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Cortical State Determines Global Variability and
Correlations in Visual Cortex
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'UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom, and 2UCL Institute of Neurology and UCL Department
of Neuroscience, Physiology & Pharmacology, London WCIE 6DE, United Kingdom

The response of neurons in sensory cortex to repeated stimulus presentations is highly variable. To investigate the nature of this variability, we
compared the spike activity of neurons in the primary visual cortex (V1) of cats with that of their afferents from lateral geniculate nucleus (LGN),
in response to similar stimuli. We found variability to be much higher in V1 than in LGN. To investigate the sources of the additional variability,
we measured the spiking activity of large V1 populations and found that much of the variability was shared across neurons: the variable portion
of the responses of one neuron could be well predicted from the summed activity of the rest of the neurons. Variability thus mostly reflected
global fluctuations affecting all neurons. The size and prevalence of these fluctuations, both in responses to stimuli and in ongoing activity,
depended on cortical state, being larger in synchronized states than in more desynchronized states. Contrary to previous reports, these fluctu-
ations invested the overall population, regardless of preferred orientation. The global fluctuations substantially increased variability in single
neurons and correlations among pairs of neurons. Once this effect was removed, pairwise correlations were reduced and were similar regardless
of cortical state. These results highlight the importance of cortical state in controlling cortical operation and can help reconcile previous studies,

which differed widely in their estimate of neuronal variability and pairwise correlations.
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Introduction

The response of neurons in visual cortex to repeated stimulus
presentations is highly variable. This trial-to-trial variability can
be as large as the response itself (Heggelund and Albus, 1978;
Tolhurst et al., 1983; Vogels et al., 1989; Carandini, 2004). How-
ever, cortical neurons are not noisy spiking machines (Mainen
and Sejnowski, 1995; Deweese and Zador, 2004). The source of
their variability must therefore lie in their synaptic inputs
(Shadlen and Newsome, 1998; Carandini, 2004). These inputs
must be at least partially shared because variability is typically
correlated across neurons (Cohen and Kohn, 2011). It is essential
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to understand how variability and correlation in cortical re-
sponses arise, and what factors influence them. Indeed, corre-
lated variability places critical constraints on information
processing (Shadlen and Newsome, 1998; Ringach, 2009), and
excessive variability may result in cognitive deficits (Dinstein et
al,, 2012).

In primary visual cortex (V1), two main views have been pro-
posed for the synaptic origins of variability. In the first view,
variability arises from addition of sensory responses onto ongo-
ing (spontaneous) cortical activity (Arieli et al., 1996). This on-
going activity, in turn, has been proposed to resemble the
patterns of activity evoked by oriented stimuli (Tsodyks et al.,
1999; Kenet et al., 2003), suggesting a relationship between vari-
ability and similarity in orientation preference. The second view
proposes that cortical variability is inherited from thalamic in-
puts, independently of cortical circuitry (Priebe and Ferster,
2012). In support of this view, Sadagopan and Ferster (2012)
reported that, in many V1 neurons, response variability was un-
affected by silencing local cortical inputs.

Distinguishing between these views has been difficult. First, it
is not clear how the variability of V1 firing responses compares
with that of their afferents from lateral geniculate nucleus (LGN).
Multiple studies measured variability in LGN (for review, see
Sadagopan and Ferster, 2012) and in V1 (for review, see Caran-
dini, 2004), but few have directly compared the two (Kara et al.,
2000; Goris et al., 2014). Generally, responses in cortex are
thought to be more variable than in LGN, but the one study that
concurrently measured the two (Kara et al., 2000) is difficult to
interpret because its measurements in V1 indicated much less
variability than in the rest of the literature.
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Second, the degree to which response variability is shared
among large groups of V1 neurons is still uncertain. Experiments
measuring V1 variability concentrated on single neurons (for
review, see Carandini, 2004) or pairs (Cohen and Kohn, 2011),
and only rarely on larger populations (e.g., Goard and Dan,
2009).

Finally, the relationship between correlated variability and
cortical state is still under debate (Kohn et al., 2009). The cortex
can exhibit a continuum of states (Harris and Thiele, 2011): from
a synchronized state characterized by strong, low-frequency fluc-
tuations in global activity to a desynchronized state where these
fluctuations are absent (Steriade, 2006). Cortical state affects
stimulus responses and their variability in multiple sensory cor-
tices (Kisley and Gerstein, 1999; Poulet and Petersen, 2008; Curto
et al., 2009; Goard and Dan, 2009; Marguet and Harris, 2011).
How does it affect the correlated variability of V1 neurons and the
structure of ongoing activity?

