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Abstract

This dissertation addresses the main challenges faced in the transition to a more sustain-

able energy sector by applying modelling tools that could design more effective manage-

rial responses and provide policy insights. To mitigate the impact of climate change, the

electric power industry needs to reduce markedly its emissions of greenhouse gases. As

energy consumption is set to increase in the foreseeable future, this can be achieved only

through costly investments in more efficient conventional generation or in renewable en-

ergy resources. While more energy-efficient technologies are commercially available, the

deregulation of most electricity industries implies that investment decisions need to be

taken by private investors with government involvement limited to setting policy mea-

sures or designing market rules. Thus, it is desirable to understand how investment and

operational decisions are to be made by decentralised entities that face uncertainty and

competition.

One of the most efficient thermal power technologies is cogeneration, or combined heat

and power (CHP), which can recover heat that otherwise would be discarded from con-

ventional generation. Cogeneration is particularly efficient when the recovered heat can

be used in the vicinity of the combustion engine. Although governments are supporting

on-site CHP generation through feed-in tariffs and favourable grid access, the adoption

of small-scale electricity generation has been hindered by uncertain electricity and gas

prices. While deterministic and real options studies have revealed distributed generation

to be both economical and effective at reducing CO2 emissions, these analyses have not

addressed the aspect of risk management. In order to overcome the barriers of financial

uncertainties to investment, it is imperative to address the decision-making problems of

a risk-averse energy consumer. Towards that end, we develop a multi-stage, stochastic

mean-risk optimisation model for the long-term and medium-term risk management prob-

lems of a large consumer. We first show that installing a CHP unit not only results in

both lower CO2 emissions and expected running cost but also leads to lower risk exposure.

In essence, by investing in a CHP unit, a large consumer obtains the option to use on-site

generation whenever the electricity price peaks, thereby reducing significantly its financial

risk over the investment period. To provide further insights into risk management strate-

gies with on-site generation, we examine also the medium-term operational problem of a

large consumer. In this model, we include all available contracts from electricity and gas

futures markets, and analyse their interactions with on-site generation. We conclude that

by swapping the volatile electricity spot price for the less volatile gas spot price, on-site

generation with CHP can lead to lower risk exposure even in the medium term, and it

alters a risk-averse consumer’s demand for futures contracts.

While extensive subsidies have triggered investments in renewable generation, these



installations need to be accompanied by transmission expansion. The reason for this is

that solar and wind energy output is intermittent, and attractive solar and wind sites are

often located far away from demand centres. Thus, to integrate renewable generation into

the grid system and to maintain a reliable and secure electricity supply, a vastly improved

transmission network is crucial. Finding the optimal transmission line investments for

a given network is already a very complex task since these decisions need to take into

account future demand and generation configurations, too, which now depend on private

investors. To address these concerns, our third study models the problem of wind energy

investment and transmission expansion jointly through a stochastic bi-level programming

model under different market designs for transmission line investment. This enables the

game-theoretic interaction between distinct decision makers, i.e., those investing in power

plants and those constructing transmission lines, to be addressed directly. We find that

under perfect competition only one of the wind power producers, the one with lower cap-

ital cost, makes investment and to a lower degree under a profit-maximising merchant

investor (MI) than under a welfare-maximising transmission system operator (TSO), as

the MI reduces the transmission capacity to increase congestion rent. In addition, we

note that regardless of whether the grid expansion is carried out by the TSO or by the

MI, a higher proportion of wind energy is installed when power producers exercise market

power. In effect, strategic withholding of generation capacity by producers prompts more

transmission investment since the TSO aims to increase welfare by subsidising wind and

the MI creates more flow to maximise profit. Under perfect competition, a higher level of

wind generation can be achieved only through mandating renewable portfolio standards

(RPS), which in turn results also in increased transmission investment.
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Chapter 1

Introduction

Energy has been at the centre of economic development since the beginning of the Indus-

trial Revolution: for example, coal and oil have had long-established markets and have

played an important role in international trade. Not only did coal facilitate the advance-

ment of rail transport, but also coal traffic itself has been a major source of income of

the railway industry ever since (Solomon and Yough, 2009). Today, crude oil is the most

widely traded commodity in the world, accounting for over 30% of international shipping

(Ji and Fan, 2013). Electricity began to be sold publicly not long after the establishment

of the first oil refineries and has soon become inseparable from modernity. As a result

of increasing electrification of services, electricity improves more and more aspects of life.

Indeed, the electric power industry is one of the world’s largest industries (Morton, 2002).

However, unlike coal and oil, electricity is still provided only by government owned utili-

ties in large parts of the world, and the establishment of competitive wholesale electricity

markets is a very recent development.

In the late 19th century, the first power plants were financed completely by private

capital. Electricity was supplied through direct current and was used locally, providing

street and home lighting. Over the course of time, with the advancement of the ap-

plications of alternating current, electricity could be transported over longer distances,

thereby triggering the establishment of utility companies. Since building large transmis-

sion networks required huge initial investments and power generation exhibited significant

economies of scale, the electricity industry was regarded as an ideal example of a natural

monopoly. In fact, after the Second World War, electricity systems were nationalised in

most OECD countries (Millward, 2005). All functions of the electricity supply chain, i.e.,

generation, transmission, and distribution, were merged into state-owned utility compa-

nies (Finon and Midttun, 2004). These vertically integrated companies built their own

power plants and coordinated generation investments with the planning of transmission

expansion. In real time, system operators controlled electricity generation by deciding

which power plants should operate and which ones need to shut down in order not to

overload the transmission network (Hunt, 2002). Since customers paid a single tariff, set

1



by the regulatory authority, for the electricity, unlike in a deregulated industry, the genera-

tors received no price signal for efficient operation (Fig. 1.1). This led to highly politicised

pricing and investment decisions, where risk management or profitability played little to

no role.

However, the energy crisis of the 1970s exposed the inefficiencies within the genera-

tion and distribution sectors along with their vulnerability to oil imports (Gibbons and

Blair, 1991). Even so, the subsequent years were still marked by strong state control of

all energy industries, but this time with a greater focus on new technologies and diversi-

fication of the energy mix. In the 1980s, economic policies shifted towards liberalisation,

i.e., erasing trade barriers, privatising monopolies, reducing government regulations, and

opening up industries to full competition (Rubsamen, 1989). In the electric power indus-

try, where physical constraints precluded full liberalisation, the focus was on deregulating

the generation sector end which displayed the most striking inefficiencies, i.e., poor choice

of technology, lack of innovation, cost overruns in construction and maintenance, and

difficulties in pricing (Joskow, 2000). Also, the political risks of purchasing cheap natural

gas from the former Soviet Union were reduced with the end of the Cold War (Helm,

2009). Consequently, the 1990s saw the introduction of several directives from the Euro-

pean Union (EU) with the aim of reducing the barriers to cross-border trade of electricity

(Jamasb and Pollit, 2005). In particular, the EU Electricity Market Directives of 1996

and 2003 focused on unbundling the industry and a gradual opening of national markets.

