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Abstract

The advent of high accuracy residue-residue intra-protein contact prediction methods enabled a significant boost in the
quality of de novo structure predictions. Here, we investigate the potential benefits of combining a well-established
fragment-based folding algorithm – FRAGFOLD, with PSICOV, a contact prediction method which uses sparse inverse
covariance estimation to identify co-varying sites in multiple sequence alignments. Using a comprehensive set of 150
diverse globular target proteins, up to 266 amino acids in length, we are able to address the effectiveness and some
limitations of such approaches to globular proteins in practice. Overall we find that using fragment assembly with both
statistical potentials and predicted contacts is significantly better than either statistical potentials or contacts alone. Results
show up to nearly 80% of correct predictions (TM-score $0.5) within analysed dataset and a mean TM-score of 0.54.
Unsuccessful modelling cases emerged either from conformational sampling problems, or insufficient contact prediction
accuracy. Nevertheless, a strong dependency of the quality of final models on the fraction of satisfied predicted long-range
contacts was observed. This not only highlights the importance of these contacts on determining the protein fold, but also
(combined with other ensemble-derived qualities) provides a powerful guide as to the choice of correct models and the
global quality of the selected model. A proposed quality assessment scoring function achieves 0.93 precision and 0.77 recall
for the discrimination of correct folds on our dataset of decoys. These findings suggest the approach is well-suited for blind
predictions on a variety of globular proteins of unknown 3D structure, provided that enough homologous sequences are
available to construct a large and accurate multiple sequence alignment for the initial contact prediction step.
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Introduction

For some time now, the importance of residue-residue contacts

in protein structure prediction has been known and explored

[1,2,3,4]. Long range inter-residue contacts provide a constraint

on the topology of a protein domain, greatly limiting the

conformational space which needs to be sampled. Thus, a source

of accurate predicted contact information might greatly facilitate

de novo protein structure prediction accuracy, and unsurprisingly,

the problem of residue contact prediction has drawn significant

attention in the field. Examples of contact prediction range from

distinguishing between correct and incorrect protein models [5],

identifying direct residue contacts in protein-protein complexes [6]

or as part of empirical force field for molecular dynamics

simulations of protein folding [7]. In terms of contact prediction

methodology, there has also been a significant recent degree of

progress spanning simple mutual information calculations in

multiple sequence alignments (MSAs) [8], statistical covariance

analyses [1,2,3,9], pattern recognition techniques (e.g. Support

Vector Machine and neural network based approaches)

[10,11,12,13] to the ones based on. All of these methods have

been recently comprehensively reviewed [14].

Until recently, however, accurate prediction of residue-residue

contacts from sequence information has been a significant problem

due to methods having a high rate of false positives [15], and the

relative shortage of homologous sequences [16].The reason for the

number of homologous sequences being a bottleneck is due to the

fact that contacts may be inferred directly from evolutionary

information by tracing correlated mutations in protein families

represented by MSAs. A rationale for this is that residues mutate

in tandem to maintain physicochemical properties of the pairs and

thus, not to perturb the native fold of a protein [2,17]. As the size

of a family increases, the false positive rate of contact prediction

falls, but there remain systematic errors which are present even

when there is an abundance of sequence information. These

systematic errors stem from systematic alignment errors occurring

when building very large MSAs, phylogenetic biases, and most

importantly, linked chains of covariance (indirect coupling effects)

[9,18].

The rapid development of high-throughput genomic sequencing

has caused the sizes of many protein families to increase rapidly

over the last 5 years and hence, both the number of known

domain families and the sizes of these families have steadily

increased. To date, there are over 12,000 well-characterized

protein families (PFAM-A families) and estimates of the total
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number of protein domain families in nature has reached up to

200,000 [19]. This is of particular importance in contact

prediction, as large MSAs of related sequences are required for

satisfactory levels of accuracy.

The indirect coupling obstacle has only recently been resolved

to a useful level by inferring residue pair couplings from a global

maximum entropy model [7,18]. In later work, it was demon-

strated that under ideal conditions (i.e. looking at the very largest

known families) that it is possible to address the problem of

globular protein folding based solely on contact information

derived from evolutionary information [7]. Results showed best

Ca-RMSD (root-mean-square deviation of Ca atoms) of 2.7–

4.8 Å on a small set of 14 globular protein targets (and one

transmembrane target). This has shown the potential power of

contact predictions and their importance in facilitating the survey

of protein conformational space, but provides limited information

on the future potential of the approach due to the very small data

set.

Although the global entropy model of Weigt and colleagues was

an important breakthrough in solving the indirect coupling

problem in sequence-based contact prediction, more recent

approaches have built on these ideas to produce even more

effective contact prediction methods. In this work we used the

PSICOV method to tackle indirect coupling effects. PSICOV [20]

makes use of sparse inverse covariance estimation techniques

(specifically the graphical Lasso procedure), which adds a powerful

additional constraint to those exploited in maximum entropy

methods, namely a sparsity constraint. It’s known (and self-evident)

that the true network of contacts in a protein structure is sparse,

and so it is only common sense that the predicted contact map

should also be sparse. However, the importance of sparsity

constraints goes beyond a simple desire to replicate what we

observe in reality. By constraining the inverse solution to be sparse,

we insist that the underlying statistical model be as simple as

possible, which applies the broad concept of maximum parsimony,

common in many areas of evolutionary biology, to the problem of

contact prediction. From a more theoretical viewpoint, there are

an astronomically large number of possible complex models which

can accurately reproduce the observed data (i.e. the pattern of

substitutions seen in a MSA), but only a very small number of

simple models have the same ability to reproduce the observed

data. By avoiding over-fitting in this way, a bane of many machine

learning applications, PSICOV is able to identify directly coupled

co-varying columns in MSAs and thus extract contact information.

It predicts contacts with an accuracy of up to 80%, regardless of

contacting residues sequence separation, provided that sufficient

numbers of homologous sequences to the target sequence are

available (500 diverse sequences being suggested as the lowest

bound).

Recent advancements in intra-protein contact predictions

[6,7,20,21], and important breakthroughs in the prediction of

transmembrane protein structures [22,23] prove that the approach

of utilizing genomic-scale sequence information to infer residue

coupling information can substantially aid researchers in building

accurate 3-D models of proteins without requiring homologous

templates (see the review by Marks et al. [24] for further details).

In the case of transmembrane proteins, contact information

combined with secondary structure predictions are sufficient to

obtain correct predictions even for large (.500 residues) protein

domains [22]. The amazing success in predicting transmembrane

structures is clearly a result of the limited range of architectures

seen in transmembrane proteins (mostly up-down helical bundles)

due to the constraints of the lipid bilayer. For globular proteins,

however, residue-residue contacts alone are likely to be too scarce

to produce reliable results for large globular proteins [7] due to the

significantly larger number of degrees of freedom enjoyed by this

class of protein structure.

