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We present a comparative study of two computer simulation methods to obtain static and dynamic
properties of dilute polymer solutions. The first approach is a recently established hybrid algorithm
based on dissipative coupling between molecular dynamics and lattice Boltzmann �LB�, while the
second is standard Brownian dynamics �BD� with fluctuating hydrodynamic interactions. Applying
these methods to the same physical system �a single polymer chain in a good solvent in thermal
equilibrium� allows us to draw a detailed and quantitative comparison in terms of both accuracy and
efficiency. It is found that the static conformations of the LB model are distorted when the box
length L is too small compared to the chain size. Furthermore, some dynamic properties of the LB
model are subject to an L−1 finite-size effect, while the BD model directly reproduces the asymptotic
L→� behavior. Apart from these finite-size effects, it is also found that in order to obtain the correct
dynamic properties for the LB simulations, it is crucial to properly thermalize all the kinetic modes.
Only in this case, the results are in excellent agreement with each other, as expected. Moreover,
Brownian dynamics is found to be much more efficient than lattice Boltzmann as long as the degree
of polymerization is not excessively large. © 2009 American Institute of Physics.
�doi:10.1063/1.3251771�

I. INTRODUCTION

The rich variety of conformations, which leads to many
different intrinsic properties of polymer solutions, has con-
tinuously drawn considerable interest in soft matter research.
Computer modeling is increasingly being used as an integral
part of theoretical study in order to both test existing theories
and trigger the development of new concepts. Furthermore,
computer simulations have also become an essential tool in
materials research, especially for predicting and understand-
ing the behavior of complex systems where a complete
theory is not available. It has been proven to be an effective
and inexpensive way to study these systems. In order to ob-
serve large-scale properties, it is crucial to reduce the com-
putational cost by coarse-graining the details of the atomic
structure. This is particularly true for polymer systems and
studies of their universal static and dynamic properties.1,2 In
this context, using a conventional bead-spring chain model to
represent a polymer molecule in molecular dynamics �MD�
simulations is usually sufficient.3–7 In the case of dilute and
semidilute polymer solutions, a correct model also needs to
take into account the effect of solvent molecules. This effect
is twofold: on the one hand, the good solvent quality results
in swelling of the random coil; on the other, the solvent-
mediated long-range dynamic correlations between different
segments of the chain, known as hydrodynamic interactions
�HIs�, significantly influence the dynamical behavior.1,2,8 In
the present methodological study, we focus on the dilute re-
gime, which is theoretically most thoroughly understood.

In order to capture HIs in MD simulations, the solvent
particles need to be incorporated explicitly. Typically, the
number of solvent particles required for such a model is of
the order of thousands even for a short chain. Although such
studies are feasible,6 they are rather inefficient for this rea-
son. Therefore, a more coarse-grained description of the sol-
vent is highly desirable. Two complementary approaches
have been developed to do this. “Mesoscopic” methods keep
the solvent degrees of freedom but describe them in a sim-
plified fashion. These include dissipative particle dynamics
�DPD�,9–15 multiparticle collision dynamics �MPCD�,16–18

and lattice Boltzmann �LB�.19–29 These approaches are typi-
cally one to two orders of magnitude faster than MD.27 Con-
versely, Brownian dynamics �BD� simulations30–34 remove
the solvent degrees of freedom completely and take their
effect into account via nontrivial long-range dynamic corre-
lations in the stochastic displacements. This is possible due
to the time scale separation between the fast solvent motion
and the slow conformational polymer degrees of freedom.
Since the number of degrees of freedom is reduced drasti-
cally, the method has the potential to save CPU time by
additional several orders of magnitude, in particular in the
dilute limit. However, a simple implementation of the
correlations30 leads to an algorithm that scales like O�N3�,
where N is the number of Brownian particles and therefore
becomes infeasible as soon as N exceeds a few hundreds.32 It
is therefore very important to treat HI by means of Fixman’s
algorithm35 �scaling roughly as O�N2.25��, which we do in the
present study. The recently introduced method by Geyer and
Winter36 would reduce the necessary CPU effort by roughlya�Electronic mail: duenweg@mpip-mainz.mpg.de.

THE JOURNAL OF CHEMICAL PHYSICS 131, 164114 �2009�

0021-9606/2009/131�16�/164114/11/$25.00 © 2009 American Institute of Physics131, 164114-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.3251771
http://dx.doi.org/10.1063/1.3251771
http://dx.doi.org/10.1063/1.3251771


one additional order of magnitude for typical chain lengths
and exhibit a more favorable scaling �O�N2��. However, it is
based on an inexact approximation of the hydrodynamic cor-
relations that cannot be improved systematically �in contrast
to Fixman’s method�. For this reason, this algorithm was not
implemented.

None of these approaches are sufficient to reach
N�103 . . .104; this latter goal is only attainable by the imple-
mentation of very recent “superfast” BD algorithms based on
fast Fourier transforms.37–39 These latter algorithms scale as
N1+x log N, where the exponent x depends on the details of
the underlying physics and is usually substantially smaller
than unity. These methods require the study of a confined
system and hence are not used in the present study.

While the advantages and disadvantages of the methods
are well known in general terms �and have resulted in differ-
ing methodological preferences in different groups of re-
searchers�, not much is known quantitatively in terms of a
clear comparison of computational efficiency. The present
paper aims at partly filling this gap.