Materials and Methods

Experiments were performed at the Smith-Kettlewell Eye Research Insti-
tute following protocols approved by the local authorities. We used 8 cats
for experiments with single electrodes in LGN, 7 cats for experiments
with single electrodes in V1, and 9 cats for array recordings in V1. Some
of the same data have appeared in studies where we focused on re-
sponses obtained after averaging across multiple presentations of
each stimulus (Bonin, 2005; Durand et al., 2007; Mante et al., 2008;
Nauhaus et al., 2008; Benucci et al., 2009). Here, we examine them in
individual presentations.

Physiology. Young adult cats (all female) were anesthetized with so-
dium pentothal (0.5-2 mg/kg/h) and fentanyl (typically 10 ug/kg/h)
supplemented with inhalation of N,O mixed with O, (typically 70:30). A
neuromuscular blocker was given to prevent eye movements (pancuro-
nium bromide, 0.15 mg/kg/h, i.v.). The cat was artificially respirated and
received periodic doses of an antibiotic (cephazolin, 20 mg/kg, twice
daily), an antiedematic steroid (dexamethasone, 0.4 mg/kg daily), and an
anticholinergic agent (atropine sulfate, 0.05 mg/kg, i.m., daily). A crani-
otomy was performed over area V1 to insert single electrodes or electrode
arrays. Temperature, EEG, heart rate, end-tidal CO,, and lung pressure
were continuously monitored. Experiments typically lasted 48—-96 h.

Stimuli. Stimuli were sequences of brief stationary gratings, each
flashed for 8 ms in LGN recordings and for 8 —48 ms (typically, 32 ms) in
V1 recordings (Benucci et al., 2009). Experiments consisted of 4—6 se-
quences lasting 6-25 s, separated by blank intervals, each repeated in
random order at least 3 times in LGN experiments, and at least 10 times
in V1 experiments. The gratings were large (typically 15 degrees diame-
ter) and varied randomly among 420 orientations and 4 spatial phases.
Contrast was 50%—80% (100% in one experiment), and spatial fre-
quency was optimized by a preliminary experiment (typically, 0.5 cycles/
degree). In experiments involving multielectrode arrays, randomly
interleaved with the gratings were blank frames (uniform gray screen,
lasting 32 ms) that occurred with a probability of ~33%, and the se-
quences were interspersed with 6—10 s long blanks, to record ongoing
activity.

Recordings. To compare LGN and V1 responses (see Fig. 1), we con-
sidered recordings of single-unit activity (53 neurons in LGN and 53 in
V1) obtained with quartz-coated platinum/tungsten microelectrodes
(Thomas Recording), which were advanced until spikes had good isola-
tion from the background.

The rest of the recordings are from 10 X 10 electrode arrays (Blackrock
Microsystems, 400 wm spacing, 1.5 mm length) inserted 0.8 —1 mm deep
into V1. From each site, we obtained multiunit activity (MUA), after
filtering the raw data with a high-pass filter of 250 Hz. Spikes in MUA
were detected as crossings of a threshold of 4 SD of the background noise.
In 5 experiments, we also obtained responses from well-isolated single
neurons, by clustering in the space of the first three principal component
coefficients, and assigning to single neurons those clusters that were well
segregated from background noise (Nauhaus et al., 2008).
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We computed the orientation preference of each MUA site using re-
verse correlation (Benucci et al., 2009) and binned sites in 12 bins of
orientation preference. Sites with firing rate <1 spikes/s were excluded.
In two experiments, we confirmed the correct assignment of orientation
preference using independent data (full-field gratings presented at 100%
contrast for 2 s).

Variability index. To measure variability, we first counted spikes in
bins of a certain width (as indicated for each analysis) and then computed
a variability index (the Fano factor) as the ratio of the variance to the
mean spike count. To control for differences in number of sequences or
number of trials across experiments, for each experiment we only ana-
lyzed responses to one of the 4—6 stimulus sequences, and we considered
every random permutation of 3 repeats for each experiment (even
though in most cases we had acquired at least 10).

To characterize ongoing fluctuations in population activity, we con-
sidered MUA measured during blank screen periods. We defined a global
fluctuation index by averaging across all sites and dividing the SD of this
averaged activity by its mean across time.

Global noise model. To analyze the variability of data recorded in the
arrays, we considered the activity of each unit (a well-isolated neuron, or
the MUA of a recording site, depending on the analysis), and we com-
puted firing rate by binning its spikes in bins of a given width (as indi-
cated for each analysis). We then expressed the responses R;(t), at each
unit j, trial k, and time ¢ as the sum of a sensory signal term, R;(1),
obtained by averaging the responses across trials, and a noise term, Nj(t)
as follows:

Ry(t) = Rj(t) + Ni(t) (1)

We then computed the global noise Ny (1) by averaging the noise terms
across all the other units k # j. We used this global noise to obtain a
model prediction Mj(t) for unit j, by summing the sensory signal in that
unit to a weighted version of the global noise as follows:

M (t) = Rj(t) + aij#j(t) (2)

The weights a; were optimized by linear regression. They were set to zero
when evaluating predictions based on the stimulus alone.

