is our view of interventions to regulate the ageing process and general health 

instead of the classification of ageing per se. Focusing into health preservation and 

prevention of disease would probably lead to a better regulation of any product with either 

harmful or beneficial effects for health. Medicine as a field needs to transition more 

efficiently into disease prevention. This transition would stimulate a reorganisation of the 

medical community and the way health during ageing is assessed. The ageing process 

would not only be an aspect of geriatric medicine, but of general medical practice and 

family physicians. Geriatricians would, however, continue to be the specialists in treating 

the diseases of ageing. 

The clear overlap between biogerontology and geriatrics should require constant 

communication between geriatricians and gerontologists. In one-way or another some 

knowledge should be shared. Geriatricians are required to understand the basics of the 

ageing process and its social and psychological implications, while biogerontologists 

should keep in mind that retardation of the ageing process in model organisms is rather 

pointless unless these interventions, from an evolutionary point of view, are applicable to 

human health (Fillit et al., 2010). 
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1.1.3 Measurements of Ageing 

Our understanding of the biological processes that govern ageing has rapidly advanced in 

the last 30 years. This can be attributed to three main events. Firstly, the use of simple 

organisms in the laboratory has unveiled signalling and molecular pathways that are 

translatable to mammalian systems, confirming evolutionary conservation. Secondly, the 

field has successfully adapted methods for genetic manipulation in model organisms, and 

also methods to interrogate the genome, proteome and metabolome are gradually being 

integrated into biogerontology both for ageing research in model organisms and human 

ageing. This is allowing us to understand the changes that occur during ageing and the 

molecular basis of interventions that potentially retard the process (Soltow et al., 2010). 

Third, we now understand better how ageing affects function during ageing. However, this 

is perhaps the point that requires further experimentation and development. We need to 

determine clear biomarkers of ageing (Fontana et al., 2014). Furthermore, although we can 

measure relatively easily lifespan in yeast, worms, flies and mice, we do not completely 

understand cause of death, especially in invertebrates. Research into the events leading to 

death should unravel some insight as to how ageing culminates and the point of no return 

in the adaptive process. 

Several concepts are, however, indispensable for the study of ageing and should be 

introduced. Demographical parameters like mortality, birth rate and fertility shape several 

important aspects of human ageing and specifically population ageing. For the purpose of 

this dissertation only life expectancy is considered as it can be regarded as quasi - 

equivalent of survival curves, which are a key form of ageing assessment in Drosophila. 

Life expectancy refers to the total years remaining at the moment at which the study is 

being conducted, i.e., the average number of years a person is expected to live (Hayflick, 

2000a; Timiras, 2003). Life expectancy has been increasing linearly for over 165 years, 

and there is no indication that we are approaching the limit of human lifespan (Christensen 

et al., 2009; Oeppen and Vaupel, 2002). This steady-state increase in life expectancy, has 

led to the suggestion that most babies born since 2000 will celebrate their 100th birthday if 

born in countries with a long history of longevity (Christensen et al., 2009). Of course the 

increase in life expectancy has been accompanied by an increase in diseases of old-age 

(Bloom, 2011; Christensen et al., 2009). The presence of disease is termed morbidity 

which regularly leads to increased mortality i.e., deaths. 

Lifespan can be defined as the duration of life of an individual or organism in a 

particular environment and/or under specific circumstances (Timiras, 2003). For the 
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purpose of this dissertation lifespan will be defined as a measure of the duration of life of a 

group of flies under certain pharmacologic and/or genetic manipulations. The easiest and 

most direct way to assess treatments that increase longevity is to measure if an intervention 

(environmental or pharmacological), genetic manipulation (gene mutation, over-expression 

or down-regulation) or background (genetic strain or cytoplasmic background, the latter 

referring to the Wolbachia status of flies) can prolong the survival of a group of flies 

subjected to the treatment in question (Partridge et al., 2011). For the purpose of assessing 

pro-longevity success, median and maximum lifespan are often measured (as in the 

following chapters). Median lifespan corresponds to the time at which 50% of the 

population remains alive. On the other hand, maximum lifespan corresponds to the time at 

which the last 10% of the population remains alive (Mair and Dillin, 2008). 

1.1.4 Ageing in model organisms including Drosophila 

Evolutionary-less complex organisms like C. elegans and Drosophila offer several 

advantages for the study of ageing because of their relative short lifespan, knowledge of 

their complete genomes and their well characterized biology. However, in order for ageing 

in these species to be relevant for mammals, and especially to humans, interventions to 

specific cellular pathways have to be evolutionary conserved (Partridge, 2001). All model 

organisms have advantages and disadvantages for the study of ageing and ageing-related 

diseases. For example, yeast cells are incredibly cheap, easily manipulated genetically, 

show age-associated changes in cellular organelles, and can be studied for their 

chronological and replicative lifespan. While the chronological lifespan refers to their 

capacity to maintain vitality (integrity of the cell wall or capacity to form a colony) in a 

non-dividing state, their replicative lifespan refers to the number of times they can divide, 

which has been calculated to be a mean of between 20 to 30 generations (Blagosklonny 

and Hall, 2009; Denoth Lippuner et al., 2014). However, the lack of complex interaction 

derived of multi-cellularity is a major disadvantage of yeast cells. Hormonal regulation of 

ageing cannot be studied as they lack the appropriate signalling pathways (Alic and 

Partridge, 2011). In contrast, the nematode worm Caenorhabditis elegans is still cheap, 

amenable to genetic manipulation and with a relatively short life cycle (adult mean 

lifespan is between 2 to 3 weeks at 25°C), yet it possesses complex organised tissues. 



 Pharmacogenetics of ageing and neurodegeneration 

 30 

Additionally, C. elegans is transparent which allows examination of their internal 

structures. However, as a `Drosophilisr the trait I wish flies had was the ability to survive 

freezing/thawing. C. elegans can be stored at -80°C, which coupled to their relatively short 

lifespans makes them an interesting model for ageing research. Another interesting feature 

of C. elegans is the simplicity and efficiency of RNA interference for knocking down gene 

expression. Worms fed genetically transformed bacteria expressing double stranded RNA 

(dsRNA) complimentary to the gene of interest show very good knock-downs. This makes 

C. elegans a very powerful genetic tool for genetic screens. Moreover, C. elegans shares 

40% of its genetic code with humans. However, amongst others I highlight two 

disadvantages of using C. elegans as a model organism. First, there are no females, most 

worms in a given population are hermaphrodites, whit a very low percentage of males 

(0.05%), which complicates the study of sex-specific effects. Second, though they posses a 

semi-organised nervous system (with precisely 302 neurons), there is no brain-like 

organisation, which limits their use and interpretation for the study of the CNS and 

diseases within this structure (Finch and Ruvkun, 2001; Fire, 2007; Hull and Timmons, 

2004; Markaki and Tavernarakis, 2010; Vanfleteren and Braeckman, 1999; Walker et al., 

2005). 

In the case of mammalian models, the preferred system has been the mouse since it 

has a shorter lifespan in comparison to primates (3 years on average for mice and over 30 

years in the case of rhesus monkeys), and genetic tools are more readily available. Though 

ageing studies in non-human primates have been instrumental to further our understanding 

of the relationship between diet and ageing (Colman et al., 2009, 2014; Mattison et al., 

2012; Roth et al., 2004). In general mammalian models are difficult to maintain, very 

expensive and their life cycles make ageing research practically unrealistic for a doctoral 

dissertation. Preparation for studies in these animals requires careful examination and 

sample size estimation, as the cost of keeping them is often a limiting factor for big sample 

sizes. However, ageing studies in mammalian models are required to prove evolutionary 

conservation of interventions tested in less complex organisms (Swindell, 2012; 

Weindruch et al., 1986; Yuan et al., 2011). 

1.1.4.1 Drosophila: a brief historical perspective 

Drosophila has been a key model organism for the study of genetic inheritance, 

development, behaviour, disease and aging. Early in the 1900s William Ernest Castle 
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introduced the used of Drosophila melanogaster as a genetic tool at Harvard University. 

Castle influenced many others to incorporate Drosophila in their research as a viable 

model organism. It was only after the experiments carried out by Thomas Hunt Morgan 

and his students at Columbia University in New York that Drosophila acquired certain 

popularity in genetics. Morgan discovered in 1910 the sex-linked white eye mutation. This 

seminal discovery is still used in the day-to-day handling of flies as a genetic marker. It is 

important to notice that the white gene encodes for red, which is the wild type eye colour. 

Morgan's team not only paved the way for the use of Drosophila as a genetic tool, but also 

made important contributions to the general field of genetics. For example, Morgan's 

student Calvin Bridges proved the chromosome theory of inheritance, Alfred Sturtevant 

generated the first chromosome map as an undergraduate student, and Herman Muller 

demonstrated the mutagenicity of X rays. After an intense era of genetics research at the 

beginning of the 19th century, Drosophila genetics was overshadowed by the use of viruses 

and bacteria until early in the 1970's when attention shifted to the control of development 

and behaviour in more complex organisms. Ever since Drosophila has remained 

instrumental for the understanding of complex processes like behaviour, ageing and 

disease (Hartwell et al., 2011; Kenney and Borisy, 2009; Kohler, 1993; Stephenson, 2013). 

1.1.4.2 Drosophila melanogaster: natural history and genetics 

Figure 1.4 Drosophila life cycle. Fertilised 
females can store sperm in storage organs 
called spermatheca and seminal receptacle. 
They fertilise their eggs just before laying the 
embryo. The embryo completes its 
development within 24 hours and 'hatches' as 
a first instar larvae and progresses up to third 
instar in a process called molting. During 
these phases the main larval functions are 
eating and growing. Molting is controlled by 
the hormone ecdysone. Just before pupariation 
third instar larvae usually crawl up the sides 
of their housing bottles and undergo 
metamorphosis inside the protective pupal 
case. During this four-day period most larval 
tissues are replaced to adult-like tissues. After 
flies emerge from their pupa their wings 
expand, their exoskeleton hardens and 
becomes pigmented. Taken from (Hartwell et 
al., 2011). 
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The genus Drosophila of the family Drosophilidae is made up of over 900 species, which 

inhabit almost every corner of the world, except for the coldest tundras and the driest 

deserts. Drosophila, particularly D. melanogaster has been called the great hitchhiker 

among Drosophilas. It seems that wherever we have gone (we being the greatest travellers 

among primates), Drosophila has followed us (Kohler, 1993). For example, I have taken 

our Dahomey (see Chapter 2 for more details about our wpah flies) flies to Uganda and 

Tanzania in an attempt to introduce the use of Drosophila in biomedical research in Africa. 

Students attending our courses have then taken them back to their universities across the 

continent (Yusuf et al., 2014). Interestingly our w
p
a

h
 flies are originally from Dahomey 

(today Republic of Benin) in West Africa. It can be said that these flies are returning 

home. Recently Drosophila has even gone to space and there is great interest as to how the 

anti-gravity environment changes their physiology, including for example cardiac function 

and ageing (Anthony et al., 1996; Marco et al., 1996, 2003). The name Drosophila means, 

"dew lover" as a moist temperate climate offers the best conditions for their survival. 

Although they are called fruit flies, they should be instead called yeast flies, as this is their 

preferred food source. D. melanogaster is often found in decaying vegetation or fruits that 

support yeast colonies (Kohler, 1993). At 25°C their developmental life cycle is 

approximately 10 days from egg to adult fly (Figure 1.4). Under laboratory conditions 

Drosophila can live between two to three months. Female flies liver longer than male flies. 
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only about 2% of the major autosomes). Unlike in mammals sex is determined by the ratio 

of X chromosomes to the number of autosomes. Additionally, each cell decides whether to 

be male or female. The Y chromosome is required for male fertility but is not involved in 

sex determination. By convention the Y chromosome is not given a number. The Y 

chromosome is almost entirely heterocromatin and it probably only carries genes involved 

in the physiology of male germ line (seven or eight genes). Chromosomes 2, 3 and the X 

chromosome possess large blocks (a quarter of the length of the chromosome) of 

heterochromatin near their centromere (Hartwell et al., 2011). 

The Drosophila genome is about 5% the size of the human genome and it contains 

approximately 13, 600 genes (Adams et al., 2000). Besides the fact that the entire genome 

has been sequenced Drosophila shares approximately 60% of its genetic code with humans 

and it has been identified that 75% of genes related to human disease have a counterpart in 

flies, making them an attractive tool to model human diseases (Chien et al., 2002; Reiter 

and Bier, 2002; Reiter et al., 2001). Additionally several genetic tools like the GAL4/UAS 

gene expression system (see Chapter 2 for a detailed description) have made Drosophila 

extremely amenable to genetic manipulation. Its low cost, rapid turnover, and complex 

behaviour have made it an ideal model for the study of ageing and disease (Lessing and 

Bonini, 2009; Muqit and Feany, 2002; Reiter, 2005; Whitworth et al., 2006). 

1.2 Biology of Ageing: the origins of the ageing process 

When one considers the triumph of the developmental and growth processes that lead to 

reproductive fitness it becomes rather remarkable that organisms fail to mainly maintain in 

good shape the integrity of cells and tissues. This was in so many words a thought that the 

prominent evolutionary biologist George Williams had about the ageing process. In the 

context of the great energetic and programmed nature of development it does seem 

surprising that organisms are incapable of repair and preservation (Kirkwood, 2005). This 

has led to numerous currents of thought that have speculated why nature has allowed such 

a decline. There are a number of biological and evolutionary theories that attempt to 

explain the origins and causes of ageing (Medvedev, 1990). It is likely that components of 

these theories might contribute in varying degrees to the explanation behind the ageing 

process (Jin, 2010). These theories can be categorised into evolutionary, molecular and 

cellular theories of ageing (Weinert and Timiras, 2003). In the context of this dissertation 
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the molecular and cellular theories are categorised as 'mechanistic' theories of ageing. The 

latter attempt to explain what causes ageing, i.e. how do we age, while the evolutionary 

theories try to explain the origin of the ageing process, why ageing exists. 

1.2.1 Evolutionary Theories of Ageing 

Some of the theories proposed to explain the origin of the ageing process have the 

unforgiving flaw of assuming that ageing already exists. For example, the altruistic theory 

of ageing proposes that ageing exists for the benefit of the species. According to this 

theory ageing gets rid of older individuals that would consume resources of the young 

ones, those that would contribute to the fitness of the population. By removing the old and 

decrepit that do not contribute to the continuation of the species, nature makes way to the 

young and fit ones (Kirkwood and Austad, 2000). However, fitness decline is secondary to 

ageing, if ageing did not exist then the old ones would still be able to contribute to the 

perpetuation of the species. Therefore, the assumption that ageing exists does not help to 

explain why ageing exists. Moreover, a recent theory of ageing has proposed that longer 

lifespans in the post-reproductive period in women, are determinants of the successful 

reproduction and survival of their offspring and also of the survival of their grandchildren 

(Hawkes and Smith, 2009; Landenperd et al., 2004). This has been called the 

"grandmother theory of ageing". While the validity of this theory is contested, it does not 

explain why do we age, it might merely hint as to why we live as long as we do, if 

anything. 

Figure 1.6 The force of natural selection declines 
with age. Mutations arising during childhood before 
the onset of reproductive fitness are under strong 
natural selection. Mutations whose phenotypes 
manifest after sexual maturity are under less 
selection pressure. Therefore, late-acting mutations 

are allowed to pass on to the next generation. Taken 
from (Rose, 1999). 
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Perhaps the greatest contribution to the understanding of the evolution of ageing 

came from the seminal observation that as individuals age, the force of natural selection 

diminishes (Figure 1.6). John Burdon Sanderson (J.B.S.) Haldane made this observation 

when studying the age of onset of genetic diseases, particularly Huntington's disease (HD) 

(Haldane, 1941). The question here was, why disease-causing genes have not been 

removed by natural selection if they are deleterious to the species? However, as Haldane 

described, diseases that present later in life are under less selection than those that present 

early in life. An example commonly given is the comparative prevalence of progeroid 

syndromes (low prevalence), which present fairly early in life, and the prevalence of HD 

(higher prevalence than progerias), which presents later in life. Patients with progeria show 

manifestations of the disease very early in life, limiting their reproductive capacity. On the 

other hand, most forms of HD onset after the genes have been passed to the next 

generation, perpetuating the existence of the disease (Rose, 1999). Thus, Haldane 

hypothesised that ageing occurs as the result of late-acting deleterious mutations. These 

mutations would be under low or no natural selection (Haldane, 1941). Where do these 

mutations come from? 

Peter Medawar rightly discussed that mutations are always happening in 

populations, most of these mutations will have no or little impact on development and 

reproductive fitness. However, if they did affect these traits they would be removed from 

the population by not allowing them to pass on to the next generation. Mutations that do 

not affect traits that manifest before reproductive capacity and success are achieved will 

persist. As these mutations, which are not under natural selection, continue to accumulate, 

they will become prominent in the population. Medawar proposed that the accumulation of 

late-acting deleterious mutations over the evolutionary history of populations has resulted 

in what we call now ageing (Medawar, 1957). Earlier such effects would have not been 

manifested, as predation and other external hazards would have not allowed for the 

functional decline and manifestation of these mutations to occur. However, as organisms 

have learnt to eliminate or control their environment the consequences of the accumulation 

of late-acting mutations have become very apparent. This theory is called the mutation 

accumulation theory of ageing. 

George Williams took a complementary approach to that of Medawar. However, 

Williams focused on mutations that would be favoured by evolution because of their 

contribution to reproductive fitness, rather than in the accumulation of late-acting 

deleterious mutations (Kirkwood and Austad, 2000; Weinert and Timiras, 2003). Williams 
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proposed that mutations that would ensure reproductive capacity will be favoured by 

natural selection even if they pose a disadvantage later in life (Williams, 1957). As natural 

selection drives perpetuation of the species, these mutations would remain in the 

population allowing the appearance of ageing (ageing being the negative side effect) 

(Weinert and Timiras, 2003; Williams, 1957). Williams's proposal is called the 

antagonistic pleiotropic theory of ageing to highlight the dual early benefit and later 

negative effect of such mutations. Thomas Kirkwood proposed a specific case of 

antagonisict pleiotropy in a theory that has focused on the disposable soma. Kirkwood 

assumes that resources are limited and given a choice organisms should allocate those 

resources in either somatic maintenance or reproduction. When resources are plentiful 

natural selection will favour reproduction and energy will be invested in the germ line. 

However, when resources become limiting, nature will favour somatic maintenance until 

resources become available after which investment in reproduction will resume. 

Kirkwood's interpretation of the antagonistic pleiotropy theory of ageing proposes that 

ageing arises because of the sacrifice of somatic maintenance in favour of reproduction. As 

limited resources are allocated to repair the accumulation of cellular and molecular 

damage, the soma becomes disposable and senesces (Kirkwood, 2000, 2005; Kirkwood 

and Austad, 2000). Two problems arise from this theory however. Firstly, it only explains 

why we live up to a certain age and secondly its principle contribution has been to describe 

why long-lived mutants show compromised reproduction (Weinert and Timiras, 2003). 

However, reduced fecundity and longevity have been recently uncoupled (Grandison et al., 

2009a). 

More recently Mikhail Blagosklonny has proposed another variation of the 

antagonistic pleiotropy theory of ageing. In contrast to Kirkwood who assumes that ageing 

is driven by the accumulation of unrepaired damage (Kirkwood, 2005; Kirkwood and 

Austad, 2000), Blagosklonny has discussed that ageing arises from the continuation of 

developmental programmes (Blagosklonny, 2008). Blagoskonny's theory brings centre 

stage the knowledge we have of how certain pathways regulate ageing to the origins of the 

ageing process. His theory has been called the hyperfunction theory of ageing to highlight 

that the driving force behind ageing is the perpetuation of processes started during 

development (Blagosklonny, 2013a; Gems and De la Guardia, 2013; Gems and Partridge, 

2013). During development, genetic pathways in charge of biomass synthesis and 

accumulation are set up, however as the organism ages these programmes are not switched 

off and they will continue operating, in a way they hyperfunction as their main purpose 
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was not to drive ageing. Blagosklonny's theory is, in a way, centred in the mechanistic 

target of rapamycin (mTOR) pathway (Blagosklonny, 2008, 2013b, 2013c). As I will 

discuss later, this pathway is very important for development and growth as it promotes 

protein synthesis and prevents degradation (Jacinto and Hall, 2003; Jia et al., 2004; Wei et 

al., 2013). In Drosophila for example, down-regulation of this pathway reduces 

reproductive capacity, but it extends lifespan (Bjedov et al., 2010). Hence it highlights the 

nature of pleiotropic functions of known cellular processes. Blagosklonny also tackles the 

idea that ageing is programmed. The biogerontology community has long discussed the 

possibility that certain genes function is to drive the ageing process, hence the existence of 

a programme (Austad, 2004). Such genes have not been found yet. By moving the drivers 

of ageing to developmental programmes, Blagosklonny proposes that ageing is not 

programmed but quasi-programmed. Ageing is not encoded in our genomes, but it happens 

because processes controlled during development do not have an off switch 

(Blagosklonny, 2008, 2012b). 

1.2.2 Mechanistic Theories of Ageing 

Many theories as to how we age have been proposed. Most of these theories have in 

common the generation of damage. For example, the error catastrophe theory of ageing 

proposes that the accumulation of defects arising in the regulation of transcription and 

translation lead to a catastrophic error that ultimately limits vitality. Similarly, it has been 

proposed that accumulation and changes in protein structures impairs cellular function 

ultimately limiting tissue and organism physiology (Weinert and Timiras, 2003). This 

theory features prominently in the collapse of proteostasis seen in many neurodegenerative 

diseases like HD, Alzheimer and Parkisnon's disease. I will discuss proteostasis and 

ageing in the subsequent section. 

The most prominent and also the most debatable proposed reason for ageing is 

damage accumulation, secondary to free radicals. The free radical theory of ageing 

proposes that highly reactive free radicals are generated from oxidative metabolism, 

resulting in damage to different macromolecules (Weinert and Timiras, 2003). This theory 

has been regarded as the most promising explanation for the ageing process. However, 

very recently there has been a surge of conflicting data showing that damage accumulation 

does not have to be prevented to retard ageing, and that in some cases generation of 
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reactive oxygen species (ROS) correlate with increased healthy ageing. Indeed generation 

of ROS is sometimes necessary for lifespan extension in invertebrates (Doonan et al., 

2008; Blagosklonny, 2008). I will discuss the role of ROS and stress resistance in 

subsequent sections. 

Recently nine hallmarks of ageing were described that account for processes that 

are thought to drive the ageing process, adaptive responses to damage accumulation, and 

the hallmarks that translate into phenotypes (Figure 1.7) (Lopez-Otin et al., 2013). 

According to the primary hallmarks the processes that drive the ageing process are 

genomic instability, telomere attrition, epigenetic alterations and loss of proteostasis. I will 

discuss these hallmarks in more detail in the subsequent section. These hallmarks were 

defined in an attempt to provide a framework to conduct research and target the scientific 

effort. This approach followed from the one taken by the cancer biology community 

(Hanahan and Weinberg, 2000, 2011). Targeted research into the regulation and 

interconnectivity of these hallmarks should provide a clearer picture as to why we age, 

what are the processes regulating the ageing process and how to target them to improve 

lifespan and healthspan (Lopez-Otin et al., 2013). 

Our understanding of the processes driving ageing is still in its infancy. Therefore, it 

is quite remarkable that in spite of lacking an absolute explanation of why and how we 

age, we have been able to successfully intervene in the ageing process. Recent data has 

shown that, as with all biological processes, our genes play a significant role. The 

importance of the success of these interventions, beyond their pro-longevity effects, 

resides in the theoretical insight they provide to explain the origin and drivers of ageing. 

Figure  1 .7  The nine  

hallmarks of ageing. These 
hallmarks highlight process 
that cause damage and 
should drive the ageing 
p rocess ,  c e l lu l a r  and  
organismal processes that 
r e s p o n d  t o  d a m a g e  
accumulat ion and the  
hallmarks that are likely to 
drive the manifestation of 
ageing. Taken from (Lopez-
Otin et al., 2013). 
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1.3 Molecular Basis of the Ageing Process 

1.3.1 Dysfunctional molecular fidelity as a driver of ageing 

Proper relay of information is instrumental for appropriate cellular function. Being able to 

suitably dictate functions from the nucleus to specific cellular compartments ensures 

survival at the cellular level. In turn, the nucleus should be able to adapt to the cellular 

needs that cells encounter in the ever-changing environment by appropriately activating or 

silencing its vast genomic code. Dysfunctional adaptive capacity renders cells, tissues and 

entire organisms unfit for survival. Additionally, as time passes and the adaptive capacity 

declines, damage accumulates (Garinis et al., 2008; Hoeijmakers, 2009; van de Ven et al., 

2007). 

No cellular compartment is void of the deleterious effects of damage, whether 

inflicted by intrinsic or extrinsic factors. Yet repair mechanisms are normally capable of 

dealing with damage. The relay system that allows information to flow from genes to 

proteins, and the genome itself, are prone to damage accumulation. Damage to the genome 

is a universal feature of ageing (it can be of several kinds including point mutations, 

chromosomal rearrangements, shortening of telomeres, translocations, etc.) and when the 

repair systems are overwhelmed phenotypes of accelerated ageing manifest (Hoeijmakers, 

2009). For example, Werner syndrome is a progeroid syndrome that arises from mutations 

in the WRN ATP-dependent helicase, important in DNA metabolism. Cells lacking WRN 

are defective in DNA repair, particularly double-strand breaks. They also present telomere 

attrition and senescence (limited replication capacity due to cellular arrest). Patients 

carrying mutation in WRN start manifesting alterations between 10 and 20 years of age. 

The phenotypes include early greying and hair loss, bilateral cataracts, osteoporosis, 

atherosclerosis and neoplasm among others. Other diseases like Cockayne syndrome, 

tricothiodystrophy and ataxia telangiectasia also lead to progeroid phenotypes. All of these 

diseases are linked to deficient DNA repair, highlighting the relevance of appropriate DNA 

repair in survival and ageing (Burtner and Kennedy, 2010; Hoeijmakers, 2009). Moreover, 

it was recently shown that preservation of genomic integrity by ensuring faithful 

chromosomal segregation extends lifespan in mice and protect against cancer (Baker et al., 

2013). 

Another important part of cellular repair is the maintenance of telomeres. Telomere 

attrition is a hallmark of ageing as extensive work has shown that telomeres shorten upon 

each cellular division (Bernardes de Jesus and Blasco, 2013). Cancer cells have overcome 
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this problem by over-expressing telomerase enzyme to extend chromosome ends. Though 

telomere-shortening correlates with ageing there had always been concern about the 

therapeutic value of over-expressing enzymes preventing telomere attrition as this could 

potentially lead to cancer. However, it was recently demonstrated that telomerase 

activation can delay ageing and, importantly, this was achieved without increasing cancer 

incidence in mutant mice (Bernardes de Jesus et al., 2012). Overall, these examples clearly 

demonstrate the relevance of DNA damage prevention (or its repair) and genome integrity 

for ageing. Furthermore, the fine balance between stem cell maintenance and tumor 

suppression should be cautiously considered (Serrano and Blasco, 2007). 

Protein homeostasis or proteostasis referrers to the adequate balance between 

synthesis, folding, trafficking and secretion, and degradation of proteins (Labbadia and 

Morimoto, 2014; Morimoto and Cuervo, 2014). All cells are equipped with a set of 

exquisitely regulated processes for protein quality control and organelle surveillance called 

the proteostasis network (PN) (Labbadia and Morimoto, 2014; Shore and Ruvkun, 2013; 

Taylor and Dillin, 2011). The PN includes control of protein translation, molecular 

chaperones, the ubiquitin-proteasomal system (UPS) and the autophagy-lysosomal (AL) 

system. These processes, which also include the ones regulating protein trafficking and 

secretion, are coupled with an array of stress-regulated pathways that ensure appropriate 

response under physiological and, more importantly, under pathologic conditions 

(Labbadia and Morimoto, 2014; Taylor et al., 2014). Proteostasis and the regulation of the 

PN are a hallmark of ageing because when proteolysis is dampened lifespan is shortened, 

while stimulation either genetically or pharmacologically extends lifespan. Every major 

lifespan-extending intervention has at least one proteostatic process downstream. 

Unfortunately with age the rate of damage accumulation increases, this can be ascertained 

by the amount of accumulated damaged cells and by the rate of mistakes in folding and 

appropriate quality surveyance performed. Proteostasis collapse is likely to be an early 

event during ageing (Labbadia and Morimoto, 2014; LOpez-Otin et al., 2013). 

Protein synthesis is a tightly regulated process consisting of three phases. In the 

initiation phase the mRNA is recruited to the ribosome by a host of translation initiation 

factors (particularly from the groups of eukaryotic initiation factor 4 (eIF4) and eIF2) that 

will interact with the mRNA and the ribosome. During the elongation phase the mRNA is 

translated into a newly synthesised protein, after which it is released from the ribosome in 

the termination phase (Browne and Proud, 2002; Scheper et al., 2006). Protein translation 

has been shown to be under the control of the growth and nutrient-sensing network (see 
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below) and required for lifespan extension under dietary restriction. Interestingly, though 

interventions to target the initiation phase of translation are the most widely studied for 

pathology and longevity, activity of the elongation phase is inversely related with 

translation fidelity (Browne and Proud, 2002). It has been calculated that approximately 

15% of translated proteins in Escherichia coli will contain amino acid mis-incorporations 

(Drummond and Wilke, 2009; Ogle and Ramakrishnan, 2005; Parker, 1989). Mistranslated 

proteins are likely to be aberrantly folded and aggregate. This will be particularly toxic for 

post mitotic long-lived cells like neurons. Hence, interventions to reduce protein 

translation could be beneficial for ageing and disease (Proud, 2002; Sherman and Qian, 

2013; Taylor and Dillin, 2011). During the conversion of genes to proteins, numerous 

enzymes involved in replication, transcription, translation and folding are involved in 

safeguarding the fidelity of the information. When this information is corrupt, cells opt to 

either correct the problem, or, when the error or damage surpasses the repair capacity, 

target for degradation (Ben-Gedalya and Cohen, 2012; Taylor and Dillin, 2011). Even 

under physiological conditions, proteins are constantly being synthesised and destroyed. 

This is a continuous process, and although it could be conceived as energetically costly, it 

minimizes damage to proteins in the hazardous environment of the intracellular 

compartment (Martinez-Vicente et al., 2005; Wong and Cuervo, 2010). Mis-folding and 

protein accumulation have detrimental consequences for cell physiology and this is clearly 

manifested in aggregation-prone neurodegenerative diseases like Alzheimer's and 

Parkinson's disease (Ben-Gedalya and Cohen, 2012; Wong and Cuervo, 2010). 

After protein synthesis, the newly synthesised peptide requires adequate 

conformational integrity to function properly. For this the protein will require to fold to 

obtain its appropriate three-dimensional structure (sometimes quaternary) assisted by 

molecular chaperones which will prevent mis-folding (Valastyan and Lindquist, 2014). 

Proteins can start the folding process at the same time as they are synthesised (co- 

translational folding), others are folded in the cytoplasm and endoplasmic reticulum (ER) 

(Dobson, 2004; Wolff et al., 2014). Co-translational folding is assisted by a subset of heat 

shock proteins (HSP40 and HSP70). Mis-folded and potentially toxic proteins are assisted 

by HSP104 for disassembly, refolding and potential aggregation into less toxic species 

(Taylor and Dillin, 2011; Wolff et al., 2014). These and other HSPs are under the 

transcriptional regulation of the heat shock factor-1 (HSF1). Several of them are 

transcriptionally up-regulated under conditions of reduced signalling through the nutrient 

sensing network and can extend lifespan when over-expressed in worms and flies (Hsu et 
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al., 2003; Morley and Morimoto, 2004; Morrow et al., 2004; Murphy et al., 2003; Tower, 

2009). 

To safeguard the proteome the PN is coupled with several stress responses 

including the heat shock response, the ER unfolded protein response (UPR) and the 

mitochondrial UPR (UPRmt) (Labbadia and Morimoto, 2014; Taylor et al., 2014). During 

ageing the appropriate induction of these stress-response pathways is dampened making 

them driving forces of proteostasis collapse (Haigis and Yankner, 2010; Taylor et al., 

2014). 

In spite of the processes ensuring molecular fidelity, some proteins escape quality 

control or accumulate damage over time. To minimise the toxic effects of aggregated 

proteins, cells use the UPS and AL system for degradation. Old and damaged proteins are 

marked and targeted by molecular chaperones for degradation by the proteasome. This 

process in comparison to degradation by autophagy is highly selective as proteins are 

tagged by E3-ligase-mediated ubiquitylation of which those with lysine residue 48 (K48)- 

linked polyubiquitin are directed to the proteasome (Labbadia and Morimoto, 2014; Taylor 

and Dillin, 2011). Proteasomal function downstream of the growth factors and nutrient 

sensing regulate lifespan in yeast and worms (Carrano et al., 2009; Kruegel et al., 2011; 

Liu et al., 2011; Vilchez et al., 2012). 

Alternatively cells can make use of autophagy for a less targeted degradation 

process. Autophagy can refer to the bulk engulfing of cellular material called 

macroautophagy, a more targeted approach called chaperone-mediated autophagy (CMA) 

and microautophagy. (Cuervo, 2008; Levine and Kroemer, 2008; Martinez-Vicente et al., 

2005). When I use the term autophagy I will be referring to macroautophagy as this is the 

most studied form of autophagy in biogerontology. Autophagy refers to the self-eating 

process that uses the lysosome for degradation of proteins, cellular organelles and even 

pathogens (Choi et al., 2013; Kroemer et al., 2010). Autophagy ensures survival under 

starvation conditions as it recycles cellular material within the cells to allow continual 

cellular function. The evolutionary conservation of the machinery controlling the process 

is exquisite and denotes the relevance of the process across taxa. Just after birth mammals 

require appropriate autophagy function for survival, inability to induce autophagy during 

the first few hours of life limits lifespan (Efeyan et al., 2012). The function and induction 

capacity of autophagy declines with age, yet the underlying mechanism is poorly 

understood (Cuervo, 2008). In Drosophila loss of the autophagy gene atg7, required for 

autophagy induction, reduces lifespan, sensitises against starvation and the redox cycler 
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paraquat, leads to accumulation of ubiquitylated proteins and impairs locomotor ability 

(Juhdsz et al., 2007). Similarly, in mammals, loss of atg7 in neurons reduces median 

lifespan of mice to below 10 weeks (lifespan can be up to 3 years), leads to the 

accumulation of polyubiquitylated proteins, cell death in cerebral cortex and cerebellum 

and the concomitant behavioural defects of neurodegeneration (Komatsu et al., 2006). A 

similar scenario is also observed in mice deficient for atg5 in neurons (Hara et al., 2006). 

Autophagy is regulated by the nutrient sensor mTOR and also by mTOR 

independent mechanisms (Ravikumar et al., 2010). As I will discuss later autophagy seems 

to be an important process downstream of many genetic and environmental interventions 

that increase healthy ageing (Cuervo, 2008; Vellai et al., 2009). For example, dietary 

restriction (DR), the most successful intervention to delay ageing across taxa, is thought to 

confer its benefits, partly through induction of autophagy (Bergamini et al., 2003; 

Cavallini et al., 2001). 

1.3.2 Mitochondrial Dysfunction and Mitohormesis 

As mentioned earlier, one of the proposed players driving ageing is the accumulation of 

oxidative modifications by free radicals or ROS. The damage accumulated by ROS was 

thought to be an initiating event leading to cellular senescence and aging (Harman, 1956; 

Muller et al., 2007). This view has been changing in recent years as the evidence against 

the free radical theory of ageing mounts up (Blagosklonny, 2008; Doonan et al., 2008; 

Gems and De la Guardia, 2013; Hekimi et al., 2011; Kawagishi and Finkel, 2014; Ristow, 

2014; Stuart et al., 2014). Studies in model organisms have shown that lifespan extension 

can co-exist with damage accumulation (or without reducing damage), reduction in 

damage and stress-resistance can be uncoupled from lifespan extension and that toxin- 

induced mitochondrial stress (with ROS generators) can extend lifespan (Cabreiro et al., 

2011; Doonan et al., 2008; Frankowski et al., 2013; Van Raamsdonk and Hekimi, 2009; 

Schmeisser et al., 2013a; Valentini et al., 2012; Yang and Hekimi, 2010). 

Dysfunctional mitochondria are regarded as pathogenic markers of several clinical 

entities including neurodegenerative diseases (Schapira, 2008; Schapira and Gegg, 2011). 

For example, inhibition of mitochondrial complex I in dopaminergic neurons leads to 

parkinsonism in humans and rodents (Schapira, 2010). The knowledge of toxin-induced 

complex I inhibition has often been used to generate non-protein aggregation Parkinsonian 

models in flies and rodents (Bayersdorfer et al., 2010; Blesa et al., 2012). In contrast, it has 
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been reported that mild reductions of the function of several of the mitochondria' 

respiratory complexes (I, III, IV and ATPase) in worms and flies extends lifespan and 

protects against paraquat-induced oxidative stress (Copeland et al., 2009; Dillin et al., 

2002; Lapointe and Hekimi, 2008; Lapointe et al., 2012). Moreover, a recent report 

showed that the degree of mito-nuclear imbalance determines the longevity phenotype 

(Houtkooper et al., 2013). The role of the mitochondria in ageing is continuously being 

explored. Recently it was identified that over-expression of the mitochondrial biogenesis 

transcription factor peroxisome proliferator-activated receptor gamma co-activator 1-alpha 

(PGC-1a), particularly in the gut stem cells of Drosophila, resulted in extended lifespan, 

preservation of the function of the mitochondria' respiratory chain and the gut 

microarchitecture integrity (Rera et al., 2011). Altered function or activity of PGC-la has 

been implicated in a plethora of age-related diseases including diabetes, obesity, 

Alzheimer's and Parkinson's disease (Castillo-Quan, 2011, 2012; Robinson et al., 2013; 

Spiegelman, 2013). 

These rather contrasting, and sometimes conflicting, results showing that reduced 

function of mitochondria' components leads to disease in some cases and healthy lifespan 

extension in others, can perhaps be reconciled in terms of degree and appropriate stress 

response. When cells encounter a stressful situation, for example reduced mitochondria' 

respiration, they are able to mount up a stress response. Either the degree or duration of the 

stressful situation regulates the stress response. When the stress is low or brief and cells 

are capable of activating repair processes, survival is ensured. However, if the stress is to 

strong or last for longer than what the energetic capacity of the organism allows, or the cell 

is unable to appropriately respond it will die. It can be proposed that, for example, the 

observed mitochondrial complex I inhibition in PD patients, and in long lived organisms 

vary in duration and intensity, and this influences the capacity of cells and organisms to 

appropriately respond to this stressful event. However, we are still far from understanding 

the role of mitochondria in ageing. 

Genetic or pharmacological manipulations of the respiratory chain are thought to 

induce oxidative stress and UPRmt (Houtkooper et al., 2013; Schmeisser et al., 2013a, 

2013b; Yang and Hekimi, 2010). The stress caused by the abnormal mitochondria 

activates an oxidative and xenobiotic response transcriptionally orchestrated by SKN-1 in 

worms, cap'n'collar (cnc) in flies and the nuclear factor erythroid-2 related factor (NRF)-2 

in mammals (Mattson, 2008a; Rattan, 2001). Induction of a small amount of stress has 

been associated with lifespan extension in several reports. The underlying mechanisms 
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seem to be the up-regulation of cellular repair processes. Stress-response pathways 

increase lifespan perhaps by re-allocating energy resources in somatic maintenance, i.e., 

investing in the control of molecular fidelity. 

The lifespan and healthspan benefits derived from sublethal exposure to toxins or 

stressors have been called hormesis (Calabrese, 2013; Gems and Partridge, 2008; Lithgow, 

2001; Mattson, 2008b). Hormesis (a term taken from toxicology) refers to the biphasic 

response observed during the study of drugs and compounds. In pharmacology and 

toxicology small amounts of a toxin will provide a stimulatory or beneficial effect, while 

increasing the concentration will lead to inhibition or, in the case of ageing, lifespan 

reduction (Calabrese et al., 2007; Rattan, 2004; Ristow, 2014; Ristow and Schmeisser, 

2011). To date several toxins have been tested for their ability to modulate lifespan in 

model organisms and lower doses confer benefits while high doses become progressively 

detrimental (Schmeisser et al., 2013a; Yang and Hekimi, 2010). The hormetic response is 

not limited to toxins. For example, the positive effects of food restriction are thought to 

elicit a stress-adaptive mechanism that increases cellular maintenance and repair (Masoro, 

2007; Schmeisser et al., 2013b; Schulz et al., 2007). Similarly, gradual adaptation to heat 

stress can confer longevity in worms, and resistance to a subsequent heat shock (Epel and 

Lithgow, 2014; Lithgow, 2001). The underlying mechanism could be the progressive up- 

regulation of defence processes that are then already in place for protection when 

challenged with a stronger stressor (priming). The hormetic response can also account for 

the positive lifespan effects of phytochemical and compounds isolated from plants 

(including fruits and vegetables). Plants also respond to their environment by up-regulating 

stress-response mechanisms. Molecules produced during the stress-phase are thought to 

induce a hormetic response in the organisms consuming the plant. This is xenohormesis 

(Goldberg et al., 2010; Howitz and Sinclair, 2008; Surh, 2011); while when the stressor-

signal is induced within the mitochondria is called mitohormesis (Ristow, 2014; Ristow 

and Zarse, 2010; Yun and Finkel, 2014). 

1.3.3 Dietary Restriction and the Nutrient Sensing Network 

1.3.3.1 Dietary restriction (DR) 

To date DR is the most successful environmental intervention to extend lifespan in 

organisms ranging from yeast to mammals (Fontana et al., 2010; Piper and Partridge, 

2007). First observed in rodents at the beginning of last century (McCay et al., 1935; 
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Osborne et al., 1917), DR has shown extraordinary evolutionary conservation. Different 

forms of DR can prolong healthy lifespan from the unicellular yeast to non-human 

primates and have even shown to improve health in humans (Fontana et al., 2010). 

DR is still ill-defined, but it generally refers to the reduction of food intake without 

malnourishment (Katewa and Kapahi, 2010; Piper and Partridge, 2007). DR protocols 

include caloric restriction where total caloric intake per day is modulated irrespective of 

the source of calories (lipids, carbohydrates or proteins). In spite of its wide use in the 

literature, nowadays we understand that certain components of the diet impose greater 

effects on survival and longevity than others, revealing the complex nature of the 

interaction of diet with ageing (Piper et al., 2005, 2011). Moreover, multiple DR protocols 

exist in different species making it virtually impossible to compare studies that report 

lifespan extension employing completely different approaches even when using the same 

species. For example, DR in C. elegans can be performed by dilution of the bacteria in 

which it is co-cultured, eliminating the bacteria alltogether (axenic liquid media which 

contains nutrients, but lacks E. coli), or by mutations that affect the neuromuscular 

regulation of pharyngeal pumping (anorexia-induced DR), etc. It is worth mentioning that 

different DR regimes have varying degrees of impact on fecundity, metabolism and 

lifespan (Mair and Dillin, 2008; Piper and Bartke, 2008). While anorexia-induced DR by 

mutations in the eat2 gene extend median lifespan by 46%, axenic media extends lifespan 

by up to 85% (the biggest DR effect in C. elegans) (Mair and Dillin, 2008). Unless 

different eat2 mutant alelles with different degrees of pharyngeal pumping are used, these 

two examples of DR protocols in C. elegans only allows for DR to be tested as a discrete 

rather than a continous variable. Using DR as a continous variable is very important and 

informative when assesing the molecular mechanisms of DR (the interaction of a particular 

gene with the diet) or the effect of a compound (a potential DR-mimetic). In rodents, 

though the effects of DR can be studied as a continuos variable (different values of caloric 

restriction, days of of intermittent fasting, etc), only one DR regime is usually employed 

(Cerqueira and Kowaltowski, 2010; Longo and Mattson, 2014). Using only one DR regime 

against the ad libitum condition complicates the analysis of the interaction of DR with 

other interventions. 

DR studies in Drosophila are performed a bit differently than in rodents and C. 

elegans. Instead of reducing the food provided, the diet is manipulated by dilution or 

reduction of specific components and then provided ad libitum (Bass et al., 2007; Tatar et 

al., 2014). Drosophila diet used in ageing studies is usually comprised of a carbohydrate 
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source (usually sucrose) and yeast as a source of amino acids, vitamins, minerals, 

cholesterol, and essential fatty acids held together by the combination of water and agar 

(Bass et al., 2007; Skorupa et al., 2008). Some studies also add cornmeal and dextrose to 

the diet (Min et al., 2008; Zid et al., 2009). In Drosophila it has been shown that 

modifying the carbohydrate content or the amount of water in the diet has minimal effects 

on lifespan, comparatively to the effects conferred by modifying the yeast component of 

the medium (Grandison et al., 2009b; Mair et al., 2005; Piper et al., 2010; Skorupa et al., 

2008). Therefore, to evaluate food restriction as a continuous variable, the yeast 

component is modified from 0-200 grams (or more) per litre keeping the carbohydrate 

component constant. At least 4 to 5 yeast concentrations are tested. Lifespan increases 

gradually up to a maximum after which further increases in the yeast concentration 

become detrimental for lifespan. Plotting the median or maximum lifespan values always 

depicts a tent-shaped curve. The yeast concentration that confers the biggest lifespan 

extension is considered the optimal and therefore the DR condition. Values on either side 

of the DR condition limit lifespan by either malnourishment (left hand side of the DR tent) 

or over-nourishment (right hand side) (Bass et al., 2007; Grandison et al., 2009b; 

Metaxakis and Partridge, 2013). When a molecular target is being tested as a mechanism 

for lifespan extension under DR, the interaction of the different dietary regimes with the 

gene/intervention of interest reveals whether the non-dietary intervention acts in the same 

molecular pathway. In a hypothetical scenario where the effect of over-expressing the 

transcription factor involved in lysosomal biogenesis (transcription factor EB (TF-EB) or 

mitochondrial biogenesis PGC-1 a were tested as the molecular mechanism for lifespan 

extension under DR, one of the three scenarios can occur. First, a true DR mechanism 

would show a right-shifted DR tent, where the lifespan benefits would only be observed at 

the higher end of the yeast concentration (Figure 1.8A). Given that the intervention is 

already maximised for lifespan, food restriction would not be able to further extend 

lifespan and is likely to reduce it. Second, the intervention is able to increase lifespan 

under conditions maximised for DR, but to a minimum extent in comparison to the effect 

under over-nourishment (Figure 1.8B). Perhaps in this scenario the intervention tested and 

DR have converged molecularly, but not enough to right-shift the tent. Thirdly, the 

intervention in question would extend lifespan irrespective of the food condition tested 

(Figure 1.8C). This would be an unlikely molecular mechanism of DR as the effects seem 

additive (Mair and Dillin, 2008). 
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As we uncover the effects of specific nutrients, targeted protocols for evaluting 

interactions of non-dietary interventions will emerge. So far, we have known for a while 

that within proteins, certain amino acids regulate lifespan with greater effects (Grandison 

et al., 2009a; Piper et al., 2014). Methionine restriction extends lifespan of yeast (Johnson 

and Johnson, 2014; Ruckenstuhl et al., 2014; Wu et al., 2013), flies (Grandison et al., 

2009a; Lee et al., 2014), mice (Miller et al., 2005), and rats (Orentreich et al., 1993). 

Moreover, methionine restriction in yeast cells, and mouse and human fibroblasts has been 

reported to confer resistance to several cytotoxic stressors (Johnson and Johnson, 2014). In 

mice, methionine restrcition leads to reduced body weight, improved glucose and lipid 

metabolism, increased expression of the starvation hormone fibroblast growth factor-21 

(FGF-21) (in blood and hepatocytes), PGC-la and the branch of the UPR that responds to 

aminoacids (GCN-2-eIF2a) (Ables et al., 2012; Lees et al., 2014). The authors speculated 

that the reduction in circulating methionine could drive the expression of FGF-21 

downstream of PGC- 1 a and GCN-2 (general control non-derepresible 2) (Lees et al., 

2014). Interestingly, over-expression of FGF-21 in hepatocytes (which increases 

circulating levels by 5-10 fold) increased median lifespan of male and female mice by 
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36%. The authors identified that over-expression of FGF-21 reduced the risk of death by 

65% in males and 88% in females (Zhang et al., 2012). Interestingly, these animals did not 

show compensatory over-feeding as elicited by methione restriction (Lees et al., 2014; 

Zhang et al., 2012). Additionally methione restricted mice show reduced circulating levels 

of insulin, IGF-1 and thyroid hormone (Miller et al., 2005). 

The widespread health benefits of DR have encouraged biogerontologists to try and 

understand the molecular mechanisms behind the effects of DR. Research of the pathways 

responsive to dietary macromolecules, carbohydrates and proteins have unveiled that 

ageing is plastic, evolutionary conserved and can be targeted pharmacologically (Fontana 

et al., 2010; Kenyon, 2010). 

1.3.3.2 Insulin/IGF-1 signalling pathway in ageing 

Two nutrient signalling pathways have been implicated in the ageing process. The first 

evidence of the role of the insulin signalling pathway in ageing came from a mutagenic 

study performed in C. elegans by Klass showing the fundamental principle that lifespan 

can be modified genetically (Klass, 1983). Gary Ruvkun's group found that the long-lived 

mutation induced in Klass's experiments was in a gene which encodes for the worm 

phosphatidylinositol-3-OH kinase (PI3K), age-1 (Finch and Ruvkun, 2001; Johnson, 

2013). Several other groups extended the work to show that down-regulation of the 

insulin/IGF-1 signalling (IIS) pathway extended lifespan (Finch and Ruvkun, 2001; 

Kenyon, 2006, 2011). 