Recently, one of the present authors26,27 has proposed a
new mesoscopic method for simulating polymer-solvent sys-
tems. The solvent is represented by a fluid on a grid, simu-
lated via the LB approach, while the motion of the polymer
chain is governed by a continuous MD model. The two parts
are coupled by a simple dissipative force. The LB method
was originally developed to simulate hydrodynamics on a
grid.19,22 It has been shown that the LB method is a fast and
effective method for simulating fluid flows, which has the
same speed and accuracy as other Navier–Stokes
solvers.19–21,40 Ladd20,21 successfully applied the LB method
to colloidal systems �originally with a conservative coupling�
and showed that the CPU cost scales linearly with the num-
ber of particles. Moreover, he showed how fluctuations can
be incorporated into the LB model, which is essential in
order to investigate Brownian motion.20 This procedure has
recently been refined and improved.28,29 The dissipative cou-
pling method26,27 was thoroughly tested by applying it to a
single polymer chain in solution, for which the data of a
previous MD simulation6 were available and whose param-
eters were used as an input for the mesoscopic model.

In this work, we study the dynamics of a single chain in
a solvent to compare the predictions of the explicit solvent
model via the LB method with the predictions of the implicit
solvent model by BD simulations. Many recent simulation
studies have investigated very similar systems using various
mesoscopic solvent models such as MPCD,41 DPD,42 direct
solution of the Navier–Stokes equation,43 and smoothed
DPD.44 These studies were mainly done in order to test and
verify the validity of the chosen mesoscopic simulation ap-
proach. Meanwhile it is fair to say that a single chain in
solution is a standard benchmark test bed for mesoscopic
simulation methods, the necessary condition for passing be-
ing the correct reproduction of the Zimm scaling laws within
the limitations of finite chain length and finite solvent vol-
ume. The present study, however, aims directly at a quanti-
tative comparison between two different methods, and there-
fore it is crucial that the underlying polymer model is exactly
identical for both methods. This is the reason why the data in

Refs. 41–44, though all exhibiting essentially the same phys-
ics, are of no direct relevance for the present investigation
since all of them employ slightly different polymer models
and simulate solvents with somewhat different viscosities.
One very recent study by Ladd et al.45 did a rather similar
comparison between LB and BD and arrived at similar con-
clusions; the present paper should be viewed as a comple-
mentary study that puts some more emphasis on the issue of
computational efficiency.

After introducing the models, we show how to map the
input parameters of the hybrid model onto the input values of
the BD model to directly compare the predicted quantities
�Sec. II�. Section III then confirms the expected physical
equivalence of the two approaches in terms of comparing
static and dynamic data. Furthermore, this section also pre-
sents our comparison on the numerical cost or benchmark
data for both methods. Finally, in Sec. IV we summarize the
results and give our conclusions.

II. MOLECULAR MODEL AND SIMULATION METHODS

A. Molecular model

In this work, a polymer molecule is represented by a
conventional bead-spring chain model, which consists of N
beads that are connected via N−1 finitely extensible nonlin-
ear elastic �FENE� massless springs. The Lennard-Jones po-
tential, which acts between all monomers, is used to model
the excluded volume �EV� effect. The two potentials VFENE

and VLJ are given by the expressions

VFENE = −
kFENER0

2

2
ln�1 − � r

R0
�2� , �1�

VLJ = 4���12

r12 −
�6

r6 +
1

4
�, r � 21/6� , �2�

where r is the bead-bead distance, kFENE is the spring con-
stant, and R0 the maximum extension of the bond. � and �
are the energy and length parameters of the Lennard-Jones
potential, respectively.

B. The LB method

In this method, the evolution of the LB variables ni is
governed by the following LB equation:19,23,25

ni�r + ci��,t + ��� = ni�r,t� + �
j=1

b

Lij�nj�r,t� − nj
eq��,u��

+ ni��r,t� . �3�

The variable ni�r , t� is the �partial� fluid mass density at grid
site r at time t, corresponding to the discrete velocity ci. ��
is the time step, and the lattice spacing is denoted by a. The
small set of velocities ci �i=1, . . . ,b, where the value of b
depends on the details of the model� is chosen such that ci��
is a vector leading to the ith neighbor on the grid. Lij is a
collision operator for dissipation due to fluid particle colli-
sions such that the populations always relax toward the local
pseudoequilibrium distribution nj

eq that depends on the local
hydrodynamic variables �=�ini �the total mass density� and

164114-2 Pham et al. J. Chem. Phys. 131, 164114 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



u=�inici /�ini �the local flow velocity�. The collision process
is constructed in such a way that it conserves both � and u.
ni��r , t� is the stochastic term, which is essential in order to
simulate thermal fluctuations that drive Brownian motion.

The local pseudoequilibrium distribution can be repre-
sented as a second-order expansion of the Maxwell–
Boltzmann distribution given by23

ni
eq��,u� = �wci�1 +

ci · u

cs
2 +

�ci · u�2

2cs
4 −

u2

2cs
2� , �4�

where wci
are a set of weight factors, which depend on the

sublattice i �i.e., the magnitude of ci� and cs=	1 /3�a /��� is
the speed of sound. In this work, we have used the algorithm
proposed in Ref. 27, however, with the modification that the
original 18-velocity model �D3Q18� was replaced by the
D3Q19 19-velocity model.23 The set of ci consists of the
particle being at rest, the six nearest and 12 next-nearest
neighbors on a simple cubic lattice. The magnitudes of the
velocities corresponding to these three sets of particles are
ci= 
ci
=0,a /�� and 	2a /��, respectively. The weight fac-
tors for the D3Q19 model are w0=1 /3, w1=1 /18, and
w	2=1 /36.

The early model in Ref. 27 only considered the thermal-
ization of modes related to the viscous stress tensor. It is
important to note that even though this procedure is correct
in the hydrodynamic limit, it provides poor thermalization on
smaller length scales.28 Adhikari et al.28 showed that by ap-
plying thermalization to all nonconserved modes, one gets a
significantly improved numerical behavior at short scales;
the theoretical background is now thoroughly under-
stood.25,29 In this work, we have also investigated the effects
of thermalization of the kinetic modes on various dynamic
properties.