We defined the local noise as the difference between the measured
noise Nj(#) and the weighted global noise a]-N k(1)

To define the portion of the variance of the measured response ex-
plained by the model, we used the following formula for each unit j:

Ei=1- V‘”( ERjk(t) - Mjk(ﬂ)“"”( ERjk(t)> (3)

k

We then averaged the explained variance over units.

Prediction quality was measured with cross-validation: weights were
estimated based on a training set (80% of the time points) and used to
explain the variance of the test set (the remaining 20%). For consistency
across experiments, we only analyzed responses to the first 10 repeats
(trials) of one stimulus sequence in each experiment, regardless of how
many more may have been collected.

In addition to this global noise model, for MUA we also considered a
more flexible peer-prediction model, in which each site could give a
different weight to each other site (Harris et al., 2003; Pillow et al., 2008;
Truccolo et al., 2010). However, this model did not lead to increased
cross-validated performance, so we did not adopt it.

Pairwise correlations. Using the responses on single trials, we com-
puted the correlations r;; between activity R (f) and Ry (f) at each pair of
sites i and j. We then computed noise correlations by performing the
same analysis on the residuals between responses measured in individual
trials and responses averaged across trials, Nj(t) and Ny(t) (Cohen and
Maunsell, 2009). To quantify how correlation depended on orientation
preference similarity, we binned the pairs according to their difference in
preferred orientation before averaging all correlations in a bin.

Results

To investigate neuronal variability in different cortical states, we
examined activity in the visual system of anesthetized cats. We
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Response variability in LGN and V1. A, The responses of a single V1 neuron to three repetitions of a 25 s stimulus sequence consisting of rapidly flashed gratings. Gray represents

individual responses; black represents average response. Experiment 50-12-13. B, Same as in 4, for an LGN neuron. Experiment 24-6-13. C, Variance of spike counts versus mean spike count for the
LGN neuron (gray) and the V1 neuron (black). Spikes were counted over bins with width of 500 ms; each individual dot represents one bin. Dotted line indicates the identity: mean equals variance.
Continuous lines indicate the average ratio of variance to mean for the two neurons. D, Variance of spike counts versus mean spike count for all LGN (gray) and V1 (black) neurons. Top right,
Histogram, Ratio of variance to mean (single-unit variability index, or Fano factor) for all V1 and LGN neurons. Error bars indicate == 1 SE. Arrows indicate the medians for LGN neurons and for V1
neurons. E, The average variability index as a function of bin width. Ticks on the x-axis denote a bin width of 8-50-100. .. 1000 ms. Rectangle represents the bin width used in A—C.

recorded from individual neurons in V1 and LGN using single
electrodes (Bonin et al., 2005), and from neuronal populations in
V1 using 10 X 10 electrode arrays (Benucci et al., 2009). Stimuli
were sequences of brief stationary gratings varying rapidly in ori-
entation and phase, interspersed randomly with several seconds
of gray screen to record ongoing activity (Ringach et al., 1997).

Variability in V1 greatly exceeds variability in LGN

We began by comparing the variability of single neurons in V1
and LGN in their responses to multiple presentations of the same
stimulus. The responses of a typical V1 neuron were highly vari-
able: the firing rate traces measured in three trials were clearly
different from each other and therefore from their mean (Fig.
1A). Conversely, the responses of a typical LGN neuron were
much more similar across trials (Fig. 1B). The difference in vari-
ability between the two neurons can be quantified by plotting the
relationship between mean and variance of their spike counts
during the course of the response (Fig. 1C). Although mean spike
counts were similar (~10 spikes per 500 ms bin), the variance of
the spike counts was much higher in the V1 neuron than in the
LGN neuron.

The responses of V1 neurons typically had markedly higher
variance than LGN neurons (Fig. 1 D, E). We considered the re-
sponses of 53 V1 neurons and 53 LGN neurons, and for each we
calculated a single-unit variability index as the ratio between vari-
ance and mean of the spike counts (Fano factor). For most V1
neurons, the variability index was substantially higher than for
LGN neurons (Fig. 1D): 2.7 = 0.3; mean * SE (N = 53) in V1
versus 1.0 = 0.1 (N = 53) in LGN. The difference in variability
between LGN and V1 was evident regardless of the bin size we
used to compute the variability index, indicating that the in-
creased variability seen in V1 covers a wide range of time scales
(Fig. 1E).

