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ABSTRACT
In this paper, we study the evolution over time of the correlation structure of equity
returns by means of a filtered-network approach and use this to investigate persis-
tency and recurrences and their implications for risk-diversification strategies. We
build dynamically planar maximally filtered graphs from the correlation structure
over a rolling window and study the persistence of the associated directed bubble
hierarchical tree (DBHT) clustering structure. We observe that the DBHT clustering
structure is quite stable during the early 2000s, becoming gradually less persistent
before the unfolding of the 2007–8 crisis. The correlation structure eventually recov-
ers persistence in the aftermath of the crisis, setting up a new phase, distinct from the
precrisis structure, in which the market structure is less related to industrial sector
activity. We observe that the correlation structure is again losing persistence, which
indicates the building up of another, different phase. Such dynamical changes in per-
sistency and its occurrence at the unfolding of financial crises raise concerns about the
effectiveness of correlation-based portfolio management tools for risk diversification.
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1 INTRODUCTION

One way to reduce financial risk is by diversifying investments. This involves taking
positions in assets that are historically anticorrelated or uncorrelated and in this way
reducing the probability that all assets lose value at the same time. This is, for instance,
the basis of the capital asset pricing model (Fama and French 2004). However, the
applicability of these approaches relies on the implicit assumption that the relevant
features of the correlation structure observed in the past have persistent significance
into the future. This is not always the case.
In order to characterize the correlation structure and quantify its persistence, we use

a network-filtering approach in which the correlation matrix is mapped into a sparse
graph that retains only the relevant elements. To this purpose, we use the correlation-
filtered networks known as planar maximally filtered graphs (PMFGs) (Tumminello
et al 2005) and their associated clustering structure, the directed bubble hierarchical
tree (DBHT) (Song et al 2012). A PMFG is a maximal planar graph that retains only
the largest correlations. The DBHT is a hierarchical clustering that is constructed
by making use of the separating properties of 3-cliques in planar graphs (Song et al
2011).
Since the seminal work of Mantegna (1999), network analysis on asset correlation

has provided interesting insights into risk management and portfolio optimization. It
has been observed that the structure of such networks not only is significantly related
to the industrial sectors’classifications, but also conveys important independent infor-
mation (Mantegna 1999; Musmeci et al 2014). It was shown in Borghesi et al (2007)
that this network structure can be very robust against changes in the time horizon at
which the asset returns are sampled (when the market mode dynamics is removed
from the original correlations). This has been interpreted as an indication that “corre-
lations on short time scales might be used as a proxy for correlations on longer time
horizons” (Borghesi et al 2007). This, however, requires some degree of stationarity
in the correlation structure.
Network-filtering procedures have been found to sensibly improve the performance

of portfolio optimization methods. For instance, it was shown in Tola et al (2008) that
Markowitz optimization gives better results on network-filtered correlation matrixes
than on unfiltered ones. In Pozzi et al (2013), it was reported that the peripheral
position of nodes in PMFGs can be a criterion for selecting awell-diversified portfolio.
This finding is consistent with that for the minimum spanning tree (MST) in Onnela

Journal of Network Theory in Finance www.risk.net/journal



Risk diversification 3

et al (2003b): the stocks selected using the Markowitz method tend to be the “leaves”
of the MST.
Network-filtered correlations carry both local and global information in their struc-

tures and the analysis of their temporal evolution may allow us to better understand
financial market evolution. For instance, Di Matteo et al (2010) observed that stocks
belonging to the same industrial sector tend to have similar values of centrality in the
network topology, and that this differentiation is persistent over time. In particular,
they observed that finance, basicmaterials and capital goods industrial sectors (Forbes
classification) tend to be located mostly in the central region of the network, whereas
energy, utilities and health care are located more in the peripheral region. The preem-
inent role of the financial sector is even stronger when correlation networks based on
partial correlations are analyzed (Kenett et al 2010). Despite this overall robustness,
a certain degree of nonstationarity has also been observed. For instance, the financial
sector appears to have lost centrality over the first decade of the 2000s (Aste et al
2010). Buccheri et al (2013) found both a slow and a fast dynamics in correlation net-
works topology: while the slow dynamics shows persistence over periods of at least
five years, the time scale of the fast dynamics is a few months and linked to special
exogenous and endogenous events, such as financial crises. For instance, Onnela et al
(2003a) showed that sharp structural changes occurred in the graph topology during
Black Monday 1987. Similar phenomena have been observed for correlations on for-
eign exchange (FX) data (Jang et al 2010). McDonald et al (2008) demonstrated that
structural changes on FX correlation data display different features depending on the
type of event affecting the market. News that concerns economic matters can trigger
a prompt destabilizing reaction, whereas there are periods of “collective discovery”
in which dynamics appears to synchronize (McDonald et al 2008).
In this paper, we investigate the nonstationarity of correlation, quantifying how