In this section I will describe the components of the IIS pathway in C. elegans, 

Drosophila and mammals. Interestingly, hormonal regulation between these organisms is 

highly conserved (Figure 1.9). I will also do this by describing the components of the 

pathway from ligand(s) to nucleus highlighting functions those that have been shown to 

regulate ageing. 
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Peripheral 

cells 

Figure 1.9 Hormonal regulation is highly conserved between C. elegans, Drosophila and mice. These 
cartoons show the high degree of evolutionary conservation between (a) C. elegans, (b) Drosophila and (c) 
mice for the components of the IIS pathway. Taken from (Partridge and Gems, 2002). 

Ligands 

C. elegans has -40 insulin-like peptides expressed primarily in neurons, though a 

few are also expressed in the intestine (Figure 1.10). Some of these insulin-like molecules 

act as agonists of the worm insulin receptor daf2, while others act as antagonists (Kaletsky 

and Murphy, 2010). Given the different functional nature of these signals it is not entirely 

surprising that they are differentially regulated at the transcriptional level in response to 

reduced IIS signal. Ins-7, one of these peptides, is repressed in animals lacking daf2; when 

ins-7 is knocked down by RNAi, worms are significantly long-lived in comparison to their 

respective controls (Murphy et al., 2003). Drosophila has 8 insulin-like peptides (dILPs). 

In adult physiology and the regulation of ageing, the most important ones seem to be 

dILPs 2, 3 and 5 synthesised in the median-neurosecretory cells (MNCs) in the fly brain, 

and dILP 6 produced in the fat body (the fly equivalent of the liver/adipose tissue). 

Ablation of the MNCs, or genetic deletion of dILPs 2, 3 and 5 extend lifespan in 

Drosophila (Broughton et al., 2008, 2005; Griinke et al., 2010). On the other hand, over- 

expression of dilp6 in the fat body extends lifespan (Bai et al., 2012). In mammals, insulin 

is produced by pancreatic I3-cells, whereas Insulin-like Growth Factor-1 (IGF1) and 2 are 

mainly produced in the liver, but synthesized in almost all tissues (Kaplan and Cohen, 

2007). It is important to note that IGFs are synthesized in the liver in response to Growth 

Hormone (GH) released from the pituitary gland in the brain. Reducing the level of GH or 

the elements that regulate its production, and the IGFs show some overlap to promote 
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longevity (Bartke, 2008; Brown-Borg et al., 1996) and show similar phenotypical 

characteristics (Bartke et al., 2013). Reduced levels of insulin (hypoinsulinemia) lead to 

high glucose levels, which clinically translates into type I diabetes mellitus, commonly due 

to autoimmune destruction of the insulin producing 0-pancreatic cells. On the other hand, 

type II diabetes follows peripheral insulin resistance with a compensatory hypertrophy of (3 

cells to synthesize more insulin and lead to hyperinsulinemia (Castillo-Quan et al., 2010). 

Both ends of this spectrum, lower or higher circulating levels of insulin, are pathological. 

Therefore, speculations lurked over the relevance of the finding in invertebrates that 

reducing insulin signalling per se could extend healthy lifespan (see below). 
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Figure 1.10 IIS pathway in C. elegans and Drosophila. (a) shows a schematic diagram of the IIS pathway 
in C. elegans. The Drosophila IIS pathway is shown in (b). Please note the lack of the transcription factor 
FOXO in the fly diagram that should be immediately downstream of Akt (as DAF-16 in the worm). At the 
time this diagram was produced the requirement of FOXO for lifespan extension under IIS down-regulation 
in the fly had not been shown experimentally. Taken from (Partridge and Gems, 2002). 

Ligand levels can be regulated at several different stages, such as their synthesis, 

post-translational processing, secretion, or binding to partner proteins, which can modulate 

their circulation or bioavailability in the systemic environment. IGFs circulate bound to 

IGF binding proteins (IFGBP) of which 6 have been identified. IGFBPs protect IGFs from 

degradation and also compete with them for the IGF receptors (IGFR) (Kaplan and Cohen, 
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2007). Since IGFBPs can potentially down-regulate the IGF signalling pathway, over- 

expressing them could lead to lifespan extension. For instance, increased expression of the 

dILP-binding protein ImpL2, a homologue of IGFBP7, extends lifespan in Drosophila by 

reducing signalling through dILP2 and dILP5 (Alic et al., 2011a). No mammalian study 

has described the effects of loss or over-expression of any of these IIS binding partners on 

the ageing process. However, mammalian IFGBPs are subject to protease degradation. 

Pregnancy-associated plasma protein A (PAPP-A), is a metalloproteinase involved in 

IGFBPs degradation, in particular of IGFBP4. Loss of PAPP-A leads to a 38% lifespan 

extension of both male (33%) and female (41%) mice (Conover and Bale, 2007). 

Receptor 

Next the ligand binds to the insulin/IGF receptor at the plasma membrane surface. 

Whereas the invertebrate model organisms have an abundance of different insulin-like 

ligands, both C. elegans and Drosophila have only a single receptor (DAF-2 in worms and 

dInR in flies; Figure 1.10). The situation in mammals is more complex with multiple 

receptors existing, including the insulin receptor (IR; spliced in two isoforms), IGF 

receptors (IGF-1R and IGF-2R), and heterodimers IR-IGF-1R. Furthermore, insulin can 

bind and activate the heterodimers and the IGF-1R, though the affinity is 100 and 1000- 

fold weaker, respectively (Buck and Mulvihill, 2011; Jensen and De Meyts, 2009). 

In the context of ageing, many long-lived models act at the level of the insulin/IGF 

receptor. Indeed, the first systematic description of lifespan extension due to a single gene 

mutation was a worm daf-2 mutant (Kenyon et al., 1993). Subsequently, it was shown that 

a dInR mutant allele with reduced kinase activity showed increased lifespan (Tatar et al., 

2001). Our group later showed that over-expression of a dominant-negative form of dInR 

makes flies long-lived (Ikeya et al., 2009). In mice, IR and IGF-1R are necessary for early 

development and growth. Mice lacking either of them die 4 days postnatal, or at birth, 

respectively (Accili et al., 1996; Liu et al., 1993). Given this it was surprising when the 

first long-lived IIS mammalian mutant described to be long-lived was a heterozygous null 

IGF-1R KO mice that lives 26% longer than controls when both sexes are pooled; 33% 

longer for females and 16% for males (Holzenberger et al., 2003), although subsequent 

work at San Antonio by Arlan Richardson's team largely failed to confirm this (Bokov et 

al., 2011) Almost simultaneously it was published that mice lacking the insulin receptor in 

adipose tissue (FIRKO) show extended lifespan, reduced insulin levels, and resistance to 

age-related loss of glucose homeostasis and diet-induced obesity (Bliiher et al., 2003). 
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Binding of the ligand to its receptor induces autophosphorylation and subsequent 

recruitment and phosphorylation of its substrate. 

Tissue-specific effects of HS down-regulation 

It is very interesting that the FIRKO mice are currently, the only tissue-specific deletion of 

the IR shown to be long-lived. Other IR tissue-specific KOs like liver (LIRKO), muscle 

(MIRKO) and neuron-specific (NIRKO) develop insulin resistance and/or diabetes along 

with several other metabolic alterations; even I3-pancreatic cell-specific IR-KO mice 

((3IRKO) develop metabolic alterations making them unlikely to be long-lived (Bruning, 

2000; Briining et al., 1998; Kulkarni et al., 1999; Michael et al., 2000). This tissue 

specificity is also highlighted by the fact that mice lacking IGF-1R specifically in the (3- 

pancreatic cells also develop insulin resistance (Kulkarni et al., 2002), while mice 

heterozygous for the IGF-1R in the central nervous system live longer (Kappeler et al., 

2008). 

Intracellular cascade 

The first component of the intracellular IIS cascade is the insulin receptor substrate 

(IRS), which interacts with the activated insulin receptor and relays the signal to other 

proteins to convey the message to the nucleus. Unlike mammals that posses three or four 

IRS proteins, Drosophila only has one IRS called chico (small in Spanish for the 

phenotype they produced when missing). In flies, autophosphorylation of the dInR recruits 

CHICO and the adaptor SH2B Lnk protein to relay the signal downstream. Female flies 

carrying a deletion for the IRS chico live 48% longer, while the lifespan extension in 

males is of only 13% (Clancy et al., 2001). Flies lacking Lnk show a more modest yet 

robust lifespan extension. Lifespan extension by most Drosophila insulin mutants is 

greater in females (and dependent on the cytoplasmic endosymbiont Wolbachia), but the 

longevity effect of Lnk is not only independent of sex, but also of genetic and cytoplasmic 

background (Ikeya et al., 2009; Partridge et al., 2005; Slack et al., 2010). The chico and 

dInR with reduced kinase activity were the first long-lived mutants reported for 

Drosophila (Clancy et al., 2001; Tatar et al., 2001). Human's possess two widely 

expressed IRS proteins, IRS1 and IRS2 (also the most studied ones); IRS4 expression is 

limited to the thymus, brain, kidneys and I3-cells. Rodents on the other hand also express 

IRS3 in the adipose tissue (White, 2002). In mice, global Irs1-/- null mutants show an 

extended lifespan. Females are long-lived relative to controls by 32%, while males are 
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16% longer lived than controls (Selman et al., 2008a, 2011). Importantly, long-lived 

female IRS1 null mice show delayed onset of ageing pathologies including osteoporosis, 

cataracts, ulcerative dermatitis, as well as preservation of glucose homeostasis, immunity 

(T cells), and motor function. Unlike Irs1-/- mice, global Irs2-/- null mice are short-lived 

(Selman et al., 2008a). The main difference between mice lacking IRS1 or IRS2 might 

stem from the deficient downstream signalling in the Irs2-/- null mice which show reduced 

phosphatidylinositol-3-OH kinase (PI3K) activation, which leads to overt diabetes, while 

Irs1-/- mice develop insulin resistance, but no diabetes (Selman et al., 2008a; Withers et 

al., 1998). Tissue-specific complexity is also revealed at this level where brain-specific 

knockout of IRS2 has been reported to extend murine lifespan (Taguchi et al., 2007), 

though this result has been challenged (Selman et al., 2008b). In light of insufficient PI3K 

activation leading to shorter lifespan its surprising that the lifespan of flies lacking chico is 

greater in homozygous (48%) than in heterozygotes (36%) (Clancy et al., 2001). However, 

unlike in mammals, the dInR has an additional 400 amino acids at the C-terminus which 

allows direct communication between dInR and PI3K (Teleman, 2010). In flies, over- 

expression of a dominant negative version of the catalytic subunit Dp110 of dPI3K extends 

lifespan (Slack et al., 2011). Similarly heterozygous inactivation of the p110a of PI3K 

extends murine lifespan (Foukas et al., 2006). 

PI3K activation leads to the production of phosphatidylinositol-3,4,5-triphosphate 

(PIP3) from phosphatidylinositol-4,5-biphosphate (PIP2), which in turn allows the 

translocation and activation of Akt (Fayard et al., 2005; Manning and Cantley, 2007). This 

process is antagonised by the phosphatase PTEN that dephosphorylates lipids produced by 

PI3K (Manning and Cantley, 2007). Given that PI3K production is essential to activate the 

downstream player Akt, inhibition of IIS through PTEN seems as a straightforward 

intervention to extend healthy ageing. In C. elegans the lifespan extension by inactivation 

of the insulin receptor daf-2 is dependent on appropriate function of the homologue of 

PTEN daf-18. Loss of function of daf-18 abolishes the lifespan extension by daf-2 

mutants. Importantly, the inactivation of PTEN leads to reduced lifespan, which 

corresponds with increased IIS signalling being detrimental (Mihaylova et al., 1999). In 

flies, over-expression of PTEN leads to lifespan extension (Hwangbo et al., 2004). 

Recently it was shown that mice carrying extra genomic copies of PTEN are long-lived 

independent of the protection against cancer; males live 12% and females 16% longer than 

controls. Furthermore these mice are protected against insulin resistance, steatosis and 

other markers of metabolic imbalance (Ortega-Molina et al., 2012). 
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PIP3 production recruits Akt (also referred to as protein kinase B; PKB) and its 

activators (PDK1 and mTORC2) to the cell membrane where it gets phosphorylated and in 

turn activated. Akt is a serine/threonine protein kinase, central to cellular proliferation, 

metabolism and apoptosis. Akt regulates cell survival and metabolism by regulating many 

downstream targets (Fayard et al., 2005; Manning and Cantley, 2007). In C. elegans 

RNAi-mediated knockdown of Akt extends lifespan (Hamilton et al., 2005). C. elegans 

Akt functions solely to inhibit the nuclear translocation and transcription regulation of the 

transcription factor FOXO/daf-16 (Kenyon et al., 1993; Lin et al., 2001). Mutants for Akt 

have not been shown to be long-lived in Drosophila (Clancy et al., 2001) and experimental 

evidence in mice is lacking. In Drosophila and mammals, Akt regulates many downstream 

players involved in metabolism, fecundity, stress-response and survival, among others 

(Manning and Cantley, 2007; Teleman, 2010). Amongst the downstream Akt targets, the 

transcription factor FOXO is considered a key player (Giannakou et al., 2007; Slack et al., 

2011). The longevity effect of IIS down-regulation requires the FOXO C. elegans 

homologue daf-16 (Kenyon et al., 1993; Kwon et al., 2010). Similarly in flies, lifespan 

extension by genetic manipulations that reduce IIS signalling is abolished in flies lacking 

dFOXO (Slack et al., 2011). Furthermore, daf-16/dFOXO is required for regular survival 

as these mutants are shorter lived than controls (Kenyon et al., 1993; Slack et al., 2011). 

Although most interventions to extend healthy ageing in worms and flies do so by genetic 

interventions in the whole organism, daf-16/dFOXO seems to be required only in some 

tissues, where it is likely to act non-cell autonomously, although over-expression in the 

whole worm can extend lifespan (Kwon et al., 2010). Worms lacking daf-16 abrogate the 

lifespan extension of daf-2 mutants, but restoring the expression of daf-16 only in the 

intestine increased lifespan by 50-60%, in comparison to the 5-20% lifespan increase when 

daf-16 was expressed only in neurons. This suggest that the expression of daf-16 in the 

worm intestine is sufficient to significantly extend lifespan, yet one or more tissues should 

act in concert (Libina et al., 2003). Correspondingly, in Drosophila over-expression of 

dFOXO in the adult intestine and fat body (similar to the adipose tissue and liver in 

mammals) extends lifespan (Giannakou et al., 2004; Hwangbo et al., 2004). Given its role 

in promoting the health benefits and longevity of IIS down-regulation, much attention has 

focused in identifying downstream targets. 
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Nuclear targets/response 

In order to better understand the mechanisms of IIS-mediated lifespan extension, 

recent studies have focused on elucidating the downstream targets of FOXO/daf-16, which 

has emerged as a master regulator of numerous other transcription factors, therefore 

explaining the complexity of IIS (Alic et al., 2011b, 2014a; Schuster et al., 2010). 

Numerous studies have reported transcriptional signatures for long-lived animals. 

Pinpointing a specific gene responsible for the lifespan extension is quite difficult and it 

seems that no individual gene is sufficient to abrogate or reproduce the lifespan extension 

of reduced IIS (Murphy et al., 2003). 

1.3.3.3 Mechanistic target of rapamycin (mTOR) in ageing 

The IIS pathway is to carbohydrates and growth factors, what the mTOR pathway is to 

amino acids and proteins. The mTOR pathway was first identified in yeast and then in 

mammals (Heitman et al., 1991; Sabatini et al., 1994). mTOR is present in two complexes, 

mTORC1 and mTORC2 (Figure 1.11) (Wullschleger et al., 2006). Common to both 

complexes are the mTOR protein, DEP domain containing mTOR-interacting protein 

(DEPTOR) and mammalian lethal with SEC13 protein 8 (mLST8), which seems to be 

dispensable for mTORC1, but necessary for complex integrity and catalytic activity of 

mTORC2 (Guertin and Sabatini, 2009; Kim et al., 2013). mTORC1 is formed, in addition, 

by regulatory associated protein of mTOR (Raptor) and Akt/PKB substrate 40 kDa 

(PRAS40). Raptor is central for the function of mTORC1 as it acts as a scaffold for 

recruiting substrates and it also phosphorylates downstream effectors. It is a primary site 

for the regulation of mTORC1. Both DEPTOR and PRAS40 are substrates and suppressors 

of mTORC1 (Guertin and Sabatini, 2009; Kim et al., 2013; Wullschleger et al., 2006). 

mTORC2 is not usually considered relevant in nutrient sensing, though is necessary for the 

phosphorylation and activation of Akt downstream of the insulin receptor and other growth 

factors (Guertin and Sabatini, 2009). mTORC2 consists of Raptor-independent companion 

of mTOR (Rictor), mSIN1 (MAPKAP1) and Protor (PRR5) (Kim et al., 2013). mTORC2 

seems to be relevant for actin polymerization and cell spreading (Loewith et al., 2002; 

Wullschleger et al., 2006). mTORC1 is sensitive to inhibition by rapamycin, while 

mTORC2 is not, though it can be inhibited under prolonged exposure to rapamycin in 

certain cell types (Sarbassov et al., 2006; Zeng et al., 2007). 
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Figure 1.11 The mechanistic 
t a r g e t  o f  r a p a m y c i n  
(mTOR) presents in two 
complexes. mTORC1 and 
mTORC2 are integrated by 
different components and 
regulate diverse molecular 
processes .  Taken from 
(Wullschleger et al., 2006). 
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mTOR is a hub for the integration of multiple signals from within and outside the 

cell (Figure 1.12). It receives information from growth factors through PI3K/Akt and also 

through the Ras-MAPK pathway (Jewell and Guan, 2013; Kim et al., 2013; Mendoza et 

al., 2011). Akt phosphorylates (at five sites) and inhibits the GTPase activating protein 

(GAP) function of tuberous sclerosis complex 2 (TSC2). TSC2 is part of a triple protein 

complex (TSC-TBC complex, which I will refer to as TSC complex) integrated by TSC1, 

TSC2 and Tre2-Bub2-Cdc16 (TBC)1 domain family member 7 (TBC1D7), upstream of 

mTOR (Crino et al., 2006; Dibble et al., 2012). Both TSC1 and TBC1D7 stabilize the 

complex, while TSC2 has GAP properties, though it has also been speculated that 

TBC1D7 could have GAP activity (Dibble et al., 2012). Active TSC2 inhibits the function 

of mTOR by acting on the Ras-homologue expressed in brain (Rheb). TSC2 stimulates the 

transition of active GTP-bound Rheb to the inactive GDP-bound state. Hence the GAP 

function of the TSC complex inhibits Rheb which results in mTOR inhibition (Crino et al., 

2006). Under conditions of low stimulation by growth signals the TSC complex resides at 

the lysosome in close proximity to lysosomal-residing Rheb (kept here through a C- 

terminal farnesyl group which anchors it to the lysosomal membrane) and mTORC1. Akt 

phosphorylation of TSC2 redistributes the complex away from the lysosome then allowing 

activation of mTORC1 (Menon et al., 2014). A similar mechanism seems to regulate the 

inhibition of mTORC1 in the absence of amino acids (Demetriades et al., 2014). 
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Figure 1.12 mTOR integrates multiple signals from inside an outside the cell. mTORC1 integrates many 
diverse signals some of which converge at the TSC2 complex. Taken from (Ma and Blenis, 2009). 

The TSC complex integrates multiple signals. For example, besides the inhibition 

of the complex after IIS stimulation through Akt, TSC2 is also inhibited through the Ras-

Erk pathway through phosphorylation directly by Erk and, indirectly, through p90 

ribosomal S6 kinase (RSK), downstream of Erk (Mendoza et al., 2011; Shaw and Cantley, 

2006). This allows independent activation of mTOR by PI3K/Akt and Ras-Erk. 

Additionally other signalling kinases like GSK-3 can also modulate mTOR signalling. 

GSK-3 also phosphorylates TSC2, but in turn this phosphorylation activates the GAP 

activity of the complex, hence inhibiting signalling through mTOR. It is important to note 

that this activating phosphorylation is dependent on a priming phosphorylation by 5' 

AMP-activated protein kinase (AMPK) (Inoki et al., 2006). Both Erk and GSK-3 can 

modulate mTOR independent of the TSC complex. Erkl and Erk2 interact and directly 

phosphorylate Raptor (Carriere et al., 2011). GSK-3 can directly phosphorylate p70 S6 

kinase (S6K) regulating its function (Carriere et al., 2011). Akt can also phosphorylate 

PRAS40 blocking its inhibitory mTOR regulation (Sancak et al., 2007). Given the central 

role of mTOR in the integration of multiple cellular inputs, the stratified interaction with 

other signalling pathways is not surprising. 

Though amino acid sensing is a primary function of mTOR it is the least 

understood process regulating it (Dibble and Manning, 2013; Kim et al., 2013). 
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Downstream of mTORC1, regulated by amino acids, growth factors or stressors, 

are S6K, eIF4E binding protein (4E-BP), atgl/ULK, the transcription factor EB (TF-EB), 

amongst others. 

The rate-limiting step for translation initiation is the recruitment of the small 

ribosomal unit the 5' end of mRNA. For this to occur eIF4E, eIF4G and eIF4A form the 

eIF4F complex. During conditions of poor stimulation by growth factors or nutrients 

mTORC1 is poorly activated which results in hypophosphorylated 4E-BP which binds 

tightly to eIF4E not allowing its interaction with the other members of the eIF4F complex. 

Stimulation and activation of mTORC 1 kinase activity leads to phosphorylation of 4E-BP 

resulting in its dissociation from eIF4E which is then is free to interact with the mRNA 

and recruits eIF4G and eIF4A to initiate translation (Ma and Blenis, 2009; Tee and Blenis, 

2005). 

Additionally, active S6K or RSK can phosphorylate eIF4B, which is then recruited 

to the translation pre-initiation complex to increase the RNA helicase activity of eIF4A. 

Some mRNAs, particularly those involved in growth and proliferation, contain secondary 

structures in their 5' untranslated regions (UTR), inhibiting the efficient scanning of the 

start initiation codon. The recruitment of eIF4B to the pre-initiation site (stimulated by 

S6K) increases the efficiency of eIF4A to unwind the secondary structures allowing their 

proper translation (Ma and Blenis, 2009). 

Evolutionary conserved from yeast to humans, regulation of longevity by mTOR 

inhibition has attracted scientific and popular interest (Johnson et al., 2013; Laplante and 

Sabatini, 2012; Stipp, 2012). Genetic modulation of several of the components of the 

mTOR pathway extend lifespan from yeast to mammals (Kapahi et al., 2004; Lamming et 

al., 2012; Pyo et al., 2013; Selman et al., 2009; Simonsen et al., 2008). mTOR is regulated 

by several cellular and environmental cues, including amino acids and growth-related 

factors (Bjedov and Partridge, 2011; Wullschleger et al., 2006). mTOR signals through 

two complexes, one of which is sensitive to rapamycin. mTORC1 regulates the activity of 

its downstream effectors S6K and 4E-BP. Activation of mTORC1 phosphorylates and 

activates S6K, while it inhibits 4E-BP also through phosphorylation. Both of these proteins 

are involved in the regulation of protein translation (Bjedov and Partridge, 2011; Chauvin 

et al., 2014; Thoreen et al., 2012). Specifically targeting protein translation (independent of 

mTOR) by manipulating key proteins involved in the regulation of protein synthesis has 

also been shown to extend lifespan in worms (Curran and Ruvkun, 2007; Hansen et al., 
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2007; Kapahi et al., 2004; Pan et al., 2007; Syntichaki et al., 2007). Like with IIS down- 

regulation, inhibition of mTOR is associated with broad health benefits. KO of the 

downstream player S6K1 extends lifespan of female mice and protects them against age- 

related locomotor decline, loss of bone mass and gluco-metabolic alterations (Selman et 

al., 2009). 

Another output of mTOR is the regulation of autophagy, the self-eating process by 

which cells replenish nutrients under starvation conditions (Cuervo, 2008; Madeo et al., 

2010; Rubinsztein et al., 2011). Under conditions of mTOR activation, degradation 

through the proteasome is favoured over autophagy (Zhang et al., 2014). Down-regulation 

of mTOR is not necessarily linked to inactivation of the proteasome, but it activates 

autophagy. Activation of autophagy has been reported to extend lifespan in both 

Drosophila and mice (Pyo et al., 2013; Simonsen et al., 2008). 

1.4 Diseases of ageing a problem of an ageing population 

1.4.1 Geriatric medicine: common problems of old-age 

Our interest in understanding the biology of ageing cannot stem too far away from its 

medical implications. Prolonging the healthspan of yeast, worms or flies is per se 

pointless, except in the eyes of evolution. The great evolutionary conservation in these 

organisms has highlighted their relevance to biomedical research. Furthermore, the use of 

these organisms has initiated a new era for research into the biology of ageing (Partridge, 

2010). As highlighted at the beginning of this chapter, lifespan extension in the form of life 

expectancy has been increasing continuously, without the aid of biogerontology research 

or interventions (Christensen et al., 2009; Oeppen and Vaupel, 2002). Therefore, it is clear 

that lifespan extension is not a main concern for public health or for geriatrics. As with 

simple organisms, human ageing is linked to reduced functionality and diminished 

capacities. Frailty is commonly used in medicine to refer to a syndrome that particularly 

highlights physical and functional decline without identifiable disease (Fulop et al., 2010). 

One component of frailty that ageing fruit flies recapitulate is age-related motor decline. 

Like in humans ageing flies have diminished capacity to fly, speed of movement and 

climbing capacity (Augustin and Partridge, 2009). Therefore, age-related locomotor 

decline appears to be a very useful ageing phenotype in flies, probably even more useful 
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than lifespan (Gargano et al., 2005; Jones et al., 2009). 

One of the major problems that the continuous rise in life expectancy has brought 

to modern societies, and especially to public health, is the increasing prevalence of age- 

related diseases. Although age-related disorders are not the main cause of mortality 

worldwide, they are an increasing problem, particularly in developed countries. 

Cardiovascular disease, diabetes and neurodegeneration are some of the disorders that are 

becoming a great burden (Bloom, 2011; Marrero et al., 2012). Of these diseases, I am 

particularly interested in neurodegeneration. However, it is worth bearing in mind that 

since ageing is a risk factor for a wide range of age-related illnesses similar processes are 

likely to be occurring in non-neuronal tissues. 

1.4.2 Neurodegeneration and Alzheimer's disease 

The role of ageing in age-related diseases still remains unexplained. Ageing is the greatest 

risk factor for neurodegenerative diseases like AD and PD, the two most prevalent forms 

of neurodegeneration (Bishop et al., 2010; Cummings and Cole, 2002; Lees et al., 2009). 

Now we know that at least two cellular metabolic pathways regulate the ageing process, 

allowing us to modify them either genetically or pharmacologically to positively affect 

lifespan (Bishop et al., 2010; Fontana et al., 2010; Partridge, 2010). Moreover, recent 

evidence has shown that targeting age-related cellular signalling pathways (such as the 

IIS/mTOR network) increases survival rates in animal models of several  

neurodegenerative diseases, slowing or halting the pathogenic events and, overall, 

increasing their healthy lifespan (Caccamo et al., 2010; Cohen et al., 2009; Kerr et al., 

2011; Killick et al., 2009; Malagelada et al., 2010; Spilman et al., 2010; Tain et al., 2009). 

One of the central mechanisms of neurodegeneration in the brain is the collapse of 

proteostasis that leads to proteotoxicity (Cohen and Dillin, 2008; Dillin and Cohen, 2011). 

As with mitochondrial genes, those related to the UPS pathway are equally down-regulated 

during ageing (Bishop et al., 2010). This might be relevant to neurodegenerative diseases 

in which there is an accumulation of abnormally processed proteins such as in AD and PD 

(LaFerla et al., 2007; Lansbury and Lashuel, 2006; Lees et al., 2009; Querfurth and 

LaFerla, 2010; Wong and Cuervo, 2010). Recently it was experimentally shown that older 

flies are more susceptible to the toxic effects of the AD associated amyloid beta 1-42 

peptide (Af31_42), as they die faster than younger flies when Af31_42 is expressed in their 

CNS (Rogers et al., 2012). AD is the most prevalent neurodegenerative disease. Its 
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aetiology is not fully understood, however its characteristic brain lesion of neurotic 

plaques and the discovery that mutation in the amyloid precursor protein have made 

amyloid the centre of AD pathogenesis (Hardy, 2009; Hardy and Selkoe, 2002; Querfurth 

and LaFerla, 2010). Af31_42 is the main pathological hallmark of AD (Hardy, 2009; LaFerla et 

al., 2007; Querfurth and LaFerla, 2010). The study by Rogers and colleagues suggested that 

the age-related decline in proteasomal function could be partly responsible for the 

susceptibility of older flies to Af31_42 (Rogers et al., 2012). Another natural cellular 

mechanism by which cells are able to clear damaged organelles or altered proteins is 

autophagy. The ageing process negatively affects the function of the AL system; hence it 

has been in part considered responsible for the accumulation of damaged organelles and 

proteins in ageing (Cuervo, 2008; Cuervo et al., 2010). As mentioned before, defects of 

autophagy in neurons lead to overt pathology in flies and mice (Hara et al., 2006; Juhdsz et 

al., 2007; Komatsu et al., 2006). Perhaps regulation of the degradative machinery could be 

an advantageous intervention to release neurons from the burden of damage accumulation 

and proteotoxicity. 

The above clearly highlights the intricate relationship between the ageing process 

and neurodegeneration, and suggests, that anti-ageing interventions up-regulating 

degradation mechanisms could be of great relevance for the understanding and treatment 

of neurodegenerative diseases. 

1.5 Treating ageing? 

1.5.1 Healthy ageing: how to achieve it? 

To better understand the ageing process and how to "treat" it, is fundamental to clearly 

define end points for research into ageing. This will include defining what physiological 

ageing is, when does it become pathological ageing and when overt pathology exists. For 

example, it has been a continuous concern for the field how to establish the differences 

between physiological memory decline associated with the ageing process, the 

establishment of mild cognitive impairment as a prodromal for dementia, and overt 

Alzheimer's disease. Complicating matters, the burden of disease in old age affects 

multiple tissues and organs at the same time, which translates into multiple diseases or co- 

morbidities. For example an obese patient with type 2 diabetes mellitus, hypertension, 

dyslipidemia (triglyceridemia, low HDL and high VLDL) is at increased risk for a 

coronary and atheroembolic embolic event, renal failure (and other complications inherent 



 Pharmacogenetics of ageing and neurodegeneration 

 66 

of diabetes and the metabolic syndrome) and even at increased risk of developing a mood 

disorder like depression, memory loss, and dementia. Patients like this are becoming more 

and more prevalent particularly in developing economies. Healthcare for patients with 

multiple co-morbidities should include a multidisciplinary approach and targets for 

interventions should be carefully considered by the entire medical team. In such an 

approach a geriatrician (a specialist in diseases of old-age) should also be consulted. 

However, it is rather clear that a longevity phenotype should be free of disease, but then 

what does one need to measure when considering end points for ageing research. It cannot 

be expected for an 85 year old to maintain the cardiac and renal function of a healthy 18 

year old. Or should we? Up to now we have not tested anti-ageing interventions in people 

(except for DR). A careful examination for function of multiple systems during life in 

different populations but particularly for each individual will help to determine when the 

decline starts, when and which compensating mechanisms the system take place and what 

would be the best approach for a particular patient. General practitioners and family 

doctors will be instrumental here. When a patient gets a consultation with a geriatrician it 

means that they are in overt pathology, as this is what currently happens around the world. 

However, a person attending regular check ups will only visit the general or family 

practitioner. This will entail regular and programmed visits to assess multisystem 

functionality. Appropriate electronic record keeping will be indispensable. As a person 

grows old functional decline creeps in, but this will certainly vary between individuals. 

Preventative ageing interventions will require a clear medical history. However, it is likely 

that by considering the general population, an average optimal time-to-intervene could be 

derived for the majority of the population. For example we know now that when there is 

increased risk of developing prostatic cancer, regular check ups should start earlier than in 

the general population. A similar list of risk factors could be drawn for interventions in 

ageing. Once functional decline for each system is set, check ups for that system will have 

to become regular, and if at higher risk than for the general population, these tests should 

occur earlier. Defining a longevity phenotype will be fundamental (Slagboom et al., 2000). 

1.5.2 In pursuit of the DR mimetic 

The widespread health benefits of DR have encouraged the search for drugs that can 

mimic the effects of DR, i.e., DR mimetics (Cabreiro and Gems, 2010; de Cabo et al., 

2014; Ingram et al., 2004; Lane et al., 2004). The concept of a DR mimetic was put 
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forward by Lane, Ingram and Roth when trying to identify pharmacological agents capable 

of reproducing the beneficial lifespan-extending effects of DR, without reducing food 

intake (Lane et al., 1998). In pharmacology a drug mimetic (from the Greek for imitative) 

is an agent capable of eliciting or inhibiting a process without the need of its natural 

activator or inhibitor. In cardiovascular medicine, sympathomimetic drugs are those that 

elicit similar effects as the catecholamines epinephrine (adrenaline) and norepinephrine 

(noradrenaline) These drugs can act either by directly stimulating a- or I3-adrenergic 

receptors (an example of a direct (32-adrenergic receptor agonist would be salbutamol or 

albuterol used for asthma control), but also those that indirectly act by increasing the 

availability of endogenous catecholamines at the site of action, for example by inhibiting is 

transport (hence clearance) from the extracellular space back into the cell (examples would 

be amphetamines and cocaine). In the case of a DR mimetic, the molecular target would be 

less clear (given the pleiotropic effects of DR). However, this pharmacologic agent should 

be able to extend lifespan and resemble some of the beneficial health effects of food 

restriction. Though not usually considered, a DR mimetic could also be a drug that mimics 

the action of food restriction, this could probably be achieved with the use of anti-obesity 

drugs (Bray and Ryan, 2014; Rodgers et al., 2012). However, it should be noted that such 

agents have not been tested for lifespan extension in humans nor model organisms. This 

approach could be tested in model organisms like worms and flies where screens for drugs 

reducing food intake can be easily performed. Moreover, the use of these organisms can 

facilitate determination of whether such compounds reduce food intake by mechanisms 

localised in the gut, brain and/or other metabolic tissues (Gasque et al., 2013). However, 

the classical interpretation of a DR mimetic is the ability to confer all or some of the 

effects of DR (lifespan and healthspan) without reducing food intake. DR is already 

practised by people, for example Okinawans in Japan are thought to be a natural DR 

population (Gavrilova and Gavrilov, 2012; Willcox et al., 2009). Other groups, like the 

members of the Caloric Restriction Society also self-restrict their food consumption under 

the impression that reducing their food intake will protect them against the diseases of old 

age and slow the ageing process (Holloszy and Fontana, 2007). This is an unlikely 

behaviour to be adopted by the majority of the population even when the promise of a 

healthy increased lifespan is on offer. Dietary interventions have been at the core of the 

first line of treatment for many chronic degenerative diseases, yet though they have proven 

to be effective in reducing symptoms and improving quality of life, the adherence is rather 

short term in comparison to drug interventions (Delamater, 2006; Kwan et al., 2013). 
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Thus, identifying drugs with anti-ageing or pro-longevity properties has become critical 

for the ageing field. 

Perhaps the most important property of a DR mimetic should be its inability to 

extend lifespan beyond conditions maximised for DR, they should be epistatic. In model 

organisms, multiple protocols to extend lifespan have been developed; this makes it ever 

more challenging to perform epistatic experiments between potential DR mimetics and DR 

per se. I consider that these experiments should be performed with the protocol capable of 

extending lifespan the most, as this DR intervention is likely to recapitulate the ceiling 

effect for lifespan extension under food restriction. 

1.5.3 Drugs to improve ageing 

1.5.3.1 Rapamycin and the rapalogs 

The hopes for identifying drugs with anti-ageing properties was boosted in 2009 when a 

report showed that the drug rapamycin was able to extend the lifespan of mice even when 

fed late in life (Harrison et al., 2009). Ever since, others have replicated this result using 

different rapamycin protocols (Delamater, 2006; Kwan et al., 2013). Rapamycin is a drug 

approved for human consumption as an immunosuppressant and chemotherapeutic agent 

(Guertin and Sabatini, 2009). It has a specific pharmacological target; rapamycin inhibits 

mTORC1 (Wullschleger et al., 2006; Zoncu et al., 2011). As discussed previously, 

mTORC1 controls protein translation and autophagy. When rapamycin is administered to 

cells, or multicellular organisms, it reduces translation and increases autophagy (Bjedov 

and Partridge, 2011). Although these mechanisms were not shown to be responsible for the 

lifespan extension in mice per se, inhibition (by lower phosphorylation) of the downstream 

effector p70-S6K was shown as proof for mTORC1 inhibition (Harrison et al., 2009). 

Moreover, research in Drosophila showed that rapamycin treatment reduced translation 

and increased autophagy in vivo (Bjedov et al., 2010). These processes were shown to be 

required for the lifespan extending properties of rapamycin as over-expression of a 

constitutively active form of p70-S6K or preventing the increase of autophagy (by RNAi-

mediated knockdown of Atg5), were sufficient to block the lifespan extending effects of 

rapamycin (Bjedov et al., 2010). Rapamycin has also been shown to extend lifespan of 

yeast and worms (Powers et al., 2006; Rallis et al., 2013; Robida-Stubbs et al., 2012). The 

fact that a drug approved for human consumption can extend the lifespan of evolutionary 
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distant organisms has sparked interest for the identification of other drugs, already labelled 

for disease treatment, having anti-ageing properties. 

In addition to extending lifespan across evolutionary distant organisms, rapamycin 

treatment conferred resistance to the redox cycler paraquat and to starvation (Bjedov et al., 

2010). Whether resistance to oxidative stress requires the up-regulation of autophagy 

and/or reduction of translation is still unclear. Resistance to starvation by rapamycin 

treatment did not seem to require 4E-BP, S6K inhibition or autophagy up-regulation, 

suggesting that the starvation phenotype is likely to be mTORC1 independent. 

Alternatively, other downstream targets of mTORC1 could be involved in the response to 

starvation (Bjedov et al., 2010). The effects of rapamycin have also been shown to 

modulate disease progression. For example, rapamycin treatment is protective in fly and 

mouse models of neurodegenerative diseases like Alzheimer's and Parkinson's disease 

(Majumder et al., 2011; Malagelada et al., 2010; Spilman et al., 2010; Tain et al., 2009). It 

also rescues the cardiac and skeletal muscle defects associated with lamin A/C deficiency 

in mice (Ramos et al., 2012), age-related macular degeneration in rats (Kolosova et al., 

2012), some forms of cancer (Johnson et al., 2013), amongst other age-related (and not) 

diseases. However, in spite of extending lifespan and protecting against age-related 

pathologies, rapamycin associates with some complex side effects. For example, 

immunosupression, eodema, impaired wound healing, dermatologic alterations and 

metabolic changes like hypertriglyceridemia, glucose intolerance, and reduced insulin 

sensitivity (Lamming et al., 2013). Indeed, rapamycin also lead to increased triglyceride 

levels in Drosophila (Bjedov et al., 2010), which probably accounts for the starvation 

resistance effect associated with rapamycin (Bjedov et al., 2010; Emran et al., 2014). A 

recent study using mice showed that the metabolic side-effects of rapamycin are likely to 

be secondary to mTORC2 inhibition, particularly in liver (Lamming et al., 2012). In spite 

of the side effects, the success of rapamycin for promoting healthy ageing has generated 

interest in rapalogs, drugs with similar structure and/or function to rapamycin. Perhaps 

more selective inhibitors of mTORC1 could indeed have more beneficial effects to 

promote true healthy ageing (Blagosklonny, 2012a; Lamming et al., 2013). 

When flies are fed with the mTOR inhibitor rapamycin and tested over a wide 

range of yeast concentrations, a similar scenario is observed. The degree of lifespan 

extension is attenuated under the lower DR-range of yeast concentrations, but increases as 

the yeast concentration is increased towards fully fed conditions (Bjedov et al., 2010). 

Interestingly, rapamycin is also more effective at extending lifespan in undernourished 
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conditions, which might be involved in the starvation-resistance effect induced by 

rapamycin (Bjedov et al., 2010; Emran et al., 2014). These experiments suggest that 

genetic down-regulation of mTOR or rapamycin in Drosophila share overlapping 

mechanisms, but might also have independent effects. In C. elegans where TOR-RNAi 

increases lifespan of wild type worms by over 25%, the same RNAi treatment to the 

eat2(ad1116) mutant worm did not further extend lifespan (Hansen et al., 2007), which 

suggests that TOR down-regulation and DR act in the same molecular pathway. 

Methionine restriction, a nutrient-specific form of DR, induces autophagy in yeast cells 

and is epistatic to mTOR inhibition for lifespan extension. Furthermore, deletion of several 

of the atg genes (5, 7 and 8) or reduction of the function of the vacuole (the yeast organelle 

closely related to the lysosome), block the lifespan benefits of methionine restriction 

(Ruckenstuhl et al., 2014). 

1.5.3.2 Metformin and the microbiota 

The antidiabetic drug metformin has shown to extend lifespan in C. elegans and mice, but 

not in Drosophila (Anisimov, 2013). Metformin supplementation late in life to mice 

increases median and maximum lifespan. The lifespan extension was associated with 

reduced cholesterol levels (total cholesterol and LDL), improved glucose tolerance and 

locomotor ability, increased antioxidant defence, and reduced markers of inflammation. 

Lifespan extension by metformin in mice was not associated with altered mitochondria' 

respiratory complex function, but with AMPK activation. Interestingly the transcriptional 

profile of animals treated with metformin showed similarities to the transcriptomic 

response of animals under DR (Martin-Montalvo et al., 2013). 

The first study to show lifespan extension by metformin was performed in C. 

elegans. Metformin was shown to extend median lifespan by approximately 40%. The 

lifespan extension associated with prolonged locomotor healthspan. Lifespan extension by 

metformin required the presence of AMPK, the LKB 1 homolog PAR-4 and the 

transcriptional activator SKN-1 (Onken and Driscoll, 2010). A second independent group 

elegantly showed that AMPK and SKN-1 mediated protection against metformin- (or 

biguanides as phenformin, another biguanide, was also used) induced toxicity, rather than 

lifespan extension. The authors showed that for lifespan extension to occur, metformin 

altered folate metabolism in the Escherichia coli in which worms are co-cultured (Cabreiro 

et al., 2013). E. coli is to worms not only a nutritional source, but also its microbiota 
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(Cabreiro and Gems, 2013). This study has led to the interesting hypothesis that the 

regulation of the microbiome can potentially affect lifespan across evolution (Cabreiro and 

Gems, 2013; Heintz and Mair, 2014; Ottaviani et al., 2011). 

It is increasingly recognised that cardiovascular diseases and metabolic dysfunction 

in diabetes and obesity lead to dysbiosis, i.e., microbial imbalance inside the body (Riley 

et al., 2013; Tilg and Moschen, 2014). As metformin is associated with gastrointestinal 

side effects (Fowler, 2007), it is not entirely surprising that metformin could alter the 

composition of the microbiome. There is some evidence to suggest that metformin alters 

the microbiome in rats and mice (Lee and Ko, 2014; Pyra et al., 2012), which suggests 

evolutionary conservation and relevance for human health, but in-depth characterisation is 

further required. The mechanisms by which the microbiome regulate healthspan are still 

poorly understood, but evidence suggests a complex interaction between the immune 

system and other cytoprotective mechanisms, and also metabolic changes (Clemente et al., 

2012; Tilg and Moschen, 2014). Indeed, a recent study provided evidence of the complex 

metatranscriptomic response of the gut microbiome to a host of xenobiotic compounds 

(Maurice et al., 2013). As we are in constant interaction with the environment and its 

toxins the relevance of the microbiome as a first line of defence against them should be 

further explored. I have mentioned that xenobiotics and toxins have been reported to 

extend lifespan in invertebrates (Calabrese et al., 2011; Goldberg et al., 2010), however 

whether an interaction between these compounds and the microbiome influences longevity 

awaits exploration. A recent study in mice showed that DR positively alters the gut 

microbiota leading to reduced antigen load, which suggest that the changes in the 

microbiota induced by DR modify the gut microarchitecture protecting against infection 

(Zhang et al., 2013). The gut microbiota in humans changes with age (Biagi et al., 2010) 

and exploration into the interaction of these changes with healthspan and lifespan should 

bring rather exciting scientific advances. 

Metformin was shown to extend lifespan independent of daft 6 and further extend 

the lifespan of the long-lived IIS mutant age-1. However, most importantly metformin was 

unable to extend the lifespan of the eat-2 mutants. As this genetic intervention is used as a 

DR protocol, this suggest that metformin is a true DR mimetic as it is unable to extend 

lifespan under conditions maximised for lifespan under diet restriction (Onken and 

Driscoll, 2010). Similarly, an independent group showed that metformin becomes 

detrimental for lifespan when supplemented without the presence of E. coli (Cabreiro et 

al., 2013). Removal of the bacteria is a common DR protocol employed in C. elegans 
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research (Mair and Dillin, 2008). Whether this approach suggests that metformin is a true 

DR-mimetic, or only highlights the nature of the symbiotic interaction of the worms and 

the bacteria (Cabreiro and Gems, 2013) should be considered carefully. 

1.6 Thesis Outline 

In the following sections I will describe the rationale of the work presented in the 

following chapters. During my work researching for DR mimetics I had the privilege of 

testing the potential beneficial effects of several drugs for promoting longevity and 

healthspan (Figure 1.13). Most of them did not show robust enough effects, though some 

like the pro-diabetic alloxan, the anti-convulsive valproic acid and the antibiotic rifampicin 

were the ones that I would pursue after lithium. Interestingly valproic acid has already 

been shown to extend lifespan in C. elegans (Evason et al., 2008). However, the drug that I 

decided to focus on was lithium. I have had experience with this drugs during my medical 

training, not precisely in the clinic as anyone would assume, but for treating 

streptozotocin-induced diabetic rats. In previous work I showed that induction of diabetes 

in male rats increased immobility time in the Porsolt's forced-swimming test, a paradigm 

for learned helplessness used to screen for antidepressants. Diabetic patients are at 

increased risk of depression and by inducing insulin-dependent diabetes I was able to show 

increased learned helplessness (Castillo-Quan et al., 2010). Furthermore, the immobility 

time was restored to control levels after lithium was administered. 

Lithium has been shown to extend lifespan in three independent C. elegans studies. 

Yet no molecular mechanism has been identified (McColl et al., 2008; Tam et al., 2014; 

Zarse et al., 2011). A study has also shown that low doses of lithium can reduce mortality 

in Drosophila, while high doses increase mortality (Matsagas et al., 2009). Moreover, a 

recent study correlating lithium concentrations in drinking water in Japanese counties 

reported that higher doses of lithium associated with reduced mortality for all causes 

(Zarse et al., 2011). I sought to further explore the role of lithium as a pro-longevity drug 

using the fruit fly Drosophila melanogaster. 
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Figure 1.13 Compounds tested in Drosophila for lifespan and healthspan. Some of the drugs and 
compounds tested during the course of the work presented in this dissertation. Data obtained from the use of 
rapamycin, myo-inositol and morin will be presented during the course of this work. Of the drugs I tested 
and showed promising results to improve parameters of health (either in control flies or in an A(31_42 
neurodegeneration model) were valproic acid, rifampicin and alloxan. 

1.6.1 Is lithium a DR mimetic (Chapter 3)? 

The use of compounds to extend lifespan and healthspan in Drosophila is very limited. 

Much more work has been done in C. elegans (Alavez and Lithgow, 2011, 2012). The 

amenable manipulation of the fly genome in correlation with the number of behavioural 

and phenotypical measurements that can be obtained make Drosophila an invaluable tool 

to explore not only lifespan, but also healthspan benefits. In Chapter 3 I sought to assess 

whether lithium was able to extend lifespan when supplemented in the food medium in 

flies of more than one genetic background. Previous work in the laboratory has shown that 

lithium improved the locomotor ability of a neurodegeneration model (Sofola et al., 2010). 

Additionally, Dr. Ivana Bjedov had shown that lifespan extension in control flies could be 

achieved at certain doses (unpublished data; see Figure 3.2). I corroborated these 

experiments and decided to analyse what was the correlation between the lifespan 

extension induced by lithium and DR. To explore the potential DR mimetic properties of 
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lithium several explorations should be performed. The first one is whether lithium reduces 

feeding behaviour by taste aversion, for example. If flies stop eating or reduce their food 

intake this would be a way of self-imposing DR. I therefore explored this possibility. 

Second, can lithium extend lifespan beyond that maximised by DR. To explore this 

possibility I conducted a 4-condition DR tent (previously described) to assess whether 

lithium shifted the DR tent or extend lifespan under most conditions tested. Lastly I 

analysed potential changes in the nutrient sensing-network IIS/mTOR. 

Besides lifespan I explored the possibility that lithium could be extending lifespan 

by a trade-off mechanism by which lifespan is extended at the expense of reduced 

fecundity. Interventions down-regulating the nutrient-sensing network, including DR, 

reduce fecundity. These interventions also correlate with altered metabolism, therefore I 

explored potential changes in carbohydrate and lipid parameters. 