There have, of course, been a multitude of approaches to the de

novo structure prediction problem. For example, such methods

include ones based on all-atom representations and physical

potentials (e.g. UNRES) [25], coarse-grained lattice models (e.g.

CABS) [26] and, most successful thus far, fragment assembly-

based methods (e.g. Rosetta and FRAGFOLD) [27,28,29,30,31].

Here, we report a comprehensive study of folding capabilities with

regard to globular proteins, where we use our own implementation

of fragment assembly (FRAGFOLD) as a folding engine, in

attempt to investigate how to most effectively exploit information

from predicted residue-residue contacts. Very briefly, contact

predictions generated by PSICOV [20] are transformed and

embedded into the standard set of FRAGFOLD energy terms

[30,31]. To go beyond the early observations made by Marks et al.

[7], we performed our study on a diverse set of 150 monomeric

globular proteins each comprising a single (and unique) Pfam

domain [32]. We show that the addition of contacts substantially

enriches the population of correctly predicted protein structures,

both compared to the use of contacts alone, or with the original

FRAGFOLD potentials alone.

Recent approaches taking advantage of global methods for

predicting coevolution between residues focused predominantly on

the principle, that the use of contacts enables sequence-based

identification of limited protein folds. The issue of how de novo

methods can best be generally improved by the use of inferred

contact information, or how to effectively exploit the emerging

data have not yet been adequately explored. Here, we attempt to

address both of these issues, presenting a comprehensive study

over diverse globular protein families and assessing the results in

terms of how to utilize the covariance information most effectively

for future blind de novo predictions. We also present a complete

methodology enabling such predictions and the subsequent quality

assessment of generated models. The current (and possible future)

limitations of such approaches on a genomic scale, given limited

sequence information and its growth, are also discussed.

Results and Discussion

In this section we describe the effect of adding residue-residue

contact information to aid fragment-assembly predictions of

globular proteins using FRAGFOLD. We demonstrate the cases

where the improvements are substantial but also try to investigate

what causes the approach to fail. We also show that the quality of

predictions can be assessed on multiple levels, resulting in high

confidence evaluation of blind predictions. Finally, we show how

best to achieve correct predictions using predicted contact

information.

The protein test set is comprehensive
In this study, a diverse set of 150 globular proteins was used as

targets. The average length of a protein chain in this set is 145

residues. The set represents diverse folds, each coming a different

Pfam domain family [32]. For a detailed description of the set, see

Materials and Methods section.

Folding with the addition of residue-residue contact
information improves the predictions significantly

A benchmark was performed on the full 150 protein dataset. To

ensure the study is representative of real blind prediction problems

where no information about the test set structures is known a priori,

duplicate or similar sequence fragments to the target dataset were

Contact-Aided Predictions of Globular Proteins
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removed from the standard FRAGFOLD fragment library (see

Materials and Methods section for details). Simulation parameters

were optimized just once prior to the start of benchmarking and

not adjusted on case-by-case basis. Of course, for real problems

there is no reason to avoid adjusting parameters on a case-by-case

basis, but for objective benchmarking this was avoided.

Figure 1 shows a comparison of the best top-5 models (single

highest TM-score model picked from the 5 lowest energy models

in an ensemble) between FRAGFOLD with and without the

predicted residue-residue contact energy term (Figure 1A and 1B).

Also, a more traditional energy-independent approach was

considered by clustering the ensemble of models and taking the

highest TM-score model from the 5 largest clusters (best top-5

clusters; Figure 1C and 1D). Results emerging from clustering

(TMclust method) proved to be inferior to those generated on the

basis of calculated energy (Table 1). Because of that and due to the

uniformity the energy-based approach was carried out throughout

the rest of analyses and calculations. All results are assessed on the

basis of TM-score [33]. Initially for FRAGFOLD without residue-

residue contact prediction information, 21 out of 150 proteins had

correctly predicted fold (best top-5 TM-score $0.5) [34]. After

applying the residue-residue contact term (RRCON) there were 79

additional correct predictions, yielding 66.7% correct predictions

accuracy across the whole set (Table 1 and right side trapezium in

Figure 1). It is clear that RRCON improves the quality of

predictions, with some cases resulting in near-perfect, or at least

substantially better predictions, but also some results were not

significantly better (TM-score .0.05, determined on the basis of

mean standard deviation of TM-score for models generated for

each protein) than without RRCON (14 cases; 11 of the cases

having a statistically insignificant TM-score difference) and 3 cases

where structure is better predicted without the use of contacts

(1hh8A, 1m4jA, 1m8aA). The N-terminal domain of neutrophil

cytosol factor 2 (1hh8A) has an alpha-horseshoe architecture,

which suggests possible sampling difficulties and although the no

contacts result is better in terms of TM-score (0.50 no contacts;

0.40 RRCON), both structures exhibit major features of the fold

and although the target is a difficult modelling case, comparing

best models generated by each method the quality difference is far

less significant (Figure 2, left panel). The full set of results is

included as supplementary data (Table S1). Sample predictions are

presented below (Figure 2). The middle and right panels present

typical results, where a progression in the quality of results is

observed as contact information is introduced. Two other

significant cases (1m4jA, 1m8aA) exhibit smaller variations

depending on the method. The latter case (1m8aA; 0.71 no

contacts; 0.62 RRCON) is clearly a sampling case and both

predictions yield correctly identified fold of the protein. In case of

1m4jA (0.49 no contacts; 0.43 RRCON) the differences are

modest and both close to the 0.5 TM-score boundary of this

generally difficult target having 3-layer (aba) sandwich fold.

Overall results generated by FRAGFOLD with RRCON yield a

significant improvement over recent comparable methods utilizing

residue-residue contacts (e.g. EVfold [7], Table S2).

Contact-only folding is less effective than when used
alongside statistical potentials

Results presented above show that the addition of contact

information has a great impact on the quality of predictions. To

verify whether contacts alone can act as an objective folding

energy function, an experiment was performed where the folding

was done exclusively with the use residue-residue contact terms (ie.

FRAGFOLD fragment selection and simulated annealing engine,

but only RRCON having non-zero contribution; see Materials

and Methods section) on the same dataset. Similar claims were

presented before by Marks et al. [7]. Prediction accuracy in this

case was 48% (Table 1). Contact-only predictions perform much

better than FRAGFOLD without contacts, but the overall

performance of the combined FRAGFOLD with RRCON

methodology still outperforms both limited approaches. The

combined approach fails in only 31 cases across the test set, and

is thus clearly able to take advantage of both sources of

information, coping with cases where there are insufficient

constraints either from FRAGFOLD itself or predicted contacts

alone. Comparing contact-only results to FRAGFOLD without

RRCON, the improvements are more modest (Figure 1B,

Figure 2), although overall there are some cases where the

contacts only approach showed better results. It is clear that

combination of the FRAGFOLD energy terms with additional

RRCON terms yields significantly better results (also in compar-

ison to similar methods utilizing contact predictions; Table S2).