This difference between LGN and V1 agrees qualitatively with
measures made separately for neurons in LGN (Levine and Troy,
1986; Reich et al., 1997) and in V1 (Dean, 1981; Tolhurst et al.,
1983; Bradley et al., 1987; Geisler and Albrecht, 1997). Our mea-
surements improve on this literature because we used essentially
identical stimuli to measure from LGN and V1 (with a slight
difference in temporal content because LGN neurons follow
faster temporal frequencies than V1 neurons). Moreover, a sep-
arate analysis performed on the responses to a different type of

stimulus (drifting gratings) revealed similar differences in vari-
ability between LGN and V1 (Bonin et al., 2003). Indeed, because
V1 responses are so variable, we typically had to repeat each stim-
ulus at least 10 times when recording from V1 to obtain good
estimates of visual responses, compared with only 3 times when
recording from LGN (this difference in number of trials does not
affect the results here because it was taken into consideration, see
Materials and Methods).

Predicting the variability of V1 neurons

Is the large variability of V1 responses shared across neurons? To
address this question, we analyzed activity measured with a 10 X
10 multielectrode array in cat V1, in response to the same kinds of
stimuli (flashed gratings with random orientations). We asked
whether we could predict the variability in the responses of one
V1 neuron based on the activity of the remaining population. The
latter was defined as the summed activity of all isolated single
neurons, excluding the site of the neuron under study.

As expected, the responses of a typical V1 neuron to multiple
repeats (trials) of the same sequence of gratings displayed sub-
stantial trial-to-trial variability (Fig. 24, black). This activity is
therefore poorly predicted by the mean sensory response (i.e., the
activity averaged across repeats), which is by definition identical
across trials (Fig. 2A, gray). Indeed, the variable portion of the
activity (the noise) was generally large relative to the mean sen-
sory response: the excursion in firing rates due to noise was com-
parable with the excursion caused by the most extreme changes in
visual stimulation (Fig. 2B).

Although large, the noise for a given neuron could be pre-
dicted quite precisely based on a simple model (Eq. 2): the sum of
the noise at all other neurons in the array, which we term global
noise, multiplied by a single scaling factor, which could be differ-
ent across neurons. When we added this term to the mean sen-
sory response shown by each neuron, it yielded a prediction that
closely matched that neuron’s firing rate (Fig. 2C,D). Similar
results were obtained for the other neurons measured by the array
(Fig. 2E) and in all 5 experiments for which we had well-isolated
single neurons: the responses of a V1 neuron could be invariably
predicted better when taking into account not only the sensory
response but also the global noise (Fig. 2F, circles).

The success of the global noise model indicates that much of
the variability in V1 is shared across neurons. This success did not
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Predicting the variability of individual V1 neurons. A, Individual (gray lines) and trial-averaged (black lines) responses of a V1 neuron to five repetitions of a sequence of rapidly flashed,

oriented gratings. The trial-averaged response can be considered a prediction of the response by the stimulus alone. B, Measured spike count versus spike count predicted from the stimulus alone,
in’500 ms bins. The stimulus explained 27% of the variance in the responses. €, The prediction (black) of the individual responses (gray) improves when taking into account the weighted global noise
(measured at all the remaining neurons). D, This prediction explained 84% of the variance in the responses. E, Explained variance by the stimulus alone and by both stimulus and global noise. Each
dot represents one neuron of the experiment shown in A-D. Gray dot represents the neuron in A-D, Experiment 79-9-11. F, Explained variance in 5 different experiments (circles), by the stimulus
alone and by stimulus and peers. Gray circle represents the experiment in A—E. Diamonds represent the results of the same analysis in 23 array experiments where neural activity was measured as
MUA at each site rather than spike-sorted to obtain single-unit activity measured from MUA at a given site, and predicted based on MUA at the other sites.

reflect the trivial advantage conferred by adding free parameters
because the predictions were cross-validated. We further consid-
ered adding a threshold nonlinearity because, in single units, the
spike threshold shapes the relationship between intracellular po-
tential and firing rate, both in terms of mean (Carandini and
Ferster, 2000) and of variance (Carandini, 2004). However, a
threshold would not markedly improve our fits because plotting
their predictions versus the actual data revealed only minor de-
viations from linearity (Fig. 2D).

We obtained even better results when, instead of considering
well-isolated single neurons, we turned our analysis to MUA.
MUA represents the summed activity of multiple neurons lo-
cated near a recording site in the array. MUA presented a major
advantage: it could be readily measured at more sites of the array
than single-unit activity, allowing for the analysis of all 23 exper-
iments instead of the 5 experiments for which we had sufficient
numbers of well-isolated single neurons. MUA was generally
more predictable than single neuron activity on the basis of the
stimulus alone (Fig. 2F, abscissa, diamonds vs circles). Still, the
global noise model markedly improved predictability, just as it
did for single neurons (Fig. 2F, ordinate). The remaining analy-
ses, therefore, concentrate on MUA because it allows us to report
on our full set of experiments.