much, and in what way, the correlation structure changes over time. This is a partic-
ularly relevant topic because most portfolio optimization tools rely on some station-
arity, or at least persistence, in the joint distribution of asset returns. It is generally
accepted in the literature that financial correlations are nonstationary. For instance,
in Livan et al (2012) it was shown, by means of a local Kolmogorov–Smirnov test
on correlation pairs, how nonstationarity can sensitively affect the effectiveness of
portfolio optimization tools. In this paper, we discuss the degree of nonstationarity
in the correlations at a nonlocal level by using PMFG networks and the associated
DBHT clustering and looking at changes in the hierarchical and clustering structures.
In this context, persistence translates into a measure of similarity among communities
in a network, for which network-theoretic tools should be used. The PMFG–DBHT
method has recently been applied to the study of financial data (Musmeci et al 2014),
showing that it is a powerful clustering tool that can outperform other traditional clus-
tering methods, such as linkage and k-medoids, in retrieving economic information.
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Moreover, the dynamical analyses have shown that the clustering structure reveals
peculiar patterns over the financial crisis, for instance, the increasingly dominant role
of the market mode over the period 1997–2012. This implies an increase in nondi-
versifiable risk in the market. In this paper, we take these analyses a step further by
looking at the dynamics of this clustering and its persistence.
The rest of the paper is organized as follows. In Section 2, we summarize the

main theoretical concepts underlying the correlation network tools. In Section 3, we
describe the analyses we have performed and discuss the results. In Section 4, we
draw our conclusions and discuss future perspectives.

2 CORRELATION-BASED NETWORKS: AN OVERVIEW

Over the last fifteen years, correlation-based networks have been used extensively in
the econophysics literature as tools to filter and analyze financial market data (Aste
et al 2005; Bartolozzi et al 2007; Di Matteo and Aste 2002; Di Matteo et al 2004,
2005; Mantegna 1999; Onnela et al 2003c; Tumminello et al 2005).
The seminal work of Mantegna (1999) exploited for the first time a tool from

network theory, the MST (see, for example, West 1996), to analyze and filter from
noise the correlation structure of a set of financial assets. Mantegna’s idea was to look
at a correlation matrix as the adjacency matrix of a network and generate an MST
on this network in order to retain the most significant links/entries. Moreover, after
mapping the correlation into a suitable metric distance, the MST algorithm provides
a hierarchical classification of the stocks.
In the following years, other correlation-based networks were studied in the litera-

ture. Onnela et al (2003c) introduced the dynamic asset graph. Unlike theMST,which
filters the correlation matrix according to a topological constraint (the tree-like struc-
ture of theMST), the dynamic asset graph retains all the links, such that the associated
correlation (distance) is above (below) a given threshold. In this way, it is less affected
by the insignificant, low correlations that are often kept by the MST. As a result, the
dynamic asset graph is more robust against time (Onnela et al 2003c). On the other
hand, the MST, by retaining both high and low correlations, is better equipped to
uncover global, multiscale structures of interaction. Indeed, in financial and complex
systems in general, several length scales coexist, and thresholding at a given value
artificially introduces a characteristic size that might hide effects occurring at other
scales.
The tree structure exploited in the MST tool is not the only topological constraint

that can be used to filter information. In particular, if we replace the request of absence
of loops with the planarity condition, we obtain the PMFG (Aste et al 2005). The
PMFG can be seen as a generalization of the MST that is able to retain a greater
amount of information (Aste 2012; Tumminello et al 2005), as it has a less strict
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topology constraint that allows it to keep a larger number of links. It can be shown
that the hierarchical properties of the MST are preserved in the PMFG.
We can take this concept a step further and generalize the PMFG to a broader class

of networks by means of the concept of “genus” (Aste et al 2005). The genus, g, of a
surface is the largest number of nonintersecting simple closed cuts that can be made
on the surface without disconnecting a portion (equal to the number of handles in the
surface). Requiring a network to be planar, as for the PMFG, is equivalent to requiring
that the network be embedded on a surface with g D 0 (ie, no handles, a topological
sphere). The natural generalization of the PMFG is therefore a network embedded on
surfaces with genus greater than zero. The greater the genus, the more handles are
in the surface and the more links we can retain from the original correlation matrix.
More links retained means more information and network complexity, but it also
means more noise. When g D d.N ! 3/.N ! 4/=12e (where N is the number of
nodes and dxe is the ceiling function that returns the smallest integer greater than
or equal to x), the original, fully connected, complete graph associated with the
correlation matrix can be recovered. The concept of embedding on surfaces therefore
provides a quantitative way of tuning the degree of information filtering by means of
a single parameter, g, linking correlation-based networks to algebraic geometry (Aste
et al 2012).
Correlation-filtered networks are associated with clustering methods. Indeed, the