The 2003 directive further promoted competition by tightening the regulation of access

to networks and enforcing the use of independent regulators. These measures led to re-

structured electricity industries with increased competition in wholesale generation and

retail supply, intensive regulation of distribution networks, and privatisation of regional

utility companies (Jamasb, 2002), which, consequently, led to the emergence of modern

electricity markets.

2



(a) Regulated Electricity Industry (b) Deregulated Electricity Industry

Figure 1.1: Money Flows in the Electricity Industry Before and After Deregulation

However, deregulation and liberalisation have not achieved all of the desired outcomes.

The failings of deregulation have resulted in complicated market designs, which, in turn,

have led to market power abuse and inefficient investments (Woo et al., 2006). Analysing

the effects of deregulation of electricity industries, Hattori and Tsutsui (2004) found that

the unbundling of generation from transmission and introduction of a wholesale spot mar-

ket did not necessarily lower prices and might possibly have resulted in higher prices for

residential customers. For example, between 1993 and 2000, gas and coal prices decreased

by 50% and 28%, respectively, whereas electricity pool price in England and Wales de-

clined by only 12% (Hunt, 2002). Finally, since the liberalised industries in Europe had

inherited surplus capacity from the state-owned systems, policies following the deregula-

tion were directed more at an efficient allocation of the given resources than supporting

generation investment (Finon et al., 2004).

Nevertheless, the issue of new investment in electricity generation has acquired a

greater urgency. New investment is required to replace the old and phased-out power

stations (Nagl et al., 2011) to comply with higher efficiency standards and emerging

environmental norms. Indeed, concern about climate change has transformed the envi-

ronmental debate in Europe. The EU aims to limit the effects of global climate change,

which, according to the European Commission (EC), will require long-term stabilisation

of CO2 emissions levels (Fig. 1.2). This has been broken down into two main targets: (1)

by 2020, the EU should reduce its CO2 emissions by 30%, and (2) by 2050 by 60-80%,

from the levels in 1990. The EU aims to achieve its CO2 reduction targets by increas-

ing electricity generation from renewable resources and improving the efficiency of both

demand and supply sides. However, while the share of renewable energy has increased

in recent years, this has had other impacts on the electricity industry. First, to attract
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investment in renewable generation, governments have provided generous subsidies that

have significantly increased the retail prices of electricity. With feed-in tariffs 10 times

higher than the wholesale electricity price, German consumers spent e1.54 billion more on

electricity to fund renewable generation in 2001 alone (Wüstenhagen and Bilharz, 2006).

Second, a large part of renewable generation, e.g., solar and wind, is intermittent, which

means that output cannot be controlled directly as in a gas- or coal-fired power plant.

This has increased the volatility of electricity prices as a significant share of the electricity

generation has become weather-dependent (Ketterer, 2014; Woo et al., 2011, Sioshansi et

al., 2011). While a large amount of wind generation during low demand periods results in

low market clearing prices and sporadically in negative prices (Nicolosi, 2010), unexpected

ramp-down of wind generation can lead to price jumps and even to system failures (Ela

and Kirby, 2008). A higher share of renewable energy in the total generation not only

results in volatile electricity prices but also puts a previously unexperienced strain on

the transmission network. In an electricity system adhering to the merit-order rule, wind

generation with zero marginal cost needs to be dispatched first; however, guaranteeing

this grid access to wind energy with fluctuating and geographically dispersed generation

leads to scarce electric network supply (Kunz, 2013). Consequently, further growth of in-

termittent generation, Kramer and Haigh (2009) argue, can even destabilise transmission

networks, thereby resulting in blackouts.

Figure 1.2: Historical and Predicted CO2 Emissions (IEO, 2013)
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Thus, deregulation and the so-called Energiewende (German energy transformation)

have ushered in undesirable consequences for the electricity industry. Higher price volatil-

ity threatens both large consumers, such as factories or hospitals, and producers as they

may become more exposed to risk. As a result, there is an urgent need for a more effective

risk management and a better understanding of strategic interaction when setting policy.

Otherwise, the very objectives of the sustainable energy transformation may be thwarted

as private investors become more reluctant to adopt new technologies. One of the main

tools for risk management in the electricity industry is the use of derivatives, i.e., finan-

cial products whose value depend on physical spot prices. The most liquid derivatives in

energy markets are futures contracts (Kovacevic et al., 2013). By entering into a futures

contract, i.e., a standardised exchange-traded contract, the counterparties agree on both

the price and the time period, stretching from weeks to years, of a sequence of future spot

deliveries. For electricity futures, we differentiate between peak, off-peak, and base fu-

tures, specifying the delivery hours with high or low demand. The settlement of a contract

can be physical (actual delivery) or financial (payment of the difference of the futures price

and the spot price). Financial hedging, i.e., purchasing electricity futures, however, can

be costly and often does not provide adequate risk reduction. Indeed, futures contracts

can have high risk premia, the difference between the expected and futures prices, and the

delivery periods seldom match the consumers’ demand schedule (Geman, 2009). Further-

more, futures contracts do not provide hedges against physical risk, i.e., power outages,

whose financial consequences can outweigh the potential payoffs from futures contracts.

In addition to increased price volatility, deregulation and renewable generation have also

affected the distribution systems. To integrate more intermittent generation, new trans-

mission lines need to be built, partly because the best available wind and solar sites are in

remote areas. Since the vertical unbundling of the electricity industry, the cost of trans-

mission expansion cannot be regained through retailing. Thus, under a market-oriented

regulation, transmission investment needs to be economically viable. At the same time, in

order to maintain system efficiency, the cost of transmission expansion has to be allocated

in such way that it sends correct locational signals for future users (Pérez-Arriaga, 2013).

Consequently, grid investment presents serious planning challenges because generation

investment decisions incorporating game-theoretic interactions between decision makers

in separate sectors are necessary for designing markets to obtain desirable outcomes.

This dissertation addresses these two concerns. First, a pair of studies shows that large

consumers can carry out better risk management using on-site generation, i.e., physical

hedges. Such on-site generation using CHP applications not only provides for better hedg-

ing strategies but also results in lower CO2 emissions because of higher overall efficiencies

relative to large central power plants. Risk-mitigating strategies for on-site investment

and operations for long- and medium-term time-frames are provided from the perspective

of a large consumer. Next, in order to gain insights into the issues for policy-makers con-
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cerning transmission expansion, a bi-level programming model is developed to account for

the fact that investment decisions are carried out by separate agents. Thus, any decision

regarding transmission investments needs to consider how it would impact future gener-

ation investment, which, in turn, would impact system reliability and transmission costs.