Finally, I also assessed some pharmacological aspects of lithium that could have 

relevance for therapeutic approaches. For most of the experiments described I 

supplemented lithium chronically after two days post-eclosion (adulthood). However, I 

wondered whether lithium would modulate longevity when administered late in life. 

Additionally I assessed the "molecular memory" of lithium, i.e., whether effects in 

longevity and stress resistance are maintained after the drug is removed. I also evaluated 

the interaction lithium and rapamycin have on longevity, stress-resistance and metabolism. 

1.6.2 What are the mechanisms of lithium to promote healthy ageing 

(Chapter 4)? 

Lithium is considered a dirty drug. Although it is often used as a GSK-3 inhibitor, it can 

act on several signalling pathways. In Chapter 4 I used a genome-wide unbiased approach 

to interrogate the transcriptome and translatome in aids of understanding the molecular 

mechanisms behind the lifespan extension by lithium. For this I performed microarray 

transcriptional analyses and polysome-profile microarrays. I will describe several 

approaches taken to analyse the changes observed. Additionally, I was also able to analyse 

how the transcriptional response of lithium correlates with other interventions that promote 

lifespan extension in Drosophila. 
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1.6.3 Is GSK-3 involved in lithium's ability to extend lifespan (Chapter 

5)? 

The most widely recognised target of lithium is GSK-3. Mammals express two GSK-3 

isoforms, GSK-3a and GSK-313. Drosophila only possess one homolog called shaggy 

(sgg). In chapter 5 I explore the role of sgg in modulating lifespan and healthspan. No 

previous study has carried out such investigations in any organism. Additionally I explored 

the role of sgg as a downstream target of lithium's action Finally given the tools 

available I explored the possibility that different tissues might respond differently to sgg 

modulation. Using the arsenal of tissue-specific drivers I was able to determine that not 

all tissues respond in the same way, perhaps revealing different basal levels required for 

maintaining cellular function. 

1.6.4 What drives neurodegeneration in Drosophila neurons expressing 

AI31_42 (Chapter 6)? 

In the final results chapter (6) I explore non-traditional phenotypes in an Af31_42 model of 

Alzheimer's disease. So far it has been characterised that flies expressing A131_42 in adult 

neurons show reduced lifespan, acceleration of age-related locomotor decline and 

electrophysiological dysfunction. Therefore, I decided to analyse whether other parameters 

could also be deregulated in these flies. I sought to analyse the response to several forms of 

stress including oxidative, xenobiotic and starvation. During the course of these 

experiments I found that these phenotypes were altered by what seemed to be the earliest 

sign of neurodegeneration reported so far. This phenotype had a great impact on lifespan 

and metabolism, which revealed that expression of Af31_42 in neurons affect the general 

physiology of the flies. 
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Chapter 2 

General methodology 

2.1 Drosophila melanogaster: strains and genetics 

One of the major advantages of working with the fruit fly Drosophila melanogaster is the 

vast amount of laboratory strains. The Partridge laboratory has a generous inventory of 

genetic stocks allowing appropriate use and generation of different crosses. All stocks 

were kept at 18°C, while experimental crosses and transgene flies were kept at 25°C and 

65% humidity on a 12:12 light : dark cycle using standard sugar/yeast (SY) medium (see 

2.2.1). Flies were reared at standard larval density (-300 flies per 200mL bottles) and 

eclosing adults were collected over a 2 hour period after which they were mated for 48 

hours before collecting females for experimental treatments (Bass et al., 2007). 

2.1.1 White Dahomey (WDah) 

The control white Dahomey (w
pah

) stock has been maintained in large population cages 

with overlapping generations since 1970. The wpah stock was derived by incorporation of 

the w1118 mutation into the outbred Dahomey background by backcrossing (Bass et al., 

2007). The wpah strain is naturally infected by the intracytoplasmic bacterium Wolbachia, 

which modulates lifespan effects of the IIS pathway (Griinke et al., 2010; Ikeya et al., 

2009; Negri, 2012). 

2.1.2 White 1118 (w1118) 

The 
w1118

 Drosophila stock is an inbred and isogenic strain vastly used for 

neurodegeneration studies. This strain is often used as a control in ageing studies to 

demonstrate that pro-longevity effects found in the wpah strain are independent of genetic 

background (Bjedov et al., 2010; Slack et al., 2010). 
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2.1.3 Backcrossing 

Backcrossing transgenic lines is necessary to ensure that any differences seen between 

mutant and control flies are due to the expression of the transgene alone, and not due to 

confounding mutations or insertional mutagenic effects (Partridge and Gems, 2007). Some 

studies have shown that insufficient standardization of the genetic background and 

inappropriate backcrossing or use of inappropriate controls can produce artificial lifespan 

extension (Burnett et al., 2011; Toivonen et al., 2007). For this reason, before the 

transgenic stocks could be used for experimentation, they had to be prepared so that their 

genetic backgrounds were uniform, differing only at the locus where the transgene was 

integrated. This was achieved by a series of backcrossings. In the first cross, transgenic 

males were mated with wild type females. In this way, the cytoplasmic content (including 

mitochondrial genome) is passed to the offspring, which is selected either by visible 

phenotype (eye colour for example) or by PCR following specific mutation. After this 

initial cross virgin females were collected and crossed to wild type males, and this cross 

was repeated at least another five times until six backcrossing events were completed. 

Transgenic lines were then made homozygous or balanced and kept as a stock for 

experimentation. 

2.1.4 GAL4-UAS system 

The GAL4-UAS system is considered one of the most powerful biochemical tools in the 

fly world (Brand and Perrimon, 1993). Its major advantage is that it can restrict the 

expression of genes of interest in a tissue or cellular specific manner using native gene 

promoters. The GALA gene encodes for the yeast Saccaromyces cerivisiae Ga14, a 

transcriptional activator protein. For example, the elav-GAL4 Drosophila line will 

expresses the Ga14 protein under the elav promoter. Elav encodes for embryonic lethal 

abnormal vision, a pan-neuronal protein, therefore elav-GAL4 is a neuronal driver. On the 

other hand, the upstream activation sequence (UAS) is an enhancer to which Ga14 binds to 

activate gene transcription. UAS controls the expression of the gene of interest only 

allowing transcription in cells expressing Ga14. In the case where the green fluorescent 

protein (GFP) is under UAS control, i.e., UAS-GFP, and this line is crossed with an elav-

GAL4 line, the final genotype elavGAL4/+ > UAS-GFP/+ will express GFP only in 

neurons (Osterwalder et al., 2001). 
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2.1.5 Gene-switch system 

The gene-switch (GS) system uses the GAL4/UAS system with the restriction that the 

transcriptional activity depends on the presence of steroid hormones or chemically related 

compounds (Ford et al., 2007; Osterwalder et al., 2001; Roman et al., 2001a). In the 

GAL4/UAS system the binding of the transcription factor GAL4 to an upstream activating 

sequence (UAS), results in the transcription of the UAS-linked transgene (Brand and 

Perrimon, 1993). In the GS system GAL4 is fused with the regulatory domain of the 

human progesterone receptor (Ford et al., 2007; Osterwalder et al., 2001; Poirier et al., 

2008; Roman et al., 2001b). In the absence of the activator mifepristone (RU486), the Ga14 

protein and UAS transgene can coexist in the fly without expression of the transgene under 

the control of UAS. When flies expressing the GS driver and the UAS line are fed RU486, 

the Ga14-gene-switch is able to bind to the UAS and therefore the transgene is expressed 

(Figure 2.1) (Osterwalder et al., 2001; Roman et al., 2001b). 
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2.2 Drosophila food medium 

2.2.1 Sugar-yeast medium (SY) 

Our standard laboratory medium (SY) was used for the development and maintenance of 

all flies, unless otherwise stated. SY medium was made in the following way: 15 g of agar 

were dissolved in 700 mL distilled water by heating until boiling. After this 100 g of 

autolysed yeast powder and 50 g of sugar were added until boiling. 170 mL of distilled 

water were added and left to cool down. When temperature was between 50-60 
°
C, 30 mL 

of nipagin (100 g/L) and 3 mL propionic acid (both anti-fungal preservatives) were added. 
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Food was then dispensed (4 mL per vial) into plastic vials. Food was allowed to set at 

room temperature before storing at 4
°
C (Bass et al., 2007). 

2.2.2 Grape juice medium 

Grape plates were used as a surface for egg laying and collection. Collected eggs were 

subsequently dispensed into bottles containing SY medium. Grape plates were made as 

follows: 25 g agar were dissolved in 500 mL distilled water and brought to the boil. To this 

300 mL of red grape juice were added and brought to the boil again. After adding an 

additional 50 mL of distilled water the medium was allowed to cool to below 60
°
C. As 

with the SY medium 21 mL of nipagin (100 g/L) were added. The medium was dispensed 

into plastic petri dishes and allowed to set at room temperature before storing at 4
°
C. 

2.2.3 Starvation medium 

Starvation medium was prepared by adding 15 g of agar to 700 mL of distilled water. This 

was brought to boil and cooled down before dispensing into vials. No additional 

ingredients (including anti-fungals) were added to avoid any potential source of nutrients. 

2.2.4 Dietary restriction (DR) regime 

For DR experiments a yeast dilution protocol was established using as a reference the SY 

medium previously described. For details of the precise recipe see Appendix 7. 

2.3 Fly husbandry and culturing 

2.3.1 Male and female separation 

Some anti-ageing interventions that extend lifespan are not able to do so in male flies 

(Clancy et al., 2001), or even in mice (Selman et al., 2009); in other cases the response 

shows some dimorphism, where the response is attenuated in males (Bjedov et al., 2010; 

Miller et al., 2013). Therefore, it is a common practice in ageing studies to test males and 

females separately (Partridge and Gems, 2007). Additionally, continuous mating can 

impact several physiological parameters including survival (Barnes et al., 2008; Chapman 

and Partridge, 1996). Female and male flies can be distinguished very easily under a 
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microscope whilst flies are anesthetised with CO2 (Greenspan, 2004). For most 

experiments only female flies were used, though some phenotypes were also corroborated 

in males to ensure sex-independent effects. Female and male flies were sorted using a fine 

paintbrush while anesthetised. Flies were usually separated at day 2 post-eclosion after a 

48 hours mating period. 

2.3.2 Virgin collection 

To obtain certain desired genotypes, it was often necessary to cross male and female flies 

of different genotypes. This ensured at least one copy of the chosen transgene into their 

progeny. This was achieved by collecting unmated female flies (or virgins). Virgin 

collection was carried out for backcrossing (see section 2.1.3) and to obtain desired 

genotypes for experiments. Female Drosophila flies do not respond to courting males 

during the first 8 hours after eclosion at 25
°
C (Greenspan, 2004). Therefore newly 

emerged female flies were collected within 6 hours after clearing rearing bottles. 

2.4 Drosophila handling and survival 

2.4.1 Lifespan assay 

An important determinant for ageing analysis is the age at which flies initiate the assay. 

For this, it was necessary to ensure that the parents of the experimental flies were the same 

age at egg laying and reared under the same conditions. In this way, I could control for the 

effects of parental age on lifespan (Priest et al., 2002). 'Egg squirt' protocols were 

undertaken to ensure that all flies in the experiment were raised at similar larval densities 

(-300 eggs per bottle containing 70 mL of food), thereby avoiding the possibility that any 

differences in lifespan could be accredited to differences in larval density within which the 

flies were reared (Priest et al., 2002). Flies were allowed to lay eggs over less than 24 

hours on grape medium plates, with live yeast paste to encourage mating. The eggs were 

collected from the plate by washing with phosphate buffered saline (PBS) solution and 

collected into falcon tubes. The eggs were allowed to settle to the bottom of the tube. 

Using a 100 ilL Gilson pipette —15-18 lit of egg suspension was dispensed into 200 mL 

glass bottles containing 70 mL SY medium. This equates to —300 eggs per bottle. 

After 10 days of development flies emerge from their pupae and were then 
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transferred into fresh bottles. The flies were then allowed to mate in these new bottles for 

48 hours. After this flies were sorted using a paintbrush under CO2 anaesthesia, and 

divided onto vials with 15-20 flies per vial. 

Flies were transferred to fresh vials of food three times a week throughout life. The 

number of dead flies found during each transfer was recorded. Accidental deaths and 

escapees were distinguished from deaths and were censored from the experiment. From 

these data, a survivorship graph was generated, making it possible to compare survival 

curves over time between different genotypes or experimental conditions. Lifespan curves 

were analysed with log-rank test. 

2.4.2 Stress assays 

To determine the role of genetic, environmental and/or pharmacological interventions, 

survival curves obtained in a similar manner than for lifespan experiments (previous 

section) were carried out using different chemicals to induce cellular stress (see sections 

2.6.2 and 2.6.3). 

2.5 Behavioural investigations 

2.5.1 Feeding assay 

To explore the feeding behaviour of flies of different genetic backgrounds, environmental 

and/or pharmacological interventions, flies were reared and grouped as previously 

described. Five vials per group were included with five flies each. The feeding behaviour 

assay relies on the fly proboscis extension (Wong et al., 2009). To analyse their behaviour 

on the food and ensure that the proboscis extension was observed continuously for two 

hours and recorded on data sheets, later plotted and statistically analysed. To maximize the 

reliability of the observed effects the observer was blinded to the conditions/genotypes 

tested. 

2.5.2 Fecundity assay 

Fecundity has historically been heavily linked to longevity (Partridge et al., 2005). 

Although this association has been uncoupled (Grandison et al., 2009a), interventions to 
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prolong lifespan without affecting fecundity have been limited. Such intervention would in 

reality be a healthy lifespan treatment. To assess fecundity female flies were let lay eggs 

for a period of —24 hours in vials containing standard medium. Vials containing eggs were 

frozen and kept at -20°C for a short time until eggs were counted. Total of number of eggs 

were divided between number of flies per vial and t-test was used to determine statistical 

value. 

2.5.3 Climbing assay (negative geotaxis) 

Locomotor age-related decline is an insightful screen of the functional capacity of flies that 

is also sensitive to some anti-ageing interventions (Gargano et al., 2005; Jones et al., 2009; 

Kerr et al., 2011). The paradigm called negative geotaxis consisted of a climbing assay in 

which 10-15 flies were placed in a 35 cm column (1.5 cm diameter) with a conic bottom 

end. Flies were tapped down and observed during 45 seconds. The column was separated 

into three areas: top, middle and bottom by two lines; one was 10 cm from top and the 

other was 3 cm from bottom). After 45 seconds flies located in each of these three sections 

were recorded into scoring sheets. Each column was evaluated three times to minimize 

trial error and a minimum of three vials per genotype/condition was evaluated in order to 

be able to perform statistical analyses. The recorded scoring showed the mean number of 

flies in total (ntot), at top (ntop), and at bottom (nbottom), which allowed obtaining a 

performance index. The performance index (PI) was calculated as 1/2 (ntot + ntop — 

nbottom / ntot). The performance index was plotted against time per each genotype and 

condition. Results were analysed with two-way ANOVA and Tukey post-hoc using JMP 

7.0. 

2.6 Drugs and other chemicals 

2.6.1 Mifepristone (RU486) 

As explained earlier the GeneSwitch system uses mifepristone (RU486) as in inducer of 

gene expression where GeneSwitch drivers are being used (Osterwalder et al., 2001; 

Poirier et al., 2008). Our laboratory has characterised that the dose used in our experiments 

does not impair longevity, fecundity or metabolism. RU486 (Sigma, M8046) was 

dissolved in 100 % ethanol and supplemented to standard SY medium before dispensing 

into vials. Food supplemented with RU486 was stored at 4°C until use. 
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2.6.2 Paraquat 

Flies were kept in pre-determined conditions similar to those in lifespan assays for a fixed 

period of time after they were transferred in to food containing paraquat. For paraquat 

preparation 1M N,AP-dimethy1-4,4'-bipyridinium dichloride (paraquat, Sigma 856177) was 

dissolved in ddH2O after which was added to 0 SY medium (20mM final concentration; 

see Appendix 7). All stress assays were tested without yeast in the medium to avoid 

interaction between the yeast and the stressor. At least one experiment using yeast was 

carried out to ensure that the effect observed was not confounded by a yeast-deprivation 

response. The medium used in all figures shown throughout this work had all the other 

components of the standard medium including sucrose. Flies were typically assayed with 

15 per vial. Deaths were scored every 2 hours after the detection of the initial wave of 

death. Data was plotted as a survival curve and analysed with log rank test. 

2.6.3 Hydrogen Peroxide (11202) 

For 11202 preparation 30% 11202 from Sigma was added to 0 SY at a final concentration of 

5%. Flies were typically assayed with 15 per vial. Deaths were scored at least 3 times per 

day, plotted as a survival curve and analysed by long rank test. 

2.6.4 Chloroquine 

Chloroquine diphosphate salt (Sigma 6628) was prepared by directly adding the salt to 0 

SY medium to obtain a final concentration of 6%. 

2.6.5 Phenobarbital 

Phenobarbital (Sigma P1636) was prepared by directly adding the salt to 0 SY medium to 

obtain a final concentration of 6%. 

2.6.6 DDT 

Dichlorodiphenyltrichloroethane was prepared by diluting in 100% ethanol and adding 

to 1 SY medium to obtain a final concentration of 0.03%. 
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2.7 Biochemistry and molecular biology methods 

2.7.1 Triglyceride assay (TAG) 

To quantify triaclyglyceride levels a colorimetric assay kit by Thermo Scientific was used 

(Broughton et al., 2005; Slack et al., 2010; Bjedov et al., 2010); 6 replicas of 5 female flies 

were homogenised in 0.05% Tween 20 and incubated for 5 minutes at 70°C. Samples were 

then centrifuged for 5 minutes at 7000 rpm. The supernatant was transferred to fresh 

eppendorfs and centrifuged for 10 minutes at maximum speed. For each sample, 175u1 was 

transferred to a fresh eppendorf. 10u1 of each sample was dispensed into a well on a 96- 

well plate, with each sample in triplicate. To each well, 200u1 of Thermo Infmity 

Triglycerides solution was added and the plate was left to incubate at 37°C for 10mins, 

after which time I measured absorbance in each well at 574nm. The lipid standards were 

treated in the same way as the samples all throughout and were prepared as 7 serial 

dilutions in 0.05% Tween 20. These were 2, 1, 0.5, 0.25, 0.125, 0.0625 and 0 µg/µl 

triglyceride. 

Samples were normalised to protein levels using the Thermo Scientific 

bicinchoninic acid protein (BCA) assay (see section 2.7.7). 

2.7.2 DNA extraction and Single-Fly Polymerase Chain Reaction (PCR) 

To analyse single flies for specific mutations one fly was placed in a 1 5 mL eppendorf and 

squashed with a blue pestle after which 50 ilL of squish buffer (990 ilL of squish buffer 

(10 mM Tris-HC1 pH 8.0, 1 mM EDTA, 25 mM NaC1) + 10 ilL of proteinase K) were 

added. The liquid was transferred to a PCR tube and incubated for 1 hr at 37°C and then at 

95°C for 10 mM. The sample was spin after which it was either stored at 4°C or prepared 

for PCR. 

The PCR reaction consisted of (per fly) 1 ilL of extracted DNA, 2.5 ilL 10X PCR 

buffer (15 mM MgC12), 0.5 ilL dNTPs (10 mM), 0.5 ilL of each primer, 0.25 ilL TAQ 

polymerase and 19.75 ilL of ddH2O. All reagents were obtained from Qiagen, UK. The 

PCR cycles were run using a thermal cycler (Eppendorf UK limited), with the following 

protocol: 1 cycle of 94°C for 15 mM (initial melting step to denature the hot-start TAQ 

polymerase), 30 to 35 cycles of 95°C for 30 sec (for denaturing DNA), 50-60°C for 30 sec 

(to anneal the primers), and 72°C for 2 mM (elongation step) Finally, 1 cycle of 72°C for 
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7 to 10 min as a final elongation phase. Samples were then either stored at -20°C or ran on 

an agarose gel. Find PCR primers used for single fly PCR in Appendix 5. 

2.7.3 Gel electrophoresis 

1 to 2 gr of agarose (Sigma, UK) were dissolved in 98 or 99 mL of TAE (Tris base, acetic 

acid, EDTA) buffer and heated in a microwave, until close to boi, after which is was 

slowly cooled down by placing under running tap water. Once cooled 3 piL of ethidium 

bromide were added to the agar solution. The mixture was placed in a gel tray and a comb 

was added to create wells for the samples. The gel was allowed to set for 1 hr. A marker 

ladder and samples were added in conjunction with 6x loading dye (40% glycerol, 6x TBE 

buffer and 0.25% bromo blue) at a final volume of 20-25 'IL. Electrophoresis was 

performed between 70-100 V until samples had ran enough, and just before running out of 

the gel. The samples were then visualised under UV light using a UV transiluminator. 

2.7.4 Quantitative Real Time PCR (qRT-PCR) 

Total RNA was extracted from 15 flies using Trizol (GIBCO) according to the 

manufacturer's instructions. The concentration of total RNA purified for each sample was 

measured using an Eppendorf biophotometer. 1 tg of total RNA was then subjected to 

DNA digestion using DNAse I (Ambion), immediately followed by reverse transcription 

using the Superscript II system (Invitrogen) with oligo(dT) primers. Quantitative PCR was 

performed using the PRISM 7000 sequence-detection system (Applied Biosystems), 

SYBR Green (Molecular Probes), ROX Reference Dye (Invitrogen), and Hot Star Taq 

(Qiagen, Valencia, CA) by following manufacturer's instructions. Each sample was 

analysed in triplicate with both target gene and two reference genes (RP49 and Act5c) 

primers in parallel. Find qPCR primers used in Appendix 6. 

2.7.5 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-

PAGE) 

All SDS-PAGE for western blots was performed using the Criterion (Bio-Rad) protocol. 

12% resolving gel was prepared by placing 5.03 mL ddH2O in a 50 mL falcon tube to 

which 3.75 mL of 1.5 M Tris-HC1 (pH 8.8), 150 piL of 10% SDS, 4.5 mL of 40% 

acrylamide/bis (37.5:1) were added. This mixture was vortex. To this same mixture 7.5 'IL 
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of TEMED and 10% of APS (freshly prepared) were added. The mixture was quickly 

vortex before dispensing in the Criterion cassettes and propanol added to eliminate 

bubbles. After 45 to 60 min, the propanol was removed and the stacking gel was added. 

4% stacking gel was prepared as follow 9 5 mL of ddH2O in a 50 mL falcon tube and the 

following were added: 3.78 mL of 0.5 M Tris-HC1 (pH 6.8), 150 ilL 10% SDS and 1.485 

mL of 40% acrylamide/bis (37.5:1). The sample was vortex before 15 ilL TEMED and 75 

'IL of 10% APS were added and mixed again. The mix was added on top of the resolving 

gel up to the top of the cassette. A comb with the appropriate number of lanes was placed 

at the top of the cassette and allowed to set for at least 1 hr before immediately used or 

stored at 4°C for 12 hrs max before use. 

2.7.6 Western blotting 

For whole fly experiments 10 female flies were homogenised in 200pL 2x Laemmli 

loading sample buffer (100mM Tris-HC1 pH6.8, 20% glycerol, 4% SDS) containing 5% 0- 

mercaptoethanol. For head sample preparation, heads were split and were homogenised in 

the loading buffer at 21.11, per head. Samples were heated at 95°C for 5 minutes after which 

extracts were cleared by centrifugation. 10 'IL or approximately 4Optg of protein extract 

were loaded per lane on a polyacrylamide gel. After separation, proteins were transferred 

to a nitrocellulose membrane where they were incubated overnight with a selected primary 

antibody and thereafter an appropriate secondary antibody. 

2.7.7 Protein Quantification 

Samples were dispensed into a microplate well (all samples in triplicate). BSA albumin 

standards were used with the same diluent as the samples (for example 0.05% Tween 20 

for triglyceride assay). The following standard concentrations were prepared: 2000, 1500, 

1000, 750, 500, 250, 125, 25, 0 µg/mL To each well 200 ilL of the 'working reagent' 

supplied in the kit was added, and the plate was left to incubate at 37 °C for 30 minutes. 

The absorbance was then measured at 562 nm 
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Chapter 3 

Pharmacology of Lithium for Ageing: a DR mimetic? 

"I see no limit to how long human life can be extended if scientists learn 

how to turn on antiaging genes in the young or how to prepare cocktails 

of drugs that serve the same purpose as genetic engineering." 

Michael R. Rose 

3.1 Abstract 

The pharmacology of ageing is even more recent than the genetics of ageing. 

Though drugs capable of extending lifespan have been reported for over a decade, it was 

not until rapamycin was shown to extend the lifespan of mice that this new avenue of 

research into ageing really took off. It has become clear now that synthesising new drugs 

capable of mimicking the already proven genetic interventions will not be the only way to 

prolong healthspan for longer. Alternatively testing the potential anti-ageing properties of 

known and licensed drugs could accelerate the establishment of anti-ageing medicine. In 

this chapter I aimed to show that the drug lithium chloride, used as a medication in the 

treatment of bipolar disorder, has anti-ageing properties. I found that indeed lithium is a 

pro-longevity drug that extended lifespan independent of sex and genetic background. 

Unlike IIS mutants and rapamycin treatment, lithium supplementation did not affect 

fecundity at doses that extended lifespan. Lithium was able to extend lifespan at all food 

concentrations tested, making it unlikely to be a DR mimetic. I also explored the possibility 

of interactions with IIS and mTOR and showed that lithium did not seem to be acting 

through these pathways. Therefore lithium is a novel pro-longevity drug that can act 

independent of the traditional nutrient-sensing pathways offering an alternative to DR 

mimetics for promoting healthy ageing. 

3.2 Introduction 

At the present time one of the most important objectives of research into ageing is to 

identify drugs that can enhance healthy lifespan. As discussed in Chapter 1, genetic 

modifications have been extremely successful in extending the lifespan of evolutionarily 

distant organisms. However, for these interventions to have real applicability to humans, 
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they need to be mimicked by drugs. Therefore, a significant part of the biogerontology 

community is focusing on identifying drugs that can activate or inactivate pathways or 

processes recognised to increase healthy lifespan. Through the genetic manipulations 

described earlier, protein targets have been identified, therefore a natural approach would 

be the generation of compounds to inactivate or boost the proteins that have so far been 

shown to play an important role in the ageing process. This approach is likely to be 

successful given the strong genetic evidence. However, drug synthesis is a lengthy process 

that can take over a decade to have medically relevant use. Another approach is to test 

drugs already available and approved for human consumption for their use in extending 

healthspan, lifespan or both. Given that their use in humans is approved, their applicability 

and relevance becomes evident faster. 

3.2.1 The use of drugs in the ageing-field 

The hopes for identifying drugs with anti-ageing properties was boosted in 2009 when a 

report showed that the drug rapamycin was able to extend the lifespan of mice even when 

fed late in life (Harrison et al., 2009). Rapamycin is a drug approved for human 

consumption as an immunosuppressant and chemotherapeutic agent. 

Table 1 Landmarks papers in the Biology of Ageing by number of citations 

Year Reference Finding Citations) 

1935 (McCay et al., 1935) Dietary restriction extends lifespan in rats. 117 

1993 (Kenyon et al., 1993) Characterization of the C. elegans daf2/daf16 pathway to 

extend lifespan. 

1412 

1996 

2001 

(Brown-Borg et al., 

1996) 

(Clancy et al., 2001) 

Altered somatotrophic axis extends lifespan in mice. 

Loss of chico extends lifespan in Drosophila. 

539 

737 

2001 (Tatar et al., 2001) dInR hypomorph flies live longer. 799 

2003 (Holzenberger et al., 

2003) 

Heterozygous loss of IGF-1R extends lifespan in female mice. 1034 

2009 (Colman et al., 2009) DR retards the onset of age-related pathologies in monkeys. 741 

2009 (Harrison et al., 2009) Rapamycin fed late in life to mice extends lifespan. 959  
§ According to Scopus (only since 1996). Last visited 13th of September 2014. 

Rapamycin as a pro-longevity drug has become a landmark finding in the 

biogerontology community (Table 1). Rapamycin is not a perfect drug, its use associates 
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with the establishment of altered metabolism, wound healing, immunosuppression among 

others. As discussed in Chapter 1, the metabolic alterations secondary to rapamycin 

treatment in mice have been attributed to mTORC2 inhibition. Therefore, the current effort 

is focused in identifying more specific mTORC 1 inhibitors, or even inhibitors for specific 

downstream targets of mTORC1 like S6K. 

Our group has also shown that another drug approved for human use, and 

considered a DR mimetic, seems not to have an effect on lifespan. Metformin, a drug used 

in the treatment of type 2 diabetes, was unable to extend lifespan of male and female 

Drosophila (Slack et al., 2012). It is unclear why metformin is incapable of extending the 

lifespan of fruit flies, particularly when reports have shown that metformin can extend 

lifespan of C. elegans and mice (Cabreiro et al., 2013; Martin-Montalvo et al., 2013; 

Onken and Driscoll, 2010). However, Slack and colleagues only tested the effect of the 

drug in one genetic background and on one food concentration. Given that metformin is 

considered to be a DR mimetic, it is rather surprising that the effect of the drug was not 

evaluated on a full DR tent. If the medium used to test the drug was close to the peak of 

the DR tent (see Chapter 1) then no effect is to be expected of a DR mimetic at low 

concentrations (as observed), and the drug should become detrimental once the 

concentration is increased (as observed). Perhaps testing the drug in more than one genetic 

background and more than one food condition will be informative. 

3.2.2 Lithium as a therapeutic agent 

Lithium was first introduced to medical practice as a treatment for bipolar disorder (BPD). 

Over 60 years ago the Australian psychiatrist John Cade reported improvement of manic 

disorder when lithium salts were administered (Johnson, 1998; Soares and Gershon, 1998). 

Cade first observed that lithium supplementation to guinea pigs led to calming and 

lethargic effects. This discovery prompted Cade to evaluate the potential therapeutic 

properties in various psychiatric illnesses. Cade determined that the positive effects of 

lithium were specific for BPD and this drove him to propose that mania could be the result 

of lithium deficiency (Johnson, 1998; Lenox and Watson, 1994). Cade's hypothesis of 

lithium deficiency was proven false, however the therapeutic benefits of lithium in BPD 

are undeniable. In spite of this, the mechanisms by which this drug achieves its benefits are 

not yet fully understood (Lenox and Wang, 2003; Williams and Harwood, 2000). 
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Two proteins have taken centre stage as the effectors by which lithium may exert 

its therapeutic effects. Glycogen synthase kinase-3 (GSK-3) is one of them and is 

discussed in detail in Chapter 5 (Klein and Melton, 1996; Stambolic et al., 1996). The 

other enzyme inhibited by lithium is the inositol monophosphatase (IMPase) (Berridge et 

al., 1989; Harwood, 2005; Jope and Williams, 1994). IMPase inhibition leads to reduction 

of inositol levels, which are required for the maintenance of inositol lipids. The second 

messengers inositol 1,4,5-triphosphate and diacylglycerol require inositol for their 

synthesis and their reduction compromises signal transduction (Berridge et al., 1989; 

Harwood, 2005). I will discuss the effects of inositol in Chapter 5. 

3.2.3 Pharmacology of lithium 

BPD is a chronic and debilitating illness characterized by periods of depression and mania 

(Malhi and Tanious, 2011; Malhi et al., 2012). It has been considered to be the sixth 

leading cause of disability in the developed world (D'Souza et al., 2011). Lithium is the 

first choice and the gold standard medication for the treatment of BDP, but it also has 

therapeutic value in the treatment of alcoholism, schizoaffective disorders and cluster 

headaches (Malhi and Tanious, 2011; Timmer and Sands, 1999). 

Lithium is a univalent cation and must be administered with an anion. Several 

preparations exist, but the most widely used are lithium carbonate (capsule) and lithium 

citrate. Lithium chloride is not used in the clinic because of its high toxicity, but this is the 

preferred formulation in research given its solubility, which allows low dose 

administration (Timmer and Sands, 1999). 

Lithium is completely absorbed in the upper gastrointestinal (GI) tract, achieving 

peak serum levels within a couple of hours of oral ingestion. It does not bind to proteins 

and is distributed in total body water (Malhi and Tanious, 2011; Timmer and Sands, 1999). 

However, it preferentially accumulates in certain tissues like kidneys, thyroid gland and 

bone, over muscle and liver for example (Timmer and Sands, 1999). Peak levels in the 

brain are delayed by approximately 24 hours in comparison with plasma due to lower 

permeability of the blood-brain barrier, and the concentration in cerebrospinal fluid (CSF) 

is only 40% of serum due to transport out of CSF by the endothelium and arachnoid 

membranes. It is excreted almost entirely by the kidney without any hepatic metabolism, 

and its half-life will depend on several factors like age, treatment duration and renal 

function (Malhi and Tanious, 2011; Timmer and Sands, 1999). After a single dose the half- 
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life of lithium will be between 12 and 27 hours, but it can increase to over double (up to 58 

hours) in the elderly (Timmer and Sands, 1999). 

The therapeutic window for lithium lies between 0.4 mM/L and 1 mM/L as 

measured in serum (Figure 3.1A). Concentrations over 1 mM/L increase the risk of adverse 

side effects and above 1.5 mM/L side effects like slurred speech, tremor, muscle weakness, 

seizure and irreversible renal damage are imminent. Even when serum concentrations are 

kept within the therapeutic window side effects can still occur (Malhi and Tanious, 2011; 

Paton et al., 2010). 
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Figure 3.1 Concentration of lithium in humans and Drosophila. (A) Recommended lithium 
concentrations in serum as suggested by medical associations and guidelines: American Psychiatrist 
Association (APA), National Institute for Health and Clinical Excellence, UK (NICE), and Canadian 
Network for Mood and Anxiety Treatments. The numbers indicate the recommended plasma concentrations 
for patient treatment. 1) represents the concentration at which it should be started (0.5 mM/L) and slowly 
increased up to (1.2 mM/L, the maximal recommended concentration); 2) represents the maximal 
concentration required for prophylaxis; 3) is the plasma concentration often used by psychiatrist; 4) plasma 
concentration more effective for controlling mania symptoms; 5) concentration for stabilising patients; 
and 6) represents the recommended plasma concentration for patients previously using lithium who have 
relapsed. Taken from (Malhi and Tanious, 2011). (B) Detected concentrations of lithium in flies plotted 
against the concentration in the medium. Taken from (Dokucu et al., 2005). 
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In patients over the age of 60 the average and highest dose has been documented to 

be reduced by almost half of that prescribed for younger adults (from 1000 mg/d to 689 

mg/d and from 2400 mg/d to 1350 mg/d) (D' Souza et al., 2011). Older patients seem to be 

more susceptible to the toxic effect of the drug. 

Lithium has also been administered to Drosophila for the study of its role in many 

behavioral traits. Interestingly these studies have highlighted that the concentrations 

supplied in the fly medium (Figure 3.1B) yields concentrations at least ten times lower 

inside the fly (Dokucu et al., 2005). 
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Figure 3.2 Lithium increases lifespan of wp°11 female flies. 150 females per condition were fed either 

vehicle (ddH2O) or lithium chloride (LiC1) supplemented in the SY medium and their survivals were 

analysed. (A), flies fed 10 mM LiC1 showed a significant lifespan extension (p < 0.01, log-rank test). (B), 
flies fed 25 mM LiC1 did not show a significant difference in lifespan compared with flies fed vehicle (0 mM 

LiC1) (p > 0.05, log-rank test). Flies fed food supplemented with 50 mM LiC1 showed a significant lifespan 

reduction (p < 0.01, log-rank test). N = 150 female flies per dose condition. Lifespan experiments were 

performed by Dr Ivana Bjedov. 

3.2.4 Is lithium a potential drug for anti-ageing interventions? 

The first documented evidence that lithium could extend lifespan came from the Lithgow 

laboratory. McColl and colleagues showed that lithium extends lifespan of C. elegans at 

various doses before becoming toxic. Moreover, they showed that lithium was able to 

further extend lifespan of the long-lived daf-2 insulin receptor mutant and that this lifespan 

extension was independent of the transcription factors daf-16/FOXO, since lithium was 

able to extend lifespan of daf-16 mutant worms. This suggests that lithium does not act 

through the IIS pathway to extend lifespan (McColl et al., 2008). The lifespan-extending 

properties of lithium have been replicated independently in C. elegans, by two independent 

groups (Tam et al., 2014; Zarse et al., 2011). Furthermore, the Rose laboratory reported 

that low doses of lithium reduced the mortality rates of Drosophila (Matsagas et al., 2009). 

These findings seem promising, especially in light of the epidemiological observation that 
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drinking water supplemented with lithium is associated with reduced mortality in humans 

(Zarse et al., 2011). 

Unpublished work from our laboratory has shown that lithium can indeed extend 

lifespan in Drosophila (Figure 3.2). In light of this I sought to determine whether this 

lifespan extension was reproducible and independent of sex and genetic background. I also 

investigated how lithium induced lifespan extension fits within the nutrient-sensing 

pathways. In the present chapter I assessed the ability of LiC1 to extend lifespan 

independent of DR and the nutrient sensing network. In the following chapter (Chapter 4) I 

explored the mechanisms by which lithium could be operating to extend healthy lifespan 

by means of an —omics approach. Moreover, taking advantage of the fact that the fruit fly 

is very amenable to genetic manipulations I attempted to verify the validity of the 

candidate mechanisms through epistatic interactions. In Chapter 5 I study the role of 

glycogen synthase kinase-3 (GSK-3) in mediating the effects of lithium. I also provide 

evidence that supplementing lithium to a neurodegeneration fly model improves 

pathological features. 

3.3 Methodology and experimental design 

3.3.1 Drosophila strains 

Drosophila strains 
w1118

 and Wpah were used in the experiments described in this chapter as well 

as in the following chapters (see Chapter 2). The ubiquitous driver daughterless-

GeneSwitch driver (daGS) was used to drive the expression of the UAS-InRDN to down- 

regulate the IIS pathway. Flies lacking the transcription factor dfoxo were also used (Slack 

et al., 2011). 

3.3.2 Dietary restriction 

The specific preparation of the DR media has been described in Chapter 2. For this 

chapter I used the following yeast dilutions: 0.2, 0.5, 1.0 and 2.0. Lithium was 

supplemented as described in the following section. 
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3.3.3 Lithium preparation and delivery 

Lithium chloride (LiCl; Sigma L0505) was dissolved in ddH2O at a concentration of 5 

molar and then supplemented to 1SY medium (yeast medium, see chapter 2 section 2.2.1), 

unless otherwise stated. Food was then dispensed into plastic vials and stored at 4°C until 

used. Cold refrigerated vials were placed at 25°C for a minimum of 2 hours before flies 

were transferred into them. 

3.3.4 Rapamycin preparation and delivery 

Rapamycin (LC Laboratories #R-5000) was dissolved in 100% ethanol at a concentration 

of 50 mM and then added to the fly medium at the desired concentration. 

3.3.5 Immunoblot analyses 

Protein extraction and western blot techniques were described in Chapter 2. Primary 

antibodies used in this chapter were: pSer505-AKT (Cell Signaling Technologies #4054, 

1:1000), total-AKT (Cell Signaling Technologies #9272, 1:1000), pThr398-S6K (Cell 

Signaling Technologies #9209, 1:1000), custom made total-S6K (provided by Dr. Cathy 

Slack, 1:1000) and I3-actin (Abcam #ab4801, 1:5000). Appropriate HRP-conjugates 

secondary antibodies (Abcam) were used (1:12000). 
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3.4 Results 

3.4.1 Lithium modulated lifespan in a dose-dependent manner 
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Figure 3.3. Lithium affected lifespan 
in a dose-dependent manner. Doses 
from 1-25 mM significantly extended 
lifespan (P < 0.001, log-rank test). 
Doses ranging from 50 to 100 mM 
significantly reduced lifespan (P < 
0.001, log-rank test). N = 160 female 
flies per dose condition. 
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As earlier described, lithium can extend the lifespan of C. elegans (McColl et al., 2008; 

Zarse et al., 2011), and can reduce mortality of Drosophila (Matsagas et al., 2009). 

Therefore, I sought to explore the longevity effects of lithium in Drosophila. Dr Ivana 

Bjedov conducted the first set of experiments in the Wpah strain. As shown in Figure 3.2, 

once mated Wpah females fed food supplemented with lithium at 10 mM showed increased 

median and maximum lifespan. On the contrary, 25 mM lithium was unable to extend 

lifespan and 50 mM lithium proved to be toxic. I decided to further characterise the 

lifespan effects of lithium by increasing the concentration range from 1 to 100 mM (Figure 

3.3). I again used w
pah

 female flies and observed that concentrations ranging from 1 to 25 

mM could extend lifespan. However, the lifespan extension at 25 mM was trial-dependent, 

sometimes showing a positive effect, others without difference from controls or producing 

a slight lifespan shortening effect. Doses from 1 to 10 mM extended median lifespan by 

16% (-10 days) and maximal lifespan up to 18% (-14 days; P < 0.001, log rank test 

compared to the control group). In contrast, concentrations from 50 to 100 mM 

significantly reduced lifespan in a dose-dependent manner (Figure 3.3; P < 0.001, log rank 

test). 
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3.4.2 Lithium extended lifespan independent of sex, genetic background 

and fecundity 

The degree of lifespan-extension by a mutant (or any other intervention) can vary with the 

strain genetic background (Grandison et al., 2009b; Kaeberlein et al., 2004). To further 

confirm the pro-longevity effects of lithium and to test whether the effects are independent 

of genetic background, a second (Figure 3.4) and third (Figure 3.5) set of experiments were 

independently set up with varying concentrations of lithium using the inbred isogenic 

white1118 (wi 1 18s genetic enetic background. Female flies were supplemented with lithium 

concentrations ranging from 1-10 mM (Figure 3.4A; P < 0.05, log-rank test). 1 mM lithium 

extended median lifespan by 2 days, while 5 and 10 mM extended median lifespan by 4 

and 7 days respectively. 

Figure 3.4 Lithium and sodium chloride are tested for longevity in the w1118 genetic background. (A) and 
(B) show lifespan effects of LiC1 in female and male flies, respectively. (C) and (D) show lifespan 
properties of NaC1 supplemented at similar concentrations as LiC1 in female and male flies, respectively. N = 
150 flies per dose/gender condition. These survival experiments were performed in collaboration with Ms. Li 
Li. 

A number of interventions that extend lifespan are to some extent sex-specific 

(Maklakov and Lummaa, 2013). I therefore tested whether lithium could also extend 

lifespan of Will8 male flies, using the same doses of LiC1 previously described for Will8 
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females (Figure 3.4B). Male flies fed medium with 1 mM lithium showed a significant (P < 

0.05, log-rank test) median lifespan extension (5 days), with no maximal lifespan effect. 5 

and 10 mM similarly extended median lifespan by 18% (11 days), and maximum by 4 

days. 

Addition of LiC1 to the fly medium could increase its osmotic properties and hence 

affect lifespan (Ja et al., 2009; Lee et al., 2009; Piper et al., 2010). To control for this 

potentially cofounding effect, I performed experiments using equivalent molar 

concentrations of NaCl. None of the concentrations tested significantly affected lifespan of 

female (Figure 3.4C) or male (Figure 3.4D) flies. 
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Figure 3.5 Lifespan response to higher doses of LiC1 and NaC1 using w1118 female and male flies. (A) 
Female flies expose to 10, 25 and 50 mM lithium. (B) 
Similar concentration supplemented to male flies. (C) 

and (D) show the lifespan response to equimolar 
concentrations of NaC1 in female and male flies 
respectively. N = 150 flies per dose. 

A second set of experiments with 
w1118

 

flies used 10, 25 mM and 50 mM lithium. 10 and 

25 mM increased median and maximum lifespan (Figure 3.5A; P < 0.001 log-rank test). 10 

mM lithium resulted in a 13% (8 days) median lifespan extension and a maximum of 10% 

(7 days). When lithium was supplemented at 25 mM, female flies showed a similar median 
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and maximum lifespan extension as when fed 10 mM lithium. I tested similar 
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concentrations in male flies (Figure 3.5B). Supplementing the fly medium with 10 mM 

lithium extended median lifespan of male 
w1118

 flies by 18.5% (-10 days) and maximum 

lifespan by -4% (2.5 days) (P < 0.001, log rank test) while lithium treatment using 25 mM 

extended median lifespan by 23% (12 days) and maximum by 13.5% (-10 days) (P < 

0.001, log rank test) and 50 mM lithium did not significantly extend lifespan (P = 0.4849, 

log rank test). I also tested the effect of supplementing NaC1 at similar concentrations. At 

all doses tested, NaC1 did not replicate the lifespan extension effects of LiC1, in either male 

(Figure 3.5D) or females (Figure 3.5C) of the 
w1118

 background. Lithium could thus increase 

lifespan in two genetic backgrounds and in both sexes, suggesting that its effect is strain 

and sex independent. 

Figure 3.6 Effect of lithium of female fecundity. Egg 
laying was tested after 15 days of lithium supplementation. 
Data is presented as average eggs laid per female in 24 hrs. 
Error bar represent SEM. N = 150 females. ** P < 0.001 
(ANOVA post hoc Tukey-Kramer). 

0 10 25 100 [LiCI (mM)] 

Several genetic and pharmacological interventions that extend lifespan reduce 

fecundity (Partridge et al., 2005; Regan and Partridge, 2013). To determine whether 

extension of lifespan by lithium was associated with reduced fecundity, I measured egg- 

production. Lithium did not reduce egg laying at doses that extended lifespan. However, at 

the higher doses at which lithium reduced lifespan, it also reduced fecundity (Figure 3.6). 

My results, therefore, did not support the idea that lithium extended lifespan by reducing 

fecundity. 

3.4.3 Lithium ameliorated age-related locomotor decline 

Mutations in the IIS pathway that extend lifespan have been linked to improvement in 

several functions of health including cardiac function and locomotor ability in flies 

(Gargano et al., 2005; Wessells et al., 2004). I therefore sought to investigate whether 

lithium treatment could improve locomotor ability in female flies of the 
w1118

 genetic 

background (Figure 3.7A). Female flies were treated and assessed across time with either 

10 or 25 mM lithium. Female flies fed 10 mM lithium were partially protected against age- 
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related locomotor decline (P < 0.01; two-way ANOVA post hoc Tukey Kramer). 

However, flies treated with 25 mM lithium performed similarly to controls (P > 0.05; two- 

way ANOVA). I also determined whether lithium could improve age-related locomotor 

dysfunction in the -14,Dah background over a wider range of concentrations (1-75 mM; Figure 

3.7B). Surprisingly, lithium was able to partially protect against the decline at 75 mM (P < 

0.05; two-way ANOVA post hoc Tukey Kramer), but not at doses that extended lifespan 

(P > 0.05; two-way ANOVA for doses from 1-50 mM lithium) 

 
2  7  9  11  14  16  18  21  23  25  28  30  32  2 4 6 8  1 0  1 2  1 4  1 6  1 8  2 0  2 2  2 4  
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Figure 3.7 Lithium protected against age-related locomotor decline. (A) Negative geotaxis analyses of 
w"8 female flies fed either 10 or 25 mM lithium. Experiment performed in collaboration with Ms. Li Li (B) 
Negative geotaxis analyses of Wpah female flies fed lithium concentrations ranging from 1-75 mM. 
Experiment performed in collaboration with Mr. Michael Schannack. 

These results did not conclusively support a role for lithium in protecting 

neuromuscular function during ageing. Only 10 mM lithium showed partial protection in 

the 
w1118

 genetic background, but I was unable to observe a similar effect in the le
ah

 

background. Given these inconclusive results it is hard to determine whether lithium 

protects against age-related locomotor decline. Additionally, other tests to assess 

locomotor function (flight test, speed, overall daily activity or electrophysiology recording 

in the giant fibre system) should be performed to more conclusively determine the 

healthspan benefits of lithium on the function of the nervous and muscular systems 

(Augustin and Partridge, 2009). 
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3.4.4 Lithium reduced triglyceride levels and sensitised against 

starvation 

Figure 3.8 Metabolic effects of lithium in carbohydrate and lipid stores, and the response to starvation. 
Lithium did not modify (A) trehalose levels nor (B) glycogen levels, but dose-dependently reduced (C) 
triglyceride levels. For these experiments (A) and (B) 5 biological replicates of 2 flies were measured after 
15 days of lithium treatment. No statistical significance was found (P > 0.05; ANOVA post hoc Tukey-
Kramer). For experiment in (C), 5 flies per 5 biological replicates were measure after 15 days of lithium 
treatment. Data in (A-C) are presented as median ± SEM. (D) Starvation was measure by transferring flies 
pre-treated for lithium for 15 days. 

Genetic manipulations that extend lifespan by reducing signalling through the nutrient- 

sensing, insulin/IGF-1 signalling (IIS) and mechanistic target of rapamycin (mTOR) 

network, often associate with abnormalities in carbohydrate and lipid metabolism (Baker 

and Thummel, 2007; Tatar et al., 2014; Wang et al., 2014). Ubiquitous reduction (or 

knock-out) of specific components of the IIS pathway extends lifespan in mice, but can 

make them insulin-resistant at younger, but not older ages (Foukas et al., 2013; Selman et 

al., 2008a). Long-lived Drosophila with IIS down-regulation show increased levels of 

triglycerides and carbohydrate metabolites (Baker and Thummel, 2007; Broughton et al., 

2005). Similarly, rapamycin treatment, which inhibits mTOR and extends fly and mouse 

lifespan, increases triglyceride levels in flies and in mammals compromises glucose and 

lipid metabolism (Bjedov et al., 2010; Harrison et al., 2009; Houde et al., 2010; Lamming 

et al., 2012). To assess whether the lifespan-extending effect of lithium was associated 

with altered carbohydrate metabolism, I measured the levels of trehalose and glycogen, 
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two storage carbohydrates in Drosophila, after 15 days of lithium treatment and, over a 

wide range of lithium concentrations, I was unable to detect a significant change in the 

levels of either compound (Figure 3.8A and B). I also measured the levels of triglycerides, 

the main lipid storage in flies (Ballard et al., 2008; Kanlein, 2012) and, after 15 days of 

lithium treatment, observed a dose dependent reduction in Wpah female flies (Figure 3.8C). 