MST is strictly related (Tumminello et al 2010) to a hierarchical clustering algorithm,
namely the single linkage (SL) (Anderberg 1973). MST can indeed be seen as a
network representation of the hierarchy generated by the SL. Recently, it has been
shown that a hierarchical clustering can be derived from the PMFGaswell (Aste 2014;
Song et al 2012). This new method is the DBHT. However, the approach is different
from the agglomerative one adopted in the linkage methods: the idea of the DBHT
is to use the hierarchy hidden in the topology of a PMFG, due to its being made of
3-cliques (Song et al 2011, 2012). The DBHT hierarchical clustering was applied to
synthetic and biological data in Song et al (2012) and financial data in Musmeci et al
(2014), showing that it can outperform several other clustering methods, including
k-means++ (Arthur and Vassilvitskii 2007), k-medoids (Kaufman and Rousseeuw
1987), linkage, spectral clustering via normalized cuts on k-nearest neighbor graphs
(kNN-spectral) (Shi andMalik 2000), the self-organizing map (SOM) (Kohonen et al
2001) and the Qcut (Ruan et al 2010).
Since the DBHT exploits the topology of the correlation network, it can be viewed

as an example of community-detection algorithms in graphs (Fortunato 2010). The
implicit assumption underlying these algorithms is that a community is somehow
related to the density of edges inside and outside the community itself, unlike strict
data-clustering methods (such as the aforementioned linkage algorithms), which only
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use the information contained in the similarity/distancematrix. Several different com-
munity detection algorithms in graphs have been suggested in the literature; many of
them search for the community partition that maximizes modularity, a function that
compares the density of links in each community with the one expected in a (null)
random graph model (Guimerà et al 2004; Newman 2004; Newman and Girvan
2004). Other approaches include spectral analysis on the adjacency matrix or related
matrixes, eg, Laplacian (Donetti and Muñoz 2004; Mitrović and Tadić 2009), ran-
dom walks on networks (Hu et al 2008; Zhou 2003) and methods based on statistical
inference (Reichardt and White 2007; Rosvall and Bergstrom 2007).
However, in this paper we focus on the DBHT, as it is tailored to planar graphs and

is therefore the natural tool to use with PMFGs.

3 PERSISTENCE ANDTRANSITIONS: DYNAMICAL ANALYSIS OF
THE DIRECTED BUBBLE HIERARCHICALTREE

We studied the dynamical evolution of DBHT clustering on a system of N D 342

US stocks during the time period January 1997–December 2012.We selected a set of
n D 100 overlapping time windows, Tk , with k D 1; : : : ; n (each one of length L D
1000 trading days with a shift of 30 trading days between adjacent time windows),
and computed the distance matrix

Dij .Tk/ D
q

2.1 ! !ij .Tk//;

where !ij is the Pearson correlation coefficient

!ij .Tk/ D hci .t/cj .t/iTkq
Œhc2

i .t/iTk
! hci .t/i2

Tk
"Œhc2

j .t/iTk
! hcj .t/i2

Tk
"
; (3.1)

where h"iTk
represents the average over the time window Tk , and ci .t/, cj .t/ are the

daily log returns of stocks i and j detrended of the average market return factor.
Following Borghesi et al (2007), we computed ci .t/ for each stock i , assuming the
following one-factor model for the stock log return ri .t/:

ri .t/ D ˛i C ˇiI.t/ C ci .t/; (3.2)

where the common market factor I.t/ is the market average return,

I.t/ D
NX

!D1

r! .t/:

The coefficients ˛i , ˇi are computed by means of a linear regression and ci .t/ is
the residual. In agreement with Borghesi et al (2007), we verified that correlations
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FIGURE 1 Dynamical evolution of the DBHT clustering.
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Each plot refers to 100 moving time windows (Tk ) of length 1000 trading days and shift 30 days. (a) Number of DBHT
clusters, Ncl, with the dashed horizontal line representing the Ncl value obtained by taking the entire time window of
4026 trading days (covering years 1997–2012). Overall, we can observe a drop in correspondence with the 2007–
2008 financial crisis. (b) Clustering similarity with industrial classification benchmark (ICB) classifications.This graph
shows the amount of economic information retrieved by DBHT clustering in terms of similarity between clustering
and ICB partitioning, calculated using the adjusted Rand index, Radj. Again, a drop at the outbreak of the crisis
appears. Over the postcrisis years, there is less economic information than in the precrisis period, and differences
among different ICB levels are less evident. (c) Similarity between consecutive clustering, showing the persistence
of the DBHT clustering over time, measured as the adjusted Rand index between two adjacent clusterings. The
financial crisis is characterized by very low levels of persistence.

on detrended log returns provide a richer and more robust clustering that can carry
information not evident in the original correlation matrix (Borghesi et al 2007). We
also used a weighted version of the Pearson estimator (Pozzi et al 2012) in order to
mitigate (exponentially) excessive sensitiveness to outliers in remote observations.
The DBHT clustering is calculated on each distance matrixD.Tk/.
In part (a) of Figure 1,we show the number ofDBHTclusters obtained for each time

window. The number of clusters ranges from 14 to 26. The dashed line is the value
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(23) corresponding to the clustering obtained using the entire period 1997–2012 as
our time window.As we can observe, the lowest values are associated with the period
around the 2007–8 financial crisis.
In order to analyze the amount of economic information expressed by the clustering