Still, there are proteins where the contact-only approach produces

better models – addressing this problem, without changing

parameters on by case basis, can be done by sequential

introduction of contacts rather than relying on contact-only

predictions which do not have indicators as to when apply this

methodology. We discuss this later in this section.

Optimal usage of contact information with FRAGFOLD
The presented results reveal a high degree of improvement in de

novo protein structure prediction due to the usage of predicted

residue-residue contacts. However, an important question to ask is

what is the best way of combining predicted contacts with the

FRAGFOLD objective function. In trying to address this before

carrying out the benchmark, we tried a large number of different

approaches on a limited subset of cases, as described in the

Materials and Methods section. Of course it is impossible to know

whether we have found the absolute best design for a hybrid

scoring function, but we can say that the eventual choice was the

best out of very many combinations that we tried. These

combinations centred around 3 main choices: i) Should all

predicted contacts be used or only the most confidently predicted

ones? ii) How heavily should contact information be weighted in

comparison with the standard FRAGFOLD energy terms? iii)

What function should be used to transform predicted contacts

along with their associated precision estimates into good pseudo-

energy terms? After trying various combinations, we found the

optimum performance on the small validation set to be as follows:

(1) Use the full list of predicted contacts produced by PSICOV,

as any of the contacts can potentially contribute to the

determination of a correct fold. Artificially truncating the list

is likely to remove useful information. The weight of a given

predicted contact is determined by positive predictive value

(PPV) which then serves as an argument for the contact

energy terms. Similar observations also concern limiting the

list of contacts to ones of a given range (e.g. only short-range

or long-range contacts). Although, as we present below, long-

range contacts are crucial and highly informative on their

own, limiting the contact information to them significantly

impairs the predictions (data not shown).

(2) The relative weight of RRCON should be equal to the total of

all other FRAGFOLD terms. In practice, FRAGFOLD

adjusts weighting parameters on the basis of ratios of standard

deviation of every potential term with relation to short-range

pair-wise potential component [30]. Physical potential terms

contribute equally to the final structure, as evolutionarily-

derived residue contact information. As contact information

Contact-Aided Predictions of Globular Proteins
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comes with varying quality (characterized by PSICOV

precision; Figure 3) RRCON contribution can be either

under- or over-fitted, as contact-only folding results demon-

strated. The best solution in the general case thus seems to be

equalising contact and physical term weighting. It is quite

possible that some further improvement could be obtained by

varying the weighting of contact terms depending on the

estimated accuracy of the contact list, but none of the simple

approaches we tried were successful.

(3) The contact energy term should be scaled according to the

estimated precision of the contact and should also penalize

unsatisfied contacts. Our final selected pseudo-energy term is

given in the Materials and Methods section.

The contacts utilized in this method are fitted optimally
In the dataset there are no cases where more than a third of top-

L (from the list of contacts sorted by descending PPV value; L is

the length of the protein) predicted false contacts would be satisfied

Figure 1. Folding with and without the use of predicted contacts. A. TM-scores obtained for best top-5 predictions (on the basis of calculated
final energy) without (no contacts) and with residue-residue contact (RRCON) term are compared (combined all and sequential contacts; explained in
the text). Three results are significantly better (TM-score difference .0.05) without the use of contacts: 1hh8A, 1m4jA, 1m8aA; upper from the
diagonal. B. Shows contact only best top-5 TM-scores in comparison to combined contacts FRAGFOLD results (best top-5 energy). C. Combined
RRCON results compared to no contacts results assessed on the basis of best TM score in top-5 largest clusters. D. Combined RRCON TM-score against
contacts-only approach TM-score (best top-5 clusters). Diagonal lines indicate identical results. Vertical dashed lines indicate correct prediction
boundary (TM-score $0.5). The area below the diagonal and right of the dashed line encompasses all correct predictions. Targets are grouped by
fold: green squares – a-proteins, red triangles – b-proteins, diamonds – a+b and a/b proteins. Overall, 100 targets out of 150 were correctly predicted.
doi:10.1371/journal.pone.0092197.g001
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Figure 2. Sample results of FRAGFOLD without contacts, contacts-only methodology and both statistical and contact potentials.
Below each structure its TM-score is given. 1hh8A is presented in the first column. It is a case where TM-score of no contacts structure is higher than
FRAGFOLD with contacts potential (0.59 and 0.58, respectively). Targets 1bkrA (second column) and 1svyA (third) exhibit a progression of TM-score
from FRAGFOLD utilizing only statistical potentials (top row), FRAGFOLD contacts-only (second row) folding and folding with both, statistical and
contacts-derived potentials (third row). Such progression is expected and observed in most of cases throughout the test set.
doi:10.1371/journal.pone.0092197.g002
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(Figure 4). At the same time, amount of true top-L predicted

satisfied contacts reflects well the quality of models. Best

predictions (TM-score $0.7) satisfy at least 70% of true predicted

contacts in all cases. In this regard the contacts are not over-fitted

(there are no cases with more false than true predicted contacts

satisfied), although we acknowledge the notion that any satisfaction

of false contacts can be considered over-fitting.

The converse hypothesis has also to be tested – are the contacts

under-fitted? If that was the case, the increase of residue-residue

contact weighting in relation to other potential terms would not

improve the model quality. A boundary condition here is contact-

only folding, which was already discussed and indeed there are

cases where contact contributions are under-fitted (Figure 1B).

This scenario however is not very common (30 cases in total

generating difference in TM-score greater than 0.01, including

cases where both approaches produce models with TM-score

$0.5), and it is safe to state that in general terms contacts are well

fitted into the method. By-case adjustments are likely to fix this

issue or, as we present in the next sub-section, an alternative

approach to introduce RRCON by including contact information

sequentially.