Lithium thus did not affect the storage of carbohydrates, but reduced triglycerides in a 

dose-dependent manner 

In Drosophila, triglyceride levels are associated with starvation resistance (Ballard 

et al., 2008). I aimed to analyse the response of lithium pre-treated flies to nutrient 

deprivation. To test starvation-resistance of lithium-treated flies, I pre-fed them with 

lithium for 15 days and then transferred them to vials containing only water/agar. Lithium 

dose-dependently reduced lifespan under starvation conditions (Figure 3.8D; P < 0.001, log 

rank test). 

Given these results I also analysed the triglyceride levels in 
w1118

 lithium treated 

flies and observed a dose-dependent reduction (Figure 3.9A) which matched with starvation 

sensitivity (Figure 3.9B). Thus the effects on triglycerides and starvation are conserved in 

two genetic backgrounds. 

A 

0 3 4 

Time (d) 

Figure 3.9 Effect of lithium on triglyceride levels and starvation in w1118 flies. (A) Triglyceride levels 

were analysed in flies pre-treated for 15 days. Data are presented as average of 5 biological replicates of 5 

flies per condition ± SEM. * P < 0.01 (ANOVA, post hoc Tukey-Kramer). (B) Survival curve of flies pre-

treated with lithium for 15 days and the subjected to starvation. 

3.4.5 Lithium extended lifespan beyond dietary restriction 

Dietary restriction (DR), a reduction in food intake short of malnourishment (Fontana et 

al., 2010; Levine et al., 2014; Solon-Biet et al., 2014), extends healthy lifespan in diverse 
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species. Lithium and DR could extend lifespan by overlapping or independent 

mechanisms. I therefore sought to determine whether lithium and DR extend lifespan by 

distinct or overlapping mechanisms. I assessed whether lithium could extend lifespan 

beyond the maximum achievable by DR. I varied the yeast concentration in the food in the 

presence of a constant concentration of sucrose as my DR protocol (Bass et al., 2007). 

When the yeast component of the food was reduced a typical tent-shaped response was 

observed, with peak lifespan at 1.0X yeast concentration (Figure 3.10 and Appendix 8 for 

full survival curves). If lithium acts through similar molecular mechanisms to DR, then 

lithium would not be able to further extend lifespan when it is maximised by DR, and DR 

would not be able to extend lifespan when it is maximised by lithium (Clancy et al., 2002). 

I used 4 yeast conditions (0.2X, 0.5X, 1.0X and 2.0X). The optimal concentration for 

lifespan was observed a 1.0X with a median lifespan of 70.5 days (Figure 3.10A) and 

maximal of 86.1 days (Figure 3.10B). Yeast dilutions of 0.5X and 0.2X were shorter lived 

in comparison, with median lifespans of 67.5 and 22 days respectively. On the contrary, 

doubling the yeast concentration (2.0X) also shortened lifespan, with a median of 62.1 

days. A similar effect was observed for maximum lifespan (Figure 3.10B). In addition I 

supplemented lithium to all of these food conditions. The concentrations used were (in 

mM): 1, 2.5, 5 and 10. Interestingly, lithium was able to significantly extend median and 

maximum lifespan under all yeast conditions tested (P < 0.001, log rank test; Figure 3.10A 

and B; Appendix 8), including very low yeast content (0.2x yeast). This was surprising 

given that flies pre-treated with lithium were sensitive to starvation (Figure 3.9D). The 

optimal median lifespan extension under malnourished conditions (0.2x yeast) was 

obtained with 2.5 mM lithium which increased it by —30% (Appendix 8A). Doses from 1-5 

mM of lithium were optimal for extending lifespan on 0.5x yeast (Appendix 8B), while all 

doses tested (1-10 mM LiC1) on the optimal yeast dilution extend lifespan (Appendix 8C). 

Interestingly the longest median lifespan (absolute value) achieved with lithium under full 

feeding conditions was the same as the longest median lifespan extension (absolute value) 

observed under maximised DR (Figure 3.10A and Appendix 8E). Under full feeding 

conditions median lifespan was extended by —18% (P < 0.001, log rank test). 

These results suggest that the optimal concentration of lithium to extend lifespan 

might depend on the nutritional status of flies, or its dietary intake, but lifespan extension 

could be achieved in all yeast dilutions given the appropriate dose. Surprisingly median 

lifespan was extended more under malnourished or fully fed conditions than in the 
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intermediary DR regimes, perhaps suggesting some overlapping mechanisms between 

lithium and DR. 

A 

 
Figure 3.10 Median and maximal lifespan effect of lithium tested on four different yeast 
concentrations. The effect of different lithium concentrations to extend lifespan was tested against 
increasing concentrations of yeast in the fly medium. (A) represents median lifespan of female flies, while 
(B) shows maximum lifespans. N = 160 flies per condition. * P < 0.01; ** P < 0.001 (log-rank test). For full 
survivals see Appendix 8. 

3.4.6 Lithium did not alter mTOR activity 

I therefore considered the possibility that lithium could be modulating the nutrient-sensing 

network. One mechanism by which lithium could be exerting lifespan benefits is through 

the inhibition of the nutrient-sensing mTOR pathway. Down-regulation of mTOR activity 

by genetic manipulation or pharmacologic inhibition is a robust intervention to extend 

lifespan across taxa (Bjedov and Partridge, 2011; Johnson et al., 2013). mTOR exists in 
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two complexes, mTORC1 and mTORC2, with different downstream effectors (Guertin 

and Sabatini, 2009; Wullschleger et al., 2006). The lifespan extending effects of rapamycin 

have been mainly attributed to down-regulation of mTORC1 (Bjedov et al., 2010; Harrison 

et al., 2009), though it has been shown that long-term rapamycin treatment also inhibits 

signalling through mTORC2 in certain cell types (Sarbassov et al., 2006). To determine 

whether lithium could influence activity through the mTOR pathway, I probed for 

phosphorylation levels of S6K, downstream of mTORC1, and phosphorylation of Akt, 

downstream of mTORC2. Both kinases are phosphorylated and activated when mTOR is 

active (Wullschleger et al., 2006). Lithium was unable to change the phosphorylation 

levels of S6K at any dose tested (Figure 3.11A). I also evaluated the ability of lithium to 

modulate Akt phosphorylation, without observing significant evidence of change (Figure 

3.11B). Therefore it is unlikely that lithium modulates lifespan through the mTOR 

pathway. 

 
 quimPlomp „mow Imp wimp 13-actin 

""—' MEP loorMis. WIMP f-actin  

 

Figure 3.11 Lithium modulation of mTOR activity. (A) Activity of mTORC1 was measured by analysing 
the phosphorylation levels of S6K against total S6K. (B) Activity of mTORC2 was analysed by substracting 
the phsosphorylation levels of pAkt (S505) to total AKT. Data are presented as median ± SEM. 

3.4.7 Lithium did not require the transcription factor dFOXO to extend 

lifespan 

Genetic manipulations that down-regulate signalling through the IIS pathway extend 

lifespan from C. elegans to mice. Moreover, human longevity has been associated with 
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genetic variants in the transcription factor FOXO (in humans specifically FOXO3A), 

required for lifespan extension by reduced IIS in worms and flies (Kenyon et al., 1993; 

Slack et al., 2011; Willcox et al., 2008). To determine whether dFOXO is required for 

lithium to extend lifespan, I treated dfoxo-null flies with two lithium doses previously 

shown to extend lifespan in wild-type flies (1 and 10 mM). dfoxo-null flies were 

significantly shorter lived than the controls (Figure 3.12; P < 0.001, log rank test). Lithium 

supplemented in the fly medium at 1 mM extended median lifespan of flies lacking 

dFOXO by 8% (4.7 days), but did not change their maximum lifespan. The survival curve 

was significantly different from the un-treated dfoxo-null flies (P < 0.02, log rank test). A 

similar situation was also observed with 10 mM lithium, the same median lifespan 

extension, without change in maximum lifespan. I also used a lower dose of lithium, 0.5 

mM LiC1, observing also an 8% median lifespan extension, but also a maximum lifespan 

extension of 8% (-5.5 days; P < 0.02, log rank test). These results suggest that dFOXO is 

not required for lithium to extend lifespan. 
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Figure 3.12 Lifespan effect on a dFOXO 

null background. The lifespan effect of 

lithium was assessed in flies lacking the 

transcription factor dFOXO. N = 150 flies 

per condition 
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3.4.8 Lithium further extended lifespan of an insulin mutant and has 

additive effects with rapamycin 

Given that dFOXO is not required for lithium to confer longevity benefits, I investigated 

whether lithium could extend the lifespan of already long-lived flies with IIS down- 

regulation. To test this hypothesis, I over-expressed a dominant negative version of the 

Drosophila insulin receptor (InRDN). This intervention was previously reported to extend 

lifespan when the InRDN (UAS- InRDN) was over-expressed throughout development or 

when expressed only during adulthood (Slack et al., 2011), by using a modified version of 

the Ga14/UAS system, the GeneSwitch System (Osterwalder et al., 2001). Over-expression 
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of the InRDN only during adulthood significantly extended lifespan (Figure 3.13A; P < 

0.001, log rank test). Median lifespan was increased by 18% (12 days) and maximum 

lifespan by —13.5% (10 days). When these flies were treated with lithium, median lifespan 

was further extended by 7% (5 days), but maximum lifespan only marginally changed by 1 

day. However, the survival curves were significantly different from the lithium-untreated 

flies over-expressing the InRDN (P < 0.05, log rank test). Overall, the combination of IIS 

down-regulation and lithium treatment extended median lifespan by 26.6% (18 days) and 

maximum lifespan by 15% (12.3 days). These results suggest that lithium and IIS down- 

regulation could be used in combination to achieve maximal benefits for longevity. 

A 
1.0 1.0 - 

-• Control — Induced 

73 0.6 5 

3̀ 0.4 

00 

0 20 40 60 80 100 20 40 60 80 100 

Time (d) Time (d) 

Figure 3.13 Lithium interaction with 

IIS and mTOR down-regulation for lifespan. (A) The effect of lithium treatment on a long-lived insulin 

mutant was done by over-expressing a dominant negative InR in the whole fly and then supplementing these 

flies with lithium. (B) The effect of combining lithium and rapamycin was carried out using control flies. 

Experiment in (B) was performed by Dr. Ivana Bjedov. 

I then decided to analyse whether combining lithium and rapamycin could have 

beneficial effects for lifespan. I used similar doses to the ones described an evaluated the 

survival profile of these flies. Both lithium and rapamycin were able to significantly 

extend lifespan (P < 0.001 for both treatments, log rank test). The lifespan effect were 

comparable, 10 mM lithium extended median lifespan by 9.5%, while 50 11M rapamycin 

extended lifespan by 13%. They both extended maximum lifespan by 5%. A statistical 

comparison of the survival curves did not show significance (P = 0.9892, log rank test). 

When they were supplemented in combination, flies lived significantly longer than either 

treatment supplemented as monotherapy. The overall median lifespan extension when both 

lithium and rapamycin were administered was —21%, with maximum lifespan extension of 

11% (Figure 3.13B). Overall, these results suggest that the combination of lithium plus 

rapamycin could be an advantageous poly-pharmacological approach for ageing. 

Taken together my results suggest that lithium extends lifespan independently of 
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the nutrient-sensing network, including the mTOR and the IIS pathways, and that lithium 

plus lower IIS or rapamycin could be additive for lifespan. 

3.4.9 Lithium blocked the effect of rapamycin to increase triglycerides 

Figure 3.14 Lithium and rapamycin interaction to modulate triglyceride levels and starvation 
response. (A) Flies pre-treated for 15 days were analysed for the effect of triglyceride levels. Each bar 
represents 5 biological replicates of 4 flies. Data are presented as average ± SEM. * P < 0.01 (ANOVA; post 

hoc Tukey-Kramer). (B) Survival curves depicting the response to starvation in flies pre-treated with lithium, 
rapamycin or the combination of both drugs. 

As previously mentioned, one of the undesirable side-effects of rapamycin treatment is 

altered metabolism resembling the metabolic syndrome (Chang et al., 2009; Fraenkel et 

al., 2008; Houde et al., 2010). In Drosophila, rapamycin causes elevation of triglycerides 

(Bjedov et al., 2010). I have shown here that lithium has the opposite effect of rapamycin 

since it dose-dependently lowers triglycerides (Figure 3.8C and Figure 3.9A). I therefore 

hypothesised that lithium might be able to block the dyslipidemia caused by rapamycin. I 

used a concentration of lithium that did not significantly change triglycerides (10 mM) and 

compared it to 50 mM rapamycin, previously shown to extend lifespan (Bjedov et al., 

2010). Lithium did not change the triglyceride levels, unlike rapamycin, which 

significantly increased it (P < 0.01 ANOVA, post hoc Tukey-Kramer; Figure 3.14A). When 

both treatments were administered simultaneously, lithium was able to block the increase 

in triglyceride levels by rapamycin (P < 0.05 ANOVA, post hoc Tukey-Kramer for 

comparison between rapamycin vs. rapamycin plus lithium), making the combination 

treatment similar to controls (P = 0.09 ANOVA, post hoc Tukey-Krammer for comparison 
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between control vs. rapamycin plus lithium). 

To confirm that the modulation in lipid levels was metabolically relevant, I 

challenged flies pre-treated for 15 days under a similar protocol to starvation. Rapamycin 

treatment makes flies resistant to starvation (Bjedov et al., 2010), while I showed here that 

lithium sensitises against starvation. Given that triglyceride levels correlate with the 

response to nutrient deprivation, I speculated that the effect of lithium plus rapamycin 

would cancel each other. I pre-treated the flies with lithium, rapamycin or a combination 

of both for 15 days after which I analysed their survival under starvation. Lithium 

significantly reduced lifespan under nutrient deprivation (P < 0.01, log rank test), while 

rapamycin conferred resistance (P < 0.001, log rank test; Figure 3.14B). When lithium and 

rapamycin were administered in concert the starvation response as a monotherapy for 

lithium or rapamycin was blocked, as the response was not statically different from 

controls (P = 0.069, log rank test). These results suggest that the addition of lithium to 

rapamycin treatment could be advantageous to block the dyslipidemia induced by 

rapamycin treatment in Drosophila. 

3.4.10 Lithium extended lifespan when supplemented late in life 

Finally, I decided to investigate the effect of supplementing lithium at different periods of 

the adult Drosophila life. I first assessed whether supplementation at older ages would still 

show the same dose-response effect with a similar therapeutic window. I kept flies in 

control fly medium (0 mM LiC1) and switched them to food containing a range of doses 

between 1 and 75 mM. I carried out the switch after 30 days post-eclosion and analysed 

their survival (Figure 3.15A). 1 mM lithium extended median lifespan by 5% (4 days) and 

maximum by 13% (8 days; P < 0.05, log rank test). 10 and 25 mM extended lifespan by 

9% (6 days), but while 10 mM extended maximum lifespan by 4.5% (3.5 days), 25 mM 

extended maximum lifespan by 8% or 6 days (P < 0.01, log rank test). 50 and 75 mM 

significantly reduced lifespan (P < 0.001, log rank test). 50 mM reduced median lifespan 

by 5% and maximum by 10.5%. Supplementation with 75 mM lithium after 30 days post-

eclosion reduced median lifespan by 36.5% and maximum by 25.5%. Thus, when lithium 

is started after 30 days post-eclosion lifespan extension can be achieved with doses from 1-

25 mM. 
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Figure 3.15 Late-onset lithium treatment (A) Lithium 
treatment at different doses was started 30 days post-eclosion. (B) Lithium treatment was initiated after 
45 days of separating into females. N = 150 per condition. 

I then decided to investigate whether the supplementation of lithium could be 

started even later, after 45 days post-eclosion. At this point all the group of flies had a few 

deaths. Flies were randomly allocated to the different concentrations of lithium. 

Interestingly none of the doses that extended lifespan after 30 days post-eclosion were able 

to significantly extend lifespan (Figure 3.15B). 1 and 10 mM did not change lifespan and 

statistical analyses of the survival curves revealed no significant difference (P > 0.05 log 

rank test). Food supplemented with 25 mM lithium and started after 45 days post-eclosion 

significantly shortened median lifespan by 4 days (P < 0.02, log rank test), while 

maximum remained similar to the control group. 50 and 75 mM lithium also significantly 

reduced lifespan (P < 0.001, log rank test). Interestingly, the detrimental response to high 

doses of lithium 50 and 75 mM was very quick as median lifespan was achieved after 2 

days in media supplemented with 75 mM lithium and 7 days when supplemented with 50 

mM. By comparing the shape of the curves of flies supplemented 50 or 75 mM lithium 

after 30 or 45 days post-eclosion it is evident that some degree of age-related toxicity 

exists. Thus, though lifespan extension can be achieved when lithium is supplemented late 

in life, this will require some time to promote longevity. Also it seems that lithium toxicity 

is exacerbated at older ages. 

3.4.11 Lithium extended lifespan when fed for a brief period 

I then wondered whether short treatment periods could have long lasting effects for 

lifespan. Therefore, I only supplemented lithium for a brief period of time after which the 
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flies were switched off from lithium to control medium. I first supplemented a range of 

lithium concentrations from day 2 post-eclosion for 5 days before switching to medium not 

supplemented with lithium (Figure 3.16A). Interestingly none of the concentrations 

significantly changed lifespan (P > 0.05 log rank test). This was particularly surprising for 

the higher concentrations, which are quite toxic when supplemented continuously (Figure 

3.3). 

Figure 3.16. Switch-off lithium experiments. Lithium was supplemented only for 5 days (A) or 15 days (B) 
after which all groups received fly medium not containing lithium. N = 150 per condition. 

I decided to explore the possibility that lithium required to be supplemented for 

longer periods to promote long lasting effects. I followed a similar protocol and fed flies 

different concentration of lithium for 15 days after which they were switched off the drug 

to control medium (Figure 3.16B). Both 1 and 10 mM lithium extended median lifespan by 

8% (5 days), while only extended maximum lifespan by 1 day (P < 0.05 log rank test). 

Once more none of the concentrations between 25 and 75 mM changed lifespan 

significantly (P > 0.05 log rank test). Thus, lifespan extension can be achieved when 

lithium is supplemented only during a brief period early in adulthood, yet the drug has to 

be supplemented for more than five days before switch off. 
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3.5 Discussion 

3.5.1 Lithium is a pro-longevity drug 

I showed here that lithium extended lifespan of male and female flies independent of 

genetic background. Lithium modulated lifespan in a dose-dependent manner It extended 

lifespan at low concentrations (1-25 mM) while it reduced lifespan at higher doses (50-100 

mM). McColl et al., showed that lithium was able to extend lifespan of C. elegans at doses 

ranging from 5-50 mM, the optimal concentration being 10 mM which extended lifespan 

on average 36% (McColl et al., 2008). An independent study by Tam et al., showed that 10 

mM lithium only mildly extended median lifespan of C. elegans without changing 

maximum lifespan, but they showed that lithium improved locomotor function (Tam et al., 

2014). Moreover, Zarse et al., only reported lifespan extension in C. elegans after 

administration of 10 11M lithium (Zarse et al., 2011). These dose differences are not 

entirely surprising as I observed a considerable variation between experiments using the 

same genetic background over three years of experimentation. Moreover, as I will discuss 

later, the optimal concentration for lifespan extension varied according to the yeast 

concentration in the fly medium. 

Several interventions are modulated by genetic background. For example, in yeast 

cells some genetic manipulations that mimic DR and extend lifespan are strain-dependent 

(Kaeberlein et al., 2004). In Drosophila triple knockout of dILPs 2,3 and 5 increased 

median lifespan by 29% in the Wpah background, but failed to regulate longevity in the 

w1118 background (Griinke et al., 2010). I was able to show that lithium extended lifespan 

in two genetic backgrounds, making the intervention likely to be strain-independent. 

Lithium treatment of female flies of the w
pah

 background resulted in median lifespan 

extension by as much as 18%, and 13% in 
w1118

 females. Furthermore, I was able to show 

that the lifespan effect is sex-independent as lithium also extended the median and 

maximum lifespan of male 
w1118

 flies. 

Interventions that promote longevity in C. elegans and Drosophila often do so at 

the cost of reproductive fitness. For example, DR in female flies leads to a significant 

reduction in egg-laying (Barnes et al., 2008; Bass et al., 2007; Metaxakis and Partridge, 

2013). Similarly, mutations in the IIS pathway or rapamycin treatment also reduce number 

of eggs laid (Bjedov et al., 2010; Clancy et al., 2001; Griinke et al., 2010; Slack et al., 

2010). The effect on reproductive fitness in long-lived organisms is explained by the 

disposable soma theory of ageing that assumes that given an increase in damage 



 Pharmacogenetics of ageing and neurodegeneration 

 114 

accumulation with age the organism has to decide to invest energy either in reproduction 

or somatic maintenance. When somatic maintenance is favoured, lifespan extension is 

ensured at the cost of low or no reproductive capacity (Kirkwood, 2005; Kirkwood and 

Austad, 2000). I was unable to observe an effect on female egg-laying at doses that 

extended lifespan. However, as lithium became toxic female fecundity was significantly 

reduced. This result is contrasting with the observation in C. elegans in which the optimal 

dose for lifespan extension was associated with an acceleration of the age-related loss of 

fecundity (McColl et al., 2008). It would be interesting to know whether lithium can 

regulate lifespan of C. elegans independent of the germ-line. Perhaps the processes by 

which lithium modulates ageing in C. elegans and Drosophila are considerably 

overlapping, yet differ in other traits like reproduction. This is not the only discrepancy 

detected between our results and those obtained in C. elegans. As previously mentioned 

Tam and colleagues observed that longevity in C. elegans is associated with improvements 

in locomotor ability (Tam et al., 2014). I tested the effect of lithium treatment on age- 

related locomotor decline in two genetic backgrounds and only observed that lithium 

retarded the locomotor dysfunction at doses that shortened lifespan in the -wpah 

background, but at a relevant dose for longevity in w1118
 flies. Our group has previously 

shown that low doses of lithium can improve locomotor function in an AP1_42 Drosophila 

model of Alzheimer's disease (Sofola-Adesakin et al., 2014; Sofola et al., 2010). It is 

unclear why doses that promote longevity in Drosophila would not protect against age- 

related locomotor decline, while doses that shorten lifespan would. I consider that this 

should be further explored as it might reveal divergent mechanisms to regulate longevity 

and neuromuscular function during ageing. 

In conclusion, lithium can extend lifespan in yeast, worms and flies suggesting that 

lithium is an evolutionary conserved pro-longevity drug. Moreover, lithium concentrations 

in drinking water have been associated with reduced mortality for all causes in a Japanese 

population raising the possibility that lithium could modulate ageing in mammals. 

3.5.2 Lithium extends lifespan when administered late in life or briefly 

in early adulthood 

As anti-ageing therapies become widely used there will be a debate as to when should they 

be initiated to promote longevity. Though long-term use (even if started early in 

adulthood) of a drug that slows down ageing does not seem too much to ask when the 
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broad-spectrum benefits are considered, it will certainly require changes in behaviour. In 

practice, a drug with potential anti-ageing properties should be able to extend lifespan 

when administered late in life. This is in part for practical considerations. If this drug was 

impacting in reproductive fitness, treatment initiation should only be considered in the 

post-reproductive stage, particularly in females. Additionally, long-term exposure to drugs 

can lead to unforeseen side effects. Rapamycin, for example, has been shown to extend 

lifespan when administered late in life making it, from this point of view, an ideal anti- 

ageing medication (Harrison et al., 2009). In C. elegans metformin was shown to modestly 

increase mean lifespan when administered from middle age, though the optimal dose was 

lower than when administered earlier on (Cabreiro et al., 2013). 

To analyse whether lithium would be able to increase lifespan when administered 

late in life I considered two ages for treatment initiation. First I analysed the pro-longevity 

effects of lithium after 32 days post eclosion (48 hours of mating after eclosion were not 

considered in the lifespan curves). Interestingly, all doses (1, 10 and 25 mM) that extended 

lifespan when treatment was initiated early on in adulthood were still able to increase 

median lifespan if started 30 days later (Figure 3.15A). This differs from the effect of 

metformin previously mentioned (Cabreiro et al., 2013). However, when lithium treatment 

started after 45 days (when the first few flies had started dying) it was unable to increase 

lifespan, and indeed showed accelerated lithium toxicity at older ages (Figure 3.15B). 

While flies under 75 mM lithium initiated at 30 days took approximately 7 days to reach 

median lifespan, this same concentration started after 45 days achieved median lifespan in 

just 2 days. 

Alternatively I also analysed the effect of "switching off' lithium treatment, i.e., 

stopping the treatment after a brief period of supplementation. For these experiments I 

analysed the effect of feeding lithium to flies for two periods, either 5 or 15 days after they 

were switched off. After 5 days of supplementation of doses ranging from 1-75 mM no 

effect on lifespan was observed. Though the lack of effect for lower doses was not 

completely unexpected I found very surprising that the higher concentrations did not 

reduce lifespan. On the other hand, when lithium was supplemented for 15 days median 

lifespan was significantly extended at doses of 1 and 10 mM (thought the effect on 

maximum lifespan was minimal) and again no lifespan effect was observed at doses from 

25-75 mM (Figure 3.16B). To the best of my knowledge these types of experiments have 

never been reported before and can provide novel insights into the pharmacology and 

therapeutics of lithium treatment. 
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These experiments reveal several important features of lithium. First, lithium is 

able to extend Drosophila lifespan when administered late in life as rapamycin in mice and 

metformin in C. elegans and mice (Cabreiro et al., 2013; Harrison et al., 2009; Martin-

Montalvo et al., 2013). Second, there is a threshold period or therapeutic time frame during 

the ageing process at which lithium is able to successfully exert its longevity effects. After 

this point low doses of lithium will be unable to change the course of ageing and lifespan 

(also meaning they will not be toxic), but as the concentration increases lifespan will be 

shortened even quicker than at younger ages. Lithium toxicity during human ageing has 

been well documented (Malhi et al., 2012; Timmer and Sands, 1999). Even though 

targeted therapeutic concentrations are considered to be narrow (0.5-0.8 mM/L), at older 

ages the recommended concentrations are suggested to be at the lower end (0.5-0.6 mM/L) 

of the therapeutic window (Wijeratne and Draper, 2011). Similar serum concentrations are 

achieved in patients over 60 years old with lower drug doses than in younger patients. 

Furthermore, lithium is less prescribed for the treatment of BPD in older patients 

potentially due to increased risk of toxicity (Paton et al., 2010). Several physiological 

changes in kidney function, total water and extracellular volume, comorbidities, and drug- 

drug interactions due to polypharmacy in the elderly are considered to contribute to the 

increased age-related toxicity (D'Souza et al., 2011). 

My results showed that lithium might be unable to extend lifespan of flies when 

administered very late in life (45 days). At least two points should be considered here, first 

at this age flies barely eat (Wong et al., 2009), hence circulating concentrations of the drug 

inside the fly obtained (when supplemented at the lower end of the range of concentrations 

tested) might be suboptimal. Secondly, as with humans, it might be tricky to find the 

optimal range to extend lifespan in flies as going beyond the narrow range might increase 

toxicity. To test this, it will be necessary to develop a standardized protocol, allowing 

measuring the concentration of the drug inside the flies and to be able to monitor it in vivo 

across their lifespan. Additionally, the drug might require some time to induce or repress 

the molecular targets required for lifespan extension. Thus, if the treatment is initiated too 

late, the organism might be unable to mount a strong enough molecular response that 

would allow longer survivals. In humans and mammalian models lithium has been 

proposed to act by two possibly unrelated mechanisms for the treatment of mania and 

depression. For example, it has been documented that anti-manic properties can take up to 

6-10 days to develop, while its anti-depressive effects take up 6-8 weeks to come into 

effect (Malhi and Tanious, 2011). It is possible that the mechanisms for anti-manic and 
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anti-depressive effects are different, and the one(s) regulating longevity in flies might be 

more similar to the anti-depressive ones in humans, hence they might require more time to 

be elicited. 

Third, the "switch off' experiments reveal that lithium has "molecular memory" as 

the pro-longevity effect is kept even after the drug is removed for a long period of time. 

Fourth, the toxic effects of lithium on lifespan require continuous treatment or long-term 

exposure (longer than 15 days) when initiated early on in adulthood. The latter was made 

evident by the fact that neither 5 nor 15 days of lithium treatment started after 2 days post-

eclosion were sufficient to shorten lifespan at the highest dose tested (75 mM) which 

would dramatically shorten median lifespan to approximately 30 days when administered 

continuously. The fact that long-term treatment was not necessary to achieve lifespan 

extension in flies suggests that short-term treatments could be as effective as long-term 

treatments. In humans, long-term treatment with lithium is associated with progressive and 

permanent renal damage, which is the most dreaded toxic side-effect of lithium (Malhi and 

Tanious, 2011). Dosing for the treatment of BPD is often broken down in several doses per 

day. However, single doses and alternate day regimes have also been considered to be 

efficient in maintaining brain concentration levels within the therapeutic window (Malhi 

and Tanious, 2011; Wijeratne and Draper, 2011). When testing lithium as a pro-longevity 

drug in mammals alternate day dosing or just brief periods of time should be considered to 

reduce undesirable side effects and maximise the potential health benefits. 

Taken together my results suggest that several dose regimes can be used to extend 

lifespan in Drosophila. As these treatment protocols have never been tested before in any 

other organism they should be used as a starting point for the analyses of lithium in ageing, 

particularly in mammals. My results suggest that either late-life treatment initiation or brief 

treatment protocols are sufficient to promote longevity. 

3.5.3 Lithium regulates metabolism and the response to starvation 

Metabolic pathways are at the heart of the ageing process (Barzilai et al., 2012). Changes 

in major pathways and metabolites can contribute to the healthy ageing phenotype or even 

accelerate ageing through metabolic dysfunction and disease (Bartke and Westbrook, 

2012; Houtkooper et al., 2010; Perrone et al., 2012; Soltow et al., 2010; Tomds-Loba et al., 

2013). I explored potential metabolic shifts associated with lithium in carbohydrate and 

lipid metabolism without detecting changes in trehalose and glycogen levels. However, 
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lithium dose-dependently reduced triglyceride levels. Alterations in metabolism often 

associate with lifespan extension in Drosophila. Unsurprisingly, reduced IIS leads to overt 

gluco-metabolic alterations. Long-lived flies show increased levels of trehalose and 

glycogen, and elevated circulating glucose (Alic et al., 2011a; Broughton et al., 2005; 

Griinke et al., 2010; Slack et al., 2010). Furthermore long-lived flies with reduced IIS or 

rapamycin treatment, or flies subjected to DR show increased levels of triglycerides 

(Bjedov et al., 2010; Burger et al., 2007; Emran et al., 2014; Slack et al., 2010). Though 

the relevance of these alterations for longevity is not clear, they have become longevity- 

associated traits in flies given their constant reports in ageing studies in Drosophila. This is 

not the case for mammals in which DR, IIS mutants, S6K1 deletion or metformin 

treatment are associated with improved metabolic profiles during ageing, i.e., increased 

insulin sensitivity, lower lipids and glucose levels (Bliiher et al., 2003; Colman et al., 

2009; Selman et al., 2008a, 2009). In a way lithium seems to regulate Drosophila 

metabolism in a different way to the classic anti-ageing interventions in the nutrient 

sensing network. An exception to this statement would be metformin treatment, which also 

reduces triglyceride levels in flies, but without a longevity phenotype (Slack et al., 2012). 

In mammals lithium produces nephrogenic diabetes insipidus, several electrolyte 

alterations and weight gain, though these phenotypes are probably secondary to the effect 

of lithium on kidneys, parathyroid gland and bone, and thyroid gland, respectively 

(Jefferson, 2010; Timmer and Sands, 1999). In a study where lithium was supplemented to 

rats, increasing concentrations of lithium associated in a dose-dependent manner with 

reductions in total lipids, cholesterol, triglycerides and nonesterified fatty acids 

(Fleischman et al., 1974). I did not measure the effects on such specific lipid metabolites, 

but the effect on triglycerides seems to be conserved in evolution from flies to rats. 

I observed that concomitant with altered lipid metabolism, lithium treatment led to 

a dose-dependent sensitivity to starvation. Most insulin mutant flies are resistant to 

starvation. However, they also have high triglyceride levels (Broughton et al., 2005; Slack 

et al., 2010; Griinke et al., 2010; Alic et al., 2011). Rapamycin treatment in flies also leads 

to starvation resistance, but is associated with increased triglyceride levels as well (Bjedov 

et al., 2010; Emran et al., 2014). Triglycerides are the main fat storage of flies and have 

been shown to predict the response to starvation (Ballard et al., 2008). Though starvation 

resistance has been viewed as a desired phenotype in long-lived organisms, I will show in 

Chapter 7 that short-lived Drosophila with increased triglyceride levels are resistant to 

starvation, suggesting that these traits can be uncoupled. Taken together, these 
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observations suggest that starvation resistance and longevity are independent and that 

resistance to nutrient depletion in flies is indeed the result of accumulated energy stores 

which help to cope when no food in supplied. 

In conclusion lithium spares carbohydrate energy stores in Drosophila but dose- 

dependently reduces triglycerides levels making flies sensitive to starvation. 

3.5.4 Lithium is unlikely to be a DR mimetic 

I carried out a set of experiments to determine whether lithium promoted longevity through 

DR or the nutrient sensing network. In Drosophila, the ingredient in the medium with the 

biggest effect on lifespan is the yeast (Bass et al., 2007; Mair et al., 2005; Piper et al., 

2010). Varying the concentration of yeast leads to a typical DR tent where the optimal 

concentration for lifespan extension is somewhere in the middle of the yeast dilution. 

Further dilution leads to lifespan shortening due to malnourishment, while increases in the 

yeast concentration also shorten lifespan, probably due to the deleterious effect of over 

feeding (Bass et al., 2007; Piper and Partridge, 2007). 

I supplemented a range of lithium concentrations (1, 2.5, 5 and 10 mM) in the fly 

medium containing different concentrations of yeast (0.2, 0.5, 1 and 2X yeast; X = 100 

g/L) and assessed survival under these conditions. Lifespan peaked at 1X when lithium 

was not present in the medium. The lifespan obtained with this concentration of yeast was 

therefore the optimal one for lifespan under DR. Lithium supplemented in all yeast 

conditions was able to extend median lifespan. In 0.2X the best concentration to extend 

lifespan was 2.5 mM, while the best in 2X was 10 mM lithium. Interestingly at 0.5X 10 

mM lithium significantly reduced lifespan. Several conclusions can be drawn from these 

experiments. First, lithium could extend lifespan in all yeast concentrations tested. Given 

that it further extended lifespan under conditions maximised for diet it is unlikely that 

lithium acts as a DR mimetic. A DR mimetic would have led to a right-shifted tent, where 

lithium would have not changed (or reduced) lifespan at the optimal yeast concentration 

for lifespan, and reduced lifespan at all concentrations below that. The lifespan extension 

would have only been observable under full feeding or over nourished conditions (Clancy 

et al., 2002; Mair and Dillin, 2008). Second, I was able to document that the optimal 

concentration of lithium to extend lifespan changed under different yeast dilutions. This 

suggests some interaction between DR and lithium, i.e., they share some overlapping 

mechanisms. I therefore decided to test whether lithium affected the IIS and mTOR 
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nutrient sensing network. I did not detect changes in mTOR activity as evaluated by 

immunoblot analyses. Lithium was able to extend lifespan of flies lacking dFOXO and 

further extend lifespan of long-lived flies with IIS down-regulation. Taken together these 

results did not support a role for the nutrient sensing network in the lifespan extension 

provided by lithium. 

McColl and colleagues also investigated the interaction of lithium with DR and the 

IIS pathway. Using the eat2 mutant, a genetic model of DR in C. elegans, they were able 

to show a further lifespan extension when lithium was supplemented. They also observed 

lifespan extension in a daf16 mutant and further lifespan extension in a long-lived daf2 

mutant (McColl et al., 2008). My results in Drosophila are in accordance to the published 

data in C. elegans suggesting that lithium can indeed extend lifespan beyond DR and the 

IIS pathway. Unfortunately, the analyses of McColl and colleagues (also Zarse et al., and 

Tam et al.,) did not include epistasis with mTOR mutants or rapamycin treatment limiting 

a comparative analyses of the involvement of the mTOR pathway in lithium's longevity 

phenotype between C. elegans and Drosophila. 

3.5.5 Lithium and Rapamycin: a polypill? 

As previously mentioned lithium can interact with many drugs increasing its toxicity. 

Drugs that alter renal function can either increase or decrease lithium concentrations. For 

example, while thiazides (a group of diuretics used in hypertension and other 

cardiovascular diseases that increase diuresis through inhibiting the reabsorption of sodium 

and chloride ion in the distal convoluted tubules in the kidney) increase it, loop diuretics 

(which act on the Na+-K+2C1- symporter in the loop of Henle decreasing the hypertonic 

renal medulla hence reducing the reabsorption capacity and promoting diuresis) decrease 

it. Angiotensin converting enzyme inhibitors used for the treatment of hypertension and 

heart failure and the non-steroidal anti-inflammatory ibuprofen increase lithium 

concentrations (Timmer and Sands, 1999). As the older population is likely to be taking 

multiple medications (polypharmacy) it will be of great interest to analyze the interaction 

of the pro-longevity effect of lithium in the context of other drugs. 

Additionally, it has been proposed that given that ageing affects multiple pathways, 

affecting these pathways simultaneously could be advantageous for healthy ageing (Le 

Couteur et al., 2012; Ingram et al., 2006). I decided to explore the possibility of combining 

lithium and rapamycin for three reasons. First, lithium and rapamycin seem to act on 
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different pathways in Drosophila. Second, while lithium reduces triglyceride levels, 

rapamycin increases it. Third, a combination of lithium and rapamycin has been shown to 

be more beneficial than either treatment on its own for ameliorating neurodegeneration 

(Sarkar et al., 2008). I explored the possibility that lithium could block the increase in 

triglycerides promoted by rapamycin treatment. For this I used a concentration of lithium 

that was unable to significantly reduce triglycerides, but that extended lifespan. I chose to 

use 10 mM lithium. When lithium and rapamycin were simultaneously fed to flies lithium 

was able to block the hypertriglyceridemia produced by rapamycin, in spite of having no 

detectable effect when supplemented as monotherapy. I documented that rapamycin and 

lithium cancelled each other's response to starvation, which validated the finding in lipid 

levels. 

Amongst the undesirable side effects of rapamycin treatment the metabolic 

alterations have generated particular interest (Lamming et al., 2012, 2013). A drug that 

promotes healthy ageing should not increase the prevalence of insulin resistance and 

diabetes. I have shown here that simultaneous administration of lithium and rapamycin can 

limit this undesirable effect of rapamycin on metabolism in flies. 

Blocking the effect of rapamycin on lipids might not be enough therapeutic reason 

for combination treatment in ageing. Although the combination provided some metabolic 

benefits, this did not neccesarily translates in improved lifespan. The combination of both 

drugs could have led to cancelling each other effect on longevity or even becoming toxic 

hence shortening lifespan. I therefore analyzed the effect of combining the drugs on 

survival. Flies that received rapamycin and lithium in combination outlived those that only 

received either treatment as monotherapy. This result shows that the combination of both 

drugs can be advantageous for lifespan extension. 

Combining drugs in a polypill has been proposed as a future direction in 

biogerontology (Le Couteur et al., 2012; Gems, 2014). The concept of the polypill was 

proposed by Wald and Law for the prevention of ischaemic heart disease (IHD) and stroke. 

Wald and Law proposed that the combination of a cholesterol lowering drug (statin), three 

drugs for the treatment of blood pressure (each at half-standard dose), folic acid and 

aspirin, which they called the polypill, would reduce IHD events by 88% and stroke by 

80%. People taking this formulation would benefit from an average of 11 years free of 

these conditions (Wald and Law, 2003). Several clinical trials are on their way to 

document the benefits of long-term treatment with fixed-dose combination (FDC) 

strategies (Sanz and Fuster, 2013). In light of the findings of these trials and my findings 
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with lithium and rapamycin combination, I propose that a polypill approach could be 

advantageous in ageing for the following reasons: 

1. Polypharmacy has become synonymous of drug treatments in the elderly. Increased 

prevalence of multiple pathologies (comorbidity) will more than often require the 

use of multiple medications to control symptomatology (Capobianco and Lio', 

2013; Sitar, 2012). 

2. As the number of drugs required for disease treatment rise, the complexity of the 

therapeutic intervention follows. Undesired drug-drug interactions might occur. 

This is not considering that the elderly population has been documented to have the 

highest rate of self-medication, which could complicate the polypharmacy 

approach when not reported to the team of physicians (Sitar, 2012). 

3. Adherence to a large number of drugs decreases over time. This has been one of 

the major advantages of FDC strategies over multiple single medications found in 

clinical trials. 

4. The appropriate combination of drugs can be therapeutic but also preventative. In 

the case of FDC strategies, the drugs being combined can be of great benefit in 

patients over the age of 55 years if provided at very low concentrations. Reducing 

the risk of coronary events and strokes could prove to be a major public health 

intervention. 

5. Combining drugs that act on independent pathways to promote health can be 

beneficial, especially if they are able to block feedback loops and adaption 

mechanisms that lead to undesirable side effects. 

It is too early to predict whether lithium and rapamycin could ever become a viable 

polypill treatment for ageing. I consider that perhaps adding aspirin and metformin could 

provide further enhancements. The road to the polypill in ageing is still long and narrow, 

but my findings are interesting enough to start speculating about it. 
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Chapter 4 

Genome-wide -OMICS of lithium for ageing: identifying 

a molecular mechanism 

"Nothing in life is to be feared, it is only to be understood. 

Now is the time to understand more, so that we may fear less." 

Marie Curie 

4.1 Abstract 

In spite of its widespread use for the treatment of BPD, lithium's mechanisms of 

action in this disease are unknown. Several proteins and signalling pathways have been 

proposed, but evidence is conflicting. In this chapter I aimed to characterise the 

transcriptional response of Drosophila (heads and thoraces) to lithium chloride. 

Transcriptional microarrays and also polysome profile arrays were conducted to detect 

changes in the transcriptome and translatome. We found transcriptomic data to support 

that lithium and HS down-regulation act by non-overlapping mechanisms as their 

transcriptional signatures were not shared. This is in accordance with the data presented 

in the previous chapter showing that lithium does not require the transcription factor 

dFOXO and can extend the lifespan of already long-lived insulin receptor mutant flies. 

However, the transcriptional response of lithium treated flies significantly overlapped with 

that of flies over-expressing the transcription factor cap 'n' collar C (CncC) and of flies 

treated with the xenobiotic phenobarbital. Indeed, the genes up-regulated by lithium 

mapped to the three phases of detoxification. I confirmed that lithium indeed protects 

against toxins as it protected against several chemical stressors. Moreover, I also found 

that lithium down-regulated components of mitochondrial complex 1 both at the 

transcriptional and translational level. These correlated with reduced respiratory control 

ratio by mitochondrial respiratory complex I from isolated mitochondria of lithium treated 

flies. My genome-wide OMICS approach has uncovered two potential mechanisms by 

which lithium could be conferring its beneficial effects. 
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4.2 Introduction: pharmacogenetics and pharmacogenomics 

Over the last 15 years and with the advent of technology capable of surveying the entire 

genome, ageing research has adopted tools in aid of understanding the molecular processes 

behind interventions that promote longevity. In the beginning most of these observations 

were purely correlative. With the development of appropriate bioinformatics tools, 

processes, networks and interaction maps have been described. In invertebrates, in 

particular, these observations have been taken a step forward by directly manipulating the 

genes found by these genome-wide approaches. For example, when mRNA expression 

changes of one or more genes were found to be up-regulated, RNAi technology was used 

to determine whether that increased expression was correlative, necessary or indispensable 

for the longevity phenotype. Such methods had been taken before genome-wide 

assessment was possible, but with candidate genes rather than with an unbiased approach. 

The latter when associated with a drug has been called pharmacogenetics. On the other 

hand, pharmacogenomics refers to the use of genetic epistasis experiments coupled with 

genome-wide technology in response to drugs (Alavez and Lithgow, 2011, 2012). 

4.2.1 The molecular targets of lithium: the use of microarrays 

Lithium's track record in the clinic is quite peculiar. It is the most prescribed drug for the 

treatment of BPD, yet we do not understand how it acts to control the disease. It is true that 

we do not know the molecular targets for all drugs used in Medicine. However, given the 

simple molecular architecture of lithium it is quite surprising that a therapeutic target has 

not been identified. In part we are still unsure what to look for in mood disorders. The 

aethiopathogenesis of BDP is still unclear. Therefore, identifying a specific protein or 

enzyme, or even a pathway has been challenging. 

To understand both the molecular processes driving BPD and the effect of lithium 

several lines of study have been taken and should be regarded as complementary. 

1. Not every patient or group of patients respond to lithium treatment. There is 

evidence that good/poor response to lithium has a genetic component as it runs in 

families. Therefore, understanding the genetic makeup of BPD patients has 

therapeutic value. This allows tailoring of treatment, but aids at characterising 

genetic subsets of the disease (Serretti and Drago, 2010; Severino et al., 2013). 

2. Understanding gene expression changes in brain or periphery of patients with BPD 

and the response of these same genes to lithium could narrow the molecular targets. 
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For example, Sun et al., characterised the transcriptional response of post-mortem 

prefrontal cortex of patients with BPD. They identified changes in mitochondria' 

respiratory chain complexes, phosphatidylinositol signalling, and glycolysis and 

gluconeogenesis. Among the changes in the respiratory complexes they found that 

when patients where stratified by use or not of lithium, those not using lithium (but 

other mood stabilisers) showed down-regulation of subunits of complexes I and IV 

particularly, while patients treated with lithium showed up-regulated levels of these 

same genes (Sun et al., 2006). 

3. Genome-wide responses to lithium in cellular and animal models. Seelan and 

colleagues treated human neuronal cells with lithium for 33 days before analysing 

the transcriptional response. They found that TRB3 which encodes for tribbles 

homolog 3, a pro-apoptotic protein was the most down-regulated transcript, while 

PRDX2, encoding peroxiredoxin 2, an antioxidant enzyme, was the most up- 

regulated mRNA. Given that several genes showed differential expression they 

built a protein interactome that revealed that the MAPK pathway was the most 

regulated by lithium (Seelan et al., 2008). Chetcuti treated male mice with lithium 

for 7 days and analysed the transcriptional response in whole brain. They only 

found a small subset of genes differentially expressed over four-fold. Of these 

genes they were only able to corroborate (by qPCR) the changes in a handful of 

genes including (but not limited to) transcription elongation factor B (GO: 

regulation of transcription), metallothioenin 3 (GO: metal ion homeostasis), and 

proteasome subunit, 13 type 5 (GO: ubiquitin dependent protein) (Chetcuti et al., 

2008). 

4. Genome-wide responses to lithium in healthy subjects. Watanabe and colleagues 

treated healthy subjects with therapeutic doses of lithium for 2 weeks and assessed 

transcriptomic changes in leukocytes after 1 and 2 weeks of lithium treatment and 

also 2 weeks after treatment had stopped. The top five GO categories for up- 

regulated genes were: response to stimulus, cellular response to stimulus, response 

to stress, immune system process, and cell surface receptor signalling pathway. 

The top five GO categories for down-regulated genes were response to bacterium, 

modification of morphology or physiology of other organisms involved in 

symbiotic interactions, cell killing, response to fungus, and killing of cell of other 

organisms. This study has provided evidence for stress response and the regulation 



 Pharmacogenetics of ageing and neurodegeneration 

 126 

of immune function as potential mediator of lithium therapeutic action (Watanabe 

et al., 2014). 

All of these approaches have potential value for identifying the pathogenic drivers of 

BPD, but also the molecular targets of lithium. However, the genomic data for these 

studies has been poorly analysed. This is the particular case of transcriptomic analyses in 

cell models and rodents. Though the genome-wide approach is unbiased, researchers tend 

to make arbitrary cut-off points and focus just on a subset of genes, rather than analysing 

the entire genome response. Taking only the most up-regulated and down-regulated genes 

severely narrows the unbiased potential approach. 

4.2.2 The use of transcriptomics in ageing 

Research into ageing has also benefited from the incorporation of microarray and other 

OMICS methods for the complementation of lifespan analyses and phenotyping. In mice 

studies the analyses has been more correlative. For example, Dhahbi and colleagues 

proposed that transcriptional signatures obtained by microarrays could be used as 

predictive biomarkers of DR mimetics. They identified that of five treatments tested in 

mice, metformin was the one that most closely resembled the transcriptional response of 

chronic DR (Dhahbi et al., 2005). Another exciting application has been the comparison of 

transcriptional responses in different species. For example, McElwee, Schuster, Blanc and 

colleagues compared the transcriptional profile of four long-lived organisms across a 

significant evolutionary distance. They analysed C. elegans daf-2 mutants (daf-2 vs daf-

16;daf2), Drosophila CHICO heterozygous mutants (chico
/
FF vs +I+), Ames dwarf mice 

(Prop-1 dm vs +I+) and Little mutant mice (Ghrhrlielit vs +I+) (McElwee et al., 2007). They 

found that although there was little conservation at the level of individual genes, functional 

categories did reveal shared processes. The three species showed up-regulation of 

categories involved in cellular detoxification, carbohydrate metabolism and oxidoreductase 

activity. They also shared down-regulation of macromolecular biosynthesis and protein 

biosynthesis (McElwee et al., 2007). They identified these processes as evolutionary 

conserved mechanisms that could potentially mediate lifespan extension and healthy 

ageing. 