The increased predictability of MUA over well-isolated single
neurons indicates that the former has less private noise. This is to
be expected if the private noise of nearby neurons is indeed private
(i.e., uncorrelated even across neurons near the same recording site).

In that case, summing across those neurons (i.e., recording MUA)
will reduce the impact of private noise while augmenting the impact
of global noise, which is shared across neurons.

Still, the success of the global noise model in predicting MUA
is particularly remarkable because MUA was considerably more
variable across trials than single-unit activity measured at the
same sites. We measured variability in the 5 experiments for
which we had both isolated single neurons and MUA, by com-
puting the variability index (the Fano factor, i.e., the variance
divided by the mean, for spike counts measured in 500 ms time
bins) and found it to average 2.4 * 0.5 for MUA, versus 1.5 = 0.2
(mean = SE) for the single neurons measured from the same
array sites. The global noise model assigns this higher variability
of MUA to a shared source of noise, the global noise.

Variability depends on cortical state

The degree to which noise was shared among the population
varied across experiments. In some experiments, knowing the
global noise improved the predictions markedly, but in others
slightly less (Fig. 2F ). We asked what factors might determine this
difference in variability.

We began by comparing population responses on individual
trials to the trial-averaged population response (Fig. 3A—C). Be-
cause stimulus orientation is a key determinant of the responses
of V1 neurons and is the only attribute that varies over the course
of our stimulus (Fig. 3A), we labeled the electrode sites based on
their preferred orientation, producing two-dimensional repre-
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chronized” experiments. Red and blue symbols represent the two example sessions.

sentations that allowed the entire population activity to be visu-
alized as a function of time on each trial (Benucci et al., 2009).

These graphical representations confirmed that variability
differed across experimental sessions. In some sessions, cortical
activity was driven reliably by the stimulus, and population re-
sponses measured in a single trial were similar to those averaged
across trials (e.g., Fig. 3A—C). In other sessions, recording from
the same neuronal population with the same stimuli, responses
on a single trial showed isolated events involving a large portion
of the population, whose occurrence seemed unrelated to the
stimulus sequence (Fig. 3 F,G). Indeed, these events were mark-
edly reduced in the average across trials, which faithfully followed
the changes in stimulus orientation (Fig. 3H), and resembled
those of the other example session (Fig. 3C).

To extend these observations across all experiments, we de-
fined a simple variability index as the Fano factor (variance di-
vided by mean response) computed per site and then averaged
over all sites in the experimental session, using bins of size 8 ms.
Because the mean and variance of each site were approximately
similar (Fig. 3K), the variability index tended to be ~1, as ex-
pected for this bin size (Fig. 1). Nonetheless, there were clear
differences across experiments, and the index ranged from 0.89 to
1.07 in our 23 experimental sessions (0.92 and 1.05 for the two
sessions in Fig. 3A-]).

We next asked how the variability in sensory responses was
related to the presence of these large, isolated events. In experi-
ments with the highest variability, the large fluctuations in pop-
ulation activity were seen not only during stimulus presentations,
but also in ongoing activity, recorded while showing a uniform
gray screen (e.g., Fig. 31,]). Conversely, these large events in on-
going activity were absent in experiments with low variability
(e.g., Fig. 3D,E).

The large global fluctuations observed in both ongoing activity
and sensory responses represent the synchronized activity of a large
number of cortical neurons. They therefore resemble the “up
phases” commonly observed in synchronized cortical states, such as
found in sleep or deep anesthesia (Harris and Thiele, 2011).

The two examples we have seen suggest that the amount of
variability seen in sensory responses is related to the size of fluc-
tuations in spontaneous periods during the same experiment. To
verify this relationship, we obtained a global fluctuation index by
considering spontaneous activity and dividing the SD of the firing
rate of the entire population by its mean firing rate across time.

The global fluctuation index correlated clearly with the vari-
ability index measured during sensory stimulation (r = 0.71, p =
0.0002; Fig. 3L). This correlation is not trivial because the global
fluctuation index is assessed purely from ongoing activity (mea-
sured while showing a uniform gray screen), whereas the variabil-
ity index is obtained in response to visual stimuli. In summary, in
experiments where total activity fluctuated more strongly in the
absence of any stimuli, the MUA driven by stimuli was also more
variable. This relationship suggests that the same sources of vari-
ability may be at play during ongoing activity and during visually
driven activity.