Sequentially introduced contacts improve predictions in
some cases

Two approaches to introduce predicted contacts were used: in

the first, the full set of predicted contacts was added into the

FRAGFOLD energy function (later referred to as all contacts) and

in the second, the contacts were introduced sequentially. In the

sequential case, only short range contacts are considered at the start

of the run, with the range of considered contacts being increased

Table 1. Improvements in predictions.

best energy clustering

best top-5 best top-5 $0.4 best top-5 best top-5 $0.4

no contacts 24.67% 14.00% 26.67% 16.00% 29.33%

contacts only 63.33% 48.00% 79.33% 45.33% 74.67%

with residue-residue contacts:

all 72.00% 58.00% 74.67% 56.67% 74.67%

sequentially introduced 66.67% 58.67% 78.00% 50.67% 66.00%

combined 78.00% 66.67% 82.67% 62.00% 82.00%

Comparison between fractions of correctly predicted models (TM-score $0.5 or 0.4 when noted) among best, best top-5 and best top-5$0.4 TM-scores. Best top-5
results are analyzed as 2 groups: derived on the basis of calculated final energy (energy) and on the basis of cluster size (clustering). Results without the use of residue-
residue contacts, only with the use of residue-residue contacts, or with: all predicted contacts included for the whole duration of simulation (all), contacts sequentially
included as the simulation proceeds (sequential) and combined results taking advantage of both approaches are compared. Best results are predictions with highest TM-
score from the whole generated ensemble, best top-5: the highest TM-score value from 5 lowest energy models (or 5 largest clusters) in an ensemble.
doi:10.1371/journal.pone.0092197.t001

Figure 3. By fold comparison of best top-5 TM-score with
PSICOV top-L precision. Red triangles – b proteins, green squares –
a proteins, diamonds – a+b proteins and a/b proteins.
doi:10.1371/journal.pone.0092197.g003

Figure 4. Scatter plot of top-L true against top-L false satisfied
predicted contacts. Equal numbers of contacts in each group (true or
false) per protein are compared against each other. The diagonal line
indicates equal contribution boundary. Orange and blue triangles
represent incorrectly predicted targets (TM-score #0.3 and 0.3,TM-
score,0.5, respectively), red and black diamonds correspond to
correctly predicted targets (0.7.TM-score$0.5 and TM-score$0.7,
respectively).
doi:10.1371/journal.pone.0092197.g004
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linearly with each cycle. Results from both approaches can be

analysed together i.e. where best top-5 results are selected from the

combined population of results, which we refer to as combined.

Table 1 shows the results of all contacts and sequential contacts

calculations. Nevertheless, basing on energy or clustering it is

possible to pick a better model generated by these two alternative

approaches, hence improving overall performance (Table 1). This

however requires twice as many computations and is not always

feasible. Contact order (CO) might help to choose the correct

approach (Figure 5). CO is defined as an average separation

between contacting residues divided by the length of a protein

[37]. The greater CO is the more long-range contacts are present

within a protein. Here, predicted contact order is studied,

calculated on the basis of top-L predicted contacts (L being the

length of the protein). An overall trend is observed here – low top-

L contact orders (top-L CO,20) tends to favour all contacts

approach, while high top-L contact order (top-L CO.25) favours

sequential contacts rather than all contacts approach. There is no

clear rationale for this, however some hypotheses might be

presented. When there are more long-range contacts than short

and mid-range ones (high CO), introducing all contacts at once

disrupts satisfaction of shorter contacts in favour of long-range

contacts. Sequential formation of contacts enables a protein to

obtain a correct fold reducing the noise from long-range contacts.

Also, as previously mentioned, sequential contacts enable the

method to overcome under-fitting problems – contacts introduced

as simulation progresses can be satisfied to a larger extent (i.e.

better fitted), as opposed to all contacts approach – and improve

results without altering weighting parameters or the folding

framework in general. Changing parameters or the overall

framework is not suitable for blind predictions where the quality

of predicted contact information cannot be readily assessed, or in

large-scale folding experiments.

Incorrect predictions can be classified as sampling or
contact-related problems

There is no single explanation why some cases do not improve

(or get worse) when we add contact information to statistical

potentials. Generally, unsuccessful predictions might be attributed

either to sampling, or contact-related problems. This was tested by

substituting predicted contacts by contacts extracted from crystal

structures. Cases where the use of structure-derived contacts

rectified unsuccessful predictions based on predicted contacts can

be classified as contact-related problems (Figure 6). If the real

contacts do not improve a prediction sufficiently to obtain a

correct fold, then we assume the failure is due to a lack of

conformational sampling. Overall, half of classified problems are

contact-related (11 cases), while the other half are sampling

difficulties. Table 2 compares the cases where these types of

problems were identified.

Sampling problems may be attributed to the topological

complexity of some targets. These include Ig-like or beta barrel

folds and sandwich architectures. In the case of the sandwich fold

the two anti-parallel beta-sheets in the protein have flexible links,

whereby small variations in torsional angles cause significant

changes in the orientations of the two sheets. To further verify

whether the cases identified as sampling problems are indeed due

to sampling, not fragment availability (see Materials and Methods

sub-section Folding for methodological details) we performed a

verification of the quality of fragments on the 150 protein set. Best

fitting fragments from both supersecondary and fixed-length

fragment sets of Fragfold library were fitted onto the PDB

(experimental) structures and a mean RMS Distance Matrix Error

(DME) value for each protein and each set (supersecondary and

fixed-length) was calculated. Then, we constructed a list of

Figure 5. Top-L contact order compared against TM-score for
all contacts and sequential contacts targets. Contact order
calculated across the whole chain length and reflects the relative
contribution of long-range contacts (predicted) in the whole structure.
Cases where all contacts produce correct topology but not sequentially
introduced (all contacts; blue diamonds), and where only sequentially
introduced contacts produce correct topology (sequential contacts; red
squares) are compared. It may be observed that the former case
exhibits better results for low (,25 top-L CO) contact orders, while the
latter for higher contacts orders (approx. 25 top-L CO and more).
doi:10.1371/journal.pone.0092197.g005

Figure 6. TM-scores of best results obtained using predicted
contacts compared with folding results aided by contacts
extracted from PDB structures. Red diamonds indicate identified
sampling problems. Contacts extracted from experimentally solved
structures (PDB contacts) clearly improve the predictions (points below
the diagonal).
doi:10.1371/journal.pone.0092197.g006
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descending RMS DME values for each type of fragments (Table

S3) and also identified outliers (points 1.5 times or more the

interquartile range above the third quartile, where the inter-

quartile range is the difference between the third and first quartile)

in each class. Fixed-length fragments showed no outliers, while

supersecondary fragments produced 5 (Table S3). Among the

identified outliers 2 cases were attributed to contact-related

problems (Table 2 and Table S3) and 1 case was a sampling

problem (1i1jA). Overall, 9 out of 11 identified sampling problem

cases (and 8 out of 11 contact-related) are within the top 50% of

both rankings (supersecondary and fixed-length fragments; Table

S3). Clearly, sampling problem cases are more populated amongst

fragments not fitting closely onto their corresponding experimental

structures, but this alone is not enough to attribute poor Fragfold

performance to limited fragment availability. Fragfold also takes

advantage of small fragments and they could supplement well

regions where larger supersecondary or fixed-length fragments do

not generate an optimal conformation. The identified sampling

problem outlier (1i1jA) – melanoma inhibitory activity protein –

exhibits a large fraction of loops (62%) and this is the likely cause

why this protein was found to have a poor fit against Fragfold

fragment library. The intrinsic drawback of any coarse-graining

(here, the use of fragments) is the trade-off between computational

efficiency and resolution such method could achieve.