In particular, the third study focuses on investment in wind energy, which makes up the

highest share of renewable generation and has the most volatile production source, imple-

mented through wind output scenarios. Finally, a comparison is made between different

market designs, both in terms of transmission expansion and the electricity producers’

degree of competitiveness.

1.1 Optimal Selection of Distributed Energy Resources

under Uncertainty and Risk Aversion

The probable severe economic and environmental consequences (Stern, 2006; Ciscar et

al., 2011) of climate change have prompted many countries to set a series of targets to

reduce their CO2 emissions. One of the ways in which the EU seeks to achieve its reduc-

tion targets is by improving energy efficiency in terms of both supply and consumption

(European Commission, 2010). There is substantial scope for reducing CO2 emissions

through improved generation technologies. The current central-station model of electric-

ity production causes a loss of 35-60% of energy as heat waste, while a further 6% of

the generated electricity is lost during transmission (Marnay and Venkataramanan, 2006;

Graus and Worrell, 2009; Oswald, 2007; International Energy Agency Statistics, 2011).

Thus, the current energy production paradigm is not only polluting but also unsustain-

able in the wake of continued growth in demand. One possible solution is the use of

distributed energy resources (DER), i.e., small-scale generation sources located closer to

the end-users.

An innovative way to exploit the potential of DER is to group generation and as-

sociated loads together to form a microgrid (Fig. 1.3). While a microgrid operates

independently of the main grid, it can also be connected to it in order to take advantage

of lower system prices. Different generators can be used within a microgrid, but the most

promising technology is combined heat and power (CHP), also known as cogeneration.

CHP is an energy-converting process that utilises thermal energy, which would otherwise

be released into the environment unused. While conventional condensing technologies,

e.g., central-station fossil-fuelled and biomass-fuelled power stations, produce only elec-

tricity from the fuel used, a CHP plant produces both electricity and thermal power with

a higher overall energy conversion efficiencies. Thus, even though large central stations

have higher electrical conversion efficiencies, CHP plants produce more energy overall

because of their heat recovery property (Siddiqui and Marnay, 2008). Compared to the
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efficiency of 35-60% for conventional power stations, CHP plants have overall efficiencies

in the range of 80-90%. Despite the beneficial characteristics of cogeneration, the penetra-

tion of CHP plants is relatively low. While in Denmark and Finland CHP plants produce

approximately 40-50% of the total electricity from heat recovery, EU and US averages of

CHP electricity production are only around 15% and 7%, respectively1.

Figure 1.3: Stylised Microgrid with CHP

Nevertheless, the potential of CHP is significant with possible savings of up to 60%

in total efficiency. This is why most countries have developed policies to support CHP

investment, e.g., the EU Cogeneration Directive dating back to 2004. However, the targets

regarding a higher share of cogeneration have not yet been achieved (Streckiene et al.,

2009). Some of the possible reasons for the lower than expected investments in CHP

are the uncertainties of electricity and gas prices in deregulated industries (European

Cogeneration Review - Germany, 2013). Financial risk is considered by Schleich and

Gruber (2008) and Wang et al. (2008) as one of the main barriers against investing in

energy-efficient technologies.

Considering this situation, in order to gain policy insights into the issues involved in

increasing efficiency and reducing CO2 emissions, it is important to understand how the

risks associated with electricity and gas spot price uncertainties can be managed at the

consumer level. With this in mind, this study explores the roles of on-site generation (as

a physical hedge) and long-term electricity and gas futures contracts (as financial hedges)

against energy price risk. A mean-risk optimisation model is developed for the long-term

risk management problem of a hypothetical microgrid using mixed-integer, multi-stage

stochastic programming. Since the potential of CHP to reduce CO2 emissions is markedly

high in Germany (Spitalny et al., 2013), we apply our model to a notional consumer in

1World Survey of Decentralized Energy, www.localpower.org.
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Germany by using electricity and gas price data from the European Energy Exchange

(EEX). Several cases of different on-site generation technologies are examined both with

and without financial hedges. The study demonstrates that risk-averse consumers, even

if they face increasing gas prices and decreasing electricity prices, should invest in on-site

generation. While a decreasing gas spark spread, which is the difference between the

price of electricity and effective cost of electricity generation from a gas-fired power plant,

reduces the expected net present value (NPV) of on-site generation investment, the ability

of CHP to swap electricity (with high price volatility) for gas (with low price volatility)

significantly increases the value of on-site generation as a physical hedge. This study also

examines how on-site generation interacts with financial hedges, i.e., how the availability

of on-site generation affects the consumer’s decision to purchase financial hedges and vice

versa. In particular, the study shows that since investing in CHP reduces the microgrid’s

demand for electricity futures, on-site generation and electricity futures may substitute

for one another. Conversely, when gas futures are available, the microgrid is more likely

to install a microturbine as on-site generation with fixed fuel price results in larger risk

reduction. For this reason, if the the risk premium for gas futures decreases, the risk-

averse microgrid’s demand increases for on-site generation, thereby indicating that gas

futures and on-site generation can function as complements.

1.2 Optimal Operation of Combined Heat and Power

under Uncertainty and Risk Aversion

Building on the dissertation’s investment model for a microgrid, the medium-term oper-

ational risk management problem of a microgrid with installed CHP is further examined.

Unlike in the previous investment model, we account for peak and off-peak load electricity

price volatility, thereby providing further insights into how financial risk can be mitigated

using on-site generation and the available financial contracts for electricity and gas pur-

chases.

Stable electricity prices are vital for economic competitiveness (Laurijssen et al., 2012).

Since electricity and gas markets exhibit large volatility, uncontrolled exposure to price

risks could lead to severe financial losses for producers and consumers. Thus, operational

decisions need to be evaluated in terms of not only the resulting expected costs but also of

cost variability (Bjorgan et al., 2009). Consequently, risk control constitutes an important

issue when formulating consumers’ decision-making problems.

To hedge against such risks, large consumers can purchase electricity futures contracts

that provide increased stability compared to spot prices and are more efficient than futures

contracts on related fuel prices (Tanlapco et al., 2002). Deng and Oren (2006) highlight

the roles of these electricity derivatives in mitigating market risks and structuring the
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hedging strategies in various risk management applications. On the other hand, Newbery

(2012) points out that gas and coal are naturally hedged in markets where the wholesale

electricity prices are set by the prices of fossil fuels. For example, if there is a strong

positive correlation between the electricity price and the price of natural gas, a gas-fired

generator is not burdened by an increase in the gas price as this inevitably triggers higher

electricity price, thereby maintaining the generator’s profit level. However, as Lin and

Wesseh (2013) point out, gas price can exhibit different volatility regimes, and when it

switches to a high volatility regime, the correlation between electricity and gas prices

significantly diminishes. Consequently, the strategy for managing risk needs to consider

both electricity and gas markets uncertainty at the same time. In this study, we present a

multi-stage, stochastic mean-risk operational optimisation model that can be used to re-

duce a microgrid’s risk exposure. The model examines natural hedging through existing

on-site generation and financial hedging through implementing the available electricity

and gas futures purchases in the German context.