Within individual animals, the global fluctuation index was
largely constant over the course of a single experiment (5-12
min) but varied over longer timescales (hours). These slower
changes may have reflected variations in the depth of anesthesia,
possibly associated with our daily injections of atropine sulfate
(aimed at reducing secretions that could have blocked the air
passages), or spontaneous changes in cortical state as have been
described in rats (Clement et al., 2008). To guide the remaining
analyses, we therefore denoted the experiments where the global
fluctuation index is above a fixed criterion value as “synchronized”
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and the remaining ones as “desynchronized.” As a criterion, we
chose the value of 0.6, as it approximately divides the experiments in
two halves (Fig. 3L). However, the apparent bimodality in the global
fluctuation index was not supported by statistical tests (Hartigan dip
test, p = 0.077). The remaining analyses, indeed, do not depend
strictly on the choice of this criterion.

Effects of cortical state on pairwise correlations

The previous observations indicate that an important source of
variability is provided by large population fluctuations that are
present spontaneously and that are more prevalent in synchro-
nized cortical states. The presence of such population fluctua-
tions mathematically implies that there should be high
correlations between neurons or recording sites. Specifically, a
simple expression relates global fluctuations to correlations be-
tween the firing rates R; and R, of pairs of sites j and k (Renart et
al., 2010; Harris and Thiele, 2011):

Var( ER/') = EVar(Rj) + ECorr(R]-, Ry) \Var(R;) Var(Ry)

j j*k

The left-hand side of this equation is the variance in population
rate; the first term on the right is the summed variance of indi-
vidual sites, and the third is a weighted average of pairwise cor-
relations between sites. Because the second term on the right-
hand side is a sum over O(N?) terms whereas the first is a sum

over O(N) terms, the second term will typically dominate. Thus,
this expression shows that the degree of global fluctuation (the
left-hand side) is approximately equal to a weighted sum of pair-
wise correlations between individual recording sites.

We therefore next asked how pairwise correlations were af-
fected by cortical state (Fig. 4). We considered the MUA recorded
at pairs of sites in the array, computed cross-correlations between
these activities, and averaged the results according to the pre-
ferred orientations of the sites, to obtain a matrix of correlations
for all pairs of orientations.

First, we considered the activity measured in the absence of
stimuli (uniform gray screen) and the corresponding “spon-
taneous correlations” (Fig. 4A—C). Experiments performed in
synchronized and desynchronized states showed clear differ-
ences in the amount of spontaneous fluctuation (Fig. 4A). The
prevalence of fluctuations affected the pairwise correlations
between sites, which were higher in the synchronized than
desynchronized cortex (Fig. 4B). Notably, these correlations
showed a very weak dependence on the orientations prefer-
ences of the recording sites, as expected from correlations that
were caused by fluctuations investing the overall population
simultaneously (Fig. 4C).

We then turned to the stimulus responses and the corre-
sponding “total correlations.” As expected, these correlations
showed a strong dependence on orientation similarity, as they
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included the “signal correlations” that are driven by stimulus
responses themselves. In addition, however, activity in synchro-
nized states contained spontaneous global fluctuations (Fig. 4D),
which led to higher correlations across sites (Fig. 4E). Correla-
tions were uniformly higher in the synchronized cortex, with no
apparent influence of the difference in preferred orientation (Fig.
4F). This effect of state was seen also in recordings performed
hours apart within a single experiment, confirming that cortical
state is an important determinant of correlations.

Similar results were obtained when we examined the trial-by-
trial fluctuations in the population and the correlated variability,
or “noise correlation,” between sites (Fig. 4G-I). Noise is the
difference between activity measured in a trial and activity aver-
aged across trials. As expected, it was more prominent in the
more synchronized experiment (Fig. 4G). Indeed, noise correla-
tions were lower in the desynchronized than in the synchronized
cortex (Fig. 4H). These effects were common in all recordings
(Fig. 4I). Once again, only a weak dependence of correlation on
orientation similarity was seen (Fig. 4I), although it appeared
slightly larger than during spontaneous activity (Fig. 4C).

These data indicate that cortical state has a marked influence
on pairwise correlations, accounting for much of their strength.
Pairwise correlations are uniformly higher in synchronized states
than in desynchronized states, whether they are measured during
spontaneous activity (Fig. 4B, C), during visual responses (Fig.
4E,F), orin the trial-by-trial deviations from the mean responses
(Fig. 4H,1I).

This marked difference in pairwise correlations across states
could be largely explained by a single factor: global fluctuations
that invest the whole population (Fig. 4]J-L). To verify this im-
pression, we measured the local noise (Fig. 4]) by subtracting the
weighted global noise (Fig. 2C) from the noise measured on each
trial (Fig. 4G). In other words, we ran the same global noise
model that we had run earlier (Fig. 2), except that we now ran it
with a time bin of 8 ms rather than 500 ms, and we considered the
residuals of this model. The resulting local noise (Fig. 4]) was
generally small compared with the measured noise (Fig. 4G). In
other words, the global noise provided a good estimate of the
noise at each site, just as we had seen at the slower time scales (Fig.
2). Importantly, the local noise had a similar magnitude whether
it came from measurements performed in desynchronized or
synchronized states (Fig. 4]). Indeed, subtracting the global noise
completely removed the differences between pairwise correla-
tions measured in the desynchronized and synchronized states
(Fig. 4K ), making the two have similar amplitudes (Fig. 4L). We
conclude that the higher variability and pairwise correlations
found in the synchronized state are both due to the presence of
large global activity fluctuations.