The second group, contact-related problems, can be easily

linked with low PSICOV contact prediction precision. All but one

such cases have 0.50 or lower top-L PSICOV contact prediction

precision. The outlier (1whiA) is a 122 residues long beta barrel

protein that has a relatively high top-L PSICOV precision of 0.65.

The likely cause of this target being identified as a contact-related

problem is the presence of a 9 residue long loop connecting 2 b-

sheets which is not constrained by any contacts. It should be noted,

that although a poor prediction due to a contact-related problem is

very likely to be caused by a low PSICOV contact prediction

precision, not all low PSICOV precision cases produce low TM-

score models. A good example could be 1fk5A (nonspecific lipid-

transfer protein) where regardless of a very low PSICOV precision

of 0.13, FRAGFOLD statistical potentials are sufficient to produce

a good prediction (TM-score = 0.51).

Results correlate with contact prediction precision
It has already been shown that the number of sequences in an

MSA correlates moderately with PSICOV precision [20]. This has

a clear justification – the more sequences in the MSA, the richer

the evolutionary information will be and hence the more accurate

the calculated covariance matrix will be. We should also expect

that as the contact prediction precision gets higher, the better the

Table 2. Sampling and contact-related problems.

protein no contacts TM-score RRCON TM-score fold* top-L PSICOV precision fold architecture

sampling problems#

1aoeA 0.30 0.45 a/b 0.50 3-layer sandwich

1d4oA 0.34 0.44 a/b 0.40 3-layer sandwich

1dixA 0.34 0.34 a+b 0.27 alpha-beta complex

1fl0A 0.36 0.37 b 0.63 beta barrel; OB-fold

1gzcA 0.31 0.38 b 0.40 jelly roll sandwich

1hfcA 0.29 0.45 a+b 0.47 3-layer sandwich

1i1jA 0.29 0.46 b 0.49 roll (barrel)

1jbkA 0.32 0.37 a/b 0.22 3-layer sandwich

1kqrA 0.28 0.35 b 0.18 jelly roll sandwich

1rybA 0.33 0.45 a/b 0.74 3-layer sandwich

3dqgA 0.31 0.47 b 0.76 sandwich

contact-related problems##

1behA 0.28 0.44 b 0.45 alpha-beta complex

1c52A 0.33 0.44 a 0.45 orthogonal bundle

1dqgA 0.26 0.29 b 0.22 trefoil

1ej8A 0.38 0.46 b 0.33 immunoglobin-like sandwich

1fcyA 0.37 0.47 a 0.22 orthogonal bundle

1hxnA 0.35 0.45 b 0.38 4 propellor

1i71A 0.28 0.42 b 0.49 beta barrel (disulfide rich)

1jyhA 0.38 0.39 a+b 0.47 alpha-beta barrel

1whiA 0.34 0.45 b 0.65 beta barrel

2arcA 0.30 0.34 b 0.33 jelly roll sandwich

2phyA 0.40 0.44 a+b 0.50 2-layer sandwich

Only cases where clear allocation to one of these two cases can be made are shown.
*obtained from SCOP database [35] and verified in CATH [36].
#supplying real contacts extracted from PDB does not ensure a correct prediction.
##PDB contacts enable correct prediction; the shortage or incorrectness of contact information results in poor prediction.
SCOP: b, CATH: a+b.

doi:10.1371/journal.pone.0092197.t002
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fold predictions should be (aside from those targets suffering from

sampling problems).

Indeed, when looking at the prediction quality dependence on

the PSICOV top-L contact precision a modest correlation exists

(Spearman’s r= 0.48) (Figure 3). This improves if individual folds

(a, b, a/b and a+b) were analysed separately. The highest

correlation (Spearman’s r= 0.72) may be observed for b proteins.

This may be rationalized by the fact, that these proteins are

generally difficult modelling targets and so the baseline model

quality (i.e. without contacts) is much lower, and so the

improvement from contacts is likely to have greatest relative

impact. Conversely, a proteins, generally easier modelling targets,

do not benefit greatly from additional RRCON information, as

secondary structure predictions and correct fragment selection are

the major factors in folding of these proteins. A further explanation

is that the long range contacts in b sheets will generally be shorter

and with lower variance than those between helices due to the

extra geometric constraints afforded by the hydrogen bond

network. However, opposing this second explanation is the fact

that the sheets themselves can change in terms of gross shape

between distant homologues, thus lowering the observed model

quality score. This simplistic approach has several pitfalls. During

the folding process not only predicted contacts contribute to the

final structure, although they play an important role as it was

shown before. Contact information is not needed in all cases to

find a correct fold (leftmost green square in Figure 3), or in some

cases it is not sufficient to produce a correct prediction (sampling

problems; see subsection ‘‘Incorrect predictions can be classified as

sampling or contact-related problems’’). For outliers in Figure 3

not imposing sampling problems it can be speculated that

although contacts occupy the top-L range they are not predicted

with large enough confidence (PPV) to impact the structures

enough. The same would apply to cases where high PPV or highly

populated predicted contacts occupy a single niche (e.g. 1aapA

having top-L PSICOV precision of 0.86 and best top-5 TM-score

= 0.43 has a high CO = 36.4).

It would be more desirable to observe a dependence of the size

of a MSA on the quality of predictions (Figure S1). Unfortunately,

the correlation in that case is weak (r= 0.19) and is of little use for

any predictions about the possible quality of generated models. It

is due to the fact that the size of a MSA moderately correlates with

the quality of contact predictions (PSICOV precision) and the

precision of contact predictions, in turn, correlates with the quality

of models. This kind of complex correlation between MSA and the

quality of models results in poor dependency that is observed for

these variables.

Long-range contacts have the greatest impact on the
quality of models

Issues mentioned above can be better assessed if contacts of

different ranges are analysed separately. Posterior contact satis-

faction analysis (the contacts present in a model, that exist in the

native structure) shows that all contacts relate well with the quality

of model regardless of the contact range (short-range contacts – 5–

9 residues apart; mid-range contacts – 10–23 residues; long-range

contacts – 23 residues and more) (Figure 7). Clearly, the long-

range contacts show the greatest dependency with the final model

quality, while short and mid-range contacts exhibit a more

scattered pattern. This could be expected – long-range contacts

constrain the overall fold of the protein, while shorter contacts

relate to local similarities, which could not necessarily be properly

arranged in space causing unsatisfactory overall prediction. It can

be noted, that although long-range contacts give best estimation

of the model quality the calculated correlation (r= 0.87 for

long-range contacts; r= 0.50 for short-range and r= 0.57 for mid-

range contacts) is still imperfect (Figure 7, black dots). This is only

to be expected, as even correctly predicted contacts only provide

loose constraints on the actual observed distances.