In Drosophila one of the first attempts to elucidate changes during the ageing 

process and their relationship with DR showed that transcriptional changes during ageing 
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are slowed down by DR (Pletcher et al., 2002). Microarrays have also been used in 

Drosophila to test whether transcriptional changes during ageing and oxidative stress share 

common transcriptional signatures. As mentioned before, the ageing community was for a 

long time driven by the mistaken hypothesis that ROS caused ageing (Blagosklonny, 2008; 

Gems and Partridge, 2013). Hence, though the two experimental examples I will mention 

here were perhaps misconceived, they do offer insights into the dynamic and complex 

nature of the transcriptional changes during ageing. Landis et al., compared the RNA 

abundance of young (10 days) vs. old (61 days representing approximately median 

lifespan) flies, and also 3-day old flies subjected to 100% oxygen as a surrogate for 

oxidative stress. They found that 38% of gene expression changes that occurred in the aged 

flies overlapped with the hyperoxia treatment. Amongst the genes that shared a 

transcriptional response were those involved in the response to heat shock (hsp genes), 

antioxidants and immune-response genes all being up-regulated. Similarly, ageing and 

hyperoxia shared the down-regulation of preoteases, alkaline phosphatases and triglyceride 

lipases (Landis et al., 2004). Zou et al., also compared the genome-wide transcriptional 

changes during ageing and the response to the redox cycler paraquat in Drosophila and 

found 33% correlation between changes induced by the oxidative stressor and the ageing 

process. In contrast to the study by Lund et al., Zou and colleagues observed that while 

some genes involved in cytoprotective mechanisms were up-regulated during ageing like 

Hsp26, others were down-regulated like glutathione S-transferase D1 (Zou et al., 2000). 

The complicated nature of the transcriptional changes during the ageing process is 

magnified by the fact that some of these studies evaluate whole flies, while we know now 

that different tissues will age at different rates, and their requirements for specific 

transcript are very different. 

Transcriptional response to interventions that extend lifespan in C. elegans have 

also been pioneering (Golden et al., 2006; Pincus and Slack, 2008). DAF-16 is known to 

be required for the lifespan extension by IIS down-regulation. Thus, effort in identifying 

the downstream effectors has been a priority in biogerontology (Murphy, 2006; Tullet, 

2014). Murphy and colleagues used microarray analysis to identify gene expression 

changes in several IIS worm mutants, allowing them to obtain a common transcriptional 

signature. By contrasting these changes with the transcriptional response elicited when 

daf-16 is blocked (by RNAi for example) uncovered two sets of genes, one with the 

potential to increase lifespan (were up-regulated in IIS long-lived worms, but repressed by 

lack of daf-16), and a second set with potential lifespan shortening effects (opposite 
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direction) (Murphy et al., 2003). Amongst the up-regulated genes by IIS down-regulation 

were several involved in stress response including genes with cytochrome P450 activity, 

Hsp's, metallothionenin-1, catalase, SODs. They were able to show that knocking down 

several of these genes by RNAi shortened the lifespan of the daf-2 long-lived worms, but 

none to the extent of daf-16 RNAi. These results suggested that there is no sole effector of 

lifespan extension downstream of DAF16, but rather is the concerted transcriptional 

response which makes the worms live longer and be healthier (Murphy et al., 2003). 

Moreover, DAF16 is unlikely to act on its own. Using DNA adenine methyltransferase 

identification Shuster et al., assessed genes bound by DAF-16 and correlated them with 

expression change in daf-2 vs daf-16;daf-2 mutant worms. They identified that some of the 

genes regulated by daf-2 are not direct targets of daf-16, but that daf-16 regulates their 

expression by activating other transcription factors. This was particularly true for genes 

involved in repair and detoxification (Schuster et al., 2010). In Drosophila a similar 

scenario seems to be true, Alic and colleagues assessed dFOXO targets using chromatin 

immunoprecipitation (ChIP) coupled with microarrays (ChIP-chip) and found that only a 

fraction of the transcriptional response of IIS is directly mediated by dFOXO. They 

pointed towards additional factors like GATA, other forkheads and dHR96 as potential 

regulators downstream of dFOXO (Alic et al., 2011b). 

4.2.3 Transcriptional response to lithium in yeast, C. elegans and 

Drosophila 

To the best of our knowledge only three studies (one per organism) reporting genome-wide 

approaches in these organisms have been performed. I will described them here as they 

might be of relevance for the analyses of our own data. 

By using an integrated transcriptomic, proteomic and metabolomic approach Bro 

and colleagues studied the effect of lithium on galactose-grown yeast cells. Among the 

most prominent changes at the transcriptional level was the down-regulation of categories 

related to transcription, translation (including ribosomal proteins and proteins involved in 

ribosomal biogenesis) and nucleotide metabolism, while up-regulated categories involved 

energy reserve and monosaccharide metabolism and stress response genes (Bro et al., 

2003). Lithium increased glycogen and trehalose content and this was reflected at the 

transcriptional level. Interestingly genes with at least two stress-related elements in their 

promoter regions accounted for almost a third of the transcriptional response elicited by 
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lithium. Several proteins with predicted molecular heat shock function were identified by 

proteomics (Bro et al., 2003). 

In C. elegans, the only study so far reported analysing the transcriptional response 

to lithium was carried out by McColl and colleagues. They identified 5 gene ontology 

(GO) categories enriched in worms treated with 10 mM lithium (the optimal dose for 

lifespan extension they identified) after only 48 hours of treatment. These categories 

included nucleosome, nucleosome assembly, acyltransferase activity, endoplasmic 

reticulum and chromosome organization and biogenesis. Unfortunately they only focused 

in one gene, a histone demethylase for the remainder of their analyses and did not perform 

epistasis experiments. They however showed that RNAi against this histone demethylase 

extended lifespan in C. elegans (McColl et al., 2008). 

Kasuya and colleagues interrogated the genome of Drosophila heads by using 

microarrays in the hope of identifying genes and processes regulated by lithium in the 

nervous system with potential therapeutic applications. Flies were treated with 50 mM 

LiC1 for 24 hrs before analysed for mRNA abundance. Interestingly they identified and 

corroborated (by RT-PCR) the up-regulation of three genes within the detoxification 

pathway: Gst-D2, Cyp309a1 and CG5999 (encoding a UDP-glucoronosyltransferase). 

Analyses of GO revealed several categories involved in stress-response and 

oxidoreductase activity (Kasuya et al., 2009). 

Table 2. Functional categories enriched in lithium treated Drosophila heads according to DAVID. 
Taken from (Kasuya et al., 2009) 

 Term p Value'  Fold enrichment'  

1 Branched chain family amino acid metabolic process (GO:0009081)  7 .57E -04 69.1 

2 Stress response (SP PIR keywords) 9 23E - 05  43.8 

3 Valine, leucine and isoleucine degradation (KEGG pathway: dme00280)  1.69E-05 15.9 

4 Organic acid metabolic process' (GO:0006082) 8 20E - 06  5.99 

5 Carboxylic acid metabolic process' (GO:0019752)  8 20E - 06  5.99 

6 Oxidoreductase (SP PIR keywords) 3.18E-05 5.83 

7 Mitochondrion (GO:0005739)  9.09E-05 4.29 

8 Amino acid metabolic process (G0(0006520)  8 .05E -04 6.11 

9 Oxidoreductase activity (GO:0016491)  9 .69E -04 3.16 

10 Hydrolase (SP PIR keywords) 4 .03E -04 3.15 

11 Cytoplasmic part (GO:0044444)  1.66E-04 2.25 

12 Cytoplasm (GO:0005737)  8 .09E -04 1.92 

13 Catalytic activity (GO:0003824) 3.48E-05 1.71 

 
A Modified fisher exact p-value (EASE score). 
b Enrichment factor for the lithium-responsive genes (told change > 1.2; FDR < 0.05). 

The identical genes arc assigned to these terms for Drosophila genome. 

Overall the transcriptional response to lithium in these three organisms suggests 

that functional categories involved in metabolic pathways, translation, oxidoreductase and 

mitochondria could be relevant for lithium's effect. 



 Pharmacogenetics of ageing and neurodegeneration 

 130 

4.2.4 Stress and ageing: longevity and resilience 

The ability of organisms to respond to stress is amongst the most primal and evolutionary 

conserved mechanisms ensuring survival. Cells are equipped with genes and proteins that 

orchestrate adaptive responses that modify their internal milieu to match their new 

environmental conditions (Leopold and Perrimon, 2007; McEwen, 1998). These responses 

have aided organisms in the wild to survive periods of famine, drought, etc. during their 

evolutionary history. Such adaptations not only control cellular and organismal survival, 

but also maintenance and repair (Gems and Partridge, 2008; Lithgow, 2006; Shore and 

Ruvkun, 2013). Therefore, it is not surprising that stress response mechanisms have 

become central to the regulation of longevity and the retardation of the ageing process 

(Gems and Partridge, 2013; Shore and Ruvkun, 2013). 

Genetic manipulations that increase lifespan in organisms ranging from the 

roundworm C. elegans to mammals are more than often associated with a myriad of 

biochemical and physiological adaptations that confer resistance to several forms of stress 

(Clancy et al., 2001; Holzenberger et al., 2003; Migliaccio et al., 1999; Tullet et al., 2008). 

Amongst the stressful situations that pro-longevity interventions are often associated with, 

are the ability to cope with oxidative stress and the detoxification of foreign chemical 

substances (xenobiotics) (Gems and Partridge, 2008, 2013). 

Genes involved in defence and detoxification are necessary and therefore up- 

regulated in response to stress, while others that are dispensable and energetically costly to 

maintain are down-regulated. Thus, it has become increasingly relevant to understand the 

transcriptional signatures of ageing and stress response (Alic et al., 2011b; Bai et al., 2013; 

Melo and Ruvkun, 2012; Murphy, 2006; Shore et al., 2012). Successful attempts have 

shown that indeed gene expression changes between long-lived C. elegans, Drosophila 

and mice share up-regulated genes involved in xenobiotic metabolism (McElwee et al., 

2007). Moreover, up-regulation of these genes is a shared transcriptional signature 

between dietary restricted mice and long-lived mice with mutations in the somatotrophic 

axis (Steinbaugh et al., 2012). Interestingly, rapamycin, the drug that has opened the field 

of pharmacologic modulation of ageing and longevity (Bjedov and Partridge, 2011; 

Harrison et al., 2009), does not seem to regulate the expression of xenobiotic metabolising 

enzymes (Steinbaugh et al., 2012). 

The expression of these proteins is known to be under the control of the 

transcription factor SKN-1/NRF-2, which also modulates lifespan (Sykiotis and Bohmann, 

2008; Tullet et al., 2008). Another factor involved in xenobiotic metabolism is the 
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hormone nuclear receptor dHR96, which is presumed to act downstream of dFOXO and is 

a possible regulator of the transcriptional response to IIS down-regulation (Alic et al., 

2011b; King-Jones et al., 2006). In Drosophila dHR96 regulates the transcriptional 

response to xenobiotics. Flies lacking dHR96 are sensitive to the barbiturate phenobarbital 

and the pesticide DDT (King-Jones et al., 2006). In C. elegans, the nuclear receptor 

NHR8 is required for resistance to colchicine and chloroquine, both xenobiotics 

(Lindblom et al., 2001). 

Given that direct manipulation of the transcription factors regulating stress 

response seems to be an evolutionary conserved intervention to promote healthy ageing, 

chemical inducers of such pathways have the potential to promote longevity and retard the 

ageing process. Such compounds have been called `hormetins' for their ability to induce a 

hormetic response (Gems and Partridge, 2008; Lithgow, 2006; Rattan, 2008). 

4.2.5 Hormesis: from toxicology to longevity 

Originally from the field of toxicology hormesis refers to a dose-response phenomenon 

characterised by a low dose stimulation and a high dose inhibition, usually represented as 

an inverted U or J shaped curve (Calabrese and Baldwin, 2003; Calabrese et al., 2007). In 

biogerontology, hormesis refers to the lifespan extension observed with low grade stress, 

while higher doses of the same compound (or stronger stimulation of the biochemical 

pathways that modulate the stress response) would limit longevity (Calabrese et al., 2011; 

Gems and Partridge, 2008; Rattan, 2001). Hormesis also consists of a priming event. C. 

elegans subjected to a mild increase in temperature are subsequently protected against heat 

stress. This suggests that activation of the defence mechanisms involved in heat response 

allows primed worms to better cope with a heat challenge (Lithgow, 2001). A similar 

scenario has been proposed with the effects of oxidative stress. External chemicals can 

also induce hormesis. Recent reports of chemical inducers (including known poisons) of a 

hormesis-like response have shown that lifespan extension can be achieved at lower doses 

even when lifespan is compromised with higher doses (Frankowski et al., 2013; 

Schmeisser et al., 2013a, 2013b). The dose response for the promotion of longevity also 

fits an inverted U or J-shaped curve with a hormetic zone, i.e. the zone spanning the drug 

concentrations that increase lifespan (Calabrese, 2013; Gems and Partridge, 2008). 

Interestingly lithium has already been included in a catalogue of hormetins 

(Calabrese, 2005a; Calabrese and Baldwin, 2000) for its capacity to induce chemical 
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hormesis for growth in plants (Allender et al., 1997), cellular survival (Suganthi et al., 

2012) and its effects on cell morphology and signal transduction (Gao et al., 1993). 

4.3 Methodology and experimental design 

4.3.1 Gene-expression microarrays 

Once-mated 
w1118

 female flies were pre-treated for 10 days with 10 mM lithium and snap 

frozen in liquid nitrogen, after which heads and thoraces were separated and analyzed for 

differential gene expression by Affymetrix microarrays. The experimental set up was 

performed by Dr. Luke TaM. 

4.3.2 Polysome-profile microarrays 

w1118 female flies were treated with 10 mM LiC1 or vehicle (ddH2O) for 10 days. After 

being snap frozen in liquid nitrogen, heads and thoraces were separated from the 

abdomen/ovaries to remove confounding differences associated with fecundity. Polysome 

profiles were generated as previously described with minor modifications (Dinkova et al., 

2005). Heads and thoraces were homogenized on ice in 300 mL polysome extraction 

buffer (300 mM NaC1, 50 mM Tris-HCL (pH 8.0), 10 mM MgC12, 1 mM EGTA, 200 mg 

heparin/mL, 400 U RNAsin/mL, 1 mM phenylmethylsulfonyl fluoride, 0.2 mg 

cycloheximide/mL, 1% Triton X-100, 0.1% sodium deoxycholate). 800 mL additional 

polysome extraction buffer was added and mixed gently and placed on ice for 10 mM. 

Debris was the removed by spinning at 20,000g (4°C) for 10 mM and the supernatant was 

layered onto a 10-50% sucrose gradient in high salt resolving buffer (140 mM NaC1, 25 

mM Tris-HCL (pH 8.0), 10 mM MgC12). Using a Beckman SW41Ti rotor (38,000 rpm at 

90 mM, 4°C ) polysomes and ribosomal subunits were separated before the gradients were 

fractionated. Fractions were collected using a Teledyne density gradient fractionator with 

continuous monitoring absorbance (252 nm), which was also digitally recorded. Fractions 

containing 1-3 and > 4, ribosomes per transcript were collected as low and high fractions 

respectively, directly into ice cold EtOH and precipitated overnight at -20°C along with 

GlycoBlue. RNA was then pelleted, washed and resuspended in RNase free H2O, to then 

be isolated using Trizol-LS as per manufacturer's instructions. To estimate the level of 

translation, ratios of intensities were calculated by dividing high fraction intensities by low 
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fraction intensities to give a translation ratio value for each transcript. Experiments were 

carried out in 3 independent replicates (80 heads/thoraces per replicate). Dr. Luke Tain 

carried out the polysome profiles and microarrays. 

4.3.3 Gene-Ontology (Catmap analysis) 

For functional analysis using all expressed genes, we used the Wilcoxon rank sum test 

implemented in Catmap (Breslin et al., 2004). Ranks of genes were based on the Bayes t- 

statistic for differential expression and, for a given functional category. The significance of 

the rank sum for all genes in the category was calculated analytically based on a random 

gene-rank distribution. Catmap analysis was performed by Dr. Dobril Ivanov. 

4.3.4 Mitochondrial Isolation 

Drosophila mitochondria were isolated as previously described (Miwa et al., 2003). 

Briefly, adult flies (n = 400 for each time point) were chilled on ice and gently pressed 

using a pre-chilled pestle and mortar. The pestle was moved in a vertical motion (with no 

horizontal motion) until the shape of the flies was no longer visible. The flies were then 

washed in STE + BSA buffer (250 mM sucrose, 5 mM Tris, 2 mM EGTA, pH 7.4 (4
°
C), 1 

% BSA). The flies were then pressed further in 5 mL of STE + BSA buffer. The squashed 

flies were then passed through double-layered muslin cloth. The collected pulp was then 

spun for 3 mins at 4
°
C at 1,500 rpm to remove debris. The supernatant was then passed 

through a single layer of muslin into a clean centrifuge tube and spun for 10 mins at 4
°
C 

and 10,000 rpm to collect the mitochondria. The mitochondrial pellet was then suspended 

in 250 ilL STE + BSA buffer and stored on ice. A BCA assay (Sigma) was used to 

determine the protein concentration of the mitochondrial preparations. The isolated 

mitochondria were used immediately after preparation for experiments. 

4.3.5 Mitochondrial Physiology Measurements 

Oxygen consumption was measured using a Clark-type oxygen electrode thermostatically 

maintained at 25°C. Glutamate (5 mM) and malate (5 mM) or 5 mM pyruvate were added 

to measure Complex I-linked respiration, succinate (5 mM) with rotenone (5 1.1M) were 

added to measure Complex II-linked respiration. All data were obtained using an 

Oxygraph Plus system with Chart recording software. 



 Pharmacogenetics of ageing and neurodegeneration 

 134 

4.3.6 Immunoblotting 

To detect the Gst-D-eGFP reported antiGFP (2955 Cell Signaling Technologies, 1:1000) 

was used. The rest of the protocol was as described in Chapter 2. 
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4.4 Results 

4.4.1 Lithium and IIS/FOXO do not share a transcriptional response 

Lithium is known to be a complex drug that interacts with many cellular pathways and 

many candidate proteins have been put forward as its mechanism of action (Lenox and 

Wang, 2003; Phiel and Klein, 2001). In order to determine the molecular mechanism(s) 

associated with the longevity effects of lithium, we undertook a genome-wide approach by 

analysing the transcription profile of lithium treated flies. The bioinformatics analyses was 

performed in collaboration with Dr. Dobril Ivanov. Flies treated with 10 mM lithium for 

10 days were subjected to microarray analysis and compared to un-treated control flies. 

Lithium up-regulated several genes involved in the detoxification pathway, namely 

enzymes with cytochrome P450 or glutathione transferase activity (Kasuya et al., 2009). 

These enzymes are at the core of the detoxification pathway, important for xenobiotic 

metabolism (Mattson, 2008b; Motohashi and Yamamoto, 2004). Up-regulation of similar 

enzymes has been reported to be a common transcriptional response of IIS down- 

regulation in worms and flies (McElwee et al., 2007). We first decided to investigate 

whether the transcriptional response differentially expressed by lithium was similar to that 

observed when IIS is genetically down-regulated. We used a recently published microarray 

analysis where the InRDN
 was over-expressed as a means of reducing IIS (Alic et al., 

2011b). We compared the overlap of genes elicited by both interventions without detecting 

statistical significance over the Bonferroni corrected P-value threshold of 0.0001 for up- 

regulated (P = 1.0; Fisher's exact test) or down-regulated (P = 0.00657; Fisher's exact test) 

genes (McElwee et al., 2007). The only significant overlap (P = 1.48e-08) was between 

genes down-regulated by lower IIS and those up-regulated by lithium treatment, which 

suggested that the transcriptional responses changed in opposite directions. 
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4.4.2 Transcriptional response from lithium did not overlap with the 

transcriptional response of flies overexpressing HR96 

The nuclear hormone receptor HR96, the single Drosophila orthologue of the mammalian 

pregnane X receptor and constitutive androstane receptor, has been implicated in the 

protection against oxidative stress and xenobiotics, which require the transcriptional 

induction of antioxidants and detoxification enzymes (King-Jones et al., 2006). Moreover, 

HR96 has also been implicated in the regulation of lipid metabolism, especially 

triglycerides (Sieber and Thummel, 2009). We decided to compare the transcriptional 

response elicited by over-expression of HR96 from a previously published microarray 

study (King-Jones et al., 2006) with our lithium data set (Figure 4.3). Genes differentially 

expressed by the two interventions significantly overlapped (P = 2.62e-11, Fisher's exact 

test). However, the transcriptional signature did not share the same directionality as the 
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Figure 4.4 Comparative analyses of the transcriptional signature of cncC overexpression and lithium. 
(A) Venn diagrams showing overlaps between genes regulated by cncC overexpression and the 
transcriptional response to lithium. (B) Venn diagrams showing the overlap between genes regulated by the 
xenobiotic phenobarbital and lithium. Significance P < 0.001. (C) Heat map that shows genes that 
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Bioinformatics analyses performed by Dr. Dobril Ivanov. 
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In C. elegans, stress resistance is dependent on two transcription factors SKN-1/NRF-2 

and daf16/FOXO, and over-expression of either extends lifespan and regulates stress 

resistance (Kwon et al., 2010; Libina et al., 2003; Tullet et al., 2008). In Drosophila, 

dFOXO plays a role in protecting against some forms of stress like xenobiotic, but not 

oxidative stress, while it is required for lifespan extension under IIS down-regulation 

(Slack et al., 2011). Protection against oxidative and xenobiotic stress is presumed to be 

the result of up-regulating enzymes in the xenobiotic detoxification pathway (Alic et al., 

2011b; Kaletsky and Murphy, 2010; Schuster et al., 2010). The response to both 

xenobiotics and oxidative stress in Drosophila has been reported to be regulated by the fly 

homologue of NRF-2, cap'n'collar (CncC) (Sykiotis and Bohmann, 2010). Moreover, 

activation of CncC by heterozygous loss of its natural repressor Kelch-like ECH-

associated protein 1 (Keapl), extends lifespan of male flies (Sykiotis and Bohmann, 2008). 

The control of the transcriptional signature by CncC has been assessed both 

pharmacologically and genetically (Misra et al., 2011). We first assessed whether lithium 

induced a transcriptional response similar to the one obtained when CncC was over- 

expressed (Misra et al., 2011). When the differentially expressed genes were compared, we 

found a significant overlap (Figure 4.4A; P = 5.08e-09, Fisher's exact test). This overlap 

was only significant at the up-regulated level, since it was not significant among genes 

down-regulated by both treatments (Figure 4.4A; P = 0.342, Fisher's exact test), but they 

did share a significant overlap of up-regulated genes (Figure 4.4A; P = 1.57e-07, Fisher's 

exact test). 

It was previously reported that the barbiturate anticonvulsive phenobarbital can 

induce a similar transcriptional response as CncC over-expression (Misra et al., 2011). We 

therefore explored the possibility that lithium could also induce a similar transcriptional 

profile as phenobarbital treatment. We therefore analysed the overlap between 

differentially expressed genes by lithium with those previously reported to change 

expression upon phenobarbital treatment (Misra et al., 2011). We found that treatment with 

either lithium or phenobarbital elicited a transcriptional response that significantly 

overlapped (Figure 4.4B; P = 9.8e-16, Fisher's exact test). The overlap was once more only 

significant at the up-regulated (P = 1.2e-24), but not at the down-regulated level (Figure 

4.4B; P = 0.0196, Fisher's exact test). 

We then compared the differentially expressed genes that significantly overlapped 

with lithium when compared to CncC over-expression or phenobarbital treatment (Figure 
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4.4C). It was interesting to note that the genes with significant overlap participated in the 

three phases of xenobiotic metabolism (Figure 4.4C and D). 

4.4.4 Lithium activates the cncC/NRF-2 pathway 

I also used a GFP reporter to confirm that lithium is indeed activating CncC. For this I 

used a previously generated GstD-GFP reporter that responds both to chemical inducers of 

CncC, or to genetic manipulations activating the pathway (Sykiotis and Bohmann, 2008). I 

treated flies carrying the GstD-GFP reporter with increasing concentrations of lithium. I 

observed a dose-dependent increase in the levels of GFP as assessed by immunoblot 

analysis (Figure 4.5; P < 0.05, ANOVA post hoc Tukey-Kramer). Taken together, our 

results suggest that lithium elicits a transcriptional response similar to that of CncC over- 

expression, which would indicate that lithium activates CncC to up-regulate genes in the 

detoxification pathway. 

9 wagh 0 1 5 10 [LiCI (mM)] 

GstD-eGFP 

Figure 4.5 Lithium activated the detoxification 
transcription factor CncC. The activation of the 
detoxification pathway was determined by treating 
flies expressing the reporter GstD-eGFP with lithium 
for 15 days and analysing the expression of GFP by 
immunoblot analyses. * P < 0.05, ** P < 0.01 
(ANOVA post hoc Tukey Kramer). N = 3 biological 
replicates of 10 flies each. 

4.4.5 Lithium modifies survival in the presence of different stressors 

To further confirm that the induction of the xenobiotic metabolising pathway was 

functional, I challenged flies pre-treated with lithium to pro-oxidants and xenobiotics. 

Given that phenobarbital has already been described transcriptionally as a xenobiotic, I 

used a similar concentration as the one used to asses gene regulation (Misra et al., 2011). 

Flies pre-treated with increasing concentrations of lithium ranging from 1 to 100 mM were 

significantly resistant to phenobarbital (Figure 4.6A). Doses ranging from 1 to 75 mM LiC1 

almost doubled their median lifespan (-80% lifespan extension), and completely doubled 

their maximum lifespan (P < 0.001, log rank test). Even 100 mM of lithium significantly 
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protected against phenobarbital stress, though its effect was modest in comparison to the 

other doses of lithium tested (P < 0.01, log rank test). These results suggest that even 

lower doses of lithium are sufficient to induce a robust transcriptional response 

downstream of CncC to protect against xenobiotics. I also tested a second xenobiotic, the 

anti-malarial drug chloroquine (Lindblom et al., 2001). Using this xenobiotic, I only 

observed protection with lower doses of lithium (Figure 4.6B; 1-10 mM P < 0.05, log rank 

test) and 100 mM lithium significantly made the flies sensitive to chloroquine (Figure 4.6B; 

P < 0.05, log rank test). 
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Figure 4.6 Lithium pre-treatment protected against xenobiotic and oxidative stress. For all experiments 
flies were pre-treated for 15 days before challenged with (A) 6% phenobarbital, (B) 100 mM chloroquine, 
and (C) 20 mM paraquat. 
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I of the respiratory chain (Cocheme and Murphy, 2008). Paraquat also requires the 

detoxification pathway for metabolism as RNAi-mediated down-regulation of CncC makes 

flies more sensitive to it (Sykiotis and Bohmann, 2008). When flies pre-treated with 

lithium (1-100 mM) for 15 days were transferred to sucrose/agar vials containing 20 mM 

paraquat flies showed a dose-dependent response (Figure 4.6C). Increasing the 
— 75 
— 100 
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concentration of lithium from 1 to 50 mM significantly improved survival in a dose- 

dependent manner (P < 0.001, log rank test for all doses compared to control). 75 or 100 

mM LiC1 were slightly less beneficial than 50 mM lithium, yet protected significantly 

more than 25 mM (P < 0.05, log rank test). Overall, my experiments show that lithium 

treatment protected against xenobiotic and oxidative stress, but that the response could 

vary depending on the dose of lithium tested and also the xenobiotic used. 
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4.4.6 Transcriptomic and translatomic response of lithium showed 

enrichment for mitochondrial complex-1 

We recently showed that lithium reduces translation in yeast and flies (Sofola-Adesakin et 

al., 2014). This is an additional potential mechanism by which lithium could confer 

longevity benefits, as down-regulation of translation has been shown to extend lifespan 

(Hansen et al., 2007; Syntichaki et al., 2007). However, the specific genes regulated by 

translation to extend lifespan have been poorly studied. Our previous analysis of lithium 

treatment suggested that lithium possibly down-regulated a specific subset of genes rather 

than globally affecting protein synthesis (Sofola-Adesakin et al., 2014). In order to 

determine the differential regulation of translated genes we combined polysome profiling 

with microarray analysis. This allowed us to identify changes in the translatome. We first 

assessed the overlap of genes differentially regulated at the transcriptional and translational 

level not obtaining statistical significance (Figure 4.8A). This highlighted that the 

translational read-out was not a mere representation of the transcriptional response. 

We next performed catmap analysis to determine gene-ontology (GO) enrichment 

and assess functionally relevant changes in expression (Breslin et al., 2004) (Figure 4.8A). 

We then assessed whether transcriptional and translational responses to lithium could yield 

expression changes in similar functional categories in spite of not regulating the same 

genes. To our surprise we observed a significant overlap of GO categories that changed 

transcriptionally and translationally in the same direction (P < 0.0001, Fisher's exact test; 

Figure 4.8A). Interestingly, there was a clear enrichment of categories involving 

mitochondrial complex I. The overlap between GO categories down-regulated at the 

transcriptional and translational level resulted in a significant overlap that only showed 

functional categories representing complex I of the mitochondrial respiratory chain (Figure 

4.8B). 
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4.4.7 Lithium uncouples mitochondrial complex-1, but does not alter its 

oxygen consumption 

To assess the physiological relevance of this observation, we analysed mitochondria' 

respiration. Whole-fly mitochondria were isolated after 15 days of lithium treatment and 

age-matched untreated control flies. Mitochondria from lithium treated flies showed a 

reduced RCR by mitochondrial complex I (P < 0.05, t-test), but not complex II (P > 0.05, 
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A 

 

t-test; Figure 4.9A). Lithium had no effect on basal oxygen consumption by either complex 

I or complex II (P > 0.05, t-test; Figure 4.9B). 

wDah 9  

Complex I - RCR 

1_10- 

1.00 - 

0.90 - 

0.80 

0.70 

 

wDah 

Complex II - RCR 

1.20 - 

1 . 00  -   

0.80 - 

0.60 

0.40 - 

0.20  - 

0.00 

 

B    Figure 4.9 Lithium reduced the respiration 
control ratio (RCR) of mitochondrial complex 1. 
(A) RCR measurements for complex I and II of the 

mitochondria' respiratory chain of mitochondria 
isolated from flies treated with lithium for 15 days. 
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4.5 Discussion 

4.5.1 Lithium elicits a transcriptional signature of detoxification 

We have found here that lithium elicits a transcriptional response that does not resemble 

that of IIS down-regulation. This was not entirely surprising given that we previously 

showed that lithium did not require dFOXO to extend lifespan and that lithium could 

further extend lifespan of already long-lived IIS mutant flies. Indeed our results suggest 

that the transcriptional response to lithium and IIS down-regulation go in opposite 

directions, which might indicate molecularly why these interventions were additive. 

Surprisingly, lithium also elicited a transcriptional response dissimilar to that of 

dHR96 over-expression. This was in spite of overlapping at genes like GstD4 and GstDS 

both involved in phase 2 of the detoxification pathway. However, we were able to identify 

that the transcriptional response of lithium treated flies significantly overlapped with flies 

over-expressing the transcription factor CncC. Interestingly the overlap was only 

significant at the up-regulated level, which is in agreement with CncC/NRF-2 being a 

transcriptional activator. Moreover, we were able to show that lithium up-regulated the 

 1 
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expression of GstD-eGFP by immunoblot analyses further confirming that lithium 

activates CncC/NRF'-2. Our results showing that lithium activates CncC/NRF-2 are in 

agreement with a recently published report showing that lithium increases the nuclear 

fraction of NRF-2 after chronic (5 days) but not acute (6 hrs) treatment in rat 

pheochromocytoma PC12 cells (Rizak et al., 2014). Lithium has been reported to directly 

activate NRF-2 in rat astrocytes (Correa et al., 2011) and human hepatocytes (Jiang et al., 

2014). 

NRF-2 is considered to be mainly an activator of phase 2 of the detoxification 

pathway (Hayes and Dinkova-Kostova, 2014; Oliveira et al., 2009). However, comparison 

of our data with previously published microarray data showed that some enzymes of phase 

1 and phase 3 are also up-regulated by both CncC over-expression and the treatment of 

xenobiotics like phenobarbital and lithium. This is not entirely surprising as the 

detoxification should require enzymes from the three phases to be able to metabolise 

foreign toxins. We considered that the molecular characterisation showing similarity 

between lithium and phenobarbital should allow reconsideration of lithium as a xenobiotic. 

Interestingly lithium was able to protect flies from the deleterious effect of 

paraquat, phenobarbital and chloroquine. All of these compounds can be catalogued as 

xenobiotics, given that they are foreign to Drosophila's internal milieu. The mechanism 

behind a xenobiotic being effective at protecting against another xenobiotic might be 

trough the "priming" or adaptive mechanism described for hormesis (Rattan, 2008; Yun 

and Finkel, 2014). For example worms or flies exposed to low-doses of a stressor are 

subsequently able to cope better to the exposure of the same stressor at higher lethal doses 

(Khazaeli et al., 1997; Lithgow, 2001; Sarup et al., 2013). It would be interesting to test 

whether low non-lethal doses of paraquat, phenobarbital or chloroquine would be able to 

protect flies against very high doses of lithium. For example, we have documented that 

flies exposed to lithium at 200 mM reach median lifespan within a day or 2 of exposure. 

Perhaps pre-treatment with low doses of these other compounds could elicit a xenobiotic 

response capable of instantaneously dealing with the subsequent lethal concentrations of 

lithium (Sarup et al., 2013). Additionally, testing whether lithium is able of protecting 

against itself could also prove to be valuable for establish the "priming" mechanism of 

hormesis for lithium. 

An interesting point to raise here is the fact that IIS down-regulation has been 

shown to up-regulate genes in the detoxification pathway (McElwee et al., 2007), 
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particularly those with glutathione-S transferase activity. These enzymes are both 
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regulated by CncC and HR96 (King-Jones et al., 2006; Misra et al., 2011). This could 

potentially suggest that IIS down-regulation and lithium activate the xenobiotic pathway 

through different mechanisms, and perhaps therefore elicit a non-overlapping 

transcriptional response. Moreover, when we overlapped the genes of IIS down-regulation 

via over-expression of a dominant negative version of the dInR (Alic et al., 2011b) we did 

not detect any similarity between any of the enzymes in the detoxification pathway elicited 

by lithium. The association of the detoxification pathway and IIS down-regulation was 

done using heterozygous loss of the insulin receptor substrate CHICO. Perhaps testing 

whether lithium treatment and loss of CHICO (and also CHICO with CncC and HR96 

over-expression) overlap at the transcriptional level could unveil differences between 

different IIS mutants. 

4.5.2 Mitochondrial respiratory chain complex I was down-regulated in 

flies treated with lithium 

Additional to the up-regulation of enzymes in the xenobiotic pathway, we also observed 

that lithium treatment was enriched for GO categories involving mitochondrial complex I 

of the respiratory chain. Interestingly, these changes were at the down-regulated level for 

both the transcriptional and translational response. Given that this effect was not 

uncovered at the single gene level, suggest that this is rather a concerted response 

influenced by at least a few genes. 

Further examination of the transcriptional and translational arrays revealed that 

CG9172 and CG9762, genes with NADH dehydrogenase (ubiquinone) activity that encode 

for Drosophila subunits of mitochondrial Complex I, were down-regulated in response to 

lithium. Individual ubiquitous RNAi knockdown of CG9172 and CG9762 extend 

Drosophila lifespan while also protect against PQ (Copeland et al., 2009). Additionally, 

reduced levels or reduced activity of complex I associate with healthy ageing in C. 

elegans, Drosophila and mice (Copeland et al., 2009; Dillin et al., 2002; Lapointe and 

Hekimi, 2008; Lee et al., 2003; Rea et al., 2007). 

We tested the significance of the transcriptional and translational response to 

lithium by analysing the activity of mitochondria isolated from flies that had been treated 

with 10 mM lithium for 15 days. Interestingly we observed that while lithium did not 

affect at all the activity of complex II, it reduced the respiratory control ratio of complex I 
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without affecting its oxygen consumption. We are unable to predict the implication of this 
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response, but we will further explore it. It will be interesting to test whether this response 

is capable of producing ROS, for example. If lithium was increasing ROS through 

complex I inhibition this could suggest that lithium is inducing a mitohormetic effect 

(Ristow, 2014; Ristow and Zarse, 2010; Yun and Finkel, 2014). Among the responses that 

cells would elicit to protect themselves against ROS production would be the activation of 

NRF-2 (Ristow, 2014), which would then provide a mechanistic insight as to how is 

lithium activating CncC/NRF-2. Mixed results have been reported as to the role of lithium 

for ROS generation and defense. For example, Eskandari and colleagues showed that 

lithium increased ROS production in rat hepatocytes, which led to mitochondria' 

membrane potential collapse and release of cytochrome c with subsequent cytotoxicity 

(Eskandari et al., 2012). On the other hand, it has been shown that lithium protects against 

H202-induced cell death in a neuroblastoma cell line (Arraf et al., 2012). Most of these 

studies are carried out in cell lines where the effects reported could be cell-line specific. 

We will have to carefully assess the role of lithium for ROS generation and clearance as 

the response to lithium might be cell type-specific. 

Additionally, paraquat is not an oxidative stressor per se. Paraquat needs to be 

converted in the mitochondrial matrix to superoxide. One major site of superoxide 

production by paraquat is complex I (Cocheme and Murphy, 2008). Given that lithium 

might be inhibiting complex I, it is also possible that lithium prevents the formation of 

superoxide by paraquat and other toxins that increase ROS through complex I of the 

respiratory chain. 

4.5.3 Does lithium induce a hormesis response? Is it a hormetin? 

One of the big challenges with lithium treatment is its toxicity. Only small doses are 

recognised to have disease impact before side effects like renal failure and thyroid 

abnormalities develop. This has forced close monitoring of circulating levels in patients 

with lithium prescriptions (Freeman and Freeman, 2006; Severus et al., 2008). The 

biphasic response with lower dose promoting health benefits, while higher doses being 

toxic, is the signature of a hormetin. Interestingly such a biphasic response for survival 

was recently reported in a mammalian cell line (Suganthi et al., 2012). I have also 

discussed that lithium is potentially eliciting an adaptive response to stress and it activates 

the CncC/NRF-2 pathway which is at the heart of the hormesis response (Calabrese and 

Mattson, 2011; Mattson, 2008a; Ristow, 2014). Additionally our preliminary data on the — 
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omics response to lithium and our mitochondrial measurements could suggest that lithium 

acts also through ROS generation and mitohormesis. Further experiments will be required 

before lithium can be categorically categorised as a hormetin. However, suggestions that 

lithium is indeed a hormetin have been provided by others (Allender et al., 1997; Gao et 

al., 1993; Suganthi et al., 2012), leading to its inclusion in catalogs of chemical inducers of 

hormesis (Calabrese, 2005b; Calabrese and Baldwin, 2001). 
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Chapter 5 

GSK-3 in ageing and neurodegeneration 

"There is nothing more exciting in science than a completely new twist to an area that 

everyone thought had been solved many years earlier". 

Phillip Cohen and Sheelagh Frame 

5.1 Abstract 

It has been known for the past 20 years that GSK-3 is the main target of lithium. Both GSK-3 and 

lithium seem to converge in similar cellular pathways, translating into a myriad of potential 

downstream targets. Additionally non-convergent points have also been described, the most 

prominent being the regulation of inositol recycling. Lithium seems to regulate myo-inositol levels, 

which led to the inositol depletion hypothesis as mechanistic insight into its therapeutic value for 

BPD. Interestingly neither GSK-3 nor inositol monophosphatase (IMPase) have been evaluated for 

their role in the regulation of the ageing process. In this chapter I aimed to characterize their role 

in ageing, with particular emphasis on GSK-3. I tested the ubiquitous and tissue-specific effects of 

GSK-3 by genetic manipulation. Additionally I was able to test the interaction of lithium treatment 

and GSK-3 in the whole fly and also in specific sub-systems. I observed that at the whole fly level 

GSK-3 down-regulation extended lifespan and this effect was epistatic with lithium treatment. The 

converse was also true, i.e., increased ubiquitous expression of GSK-3 shortened lifespan and 

lithium was able to rescue this effect. However, over-expression of GSK-3 only in neuron extended 

lifespan and this was additive with lithium treatment. Interestingly the gut and fat body, highly 

implicated in the regulation of lifespan through HS down-regulation, did not respond to increased 

expression of GSK-3, suggesting that indeed GSK-3 acts in a tissue-specific manner to regulate the 

rate of ageing and control longevity. I also analysed the role of GSK-3 and lithium in a Drosophila 

model of Alzheimer's disease by expression of 41_42. Lithium and GSK-3 seem to act in different 

pathways to modulate lifespan of flies expressing 41_42, though both interventions seem to regulate 

neurodegeneration. Thus, I have uncovered a complicated relationship by which lithium and GSK3 

modulate ageing in different tissues and neurodegeneration. 
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5.2 Introduction 

5.2.1 GSK-3 in cellular signalling 

Glycogen synthase kinase-3 (GSK-3) is a protein serine/threonine kinase involved in a 

wide range of physiological actions that regulate development, cell cycle, oncogenesis, 

gene expression, metabolism, circadian clocks, apoptosis, and neuroprotection, among 

others. It has been described to participate in two cellular pathways, IIS and the wnt/I3- 

catenin pathway (Frame and Cohen, 2001; Jope and Johnson, 2004; Rayasam et al., 2009) 

The insulin signalling pathway is responsible for cellular glucose uptake providing 

cells with this substrate to generate adenosine triphosphate, the principal cellular energy 

source. GSK-3 is downstream of Akt and immediately upstream of GS. GSK-3 functions 

to supress GS. Therefore, when insulin activates the pathway AKT inhibits GSK-3 

allowing GS to synthesise glycogen (Cross et al., 1995, 1997). A detailed description of 

the role of GSK-3 in the insulin signalling pathway was provided in Chapter 1. 

The other cellular pathway in which GSK-3 is involved is the Wnt/I3-catenin 

pathway (Figure 5.1). f3-catenin acts as a transcription factor. In the absence of stimuli the 

binding protein axin joins the adenomatous polyposis colt (APC) protein along with GSK3 

and I3-catenin to form a complex that, after a sequence of phosphorylations, promotes the 

degradation of I3-catenin. In the presence of a positive stimulus Wnt binds to the 

transmembrane receptor frizzled activating the protein disheveled by direct binding to 

frizzled that along with the GSK-3-binding protein frat, allows the disruption of the 

complex formed by APC, axin and GSK-3. This in turn lowers the phosphorylation rate of 

I3-catenin allowing it to escape from the degradation complex. Instead, I3-catenin 

translocates to the nucleus and interacts with LEF-1/TCF family of transcription factors 

that regulate important proteins for cellular development during embryogenesis (Cohen 

and Frame, 2001; Jope and Johnson, 2004). 
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Figure 5.1 Schematic representation of the wnt/P-catenin pathway. GSK-3 plays a major role in this 

cellular pathway since it controls the rate of transcription by negatively regulating 13-catenin. When Wnt is 

activated, GSK-3 is inactive allowing translocation of13-catenin to the nucleus. Image taken from (Cohen and 

Goedert, 2004). 

There are two mammalian isoforms of GSK-3, GSK-3a and GSK-30, the former is 

inactivated by phosphorylation at serine 21, and the latter at serine 9 (Cohen and Frame, 

2001; Jope and Johnson, 2004; Rayasam et al., 2009). As mentioned earlier, the 

phosphorylation and hence inactivation of GSK-3 is primary for the regulation of glycogen 

synthesis. However, phosphorylation of GSK-3 does not seem to be a fundamental 

mechanism for inactivation of GSK-3 in the wnt/I3-catenin pathway, and there is evidence 

to support that the kinase activity of GSK-3 is not affected by Wnt activation (Cohen and 

Frame, 2001; Cross et al., 1997; Ding et al., 2000; McManus et al., 2005). This is 

consistent with the fmding that insulin activation and phosphorylation of GSK-3 does not 

increase I3-catenin levels. On the other hand, GSK-3 assembled with axin, APC and 13- 

catenin in the degradation complex is inaccessible to Akt (Ding et al., 2000). Therefore, 

although GSK-3 is common to both signalling pathways, their pools should be different or 

may function differently, however interaction between these pathways has been reported 

(Cohen and Frame, 2001; Frame and Cohen, 2001). 

GSK-3I3 inactivation is the major cause for GS activity in the muscle, although this 

has been suggested to be partly due to increased levels (4-fold) of this isoforms compared 

to GSK-3a. However, inactivation of neither GSK-3 isoform appears to be relevant for GS 
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activity in the liver and in exercise-induced muscle GS dephosphorylation (McManus et 

al., 2005). 

5.2.2 Regulation of GSK-3 and its inhibition by lithium 

GSK-3 exerts its effects through a unique substrate specificity in which most of its 

substrates need prior phosphorylation (or 'priming phosphorylation') in a consensus 

recognition sequence (Ser/Thr-[X-X-X]-pSer/pThr). As mentioned earlier, GSK-3 in its 

constitutively active state, maintains GS inactivated through phosphorylation. However, in 

order for GSK-3 to phosphorylate GS at Ser652, the latter needs to be phosphorylated by 

casein kinase 2 (Ser656, the priming phosphorylation site). The initial phosphorylation by 

GSK-3 may induce phosphorylation of further residues, hence generating 'multiple 

phosphorylation domains'; in the case of GS a total of 5 (Cohen and Goedert, 2004; Frame 

and Cohen, 2001; Rayasam et al., 2009). GSK-3 phosphorylates tau and this has been 

implicated in the generation of neurofibrillary tangles in AD (Cohen and Goedert, 2004). 

Intracellular targeting domain 
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Auto-inhibitory P-Ser 
TRENDS in Pharmacological Sciences 

Figure 5.2 Sites of GSK-3 inhibition. GSK-313 is activated by phosphorylation at Tyr216 and inhibited by 
phosphorylation at Ser9 and also by competing for ATP at the ATP-binding site. Lihium ibhibits GSK-3 by 
increasing the phosphorylation at Ser9 and also by competing with ATP. Taken from (Meijer et al., 2004) 

Lithium is the only available drug recognized to inhibit GSK-3 (Figure 5.2). It is 

widely prescribed for the treatment of BPD (Freeman and Freeman, 2006; Soares and 

Gershon, 1998). And although it has been in use for more than fifty years, there is still 

interest in its pharmacological properties and new therapeutic applications are found 
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constantly (Chuang et al., 2002; Phiel and Klein, 2001). The first indications that GSK-3 

was a direct target of lithium came over a decade ago. Klein and Melton showed, by a 

peptide substrate assay, that LiC1, within therapeutic concentrations, was able to block 

GSK-3I3 mediated phosphorylation of protein phosphatase inhibitor-2 and tau. They 

proposed that lithium mimicked the effect of insulin signalling through inactivation of 

GSK-3I3 (Klein and Melton, 1996). Stambolic et al., observed a similar substrate 

phosphorylation effect in Drosophila cells where lithium treatment mimicked the effect of 

Wnt/f3-catenin (wingless/Armadillo in Drosophila) activation (Stambolic et al., 1996). 

Nowadays, we know that lithium has a direct and indirect mechanism to inhibit GSK-3. 

Lithium directly inhibits GSK-3 acting as a competitive inhibitor of Mg2+; on the other 

hand, it indirectly inhibits GSK-3 by increasing its phosphorylation. Although, the later 

mechanisms is not fully understood, it is accepted that the indirect effect might be through 

inactivation of a phosphatase that normally removes phosphate residues from GSK-3 thus 

allowing its activation (Jope, 2003; Ryves and Harwood, 2001). 

Since GSK-3 has been found to be implicated in several neuronal physiological 

processes, as well as in the pathogenesis of a diverse range of brain-related diseases, 

lithium is currently studied as a potential treatment option for diseases such as AD and 

other tauopathies (corticobasal degeneration, Pick's disease), HD, schizophrenia, among 

others (Cohen and Goedert, 2004; Hooper et al., 2008; Jope and Johnson, 2004; Lovestone 

et al., 2007). 

5.2.3 The role of GSK-3 in ageing 

There is no direct evidence of the role of GSK-3 in ageing. However, there are some 

indirect observations that suggest that GSK-3 function may be of great relevance for 

lifespan and ageing. The closest observation to date of the role of GSK-3 in ageing comes 

from a pharmacogenetic study of the effects of lithium in C. elegans (McColl et al., 2008). 

Lithium is the most potent drug, medically available, known to inhibit GSK-3 (Jope, 2003; 

Phiel and Klein, 2001). They observed that lithium treatment extended lifespan, and when 

this was correlated with gene-transcripts response to lithium and RNA interference 

knockdown experiments, they concluded that the effects of lithium could be by modulation 

of histone methylation and chromatin structure. However, when they expressed a 

maternally rescued null gsk-3I3, they observed a 36% reduction in C. elegans lifespan. 
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Additionally, treatment of gsk-3I3 null worms with lithium, further decreased lifespan 

(McColl et al., 2008). 