The coupling to the beads is done via simple interpola-
tion of the flow velocity from the surrounding sites and by
introducing a phenomenological Stokes friction coefficient
�bare of the beads. This gives rise to a friction force on the
particles plus a Langevin force that balances the frictional
losses. The total momentum is conserved by subtracting the
corresponding momentum transfer from the surrounding
fluid. It can be shown that this procedure satisfies the
fluctuation-dissipation theorem.25 For further technical de-
tails on this method and its theoretical analysis, we refer the
reader to Ref. 25.

C. BD simulations

The configuration of a bead-spring chain is specified by
the set of position vectors ri �i=1,2 , . . . ,N�. The time evo-
lution of this configuration is governed by the Itô stochastic
differential equation34,46,47

ri�t + �t� = ri�t� + �kBT�−1Dij · �F j
s + F j

int��t

+ 	2�tBij · W j, j = 1,2, . . . ,N , �5�

where summation over repeated indices is implied. Here the
symbols �t, kB, T, and Dij denote the time step, Boltzmann’s
constant, the temperature, and the diffusion tensor, respec-
tively, where the latter describes the HIs between the beads.

The forces F j
s and F j

int are the spring and EV contributions,
respectively. Wi are random variables representing a dis-
cretized Wiener process such that �W j�=0 and �Wi � W j�
=1	ij, where 	ij is the Kronecker delta and 1 is the unit
tensor. Finally, the tensor Bij is related to the diffusion tensor
such that Dij =Bik ·B jk

T .46

The frictional properties of the chain and the HIs be-
tween the beads are modeled via the diffusion tensor Dij. Its
diagonal elements contain the bead friction coefficient
�=6
�sd, where �s is the solvent viscosity and d is the
Stokes radius of the bead. The off-diagonal elements repre-
sent the HIs via the tensor �ij for which we take the regu-
larized Rotne–Prager–Yamakawa �RPY� tensor48,49 with sol-
vent viscosity �s and Stokes radius d. Taken together, the
diffusion tensor is given by

Dij

kBT
= �−1	ij1 + �1 − 	ij��ij . �6�

Further details can be found in Ref. 47.
The computationally most intensive part is to determine

the matrix Bij. Generally, Cholesky decomposition of Dij is
used to obtain Bij as an upper �or lower� triangular matrix,
and the computational cost for this method scales as N3.35

Fixman made use of the fact that there are many possibilities
to define Bij as some square-root matrix of Dij and, noting
that it is the vector Bij ·W j that is required rather than the
matrix Bij, applied a truncated Chebyshev polynomial expan-
sion to obtain Bij ·W j with a lower computational cost, scal-
ing roughly as N2.25.35 In the present paper, we make use of
this accelerated technique as well.

D. Unit systems and parameter mapping

For implementation on a computer, physical quantities
must be represented in certain units, i.e., in terms of suitable
dimensionless ratios. This is typically done by choosing a
natural unit system where three independent elementary
quantities are set to unity.

In the coupled MD/LB simulation approach, this is usu-
ally done by choosing the Lennard-Jones parameters �, �,
and � ��=	m�2 /�, where m is the mass of the monomer� as
the units of energy, length, and time, respectively; this choice
enables one to make direct contact with MD simulations with
explicit solvent.27 Conversely, BD simulations have
traditionally34,47 used a unit system where one chooses kBT
as the energy unit and lk=	kBT /kFENE as the length unit. This
is particularly useful for the simulation of pure Gaussian
�harmonic� chains where the interaction potential has neither
an energy scale nor a length scale built in. The time unit in
BD simulations is usually chosen as �k=� / �4kFENE�.

Of course, a meaningful comparison of results requires
that all data are represented in one common unit system. At
this point, one realizes that this is less straightforward than
one might think at first glance. While the conversion of
length and energy units is trivial and directly facilitated by
the fact that both methods use the same molecular model for
the polymer chain and perform the simulations at the same
temperature, the conversion of time units is not. This is so
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because of the different time scales underlying the basic up-
dating algorithms: the MD/LB method is based on simulat-
ing the system on inertial time scales, while BD focuses
directly on the larger diffusive time scales. This is directly
reflected by the occurrence of the inertial parameter m
�monomer mass� in the MD/LB time unit, which does not
occur in the BD model, and the diffusive parameter � �mono-
mer friction constant� in the BD time unit. It is important to
notice that � is not an input parameter to the MD/LB model.
Rather, one needs to carefully distinguish between the short-
time friction coefficient �bare that is indeed an input
parameter—it describes the Stokes coupling of the monomer
to the LB fluid in its immediate vicinity— and the long-time
friction coefficient �eff describing the particle’s long-time re-
sponse that is modified by solvent backflow effects. It is this
latter parameter that must be identified with the BD �, and it
is essentially an output parameter. Fortunately, the relation
between �bare and �eff is well understood—Ahlrichs and
Dünweg25,27 showed that

1

�eff
=

1

�bare
+

1

g�sa
, �7�

where g is a numerical prefactor and a is some measure for
the range of interpolation to the surrounding lattice sites. For
linear interpolation to the nearest sites, one finds g25 if a
is the LB lattice spacing. For highly accurate results, one
should also take into account a small correction for the finite
size of the simulation box;25 this has however not been done
in the present paper. Rather, we took the mapping determined
in Ref. 27 to calculate �eff from �bare and identified this with
the � parameter of the BD calculations. Although the physi-
cal mapping done in this way is essentially correct, it is
important to notice that this aspect introduces a certain
amount of numerical inaccuracy when it comes to quantita-
tive comparisons.