While the findings suggest that a microgrid with on-site generation alone can certainly

reduce its expected generation costs, a microgrid with CHP can lower the expected costs

much more significantly, i.e., on average about 8.7-fold more than a microturbine with-

out heat recovery. Furthermore, on-site generation with CHP can reduce the microgrid’s

CVaR both in absolute terms and relative to its expected cost, while the CVaR reduc-

tion with a conventional microturbine is negligible and only due to lower expected cost.

This demonstrates the distinctive capability of a CHP unit to reduce a consumer’s risk

exposure, which is not apparent from the dissertation’s long-term investment model.

1.3 Transmission and Wind Investment in a Deregu-

lated Electricity Industry

In regulated electricity industries, the transmission expansion planning involves minimis-

ing investment costs subject to reliability constraints regarding future demand and gen-

eration configuration (Georgilakis, 2010). As both generation and transmission invest-

ments are made by a central utility, only the future demand remains uncertain and the

cost of such expansion projects can be recouped through rate-based revenues, which are

composed of the depreciated cost (original cost minus cumulative depreciation) of the

existing transmission network plus the forecasted cost of incremental capital expenditure

(Lévêque, 2006). Thus, such problems can often be addressed by linear programming or

dynamic programming models. In recent years, however, the electricity industry has been

undergoing deregulation, thereby creating private power companies and TSOs. Hence,

understanding their strategic interactions in handling transmission and generation ex-

pansion poses novel modelling challenges (Hobbs, 1995).
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The ongoing restructuring of the electricity industry, both domestic and cross-border,

has led to a growing attention to transmission capacity expansion, which plays a central

role in the EU 2020 plan (Communication from the European Commission, 2014). First,

to achieve a common European power market, it is essential to have sufficient cross-

border transmission capacities. Such a pan-European integrated energy market would

result in lower prices and more reliable supply (Schaber et al., 2012; Concha et al., 2014).

Second, grid extensions are necessary for the physical integration of variable renewable

energy sources: both wind and solar energy have greater potential on the periphery of

Europe, and, thus, integrating them would require the construction of new transmission

lines both within and between countries (Boie et al., 2014). However, it is not always in

the interest of TSOs to upgrade their grid networks since increasing transmission capacity

reduces their ability to charge for transmitting electricity (Hogan et al., 2010), or even if

they have sufficient incentives to invest, then TSOs might not have the required capital

to build new transmission lines (Henriot, 2013). Similarly, investor-owned utility (IOU)

companies cannot be expected to make future investments estimated to be worth e1

trillion (Communication from the European Commission, 2014), which is roughly twice

as much as the market capitalisation of all European utility companies (The Economist,

2013).

One approach to the problem of transmission expansion in deregulated industries is

performance-based regulation (PBR), or incentivised regulation, which is characterised

by two main properties: it gives a regulated firm the choice of prices for its services and it

rewards the firm for investments that enhance the general welfare. Thus, its aim is to cre-

ate a price regulation mechanism that incentivises both effective capacity utilisation and

capacity expansion for the transmission system operator (TSO). However, because of the

information asymmetry between the regulator and TSOs, the specified transmission costs

and rewards often fail to provide correct signals, thereby leading to suboptimal transmis-

sion and generation investments (Nasser, 1997; Vogelsang, 2006). Yu et al. (1999) have

examined the problem of dynamic decision making for transmission management under

deregulation. They conclude that transmission congestion rents are necessary to prevent

the network from overloading and could serve as the basis for developing a uniform ap-

proach to long-term transmission investment incentives.

Another approach is the merchant model, which is built on the idea of using market

incentives instead of central planning decisions whenever possible. The merchant model is

based on the auction of financial transmission rights (FTRs). Agents bid for transmission

expansion, and the winning bidder is allocated long-term FTRs in exchange for the in-

vestment. The FTRs give the owners the right to collect the difference in the connecting

nodal prices calculated by the TSO, whose role is to balance the supply and demand in

the whole network. FTRs are most commonly used in the Northeastern US, but they have

been also applied in several European projects. Nevertheless, because of their complex-
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ity, it is very difficult to design FTRs efficiently. Bushnell and Stoft (1997) recommend

the use of feasibility restrictions and tradable transmission rights, such as transmission

congestion contracts (TCCs), which not only would guarantee the profit coming from the

difference of the nodal prices when electricity is transferred but also would be refunded

for the unused portion of this right. Furthermore, in discussing the positive and negative

externalities of building a line, they point out that TCCs do not necessarily capture the

full range of benefits of the grid expansion. The difficulties arise mainly from loop flows:

in accordance with Kirchoff’s second circuit law, the directed sum of voltages around any

closed circuit must be zero. For example, in a 3-node network, the voltages at two nodes

determine the voltage at the remaining node (Fig. 1.4). Therefore, the way the electricity

reaches the load depends on the potential differences. Hence, in a transmission network

with multiple circuits, electricity flow does not necessarily go through the newly built line.

Figure 1.4: Voltage Law (Huppmann and Kunz, 2011)

Our third study addresses the transmission expansion problem in a deregulated in-

dustry. Market designs are compared with either a welfare-maximising TSO or a profit-

maximising merchant investor (MI) via a stochastic bi-level programming model that has

either the TSO or the MI making transmission investment decisions at the upper level,

and power producers determining generation investment and operation at the lower level

while facing wind power variability. The findings suggest that social welfare is always

higher under the TSO because the MI has an incentive to boost the congestion rents, i.e.,

the scarcity rent on the lines, by restricting the capacities of transmission lines. Such

strategic behaviour also limits investment in wind power by producers. However, regard-

less of the market design (MI or TSO), when producers behave according to the Cournot

conjecture, a higher proportion of energy is produced by wind. In effect, withholding of

generation capacity by producers prompts more transmission investment since the TSO

aims to increase welfare by subsidising wind power and the MI creates more flow to

maximise profits.
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1.4 Structure of the Thesis