(Coronnello et al 2011; Mantegna 1999), we measured the adjusted Rand index,Radj
(Hubert and Arabie 1985), between the DBHT clustering at time window Tk and the
community partition generated by the industrial sector classification of stocks. Radj
is an index that measures the similarity between two different partitions on the same
set of objects (stocks in this case) and ranges from 0 (no similarity) to 1 (complete
identity). We provide a formal definition of this index in Appendix A.Radj therefore
provides a measure of the industrial information contained in the correlation-based
clustering. We use the industrial classification benchmark (ICB), which is a catego-
rization that divides the stocks into four hierarchical levels: namely, 114 subsectors,
41 sectors and 19 different supersectors (which, in turn, are gathered in ten different
industries). In order to take all of these levels into account, we measured Radj.Tk/

between each of the hierarchical levels and DBHT clustering. In part (b) of Figure 1
on the preceding page, we plot the evolution over time of Radj.Tk/ between the
DBHT clusters and ICB industries, supersectors and subsectors (for simplicity, we
do not plot sector data that is very close to supersectors’ values). We can see how the
ICB information shows a remarkable drop during the 2007–8 financial crisis, which
partially recovers from 2010 onward. Interestingly, before the crisis, the industry,
supersector and subsector lines were distinct (with ICB supersectors showing the
highest similarity with the DBHT, followed by industries and subsectors), whereas in
the crisis and postcrisis periods they display much closer values. Therefore, from the
crisis onward correlation clustering is no longer able to distinguish between different
levels of ICB. This might indicate that this industrial classification is becoming a less
reliable benchmark to diversify risk. These results are confirmed by other industrial
partitions, including theYahoo classification.
The adjusted Rand index can also be used as a tool for analyzing the persistence of

the DBHT clustering by measuring the index between two clusterings at two adjacent
time windows (we denote byRT !1;T

adj .Tk/ such a quantity). This gives a measure of
local persistence: a drop in the index value indicates decreasing similarity between
adjacent clusterings, and therefore less persistence. In part (c) of Figure 1 on the
preceding page, we plot RT !1;T

adj .Tk/ against time. We observe that the clustering
persistence changes remarkably over time, dropping in particular with the outbreak
of the financial crisis and recovering in 2010. Note that the drop during the crisis starts
earlier than the actual outbreak of it (August 2007, the dashed vertical line). This could
highlight a possible use of clustering persistence as a tool to forecast systemic risk.
Notably, in 2010–12 we again observe a steadily decreasing trend. Interestingly, the
pattern of persistence appears to be related to the similarity between clustering and
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FIGURE 2 Persistence analysis based on clustering.
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(a) Similarity matrix s showing the temporal evolution of the correlation-based DBHT clustering.Each entry s.Ta; Tb/
is the adjusted Rand index between clustering Xa and Xb at time windows Ta and Tb respectively (3.3). Higher
values indicate greater similarity. The matrix displays two main blocks of high intrasimilarity: one precrisis and the
other postcrisis. The years 2007–2008 fall between these two blocks and display very low similarity with any other
time window, revealing an extremely changeable structure. Parts (b)–(e) show the patterns of similarity for four
sample time windows (ie, four sample rows of the similarity matrix): (b) September–October 2003, (c) July–August
2007, (d) November–December 2008 and (e) April–May 2010. During the crisis, similarity decays much faster than
in the precrisis and postcrisis periods.
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FIGURE 3 Persistence analysis based on metacorrelation.
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(a) Similarity matrix z showing the temporal evolution of correlation matrixes. Each entry z.Ta; Tb/ is calculated as
a correlation among correlation matrixes at time windows Ta and Tb (3.4). Higher values indicate higher similarity.
Parts (b)–(e) show the patterns of similarity for four sample time windows: (b) September–October 2003, (c) July–
August 2007, (d) November–December 2008 and (e) April–May 2010. The decay during the crisis years is much
less steep than in the corresponding plot in Figure 2 on the preceding page.
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ICB, with periods of higher persistence characterized by higher amounts of economic
information.
However, the drawback ofRT !1;T

adj .Tk/ as a measure of persistence is that, at any
one time, it only provides information on the persistence with respect to the previous,
adjacent time window. It tells us nothing about the long-term robustness of each
clustering. To investigate this aspect, in Section 3.1 we discuss a set of analyses that
evaluate the persistence of each clustering at each time, therefore providing a more
complete picture.