Given the fact that it is intrinsically impossible to run the
two simulations with the same unit system, we chose to keep
the previously established systems of the two respective
methods and to map the results a posteriori by the procedure
outlined above. Furthermore, we chose to present all results
in MD/LB units. Technically, this means that for length and

time unit conversions, we need to set l̄�= l�lk and t̄�= t��k,
where the “�” superscript denotes BD nondimensionaliza-
tion, while “-” denotes a nondimensionalization for MD/LB.
The corresponding factors for the conversion from BD to
MD/LB units are then trivially found to be

�

lk
= � k̄FENE�

kBT
�1/2

, �8�

�

�k
=

4k̄FENE

�̄eff

. �9�

Note that k̄FENE and �̄eff are kFENE and �eff in nondimensional
MD/LB units, respectively, while the ratio kBT /� is just the
nondimensionalized temperature in MD/LB units.

The dimensionless HI parameter h� used in the BD
simulations is essentially a nondimensionalized Stokes ra-
dius. We thus find

h�	
lk = d =
�eff

6
�s
=

�̄eff�

6
�s
, �10�

or

h� =
�̄eff

6
3/2�̄
� k̄FENE�

kBT
�1/2

. �11�

We therefore parameterized our simulations by first pick-
ing simulation parameters for the MD/LB model �which
were then directly used for MD/LB�, then converting these to
BD units using the procedure outlined above, and then run-
ning the thus-obtained equivalent BD model. For these latter
simulations, a time step size �t�=0.005 �in BD units� was
found to produce sufficiently accurate results.

E. Choice of parameters

The physical input values for the present model are cho-
sen from the benchmark values developed in Ref. 27, which
have been shown to reproduce the results of a typical pure
MD simulation.6 As in the comparison between LB and MD
simulations, we study a system of a single polymer chain of
length N=32 monomers immersed in a fluid with tempera-
ture kBT /�=1.2, density �̄=0.864, and kinematic viscosity
�̄=2.8. The lattice spacing ā is set to unity, which is roughly
identical to the bond length; this is necessary to resolve the
HIs on small length scales with sufficient accuracy.

Furthermore, following Ref. 27, the coupling parameter

�̄bare was set to 20.8. The values of the FENE spring potential

parameters are k̄FENE=7 and R̄0=2. The time step size for the
polymer �the MD part of the simulations� is set to �t̄=0.01.
It should be noted that such a large time step is possible since
the inclusion of dissipation and noise leads to a substantial
stabilization, compared to purely microcanonical MD. The
value of the time step that updates the fluid should be chosen
in a way such that the LB variables ni do not become nega-
tive too often. Here, we choose ��̄=0.02, where such a case
rarely occurred during the observation time. It is important to
mention another free input parameter, which governs the
time scale for the evolution of HIs, known as the Schmidt
number Sc=� /D0, where D0 is the diffusion constant of the
single monomer. This parameter can be set arbitrarily in the
LB method by choosing � and D0 �which can be tuned by
choosing �bare� accordingly. Ideally, the value of Sc should be
chosen such that HI evolves much faster than the diffusion of
a monomer. In our case, we have Sc32, which has been
shown to result in Zimm-like behavior.27,42

For the LB simulations, the polymer chain moves within
a cubic box of length L with periodic boundary conditions,
while it is drifting freely in an infinite medium for the BD
simulations. In order to accurately compare various proper-
ties between the two systems, one must understand the ef-
fects of the box length L on any observable of interest in the
LB simulations. Thus it is essential to only compare quanti-
ties under identical conditions �i.e., independent of the box
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length�. Hence various box lengths L ranging from 10 to 35
Lennard-Jones units were investigated; this allows us to ex-
trapolate to the L→� limit.

III. RESULTS AND DISCUSSION

A. Static properties

The mean-square radius of gyration and the mean-square
end-to-end distance are given by

�Rg
2� =

1

2N2�
ij

�rij
2 � , �12�

�Re
2� = ��rN − r1�2� , �13�

with rij = 
ri−r j
 being the interparticle distance.
These two quantities are both related to the number of

monomers by the expression

�Rg
2�  �Re

2�  N2�, �14�

where � is the Flory exponent. For a self-avoiding walk
�SAW�, the Flory exponent � is 0.588.50 In principle, � can
be obtained from simulations using the scaling law in Eq.
�14�. However, this method would require simulations for a
wide range of N values. Alternatively, one can use the static
structure factor

S�k� =
1

N
�
ij

�exp�ik · rij�� =
1

N
�
ij
� sin�krij�

krij
� �15�

to obtain � much more efficiently.
In the scaling regime Rg

−1�k�a0 �a0 being a micro-
scopic length of the order of the bond length�, a power law
relation between the static structure factor and the wave vec-
tor k holds,

S�k�  k−1/�. �16�

Figure 1 shows the static structure factor as a function of
wave vector k for the LB simulations with the presence of
thermalization of all modes and the BD simulations. It can be
clearly seen that the values of the static structure factor ob-
tained from the LB simulations are exactly the same as those
obtained from the BD simulations, indicating that they have
the same static conformations. From Eq. �16�, the value of �
can be extracted from the linear region of the log-log plot of
S�k� versus k. As expected, the values for � obtained via this
method are the same for both the LB and the BD simula-
tions, as reported in Table I. However, they are approxi-
mately 5% higher than the asymptotically correct value,
which is a consequence of the finite chain length. The results
for the mean-square radius of gyration and the mean-square
end-to-end distance in Table I further confirm this agreement
with regard to static conformations between the two meth-
ods. However, at small box length �L=10�, the results for
these static properties for the LB method deviate from their
asymptotic values. The discrepancy observed here always
arises when the box length is too small compared to the
chain size, where the chain is more likely to wrap over itself
due to spatial restriction and hence alter its static conforma-

FIG. 1. The static structure factor for the LB simulations �at various box
lengths L� and the BD simulations �L=�� for a wide range of dimensionless

wave vectors k̄.