The method is suitable for automated predictions
Targets with $0.8 top-L PSICOV precision (or generally, high

contact prediction accuracy) are likely to produce models with

correct topology, as long as no sampling problems are encountered

(Figure 3). This, however, is unknown a priori for truly ‘‘blind’’

predictions, and so even if we cannot disentangle sampling and

contact-related problems in real world prediction cases, as long as

we have strong guidelines on how to identify correct models,

contact-assisted prediction can still be extremely useful.

Considering top-L PSICOV (predicted) contacts, similar trends

could be observed as in the case of post-analysis on extracted PDB

contacts (in correlations terms short-range r= 0.19; mid-range

r= 0.41; long-range r= 0.79). Short-range contacts have a weak

impact on the quality of final model, mid-range have a stronger

effect, whilst long-range contacts play a crucial role. Carrying out

observations at top-L/2, top-L/5, etc. contacts distorts the overall

picture, as for some targets different classes of contacts are

underrepresented (i.e. cases where there are no short or mid-range

contacts in top-L/2 are frequent). This good correlation between

the number of satisfied long-range contacts and the quality of

obtained models again emphasises the importance of long distance

interactions on maintaining the fold of a protein.

Because long-range contacts are equally well-predicted as

shorter ones [20] and they have a greater impact on the final

structures generated, long-range contacts serve well as an indicator

of prediction quality. In order to maximize the information

content of such approach, it is useful to construct a scoring

function which takes into account the total number of predicted

contacts (NLR) along with the fraction of satisfied predicted contacts

(CONLR).

MQALR~CONLR
: ln (NLR)

Figure 7. Post analysis of contact satisfaction. Contacts divided
into 3 groups (short, mid and long range contacts) show dependency of
the final (top-1; lowest energy in an ensemble) model on the fraction of
satisfied real contacts (extracted from reference PDB files).
doi:10.1371/journal.pone.0092197.g007
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This simple quality assessment function (MQALR) was selected from

a set of tested monotonic functions as giving the best results for

model assessment. MQALR may serve as a good guideline for

discriminating correct and incorrect predictions (Figure 8). Preci-

sion and recall of correct predictions (TM-score $0.5) of 85% can

be reached with this method. Minimizing the amount of false

positives by varying a threshold (but reducing the true positives

fraction at the same time) gives up to 92% recall (67 true positives

and 15 false positives).

Regardless of sampling problems, either the long-range satisfied

predicted contacts score (discussed above) or mean inter-residue

TM-score variations reflect the prediction quality well (mean inter-

residue TM-score was calculated for each pair of models in the

ensemble; as described in [22]). The plot of mean TM-scores

across pairs of ensemble models and the final (lowest calculated

energy) model shows a strong correlation (Spearman’s r= 0.73)

(Figure 9). Should the mean pair-wise TM-score cut-off be .0.25

the expected TM-score of the final model is $0.5 at 84% precision

(probability of a correct model) and 58% recall (42 true positives

and 8 false positives).

A combined model quality assessment function (CS) may be

constructed on the basis of two previously described functions:

mean inter-residue TM-score (TM) and top-L long-range contact

satisfaction score (MQALR) (Table 3, Figure 10).

CS~WTM
:TMzWLR

:MQALR

The combined model quality assessment function weights (WTM,

WLR) were optimized using a genetic algorithm to maximize the

precision and recall values. WTM = 7 and WLR = 1 were found to

be the optimal weights for the function. CS exhibits higher

correlation with TM-score of the final model than the two former

functions alone (r= 0.91) and can serve as a guideline concerning

assessment of blind prediction models with very high precision and

recall values (Table 3).

The role of contact-assisted predictions is likely to
increase in future

In terms of future usage, we should put the presented data in a

genome-wide context. Since the test set was constructed basing on

Pfam, the most obvious reference point is that database. The Pfam

database is a good reflection of the currently available sequence

space, covering over 77% of it. The annotated portion of Pfam

(PFAM-A) currently consists of 13,672 families [32]. Only about

42% of these families have at least a single corresponding PDB

structure. Although Pfam covers all types of proteins, transmem-

brane proteins contribute to a negligible fraction of about 3% of all

Pfam families (by cross-referencing to UniProt), whereas they

constitute about 30% of a typical genome [38].

The Pfam database is growing at a high pace (Figure 11). This

concerns all families, both large well-characterized ones, and small

emerging with little sequences. In fact, when observing the growth

of Pfam 2 linear trends may be observed (Figure 12). By

sequencing and following redefinition of families the new families

emerge in considerable amounts, up to around 8,000 sequences.

This trend is reflected by the change of the current median family

size, with 250 residues (Figure 11). At present, 34% families from

the most recent Pfam release contain at least 500 sequences. Given

the current growth rate by an exponential extrapolation, it can be

expected to reach 50% of families will contain .500 sequences by

2015. The 500-sequence threshold is somehow arbitrary and

considering no direct correlations between number of sequences

and quality of models generated, as well as advances in the field of

contact predictions, it cannot be treated as an absolute determi-

nant. However previous study by Jones et al. shows, that when

reaching 500 sequences in a MSA the precision of contact

predictions drops very low [20], justifying treating 500 sequences

in a family as a good guideline for the use of predicted contacts.

Conclusions

We have explored and determined the optimal usage of

predicted residue-residue contact information in de novo protein

structure prediction on a comprehensive benchmark of 150

globular proteins. For this purpose FRAGFOLD, a fragment

assembly method, was enhanced to use predicted contacts as an

Figure 8. TM-score of the final (lowest energy) model against top-L long-range contact score. The score is derived basing on the length
of a protein, total number of predicted contacts and the fraction of satisfied predicted long-range (.23 residues) contacts. The Spearman correlation
coefficient (r) is 0.77.
doi:10.1371/journal.pone.0092197.g008
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additional pseudo-energy term alongside statistical potentials.

FRAGFOLD utilizes the predicted intra-protein residue-residue

contact prediction information generated using sparse inverse

covariance estimation on multiple sequence alignments, as

implemented in PSICOV. Added information emerging from

predicted contacts greatly enhances the predictive capabilities of

FRAGFOLD, showing significant improvements over recent

methods. The presented version of FRAGFOLD is able to

correctly predict almost 80% of proteins in the test set (best TM-

score $0.5 threshold) with a mean TM-score of 0.54.

Using the method described, it is possible to reliably estimate a

priori the quality of obtained models, on a basis of the fraction of

satisfied long-range contacts, correlation with mean inter-residue

TM-score, or on the basis of the developed combined model

quality assessment score (CS).