The remainder of the thesis is structured as follows. In Chapter 2, a mean-risk optimi-

sation model is developed for the long-term risk management problem of a hypothetical

microgrid using mixed-integer, multi-stage stochastic programming. The modelled micro-

grid can invest in a number of generation technologies and also has access to electricity and

gas futures markets to reduce its financial risk. Chapter 3 assesses how a microgrid with

an installed CHP and a boiler unit can manage risk using monthly and weekly electricity

futures contracts, monthly gas futures contracts, and on-site generation. A multi-stage,

mean-risk optimisation model is formulated for the medium-term operational risk man-

agement of a large consumer using daily peak and off-peak periods. Chapter 4 considers

the problems of both wind generation and transmission line investment. A stochastic bi-

level programming model is developed to examine how transmission expansion interacts

with the strategic behaviour of the incumbent electricity producers and potential wind

energy investors facing uncertain wind availability. Chapter 5 concludes with a discus-

sion on the findings as well as the limitations of the current approaches besides making

recommendations for future research in these areas.
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Chapter 2

Optimal Selection of Distributed

Energy Resources under Uncertainty

and Risk Aversion

2.1 Introduction

Due to a combination of recent deregulation and technological advances in small-scale

generation, such as the pairing of proton exchange membrane fuel cells with combustion

turbines (Arsalis at al., 2011), consumers now have the opportunity to reap the benefits

of small-scale electricity generation. However, uncertain electricity and gas prices of-

ten deter potential investors from installing on-site generation. This represents a missed

opportunity for the electricity industry in terms of improved sustainability. Although

policymakers have set ambitious targets, decisions relating to the adoption of new tech-

nologies are typically made by power companies and large consumers, e.g., residential

estates, office buildings, and factories, who are motivated by their own private incentives

to maximise profit or to minimise cost.

Since the late 1980s, policymakers have gradually deregulated electricity industries

with the intention of increasing competition between producers (Wilson, 2002). Conse-

quently, the 1990s saw the introduction of several directives from the EU that sought to

extend the single market principle to the electricity market (Jamasb and Pollitt, 2005).

However, deregulation often resulted in flawed market designs, which led to market power

abuse and spot price volatility (Woo et al., 2006). In addition, in Europe, intermittent

generation has increased more than five fold since 20021, thereby resulting in more fre-

quent price jumps and negative electricity prices, as well, while the gas price has been

affected by political uncertainties in Ukraine (Chow and Elkind, 2009; Goldthau and

Boersma, 2014). As a result of such market uncertainties, energy producers and con-

1Energy statistics. http://epp.eurostat.ec.europa.eu/statistics explained/index.php/Renewable energy statistics
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sumers face increased exposure to financial risk, which affects their decisions to launch

new projects. Yet, new investments are required to replace inefficient technologies with

high CO2 emissions, which must be done in order to meet increasing electricity demands.

Considering this situation, in order to gain policy insights about increasing efficiency

and reducing CO2 emissions, it is important to understand how the risk associated with

electricity and gas spot price uncertainty can be managed at the consumer level. With

this in mind, we discuss, in relation to a hypothetical microgrid, the development of a

mean-risk optimisation model for DG adoption under uncertainty using mixed-integer

multi-stage stochastic programming. While microgrid systems may employ a wide range

of distributed energy technologies, e.g., microturbines, solar photovoltaic (PV) panels or

micro-scale wind turbines (Fig. 2.1), for now, we assume that the microgrid can use

only gas-fired combustion engines, and it applies advanced controls to manage its loads

and to connect to the main grid if it is necessary or favourable. We explore the roles

of on-site generation as a physical hedge and electricity and gas futures contracts as fi-

nancial hedges against energy price risk. We examine several cases of different on-site

generation technologies both with and without financial hedges. We demonstrate that

risk-averse consumers, even if they face increasing gas prices and a decreasing electricity

prices, should invest in on-site generation to meet their electricity and heating demands.

While a decreasing gas spark spread, the estimated gross margin of a gas-fired power

plant from selling a unit of electricity, reduces the expected NPV of on-site generation

investment, the ability of CHP to swap electricity (with high price volatility) for gas (with

low price volatility) increases the value of on-site generation as a physical hedge signifi-

cantly. We also examine how on-site generation interacts with financial hedges, i.e., how

the availability of on-site generation affects the consumer’s decision to purchase financial

hedges and vice versa. In particular, we show that, while on-site generation and electricity

futures may substitute one another, on-site generation and gas futures can function as

complements.
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Figure 2.1: Schematic Diagram of a Microgrid (New York State Report, 2012)

2.2 Literature Review

The benefits of on-site generation and CHP have been analysed using deterministic,

real options, and stochastic programming approaches. From a deterministic perspec-

tive, Madlener and Schmid (2003) examine the economic adoption and diffusion of CHP

generation. They find significant regional differences in the adoption of CHP technologies,

which could not be explained by NPV calculations. To study the economics of microgrids,

the Berkeley Lab has developed the distributed energy resources customer adoption model

(DER-CAM), which provides decision support for individual customer sites (Marnay et

al., 2001; Siddiqui et al., 2003). The main objective of the model is to find the combina-

tion of generation investments with the lowest operational cost given utility tariffs, fuel

costs, CO2 tax rate, and equipment performance characteristics (Fig. 2.2). Siddiqui et

al. (2005) use DER-CAM to compare the economic benefit of installing different types of

DER at a hypothetical microgrid in California. Using mixed-integer linear programming,

they demonstrate that an optimally run microgrid with gas-fired CHP turbines has, on

average, lower CO2 emissions than microturbines without heat exchangers. Siddiqui et al.

(2007) analyse the conditions under which a microgrid with CHP is profitable, particularly

when also equipped with heat storage technology. Siler-Evans et al. (2011) investigate

why the adoption of small-scale distributed generation (DG) has been slow, despite its

frequently cited benefits. They find that uncertainty in future fuel and electricity prices

represents significant economic risk and suggest feed-in tariffs for its mitigation.
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Figure 2.2: High-Level Schematic of the Inputs and Outputs of DER-CAM. (Marnay et
al., 2008)

Addressing the uncertainty of electricity prices, Fleten et al. (2007) apply real options

valuation to investments in decentralised renewable power generation. Results from a

case of wind power generation for an office building suggest that, within the context of

uncertain electricity prices, the threshold price for investment is higher than the NPV

break-even price. Maribu and Fleten (2008) use Monte Carlo simulation to estimate the

value of CHP under uncertain electricity and natural gas prices. They find that cogen-

eration is particularly attractive with volatile electricity prices because the CHP plant’s

ability to respond to high prices provides efficient hedges to energy cost risk. Wickart

and Madlener (2007) use real options to analyse an industrial firm’s choice to invest in a

CHP system over a conventional heat-only generation system (steam boiler) with all elec-

tricity purchased from the grid. They argue that under higher price volatility levels, the

CHP system is a better choice than the conventional heat-only generation. Siddiqui and

Maribu (2009) examine the effects of a sequential strategy on the investment decision of a

microgrid when capacity and heat exchange upgrade options are available. They conclude

that a direct investment strategy is preferred with a combined distributed generation and

heat exchange system compared to the sequential strategy due to the cost savings from

heat production and capture.