Work in the klotho mice has shown that regulation of the Wnt/I3-catenin pathway is 

relevant for lifespan (Liu et al., 2007). The klotho mice were generated serendipitously as a 

result of an insertional mutation that disrupted the promoter region of an, until then, 

unknown gene, now named klotho (Kuro-o et al., 1997). The klotho gene encodes a type-I 

single-pass transmembrane protein that is an obligatory co-receptor of the fibroblast 

growth factor 23 (FGF23). As FGF23 regulates phosphate metabolism and it is also related 

with a premature ageing phenotype, this has unveiled a potential link between ageing and 

phosphate metabolism (Kuro-o, 2009, 2010). The klotho mice developed normally but 

presented with an early ageing phenotype and extremely reduced lifespan (Kuro-o, 2009; 

Kuro-o et al., 1997). It was reported an average lifespan of 60.7 days with no mice living 

longer than 100 days. Moreover, the klotho deficient mice developed age-related changes 

and diseases such as arteriosclerosis, osteoporosis, emphysema, skin atrophy and infertility 

(Kuro-o et al., 1997). On the other hand, mice overexpressing klotho significantly outlived 

their littermates by 18 to 30% (Kurosu et al., 2005). 

The above illustrates that klotho is an important protein involved in the regulation 

of lifespan and ageing. Its relevance for GSK-3 was established later when Liu and 

colleagues showed that klotho physically interacts with Wnt, as co-immunoprecipitation 

experiments evidenced that klotho immunoprecipitates with several Wnt isoforms. Even 

more, this biophysical interaction was shown to negatively regulate the Wnt/I3-catenin 

pathway. Klotho mice show either reduced (when obtained by insertional mutation) or no 

(generated by conventional gene targeting) activity, resulting in increased Wnt pathway 

activity in several tissues. Additionally, in vitro studies where primary mouse embryonic 

fibroblasts were grown in a Wnt3a-conditioned medium, and analyses of skin follicles of 

mice overexpressing Wntl (increasing in both the activity of the Wnt/(3-catenin pathway), 

showed a significant augmentation of senescence when compared against controls (Liu et 

al., 2007). Since increased Wnt/f3-catenin pathway activity would maintain GSK-3 in an 

inactive state, it is possible to hypothesize that a persistent inactive GSK-3 could be in part 

responsible for the pro-ageing phenotype of the Klotho deficient mice. This is also 

consistent with the lifespan effect of null gsk-3/3 mutants in C. elegans. 

Additional evidence of the role of GSK-3 in ageing has come from the 

overexpression of the Wnt/I3-catenin pathway in Drosophila. Shen et al., over-expressed 

wingless, the fly homolog of Wnt, using the Act-GS conditional expression system 
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(allowing limited life-cycle expression). Overexpression of wingless was lethal to both 

male and female larvae, but when wingless was over-expressed during adulthood, it 

reduced lifespan up to 42% (Shen et al., 2009). 

The available data does not give direct evidence as to what is the role of GSK-3 in 

ageing. Lithium is recognized as a GSK-3 inhibitor however, the results from McColl are 

contradictory to some extent to what one would expect from GSK-3 inhibition and lithium 

treatment (McColl et al., 2008). As mentioned earlier, they found that although lithium 

treatment increased the lifespan of worms, a null gsk-3I3 had detrimental survival effects. 

Moreover, the indirect evidence presented from modulation of the Wnt signalling pathway 

better supports that inhibition of shaggy/GSK-3 has a pro-ageing effect. 

5.2.4 Lithium and the inositol depletion hypothesis 
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Figure 5.3 Inositol phosphate pathway. Lithium and other mood-stabilising drugs are thought 
to act by inhibiting specific components of the inositol phosphate pathway. Besides inhibiting 
recycling of inositol via IPP and IMPase inhibition, lithium also inhibits de novo synthesis of inositol 
through IMPase inhibition. However, valproic acid (VPA) most directly inhibits synthesis through inhibition of 
inositol synthase (ino-1). Additionally lithium, VPA and carbamazepine (CBZ) also inhibit transport across the 
membrane via the sodium/myo-inositol transporter (SMIT) Taken from (Harwood, 2005). 

The inositol depletion hypothesis of lithium proposed by Berridge, Downes and Manley 

suggests that lithium acts to stabilize mood via inhibition of the recycling of inositol and 

interfering with inositol 1,4,5-triphosphate (IP3)-mediated cell signalling (Figure 5.3) 

(Berridge et al., 1989). This followed from the observation of Allison and Stewart who 

described that lithium-treated rats showed a 30% reduction of myo-inositol levels in 

cerebral cortex. Importantly they showed that this effect was not reproducible by NaC1 

(Allison and Stewart, 1971). However, other studies have called these results into question 

(Phiel and Klein, 2001). Lithium is presumed to inhibit the recycling of inositol for the re- 
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synthesis of inositol phospholipids via negatively acting at least on two enzymes, inositol-

1,4 biphosphate 1-phosphatase (IPP) and inositol-1(or 4)-monophastase (IMPase) 

(Berridge, 1985; Chiu and Chuang, 2010; Harwood, 2005). 

Myo-inositol is the substrate for the formation of the lipid membrane 

phosphatidylinositol (PtdIns). Phosphorylation in its inositol carbon ring results in the 

formation of mono-, bis- and tris- Ptdlns phosphate (PtdInsP). Stimulus activation, for 

example of G protein coupled receptors, activates the enzyme phospholipase C (PLC) 

which hydrolyzes Ptdlns(4,5)P2 (or PIP2) to release soluble inositol tris-phosphate (IP3). 

This is particularly relevant for calcium homeostasis. Additionally, PLC releases diacyl 

glycerol (DAG) which activates protein kinase C (PKC) and its downstream targets (Can 

et al., 2014; Harwood, 2005). 

IP3 dephosphorylation by subsequent action of IPP and IMPase recycles inositol 

(mostly present as the stereoisomer myo-inositol). Lithium inhibits IPP and IMPase within 

the therapeutic range (0.5 to 1.5 mM) (Can et al., 2014; Phiel and Klein, 2001). Inositol 

depletion by these and other enzymes has been proposed as a common mechanism of 

action for lithium, valproic acid and carbamazepine (Figure 5.3) (Williams et al., 2002). 

Lithium is a non-competitive inhibitor of IMPase, which means that the degree of 

inhibition is dependent (or more effective) on both the inhibitor and the substrate; the more 

inositol phosphate, the more inhibition (Phiel and Klein, 2001; Williams and Harwood, 

2000). This has often been taken as an explanation why lithium stabilises mood in disease 

patients but not in non-affected subjects (Phiel and Klein, 2001). It is presumed that 

patients with BPD and other mood disorders have and increased pool of inositol or 

signalling through the IP3 signalling pathway, though evidence for this is scarce (Can et 

al., 2014). Interestingly, myo-inositol supplementation is capable of blocking the effect on 

inositol depletion (Williams and Harwood, 2000; Williams et al., 2002). 

5.2.5 Alzheimer's disease: clinical and pathological principles 

Alzheimer's disease (AD) is the most common neurodegenerative disease; it contributes 

60 to 70% of all causes of neurodegeneration (Holtzman et al., 2011). It has been 

estimated to affect over 35 million people worldwide (Selkoe, 2012). While the 

contribution to overall mortality from other chronic degenerative diseases has been 

declining over time (the so called morbidity compression), AD is increasingly becoming a 

dominant contributor to death (Figure 5.4) (Alzheimer's Association, 2014). 
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Figure 5.4 Percentage changes in mortality for the major killer diseases between 2000 and 2010 from 
data from the National Center for Health Statistics, USA. Taken from (Alzheimer's Association, 2014). 

The major risk factor for AD is ageing, as the incidence of the disease increases 

with age (Mayeux and Stern, 2012). Other important risk factors are family history, APOE 

status, cardiovascular health, education and traumatic brain injury, amongst others 

(Alzheimer's Association, 2012, 2014). Indeed there is great evidence that altered 

metabolism of glucose and cholesterol increase the risk of AD, though this connection 

seem to go in both directions (Castillo-Quan et al., 2008; Luchsinger, 2010). Family 

history is relevant since AD has a strong genetic component. Most cases of AD develop 

later in life (LOAD, late onset AD), after the 7th decade, and are thought to be sporadic 

(with unknown cause, or multigenic in aetiology). However, less than 1% can develop the 

disease as early as there forties (EOAD, early onset AD). EAOD or familial AD arises 

secondary to mutations in genes that increase the production of amyloid beta (A(3). AD is 

characterised by the presence of two pathological hallmarks, extracellular senile plaques 

consisting of insoluble aggregated Af31_42 (A(3 and Af31_42 [or Af342] can be used 

interchangeably to denote the full length of the amyloidogenic peptide) and intracellular 

neurofibrillary tangles composed of a hyperphosphorylated form of the microtubule 

associated protein tau (George-Hyslop, 2000; Hardy, 2004; Selkoe, 1991; Tanzi, 2012). 

These pathological hallmarks were recognised early in the 1900's by the German 

psychiatrist Alois Alzheimer in Auguste D. This was a 51-year-old woman who presented 

with an atypical form of dementia that included auditory hallucinations, delusions, 
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paranoia and aggression along with short-term memory loss and language deficits. Alois 

Alzheimer's description of the pathological features of the disease, later named after him 

by his mentor Emil Kraeplin, remain to be one of the landmark breakthroughs of the 

disease (Goate and Hardy, 2012; Ramirez-Bermudez, 2012). 

Figure 5.5 Amyloid precursor processing and the formation of 41_42. For detail description see main 
text. Taken from (Querfurth and LaFerla, 2010). 

AI31_42 derives from the `abnormal' processing of the ubiquitous type I 

transmembrane protein amyloid precursor protein (APP). APP695, the major neuronal 

form of APP (other forms like APP751 and APP770 are expressed elsewhere), is cleaved 

by two metabolic routes, the amyloidogenic or non-amyloidogenic paths (Figure 5.5). In 

the non-amyloidogenic route APP is sequentially cleaved by a- and y-secretase. Cleavage 

by a-secretase results in the release of a large N-terminal ectodomain (sAPPa) to the 

extracellular space, while the remaining C83 fragment is digested by y-secretase to release 

to the extracellular space a fragment called p3 and the amyloid intracellular domain 

(AICD) released in the cytoplasm. On the other hand, amyloidogenic processing initiates 

with processing by (3-secretase (3-site APP-cleaving enzyme 1 (BACE-1) realising a shorter 

sAPP called sAPP(3. The remaining C99 fragment is processed then by y-secretase 

liberating A(3 of different lengths, including A(31_38, A 

A(31_42 and A(31_43 (Cummings 

and Cole, 2002; LaFerla et al., 2007; Mann et al., 1996; Querfurth and LaFerla, 2010; 

Welander et al., 2009). A(31_42 is the most common and pathogenic form of A(3 present in 

plaques, though recently the pathogenicity of A131_43 has also been described (Saito et al., 

2011). 
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There is always been debate as to which one, Al3 or tau, drive the disease. The 

amyloid cascade hypothesis offers a conceptual framework for the study of AD (Figure 

5.6). This hypothesis proposes that increased Al3 production is an early event of the 

disease that drives in an almost sequential manner the pathology that leads to 

neurodegeneration and clinical AD (Goate and Hardy, 2012; Hardy, 2009; Hardy and 

Selkoe, 2002; Selkoe, 2006). The greatest support for this theory comes from the fact that 

mutations in APP that increase the production of Af31_42, alter the ratio of Af31_40 to A131-42, 

or increase the aggregation propensity of A131_42 all lead to familial EOAD (Bertram et al., 

2010; Goate et al., 1991; Guerreiro et al., 2013; Hardy, 2004; Nilsberth et al., 2001; Tanzi, 

2012). However, mutations in tau do not cause AD and have been linked to other forms of 

neurodegeneration like fronto-temporal dementia and some forms of parkinsonism 

(Goedert, 2005; Spillantini and Goedert, 2013; Wolfe, 2009). 

Amyloid cascade hypothesis 

)Missense mutations in APP, PS1 or PS2 genes  
40 ______________  ) 

Increased A1342 production and accumulation 

 ______ )Ali42 oligomerization and deposition as diffuse 

Figure 5.6 Amyloid cascade hypothesis as proposed 
by John Hardy and Denis Selkoe. In familial EAOD 
mutations in APP and the presenilin proteins presenilin 
1 (PS1 encoded by PSEN1) or presenilin 2 (PS2 
encoded by PSEN2) that increase the activity of y-

secretase, augmenting the A131_42 load (Hardy, 2010; 
Hardy and Selkoe, 2002) initiate a sequence of events 
that culminate in dementia. Taken from (Goate and 
Hardy, 2012). 
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Clinically, the disease has an insidious presentation that often starts with minor 

short-term memory loss (often dismissed by patients and those surrounding them) and 

orientation difficulties. Remote or long-term memory is only lost later in the disease. After 

many years other symptoms like loss of verbal and motor control, judgement and 

reasoning can also accompany. Less common symptoms include depression, hallucinations 

plaques 
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and psychosis; sleep disturbances, agitation, anxiety, etc. (Blennow et al., 2006; 

Cummings and Cole, 2002; Holtzman et al., 2011; Mayeux, 2003). 

Even though we have understood a great deal of the disease, there is very little the 

community can offer patients in terms of treatments. Pharma and academia have embarked 

in huge and costly clinical trials just to end up with disappointing outcomes and no 

therapeutic approach with clinical value. Where are we failing? All therapeutic 

interventions that have entered clinical trials have done so with a great deal of preclinical 

data backing them up. Certainly, the effort is being done, yet the fruits are long overdue. 

This has made several to reconsider the approach. For example, the amyloid cascade 

hypothesis has been partly blamed for being the main focus of most academics. Yet, 

clinical data still supports that Af31_42 as an early pathogenic event. Moreover, mutations 

that increase Af31_42 production translate clinically in AD, which cannot be said by 

mutations arising in tau. Others have also considered that the use of mouse models that do 

not recapitulate the disease are also to blame. Although fmger pointing will not bring 

solutions, serious considerations need to be taken so that we can bring the community to a 

consensus and efficient approach to tackle this horrible disease (Guerreiro and Hardy, 

2011; Hardy, 2009; Lansbury and Lashuel, 2006; Selkoe, 2012). 

5.2.6 Drosophila models of Alzheimer's disease 

Although Drosophila possesses an APP like protein, Appl (Luo et al., 1992; Rosen et al., 

1989), it is contested whether it possess a functional I3-secretase responsible for the 

cleaving of the amyloidogenic portion, though the fly does possess a functional y-secretase 

(Carmine-Simmen et al., 2009; Fossgreen et al., 1998). Moreover the amylogogenicity of 

Appl has been shown to be poorly conserved in evolution (Rosen et al., 1989). A viable 

option for modelling AD in Drosophila has been the reconstitution of the system, i.e., 

inserting in the fly all the components of the amyloidogenic processing pathway that lead 

to the generation of Af31_42. This has proven to be effective at showing that the processing 

can indeed happen when these genes are inserted in the fly. Through incorporation of 

human APP695, a- and y-secretase, the fly has been used to determine toxicity of A131-42 

and also to screen for modifiers of Af31_42 production. However, given that the processing 

is happening because of the artificial introduction of human components, this approach has 

been regarded as less revealing (Bonner and Boulianne, 2011; Iijima and Iijima-Ando, 

2008). 
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An alternative has been to introduce full length Al3 instead to study the downstream 

effects that lead to neurodegeneration. By using the Ga14/UAS system (described in 

Chapter 2) Iijima and colleagues studied behavioural and survival of flies expressing A(31_ 

ao or A(31_42. They observed that expression of A(31_42 in the fly brain lead to the formation 

of amyloid deposits, age-dependent learning defects, locomotor defects and neuronal loss. 

Additionally these flies also showed reduced survival. In contrast, expression of A131_40 did 

not lead to neurodegeneration, locomotor defects nor reduced survival, though it associated 

with learning defects (Iijima et al., 2004). Crowther and colleagues used a similar strategy 

but also expressed A(31_42 carrying the Arctic mutation, a Glu22Gly amino acid substitution 

that accelerates aggregate formation (Nilsberth et al., 2001). They showed that the Arctic 

mutation showed more accelerated and severe phenotypes than expressing wild type A(31-42 

(Crowther et al., 2005; Kinghorn et al., 2006). 

Recently our group used another fly genetic tool, the Gene Switch system 

(described in Chapter 2) (Osterwalder et al., 2001), to show that the effects of A131_42 are 

not produced by disrupting the developmental programme of neurons as the expression of 

the transgenes is only started once the fly was matured. Sofola and colleagues expressed 

A(31_40 or A(31_42 (with the Arctic mutation) only in adult neurons. While expression of 

Arctic-A(31_42 reduced survival and accelerated age-related locomotor decline, expression 

of A(31_40 did not. They also show that the expression of Arctic-A(31_42 lead to the 

progressive deterioration of the synaptic capacity of the giant fibre system, an escape 

system in Drosophila. Interestingly, they did not observe neuronal cell loss (Sofola et al., 

2010). This model can be used to tease out early pathogenic event given that A(31_42 is 

expressed only when the experimenter provides fly medium supplemented with the 

GeneSwitch inducer (mifepristone or RU486). Additionally, Rogers and colleagues used it 

to determine whether older neurons are more susceptible to the toxic effects of Arctic-A(31_ 

42. They found that older flies die faster than younger flies when Arctic-A(31_42 is 

expressed, even when the mRNA or peptide levels are controlled to be similar in the young 

and old (Rogers et al., 2012). The GeneSwitch system model for the expression of Arctic- 

A(31_42 has also been used to determine that Drosophila tau is downstream of A131_42 in the 

pathogenic cascade (Sofola et al., 2010), and that drugs that modify Arctic-A(31_42 levels 

improve the phenotypes observed in this model (Sofola-Adesakin et al., 2014). 
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5.3 Methodology and experimental design 

5.3.1 Drosophila strains 

All shaggy lines for ageing experiments were crossed into the -14,Dah background. 

Experiments for neurodegeneration were carried out in the 
w1118 

background. UAS-sgg, 

UAS-sgg(S9E) and UAS-sgg(S9A) were obtained from Dr. Oyinkan Sofola-Adesakin. 

UAS-sgg-RNAi and UAS-IMPase-RNAi lines were obtained from Vienna Drosophila 

RNAi Center and UAS-sgg-RNAi(1) and UAS-sgg(KD) were obtained from the 

Bloomington Stock Center. S1106 driver was obtained from Dr. Ivana Bjedov. UAS-

Arctic-A01-42 was a generous gift from Damian Crowther (Cambridge, UK) and UAS-

0N4Rtau was obtained from Dr. Fiona Kerr. 

5.3.2 Immunoblotting 

The following primary antibodies were used: phospho(Ser9)-GSK-3 (#9331 Cell Signaling 

Technologies: 1:500), total-GSK-3 (#G8170-40 US Biologicals; 1:1000), total human tau 

(#A0024 Dako; 1:1000), CP13 (phospho(Ser202)-human tau; a generous gift of Dr. Peter 

Davies to Dr. Fiona Kerr; 1:100), PHF-1 (phospho(Ser396/Ser404)-human tau; a generous 

gift of Dr. Peter Davies to Dr. Fiona Kerr; 1:100) . 

5.3.3 Myo-Inositol supplementation 

Myo-inositol (15125 Sigma) was prepared as 20 mM before supplemented to fly medium 

at the appropriate concentration. 
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5.4 Results 

5.4.1 Lithium inhibited shaggy across a wide range of concentrations 

GSK-3 is a well-documented target of lithium (Jope, 2003). I therefore decided to 

investigate whether the concentrations used in my experiments were able to inhibit GSK-3. 

I treated flies for 15 days before testing by immunoblot analyses. Lithium increased the 

inhibitory phosphorylation (Serine 9 or S9) of shaggy (sgg) in a dose-dependent manner 

(Figure 5.7; P < 0.05, ANOVA post hoc Tukey- Kramer). Thus, the concentrations used 

in my experiments, including the ones that extend lifespan, significantly inhibited sgg. 
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5.4.2 Different shaggy transgenes modified tau phosphorylation levels 

I decided to investigate the role of GSK-3 in Drosophila ageing and to evaluate how it 

interacts with lithium. I first assessed the kinase activity of over-expressing sgg, an RNAi 

line against sgg and several mutants that differentially regulate its kinase activity. Given 

the lack of reagents to test the ability of sgg to phosphorylate downstream targets, I 

evaluated the ability of sgg (or mutants) to phosphorylate the human version of the 

microtubule associated protein tau (hTau, specifically ON4R tau). Tau is a bona fide 

downstream target of GSK-3, which has made it a relevant pharmacological target for the 

treatment of AD and other relevant diseases where tau is hyperphosphorylated (Hooper et 

al., 2008; Querfurth and LaFerla, 2010). Moreover, sgg has previously been shown to be 

* 

 

** 
T 

10 25 50 [L  CI  ( r rM) ]  

Figure 5.7 Lithium increased the inhibitory 
Ser9 phosphorylation of shaggy/GSK-3. 
Female flies were treated with lithium for 15 
days after which they were analysed by 
immunoblot analyses. * P < 0.05, ** P < 0.01 
(ANOVA, post hoc Tukey-Kramer). Bar 
represents 3 biological replicates of 10 flies 
each ± SEM. 
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able to phosphorylate hTau, which correlated with neurodegeneration in flies (Chatterjee et 

al., 2009; Mudher et al., 2004). I first made a double mutant fly carrying the ubiquitous 

actGS driver and the UAS-0N4Rtau. I then crossed this double mutant with control flies or 

other UAS lines making it possible to have flies carrying a driver and two UAS lines 

simultaneously. I observed that while over-expression of wild-type sgg or the S9A and 

S9E mutants increased tau phosphorylation (P < 0.05, ANOVA post hoc Tukey-Kramer), 

RNAi-mediated knockdown of sgg significantly reduced phosphorylation levels (Figure 

5.8; P < 0.05, ANOVA post hoc Tukey-Kramer). The S9A sgg mutant carries an alanine 

instead of a serine in position nine, while the S9E mutations carries a glutamic acid 

substitution in the same position (Bourouis, 2002; Papadopoulou et al., 2004). The S9A 

mutation should render the enzyme activity constitutively active, while the S9E mutation 

should act as a phosphomimic, hence acting as a dominant negative. As it will become 

evident from experiments presented later, none of my experiments suggest that the S9E 

and S9A mutation are phenotypically different (see discussion). I sequenced the mutations 

in my fly stocks to corroborate that my flies carried the appropriate mutations, finding that 

they indeed were S9A or S9E mutants (data not shown). 

Over-expression of a kinase dead (sgg-KD) mutant did not significantly modify tau 

phosphorylation levels (P > 0.05, ANOVA post hoc Tukey-Kramer). Thus, I identified sgg 

transgenes with the ability to reduce tau phosphorylation and to increase it. 

 
Figure 5.8 In vivo phosphorylation of tau by several transgenes of shaggy. Flies expressing tau and one 
of five UAS-sgg lines were assessed for their ability to phosphorylate human tau by using two antibodies 
against tau sites known to be phosphorylated by GSK-3 (Ser202 and Ser404). * P < 0.05 (ANOVA, post hoc 
Tukey Kramer). N= 4 replicates of 10 flies each ± SEM. 
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5.4.3 Shaggy transgenes that increased tau phosphorylation reduced 

lifespan 

I first analysed how sgg transgenes that increased tau phosphorylation modulate lifespan. 

For this purpose I over-expressed wild type sgg, the S9A or S9E mutant using the actGS 

driver and fed them the inducer RU486 from day 2 post-eclosion. Over-expression of 

either of these transgenes shortened lifespan significantly (Figure 5.9; P > 0.001, ANOVA 

post hoc Tukey-Kramer for the induced lines in comparison to their respective control). 
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Figure 5.9 Lifespan of GSK-3 UAS lines that 
increased tau phosphorylation. (A) Over-expression of wild type sgg shortened lifespan. (B) Over-

expression of the S9A sgg mutant or the (C) S9E sgg mutant reduced lifespan. N= 150 female flies per 

condition. A set of these experiments was performed in collaboration with Dr. Ivana Bjedov. 

Over-expression of wild type sgg shortened lifespan by about 30%. Median and 

maximum lifespan of flies over-expressing sgg were 33.7 and 54.5 days respectively. In 

contrast their uninduced controls showed a median and maximum of 54.5 and 73.1 days, 

respectively. Flies over-expressing the sgg S9A mutant had a median lifespan of 25, while 

their non-induced counterpart showed a median lifespan of 53 days. Interestingly, both the 

induced and uninduced lines showed a maximum lifespan of 63 days. In a similar vein, 

flies over-expressing the S9E mutation showed a median and maximum lifespan of 27 and 
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56 days, respectively; in contrast to a median and maximum lifespan of 58 and 70 days of 

the un-induced controls. Thus, sgg transgenes that increased tau phosphorylation reduced 

lifespan when over-expressed in adulthood from 2 days post-eclosion. 

5.4.4 Early or late-onset over-expression of shaggy reduced lifespan 

I just showed that over-expression of sgg increased phosphorylation of human tau in vivo. 

This evidence of increased GSK-3 activity correlated with a significant reduction in 

lifespan. Interestingly, the survival curves for the S9A and S9E mutants showed an early 

accelerated death rate, after which the curves plateau making it seem that flies expressing 

either of these sgg mutants could survive as long as the last 10% of the un-induced 

controls (Figure 5.9B). The plateau effect in the survival curve after the initial high 

mortality could suggest that over-expression of sgg mutants with increased kinase activity 

has deleterious effects at younger, but not older ages. Therefore, I evaluated the possibility 

that late-onset expression could have favourable effects in comparison to early onset over- 

expression. I tested the effect of over-expressing the S9E or S9A sgg mutants after 2 days 

post-eclosion (as in previous experiments) and after 15 or 30 days. For these experiments 

flies were reared at the same time and randomly separated into 4 groups, one of which 

started RU treatment at day 2, one at day 15 and another one after 30 days of eclosion. The 

remaining group was labelled as the un-induced control. Flies that were switched on at 

later stages (after 2 days) were kept in the same fly medium as the control group until the 

time of switch. I observed that lifespan was significantly reduced independent of the age at 

which the over-expression was started (Figure 5.10). When the S9A mutant was induced 2 

days post-eclosion the median lifespan was 21.6 days, while median lifespan when 

induction was started later, 15 and 30 days, was 35.6 and 52 days, respectively (P for all 

comparisons < 0.001, log-rank test; Figure 5.10A). The time required from induction (when 

RU was supplemented for the first time) to reach median lifespan was very similar being 

19.6, 20.6 and 22 days, respectively for inductions starting 2, 15 and 30 days post-

eclosion. A similar scenario was observed when the S9E mutant was expressed in a similar 

time frame (Figure 5.10B). The median lifespan of flies over-expressing the S9E mutant 

was 21.6, 41 and 50.5 days for initiating gene expression at days 2, 15 and 30 post-

eclosion, respectively (P for all comparisons < 0.001, log-rank test). The time required for 

reaching median lifespan from the moment of switching to fly medium supplemented with 

RU was 19.6, 26 and 20.5 days, respectively. 
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I also tested the effect of over-expressing these sgg mutants under lower (25 piM 

RU; Figure 5.10C and D) RU concentrations of the inducer observing a consistent and 

similar result than when induced with 200 piM of the inducer. My results thus suggest that 

ubiquitous over-expression of wild type sgg or sgg mutants that increased the 

phosphorylation of human tau in vivo reduced lifespan whether expressed early in 

adulthood or late in life. 

Figure 5.10 Late-onset over-expression of shaggy shortens lifespan. A and B show the over-expression of 
the (A) S9A or (B) S9E mutant induced by 200 11M RU, while C and D show over-expression with 25 jiM 
RU, respectively. Arrows represent time to switch ON expression by supplementing RU. N= 150 female flies 
per condition. 

5.4.5 Shaggy-RNAi extended lifespan and protected against paraquat 

Having established that sgg mutants that increase tau phosphorylation reduce lifespan I 

sought out to investigate the role of the line that reduced phospho-tau levels. Hence, I 

turned my attention to the sgg RNAi fly line and tested its role in longevity. Down- 

regulation of sgg significantly increased lifespan (P < 0.01, log rank test; Figure 5.11A). I 

also tested an independent sgg RNAi line also observing lifespan extension when induced 
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(Figure 5.11B; P < 0.01, log rank test). Thus, RNAi-mediated knockdown of sgg 

increased lifespan 

Given that lithium treatment protects against oxidative stress I explored the 

possibility that genetic down-regulation of sgg could also protect against paraquat. I 

induced the expression of the RNAi against shaggy for 15 days before transferring flies to 

medium containing paraquat. Interestingly, RNAi-mediated knockdown of sgg 

significantly protected against paraquat (P < 0.01, log rank test; Figure 5.11C). Thus, 

lifespan extension and paraquat resistance are two features of sgg down-regulation. 
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Figure 5.11 RNAi-mediated knockdown extended lifespan and protected against paraquat. A and B 
show survival curves of two independent sgg RNAi lines. N= 160 female flies per conditions. (C) shows the 
response of knockdown of sgg to paraquat. N = 90 flies per condition. 

5.4.6 Genetic manipulations of shaggy did not consistently alter hypoxia, 

armadillo and the IIS pathways 

In an attempt to understand the molecular mechanisms behind GSK-3 regulation of 

lifespan I assessed the expression of genes transcriptionally regulated when certain 

pathways change. For this I hypothesised that changes having a meaningful impact in the 

regulation of lifespan due to sgg modulation would happen in opposing directions when 

sgg is down-regulated and when sgg or the S9A mutant are over-expressed. 

 

0.2 

eah 

actGS > UAS-sgg-RNAi 

RU486 (mM) 

— 

— 200 

A 
1.0 

B 

1.0 

0.8 

0.0 
0  1 0  2 0  3 0  4 0  5 0  6 0  7 0  8 0  9 0  1 0 0  1 1 0  

Time (d) 

0.0 

0.8 

(73 0.6 

0 
cr) 0.4 

0.2 



 Pharmacogenetics of ageing and neurodegeneration 

 174 

One pathway that responds in opposite directions when GSK-3 is manipulated is 

the hypoxia response pathway. When GSK-3 is down-regulated, genes downstream of the 

transcription hypoxia-inducible factor-la (HIF-1a) are induced. On the contrary, over- 

expression of GSK-3 reduces HIF- 1 a (Fliigel et al., 2007). I therefore decided to 

characterise the mRNA levels of the two most characterised gene targets of HIF-la in 

Drosophila, scylla and charybdis (Brugarolas et al., 2004). Surprisingly, I only observed 

down-regulation of these two genes in the flies over-expressing wild type sgg (Figure 

5.12A and B; P < 0.05; Student's t-test), but not when sgg was down-regulated or in the 

S9A mutant over-expression (P > 0.05; Student's t-test). As these changes did not follow 

my genetic manipulations and particularly did not change in flies with sgg-RNAi I 

consider that the hypoxia response pathway is unlikely to be a major player in the 

regulation of lifespan due to changes in sgg levels. 

GSK-3 is known to modulate the arniadillo/13-catenin pathway by targeting 

armadillo for degradation. This inhibition would reduce signalling to the nucleus, hence 

lowering the expression of known transcripts (Gordon et al., 2005). I therefore decided to 

explore two gene targets of the armadillo pathway, namely Fz3 (which encodes for the 

receptor frizzled 3) and naked. Fz3 mRNA levels were significantly lower (Figure 5.12C; 

P < 0.05, Student's t-test) in flies expressing sgg-RNAi and wild type sgg, while no 

detectable change was observed in flies over-expressing the S9A mutant. mRNA levels of 

naked only significantly changed in flies over-expressing the S9A mutant (Figure 5.12D; 

P < 0.01, Student's t-test) while no change was detected when sgg was down-regulated or 

over-expressed (P > 0.05, Student's t-test). Thus, it is unlikely that the armadillo/f3-catenin 

pathway plays a significant role in the modulation of lifespan through sgg, given the 

inconsistent results between the two gene targets and the genetic manipulations. 

I also assessed gene targets of the IIS pathway. Sgg is known to modulate this 

pathway by targeting IRS-1/chico for degradation, hence down-regulating the pathway 

(Eldar-Finkelman and Krebs, 1997). I therefore analysed the expression of three known 

targets of dFOXO, dInR, chico and 4E-BP (Alic et al., 2011b). Once more the results were 

inconsistent with alterations in the IIS pathway regulating lifespan downstream of sgg. 

dInR and chico mRNA levels were down-regulated with expression of sgg-RNAi and 

over-expression of sgg wild type (Figure 5.12E and F; P < 0.05; Student's t-test) while no 

changes were detected in the S9A mutant. In the case of 4E-BP the only detectable change 

was observed when wild type sgg was over-expressed (Figure 5.12G; P < 0.05, Student's 

t-test), in which it was down-regulated. 
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Figure 5.12 mRNA expression levels of gene targets of pathways reported to interact with GSK-3. 
Expression levels of several genes were quantified by RT-qPCR. Darker shade indicates induction of 

transgene. These genes are downstream of pathways known to be modulated by GSK-3, namely the hypoxia 

pathway (A and B), the armadillo/I3-catenin (C and D) pathway and the IIS pathway (E and G). For this 

experiments mRNA was quantified from quadruplicates of 10 whole flies. * P < 0.05. These experiments 

were performed in collaboration with Dr. Ivana Bjedov. 

In summary, these results do not support a role for the hypoxia, armadillo or ITS 

pathways in the regulation of lifespan by sgg modulation. 
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5.4.7 Lithium partially rescued from the detrimental effects of shaggy 

over-expression 

Next I examined the interaction of different sgg transgene lines and lithium for lifespan. 

First, I over-expressed wild type shaggy and again observed a —30% reduction in median 

lifespan (P < 0.01, log rank test). Interestingly, lithium treatment supplemented in the fly 

medium at 10 or 25 mM almost completely restored the detrimental lifespan effects of sgg 

over-expression (Figure 5.13A; P < 0.01, log rank test). I also assessed the interaction of 

lithium with the over-expression of the S9A mutant. Over-expression of the constitutively 

active S9A mutant significantly reduced lifespan by 50% and lithium almost completely 

rescued the survival detrimental effect (P < 0.001, log rank test; Figure 5.13B). These 

results indicate that lithium treatment can overcome the detrimental lifespan effects of 

over-expressing forms of sgg that increase tau phosphorylation. 

Figure 5.13 Lithium rescued from the lifespan shortening effect of sgg over-expression. (A) Lithium 10 

or 25 mM rescued from the effects of wild type sgg over-expression. (B) Lithium almost completely rescued 

the detrimental effects from over-expressing the sgg S9A mutant. N= 150 female flies per condition. 

Experiment in B was performed in collaboration with Dr. Ivana Bjedov. 

5.4.8 Lithium treatment and shaggy-RNAi were epistatic for lifespan 

Figure 5.14 Lithium and RNAi against 
shaggy were epistatic for lifespan extension. 
Lithium is unable to further extend the lifespan 

extension conferred by RNAi against sgg. N = 

150 flies per condition. 
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I then decided to perform a similar experiment when sgg was genetically down-regulated. I 

was interested to evaluate whether lithium treatment and genetic manipulation of sgg were 

additive or epistatic. Sgg-RNAi-mediated knockdown increased median lifespan by —14% 

(10 days) and maximum lifespan by —7% (6 days). When lithium was added in the fly 

medium at a dose of 5 mM, no further lifespan extension was observed (Figure 5.14; P > 

0.05, log rank test) as the survival curves of flies with down-regulated sgg treated ± 5 mM 

lithium overlapped. Importantly, doubling the dose of lithium (from 5 to 10 mM) restored 

the lifespan of the induced sgg-RNAi line to control levels (similar to increasing the 

concentration of lithium under maximised conditions for longevity; Figure 3.3). 

To the best of my knowledge this is the first time an epistatic interaction between 

GSK-3 genetic down-regulation and lithium has been tested in Drosophila. The epistatic 

effect of the pharmacologic and genetic interventions suggests that inhibition of sgg and 

lithium treatment modulate lifespan by acting on the same pathway. The inhibitory effect 

of lithium is only partial as shown in Figure 5.7, as is the effect of sgg down-regulation 

(Figure 5.8), hence when combined a stronger inhibition is achieved. Strong inhibition of 

sgg obtained with high doses of lithium is detrimental for longevity (Figure 3.3). Hence, 

though 5 mM LiC1 and sgg-RNAi were epistatic, addition of 10 mM (that would otherwise 

still be able to extend lifespan) to a fly with optimal down-regulation of sgg, restored 

survival to control levels. 

5.4.9 Lithium and myo-inositol were epistatic for lifespan 

The inositol depletion hypothesis is an alternative to GSK-3 inhibition for the mechanism 

of lithium (Harwood, 2005). I therefore tested whether addition of myo-inositol would 

block the lifespan extension effect of lithium (Figure 5.15A). I observed that 

supplementation of my-inositol at 10 11M extended lifespan, while 100 ptM shortened 

lifespan (Figure 5.15B). To my surprise the combination of 1011M myo-inositol and lithium 

at either 0.5 mM (Figure 5.15C) or 1 mM (Figure 5.15E) were epistatic. However, lithium 

protected against the detrimental effect of 100 11M myo-inositol supplementation (Figure 

5.15D and F). These results do not support that inositol depletion is a mechanism by which 

lithium promotes longevity, but lithium can protect against increased detrimental effects of 

myo-inositol. 
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Figure 5.15 Lithium and myo-inositol treatment were epistatic for lifespan. (A) Lithium concentrations 
from 0.5 to 10 mM extended lifespan. (B). Supplementation of myo-inositol at a concentration of 10 RM 
extended lifespan, while 100 RM shortened lifespan. (C) Combination of lithium 0.5 mM and myo-inositol at 
10 11M were epistatic for lifespan. (D) Lithium 0.5 mM can rescue from the detrimental effects of 100 RM 
myo-inositol. (E) 1 mM lithium and 10 11M myo-inositol were epistatic for lifespan. (F) Lithium 1 mM can 
rescue from the lifespan shortening of effect of 100 RM myo-inositol. 

Activation of autophagy is the proposed mechanism by which inhibition of inositol 

recycling exerts its effects (Sarkar et al., 2005). I therefore analysed LiCI-induction of 

autophagy by measuring LC3-I/LC3-II (Atg8 in Drosophila) levels, but was not able to 

detect changes (Figure 5.16A). I indeed observed a trend towards lower levels of both 

bands yet this did not reach statistical significance (P > 0.05, ANOVA, post hoc Tukey 

Kramer). To further analyse the interaction of autophagy and lithium I treated  
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heterozygous null atgl flies (Lee et al., 2007; Scott et al., 2007) and detected that lithium 

was still able to extend their lifespan (Figure 5.16B; P < 0.05 log rank test). Together my 

results do not support a role of inositol depletion and autophagy activation as the mediators 

of the longevity effects of lithium. 

A 

 
Figure 5.16 Lithium did not induce autophagy and extended lifespan of an autophagy-deficient 
mutant. (A) I measured the induction of autophagy through measurement of Atg8 (LC3) levels. There was a 

slight but non-significant reduction in the levels of atg8, not supporting a role for autophagy induction as a 

mechanism for lifespan extension. Bar represent average detected from triplicates of 10 flies each ± SEM. 

(B) Lithium extended lifespan of flies with heterozygous loss of atgl. N= 120 flies per condition. 

5.4.10 IMPase-RNAi extended lifespan 

Drosophila possesses approximately eight uncharacterised genes with predicted IMPase 

activity. To test whether genetic manipulation of IMPase modulates lifespan I took two of 

the genes and down-regulated them by RNAi. Interestingly, RNAi-mediated knockdown 

increased lifespan for both genes (Figure 5.17; P < 0.01 log rank test). Thus, IMPase 

positively regulates lifespan when down-regulated. However, I would require to perform 

the epistasis experiment to determine how lithium treatment and IMPase down-regulation 

interact to regulate lifespan. 
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Figure 5.17 RNAi against two putative genes with IMPase activity extended lifespan. Survival was 

measured from two RNAi lines against two different genes with putative IMPase activity. Both showed 

lifespan extension. N= 150 flies per condition. 

5.4.11 IIS or mTOR down-regulation rescued the deleterious lifespan 

effects of shaggy over-expression 

GSK-3 activity or expression levels are increased in patients suffering from diabetes 

mellitus and AD (Henriksen and Dokken, 2006; Hooper et al., 2008). Both of these 

diseases are associated with IIS down-regulation (Boucher et al., 2014; De Felice, 2013). 

A genetic manipulation that has shown to be evolutionary conserved to extend healthy 

lifespan is the knockout of the chico or IRS-1 in Drosophila and mice, respectively 

(Clancy et al., 2001; Selman et al., 2011). GSK-3 is constitutively active and gets inhibited 

by insulin stimulation through phosphorylation of its serine-9 by Akt (Doble and 

Woodgett, 2003; White, 2003). Given that sgg/GSK-3 is downstream of chico/IRS-1 

(Figure 5.18A), I speculated that the long-lived chicoi mutants had either increased 

expression levels or increased activity (lower phosphorylation of S9) of GSK-3. I analysed 

the activity and expression levels of sgg by immunoblot analyses. To my surprise, I did not 

identify alterations in expression or activity of sgg as measured by total-GSK-3 antibody 

or for activity levels as measured by the inhibitory phosphorylation site (S9) (Figure 5.18B; 

P > 0.05 ANOVA post-hoc Tukey Kramer). I found interesting that neither GSK-3 activity 

or levels were differentially regulated under a manipulation upstream of GSK-3. However, 

others in our group have encountered similar difficulties reproducing in vitro data, and 

only uncovered phosphorylation differences when specific tissues are challenged. For 

example, loss of CHICO, upstream of Akt, seems to have minimal effects on Akt 

phosphorylation when the tissue examined is not stimulated with insulin ex vivo (Ikeya et 

al., 2009; and unpublished results from the lab). With this in mind, it would be appropriate 
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to repeat these experiments with insulin stimulation ex vivo to assess whether loss of 

CHICO has effects on sgg/GSK-3 phosphorylation. 
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Figure 5.18 Interaction of shaggy and the nutrient sensing network IIS and mTOR. (A) Schematic 

representation of IIS and mTOR and the role of sgg at the centre of the network. (B) Immunoblot analyses 

for the levels of phospho-GSK-3 and total GSK-3 in chico null flies. (C) Survival effects of over-expressing 

the S9A mutant in flies lacking CHICO. N = 180 flies per condition. (D) mTORC1 activity was analysed in 

flies over-expressing the S9A mutation. (E) I supplemented flies over-expressing the sgg S9A mutant with 

50 rapamycin and evaluated the survival effects. Experiments in C and E were performed in 

collaboration with Dr. Ivana Bjedov. 
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experimental conditions to over-express the S9A sgg mutant in a chico null background 

(Figure 5.18C). The induction of sgg S9A in the control background reduced median 

lifespan from 53 to 25 days, without changing the maximum lifespan of 62.5 days in the 

un-induced controls (P < 0.001, log-rank test). In agreement with published data, loss of 

chico extended median lifespan by 9 days (-14%) and maximum lifespan by 16.5 days 

(-21%) (P < 0.001, log-rank test) (Clancy et al., 2001; Yamamoto and Tatar, 2011). Loss 

of chico almost completely rescued the deleterious effect of the sgg S9A mutation (Figure 

5.18C). When compared to the induction of the S9A mutation in the control background, 

the loss of chico extend median lifespan by 52% (from 25 to 48.5 days; P < 0.001, log- 

rank test). 

Taken together these results suggest that although GSK-3 is downstream of chico 

(or the dilps), the activity or expression levels are not changed when IIS is down-regulated, 

probably secondary to compensatory mechanisms. This has previously been reported for 

Akt phosphorylation downstream of CHICO (Ikeya et al., 2009). These unknown 

compensatory mechanisms might allow for the fly to survive longer than controls. Flies 

over-expressing an active version of sgg were not long-lived, suggesting that alterations in 

GSK-3 (as in mammals) are detrimental in light of IIS down-regulation. Moreover, IIS 

down-regulation by loss of the only IRS in the fly rescued the survival of flies over- 

expressing the sgg S9A mutant. 

I previously showed that lithium, an inhibitor of GSK-3, rescued the deleterious 

effects of wild type sgg or the sgg S9A mutant. Lithium did not modify the activity of 

mTOR (Figure 3.11). However, it has been shown in mammalian cells that GSK-30 

(carrying the S9A mutation) directly phosphorylates and activates the tuberous sclerosis 

complex-2 (TSC2), which leads to inhibition of mTOR. The S9A mutant therefore reduces 

the phosphorylation of S6 kinase (S6K) in vitro (Inoki et al., 2006). In turn, S6K is a 

negative regulator of GSK-3 (Frame and Cohen, 2001). Rapamycin, an mTOR inhibitor, 

extends lifespan in evolutionary distant organism ranging from yeast to mice (Johnson et 

al., 2013). A previous report from our group showed that flies fed rapamycin have reduced 

levels of S6K phosphorylation, but do not show changes in the expression or activity of 

sgg (Bjedov et al., 2010). I aimed to determine whether the converse is true, i.e., if 

increased GSK-3 alters the phosphorylation of S6K, downstream of mTOR. I did not 

identify changes in S6K phosphorylation (Figure 5.18D; P > 0.05 ANOVA post hoc Tukey 

Kramer). 
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I then decided to evaluate whether rapamycin treatment to inhibit mTOR could also 

rescue the lifespan shortening effect of the S9A mutation (Figure 5.18E). I treated control 

flies with fly medium containing 50 ptM rapamycin and observed a significant lifespan 

extension (Figure 5.18E; P < 0.001, log-rank test), comparable to published data (Bjedov et 

al., 2010). When rapamycin was supplemented to flies over-expressing the sgg S9A 

mutation their median and maximum lifespan was significantly extended by —28% and 

—8%, respectively (P < 0.001, log-rank test). 

My results showed that down-regulation of the nutrient-sensing network (IIS and 

mTOR) can protect against GSK-3 over-expression, potentially opening an avenue for 

these interventions in diseases where GSK-3 is up-regulated. 

5.4.12 Genetic manipulation of shaggy did not modulate age-related 

locomotor decline 

More than often short-lived mutants show organismal signs of illness, like reduced 

fecundity, acceleration of age-related anorexia and/or locomotor decline. I aimed to 

characterise these phenotypes in flies over-expressing wild type sgg, the S9A mutation or 

down-regulation of sgg by RNAi to possibly determine toxicity linked to specific tissues. 

First I evaluated the organismal effect of modulating sgg for age-related locomotor 

decline using the negative geotaxis paradigm (Gargano et al., 2005; Jones et al., 2009). I 

first documented that although sgg down-regulation extended lifespan (Figure 5.11), it did 

not protect against locomotor decline (Figure 5.19A). Moreover, over-expression of either 

the wild type sgg or the S9A sgg mutant did not show a significant acceleration of age- 

related locomotor ability before onset of death in comparison to their respective controls 

(Figure 5.19B and C). A significant reduction on climbing ability (P < 0.01, t-test) was only 

detected after 25% of the induced cohort had died in the case of over-expressing wild type 

sgg (Figure 5.19B), and only shortly before the induced cohort expressing the S9A sgg 

mutant reached median lifespan (Figure 5.19C). 

These results were surprising given that flies over-expressing either sgg or the S9A 

mutant showed a significant decline in survival early on during the experiment. Thus, my 

results did not support a role for sgg in the regulation of age-related locomotor decline. 
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Figure 5.19 Modulation of shaggy levels did not impact age-related locomotor decline. The locomotor 

ability of flies expressing an RNAi against sgg (A), wild type sgg (B) and the S9A sgg mutant. The over- 

expression of sgg (B and C) only accelerated locomotor decline once flies were on the steep slope of the 

survival curve. These experiments were performed in collaboration with Ms. Li Li. 

5.4.13 Over-expression of shaggy did not alter feeding behaviour or 

fecundity 

Given the rather surprising result that over-expression of sgg did not accelerate age-related 

locomotor decline in the face of very short lifespans, I aimed to determine whether other 

phenotypes of generalized health would change when sgg is over-expressed. 

I first characterized the feeding behaviour of flies over-expressing either wild type 

or the S9 mutant. Flies show a characteristic decline in feeding behaviour with age (age- 

related anorexia) (Wong et al., 2009). To determine this behaviour flies are observed 

during a fixed period of time and the number of flies with their proboscis on the food are 

counted. As this phenotype changes over time I assessed this phenotype at three different 

time points, 1, 5 and 15 days after the induction of the transgene. To my surprise feeding 

frequency did not consistently change in either flies over-expressing wild type sgg (Figure 

5.20A) or the S9A mutant (Figure 5.20B). At day 5 flies over-expressing wild type sgg 

showed a significant reduction in feeding behaviour (P < 0.01, t-test), but this was restored 

by day 15. Overall, these results did not indicate that flies over-expressing sgg transgenes 

with increased kinase activity show age-related anorexia. 
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Figure 5.20 Feeding behaviour in flies over-expressing shaggy. Feeding behaviour was analysed by 
assessing the frequency of proboscis extension in flies expressing wild type sgg (A) and the S9A mutant (B). 

* P < 0.05. N= 50 flies per condition. These experiments were performed in collaboration with Mr. Michael 
Shannack. 