Thanks to the effectiveness and reliability of CS the current

method is well-suited for automated de novo predictions enabling

selection of correctly predicted folds (TM-score $0.5) with 93%

precision and 77% recall. This is of particular importance in all

practical applications, where the assessment of the quality of

obtained models is indispensible. In PSICOV long-range contacts

appear to be equally well predicted as short-range contacts. It

helps to take advantage of the importance of long-range contacts

on the fold of a protein. We showed that these long-range

interactions (.23 residues apart in the sequence) play a crucial

role in obtaining a correct fold and basing solely on them it is also

possible to estimate the correctness of obtained models. Current

study showed that RRCON term plays an equal role as all of the

statistical potentials embedded in the folding engine of FRAG-

FOLD. Improvements in predictions coming from the utilization

of both types of potentials clearly outperform any approach used

alone (14% correct best top-5 predictions without RRCON, 48%

with contacts only and 66.67% correct predictions combining

contact and statistical potentials). Part of this increase in the

amount of correct predictions was due to parallel use of alternative

approaches to introduce contact information as simulation

proceeds – either all contacts from the start, or sequentially from

short-range to long-range contacts as simulation proceeds (i.e.

from 58% using all contacts, to 66.67% using combined approach).

Considering the perspectives of contact-assisted predictions the

Figure 9. TM-score of the final (lowest energy) model against mean pair-wise TM-score within the model’s ensemble. Good
correlation (Spearman’s r= 0.73) emerges from the results. Inter-residue TM-score .0.26 is likely to produce a model with TM-score .0.5.
doi:10.1371/journal.pone.0092197.g009

Figure 10. Accuracy of predictions basing on the total inter-
residue TM-score and long-range contact score. ROC curves are
plotted at different TM-score cut-offs. TPR – true positive rate, FPR –
false positive rate. Diagonal dashed line indicates random prediction
boundary.
doi:10.1371/journal.pone.0092197.g010

Table 3. Model quality assessment on the basis of a
combined score (CS) derived from long-range contact
satisfaction score and mean inter-residues TM-score in an
ensemble of models.

TM-score CS precision recall

$0.4 .3.0 0.96 0.83

$0.5 .3.4 0.93 0.77

$0.7 .6.0 1.0 0.64

Data concerns the full 150 protein dataset.
doi:10.1371/journal.pone.0092197.t003
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increase in the number of available sequences alone will not solve

the protein structure prediction problem. As we presented in this

paper, a fraction of poor predictions emerges from sampling

problems, which cannot be avoided by the improvement of the

quality of contact information. These cases constitute half of the

unsuccessful predictions. There is a need for better sampling

algorithms, which would bypass topological problems often

present in structures containing b-sheets, e.g. sandwich architec-

tures (analysis of folds reveals that b-proteins still remain the most

challenging targets, although most significant improvements due

to the introduction of contacts also occur in this class).

The other conclusion concerning future blind prediction usage

is: contact-related problems may be bypassed by the increase of

sequence information, but there is still a need for improvement in

the contact prediction algorithms as well. As it was already pointed

[20], some statistical problems still are to be dealt in contact

predictions. One of them being weighting of the sequences in large

MSAs, as it is a computationally expensive step which is limiting

the size of proteins that can be predicted with these methods. Also,

Figure 11. Growth of Pfam holdings from version 20. A. plot of the increase of median family size and B. percentage of Pfam with families of
size above sequence length thresholds: 250, 500, 1000 and 2000 residues. In all cases an exponential growth may be observed. Currently (version 26)
median family size is 248 and 34% of families hold more than 500 sequences.
doi:10.1371/journal.pone.0092197.g011

Figure 12. Number of sequences in Pfam version 26 in comparison to the growth since version 25. Upper line (red) indicates emerging
new families not present in version 25, lower points (black) indicate a stable growth of the families in size. Not all data is shown. A. Region of up to
500 sequences, below the capabilities of most contact prediction methods. B. Region up to 40,000 sequences. Some families decrease their size
(negative value on the ordinate axis), what might be attributed to redefinition of some families. Number of sequences range up to over 288,000
sequences (COX1 cytochrome c oxidase family), but with low density.
doi:10.1371/journal.pone.0092197.g012
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better alignment algorithms would benefit the overall accuracy of

contact predictions. A hope to reduce the rate of false positives in

contact predictions might come from identifying signal generated

by protein-protein interactions, or interactions with ligands or

cofactors.

Nevertheless, uniform growth of protein sequence families

collected in Pfam gives prospect for a constant increase in the

predictive capabilities of this and similar methods. This is of

particular importance, since the ever-increasing gap between the

sequence and structure spaces [39]. It can be speculated on the

basis of obtained results, that the lower bound for current

predictive capabilities (since PFAM-A collects only annotated

families) is in the range of 23% of current sequence space. This is

based on a simple estimation – there are 34% of Pfam families

with more than 500 sequences, our method is able to correctly

predict approx. 67% of cases (considering best top-5 results).

These speculations do not consider homology, multimeric

proteins, etc. but are intended to provide an outlook of what

should be within this method’s reach.

Results presented here are promising and show how to use

contact predictions to predict protein structures effectively. The

main bottleneck remains the reliance of covariance-based contact

prediction on the size of the available MSA. Although improve-

ments in this direction have been reported, the accuracy of contact

prediction for small MSAs is still far too low to be useful [40]. The

study here has focussed on the modelling of single protein

domains, but there is clearly a major challenge to address in the

modelling of large multidomain complexes, where improved

contact prediction is also likely to be beneficial. Here the

bottleneck will be correct handling of orthologous relationships

within large superfamilies i.e. dealing with the problem of repeats

of domains appearing in different contexts. Finally, there is still a

lot of room for the development of better conformational search

algorithms. Even fragment-assembly methods are still relatively

inefficient when faced with large complex topologies. In these

cases, it may be better to concentrate on developing new fold

recognition approaches that can enhance template-based model-

ling for cases of analogous fold similarity.

Materials and Methods

Training and test sets
As a test set 150 diverse globular proteins were used (Table S1).

The set spans across the whole Pfam database [32], representing a

variety of folds, with each protein comprising a different Pfam

domain family. All of the proteins have high quality resolved

crystal structures (resolution #1.9 Å), are monomeric according to

PISA [41], and both short (,50 residues) and very long (.270

residues) chains were excluded. Multiple sequence alignments

(MSAs) were automatically generated using the jackhmmer

program from the HMMER 3.0 package [http://hmmer.org].

A training subset of 10 proteins for determination of FRAG-

FOLD scoring parameters and benchmarking the method was

selected as a representative subset of the 150 proteins dataset

(Table S4). It was chosen to reasonably reflect the whole

population of proteins in the full set. Selected proteins represent

different folds and span different precisions achieved by PSICOV.