These large global fluctuations tended to invest all neurons,
regardless of their orientation preference. Indeed, unlike what
would have been expected based on prior studies using voltage-
sensitive dye imaging (Tsodyks et al., 1999; Kenet et al., 2003),
correlations in ongoing activity were not measurably higher be-
tween sites of similar preferred orientation (Fig. 4C). Neither did
the noise correlations show such an orientation dependence (Fig.
4 H,I). By contrast, the matrix of total correlations showed a clear
diagonal structure (Fig. 4 E, F), which was fully expected because
the stimulus concurrently drives the neurons that have similar
orientation preference (Fig. 4D). The absence of this structure
from ongoing activity and noise activity confirms that the large
activity fluctuations, which drove correlations and were stronger
during synchronized states, tended to invest the overall popula-
tion simultaneously.
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Discussion

Because its sensory responses are relatively well understood, area
V1 has long served as a workbench to investigate trial-to-trial
variability. Here we have asked to what extent V1 neurons are
more variable than LGN neurons, and we have sought to under-
stand their variability from the standpoint of large V1 popula-
tions. By relating the variability at one cortical site to that in the
LGN and at other cortical sites, we were able to argue that vari-
ability in V1 reflects global, population-wide fluctuations, which
do not favor neurons based on their preferred orientation and
which are strongest in synchronized states. These global fluctua-
tions markedly increase pairwise correlations and fully explain
how these correlations depend on cortical state.

Consistent with previous studies that compared variability in
LGN and in V1 (Kara et al., 2000; Goris et al., 2014), we found
that cortical variability was higher in individual V1 neurons than
in individual LGN neurons. This observation agrees with previ-
ous estimates of variability in LGN (for review, see Sadagopan
and Ferster, 2012) and in V1 (for review, see Carandini, 2004).

One possible factor contributing to the increased variability
observed in V1 is the pooling of LGN inputs. If variability were
highly correlated among LGN neurons, it would become larger
once V1 pools their activity. Indeed, Sadagopan and Ferster
(2012) showed that LGN neurons can have strongly correlated
variability if their receptive fields are aligned. Moreover, they
reported that silencing inputs from a local region of cortex leaves
the variability of a number of V1 neurons unchanged. Neverthe-
less, many other V1 cells did reduce variability following silencing
of local V1 inputs. We speculate that these differences between
neurons may have reflected differing cortical states during the
experiments of Sadagopan and Ferster (2012).

Our findings show that cortical state is an important determi-
nant of response variability in V1. High variability was coupled to
the occurrence of large spontaneous fluctuations in activity that
did not depend on orientation preference. Such fluctuations in-
dicate a more synchronized cortical state. Work in somatosen-
sory, auditory, and visual cortex has shown that responses to
sensory stimuli can vary widely depending on cortical state (Kis-
ley and Gerstein, 1999; Poulet and Petersen, 2008; Curto et al.,
2009; Marguet and Harris, 2011), and that also the variability in
those responses is subject to cortical state; for instance, variability
in auditory cortex is highest when ongoing cortical activity exhib-
its rhythmic population bursts (Kisley and Gerstein, 1999). Also,
variability in rat visual cortex (and in LGN) decreases upon acti-
vation of the nucleus basalis (Goard and Dan, 2009), which pre-
sumably induces a more active and desynchronized cortical state.

Our findings highlight the determinant role of cortical state
on pairwise correlations. It has long been recognized that corre-
lations do not typically reflect direct connections between neu-
rons (Moore et al., 1970); they are more often interpreted as
reflecting the fraction of shared inputs (Ts o et al., 1986; Alonso et
al., 2001; Ko et al., 2011). Our data, by contrast, show that corre-
lations in cat V1 can vary from moment to moment, as a function
of cortical state. This observation agrees with previous results.
For instance, in rat visual cortex, overall levels of spontaneous
correlation increase as state transitions from wakefulness to an-
esthesia (Greenberg et al., 2008). In rat auditory cortex, mean
correlations may reduce close to zero in desynchronized states
(Renart et al., 2010). Finally, in monkey visual cortex, large activ-
ity fluctuations and noise correlations vary depending on state
(Ecker et al., 2010, 2014). These findings indicate that correla-
tions do not simply reflect anatomical circuit features but arise
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dynamically in the network. Indeed, mean pairwise correlations
can be close to zero even in strongly and densely connected cir-
cuits (Renart et al., 2010).