TABLE I. Properties for a single chain of length N=32 obtained from LB simulations at various finite box
lengths and BD simulations in infinite medium.

LB BD

Box length L 10 15 25 �

Time step 0.02 0.02 0.02 0.005
Exponent � 0.615�0.005 0.617�0.005 0.619�0.005 0.619�0.004

�R̄e
2� 94.56�1.20 100.05�1.26 100.20�1.28 99.22�1.24

�R̄g
2� 14.83�0.10 15.31�0.11 15.36�0.11 15.25�0.11

�R̄H
−1�� 0.291�0.0005 0.290�0.0005 0.289�0.0005 0.290�0.0005

ḡ1-exp.a 0.640�0.0005 0.675�0.0005 0.710�0.0005 0.728�0.0006
ḡ1-exp.a,b 0.645�0.0006 0.684�0.0006 0.714�0.0006 0.728�0.0006
ḡ3-exp.a 1.008�0.0008 1.020�0.0008 1.050�0.0008 0.995�0.0008

D̄CM�10−3 3.914�1�10−3 5.162�1�10−3 6.959�2�10−3 9.843�1�10−2

�̄tr�estimate� 631.36�4.43 492.01�3.56 368.51�2.67 258.28�1.87

aExponent obtained by fitting a power law in the subdiffusive scaling regime of the chain in LB simulations,
t̄� �20:80�.
bExponent obtained from LB simulations without thermalization of all the kinetic modes.
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tions. We also found that the two versions of LB thermaliza-
tion �“stresses-only” versus “full” thermalization� yield iden-
tical results for the chain conformational statistics. In
general, we only quote values obtained for full thermaliza-
tion unless indicated otherwise.

The hydrodynamic radius for a single chain in an infinite
medium is given by

� 1

RH
�

�

=
1

N2�
i�j
� 1

rij
� . �17�

For a chain in a finite box, as is the case here in the LB
method, it has been shown that the HIs of the chain with its
periodic images effectively increase RH.6,27 In order to ac-
count for this finite-size effect, a finite-size correction of or-
der L−1 for most dynamic properties, resulting from the slow
r−1 decay of HIs, is required.6,27 The results for the infinite-
box value �RH

−1�� agree excellently with each other for all
simulations �see Table I�. Since the overwrapping effect is
more sensitive to large interparticle distances, it turns out
that the deviation in the inverse hydrodynamic radius is too
small, for the range of box lengths used, for it to be distin-
guishable. As can be seen in Table I, the deviation is more
pronounced for the radius of gyration and even more for the
end-to-end distance.

B. Dynamic properties

According to dynamic scaling, the longest relaxation
time �Z of the chain is, by order of magnitude, identical to
the time that the chain needs to move its own size, i.e.,
DCM�Z�Rg

2, where DCM is the diffusion constant of the
chain’s center of mass. This leads to a dynamic scaling law
�ZRg

z , where z is the dynamic scaling exponent. For a chain
with HIs, this relaxation time is known as the Zimm time �Z.
For this case, DCMRg

−1 in the limit of long chains. This
implies that �ZRg

3, which gives a dynamic exponent of
z=3 for models with HI. For the Rouse model �i.e., chains
without HIs�, where DCMN−1, one finds a dynamic expo-
nent of z=2+1 /�. These quantities will be referred to in the
discussion below.

The mean-square displacement of the chain’s center of
mass

g3�t� = ��RCM�t0 + t� − RCM�t0��2� �18�

for both methods is depicted in Fig. 2. From the figure, it can
be clearly seen that g3 strongly depends on the box length L
for the LB simulations. Moreover, they seem to converge to
the value predicted by the BD simulations �L=�� in the limit
of large L. Effects of thermalization of the kinetic modes in
LB simulations on this property will be discussed subse-
quently. The chain’s center of mass diffusion constant DCM

can be determined by the slope of the g3 versus t curve,
where the relationship g3�t�=6DCMt holds. By fitting a power
law to the simulation data, we obtain the exponents and the
diffusion constants shown in Table I. These exponents sup-
port the prediction of simple diffusive behavior �t1�. Theo-
retically, one would expect that two diffusive regimes exist.
On the one hand, there should be a short-time diffusive re-
gime corresponding to time scales well below the Zimm
time, t��Z, but also well above the ballistic regime, t��0;
note that �0�0 only in the LB case since the BD equation of
motion is overdamped. On the other hand, there should be
free diffusion for times t��Z. Both these regimes exhibit t1

behavior but with different prefactors, with a smooth cross-
over around the Zimm time.32,51,52 In principle these two
different diffusion constants can be obtained via fits to the
corresponding regimes. In practice, however, it turns out that
the values are very close to each other, and hence the cross-
over is very smooth.32,51,52 Therefore its unambiguous iden-
tification is very difficult, i.e., impossible within the reso-
lution of our data.