3.1 A map of structural changes
To investigate the long-term persistence of each clustering, we calculated the adjusted
Rand index for each time window between the corresponding clustering and the
clustering at any other time. The result is summarized in the (symmetric) similarity
matrix s:

s.Ta; Tb/ D Radj.Xa; Xb/; (3.3)

whereXa andXb are the DBHT clusterings at time windows Ta and Tb respectively.
Thematrix s for our data set is shown in part (a) of Figure 2 on page 9.We observe two
main blocks, the first precrisis and the other postcrisis, within which high similarity
among clusterings may be found. The two blocks show very low mutual similarity
(upper right corner/lower left corner of the matrix). The first block begins losing
its compactness in 2007, and the second block quite quickly does the same at the
beginning of 2011. Between these two times, the outbreak of the financial crisis
displays a series of extremely changeable clusterings that do not show similarity with
any other time window.
To better highlight these changes of regime, we plot in parts (b)–(e) of Figure 2

on page 9 four time rows from matrix s, taken as examples of persistence behavior
during the precrisis (part (b) September–October 2003), crisis (part (c) July–August
2007, the outbreak of the crisis, and part (d)November–December 2008, the aftermath
of Lehman Brothers’ default) and postcrisis periods (part (e) April–May 2010). The
vertical dashed lines show the end position of the time window whose clustering is
taken as a reference. Each point in the plot is the adjusted Rand index between that
clustering and all the other clusterings at each other time window, in both the past
and the future. In the precrisis period (b), the similarity displays a quite slow decay
both forward and backward in time; the original clustering still has a 60% similarity
with the seventeenth time window forward/backward in time. The decreasing trend is,
however, evident and becomes steeper during the crisis. Taking time windows during
the financial crisis, (c) and (d), the pattern changes drastically: the similarity drops by
70–80% in a few months both backward and forward in time. The two stages of crisis
also reveal some differences. While in the early crisis period (c) the similarity with
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precrisis clusterings is higher than with postcrisis ones, in the post-Lehman Brothers
period (d) the situation is reversed. Finally, the postcrisis period (e) shows a partially
recovered persistence, although not at the same levels as the 2003 pattern.
Wemaywonder whether the structural changes highlighted by the clustering analy-

ses can be detected directly by studying the original, unfiltered correlation matrixes.
To check this, we introduce an alternative measure of similarity among different time
windows that does not make any use of clustering: namely, the correlation between
the coefficients of two correlation matrixes (metacorrelation). This measure is

z.Ta; Tb/ D h!ij .Ta/!ij .Tb/iijq
Œh!2

ij .Ta/iij ! h!ij .Ta/i2
ij "Œh!2

ij .Tb/iij ! h!ij .Tb/i2
ij "

; (3.4)

where !ij .Ta/ is the correlation between stocks i and j at time window Ta and h"iij

is the average over all couples of stocks i; j . Munnix et al (2012) introduced an
alternative measure to identify the possible states of a financial market. In Figure 3
on page 10, we report the matrix z.Ta; Tb/ and four representative time rows, which
correspond to the same four time windows chosen in Figure 2 on page 9. We observe
that metacorrelation is indeed able to identify the two precrisis and postcrisis time
blocks. However, it also shows a smaller, intermediate block during the 2007–8 crisis
with a relatively high intrasimilarity. This is different than what we have observed
in the clustering-based matrix s, where the time windows during the crisis were
quite dissimilar. Moreover, the precrisis and postcrisis blocks in z display higher
intrasimilarity than s, especially over the postcrisis years. All these differences can
be appreciated when looking at the four z time rows in parts (b)–(e) of Figure 3. Even
if in the crisis time windows (c) and (d) we observe a faster decay of similarity, it is
much less steep than the corresponding clustering plot (parts (c) and (d) of Figure 2).
Moreover, the postcrisis window in part (e) of Figure 3 recovers completely the high
precrisis level of persistence, unlike the clustering case in part (e) of Figure 2.
Therefore, it seems that metacorrelation and clustering analyses depict different

dynamics of market correlation structure. In particular, the clustering-based matrix s

reveals higher nonstationarity during the crisis and postcrisis periods. The instability
of correlation during crises has recently been observed by Chetalova et al (2014);
however, their result relies on a specific choice for the multivariate distribution of
returns, whereas our analyses are model independent.

3.2 Clusters composition evolution
So far, we have described the persistence of clusters from a global perspective, looking
at the clustering as a whole. Let us here focus on the evolution of each cluster, fol-
lowing how their composition changes over time. It is not straightforward to analyze
such an evolution, with the main problem being the changeable nature of dynamical
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FIGURE 4 Clusters: dynamical composition (part 1).
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(a) Clusters composition of the DBHT clusters obtained by calculating detrended log returns over the entire time
window 1997–2012.The number of stocks in each cluster is shown on the y-axis, with different colors for different ICB
industries. (b) For cluster 18 in (a), we have detected at each time window the corresponding“similar” (according to the
hypergeometric test) cluster and plotted the composition in time. Zero size corresponds to no “similar” cluster having
been found. When more than one “similar” cluster is found, only data for the largest cluster is plotted. Parts (c)–(f)
show the same plots as in part (b), but for persistence clusters 4, 8, 7 and 17 respectively.
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FIGURE 5 Clusters: dynamical composition (part 2).
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(a) For cluster 1 in part (a) of Figure 4 on the preceding page, we detected at each time window the corresponding
“similar” (according to the hypergeometric test) cluster and plotted the composition in time. Zero size corresponds to
no “similar” cluster having been found. When more than one “similar” cluster is found, only data of the largest cluster
is plotted. Parts (b)–(f) show the same plots as in part (a), but for clusters 6, 20, 14, 22 and 15 respectively. Colors
refer to the legend in Figure 4 on the preceding page.