Although the real options approach can be used to analyse investment under uncer-

tainty, it does not lead to better decision making in terms of risk reduction. Stochas-

tic programming provides a more appropriate framework for modelling decision-making

problems under uncertainty. Unlike deterministic optimisation models, stochastic pro-

gramming models encompass uncertain problem data in the form of a random matrix

with estimated probability distribution. In general, stochastic programs can be grouped

into recourse problems and chance-constrained problems. Chance-constrained problems

involve only here-and-now decisions, i.e., all decisions are taken simultaneously prior to

16



the realisation of uncertain parameters. Furthermore, in chance-constrained problems,

constraints involving random parameters must be satisfied with only a prescribed prob-

ability. In contrast to chance-constrained problems, in recourse problems, all constraints

need to be satisfied with certainty, which allows for corrective actions to be taken at future

stages once uncertain parameters are observed. Since, unlike real options, a risk term can

be easily incorporated in the objective function, stochastic programming with recourse

is the most suitable framework to analyse risk management. Its objective is to find a

feasible solution that optimises a cost function that depends on decisions and uncertain

parameters. In problems related to energy, various constraints, e.g., demand or capacity

constraints, need to be satisfied with certainty. Thus, in this study, we consider only

stochastic programming with recourse. For a general description of stochastic program-

ming, see Kall and Wallace (1994), and Birge and Louveaux (1997).

Since the deregulation of the electricity industry, stochastic programming has been

widely applied within the power sector. Fleten and Kristoffersen (2007) compare stochas-

tic programming and deterministic approaches to the bidding strategies of a Norwegian

hydropower producer. They find that using a stochastic programming model is, on av-

erage, more profitable than using the solution of the deterministic approach. The de-

terministic model can lead to huge losses if the realised price differs from the price for

which the model is optimised. Also, the solution of the stochastic programming model

is more robust as it takes various price scenarios into account. Kettunen et al. (2011)

analyse the impact of carbon price uncertainty on investments in the energy sector. Us-

ing a multi-stage stochastic optimisation model, they find that carbon price shocks deter

smaller companies and that current carbon policies may, therefore, result in market con-

centration.

We apply stochastic programming to the CHP investment problem of a microgrid,

which has been examined previously using only deterministic models and real options.

Analogous to Wickart and Madlener (2007), we take the perspective of a large consumer

facing uncertain fuel and electricity prices, but our study also provides insights into the

interaction of financial hedges and on-site generation focusing on a microgrid’s risk man-

agement. Finally, we report on how different technologies can contribute to reaching the

2020 CO2 emissions targets.

2.3 Model Description

Our model addresses the investment problem of a hypothetical commercial microgrid with

electricity and heat loads. Initially, the microgrid consists only of a gas-fired boiler, but

it has the option to invest in microturbines, with or without heat exchangers, at the be-

ginning of the time horizon. If this option is not exercised, then the microgrid can meet

its electricity loads only through purchasing electricity on the spot and futures markets.
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Similarly, without CHP, the microgrid covers all of its heat loads by purchasing gas on the

spot and futures markets for its boiler. To begin with, we assume that both electricity

and gas and futures contracts are physically settled. If a microturbine without a heat

exchanger is installed, then the microgrid can meet its electricity demand with on-site

generation, for which the gas is purchased on the spot and futures markets. On the other

hand, if CHP is installed, then the microgrid also has the possibility to recover the heat

waste from its electricity generation and utilise it to supply its heat loads. The energy

flows with different technologies are indicated in Fig. 2.3.

Figure 2.3: Stylised Microgrid with CHP

We assume that the microgrid is a price taker and that it faces uncertain electricity and

gas spot prices. By contrast, since energy loads in commercial buildings can be forecast

with high accuracy (Zhao and Magoulès, 2012), we assume that both electricity and heat

loads are known in advance. Thus, the microgrid makes its investment and futures con-

tracting decisions without knowing spot price realisations, but it can purchase additional

electricity and gas later when their spot prices are known. Therefore, the microgrid’s

investment problem can be formulated using mixed-integer multi-stage stochastic pro-

gramming with recourse. To take into account possible risk preferences, we assume that

the microgrid’s objective is to minimise its expected cost plus a risk measure with weight

B. For the risk measure, we use the conditional value-at-risk (CVaR), which estimates

the expected loss with a confidence level A ∈ [0, 1) in the worst 1 − A cases (Fig. 2.4).

CVaR is formulated with the help of the value-at-risk (VaR), which defines losses at the

A percentile. As VaR is a threshold value, i.e., the probability that the loss exceeds this

value is 1−A, in contrast to CVaR, it does not provide any information regarding the size

of loss beyond this level. In addition, unlike VaR, CVaR is a coherent risk measure, i.e., it

does not violate the sub-additivity property. The CVaR of a portfolio of different assets
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is always less than the sum of CVaRs of all assets independently. Finally, as CVaR can

be formulated using linear programming, it is suitable for optimisation problems (Artzner

et al., 1999; Rockafellar and Uryasev, 2000). Thus, we apply CVaR to examine different

regimes for the microgrid in terms of risk aversion, such as B = 0 for risk neutral and

B > 0 for risk averse.

Figure 2.4: CVaR in Relation to VaR

2.3.1 Decision-Making Framework

The time horizon of the optimisation problem is divided into main periods indexed by

t ∈ T := {1, ..., T}, each of which is split into subperiods, indexed by m ∈ M :=

{1, ...,M} (see Fig. 2.5). The decision to invest in on-site generation has to be made at

the beginning of the first main period, i.e., at t = 1, and is effective immediately. At the

beginning of every main period, the microgrid can decide to reduce its risk exposure by

purchasing electricity and gas futures. Subsequently, the microgrid can adjust its futures

purchases by going on the spot market to purchase electricity and gas at their realised

prices in each subperiod within that main period. Similarly, the microgrid also decides at

each subperiod how much electricity to generate. After the last subperiod, a new main

period starts, in which all decisions on futures and spot purchases are repeated.

Figure 2.5: Decision-Making Timeline
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2.3.2 Problem Formulation

The microgrid’s investment problem is formulated as a mixed-integer stochastic program,

in which the objective is to minimise the expected present value of its cost plus the

CVaR with B weight. Because of the stochastic and combinatorial nature of these prob-

lems, solving a mixed-integer stochastic program can lead to computational difficulties.

This is why it is essential to test and compare the results of multiple solvers and algo-

rithms when we attempt to solve such a problem. The notation and the mathematical

formulation are stated below. The uncertain price processes are represented through a

combination of a scenario tree (main scenarios) and scenario fans (subscenarios). The

detailed scenario generation method is provided in Section 2.4.1. An essential part of

the problem formulation in stochastic programming models is the implementation of the

non-anticipativity principle, i.e., decisions need to be taken without knowing in advance

the future outcomes. Thus, note that the investment decision (wi) is the same in every

main scenarios and subscenarios, whereas the futures purchase decisions (xf
st1

,yf
st1

, zf
st1

) are

the same for each subscenario at a main scenario node, thereby guaranteeing that the

non-anticipativity conditions for both the investment decisions and futures purchases are

satisfied, Eqs. (2.9)–(2.11).