The mean-square displacement of a single monomer i is
given by

g1�t� = ��ri�t0 + t� − ri�t0��2� . �19�

Here, only the two innermost monomers near the center of
the chain are evaluated to eliminate end effects; the results
are plotted in Fig. 3. The values of g1 behave similarly to
those of g3. In the subdiffusive time regime, corresponding

FIG. 2. The dimensionless mean-square displacement ḡ3�t̄� of the chain’s
center of mass �Eq. �18��.
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ḡ
1
(t̄

)

t2/z

t1

FIG. 3. The dimensionless mean-square displacement ḡ1�t̄� of the central
monomer �Eq. �19��. Values of the exponent z at various box length L in the
subdiffusive scaling regime are also listed in Table I.
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to the short-time diffusive regime for g3, here evaluated be-
tween t̄=20 and 80, the scaling behavior g1�t� t2/z is
predicted.2 The corresponding exponents obtained from a
power law fit are listed in Table I and indicate a value of
z=2.75 as L→�. Regardless of the finite-size corrections
due to the box length and the effects of thermalization, these
values clearly favor the Zimm model compared to the Rouse
model, which predicts g1�t� t0.54. The deviation from the
asymptotic Zimm value z=3 �or g1 t2/3� is mainly a result
of finite chain length.

Figure 4 shows the mean-square displacement of a single
monomer in the center of mass system �i.e., the two inner-
most monomers to eliminate end effects�

g2�t� = ���ri�t0 + t� − RCM�t0 + t�� − �ri�t0� − RCM�t0���2� .

�20�

Interestingly, when viewed within the center of mass
system, all the results lie on top of each other regardless of
the box length L. This result also holds for LB simulations
without full thermalization. This shows that the global center
of mass motion of the chain is actually the primary contri-
bution to the deviations between LB and BD results. In the
data in Fig. 4 this contribution is suppressed. In terms of
Rouse modes, only the internal modes remain. For these
modes, however, it has been shown27 that the HI with the
periodic images is much weaker, while the leading order r−1

HI cancels out. Therefore, the corresponding finite-size effect
scales as L−3 instead of L−1, and this is so small that it is
invisible in Fig. 4.

Theoretically, these data can also be used for estimating
the Zimm time as the time where the crossover to the long-
time plateau occurs. However, the crossover is quite ex-
tended and smooth, making it difficult to extract. We there-
fore estimated the Zimm time via

�tr =
�Rg

2�
6DCM

. �21�

Strictly speaking, this definition is only valid for a single
chain in an infinite medium, where there is no finite box size

effect. In the presence of finite box size, it becomes the defi-
nition for the translational time ��tr� rather than the Zimm
time. The former is subject to an L−1 finite-size effect due to
the strong L-dependence of DCM, while the latter, being de-
fined via the relaxation of internal modes, is only subject to
an L−3 size effect, as discussed above. The translational times
obtained from Eq. �21� �as shown in Table I� are indeed
different for different box lengths L, as expected. Con-
versely, the results displayed in Fig. 4 indicate that the sys-
tems with different box sizes have �essentially� all the same
�internal mode� Zimm time since their data all lie on top of
each other.

Next, we focus on the leading order L−1 finite-size cor-
rection for the long-time diffusion constant of the chain’s
center of mass, DCM. In principle, a plot of DCM versus L−1

should give a straight line for large L, and an extrapolation to
the limit L→� should yield the same value as predicted by
the BD simulations. Figure 5 shows the values of DCM for
the LB simulations with and without thermalization of the
kinetic modes at various box lengths L plotted together with
the value obtained from the BD simulation at L=�. It is
worth mentioning that the BD value of DCM can be obtained
from the mean-square displacement of the chain center of
mass or via Fixman’s expression.51 The latter method has
been shown to produce a much more reliable result and is
easier to carry out.32 The value reported here has been cross
checked by both methods, and the results are almost the
same within error bars. For the LB simulations without ther-
malization of the kinetic modes, the value of DCM at the
asymptotic limit L=� is different from that predicted by the
BD simulations by about 9.5%. However, when all the ki-
netic modes in the LB simulations have been thermalized,
the deviation in DCM reduces to 3%. This result clearly
indicates that it is very important to thermalize all the
kinetic modes in order to obtain correct values for dynamic
properties.

The reason for the remaining small discrepancy between
LB and BD is not completely clear since there are numerous
possible sources. First, it should be noted that the underlying

FIG. 4. The dimensionless mean-square displacement ḡ2�t̄� of the central
monomer in the chain’s center of mass system �Eq. �20��. FIG. 5. The dimensionless long time diffusion constant for the center of

mass at various box lengths L.
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equations of motion are quite different: LB works with iner-
tia, while BD employs overdamped dynamics. This results in
different Schmidt numbers Sc and different Mach numbers
Ma, the latter being defined as the ratio of the flow velocity
to the speed of sound: Both are finite in the LB method,
while in the BD case they are strictly infinite �Sc� and zero
�Ma�, respectively. Furthermore, the shape of the HI function
at small interparticle distances is somewhat different for the
two methods. In the BD case, we employ the RPY tensor,
while the nearest-neighbor interpolation for LB results in a
short-range HI that differs somewhat from the RPY tensor
�see also the discussion in Ref. 25�. Finally, it should be
noted that the value of the constant g in Eq. �7�, which is
crucial for the mapping between the LB friction parameter
�bare and the BD friction �eff, is only known with some nu-
merical inaccuracy. For highly accurate mappings, it is also
necessary to include a finite-size correction in the definition
of g;25 this was not done in the present study.