clusters, which makes it difficult to identify the successor for each cluster. Many dif-
ferent approaches can be adopted to address this community tracking problem (Fenn
et al 2012). Here, we use hypothesis statistical tests based on the hypergeometric
distribution (Feller 2008; Tumminello et al 2011a) to assess similarity between clus-
ters at different times. In particular, if the number of stocks in common between two
clusters is high enough to reject the null hypothesis of the test, we label the two clus-
ters as “similar”. Moreover, we take the DBHT clustering calculated over the entire
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time window (1997–2012) as a benchmark clustering through which we can track the
evolution of the dynamical clusters obtained with the moving time windows. Let us
here describe this idea in more detail.
Let us call X the clustering obtained on the entire time window and Yi a cluster

belonging to X , with i D 1; : : : ; Ncl. For each cluster Yi , and for each time window
Tk (k D 1; : : : ; n), we have taken the clustering at time Tk , XTk

, and identified
the cluster belonging to XTk

that is “similar” to Yi (if any). We label a cluster as
“similar” to Yi if the number of stocks in common with Yi is high enough to reject
the null hypothesis of the hypergeometric test (Musmeci et al 2014; Tumminello et al
2011b). This test considers a random overlapping between the two clusters (a detailed
description of the test can be found in Appendix B). If more than one cluster turns
out to be similar, we take the largest cluster. Eventually, we end up with one cluster
for each Yi for each time window Tk . All of them have a high degree of similarity
with Yi in common. We can therefore follow their evolution in terms of the number
of stocks and corresponding ICB industrial sectors. The threshold for the tests was
chosen equal to 0.01, together with the conservative Bonferroni correction (Feller
2008).
In part (a) of Figure 4 onpage 13, the composition of theDBHTclustering computed

over the time window 1997–2012 is shown. For each cluster, the y-axis displays its
cardinality S (ie, the number of stocks belonging to the cluster), with different colors
showing stocks belonging to different ICB industries. For the eleven biggest clusters
in X , we plot in parts (b)–(f) of Figure 4 and parts (a)–(f) of Figure 5 on the facing
page the number of stocks S for their similar clusters in time, together with their
composition in terms of ICB industries. When no similar clusters can be found for
a time window, we have just left the correspondent window empty. The clusters
analyzed are the numbers 18, 4, 8, 7, 17, 1, 6, 20, 14, 22 and 15. We summarize the
main findings below.

# Overall, all the clusters in X have a high persistence over time, showing a
corresponding “similar” cluster at almost every time window. This result is
remarkable, as the persistence has been assessed in quite a conservative way,
ie, using the hypergeometric test with a Bonferroni correction. A few clusters
display a limited number of gaps in their evolution (eg, clusters 14, 15, 20 and
22), mostly in correspondence with the financial crisis.

# A few clusters show a persistence in terms of industrial composition as well
(this is the case with clusters 4 and, to a lesser extent, 8), but most show a clear
evolution. In particular, we can quite clearly distinguish a precrisis state and
a postcrisis state; the latter is characterized by a higher degree of mixing of
different industries. If, over the precrisis period, we find clusters dominated by
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one or two industries (technology and industrials in cluster 18, oil and gas in 4
and 15, utilities in 17, consumer services and goods in 14 and 20, financials in
6, health care in 22), in the crisis and postcrisis years the industries tend to mix
together much more, forming combinations that were not present earlier (oil
and gas with basic materials and industrials in clusters 1 and 7, utilities with
telecommunications and consumer services in 17, financials with consumer
goods and services in 6, health care with utilities and consumer goods in 20).
This again shows that the years since the crisis have seen a drop in the reliability
of industries as benchmarks to diversify risk.

# Apart from the precrisis and postcrisis dichotomy, in some cases the 2007–8
crisis years show their own features as well. As stated above, some clusters
“disappear” during the peak of the crisis (clusters 14, 20 and 22). Many others
instead show several peaks in their sizes, together with a sudden increase in the
number of industries. This is probably related to the merging of many clusters
into fewer, larger clusters during the crisis.

# The cluster containing financial stocks (cluster 6) is worth analyzing further,
since it seems to play a role in the outbreak of the financial crisis. Indeed,
it shows a clear change in 2007, becoming larger and including an increasing
number of different industries (especially health care, technology and consumer
services). This pattern is probably connected to the rising importance of the
financial industry as a driving factor over the outbreak of the crisis. Interestingly,
at the end of 2008, when Lehman Brothers went bankrupt, this cluster suddenly
drops to amuch lower size (although still higher than precrisis values) and a less
mixed composition. This suggests that the financial industry ends up playing a
major role in the correlation structure from 2009 onward.