More generally, these results confirm the view that population
activity structure depends on brain state and that pairwise corre-
lations are often a reflection of activity synchronized at the level
of the population (Harris and Thiele, 2011; Okun et al., 2012).
Indeed, in our global noise model, the sole source of variability
and correlation in cat V1 are the events that synchronously invest
the overall population. Such correlations have previously been
interpreted as large-scale fluctuations in mean excitability, which
can lead to correlated spiking behavior (Brody, 1998). Which
common input drives these mean excitability fluctuations re-
mains to be seen. The differing occurrence of these events be-
tween cortical states was sufficient to explain the differences in
correlation and variability between these states. Furthermore,
such a strong dependence of pairwise correlations on cortical
state might explain many of the differences in correlation values
observed across studies (Cohen and Kohn, 2011).

Because our measurements were all conducted under anesthe-
sia, we cannot say whether the variations in cortical state that we
encountered would occur during wakefulness. It would be of
interest to repeat the measurements in awake animals, but it is
not common to record from awake cats. Moreover, our measure-
ments were performed in a preparation (anesthetized cat V1) that
has given rise to a vast literature, which still guides leading views
of neocortical function. In contrast to previous work in this same
preparation using voltage imaging (Tsodyks et al., 1999; Kenet et
al., 2003), we found no evidence for orientation-related structure
in spontaneous population activity and little evidence for struc-
ture in the variability of population sensory responses. Indeed,
our measurements indicate that spontaneous fluctuations in fir-
ing rate tended to invest all neurons regardless of preferred ori-
entation and little tendency for spontaneous correlations to be
higher between neurons with similar orientation preference. It
remains to be determined whether there exist sources of struc-
tured noise that are not aligned to the dimension that we consid-
ered, orientation preference.

We defined cortical state in terms of the size of spontaneous
fluctuations in MUA data, rather than from the more tradition-
ally used power spectra of LFP or EEG signals. The two measure-
ments are strongly related, as LFP and EEG fluctuations correlate
with both instantaneous population firing rates and intracellular
potentials (Poulet and Petersen, 2008; Curto et al., 2009; Okun et
al., 2010; Saleem et al., 2010). Studies in rat cortex have shown
that the definition based on MUA provides more fine-grained
measurements of state than that based on LFP power spectra
(Curto et al., 2009). This said, it would have been interesting to
relate cortical state in the recorded population to overall brain
state as recorded elsewhere.

Some dependence on preferred orientation could be seen in
noise correlations and, more markedly, in the correlations of the
local noise. The orientation dependence of noise correlations is
consistent with earlier reports (Bair et al., 2001; Kohn and Smith,
2005; Smith and Kohn, 2008; Ch’ng and Reid, 2010; Cohen and
Kohn, 2011). However, the selectivity of noise correlations was
extremely mild. Rather than the difference in orientation prefer-
ence between two sites, the primary determinant of noise corre-
lations in our study was clearly cortical state, similar to recent
findings in monkey cortex (Ecker et al., 2014). Indeed, when we
removed the effect of global noise, the pairwise correlations be-
came practically independent of cortical state (Fig. 5F). Cortical
state, therefore, is a prime determinant of correlation strength,
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similarly to other known factors, such as distance, firing rate, and
cortical layer (Cohen and Kohn, 2011). The orientation prefer-
ence seen in the local noise, finally, is likely to be the result of a
nonadditive interaction between signal and noise, and we are
currently pursuing the possibility that it might be multiplicative
(Goris et al., 2014).

Together, our data indicate that the variability of V1 popula-
tion responses to stimuli is mainly caused by spontaneously gen-
erated activity that is highly correlated across the neuronal
population. This view of area V1 agrees with results obtained in
primate area MT (Buracas et al., 1998), and in rat auditory cortex
(Deweese and Zador, 2004), where a substantial portion of the
variability of responses in single neurons can be predicted by
knowledge of the nearby local field potential.

Cortical state, in turn, determines how prevalent these fluctu-
ations are and thus acts as a key determinant of the variability
seen in V1 sensory responses and in ongoing activity. A limitation
of our study is that the variations in cortical state were due to
causes outside our control, such as fluctuations in the depth of
anesthesia. Nonetheless, these fluctuations allowed us to probe
an effect of cortical state that could be present also in the awake
brain as it engages or disengages from a task (Harris and Thiele,
2011; Tan et al., 2014). By providing a clearer picture of variabil-
ity and by showing that this variability is strongly determined by
cortical state, our results may help elucidate the aspects of visual
responses that are not directly attributable to visual stimuli.
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