In order to examine whether the thermalization of the
LB kinetic modes is also important for the internal modes of
chain motion, we have performed a Rouse mode analysis.
The Rouse modes for a discrete chain are defined as27,53

Xp =
1

N
�
n=1

N

rn cos� p


N
�n −

1

2
�� �22�

for p=1,2 , . . . ,N−1.
Within the approximation of the Zimm model, the auto-

correlation function of the modes should decay
exponentially,2

�Xp�t0 + t� · Xp�t��
�Xp

2�
= exp�−

t

�p
� , �23�

where �p is the relaxation of the pth mode. To validate our
Rouse mode analysis routine, we have carried out extensive
simulations for a �Gaussian� Rouse chain of N=8 in the ab-
sence of HI and EV; the results for �p are in excellent agree-
ment with the analytical predictions.2 Figure 6 shows the
normalized autocorrelation function for p=1–5 for the LB
model with box length L=25 and the BD model. For nonzero

times, there is a small deviation between LB and BD, the
latter exhibiting again a slightly faster dynamics. This devia-
tion systematically becomes smaller upon increasing the
mode index p. Since high mode index means essentially re-
laxation on a rather small length scale, it is tempting to at-
tribute the deviation to the finite propagation of HI in the LB
model, i.e., to retardation effects, or effects of finite Schmidt
number, which are more important on large length scales
than on small ones. Nevertheless, this hypothesis is not
proven.

In Ref. 27 it was shown that the autocorrelation function
is only subject to an L−3 finite-size effect, in contrast to the
usual L−1 behavior. Figure 7 shows the value of the autocor-
relation function of the first Rouse mode X1 at a fixed finite
time t̄=700 for LB simulations at various box lengths L and
BD simulations at L=�. Within our numerical resolution, the
data indeed confirm this L−3 finite-size effect both with and
without thermalization of the kinetic modes. Furthermore,
they demonstrate again that thermalization of all the kinetic
modes in LB simulations improves the accuracy of the dy-
namic properties and brings them closer to the BD predic-
tion. The deviation in the extrapolated limit L→� is reduced
from 3% down to 2%. The reasons for the remaining discrep-
ancies are probably of the same nature as in the case of DCM.

We have also evaluated the dynamic structure factor,
which is defined as

S�k,t� =
1

N
�
ij

�exp�ik · �ri�t� − r j�0���� . �24�

When both wave number and time are in the scaling regime
�i.e., Rg

−1�k�a0
−1 and �0� t��Z�, S�k , t� is predicted2 to ex-

hibit the scaling behavior

S�k,t� = S�k,0�f�kzt� . �25�

A plot of S�k , t�k1/� against �kzt�2/z should collapse to a
single curve.27 The results for both methods are shown
in Fig. 8. The data were restricted to the scaling regimes

FIG. 6. Normalized autocorrelation function of the first five Rouse modes
Xp �Eq. �23�� for LB simulations at L=25 and BD simulations at L→�.

FIG. 7. The autocorrelation function for the first Rouse mode X1 at a finite
time value of t̄=700 for LB simulations at various box lengths L and BD
simulations at L→�.
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20� t̄�80 and 0.7� k̄�1.5. These ranges were obtained
from the single monomer mean-square displacement �Fig. 4�
and from the static structure factor �Fig. 1�, respectively.
Here, we particularly focus on adjusting the exponent z such

that it would produce the best total data collapse for a chain
in an infinite medium �i.e., in the BD model�. Obviously, the
results from the simulations show Zimm-like rather than
Rouse-like behavior. Even though we have suppressed the
finite box size effect, a dynamic exponent of z=2.75 yields
the best data collapse, which is somewhat smaller than the
correct asymptotic one. This result is also consistent with the
value of z obtained earlier via the exponent of g1 in the
subdiffusive scaling regime �i.e., 2 /z=0.728�. The deviation
from the asymptotic value is due to the finite chain size used
here, and one can expect z=3 only in the long chain limit
N→�.

More detailed comparisons of the structure factor S�k̄ , t̄�
are shown in Fig. 9 �k̄ dependence at constant time� and Fig.
10 �time dependence for the normalized structure factor
S�k̄ , t̄� /S�k̄ ,0� at constant k̄�.

Figure 9 shows the structure factor for BD simulations
for a wide range of k̄ at three different times, and the data
clearly indicate that the structure factor decays rapidly with

time. The normalized structure factors S�k̄ , t̄� /S�k̄ ,0� for

FIG. 8. Scaling plot of the dynamic structure factor for �a� Rouse scaling
�z=3.7, top�, �b� asymptotic Zimm scaling �z=3, center�, and �c� z=2.75
�bottom�, which produces the best collapse.

FIG. 9. The dynamic structure factor S̄�k̄ , t̄� for the BD simulations
�L=�� at three different times.

FIG. 10. Time evolution of the normalized dynamic structure factor at three

different k̄ values. Data for k̄=0.04
 are displayed in the inset.
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three different k̄ values are shown in Fig. 10, and the data
seem to indicate that the LB results approach the BD data as
L is increased, as expected.

C. Efficiency

For the ultradilute system considered here, the LB part
of the hybrid LB method uses up most of the computational
resources as the CPU cost for the MD part for the polymer
chain is negligible. Since the dynamic properties predicted
by the LB model are subject to a finite-size correction of
order L−1, extrapolation is required to obtain these properties
in the asymptotic limit L→�. To perform this extrapolation,
together with checking that indeed the asymptotic L−1 behav-
ior has been reached, one needs the results of at least three
different box lengths. Moreover, the box length should be
large enough compared to the chain size such that it does not
alter the static properties. The data displayed in Table I indi-
cate that it is safe to choose L such that 	�Re