4 DISCUSSION

In this paper, we have investigated the dynamical evolution and nonstationarity of
market-correlation structure by means of filtered-correlation networks. In particular,
we have focused on PMFGs and the clustering that its topology naturally provides
by means of the DBHT method. We have measured the persistence of correlation
structure by calculating similarity among clusterings in different time windows, using
the adjusted Rand index to quantify the similarity.
Our analyses reveal that the outbreak of the 2007–8 financial crisis marked a transi-

tion from relatively high levels of persistence to amuchmore unstable and changeable
structure. The minimum persistence was reached at the end of 2008 when the crisis
had fully unfolded. But the decay in persistence had already started in late 2006, well
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before other warning signs were detectable. Correlation structure persistence even-
tually recovered in the second half of 2009 with relatively high values until the end
of 2011. However, such a persistent structure had distinct features from the precrisis
structure, including lower relations with the industrial sector’s activities. Notably,
since the end of 2011 we have been observing a new decay in persistence, which
is signalling another unfolding change in the market structure. This also points out
that since 2007 correlation matrixes from historical data, both filtered and unfiltered,
have become more unstable and therefore less reliable instruments for risk diversifi-
cation. Moreover, the decrease in the similarity between correlation-based clustering
and the industrial sector implies that portfolio-diversification strategies based on eco-
nomic activity considerations are expected to become less effective. Furthermore, the
analysis of the evolving industrial sector composition of each single cluster reveals
that most of them display a clear change with the crisis, which makes them more
heterogeneous overall in terms of industrial sectors. In particular, we observed that
one cluster, mainly made of financial stocks, experienced a sharp rise in its size and
heterogeneity that likely reflected the breakdown of the late-2007 financial crisis.
This could give interesting insights in terms of early warning signals that we plan to
investigate further in future work.
We also plan to carry out the analyses discussed in this work by using alterna-

tive community detection methods on graphs (Fortunato 2010). The comparison of
different algorithms is a hot topic in network theory (Aldecoa and Marín 2013; Lan-
cichinetti and Fortunato 2009), and these analyses could give other insights into this
issue from the perspective of financial data.

APPENDIX A. ADJUSTED RAND INDEX

Following the notation of Wagner and Wagner (2007), let us call X the set of N

objects. Y is a partition into communities of X or simply a clustering: that is, “a set
Y D fY1; : : : ; Ykg of nonempty disjoint subsets ofX such that their union equalsX”
(Wagner and Wagner 2007). Let us also say we have another clustering Y 0. We call
the matrixM D fmij g the “contingency table”, where

mij $ jYi \ Y 0
j j; (A.1)

ie, the number of objects in the intersection of clusters Yi and Y 0
j . Let a be the

number of pairs of objects that are in the same cluster in both Y and Y 0, and let b

be the number of pairs that are in two different clusters in both Y and Y 0. Then, the
Rand index is defined as the sum of a and b, normalized by the total number of pairs
in X :

R.Y; Y 0/ $ 2.a C b/

N.N ! 1/
D

kX

iD1

lX

j D1

 
mij

2

!
: (A.2)
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We can assume a generalized hypergeometric distribution to be the null hypothesis
associated with two independent clusterings; we describe this in detail inAppendix B.
The adjustedRand index is defined as the difference between themeasuredRand index
and its mean value under the null hypothesis, normalized by the maximum that this
difference can reach:

Radj.Y; Y 0/ $
Pk

iD1

Pl
j D1

!mij

2

"
! t3

1
2 .t1 C t2/ ! t3

; (A.3)

where

t1 D
kX

i

 
jYi j
2

!
; t2 D

lX

j

 
jY 0

j j
2

!
; t3 D 2t1t2

N.N ! 1/
: (A.4)

It turns out thatRadj 2 Œ!1; 1", with 1 corresponding to the case of identical cluster-
ings and 0 to two completely uncorrelated clusterings. Negative values instead show
anticorrelation between Y and Y 0 (that is, the number of pairs classified in the same
way by Y and Y 0 is even less than was expected assuming a random overlapping
between the two clusterings).