Next I examined the role of sgg on fecundity. I measured the number of eggs laid 

per female in 24 hours after 5 days of induction. While there was a slight trend towards 

reduced fecundity in flies over-expressing either the wild type sgg (Figure 5.21A) or the 

S9A mutant (Figure 5.21B) after 10 days of induction, the results were not statistically 

significant (P > 0.05, t-test). 

These results suggest that over-expression of GSK-3 did not affect general 

parameters of health as it did not change the locomotor ability, feeding behavior or 

fecundity of flies even when it shortened lifespan dramatically. I therefore considered the 

possibility that sgg regulated lifespan by influencing specific tissues, or even having tissue 

specific effects in opposite directions. 
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Figure 5.21 Fecundity in short-lived flies over- 

expressing shaggy. Short-lived flies over-expressing 
wild type sgg (A) or the S9A mutation (B) do not 
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condition. These experiments were performed in 
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Control 

Induced 

 

0.3 0.3 Wah 

actGS > UAS-sgg(S9A) 

Control 

Induced 
+:3) 

0.2 

I 
-E 

0 
0 

0.1 

0 
H 

0.0 0.0 

5 15 5 

wDah 

actGS > UAS-sgg 

Control 

Induced 

1 

15 

I- 

I 

 I 

1 

 

 
6-  

   

 

               
4-     

     

 2-     

 

0     
      



 Pharmacogenetics of ageing and neurodegeneration 

 186 

5.4.14 Over-expression of shaggy in neurons, but not in gut/fat body 

extended lifespan 

I was interested to evaluate the possibility of sgg over-expression having different effects 

in different tissues. Two fly tissues previously involved in the regulation of ageing are the 

gut/fat body and neurons (Alic et al., 2014b; Hwangbo et al., 2004). Ubiquitous down- 

regulation of IIS by genetic loss of different components of the IIS pathway extends 

lifespan in Drosophila (Kannan and Fridell, 2013; Partridge et al., 2011; Tatar et al., 

2014). This lifespan extension is dependent of the transcription factor dFOXO (Slack et al., 

2011; Yamamoto and Tatar, 2011), yet over-expression of dFOXO has only been reported 

to extend lifespan in the gut/fat body and neurons (Alic et al., 2014b; Giannakou et al., 

2004; Hwangbo et al., 2004). First I decided to explore the possibility that sgg over- 

expression could have milder negative lifespan effects or even be beneficial, when driven 

in the gut/fat body in comparison to ubiquitous over-expression. I used the Si106 driver to 

only express sgg during adulthood (from day-2 post-eclosion). I over-expressed wild type 

sgg in the gut and fat body using two RU concentrations 50 and 20011M without observing 

significant differences between the induced and uninduced survival curves (Figure 5.22A; P 

> 0.05, log rank test). When the S9A sgg mutant was over-expressed in the gut and fat 

body (Figure 5.22B), the 50 11M RU induction reduced median lifespan by 4.5 days (from 

48 days in the un-induced control to 43.5; P < 0.01, log rank test) and maximum lifespan 

by —2 days (from 62 to 59.7 days). However, the induction with 200 11M RU was not 

significantly different from the un-induced control (P > 0.05, log rank test). I also over- 

expressed the S9E mutant and did not observe any effect on median or maximum lifespan 

in either of the RU concentrations used (Figure 5.22C; P > 0.05, log rank test). 

Collectively these results suggest that the deleterious effects of ubiquitous sgg 

over-expression on lifespan are unlikely mediated by the gut and/or fat body. 
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Figure 5.22 Survival of flies over-expressing shaggy transgenes with increased kinase activity in gut/fat 
body and neurons. Survival effect of the wild type sgg, the S9A and S9E mutants was assessed in the 

gut/fat body (A-C, respectively) or neurons (D-F, respectively). N= 180 females per condition. Experiments 

were performed in collaboration with Dr. Ivana Bjedov. 

I then decided to test the effect of over-expressing sgg in neurons. I used the pan- 

neuronal elavGS driver and the same two RU concentrations used to over-express in the 

gut and fat body. When wild type sgg was over-expressed only in neurons it extended 

median lifespan by 5 days (-9%) and maximum lifespan by 9 days (-12.5%), but only 

when induced with 200 11M RU (Figure 5.22D; P < 0.001, log-rank test). No effect was 

detected when 50 11M RU was supplemented in the fly medium to over-express wild type 

sgg (P > 0.05, log rank test). In contrast, 50 11M RU was sufficient to significantly extend 

median (from 49.9 to 52.3 days) and maximum (from 62 to 68.4 days) lifespan when the 
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S9A mutation was over-expressed pan-neuronally (Figure 5.22B; P < 0.001, log-rank test). 

Induction of the S9A mutant further extended lifespan when 200 11M of the inducer was 

used. At this concentration the S9A mutant extended median lifespan by —5 days, and 

maximum by 9 days (P < 0.001, log-rank test). When the survival curves of the two RU 

concentrations were statistically analysed a significant difference was detected (P = 

0.0109, log-rank test), which suggested a dose-dependent induction effect. I observed a 

similar effect to the S9A over-expression when the S9E mutant was over-expressed in all 

neurons (Figure 5.22F). 50 11M RU was sufficient to extend median (by 5 days) and 

maximum (by 7 days) lifespan (P < 0.001, log-rank test). Induction of the S9E mutant with 

200 11M RU further extended median (by 7.5 days) and maximum (by 11.6 days) lifespan 

(P < 0.001, log-rank test). A comparison between the survival curves obtained at the two 

different concentrations of RU also resulted significant (P = 0.0122, log-rank test), once 

more suggesting a dose-dependent effect. 

My results showed that sgg over-expression could have tissue-specific effects to 

regulate lifespan. While ubiquitous over-expression of sgg or sgg mutants reduced 

lifespan, over-expression in neurons extended lifespan. 

5.4.15 Over-expression of shaggy in neurons protected against age- 

related locomotor decline 
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Figure 5.23 Climbing ability of flies over-expressing shaggy in neurons. Age-related locomotor decline 
was assessed in flies over-expressing the wild type sgg (A) or the S9A mutant (B) in neurons. N= 60 flies per 
condition. These experiments were performed in collaboration with Mr. Michael Shannack 
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extended lifespan I wondered whether this genetic manipulation would confer protection 

against age-related locomotor decline. Over-expression of wild type sgg pan-neuronally 

significantly protected against age-related locomotor decline (Figure 5.23A; P < 0.001, 

two-way ANOVA, post hoc Tukey Kramer). Similarly, over-expression of the S9A mutant 

significantly improved the locomotor ability of flies during ageing (Figure 5.23B; P < 0.05, 

two-way ANOVA, post hoc Tukey Kramer). In contrast to the over-expression of wild 

type sgg, the S9A mutant did not protect as much, though this effect was rather significant. 

Thus, over-expression of either the wild type sgg of the S9A mutant protected against age- 

related locomotor decline. 

5.4.16 Lithium treatment and neuronal over-expression of shaggy were 

additive for lifespan 

I previously showed that sgg down-regulation is epistatic with lithium treatment, 

suggesting that both interventions modulate ageing by acting on the same pathway (Figure 

5.14). Given that over-expression of sgg in neurons extended lifespan, I was interested to 

test whether this genetic manipulation would block the lifespan extension conferred by 

lithium, or would be additive. 
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Figure 5.24 Survival analyses of flies over-
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wild type (A) or the sgg S9A mutant (B) only in neurons and lithium treatment. N= 160 flies per condition. 
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maximum by 7.5 days (P < 0.001, log-rank test). The survival curves of the two lithium 

concentrations were not statistically different (P > 0.05, log rank test). The combination of 

wild type sgg over-expression in neurons and lithium treatment extend median lifespan by 

16.2 days (-21.5% from 59.4 days in the un-induced control to 75.6 days in the induced + 

either lithium treatment) and maximum lifespan by 13.1 days (-15% from 75.6 days in the 

un-induced control to 88.7 days in the induced + either lithium treatment). I also tested the 

effect of combining neuronal over-expression of the S9A sgg mutant with lithium (Figure 

5.24B). The induction of the S9A mutant in neurons significantly extended median lifespan 

by 11 days (or 15%) and maximum lifespan by 8.4 days (or 10%) (P < 0.001, log-rank 

test). Addition of 10 mM lithium to the fly medium further extended median (by 8.4 days) 

and maximum (12.5 days) lifespan (P < 0.001, log-rank test). The combination of over- 

expressing the S9A mutant in neurons and supplementation of 10 mM lithium extended 

median lifespan by 19.4 day or —24% (from 61.8 days in the un-induced control to 81.2 

days in the induced + 10 mM lithium) and maximum lifespan by 20.9 days or —22% (from 

72.8 days in the un-induced control to 93.7 days in the induced + 10 mM lithium. 

Supplementation of 25 mM LiC1 to the S9A neuronally over-expressing flies was also 

additive though the combination was slightly less beneficial, yet the comparison of the two 

survival curves (+10 mM vs. +25 mM LiC1) was not statistically significant (P = 0.0734, 

log-rank test). The combination of S9A over-expression in neurons and 25 mM lithium 

extended median lifespan by 22.75% and maximum lifespan by —20% (P < 0.001, log-rank 

test). 

Although the effect of over-expressing sgg/GSK-3 in neurons while in parallel 

inhibiting the kinase activity by lithium supplementation seems counterintuitive, I consider 

that the key to understand this additive lifespan extension lies in the degree of GSK-3 

inhibition achieved by lithium supplementation. I previously showed that lithium dose- 

dependently increases the inhibitory phosphorylation of GSK-3 (Figure 5.7). However, the 

degree of inhibition was not maximised by the concentrations of lithium used in the 

epistasis experiments (Figure 5.24), hence the dose of lithium provided was not enough to 

inhibit the activity of GSK-3 when over-expressed. This hypothesis should be further 

explored through combination of western blot analyses comparing GSK-3 and htau 

phosphorylation in brains (where GSK-3 is over-expressed) to that in the remaining body 

(where only endogenous sgg/GSK-3 is expressed). 

In conclusion over-expression of sgg in Drosophila neurons is beneficial for lifespan 

and the combination with lithium treatment can further extend lifespan. These results 
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suggest that, at least in neurons, lithium and GSK-3 independently control the rate of 

ageing. 

5.4.17 Over-expression of a kinase dead shaggy did not affect lifespan 

when expressed ubiquitously or in neurons. 

My previous result can lead to the interpretation that while lithium inhibits the kinase 

activity of shaggy this kinase activity is not required for lifespan extension in neurons, as 

the combination of over-expressing sgg in neurons and lithium treatment were additive for 

lifespan. Thus, offering a conflicting interpretation as to the role of the kinase activity of 

sgg for the regulation of lifespan. I therefore decided to evaluate the role of the kinase dead 

(KD) mutant that when over-expressed together with hTAU, did not modify tau 

phosphorylation levels. I ubiquitously over-expressed the KD mutant sgg by using the 

actGS driver (Figure 5.25A), and pan-neuronally by using the elavGS driver (Figure 5.25B). 

As expected I was unable to obtain a lifespan effect with either intervention P > 0.05, log- 

rank test). 

 
Figure 5.25 Survival analyses of flies expressing a kinase dead mutant of shaggy. Expression of a kinase 
dead mutant did not modify lifespan when expressed ubiquitously (A) or in neurons (B). N = 150 flies per 
condition. 

Taken together these results suggest that the kinase activity of sgg over-expression 

is required to shorten lifespan when expressed ubiquitously, and to extend lifespan when 

expressed just in neurons. Hence, additional interactions (perhaps in different tissues) 

should be acting in concert to allow the additive effect of lithium treatment when the 

kinase activity of sgg is increased in neurons. 
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5.4.18 Lithium and shaggy over-expression additively extended lifespan 

of flies expressing AP1_42 

w1118 

elavGS > UAS-Arctic-A01_421+ 

— RU486 0 uM 

— RU486 200 .11v1 

+LiCI 10 mM 

—+LiCI 25 mM 

elavGS > UAS-Arctic-A131_421UAS-sgg(S9A) 

—RU486 200 [tM 

+LiCI 10 mM 

+LiCI 25 mM 

elavGS > LJAS-Arctic-A131_42/UAS-eGFP 

RU486 200 !AM 

Figure 5.26 Over-expression of the S9A mutant in flies expressing 41_42 improves lifespan and 
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Our group recently characterised a late-onset model of AD in flies by using the 

GeneSwitch system and the over-expression of Af31_42 with the pro-aggregation Arctic 

mutation (Sofola et al., 2010). Flies expressing Arctic-Af31_42 have a significantly reduced 

lifespan, accelerated age-related locomotor decline and synaptic defects (Rogers et al., 

2012; Sofola et al., 2010). Previous results from our group have shown that lithium 

treatment can improve the locomotor ability (Sofola et al., 2010) and lifespan (Sofola-

Adesakin et al., 2014) of these flies. Interestingly, over-expression of the S9E sgg mutant 

also improved the locomotor ability and lifespan of flies expressing Arctic-Af31_42 (Sofola 

et al., 2010). The S9E was used as dominant negative sgg mutant, hence the interpretation 

of these results was that inhibition of pan-neuronal sgg and lithium have similar effects. 

However, their interaction was not tested. Given that I have shown in multiple assays that 
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over-expression of wild-type sgg, the S9E and S9A mutants behave similarly and that the 

S9E increases tau phosphorylation (Figure 5.8), I do not consider that the S9E mutant acts 

as a dominant negative. To eliminate conflicting interpretation I did not use the S9E 

mutant, but used the S9A mutant and combined the genetic manipulation with lithium 

treatment. 

As previously shown, lithium treatment at either 10 or 25 mM extended the 

lifespan of flies expressing Af31_42 (Figure 5.26A; P < 0.001, log-rank test). Over-expression 

of sgg(S9A) in flies expressing A131_42 significantly extended lifespan (Figure 5.26A; P < 

0.001, log-rank test). To control for dilution of Ga14 I also co-expressed Af31_42 in the 

presence of GFP only detecting a mild but significant (P < 0.05, log-rank test) lifespan 

shortening effect. Moreover, addition of either 10 or 25 mM lithium further extended 

lifespan of flies over-expressing the S9A mutant sgg and Af31_42 in neurons (Figure 5.26A). 

Taken together our results indicate that lithium and sgg act in an additive manner to 

extend lifespan in flies expressing A01-42. 

5.4.19 Lithium and shaggy over-expression additively improved 

locomotor function of flies expressing AP1_42 

Next I analysed whether the additive effects of lithium and sgg over-expression also 

impacted locomotor activity. I over-expressed the S9A sgg mutant in flies expressing A131_ 

42 in neurons and observed that indeed over-expression of sgg(S9A) significantly improved 

the locomotor ability of flies expressing AP1_42 (P < 0.01, two-way ANOVA; Figure 

5.26B). Once more, co-expression of AP1_42 with GFP was performed ruling out any 

confounding effect of Ga14 dilution (P > 0.05, two-way ANOVA). When lithium was 

supplemented in the media at either 10 or 25 mM, there was a further protection to that 

conferred by the S9A mutation on its own (P < 0.05, two-way ANOVA; Figure 5.26B). 

Thus, the effects of over-expressing sgg and lithium were additive to improve the altered 

locomotor ability of flies expressing Af31_42. 
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5.5 Discussion 

5.5.1 Shaggy/GSK-3 regulates ageing in Drosophila 

The first interesting result was that modulation of the kinase activity of shaggy is 

achievable with different transgenes and mutants. I was able to confirm that down- 

regulation of shaggy by RNAi reduces the phosphorylation of human tau at two phospho-

sites known to be phosphorylated by GSK-3 (Querfurth and LaFerla, 2010). I was also 

able to show that the overexpression of wild type shaggy increases the phosphorylation of 

tau. This is in agreement with a previous report that demonstrated that wild-type sgg/GSK3 

is able to increase the phosphorylation of human tau (Chatterjee et al., 2009). 

Unexpectedly, I consistently observed that the dominant negative GSK-3 mutant S9E 

hyperphosphorylates tau. The S9E mutant carries a single point mutation in the highly 

regulated serine 9. Serine 9 phosphorylation inactivates the enzyme. In the S9E mutants, 

the serine at position 9 has been changed to a glutamic acid (hence the S9E) that should act 

as a phosphomic not allowing activation of the kinase activity. However, I have 

consistently seen that the S9E behaves in a similar fashion to that seen when wild type 

shaggy is over-expressed in the fly, or when the constitutively active shaggy mutant is 

expressed. The constitutively active mutant S9A carries a substitution of serine for alanine 

at position 9. This change should prevent phosphorylation at this site and therefore should 

render the protein enzymatically active. The discrepancy between the theoretical function 

of S9E (considered a dominant negative mutant) and its kinase activity has been 

documented with mammalian GSK-3. Eldar-Finkelman et al showed in an in vitro kinase 

assay that the S9E and S9A mutants were able to either autophosphorylate or to 

phosphorylate inhibitor 2 to a similar extent (Eldar-Finkelman et al., 1996). This is, 

therefore, in agreement with the results of my in vivo kinase activity experiments. Since 

the S9E and S9A mutants behave similarly and also phenocopy the over-expression of 

wild type shaggy, it is very unlikely that the S9E is a real dominant negative mutant fly 

line and it should be considered instead as an active mutant. 

My observation that three of the transgenic lines (S9E, S9A and wild type sgg) 

were able to hyperphosphorylate tau when expressed ubiquitously in the adult fly highly 

suggests that they would produce similar effects in the lifespan of flies. Indeed both of the 

shaggy mutant transgenes (S9E and S9A) and the wild type sgg transgene dramatically 

reduced lifespan when they were ubiquitously expressed. Furthermore, the lifespan 

reductions seen in flies expressing either the S9E or S9A mutant transgenes lifespan were 



 Pharmacogenetics of ageing and neurodegeneration 

 195 

of similar magnitude, suggesting that these mutants have comparable enzymatic activities. 

Moreover, the effects seen with these mutants were greater than that produced by the over- 

expression of wild type sgg. 

The fmding that shaggy mutants are able to hyperphosphorylate tau (and hence 

have increased kinase activity) in association with a reduction in lifespan is novel and has 

not been previously reported. Hyperactivity of GSK-3 has been found in several diseases 

such as diabetes mellitus, AD, HD, and schizophrenia among others (Cohen and Goedert, 

2004; Jope and Johnson, 2004; Lovestone et al., 2007; Hooper et al., 2008). As several of 

these diseases are age-related, it is not entirely surprising that hyperactivation of sgg is 

involved in a pro-ageing phenotype. However, to the best of my knowledge, this is the first 

time that constitutively active sgg mutants have shown to lead to lifespan shortening when 

expressed throughout the fly. 

Conversely, and in agreement with the in vivo kinase activity measurements, 

ubiquitous down-regulation of GSK-3 by RNAi significantly increased lifespan in the fly. 

This result also supports my previous conclusion that the S9E mutant does not behave in a 

dominant negative manner If the S9E was inhibiting the function of the endogenous sgg, 

or reducing its kinase activity, it would behave similarly to the GSK-3 RNAi line. 

To the best of my knowledge this is the first time that lifespan extension has been 

achieved by down-regulation of sgg. The positive effects of GSK-3 inhibition have been 

extensively documented in a diverse range of diseases (Lovestone et al., 2007; Hooper et 

al., 2008), including age-related disorders such as AD and PD, diabetes mellitus and 

cardiovascular disease (Cohen and Goedert, 2004; Jope and Johnson, 2004; Lovestone et 

al., 2007; Hooper et al., 2008). However, its involvement in ageing had remained 

unexplored until recently. A recent paper showing that global knockout of GSK-3a in mice 

shortens lifespan and drives the development of broad-spectrum abnormalities, 

complicates the interpretation of my results (Zhou et al., 2013). However, given that 

complete knockout of GSK-3I3 is lethal (Hooper et al., 2008), together these results might 

suggest that complete inhibition (or in these cases knockout) is detrimental. Interestingly, 

the global GSK-3a model showed activation of mTORC1, which is in disagreement with 

my data of the interaction of GSK-3 and mTOR. It would be worth exploring what are the 

mechanisms that lead to increased mTORC1 activation. I have been unable to detect 

alterations in mTORC1 either by lithium treatment or sgg down-regulation (or inhibition). 

Moreover, though increased GSK-3 should inhibit mTORC1, as it activates TSC2 (Inoki et 

al., 2006), I have been unable to detect changes in flies over-expressing the S9A mutant 
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(or wild type sgg). Moreover, I was able to show that mTOR inhibition by rapamycin 

treatment was able to partially rescue from the deleterious effect of sgg over-expression. It 

would be worth exploring whether the interaction of mTOR and GSK-3 is cell or tissue- 

specific. 

Additionally I was able to show that loss of chico does not lead to alterations in sgg 

as neither the total protein nor the phosphorylation levels were changed. Diabetes, which is 

characterized by reduced insulin signaling, is associated with increased levels and/or 

activity of GSK-3. Given that flies lacking CHICO have reduced insulin signaling, I was 

expecting for some change in sgg. This could potentially suggest that compensatory 

mechanisms might be acting to prevent this dysfunction in the long-lived chico null flies. 

Moreover, over-expression of the S9A mutant in the loss of chico background significantly 

restored lifespan. However, an alternative explanation can be proposed. Loss of chico in 

the context of increased GSK-3 activity does not allow for lifespan extension. Perhaps a 

fly model with reduced IIS and increased GSK-3 would more closely resemble a diabetes 

model than a healthy ageing intervention. These speculations should be approached 

experimentally to gain insight into the biology of GSK-3 as a modulator of the ageing 

process. 

In conclusion I have shown that over-expression of wild type sgg or mutants with 

increased kinase activity reduce lifespan while down-regulation of shaggy extends lifespan 

in the fly. 

5.5.2 Shaggy/GSK-3 and lithium act in the same molecular pathway 

As mentioned before lithium is known to inhibit GSK-3 and I was able to show here that 

lithium indeed inhibited sgg as it increased the inhibitory phosphorylation at relevant 

doses. Moreover, my genetic data strongly supports that GSK-3 regulates ageing as 

ubiquitous over-expression shortened lifespan, while RNAi-mediated knockdown extend 

lifespan. The epistasis experiments combining the genetic manipulation and lithium 

treatment showed that while lithium can rescue from the deleterious effects of sgg over- 

expression, it is unable to further extend the lifespan when sgg is knocked down. This 

result strongly suggest that lithium and sgg down-regulation act in the same molecular 

pathway. 
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5.5.3 Shaggy regulates ageing in a tissue-specific manner 

Lithium exerts positive effects in the brain (Eldar-Finkelman, 2002; Hooper et al., 2008). 

Sofola and colleagues have shown that lithium reduces AP1_42 levels in an AD fly model 

(Sofola et al., 2010). Therefore, I performed experiments to analyse whether inhibition of 

sgg specifically within the neural tissue could be partially responsible for the lifespan 

extending effects of ubiquitous down-regulation of sgg in the fly. Unfortunately, sgg 

down-regulation in the brain was unable to extend lifespan (not shown). I also tested 

whether over-expression of sgg in the brain would shorten lifespan. Unexpectedly, I found 

that over-expression of wild type sgg or either the S9E or S9A sgg mutants in the fly brain 

were able to extend lifespan. This result was rather surprising, especially in the light that 

none of these interventions showed changes in lifespan when performed only in the gut/fat 

body. I have preliminary data to suggest that some of the negative effects of sgg over- 

expression are mediated in the heart tissue. Taken together these results strongly suggest 

that sgg regulates the ageing process in a tissue-specific manner 

I additionally showed that lithium treatment of neuronal over-expression of sgg and 

lithium treatment are additive for lifespan. Even when my other data suggest that sgg 

down-regulation and lithium treatment act in the same molecular pathway, these results 

strongly suggest that lithium does not extend lifespan via the inhibition of neuronal sgg. 

These results have interesting implications for biomedical research. For a long time 

pharma and academia have been interested in developing GSK-3 inhibitors for the 

treatment of a wide range of pathological conditions including, neurodegeneration and 

altered metabolism (Avrahami et al., 2013; Kramer et al., 2012; Meijer et al., 2004; 

Takahashi-Yanaga, 2013). However, we are still far from understanding how GSK-3 

modulates metabolism, stress response and ageing in different tissues and cell populations. 

Although my data suggests that global inhibition of GSK-3 would be beneficial for stress- 

response and ageing, the combination of active GSK-3 in neurons and inhibition elsewhere 

could be even more effective for extending healthy lifespan. Perhaps teasing out the 

specific tissues that require active GSK-3 during ageing, will contribute in understanding 

how relevant would systemic GSK-3 inhibition be for the prolongation of life and the 

recovery of a youthful state. 
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5.5.4 Shaggy and lithium modulate neurodegeneration: overlapping 

mechanisms? 

As mentioned earlier, lithium reduces A131_42 levels in the brain. Furthermore, Sofola et al. 

showed that the active S9E mutant was able to mimic lithium's Al3 lowering effect (Sofola 

et al., 2010). Since my work suggests that the S9E construct is an active sgg mutant I 

decided to over-express wild type sgg and the S9A sgg mutant in the neuronal tissue of the 

AD fly model. In agreement with S9E being an active mutant, I was able to show that 

neuronal over-expression of either wild type shaggy or the S9A mutant extended the 

lifespan of the AD fly model. 

My results demonstrate unexplained discrepancies between the effects of lithium 

and over-expression of shaggy in the fly. Lithium is known to inhibit sgg and although 

lithium reduces the activity of shaggy in the AD model (Sofola et al., 2010), over- 

expression of sgg can mimic the protective effects of lithium. These results suggest that 

although lithium can inhibit sgg in the brain, the mechanism by which it confers protection 

to the AD fly model is independent of sgg inhibition. Sarkar and colleagues have shown 

that indeed lithium and activation of GSK-3 can have mimicking effects without acting 

through the same pathway (Sarkar et al., 2005). Since the AD fly model used in my 

experiments does not involve the production of Af31_42, as it expresses A131_42 and bypasses 

the processing of APP, it is unlikely that the mechanism of lowering Al3 levels is mediated 

by APP processing as has been reported (Phiel et al., 2003). However, it is very likely this 

effect is mediated by a degradation mechanism. Lithium has been considered an autophagy 

inducer (Heiseke et al., 2009; Sarkar et al., 2005) and this could potentially contribute to 

the lowering effects of AP1_42. However, I was unable to show up-regulation of autophagy 

in the previous Chapter. Yet, it is still possible that the up-regulation of autophagy is 

tissue-specific. The next step will be to test whether lithium does indeed activate 

autophagy in Drosophila brains and to show if its Af31_42 lowering effects can be blocked 

by autophagy inhibition. Alternatively, GSK-3 has also been shown to reduce translation 

(Shin et al., 2014). It would be appropriate to study whether the effects of lowering GSK-3 

are through lowering protein synthesis. 
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5.5.5 GSK-3/NRF2 pathway: is there a connection? 
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Figure 5.27 Proposed mechanism of action for lithium in ageing and stress-resistance. This is similar to 
Figure 4.4D with the addition of GSK-3. Lithium inhibits GSK-3 to de-repress CncCNRF-2 which then 
activates a transcriptional response of detoxification and protection against stress. 

In the previous chapter I showed that lithium up-regulates a transcriptional response 

mediated by the transcription factor CncC/NRF-2. How do my finding that sgg/GSK-3 and 

lithium act in the same molecular pathway fit into one story? Interestingly, NRF-2 is 

regulated by two complementary, but independent pathways, one mediated by the Kelch-

like ECH-associated protein 1 (Keap 1 ), and the other by GSK-3 (Hayes and Dinkova-

Kostova, 2014; Ma, 2013; Motohashi and Yamamoto, 2004). Both repress the activity of 

NRF-2 by sequestering it in the cytosolic compartment. Data in C. elegans and mammalian 

cells have shown that GSK-3 directly represses NRF-2 (An et al., 2005; Rada et al., 2012; 

Salazar et al., 2006). This would favour a model whereby lithium inhibition of GSK-3 

would allow the activation of CncC and the regulation of the transcriptional signature of 

xenobiotic metabolism. Given that lifespan can be manipulated through the activation of 

this transcription factor (Sykiotis and Bohmann, 2008; Tullet et al., 2008), my data would 

suggest that indeed GSK-3 inhibition and the subsequent activation of CncC could be 

mediating the pro-longevity and stress-resistant effects of lithium (Figure 5.27). 
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5.5.6 Circadian clocks in ageing: the role of lithium and GSK-3 

An interesting and understudied mechanism to regulate longevity and metabolism is the 

alteration of the circadian rhythms. Circadian rhythms control many physiological 

processes including feeding behaviour (which will become relevant in Chapter 6), 

metabolic regulation of hormonal status, xenobiotic metabolism, amongst others (Beaver 

et al., 2010, 2012; Takahashi et al., 2008; Xu et al., 2008). These particular traits have a 

great influence in longevity and some of the phenotypes I have presented could be a direct 

consequence of their regulation by circadian clocks. In Drosophila, where clock genes 

were first identified (Konopka and Benzer, 1971), sgg plays an important role in the 

regulation of nuclear shuttling of two important proteins involved in the regulation of the 

length of circadian periods (Stanewsky, 2003). The molecular components of the circadian 

clock include a cell-autonomous transcription-translation feedback loop encoded by a set 

of core genes (Reppert and Weaver, 2002; Takahashi et al., 2008). The transcription 

factors Clock and cycle induce the expression of period and timeless. Nuclear 

accumulation of PERIOD and TIMELESS inhibit the transcriptional activity of the 

CLOCK-CYCLE dimer. Phosphorylation of PERIOD and TIMELESS delays the 

cystoplasmic accumulation and nuclear translocation of these proteins, allowing CLOCK 

and CYCLE to continuously activate transcription. PERIOD is phosphorylated by 

DOUBLE-TIME, while TIMELESS is phosphorylated by sgg (Harms et al., 2003; 

Stanewsky, 2003). Flies over-expressing sgg in TIMELESS-expressing neurons show 

increased entry of PERIOD and TIMELESS to the nucleus and shorter free-running 

periods (Stanewsky, 2003). Although the role of GSK-3 in mammalian clocks has not been 

fully elucidated (Takahashi et al., 2008), recent evidence suggests that it plays a similar 

role in the regulation of circadian rhythms as in flies. Paul and colleagues showed that 

double transgenic knock-in mice for constitutively active versions of both isoforms of 

GSK-3 showed increased free-running periods with fragmentation of their wheel-running 

rhythms (increased activity bouts), decreased amplitude in circadian behaviour, and longer 

activity period (Paul et al., 2012). As they analysed the master clock in mammals, the 

suprachiasmatic nucelus (Takahashi et al., 2008), they found that the typical day/night 

variation in neuronal activity was lost as evidenced by higher spike rates during the night 

(Paul et al., 2012). The role of sgg/GSK-3 still needs clarification, as evidenced by the 

contradiction between the fly and mammalian data (i.e., opposite effects on period-length 

after GSK-3 over-expression). However, the manipulations of sgg/GSK-3 were not similar 

in both model organisms. Perhaps a detailed examination of circadian rhythms in flies 
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over-expressing sgg pan-neuronally ((only during adulthood to avoid developmental 

effects) vs. only in clock neurons (this could be done in subset of neurons) vs. a ubiquitous 

(adult-only) over-expression, could be informative to more clearly define the role of 

sgg/GSK-3 in the regulation of central and peripheral clocks. Additionally, the interaction 

of these genetic manipulations could be analysed in the context of lithium treatment. 

The effect of lithium in the regulation of circadian clocks has been known for 

decades (Klemfuss, 1992). Lithium is known to lengthen the circadian period. For 

example, mice treated with lithium chronically (approximately for a month) and achieving 

brain concentrations of 1 mM showed a mild but significant increase in the locomotor 

activity period (Li et al., 2012). Concomitantly, lithium was also shown to lengthen the 

period of Period-2 oscillation at the protein level in the suprachiasmatic nucleus and lung 

tissue, by up-regulating its protein expression. Interestingly, a more potent GSK-3 

inhibitor shortened the circadian period in lung fibroblasts, though it also up-regulated the 

transcription of Period-2 (Li et al., 2012). These rather contradicting results could be more 

easily resolved by the combination of genetic manipulations to down-regulate GSK-3 and 

the addition of lithium. As with my previous suggestion, the genetic intervention could be 

done in a tissue and cell type specific manner, allowing for a more comprehensive 

understanding of the role of GSK-3 and lithium. 

An additional challenge will be to determine the level at which circadian clock 

regulation integrates with my model of GSK-3 modulation of CncC/NRF-2 (Figure 5.27). 

A recent report suggests that modulation of the clock might be downstream of sgg/GSK-3, 

but upstream of CncC/NRF-2 (Pekovic-Vaughan et al., 2014). Pekovic-Vaughan and 

colleagues found that NRF-2 transcriptional activity is regulated by clock genes, and that 

arrhythmic mice show poor levels of transcriptional regulation downstream of NRF-2, 

suggesting that the clock is an upstream regulator of NRF-2 (Pekovic-Vaughan et al., 

2014). In a revised model I would place lithium at the top inhibiting GSK-3, which would 

then directly modulate CncC/NRF-2 (An et al., 2005; Rada et al., 2011; Rojo et al., 2008), 

and additionally GSK-3 could regulate the circadian clock proteins to modulate the 

transcriptional activity of CncC/NRF-2 (Pekovic-Vaughan et al., 2014). This would 

suggest that circadian clock regulation by lithium and sgg/GSK-3 would be at the heart of 

the regulation of perhaps the longevity, metabolic and stress-responses observed in this 

work. In the next chapter (Chapter 6) I show how flies expressing A131_42 show reduced 

feeding behaviour, altered metabolism and stress response. This could indeed all be 

consequence of a dysfunctional clock. I have data to show that altered GSK-3 activity 
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(serine-9 phosphorylation) occurs as early as the feeding alterations (data not shown), 

maybe pointing toward a molecular link between altered behaviour and abnormal clock 

function. This is especially relevant as flies expressing A131_42 were recently reported to 

show abnormal circadian behaviours (Chen et al., 2014). Exploring the role of altered 

rhythmic behaviour in the context of these phenotypes could resolve the role of the clock 

alterations in flies expressing A131_42, however these hypothesis will require extensive 

exploration. 
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Chapter 6 

The anorexic and stressed fly: neurodegeneration in an 

Alzheimer's Drosophila model 

"How slight a thing will disturb the equanimity of our frail minds" 

Charles Dickens, Oliver Twist 

6.1 Abstract 

AD has been successfully modelled in Drosophila through the neuronal expression of the 

Al l-40 and Afl 1_42 peptides, which accumulate in AD brains. Several studies have shown that when the 

41_42 peptide is expressed in the neuronal tissue of the fruit fly they die earlier than controls and 

show abnormalities in locomotor activity and synaptic dysfunction. Although these phenotypes are 

useful for genetic and pharmacological screens, I attempted to characterise earlier phenotypic events. 

My results evidenced that flies expressing 41_42 show reduced feeding behaviour at a very early age, 

before the well-characterised locomotor phenotypes are observed. This feeding alteration 

modified the response to toxins delivered in the food. However, when flies were subjected to 

sources of stress that do not depend on food intake, they were, as expected, more sensitive than 

control flies. I also observed that flies expressing 41_42 display a significant resistance to 

starvation stress, which was unexpected given their reduced feeding behaviour. They appeared to 

compensate for the reduction in food intake by increasing their levels of lipid storage, which 

correlated with their starvation resistance. I hypothesise that the reduced feeding of Afl 1-42 expressing 

flies renders them into a starvation-like state that switches on a storing phenotype. Nutrient 

supplementation (particularly essential amino acids) restored the altered metabolism, the response to 

starvation, and even extended the lifespan of flies expressing 41_42. Thus, insufficient nutritional intake 

secondary to reduced feeding behaviour leads to altered stress-responses and changes in metabolism 

in flies expressing Afl 1-42. 

6.2 Introduction 

Protein aggregation is a key feature of the most common forms of neurodegeneration 

including AD, PD and HD, which are all characterized by deposits of abnormally 

aggregated forms of specific proteins. Although their role in the pathogenesis of the 

disease is not completely understood, it is well established that they play major roles in 

altered neuronal function and cell death, what is overall considered as neurodegeneration 

(Cohen and Dillin, 2008; Labbadia and Morimoto, 2014; Taylor et al., 2014; Walker et al., 
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2013). 

Neurons, and in general eukaryotic cells, are armed with a wide range of response 

mechanisms to extrinsic and intrinsic stressors. Most of these mechanisms deteriorate with 

age, which would explain why ageing is such a major risk factor for diseases of protein 

aggregation, proteinopathies. However, even old postmitotic cells are able to respond to 

stressors by activating and/or inactivating processes that enable their viability (Cuervo, 

2008; Labbadia and Morimoto, 2014; Morimoto and Cuervo, 2014). In the case of 

proteinopathies, the defence mechanisms most commonly studied are those responsible of 

clearing damaged organelles and insoluble aggregates. As mentioned in Chapter 1 these 

mechanisms include the UPS and AL system. However, other response pathways also aid 

cells during proteotoxic stress and have been shown to ameliorate disease progression in 

cases of proteostasis collapse. 

6.2.1 The role of oxidative stress in Alzheimer's disease 

Diseases are often associated with abnormal responses to stress with inappropriate 

activation of homeostatic responses. This can be because the tissue (or organism) cannot 

up-regulate the appropriate response, or because there is over activation and/or loss of the 

ability to self-regulate to end the response (McEwen, 1998). AD has been associated with 

oxidative stress (Kondo et al., 2013; Moreira et al., 2006). Indeed increased oxidative 

stress has been shown to be an early sign of disease progression (Nunomura et al., 2001). 

This has made oxidative stress and pathological hallmark of AD (PraticO, 2013). 

Amyloid pathology associates with oxidative stress in three forms. First, amyloid 

has been shown to increase the production of 11202 and lipid peroxidation, both in cell 

culture and in transgenic mouse models that produce Af31_42. It is not entirely understood 

how Af31_42 increases oxidative stress. One possibility is altered mitochondrial function. 

A01_42 inhibits mitochondrial complex I (Hauptmann et al., 2006; Querfurth and LaFerla, 

2010; Reddy and Beal, 2008; Zhao and Zhao, 2013). As discussed in Chapter 1, altered 

mitochondrial function can be both a driver and protective mechanism against ageing. 

Second, increased oxidative stress can drive disease progression as it increases A131-42 

deposition. One mechanism described has been increased expression of enzymes that 

promote APP cleave into the amyloidogenic pathway (Chen et al., 2008; Oda et al., 2010; 

Quiroz-Baez et al., 2009). Third, amyloid production is a response to oxidative stress, 

which has led to the suggestion that amyloid can act as an antioxidant (Nunomura et al., 
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2010; Perry et al., 2002). This last point is less clear, but it would propose that Af31_42 could 

act as a hormetic molecule. Interestingly, NRF-2, a transcription factor potentially 

involved in the hormetic response, has been reported to be expressed at lower levels in 

brains of patients with AD (Ramsey et al., 2007). Moreover, expression of NRF-2 and its 

target genes have been reported to be lower in transgenic mouse models of AD (Kanninen 

et al., 2008). When NRF-2 levels are increased in these models they show improvement in 

memory tasks (Kanninen et al., 2009). 

6.2.2 Age-related anorexia in flies and humans 

Reduced feeding or anorexia is a common problem of old age. It has been estimated that 5-

12% of homebound patients, 15% of community-dwelling older people, 65% of 

hospitalised patients, and 5-85% of institutionalised elderly patients present protein-energy 

malnutrition. Though this was often considered to only be a problem in nursing homes and 

hospitalised patients, it has become increasingly evident that anorexia of ageing or age- 

related anorexia with the subsequent malnourishment is common in older people in the 

community (Mir et al., 2013; Morley, 1997). 

The drive to eat is primal; it allows the continuation of the species. During the first 

part of the life cycle of most species feeding and appropriate nutrition allows sexual 

maturation and reproduction. From birth until mid adulthood there is a steady increase in 

feeding and biomass accumulation (Morely and Silver, 1998; Morley, 1997). However, it 

is well documented that food intake declines with age. It is assumed that most of the 

decrease in energy intake derives from the decline on energy expenditure. Estimates have 

considered than between the age of 20 and 90 there is a 20% decrease in food intake in 

females and 43% in males (Mir et al., 2013). The decrease in energy intake has been 

observed to be greater than the decrease in energy expenditure, which translates into 

weight loss. This has indeed been documented; lean subjects are more prone to loose 

weight (Chapman, 2004). 

Decreased food intake and the ensuing weight loss are associated with a plethora of 

health problems like impaired muscle function, altered immune response, cognitive 

decline, loss of bone mass, anaemia, altered wound healing, delayed recovery from surgery 

and ultimately death (Chapman, 2004; Macintosh et al., 2000). In a longitudinal 
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observational cohort study in the US, it was documented that weight loss was more 

common than weight gain in the older population (those over 65 years of age). 

Interestingly, weight loss of 5% or more increased the risk of mortality by 65%, and those 

with initial lower body mass had the highest crude mortality rate (Newman et al., 2001). 

This of course poses an interesting question as to the benefits of DR late in life. Recently 

the involvement of protein intake and healthspan was analysed in a cross sectional study 

involving 6,381 adults (83,308 person-years over 18 years) over the age of 50 years from 

the United States. Moderate to high protein consumption was associated with higher 

diabetes-related mortality at all ages. High protein intake (animal fat, not plant fat) at ages 

between 50 and 65 years was associated with a 74% increase in overall mortality, and 

these individuals were four times more likely to die of cancer in comparisson to low 

protein consumers (Levine et al., 2014). Moderate protein intake was also associated 

with a 3-fold higher cancer mortality. Interestingly, these associations were not significant 

when analysed against caloric intake. However, higher protein intake amongst individuals 

above 66 years of age was associated with a 21-28% reduction in mortality for all causes, 

and a 60% reduction in cancer mortality (Levine et al., 2014). Taken together these 

studies suggest that at older ages reduced food intake (or protein inatke specifically) is 

detrimental for health. 

Interestingly, Drosophila also show age-realted anorexia, actually food intake 

decreases sharply early in life and remains low throughout the rest of the adult life of the 

fly (Wong et al., 2009). However, flies seem to respond positively to reduced nutrients as 

flies switched from full feeding to DR change mortality trajectories withing 2 days to 

adopt a similar mortality trajectory as flies under DR (Mair et al., 2003). The switches 

however, were performed very early on in comparisson to the lifespan showed here. It 

would be interesting to analyse wether increased concentration of food supplemented late 

in life adds benefits to lifespan and mortality. 
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6.3 Methodology and experimental design 

6.3.1 ATP measurement 

ATP concentrations were determined according to the Roche ATP Bioluminesence Assay 

Kit HS II (Roche, West Sussex, UK). For headless bodies 2 live flies were decapitated and 

homogenized in 100 ilL ice-cold lysis buffer (provided in the kit) for 1 min using a Kontes 

pellet pestle. A similar procedure was adjusted using 10 heads per sample. The lysate was 

then boiled for 5 min and centrifuged at 20,000 g for 1 min. 2.5 ilL of cleared lysate was 

added to 187.5 ilL dilution buffer and 10 ilL luciferase, and the luminescence was 

immediately measured using a Tecan Infinite M2000 microplate reader and Magellan V6.5 

software. Each reading was converted to the amount of ATP per fly based on the standard 

curve generated with ATP standards. 

6.3.2 Paraquat injections 

Paraquat (Sigma 856177) was delivered at a dose of 50 ng/mg according to previously 

described (Bjedov et al., 2010). To deliver the compound injection pipettes were prepared 

out of 10 mm glass capillaries. We used the Flaming-Brown micropipette puller 

(Programme 2). A home-built microinjection machine was used for injections. In parallel 

flies were also injected with control Ringer's solution. Both injected solutions contained 

blue dye for visualization of injections (FD&C Blue No.1). Paraquat injections were 

performed by Dr. Helena Cocheme. 

6.3.3 Essential amino acids supplementation 

Essential amino acids were prepared according to (Grandison et al., 2009). A 50 mL 

solution (see Appendix 9) was prepared and then added to 1 L of 1 SY. To control for the 

extra solution, all other conditions were supplemented with 50 mL of ddH2O. 

6.3.4 Holidic medium 

Chemically-defined medium was prepared according to (Piper et al., 2014). Briefly, for 1 

L of holidic medium ingredients and amounts described in Appendix 10 were mixed in a 1 
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L glass bottle in a total volume of 883.7 mL (topped with ddH2O). The mix was 

autoclaved and kept between 50 and 55 °C after autoclaving. The second set of ingredients 

in Appendix 10 were added and mixed (an essential amino acid (EAA) stock solution, and 

non-EAA stock solution are shown in Appendix 11) after which the medium was ready for 

dispensing (or for adding additional ingredients) into vials. 

6.3.5 Immunoblotting 

Immunoblot analyses was performed according to protocol described in chapter 2. Primary 

antibodies used were Cu/Zn SOD (#ab13498 Abcam; 1:1000), Mn SOD (#ab13534 

Abcam; 1:1000), catalase (#ab16731 Abcam; 1:2500). 
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6.4 Results 

6.4.1 AI31_42 elicited a transcriptionally response enriched for oxidative 

stress and metabolism 

To guide my search for other phenotypes to explore, I interrogated the transcriptional 

profile of fly heads expressing Af31_42. For this we took a recently published data set of 

microarrays that explored the transcriptional response to Af31_42 (Favrin et al., 2013) and 

performed catmap analyses (Breslin et al., 2004) to determine functional categories 

enriched in the data set. Amongst the ten most enriched categories, we identified processes 

involved with oxidation-reduction and metabolism, which appeared at least twice (Table 

3). 

Table 3. Enriched GO categories3 in fly heads expressing 41_42
4. 

 

GO ID Functional Category P value 

GO:0016491 Oxidoreductase activity 1.63E-17 

GO:0005811 Lipid particle 4.14E-16 

GO:0044444 Cytoplasmic part 8.71E-12 

GO:0055114 Oxidation-reduction process 2.57E-11 

GO:0048037 Cofactor binding 8.38E-10 

GO:0003824 Catalytic activity 5.46E-09 

GO:0009055 Electron carrier activity 6.09E-09 

GO:0016769 Transferase activity, transferring nitrogenous groups 1.40E-08 

GO:0008483 Transaminase activity 2.64E-08 

GO:0008152 Metabolic process 2.07E-07 
 

Thus, the transcriptional response to A131_42 showed that the most enriched category 

was oxidoreductase activity. Interestingly, also lipid particle and metabolism seemed to be 

enriched amongst the top ten GO categories. I therefore decided to investigate the response 

of flies expressing Af31_42 to different forms of oxidative stressors. 

3 Data reanalysed from Favrin et al., 2013. 
4 The analysis was performed by Dr. Dobril Ivanov. 
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6.4.2 AP1_42 protected against H202 and paraquat when delivered orally 

Figure 6.1 Response of 41_42-expressing flies to 11202 and PQ. (A-C) Response of flies expressing A131_42 to 
H202 at different periods of A131_42 induction: (A) 2 days, (B) 15 days, and (C) 30 days. (D-F) Response of flies 
expressing A131_42 to PQ at different periods of A131_42 induction: (D) 2 days, (E) 15 days, and (F) 30 days. 
Experimental analyses of survivals was performed simultaneously for the three induction periods. N = 90 
flies per condition. 

In vitro studies have shown that the presence of Af31_42 leads to free radical formation with 

subsequent cellular and tissue damage (Hensley et al., 1994; Varadarajan et al., 2000). 

Moreover this is considered an important mediator of neurodegeneration. To analyse the 

response of flies expressing A131_42 to oxidative stressors I analysed their response to 11202 
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and paraquat (PQ). A cohort of flies expressing Af31_42 carrying the familial Arctic 

mutation (Nilsberth et al., 2001) in the adult nervous tissue using the UAS/Ga14- 

GeneSwitch system (UAS-Arctic-Abi_42/+;elav-GS/+) (Osterwalder et al., 2001), were 

randomly allocated to fly media supplemented with either the GeneSwitch inducer 

mifepristone (RU486) or vehicle (100% ethanol) (Brand and Perrimon, 1993; Crowther et 

al., 2005; Osterwalder et al., 2001; Sofola et al., 2010). Given that the GALA protein 

carries a modification that only allows binding to UAS and expression of the AP1_42 in the 

presence of RU486, the control and study groups have the same genetic background 

(Rogers et al., 2012; Sofola et al., 2010). I evaluated the response to I-1202 following 2, 15 

or 30 days of Af31_42 expression. The survival response to I-1202 was not significantly 

different from controls after only 2 days of AP1_42 expression (Figure 6.1A; P > 0.05, log 

rank test), but flies became resistant to I-1202 after 15 and 30 days of induction (Figure 

6.1B and C; P < 0.01, log rank test). I performed a similar experiment using PQ and 

observed that flies expressing A131_42 for 30 days were resistant to PQ (Figure 6.1F; P < 

0.01, log rank test), but their response to PQ was indistinguishable from controls following 

only 2 or 15 days of Af31_42 expression (Figure 6.1D and E; P > 0.05, log rank test). 

Although the response to I-1202 was consistent and reproducible, I found that the response 

to PQ was less consistent and in some trials A131_42-expressing flies were sensitive to PQ. 

Resistance to PQ was more evident and significant when the stress assays were performed 

using medium containing yeast (see section 2.6.2), perhaps indicating an interaction 

between the dietary components and the response to PQ. The results, however, support a 

trend towards resistance to PQ exposure in aged Af31_42 expressing flies, but highlights the 

variability of stress responses in Alzheimer's flies using this assay. 