2� /L�0.5. The
three different box lengths L chosen here are 	�Re

2� /L=0.5,
0.4, and 0.3. In this work, we set the total CPU time required
for the LB simulations to be the sum of all the CPU times
required to run 1000 MD time steps for each of the chosen
box lengths. For BD, we take the CPU time needed to ob-
serve the system for the same time span in physical units.
Each of the simulations performed for the CPU time com-
parison was run on an Itanium 2 processor of a 1.6 GHz SGI
Altix server 3700. All the parameters used to carry out this
comparison are the optimal values for both methods. Several
chain sizes in the range of N=16–1024 have been used to
obtain the CPU cost for comparison. The results are shown
in Fig. 11. For the LB method, it is clear that the CPU cost
scales linearly with the number of particles, i.e., the number
of grid points that the solvent lives on, or L3. Since the ratio
	�Re

2� /L is kept constant, or L	�Re
2�N�, this leads to a

CPU cost scaling as N3�. This is indeed found in our bench-

marks �see Fig. 11�. Similarly, our data also confirm the pre-
dicted N2.25 CPU cost scaling for BD. Though the LB expo-
nent is lower than BD, the large prefactor ensures that the
total CPU cost for LB is much more expensive compared to
BD for the typical chain lengths used in the literature. It is
only when the chain length is excessively large �i.e., N of the
order of 106 or higher� that LB will become superior to BD
for a single-chain system.

The situation completely changes if one studies a semi-
dilute solution instead, as has been done in Ref. 54. For such
a system, we have not done a comparison between LB and
BD in terms of actual simulations; however, by means of
scaling considerations, one can roughly estimate what the
likely result of such a comparison would be. A semidilute
solution comprises M chains of N monomers each such that
the total number of monomers is MN. Therefore the BD CPU
cost scales as �MN�2.25, while the LB CPU cost depends on
the density. Within the blob picture of semidilute solutions,
one views a chain as a sequence of “blobs,” each comprising
n monomers and having size �, which can be viewed as the
typical correlation length of density fluctuations or the
typical distance from which point on chain-chain interactions
become important. Since the conformation statistics within
the blob is that of a SAW, one has ��an�, where
a is the monomer size. The sequence of blobs forms a ran-
dom walk; hence Re���N /n�1/2. This gives the minimum
size of the simulation box, i.e., L���N /n�1/2�an��N /n�1/2

=aN��n /N��−1/2 or L3�a3N3��n /N�3�−3/2. We thus see that
the CPU effort for the LB method is even slightly decreased
by the factor �n /N�3�−3/2 compared to the single-chain case at
the same N due to the shrinkage of the chains resulting from
EV screening. In order to estimate the number of chains M,
we note that the arrangement of blobs is space-filling, i.e.,
L3��3M�N /n��a3Mn3��N /n�. Comparing this with the pre-
vious expression for L3, one finds M ��N /n�1/2. Therefore
the BD effort, compared to the single-chain case, is increased
by a factor of M2.25��N /n�1.125. Taken together, this means
that the ratio between LB effort and BD effort is changed by
a factor of ��N /n�3�+1.125−1.5�N /n�1.425 in favor of LB. For
N /n=30, which is needed as a minimum to resolve the
Gaussian statistics of the chains as a whole, one obtains a
factor of 130, which more or less compensates the two orders
of magnitude seen in Fig. 11. Taking into account that for
such a system the BD simulation would have to calculate the
HI with the periodic images, e.g., via Ewald sums, which is
much more complicated than the present single-chain simu-
lation, one sees that for a semidilute solution, clearly LB is
more efficient unless a superfast BD algorithm37–39 is used.
For the latter case, the answer is not yet known. The results
in Ref. 55 indicate that LB/MD may be favorable for a rather
small number of monomers; however, this study was done �i�
in a nontrivial geometry, which implies a more complicated
BD method, and �ii� under complete neglect of thermal fluc-
tuations in the LB simulations, resulting in a substantial re-
duction in CPU effort. Such a �partial or complete� neglect of
thermal noise is sometimes justified in strong nonequilibrium
situations such as that studied in Ref. 55; in that particular
case, the justification was checked by additional tests.56 An-
other possible situation where LB noise is negligible is the

FIG. 11. Comparison of the CPU time required by the LB and BD systems
for the equivalent of 1000 time steps for a wide range of system sizes �chain
lengths� N.
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case of strong coarse-graining, where a single lattice site can
already be considered as a macroscopic thermodynamic sys-
tem �for a detailed discussion, see Ref. 25�. However, in the
general case and certainly in thermal equilibrium or weak
nonequilibrium, the proper inclusion of thermal noise is nec-
essary, as demonstrated theoretically in detail in Ref. 25 and
also corroborated by the present numerical results. For the
general case, the estimate of the LB CPU effort given in Ref.
55 is therefore too optimistic.

IV. CONCLUSIONS

The present study has shown that BD simulations are
capable of reproducing various properties predicted by a hy-
brid LB/MD model �or vice versa�. We have demonstrated
how to obtain the input values for the BD simulations from
the physical input parameters of the LB model such that both
models would produce the same static and dynamic proper-
ties. For the LB model, most dynamic properties are subject
to a finite-size correction of order L−1. In addition to this, it is
very important to thermalize all the kinetic modes in order to
obtain the correct dynamic properties. Those results that are
not affected by L−1 finite-size effects, such as the mean-
square displacement in the center of mass system or the
Rouse mode autocorrelation function, agree very favorably
with each other. For highly dilute systems where the simula-
tion of a single chain is sufficient, BD is usually the method
of choice, as it is much more efficient than the coupled
LB/MD approach, and finite box size effects are absent. The
situation changes however in the semidilute case, where it is
easy to estimate that BD will not be able to compete unless
superfast algorithms are used. Moreover, one should take
into account that the hybrid LB/MD algorithm is rather eas-
ily adaptable to complicated boundary conditions and can
even be applied to flows at high Reynolds numbers, where
the fluid degrees of freedom become intrinsically important
and cannot be handled in terms of a Green’s function.
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