APPENDIX B. HYPERGEOMETRICTEST

Following the notation used in Section 3.2, let us call Yi a generic cluster belonging
to the clustering calculated over the entire time window. Let Y 0

j be the cluster from
clusteringXTk

in time window Tk with which we want to compare Yi in order to find
if the number of stocks belonging to both Yi and Y 0

j is sensitively higher than was
expected by a random overlapping. This can be translated into a statistical one-tail
hypothesis test, in which the null hypothesis is the hypergeometric distribution. Say
k is the number of stocks Yi and Y 0

j have in common, whereas jYi j, jY 0
j j are the

cardinalities of the two clusters; then, the hypergeometric distribution reads (Feller
2008)

P.X D k/ D
!jY 0

j
j

k

"!N !jY 0
j

j
jYi j!k

"

! N
jYi j
" : (B.1)

This distribution is consistent with a scenario in which the overlapping between the
two clusters is due purely to chance. For this reason, it is a suitable null hypothesis
for testing the similarity between clusters. If P.X D k/ so-calculated is less than
the significance level, then the test is rejected, and we conclude that the cluster Yi

overexpresses the cluster Y 0
j , and they are therefore similar. The significance level of

each test performed is 1%, together with the Bonferroni correction for multiple tests
(Feller 2008).
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Mitrović, M., and Tadić, B. (2009). Spectral and dynamical properties in classes of sparse
networks with mesoscopic inhomogeneities. Physical Review E80(2), 026123.

Journal of Network Theory in Finance www.risk.net/journal



Risk diversification 21

Munnix, M. C., Shimada, T., Schäfer, R., Leyvraz, F., Seligman, T. H., Guhr, T., and Stanley,
H. E. (2012). Identifying states of a financial market. Scientific Reports 2, 644.

Musmeci, N., Aste, T., and Di Matteo, T. (2014). Relation between financial market struc-
ture and the real economy: comparison between clustering methods. Working Paper,
arXiv:1406.0496v1 [q-fin.ST].

Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks.
Physical Review E69(6), 066133.

Newman, M. E. J., and Girvan, M. (2004). Community detection in graphs. Physical Review
E69(2), 026113.

Onnela, J. P., Chakraborti, A., Kaski, K., and Kertész, J. (2003a). Dynamic asset trees and
Black Monday. Physica A324, 247–252.

Onnela, J.-P., Chakraborti, A., Kaski, K., Kertész, J., and Kanto, A. (2003b). Dynamics of
market correlations: taxonomy and portfolio analysis. Physical Review E68, 056110.

Onnela, J.-P., Chakraborti, A., Kaski, K., Kertész, J., and Kanto, A. (2003c). Asset trees
and asset graphs in financial markets. Physica Scripta T106, 48–54.

Pozzi, F., Di Matteo, T., and Aste, T. (2012). Exponential smoothing weighted correlations.
European Physical Journal B85(6), 175, 295.

Pozzi, F., Di Matteo, T., and Aste, T. (2013). Spread of risk across financial markets: better
to invest in the peripheries. Scientific Reports 3, 1665.

Reichardt, J., and White, D. R. (2007). Role models for complex networks. European
Physical Journal B60, 217–224.

Rosvall, M., and Bergstrom, C. T. (2007). An information-theoretic framework for resolving
community structure in complex networks. Proceedings of the National Academy of
Sciences of the United States of America 104, 7327–7331.

Ruan, J., Dean, A., and Zhang, W. (2010). A general co-expression network-based
approach to gene expression analysis: comparison and applications. BMC Systems
Biology 4(8), 1–21.

Shi, J., and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22(8), 888–905.

Song, W.M., Di Matteo,T., and Aste,T. (2011).Nested hierarchies in planar graphs.Discrete
Applied Mathematics 159, 2135–2146.

Song, W.M., Di Matteo, T., and Aste, T. (2012).Hierarchical information clustering by means
of topologically embedded graphs. PLoS ONE 7(3), e31929.

Tola, V., Lillo, F., Gallegati, M., and Mantegna, R. N. (2008). Cluster analysis for portfolio
optimization. Journal of Economic Dynamics and Control 32(1), 235–258.

Tumminello, M., Aste, T., Di Matteo, T., and Mantegna, R. N. (2005). A tool for filtering
information in complex systems. Proceedings of the National Academy of Sciences of
the United States of America 102, 10421–10426.

Tumminello, M., Lillo, F., and Mantegna, R.N. (2010).Correlation, hierarchies, and networks
in financial markets. Journal of Economic Behavior and Organisation 75, 40–58.

Tumminello, M., Miccichè, S., Lillo, F., Piilo, J., and Mantegna, R. N. (2011a). Statistically
validated networks in bipartite complex systems. PLoS ONE 6(3), e17994.

Tumminello, M., Miccichè, S., Lillo, F., Varho, J., Piilo, J., and Mantegna, R. N. (2011b).
Community characterization of heterogeneous complex systems. Journal of Statistical
Mechanics: Theory and Experiment 1, P01019.

www.risk.net/journal Journal of Network Theory in Finance



22 N. Musmeci et al

Wagner, S., and Wagner, D. (2007). Comparing clusterings: an overview.Technical Report,
ITI Wagner, Faculty of Informatics, Universität Karlsruhe (TH).

West, D. B. (1996). Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs, NJ.
Zhou, H. (2003). Distance, dissimilarity index, and network community structure. Physical

Review E67(6), 061901.

Journal of Network Theory in Finance www.risk.net/journal