The set was also chosen to consist of smaller proteins to make the

analysis more computationally tractable.

Contact predictions
Lists of predicted contacts used for the predictions were

generated using PSICOV [20]. Briefly, the method starts by

generating a covariance matrix based on the given MSA. The

graphical Lasso method [42] is then applied to this matrix to find a

sparse subset of the elements of a related inverse covariance

matrix. By constraining the solution to be sparse it is possible to

avoid overfitting of parameters to the observed data and so

increase the accuracy of the final model. After a final normalisa-

tion step, the non-zero elements of the sparse inverse covariance

matrix relate to pairs of columns in the MSA which are most likely

to be directly coupled, and thus likely to be in contact in the native

protein structure. Raw contact prediction scores produced by

PSICOV were converted to [0, 1.0] probability values (P). The full

list of PSICOV predictions is available online at http://

bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/suppdata.

Folding
FRAGFOLD [31,43] was used to generate 3-D structures using

fragment assembly. FRAGFOLD assembles folds from a mixture

of supersecondary structural fragments and short fixed length

fragments taken from a library of highly resolved protein structures

using simulated annealing. Fragments are selected using predicted

secondary structure and a threading score between the target

sequence and the fragment in question. At each position in the

target sequence, a shortlist of fragments that both agree with the

prediction of secondary structure and which have a favourable

threading energy are produced, and these lists are sampled

randomly during the folding run to generate each new conforma-

tion.

Secondary structures were generated using PSIPRED [44]. The

same MSAs that were used in PSICOV contact predictions served

as FRAGFOLD input alignments. Duplicate rows were filtered

out, and columns with gaps in the query sequence deleted and

sequences with ,30% sequence identity to the target were also

removed. To make the simulations more representative of blind

predictions, fragments with detectable sequence similarity to each

target protein were removed from the standard FRAGFOLD

fragment library performing sequence search of the test set

proteins against FRAGFOLD fragment library.

FRAGFOLD’s force field embodies pair-wise potentials deter-

mined by inverse Boltzmann equation, solvation potential,

hydrogen bonding, structure compactness and steric terms [30].

All simulations were run using all-atom representations, Replica

Exchange Monte Carlo to search for low energy conformations

and relative weighting of the energy function terms determined by

considering the standard deviations of each term across an

ensemble random chain conformations for the target, as described

by Jones, et al. [31]. The total number of annealing steps was

chosen based on the size of the target protein (10,000,000 for

proteins $120 amino acids and 5,000,000 for smaller proteins).

An ensemble of 200 models per protein was generated to ensure

reasonable sampling of conformational space.

Determination of how to use residue-residue contacts (RRCON)

within FRAGFOLD was performed in a step-wise procedure, one

aspect at a time. An additional energy term was added to the

objective function and 4 features were systematically tested using a

10 protein training set (Table S4): (1) RRCON weighting to ensure

optimal balance between the impact of contacts and other

potentials included in FRAGFOLD (range from 0.5 to 10.0); (2)

sequence separation within the contact list to be considered, to

study whether short-range or long-range contacts alone improve

predictions more, rather than full contact information ($5 amino

acids (aas), $10 aas, 5-9 aas, 10-23 aas, .23 aas); (3) threshold of

accepted contacts predicted by PSICOV (PPV.0.0, PPV.0.5,

top-L contacts, top-L/2 contacts); (4) contact energy function term

itself, to find the correct expression (described in the next

subsection). Starting values are listed as first in brackets.
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Energy function
The final energy function used by FRAGFOLD utilizes all

terms embedded in previous versions of FRAGFOLD [30,31,43]

with the addition of a contact satisfaction term:

E~W1
:SR:Eshort{rangezW2

:LR:Elong{rangezW3
:SOLV :Esolv

zW4
:STERIC:EstericzW5

:HB:Ehbond

zW6
:COMPACT :EcompactnesszW7

:RR:Err{contact

Weighting components of the potential function (W1 to W7) are

determined by comparing the standard deviations of each term,

across an ensemble of random conformations, to that of the short

range (SR) term. Further weighting can be user-defined, and by

default the STERIC terms are weighted by an additional factor of

3, RR by 5.0, while all other terms (SR, LR, SOLV, HB,

COMPACT) by 1.0.

The final Err-contact (formula below) was selected from 16

alternative functions tested. Examined functions included both

terms penalizing and not penalizing non-satisfied contacts. There

may be many more functions behaving in a similar way to the one

presented. The selected function behaved most stably and

produced best results amongst tested hypotheses. The default

function (for optimization purposes) was a square well with

exponential decay to E = 0, while the final Err-contact is a square well

function with exponential decay, expressed as:

E~
{P, dƒdcon

{P:e{(d{dcon)2zP: d{dcon
d

, dwdcon

(

where P is the PSICOV contact probability (PPV), d is the current

Cb-Cb distance (or Ca-Ca for glycine) and dcon is the maximum

contact distance predefined at dcon = 8 Å. Contacts with PSICOV

PPV.0 were used.

The rationale behind this function is as follows. Residues within

their contact distance (0-8 Å) interact depending on their chemical

nature what is described by other FRAGFOLD potentials. As

residues go further apart, the attracting contact contribution

diminishes exponentially up to 0. Then, depending on the initial P

value the penalizing impact of the energy term may contribute.

Non-satisfied contacts are penalized proportionally to the calcu-

lated P with the penalty decaying with distance to avoid generation

of false positives.

Model selection
Models were selected basing on 4 criteria:

(1) best model in an ensemble (i.e. highest TM-score);

(2) lowest energy model (as calculated by FRAGFOLD) denoted

also as top-1 model;

(3) best top-5 (i.e. highest TM-score model among 5 lowest

energy models);

(4) best top-5 cluster centroids (decoys were clustered on the basis

of their inter-model TM-score (TMclust) or RMSD

(RMSDclust); for each target, the representative models from

the 5 largest clusters were selected and the highest TM-score

model selected).

The first 3 model selection methods are presented in the

manuscript with the most attention given to methods (2) and (3) as

the most objective and suitable for blind predictions. Clustering

proved to produce comparable results (often worse) to selection

based purely on the basis of energy and therefore it was not

included in the results in the main text (see Table S1 for results

using clustering).

Supporting Information

Figure S1 By fold comparison of best top-5 TM-score with the

number of sequences in multiple sequence alignment (MSA). Red

triangles – b proteins, green squares – a proteins, diamonds – a+b
proteins and a/b proteins.

(TIF)

Table S1 Complete list of FRAGFOLD results.

(DOC)

Table S2 Comparison of FRAGFOLD and EVfold results.

(DOC)

Table S3 Supersecondary and fixed-length fragments fit onto

experimental structures.

(DOC)

Table S4 Training subset.

(DOC)
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