6.4.3 Flies expressing A131-42 showed acceleration of age-related anorexia 

These assays require or assume equal amount of food intake. To address the bioavailability 

of toxic stress-activating compounds under our experimental conditions I studied the 

feeding behaviour of flies expressing A131_42 in their neural tissue. Flies in either group 

were followed over a 30-day period with regular feeding behaviour recordings (Figure 

6.2A). Control flies (fed vehicle) displayed the previously described age-dependent 

deterioration in feeding behaviour (Wong et al., 2009). To my surprise, however, flies fed 

with the genetic inducer RU486 expressing the A131_42 peptide, showed a dramatic 

reduction in feeding behaviour that worsened over time. Furthermore the reduction in 
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feeding was apparent after only 4 days of A131_42 expression (Figure 6.2A; P < 0.01, t-test). 

Indeed these flies barely made any attempt to feed after 15 days. 
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Figure 6.2 Feeding behaviour and fecundity of flies expressing 41_42. (A) The proboscis extension assay 
was performed over time to analyse feeding behaviour of flies expressing or not A131_42. (B) Fecundity was 

assessed in the same group of flies as in (A). N = 100 flies followed over time. * P < 0.05, ** P < 0.001. 

A measurable outcome of reduced nutrient supply is the subsequent reduction in 

the egg-laying ability of Drosophila (Chapman and Partridge, 1996; Terashima and 

Bownes, 2004). I therefore evaluated the number of eggs laid per female fly over 24 hours 

at similar time points as the feeding behaviour was assessed. Control flies displayed an 

early increase in egg-laying behaviour that mirrored the increase in feeding, after which 

the number of eggs laid declined with age. Flies expressing A131_42 however did not show 

this early rise in egg-laying, rather a dramatic reduction after 4 days of Af31-42 expression 
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that remained unchanged for the rest of the trial period (Figure 6.2B; P < 0.05 for all 

points after 4 days of induction, t-test). 

6.4.4 AI31_42 sensitized flies against injected PQ 

To eliminate the cofounding effects of altered feeding and to further explore the in vivo 

response to oxidative stress I exposed Alzheimer's flies to PQ by means of a single 

intrathoracic injection (Cocheme et al., 2011, 2012). Flies expressing Af31_42 were more 

sensitive than controls to injected PQ (P < 0.001, log rank test). Furthermore there was a 

positive correlation between longer A131_42 expression periods and sensitivity to PQ 

exposure, as flies induced for 15 days were shorted lived than flies induced only for 7 days 

(Figure 6.3; P < 0.01, log rank test). To rule out any mortality due to the injection or 

increased intrathoracic pressure, we injected Ringer's solution to either expressing or non- 

expressing Af31_42 flies and noted no difference in their survival times (P > 0.05, log rank 

test). Thus, Af31_42 expression increases the vulnerability to the redox cycler PQ. The 

vulnerability to PQ is evident after only 7 days of induction. 
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6.4.5 Apt-42-induced anorexia did not modify sensitivity to xenobiotics 

In light of my observation that flies expressing AP1_42 show reduced food intake, I 

cautiously assessed whether this would modify the response to xenobiotics. Several 

compounds are used to determine resistance to xenobiotics in model organisms (Lindblom 

et al., 2001; Misra et al., 2011; Yang et al., 2007). I examined whether the A(31-42- 

expressing flies were non-responsive or resistant to xenobiotic compounds administered in 

the fly medium. Surprisingly, flies expressing A131_42 were consistently sensitive to the 
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organochlorine insecticide dichlorodiphenyltrichloroethane (DDT; Figure 6.4A; P < 0.05, 

log rank test). To determine whether this effect was specific to DDT, I also evaluated the 

response to another xenobiotic, chloroquine (Figure 6.4B). Flies expressing Af31_42 were 

significantly more sensitive to exposure with chloroquine compared to non-expressing 

control flies (Figure 6.4B; P < 0.05, log rank test). 

Figure 6.4 Flies expressing 41_42 were sensitive to orally-delivered xenobiotics. (A) Survival response to 
DDT was analysed after 15 days of induction. Experiment performed by Dr. Kerni Kinghorn. (B) Response 
to chloroquine was assessed after 15 days of induction. N = 90 flies per condition. 

In view of the fact that flies expressing A131_42 have significantly (2 to 4 fold) 

reduced feeding intake at day 15 (when these stress assays were performed; see Figure 

6.2A), I hypothesised that neuronal expression of A131_42 renders flies sensitive to 

xenobiotics despite a reduction in food intake. Ingestion of small amounts of these 

compounds must therefore be sufficient for toxicity to occur. 

Given the mixed results when oxidative stressors are supplemented in the fly 

medium, I conclude that the reduction in food intake, secondary to Af31_42 expression, 

modifies sensitivity to orally delivered oxidative stressors. This has obvious implications 

for the use of Af31_42 expressing models in screening for efficacy of orally delivered 

potential therapeutic compounds. 

6.4.6 Ap1-42 repressed genes involved in oxidative and xenobiotic stress 

To better understand the changes that might yield cells more sensitive to oxidative and 

xenobiotic stress when exposed to A131_42, I tested expression levels of different proteins 

involved in the detoxification of free radicals. I immunoblotted against superoxide 

dismutase 1 (Cu/Zn SOD), superoxide dismutase 2 (Mn SOD), and catalase after several 

induction periods. The expression levels of these proteins were not significantly altered in 
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the heads of flies expressing Af31_42 compared to control flies at any of the induction 

periods tested (Figure 6.5A; P > 0.05, log rank test). 

Genes responsible for xenobiotic detoxification have been studied at the transcriptional 

level, revealing a genetic signature in Drosophila (King-Jones et al., 2006; Misra et al., 

2011; Yang et al., 2007). Interestingly a transcriptional signature of detoxification has also 

been implicated in lifespan extension (McElwee et al., 2007; Steinbaugh et al., 2012). To 

investigate whether Af31_42 alters gene expression of enzymes important for detoxification I 

interrogated a transcriptional data set recently published (Favrin et al., 2013). Importantly, 

several genes with cytochrome P450 activity showed altered expression in this dataset, six 

of these genes were down-regulated, while two were up-regulated. These genes have been 

implicated in oxidative and xenobiotic metabolism (Daborn et al., 2001; Festucci-Buselli 

et al., 2005; Pedra et al., 2004). To gain insight into the nature of the particular sensitivity 

to orally-delivered xenobiotics we assessed the overlap of the transcriptional response to 

Af31_42 (Favrin et al., 2013) and that of the over-expression of CncC (Misra et al., 2011). 

Differentially expressed genes by Af31_42 or CncC over-expression significantly overlapped 

over the Bonferroni corrected P-value threshold of 0.0001 (A; P = 8.59-07; Fisher's exact 

test). However, analyses of the directionality of the differentially expressed genes did not 

yield significance in any direction. Just above the required threshold were genes down- 

regulated by A131_42 that were up-regulated by CncC (P = 0.000595). Interestingly, several 

genes with potential detoxification properties like Cyp6a8, GstD9 and GstD3 were up- 

regulated by AP1_42 (Figure 6.5C), but not in the common transcriptional signature we 

previously established between cncC, phenobarbital and lithium (Figure 4.4C). One GST 

enzymes that was up-regulated by these three interventions was GstD2, therefore we 

analysed the expression levels of this gene in flies expressing Af31_42 without detecting 

significant changes (Figure 6.5D: P > 0.05, t-test). However, when we analysed whether 

the expression of this gene changed in the rest of the body (where Af31_42 is not expressed), 

we found that it was significantly up-regulated. (Figure 6.5D; P < 0.05, t-test). 



 Pharmacogenetics of ageing and neurodegeneration 

 217 

4; 
- •  • •  00111. 

 

  

 

 

 

 

 [Period (d)] 2 15 30 Control 

 [Inducer] - + - + - + vs. 

eiavGal4 > UAS-A13 
APM• 
4IIIMI UM IMP 41.11, 

• 

GEN 41110 "am* %N. 

 . 1 1 1 M M I  . 1 • • • • • •  Adin 
4 • 1 4 .  -  4 M o  i s m  

B 

 
Control vs. 

elavGal4 > uas-A(3 Control vs. hsp70 > cncC 
{Favrin et al 2013) {Misra et al., 2011) 

Differentially 

1.111P- 

3 5 8  3 8  5 1 7  

P = 8.59e-07 Up-regulated 

111111P- 
2 6 0  1 5  3 4 1  

P = 0.00596 

Down-regulated Up-regulated Down-regulated 

114 7 349 11 3 194 

__J _.1111
 

P = 0.000595 P = 0.0324 

Down-regulated 

MI& 

264 11 188 

P = 0.00242 

0  ______________  0 

Heads Bodies 

Figure 6.5 Regulation of detoxification enzymes in flies expressing 41_42. (A) Enzymes involved in 
protection against oxidative stress were analysed by immunoblot analyses without detecting significant 
alterations in protein expression levels. These images are representative of 5 repeats (2 of which were 
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transcriptional responses to A131_42 and cncC over-expression. (C) Heat map depicting the differentially 
expressed genes that overlapped in (B). Analysis in (B and C) was done by Dr. Dobril Ivanov. (D) mRNA 
quantification of Gst-D2 by RT-qPCR using 4 repeats of 10 heads or 5 bodies per repeat. Experiment 
performed in collaboration with Ms. Li Li. * P < 0.05, t-test. 
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ones changing. Even more, though we did not find significant difference in the 

directionality of the response, it could be suggested that the transcriptional profiles go in 

opposing directions, and that the head and the rest of the body might be coping differently 

with A(31_42 toxicity. 

6.4.7 Chronic expression of AI31_42 correlated with starvation resistance 
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reported (Burger et al., 2007). Contrary to expectation, flies expressing Af31_42 were found 

to be significantly resistant to starvation after 15 and 30 days of Af31_42 induction (Figure 
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6.6B and C; P < 0.001, log rank test), but not after 2 days (P > 0.05, log rank test; Figure 

6.6A). Interestingly, the survival response to starvation doubled after 30 days of induction 

in comparison to 15 days (P < 0.001, log rank test; Figure 6.6B and C), which suggest 

either a chronicity or ageing-related effect. It is interesting to notice that the lifespan of 

Af31_42 expressing flies under starvation conditions at 30 days of age matches the lifespan 

of flies expressing AP1_42 under optimal nutritional conditions (Figure 6.6D). This 

suggests that Af31_42-expressing flies aged for 30 days eat so few nutrients that the food 

they are housed on in old age does not affect survival and they probably die in a starvation- 

like state. 

6.4.8 Ap1_42- induced starvation resistance was secondary to a nutrition 

deficiency 

My data suggested that the expression of Af31_42 leads to an opposite response to starvation 

stress to that observed in aging control flies; with Af31_42-expressing flies becoming 

increasingly resistant to starvation stress with age. Dietary restriction, as well as 

pharmacological and genetic down-regulation of the nutrient sensing pathways, makes 

flies resistant to starvation (Bjedov et al., 2010; Broughton et al., 2005; Burger et al., 

2007). I therefore hypothesized that the starvation resistance observed in Af31_42 expressing 

flies is likely dependent on nutrition. I decided to explore three complementary 

possibilities that could explain this starvation resistance. Firstly, I varied the yeast 

concentration (the major source of nutrients in the media) from none to 50% more its 

regular content in our media (Bass et al., 2007; Mair et al., 2005). Secondly, I tested the 

effect of EAA supplementation, since it is the nutritional component with the biggest 

effect on Drosophila survival (Grandison et al., 2009a). Third, I assessed the induction of 

the starvation phenotype in a holidic medium (Piper et al., 2014), avoiding any co- 

founding effect of the yeast in our medium. 

I first induced the expression of Af31_42 in flies for a brief initial period of time (5 

days; to exclude any chronicity effects of Af31_42 expression) under varying yeast 

concentrations, as previously described (Bass et al., 2007; Grandison et al., 2009b; Mair et 

al., 2005) and then transferred them to food lacking any sugar or yeast (starvation 

conditions). As expected, flies expressing A131_42 responded differently under different 

yeast concentrations compared to control flies (Figure 6.7A). Flies expressing A01-42 

peptide were more sensitive to starvation than non-induced control flies when yeast was 
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absent from the initial fly medium (P < 0.01, log rank test). As the yeast concentration 

increased the response of A131_42-expressing flies to starvation became first 

indistinguishable from their controls (P > 0.05, log rank test for 0.02X and 0.5X) after 

which they became resistant to starvation (P < 0.05, log rank test). Interestingly, the 

resistance to starvation was blunted when the yeast concentration was increased by 50% 

compared to standard fly media (Figure 6.7A; P > 0.05, log rank test). These results 

suggest that the resistance to starvation that Alzheimer's flies acquire over time is 

dependent on their nutritional status (especially a non-sugar component of the yeast), since 

they appear to require a yeast component to develop the resistance to starvation. 

Secondly, I compared the response to starvation of Af31_42-expressing flies that had 

been induced in our standard medium to those where EAA had been supplemented in the 

food. This supplementation has been shown to mimic the effect of full feeding (Grandison 

et al., 2009a). I evaluated the survival response to starvation after 15 and 30 days of A131-42 

induction. Under starvation conditions flies expressing Af31_42 for 15 days were 

significantly longer lived than non-expressing control flies (P < 0.01, log rank test), as 

shown earlier. When flies expressing A131_42 were supplemented with EAA, the resistance 

to starvation was significantly reduced by approximately 50% (Figure 6.7B; P < 0.001, 

log rank test). In a similar experiment, the resistance to starvation of flies expressing Af31_42 

for 30 days was compared to those where EAA had been supplemented. Interestingly, 

though supplementation did indeed significantly reduce the starvation resistance after 30 

days (P < 0.05, log rank test), the effect seemed minimal in light of the starvation 

phenotype of A(31_42-expressing flies at this point (Figure 6.7C). 

Third, to determine whether the starvation phenotype was dependent on our yeast 

laboratory conditions I evaluated the phenotype under non-yeast conditions by using a 

holidic medium where the concentrations of nutrients can be easily manipulated (Piper et 

al., 2014). Flies were reared regularly and then induced either in the defined medium or in 

our regular SY medium for 15 days before switching the flies to the starvation conditions. 

After 15 days flies induced to express A131_42 on the defined diet showed a slight resistance 

to starvation that did not reach statistical significance (Figure 6.7D; P > 0.05, log rank 

test). However, when the induction was prolonged to 30 days, flies expressing A131_42 were 

significantly more resistant than their non-induced controls (Figure 6.7E; P < 0.01, log 

rank test). Thus, the starvation phenotype is unlikely to require the presence of yeast in the 

medium for its induction and is more likely to be related to the anorexia induced by A01-42. 

Interestingly, flies that were maintained in the defined medium were significantly more 
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sensitive to starvation (P < 0.001, log rank test) than those kept in the SY medium. This 

effect was independent of the induction of A131-42. 

Figure 6.7 The starvation-resistance response of flies expressing At142 depends on a nutrition 
deficiency developed over time. (A) A131_42 expression was induced for five days on five yeast dilutions 
ranging from no yeast to 1.5 the standard yeast concentration in our medium (100 g/L) after which all 
nutrients were removed and survival analysed. (B) A131_42 expression was induced for 15 days on medium 
supplemented or not with EAA and their response to starvation was evaluated. (C) Similar to (B), but flies 
were induced for 30 days. (D) A131_42 expression was induced for in either a defined diet or our standard SY 
medium for 15 days before analysing the response to starvation. (E) Similar to (D), but flies were induced for 
30 days. For all of these experiments N = 90 flies per condition. 

Take together these results suggest that the starvation-like phenotype induced by 

Af31_42 switches on a metabolic programme that allows flies to cope when nutrient intake is 

poor (low yeast or reduced feeding behaviour), but is restored as nutrients are supplied in 

optimal conditions (as when the yeast content in the media is increased or EAA are 
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supplemented). However, the switch that modulates the response to starvation seems to be 

dependent on the balance of nutrients provided by the yeast/EAA and not by 

carbohydrates. Interestingly, the phenotype is clearly time dependent. 

6.4.9 Reduced feeding behaviour lead to impaired lipid metabolism 
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To further investigate the nature of the resistance to starvation I first analysed the ATP 

levels in flies expressing A131_42. ATP levels have been reported to be affected in fly 

models of neurodegeneration (Chang et al., 2011; Clark et al., 2006). To my surprise flies 

expressing Af31_42 did not show significant differences in ATP levels when measured in 

heads and rest of the fly separately (Figure 6.8A; P > 0.05, t-test). This suggests that 

changes in ATP levels are not playing an important role in the stress responses of A131-42 

flies. 

Flies expressing A131_42 are feeding less and therefore eating fewer nutrients, which 

would be expected to translate into an imbalance in energy levels. Since ATP levels were 

indistinguishable from controls, I hypothesised that flies must be maintaining their ATP 

levels through energy storage despite their poor feeding, in order to survive under 

starvation conditions. To test this I analysed the levels of triglycerides, the main energy 

store in Drosophila (Baker and Thummel, 2007; Kiihnlein, 2012). Non-expressing control 

flies showed a slight increase in whole body triglyceride levels after 15 days of feeding 

with standard fly media and a significant decrease in triglyceride levels after 30 days 

(Figure 6.8B). Conversely Af31_42-expressing flies displayed a significant age-dependent 

increase in levels of triglycerides (P < 0.05, t-test). These results suggest that flies 

expressing Af31_42 switch on a metabolic programme to accumulate energy in the form of 

triglycerides. This reconfiguration of their metabolism would allow for a robust coping 

mechanism when nutrients are limited in the wild. Indeed flies expressing Af31_42 use 

triglycerides to a similar extent as control flies when challenged by starvation conditions 

(Figure 6.8C). Thus, A131_42 leads to the accumulation of triglycerides, as the lipid content 

is higher in flies expressing A01_42 allowing them to cope for longer under no nutrient 

supply. 

6.4.10 Supplementation of EAA partially restored the lipid profile 

My previous results suggest that the modified responses to starvation are dependent on 

limited nutrient availability. Therefore I tested whether increased nutrient availability 

could restore triglyceride levels. Flies expressing A131_42 for 15 days were compared to flies 

that in addition had been supplemented with EAA. I previously observed that 15 days of 

EAA supplementation was sufficient to partially suppress the protection against starvation 

(Figure 6.7B and C). As expected this effect correlated with a complete restoration of the 

triglyceride levels. Flies expressing A131_42 and supplemented with EAA were not 
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statistically different from non-expressing control flies after 15 days of induction (Figure 

6.8D; P > 0.05, ANOVA post hoc Tukey Kramer). However, when the measurements 

were done after 30 days of AP1_42 expression, the supplementation with EAA was 

insufficient to significantly lower the increased triglyceride levels, as they remained 

similarly high as the induced non-supplemented flies (Figure 6.8D; P > 0.05, ANOVA 

post hoc Tukey Kramer). 

Taken together my results suggest that the acceleration of age-related anorexia 

induced by AP1_42 reduces nutrient intake that leads to a starvation-like state. Low nutrient 

availability in turn seems to promote a switch in metabolism to store energy, whereby flies 

increase triglyceride levels to help cope with starvation conditions. 

6.4.11 Supplementation of EAA increased the lifespan of flies expressing 

AN-42• 

Figure 6.9 Survival analyses of 
flies supplemented with EAA at 
different time points during 41_42 
induction. Flies were induced to 
express A131-42 in medium 
supplemented or not with EAA. 
From the group of flies induced 
without EAA supplementation, 
groups of flies were switched to the 
supplemented medium after 5, 10 or 
20 days of the initial induction. N = 
150 flies per condition. 

EAA supplementation to A131_42-expressing flies was able to restore triglyceride and the 

response to starvation (Figure 6.8D and Figure 6.7B). Therefore, I explored the possibility 

that supplementation of EAA would extend the lifespan of flies expressing A131_42 in spite of 

the fact that the normal effect of this intervention is to reduce lifespan (Grandison et al., 

2009a). To explore whether EAA supplementation was able to prevent or rescue the 

lifespan, I either started the induction of A131_42 expression in food supplemented with EAA 

or vehicle alone. In addition, I switched flies that had been initially induced in our standard 

medium (SY) to one in which EAA had been added. I did the latter at different time points 

(Figure 6.9). Induction on media supplemented with EAA showed a significant median 

lifespan extension of 5 days (11%) in comparison to flies induced on regular media (P < 
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0.01, log rank test). When flies were first induced in our standard media and transferred to 

food supplemented with EAA after 5 days of induction (when feeding alterations are 

evident, Figure 6.2A), I observed a median lifespan extension of 7.6 days (17% in 

comparison to controls; Figure 6.9; P <0.001, log rank test). When the change from 

regular to supplemented medium was done after 10 days of AP1_42 expression, EAA 

supplementation was still able to extend median lifespan, though to a lesser extent (only 

2.6 days or 6%; P < 0.05, log rank test). However, after 20 days of induction the 

supplementation of EAA had no effect on lifespan (P > 0.05, log rank test). 

These results highlight firstly that flies expressing Af31_42 are indeed malnourished, 

and that macronutrient supplementation is necessary to compensate for their poor food 

intake. Secondly, as the starvation-like state accentuates over time (with Af31_42 chronicity) 

the nutritional requirements are likely to increase correspondingly, and therefore the same 

supplementation is unable to rescue their survival and to restores their lipid and starvation 

response. 

6.4.12 AP1_42 and starvation share a common transcriptional response 

Finally, we decided to explore whether the transcriptional profile of flies expressing Af31_42 

shared similarities with the transcriptional response of flies that had been starved. For this 

we used a head transcriptional dataset of flies starved for 24 hrs (Farhadian et al., 2012) 

and an Af31_42 dataset (Favrin et al., 2013). When both transcriptional responses were 

overlapped we observed that there was significant overlap between differentially expressed 

genes elicited by A131_42 and starved heads (Figure 6.10A; P < 0.0001; Fisher's exact test). 

Further analyses revealed that the overlap of these transcriptional datasets was also 

significant at the down-regulated levels (P = 1.39e-05; Fisher's exact test), which suggests 

that a similar set of genes are regulated by starvation and Af31_42. However, a strong 

correlation was also detected between genes up-regulated by A131_42 and down-regulated by 

starvation (P = 1.8E-09), which suggest that Af31_42 differentially regulates them in the 

opposite direction (Figure 6.10B). These results suggest that part of the transcriptional 

response elicited by A131_42 is similarly modified by starvation, but most of the response 

went in opposite directions. Perhaps Af31_42 and starvation have common molecular 

mechanisms that are regulated accordingly to ensure survival. Careful examinations of the 

genes involved in the transcriptional response by both interventions could enrich our 
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Figure 6.10 Transcriptional overlap between flies expressing 41_42 and flies that had been starved for 24 
hrs. (A) Overlap of genes regulated by A131_42 or starvation. (B) Heat map of the differentially expressed genes 
that overlapped. Analyses for these experiments were done by Dr. Dobril Ivanov. 

6.5 Discussion 

6.5.1 Anorexia is the earliest sign of neurodegeneration due to AP1_42 

Adaptations to stress are amongst the most evolutionary conserved mechanisms to ensure 

survival (Fulda et al., 2010; Kroemer et al., 2010). As a result of evolutionary 

development, multicellular organisms have acquired endocrinological messengers that 

enable communication between distant organs, allowing a systemic response that would 

ensure either a quick restoration of homeostasis, a chronic adaptation (with or without 

increased survival) or death (Coburn et al., 2013; Durieux et al., 2011; Leopold and 

Perrimon, 2007). In trying to decipher the response to chemically induced forms of stress 

in Drosophila expressing the Af31_42 peptide in neurons, I observed that the earliest sign of 

neurodegeneration is reduced feeding behaviour. Reduced feeding with elderly age is a 

common feature between flies and humans (Morley, 2001; Payette and Gray-Donald, 

1995; Wong et al., 2009). Therefore, the reduction in feeding secondary to the presence of 

the Af31_42 peptide can be considered an accelerated ageing phenotype, as is the effect of 

A131_42 on Drosophila' s locomotor ability (Gargano et al., 2005; Kerr et al., 2011; Sofola et 

al., 2010). However, the reduced feeding behaviour precedes the locomotor decline in both 

control flies and in the AD fly model. Feeding alterations have also been reported in a 

mouse model of AD (Adebakin et al., 2012), although this model shows increased feeding 

behaviour possibly because of a gut-brain signalling malfunction. Reduced feeding 

behaviour or caloric intake have been observed in patients with AD, commonly in 

advanced stages of the disease, though reduced caloric intake early in the disease has also 

been reported (Shatenstein et al., 2007). 



 Pharmacogenetics of ageing and neurodegeneration 

 230 

6.5.2 AP142-expressing flies are nutritionally deprived and lived longer 

when supplemented with EAA 

Lowering food intake extends lifespan across evolutionary distant organisms (Fontana et 

al., 2010; Piper and Bartke, 2008). Lowering food intake in the context of impaired 

proteostasis would allow the organism to reduce the rate of protein translation, thereby 

reducing the cellular burden of toxic proteins, and to increase the degradation of damaged 

proteins and organelles through autophagy (Bjedov and Partridge, 2011; Taylor and Dillin, 

2011). Lowering the activity of the IIS or mTOR pathways have been shown to improve 

several phenotypes in AD models (Cohen et al., 2009; Killick et al., 2009; Majumder et al., 

2011; Spilman et al., 2010). This is complementary to the reports showing that DR 

improves Af31_42 pathology (Patel et al., 2005; Qin et al., 2006). On the other hand, 

increased nutrient intake, which limits lifespan, is associated with increased risk of 

developing AD (Fontana et al., 2010; Luchsinger et al., 2002). Therefore my results 

showing that EAA supplementation extended the lifespan of flies expressing A131_42 was 

somehow unexpected. However, there is a limit to the degree of DR beyond which 

malnourishment is established (Fontana et al., 2010; Piper and Bartke, 2008). I consider 

that the reduced feeding behaviour and secondary nutrient deprivation have tipped the AD 

flies to the malnourishment side of the DR tent (shift to the left; see Chapter 1). As 

nutrients are restored lifespan is extended. Thus, my results support that flies expressing 

Af31_42 are nutritionally deprived and this compromises their survival. 

6.5.3 Ap142-induced anorexia altered the response to orally-delivered 

toxins: implications for drug studies 

A secondary consequence of the reduced feeding behaviour observed in flies expressing 

A131_42 was that toxins delivered through the fly media were less bioavailable to the flies. 

This translated in inconsistent results when flies were assessed for their response to the 

pro-oxidant PQ (sometimes showing sensitivity, but most commonly resistance to PQ). 

Similarly, flies expressing A131_42 were resistant to H202 when delivered through the fly 

medium. When PQ was administered to the flies as a single intrathoracic injection, they 

showed an age-dependent sensitivity. Thus, Af31_42 increases vulnerability to oxidative 

stressors and this phenotype is also present before the onset of locomotor alterations. 

These results also have significant implications for using this model to test 

potential therapeutic compounds that are delivered in the fly medium. Higher 
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concentrations of drugs may be required to gain therapeutic concentrations and potentially 

beneficial compounds may have been previously missed as a result of their poor oral 

uptake in Af31_42-expressing flies. 

6.5.4 Ap1_42 induced starvation resistance through alterations in lipid 

metabolism 

A significant result observed in this study was that flies expressing Af31_42 were extremely 

resistant to starvation (doubling the lifespan of control flies). This was unexpected given 

that they barely eat and therefore would be expected to be very sensitive to starvation 

conditions. However, flies are equipped to sense low nutrient availability and switch on a 

programme to store energy, primarily in the form of triglycerides. I showed here that 

although indeed the Alzheimer's flies seem to be starving, they do have higher levels of 

triglycerides, the main energy store in Drosophila. Since they have higher energy stores, 

they are able to cope for longer when completely deprived of nutrients (Ballard et al., 

2008). I established that this effect is likely dependent on protein/EAA. Flies that were 

induced to express Af31_42 in medium without yeast (but containing sucrose) were sensitive 

to starvation. As the yeast content increased to our standard medium levels the flies 

gradually developed the resistance to starvation phenotype. This effect was restored to 

control fly levels by adding 50% more yeast to the medium. Similarly, adding EAA to the 

medium blunted the starvation resistance phenotype induced by Af31_42 and restored the 

lower levels of triglycerides typical for wild-type flies. Such a switch has not been 

identified in humans, though lower meal frequency has been associated with higher 

circulating lipid levels (Farshchi et al., 2005). Higher circulating lipid levels have been 

associated with increased Af31_42 deposition load in AD patients (Reed et al., 2013). 

Moreover, elevated circulating levels of triglycerides have also been reported in two 

mouse models of AD. In these models the increase in triglycerides preceded A131-42 

deposition (Burgess et al., 2006). Though the latter effect is likely mediated by high levels 

of circulating amyloid, which could interfere with enzyme(s) important in lipid 

metabolism, these results highlight the fact that Af31_42 pathology can directly and 

indirectly impair lipid metabolism. 
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6.5.5 What underlies the behavioural and metabolic alterations induced 

by AP1-42? 

Food intake is controlled by a sophisticated set of behaviours regulated by a number of 

specialised genes and is aimed at maintaining nutritional homeostasis (Itskov and Ribeiro, 

2013). I further explored the microarray data set used throughout the results for potential 

transcriptional changes that could suggest a mechanism for altered feeding (Favrin et al., 

2013). To my surprise I found that at least two neuropeptides involved in the regulation of 

feeding were altered. Though I have not confirmed these results, I would like to speculate 

about their potential relevance. Little is known about their involvement in the adult fly, but 

larval studies are very informative. Over-expression of hugin suppresses feeding in larvae. 

Interestingly, reduction of hugin in adult flies translates into early initiation of feeding 

behaviour (Melcher and Pankratz, 2005). The transcriptional data set by Favrin et al., 

(2013) suggested that Af31_42 increases the expression of hugin. Hugin is the fly ortholog of 

Neuromedin U (NMU) in mammals. NMU has limited expression in the brain, but high 

levels are present in the hypothalamus, anterior pituitary, nucleus accumbens, globus 

pallidus, septum, amygdala and medulla oblongata (Budhiraja and Chugh, 2009). Its 

limited distribution in the brain highlights its role in the regulation of energy balance. 

When NMU is administered intracerebroventricularly (i.c.v.) reduces food intake in 

several species including rats and chicks. Contrary, when anti-NMU antisera is delivered 

i.c.v. it increases feeding in rats (Budhiraja and Chugh, 2009; Mitchell et al., 2009). 

Elegant genetic mouse models have shown that NMU knockout animals are hyperphagic 

and obese, while its over-expression reduces food intake and makes animals leaner 

(Hanada et al., 2004; Kowalski et al., 2005). NMU is therefore an anorexigenic 

neuropeptide and is gaining renewed interest as it has potential as an anti-obesity target 

(Mitchell et al., 2009). 

Another neuropeptide seemingly regulated by A131_42 is neuropeptide F (NPF), the 

ortholog of neuropeptide Y (NPY) in mammals (Itskov and Ribeiro, 2013; Wu et al., 

2003). NPF seems to have similar function as NPY in promoting feeding behaviour (Wu et 

al., 2003, 2005). NPY GABAergic neurons control feeding behaviour by inhibiting the 

inhibitory function of pro-opiomelanocortin and are therefore anorexigenic. Centrally 

delivered NPY (i.c.v.) promotes a robust feeding behaviour in different mammalian 

models (Beck, 2006; Chee and Colmers, 2008). Of importance to my results is the fact that 

adult-only ablation of NPY-producing neurons reduces feeding and promotes weight loss 

in mice (Luquet et al., 2005). The microarray data set suggested that the anorexigenic 
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signal from hugin was increased while the orexigenic (feeding promoting) effect was 

reduced in Af31_42-expressing flies (Favrin et al., 2013). 

The findings suggested by the microarray data are suggestive, yet I need to 

corroborate them at the mRNA and/or protein level. However, they would potentially point 

towards a particular sensitivity that these neurons would have to the expression of A131-42. 

They might even suggest that expressing A01_42 only in these neurons could be sufficient to 

produce relevant phenotypes in Drosophila. I will be looking at these neurons with 

particular interest in the next coming months. 
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Chapter 7 

Final thoughts: drugs in ageing and age-related diseases 

"To him who devotes his life to science, nothing can give more happiness than increasing 

the number of discoveries, but his cup of joy is full when the results of his studies 

immediately find practical applications." 

Louis Pasteur 

7.1 General conclusions: treating ageing 

Ageing is undeniably an intriguing area of study in biology. The challenges are two tiers. 

First, the quest for the preservation of the youthful state has inspired scientists and 

conquerors to speculate not only of the existence of a magic remedy to preserve it, or to 

reverse to it once lost, but also as to how science can provide answers. Secondly, ageing 

remains to be an enigmatic area in evolutionary biology. Why has evolution maintained a 

process that leads to an unfit state? Evolutionary biologists have wondered hard and long 

about this. The jury is still out there. We are still far from understanding the processes that 

have led to the existence of the ageing process. While some have considered it a 

misfortunate trait that allows fitness early on in life, others have proposed that mutations 

accumulate leading to an increase burden of molecular damage that the organisms' repair 

mechanisms are unable to cope with it. 

Furthermore, ageing has become an attractive area of study in the biomedical field 

because of its implication to public health. Ageing is the major risk factor for the most 

prevalent killer diseases of modern times. Estimations have made evident that the 

contribution of curing these diseases (dementia, cardiovascular and cancer), individually or 

collective, to life expectancy are minimal in comparison to eradicating the ageing process. 

Life expectancy is not expected to cap at any time soon, in spite of the twin epidemic of 

obesity and diabetes. As our populations live longer, age-related diseases become more 

prevalent. This is in spite of the compression of morbidity that is allowing the rise in life 

expectancy. So how is research into ageing going to contribute to alleviate this problem? 

Over the last 30 years, biogerontology has really taken off as an important part of 

biomedicine. The first observations that ageing could be retarded by genetic manipulations 

came from studies in the nematode C. elegans and soon after these same interventions 
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were shown to be evolutionary conserved in fruit flies and mice. This period in 

biogerontology has often been termed as the "new science of ageing" given that it showed 

the revolutionary principle that ageing is plastic and amenable to genetic manipulations. It 

is not a surprise that ever since the field has exploded. Nowadays, manipulations to single 

genes are very often reported to affect lifespan and healthspan in model organisms. The 

challenge now has become to find ways to translate these fmdings from comforts of basic 

research into the clinic to have a real impact in public health. The most obvious way is to 

synthesise drugs that can act on the pathways already identified by genetics. However, this 

approach has many pitfalls. First, drug development is a very lengthy process that often 

requires over a decade (in most cases longer) to reach pharmacies shelves. This applies to 

the fortunate case in which a drug passes the complicated steps of Phase 1 and Phase 2 

clinical trials. Second, ageing is not a disease, therefore agencies regulating the safety and 

efficacy of drugs would not allow the compound to be tested for the required 

experimentation for human use. Indeed, anti-ageing compounds are regularly found in 

shops specialised in nutraceuticals and supplements, as they are not licensed for disease 

treatment. An alternative is to test the pro-longevity effect of compounds already licensed 

for human use and to repurpose them. This is a strategy that has been gaining popularity in 

the pharmaceutical industry as measure of optimising the huge investments they often 

make to take compounds to market. Finding a new application for a drug that is already 

approved accelerates the process required for the drug to be approved for an alternative 

disease as it is very likely that the drug has already complied with the earlier phases of 

clinical experimentation. 

Rapamycin and metformin have now become the pillars of this new wave of drug 

repurposing. Rapamycin is licensed as an immunosuppressant and chemotherapeutic agent, 

while metformin in anti-diabetic drug. Both these drugs can extend lifespan, and most 

importantly healthspan in evolutionary distant organisms, which makes them ideal drugs to 

be considered for the treatment of ageing. Rapamycin is often dismissed as a real anti- 

ageing compound given its side effects. For example, rapamycin leads to glucose and lipid 

abnormalities which could negatively impact human health in the long run. Additionally as 

rapamycin is licensed as an immunosuppressant there is concern that its use could lead to 

deadly infections, particularly at older ages, when the immune system is not at its fullest 

capacity and infections like pneumonia are particularly dangerous. 

Metformin is one of the most prescribed drugs in the world and its potential to 

improve healthspan is greater, in spite of its side effects often confined to the  



 Pharmacogenetics of ageing and neurodegeneration 

 236 

gastrointestinal system. However, the only report to have shown that metformin extends 

lifespan in mammals showed that the effect was rather small, which begs the question as to 

whether metformin acts to modify longevity or to improve health by acting on diseases. 

Recently David Gems made the argument that even compounds acting on specific diseases 

rather than on the ageing process should be considered anti-ageing as they are likely to 

contribute to some aspects of the ageing process. According to Gems anti-ageing 

medications could be of three classes: 

1. Drugs that act on the ageing process by promoting lifespan extension without 

necessarily increasing healthspan. 

2. Drugs that promote healthspan and lifespan by acting on the ageing process. 

3. Drugs that act on disease, which could be viewed as a minor branch of the ageing 

process. 

Drugs acting by any of these mechanisms are likely to contribute to public health, but 

drugs that act both in healthspan and lifespan are the most likely to show broad spectrum 

benefits for disease and thus impact public health. 

7.2 Lithium and GSK-3 in ageing and neurodegeneration: an 

integrative perspective 

My results showed that lithium is a pro-longevity drug that can extend lifespan 

independent of sex and genetic background. Importantly, the lifespan extension conferred 

by lithium did not reduce fecundity and improved metabolism by lowering triglyceride 

levels. Reduced fecundity and altered metabolism (increases levels of carbohydrate and 

lipid metabolites) are among the features of DR, IIS down-regulation and rapamycin 

treatment. Lithium seems to be different to these interventions. The lipid-lowering ability 

of lithium proved to be very effective at blocking the hypertriglyceridemia produced by 

rapamycin treatment. Moreover, the combination of lithium plus rapamycin proved to be 

more effective than either treatment on its own for lifespan extension. I discussed in a 

previous Chapter that these could be relevant for the establishment of a polypill for ageing. 

These fmdings make lithium an exciting and interesting drug for future work. 

In Chapter 6 I described how flies expressing A131_42 show altered metabolism 

secondary to poor food intake. We have previously shown that lithium is able to improve 
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the locomotor capacity and lifespan of these flies (Sofola et al., 2010; Adesakin-Sofola et 

al., 2014). However, in light of the new phenotypes described here it would be relevant to 

assess the potential added benefits of supplementing flies expressing Af31_42 with lithium. 

Expression of Af31_42 leads to reduced feeding, starvation resistance and high lipid content. 

Given that lithium reduces triglyceride levels, this could potentially be tackled by 

supplementing these flies with lithium. Another potential added benefit would be stress- 

resistance. I showed in Chapter 4 that lithium increases stress resistance by allowing a 

transcriptional response capable of mounting detoxification and protection against 

oxidative stress. Moreover, I showed in Chapter 6 that flies expressing A131_42 show altered 

stress response and potentially this is because of poor regulation of CncC. Therefore, 

lithium could be beneficial at regulating the response to stress in flies expressing Af31_42. A 

confounding effect of lithium treatment in flies is that it reduced the synthesis of Af31_42 as 

it impacts on translation initiation (Adesakin-Sofola et al., 2014). Reducing translation 

would lower the level of the peptide being induced before it causes damage, this 

intervention would be as effective as lowering (or even eliminating) the inducer from the 

medium. However, if the treatment was applied after Af31_42 has already accumulated in 

neurons I should be able to see rescue of the effects in CncC and stress resistance. I have 

preliminary data to suggest that this could be overcome by supplementing lithium only 

after the production of AP1_42 has been stopped. Rogers and colleagues showed that even 

when the induction of AP1_42 is stopped, the peptide remains in the fly head until it dies, 

and only brief periods of induction are enough to elicit the survival and locomotor 

phenotypes (Rogers et al., 2012). I have expanded this to the new phenotypes I described 

here. Additionally my preliminary data suggest that lithium could impact on all phenotypes 

even when AP1_42 is not being lowered. In a way this is not surprising given that lithium 

can improve many features in control flies. 

What would be the next step for lithium? First a mechanism of action would need 

to be consolidated in Drosophila. Second, evolutionary conservation will need to be 

proved. In Chapter 3 I discussed some strategies as to when and how to evaluate the effects 

of lithium treatment in rodents. These considerations might be useful in moving the drug 

forward. Third, as with rapamycin, once clear mechanisms of action are established, 

testing for more selective compounds would be appropriate. Lithium is a very dirty drug; 

perhaps this is its best feature at the same time that it has been my worst nightmare. 

Though it would be incredibly satisfying to find one mechanism of action to explain all of 

the positive features of lithium, I think this is rather unrealistic. This is not only because 
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lithium is known to interact with many biological pathways, but also because it is very 

complicated to dissect complex organismal traits with one drug. Assuming that all cells 

will react in the same way to a particular stimulus would be denying the beauty and 

complexity of multicellularity. As muticellular organisms respond in concert rather than as 

isolated cells, cell-specific responses can be easily masked by the overall organismal 

response. Moreover, because some cells and tissues are to some extent more vital than 

others, it is likely that they will be spared for longer at the expense of 'less' vital tissues. 

All of these responses need to be considered when evaluating complex traits like ageing, 

stress-response and metabolism. My data showing that sgg expression has tissue specific 

effects clearly highlight that different cell types respond differently to stressors. 

Understanding the contribution of specific cells to the overall organismal struggle for 

survival should be amongst the concerted efforts of the biomedical community as a whole. 

7.3 Are drugs the way forward in the ageing field? 

DR is the most studied intervention to promote healthy ageing. DR has been shown to 

increase lifespan, to promote health, and to ameliorate a host of age-related diseases in 

almost all organisms tested. It is very unlikely that DR will become the cure for ageing. 

The benefits of DR have long been known and nothing has changed so far. The ageing 

filed does require the aid of pharmacology to drive the field forward. As discussed before, 

I considered that it is unlikely we will find the one drug that will cure ageing. Instead we 

will need to find cocktails of drugs. My data on the combination of lithium and rapamycin 

is encouraging, but if it was up to me I would immediately add aspirin, a statin and 

metformin to the mix. Studying the interaction of drugs will be an essential requirement 

for the new era of interventional biogerontology. 
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Appendix 

Appendix 1 

Castillo-Quan it Parkin' control: regulation of PGC-1 a through PARIS in Parkinson's 

disease. Dis Model Mech 2011; 4: 427-429. 
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Appendix 5 PCR primers 

Gene Sequence 

Sgg TCACAGAGCTTCAGCACAGC 

pUAS AACCAGCAACCAAGTAAATCAA 

dFOXO (forward) TTGGTAGTGCCTATGATCCAG 

dFOXO (reverse) AAGGTAGTGCCTAGATCCAG 

Chico (forward) AGTTAATTCAAACCCCACGG 

Chico (reverse) 1 AAACGGCGATTGATGTTGAAG 
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Appendix 6 qPCR primers 

Sequence 

GGATCAAACAAAAATAAAGATTGG 

TCTTGGCCTTCTTGGACATC 

ATCCGTCGGTATGACCACTC 

CAGCACGTTGGTCATGTAGG 

GCTTTTTGCTCTGCTCGTCT 

TCCATACACTCGCCCCTAAC 

CGACTGGAGGAATTCACCTG 

AACTGCAGCGGCTGCGATGA 

GCGGGATACGGCGATTTCAC 

AACGATCAGGAACGCTAGGC 

AGTTAATTCAAACCCCACCGG 

AAACGGCGATTGATGTTG 

CACTCCTGGAGGCACCA 

GAGTTCCCCTCAGCAAGCAA 

GAGCGCGGTTACTCTTTCAC 

GCCATCTCCTGCTCAAAGTC 

ATGACCATCCGCCCAGCATCAGG 

LATCTCGCCGCAGTAAACG 

Gene 

Scylla (forward) 

Scylla (reverse) 

Charibdys (forward) 

Charibdys (reverse) 

Fz3 (forward) 

Fz3 (reverse) 

Naked (forward) 

Naked (reverse) 

dInR (forward) 

dInR (reverse) 

Chico (forward) 

Chico (reverse) 

4E-BP (forward) 

4E-BP (reverse) 

Actin (forward) 

Actin (reverse) 

RP49 (forward) 

RP49 (reverse) 
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Appendix 7 Recipe for SY preparation for DR tent (for 1 L) 

0.0 SY 0.2SY 0.5 SY 1.0 SY 1.5 SY 2.0 SY 

700 700 700 700 700 700 

15 15 15 15 15 15 

50 50 50 50 50 50 

0 20 50 100 150 200 

223 212 196 170 144 118 

30 30 30 30 30 30 

3 3 3 3 3 3  

1. Agar was added to the initial volume of water (ddH2O) just before heating. Stirring 

was continuous thought the preparation process to prevent any of the ingredients 

sticking to the saucepan. 

2. Just after the initial boiling point sucrose was added and brought to boil. 

3. The yeast was added and brought to boil again. The saucepan was removed from 

the heating source and the additional ddH2O was added to cool down the medium. 

4. Only after the medium was below 60°C (preferentially between 50 and 58°C) 

nipagin and propionic acid were added. 

5. Medium was ready for dispensing. 

Ingredient 
ddH2O (mL) 

1 
Agar (g) 

Sucrose (g) 

Yeast (g) 

Additional ddH2O 

(mL) 

Nipagin (mL) 

Propionic acid (mL) 
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Appendix 9 Recipe for EAA solution preparation for 1 L of 1SY medium 

Ingredients Quantity* Catalogue Number§ 

* to add to a final volume of 50 mL of ddH2O. 

§ all from Sigma. 

Arginine 

Histidine 

Isoleucine 

Leucine 

Lysine 

Methionine 

Phenylalanine 

Threonine 

Tryptophan 

Valine 

 0.425 A5131 

 0.210 118000 

 0.340 12752 

 0.475 L8912 

 0.515 L5626 

 0.100 M9625 

 0.260 P2126 

 0.365 T8625 

 0.090 T0254 

 0.400 V0500 
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Appendix 10 Ingredients for 1 L of holidic medium 

Before autoclaving 

Ingredient Ammount Notes  

Agar I 20 g From Difco (214530). 

Isoleucine 0.58 g From Sigma 12752. 

Leucine 

Tyrosine 0.42 g From Sigma T3754. 
Sucrose 

I 17.12 g 

Cholesterol I 15 mL 20 mg/mL in 100% ethanol. From Sigma C8667. 

Buffer 100 mL For 1 L mix (in ddH2O) 30 mL of acetic acid (Fisher,  

A/0400/PB15), 30 g of KH2PO4 (Sigma, P9791), 10 g of 

NaHCO3 (Sigma, S8875). 

250 g/L. From Sigma C7902. 

250 g/L. From Sigma M7506. 

2.5 g/L. From Sigma C7631. 

25 g/L. From Sigma F7002. 

1 g/L. From Sigma M3634. 

1 mL 25 g/L. From Sigma Z0251. 

After autoclaving 

Ingredient Ammount 

Nucleic acid / 8 mL 

Lipid solution  

EAA solution 30.255 mL 

Non EAA 30.255 mL 

solution 

Glutamate 9.11 mL 

0.82 g From Sigma L8912. 

From Sigma S1888. 

CaC12 1 mL 

MgSO4  

C u S O 4  1  m L   
FeSO4  

M n C 1 2  1  m L   
ZnSO4  

TOTAL 883.7 mL 

1 mL 

1 mL 

Notes 

For 1 L mix the following in ddH2O: 6.25 g of choline 

chloride (Sigma, C1879), 0.63 g of myo-inositol (Sigma, 

17508), 8.13 g of inosine (Sigma, 14125), and 7.5 g of 

uridine (Sigma, U3750). 

See Appendix 9. 

See Appendix 9. 

100 g/mL From Sigma G5889. 
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Cysteine 2.64 mL 50 g/mL in HC1. From Sigma C 1276. 

Vitamin 14 mL For 1 L mix (in ddH2O) the following: 0.1 g of thiamine 

solution aneurin (Sigma, T4625), 0.05 g of  r ibof lavin (Sigma, 

R4500), 0.6 g of nicotinic acid (Sigma, N4126), 0.775 g of 

Ca pentothenate (Sigma P2250), 0.125 g of pyridoxine 

(Sigma, P9755), and 0.01 g of biotin (Sigma, B4501). 

Folic acid 1 mL 0.5 g/L (ddH2O). From Sigma F7876. 

Propionic acid 16 mL From Sigma P5561. 

Nipagin 15 mL 100 g/L methyl 4-hydroxybenzoate in 95% ethanol. From 

Clariant Nipagin M. 



Pharmacogenetics of ageing and neurodegeneration 

 28 

 

Appendix 11 Ingredients for EAA and non EAA solutions for holidic medium 

Essential amino acid (EAA) stock solution (in 400 mL of ddH2O) 

Ingredient Ammount Notes  

Arginine 9.4 g 

Histidine 4.48 g 

Lysine 

Methionine 2.25 g 

Phenylalalnine 

Threonine  

8 .56  g  

Tryptophan 

V a l i n e  8 . 8 5  g  

From Sigma A5131. 

From Sigma 118000. 

From Sigma M9625. 

From Sigma T8625. 

From Sigma V0500. 

Non EAA stock solution (in 400 mL of ddH2O) 

Ingredient Ammount Notes 

Alanine 1 10.5 g From Sigma A7627. 

Asparagine 5.55 g From Sigma A0884. 

Aspartic acid 5.55 g From Sigma A6383. 

Glycine 7.15 g From Sigma G7126. 

Proline 3.73 g From Sigma P0380. 

Serine 5.03 g From Sigma S4500. 
 

 

 

 

11.48 g From Sigma L5626. 

1 6.06 g From Sigma P2126. 

2.91 g From Sigma T0254. 