2.3.3 Notation

Sets

b(st1) ∈ St−1
1 : ancestor to path st1

i ∈ I: technology index

I: set of technologies

m: subperiod index, m = 1, . . . ,M

st1 ∈ St1: the index of a particular main scenario path in the scenario tree at main time

period t

St1: set of all possible main scenario paths in the scenario tree at main time period t

s2 ∈ S2: the index of a particular subscenario path

S2: set of all possible subscenario paths at a a given node in the scenario tree

t: main time period index, t = 1, . . . , T

Fixed Parameters

A: confidence level for the CVaR

B: weight of CVaR

C: CO2 emissions rate of the microgrid from burning gas on-site (ton of CO2/MWh)

De: electricity load in each subperiod (MWe)

Dh: heat load in each subperiod (MW)
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Eb: boiler conversion efficiency, i.e., units of useful heat produced from one MWh of

natural gas (MWh/MWh)

Ee
i : electrical conversion efficiency, i.e., units of electricity produced from one MWh of

natural gas, of technology i (MWhe/MWh)

Eh
i : heat capture rate from CHP, i.e., units of useful heat produced from one MWhe of

electricity, of technology i (MWh/MWhe)

Ho: length of each main period in years (a)

Hq: length of each subperiod in years (a)

J = 8760: number of hours in a year (h/a)

Ke
i : capacity of electricity generation unit of technology i (MWe)

Kb: capacity of boiler unit (MW)

Lc: tax on CO2 emissions (e/ton)

Ni: the amortised cost over T ×M subperiods of installing technology i, paid per subpe-

riod (e)

Qst1
: probability of main scenario path st1 at main time period t

Qs2 : conditional probability of subscenario path s2 within a particular main scenario

R: risk-free interest rate per annum

V e: variable operating and maintenance (O&M) cost of electricity generation (e/MWh)

Random Parameters

F e
st1

: multi-subperiod-ahead forward price of electricity purchased during main scenario st1

at the beginning of main period t and delivered in all subscenario paths s2 and in each

subperiod m within this main scenario path and main time period (e/MWhe)

F g
st1

: multi-subperiod-ahead forward price of natural gas purchased during main scenario

st1 at the beginning of main period t and delivered in all subscenario paths s2 and in each

subperiod m within this main scenario path and main time period (e/MWh)

P e
st1,s2,m

: spot price of electricity in scenario path st1 in main period t and in subscenario

path s2 at subperiod m (e/MWhe)

P g
st1,s2,m

: spot price of gas in scenario path st1 in main period t and in subscenario path s2

at subperiod m (e/MWh)

2.3.4 Decision Variables

γst1 : present value of the cumulative cost of satisfying the electricity and heat loads in

main scenario path st1 ∈ St1 up until main period t (e)

ηst1 : auxiliary variable in main scenario path st1 ∈ St1 during main period t to calculate

the CVaR, it is equal to the amount of cumulative cost, γst1 , which exceeds the VaR, and
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it is equal to 0 if the cumulative cost is smaller than the VaR (e)

ξ: VaR at confidence level A (e)

$st1
: the expected present value at beginning of main period t of the spot operational and

amortised capital cost of all subperiods m during main period t

Φst1
the total cost of purchasing futures for the microgrid in scenario path st1 ∈ St1 at the

beginning of main period t (e)

Ψ: the total amortised capital cost for the selected technologies (e)

Ωst1,s2,m
: the total spot operational cost of the microgrid in scenario path st1 ∈ St1 during

main period t and in subscenario path s2 ∈ S2 during subperiod m (e)

hi,st1,s2,m: recovered heat from technology i used to meet heat load in main scenario path

st1 ∈ St1 during main period t and in subscenario path s2 ∈ S2 during subperiod m (MWh)

wi: binary variable, now-or-never decision to install technology i at t = 1

xst1,s2,m: electricity purchased from the spot market in main scenario path st1 ∈ St1 during

main period t and in subscenario path s2 ∈ S2 during subperiod m (MWhe)

xf
st1

: electricity futures purchased at main scenario path st1 ∈ St1 at the beginning of main

period t, which are divided into equal quantities that are delivered in all subscenario paths

s2 ∈ S2 in each subperiod m (MWhe)

yi,st1,s2,m: natural gas purchased from the spot market for cogeneration in technology i in

main scenario path st1 ∈ St1 during main period t and in subscenario path s2 ∈ S2 during

subperiod m (MWh)

yf
i,st1

: natural gas futures purchased for cogeneration in technology i for delivery in main

scenario path st1 ∈ St1 at the beginning of main period t, which are divided into equal

quantities that are delivered in all subscenario paths s2 ∈ S2 in each subperiod m (MWh)

zst1,s2,m: natural gas purchased from the spot market for boiler in main scenario path

st1 ∈ St1 during main period t and in subscenario path s2 ∈ S2 during subperiod m

(MWh)

zf
st1

: natural gas futures purchased for boiler for delivery in main scenario path st1 ∈ St1 at

the beginning of main period t, which are divided into equal quantities that are delivered

in all subscenario paths s2 ∈ S2 in each subperiod m (MWh)

2.3.5 Mathematical Formulation

Objective Function

The objective function in Eq. (2.1) minimises the expected present value of the microgrid

(first term) plus a weighted CVaR of the cost (second term):

minimise
h,w,x,y,z,xf,yf,zf,ξ,η

∑
sT1 ∈ ST1

QsT1
γsT1 +B

ξ +
1

1− A
∑
sT1 ∈ST1

QsT1
ηsT1

 (2.1)

22



Constraints

Eqs. (2.2)–(2.3) define the CVaR constraint of the present value of the cumulative cost

of running the microgrid, ∀sT1 ∈ ST1 . Since the auxiliary variable, ηst1 , is nonnegative,

the term ξ + 1
1−A

∑
sT1 ∈ST1

QsT1
ηsT1 is only minimised in (2.1), if the VaR, ξ, is exactly the

cost at A quantile, as any decrease (increase) in the value of ξ would not be offset by the

decrease (increase) in the value of 1
1−A

∑
sT1 ∈ST1

QsT1
ηsT1 , thereby concurrently determining

the VaR and the expected loss beyond the VaR, and, hence the CVaR:

γsT1 − ξ − ηsT1 ≤ 0 (2.2)

ηsT1 ≥ 0 (2.3)

The constraint in Eq. (2.4) updates the present value of the cost of energy provision:

γst1 =

{
$st1

+ Φst1
if t = 1

γb(st1) + (1 +RHq)−(t−1)M($st1
+ Φst1

) otherwise, ∀st1 ∈ St1
(2.4)

The constraint in Eq. (2.5) calculates the expected present value at the beginning of

the main period t for all spot operational and amortised capital cost within main period

t, ∀st1 ∈ St1:

$st1
=
∑
s2∈S2

Qs2

(
M∑
m=1

(1 +RHq)−m(Ψ + Ωst1,s2,m
)

)
(2.5)

Eqs. (2.6)–(2.8) give the amortised capital, futures, and spot operational costs, respec-

tively, ∀st1 ∈ St1,∀s2 ∈ S2,∀t,∀m:

Ψ =
∑
i∈I

wiNi (2.6)

Φst1
=
∑
i∈I

(F g
st1

+ V e + LcC)yf
i,st1

+ F e
st1
xf
st1

+ (F g
st1

+ LcC)zf
st1 (2.7)

Ωst1,s2,m
=
∑
i∈I

(P g
st1,s2,m

+ V e + LcC)yi,st1,s2,m + P e
st1,s2,m

xst1,s2,m + (P g
st1,s2,m

+ LcC)zst1,s2,m

(2.8)

Eqs. (2.9)–(2.10) ensure that the electricity and heat demands are met, respectively,
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∀st1 ∈ St1,∀s2 ∈ S2,∀t,∀m:

xst1,s2,m +
xf
st1

M
+
∑
i∈I

Ee
i

(
yi,st1,s2,m +

yf
i,st1

M

)
≥ DeHqJ (2.9)

∑
i∈I

hi,st1,s2,m + Eb

(
zst1,s2,m +

zf
st1

M

)
≥ DhHqJ (2.10)

Eq. (2.11) restricts the use of recovered heat, ∀i ∈ I,∀st1 ∈ St1,∀s2 ∈ S2,∀t, ∀m:

hi,st1,s2,m ≤ Eh
i E

e
i

(
yi,st1,s2,m +

yf
i,st1

M

)
(2.11)

Eqs. (2.12)–(2.13) ensure that the DER and boiler capacity limits are observed, re-

spectively, ∀st1 ∈ St1,∀s2 ∈ S2, ∀t, ∀m:

Ee
i

(
yi,st1,s2,m +

yf
i,st1

M

)
≤ wiK

e
iHqJ,∀i ∈ I (2.12)

Eb

(
zst1,s2,m +

zf
st1

M

)
≤ KbHqJ (2.13)

Finally, all decision variables must be non-negative, ∀i ∈ I,∀st1 ∈ St1,∀s2 ∈ S2,∀t,∀m:

hi,st1,s2,m ≥ 0, wi ∈ {0, 1}, xst1,s2,m ≥ 0, yi,st1,s2,m ≥ 0, zst1,s2,m ≥ 0, xf
st1
≥ 0, yf

i,st1
≥ 0, zf

st1
≥ 0

(2.14)

2.4 Numerical Examples

2.4.1 Data and Cases

While Europe has a relatively high level of CHP production, e.g., more than 50% of

Denmark’s power generation comes from CHP (European Cogeneration Review, 2013),

the potential for further CHP implementation is substantial. For example, Golbach (2013)

estimates that over 50% of the Germany’s total electricity demand could be provided

through CHP. Accordingly, Germany has passed three different legislations since 2002

promoting the adoption of CHP with the aim to increase its rate of cogeneration from the
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Figure 2.6: Daily Average Electricity Price

Figure 2.7: Daily Average Gas Price

current level of 14.5% to 25% by 2020 (Kraft-Wärme-Kopplungs-Gesetz, 2012). However,

due to factors like uncertain energy prices and economic stagnation, the trajectory of CHP

adoption relative to the 25% target has been unsatisfactory during the past few years. To

examine the risk exposure of a hypothetical German microgrid with CHP and to study

ways to mitigate it, we implemented a case study by estimating price parameters from the

European Energy Exchange’s (EEX) German electricity and gas spot markets, and Phelix

and Natural Gas Futures markets from 2007-2012. While historical data for German

electricity prices are available since 2002, the natural gas trading was launched only in

2007 (EEX Report, 2014), which, unfortunately, restricts our sample size significantly.

The electricity and gas price scenarios are constructed in two steps. First, we use the

scenario tree method to generate average electricity (P̄ e
st1

) and gas (P̄ g
st1

) prices within every

main period. Second, based on average prices within the main period, we generate scenario

paths using the scenario fan method for electricity (P e
st1,s2,m

) and gas (P g
st1,s2,m

) spot prices

for each subscenario and subperiod (Fig. 2.8). We solve the optimisation problem over

a time horizon of eight years. Since a scenario tree-based problem combining two price

processes scales exponentially with the number of decision stages, we limit the number

of stages in the scenario tree to keep the problem computationally tractable. Using four
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main periods with two uncertainties gives us 64 (22(T−1)) different main scenarios and

with 10 subscenarios for each node in the main scenario tree, this produces 640 different

scenarios in total. Each main period covers two years, and since we have eight subperiods

per a main period, a subperiod covers a quarter. We use yearly average electricity and gas

prices to estimate the parameters for the scenario tree and quarterly average electricity and

gas spot prices to estimate the parameters for the scenario fan (Table 2.1). Geometric

Brownian motion is one of the most frequently used price processes in a discrete-time

lattice-based model (Cox et al., 1979). While GBMs do not take into account important

characteristics of commodity price dynamics (i.e., mean reversion or jumps in electricity

price), these effects on modelling long-term average prices can be negligible (Pindyck,

1999). Consequently, GBM is used widely to model long-term electricity and gas prices

(Fleten et al., 2007). To invoke GBM to model a price process, several assumptions must

be met. The logarithm of ratios of consecutive prices need to be normally distributed with

constant mean and variance and they have to be independent of their past values (Marathe

and Ryan, 2005). To check the normality assumptions for quarterly average electricity

prices (Fig. 2.9), we run the Shapiro-Wilk test (Sheskin, 2003), and to assess serial

independence, we run the Breusch-Godfrey test (Johnston and DiNardo, 1997). Based

on obtained p-values (Table 2.2), we cannot reject the hypotheses that quarterly average

electricity and gas prices follow GBMs. On the other hand, we find significant correlation

between quarterly electricity and gas prices (p = 0.01). Nevertheless, since our sample

size is too small, these tests have low statistical power, and we cannot apply them with

any reliability for yearly average prices. Still, our data support more the assumptions of

correlated GBMs than that of other processes, i.e., mean-reversion, therefore, we assume

that in our model both long-term and short-term price processes follow correlated GBMs.

Regardless of the possible flaws associated with such a sample size, our aim is not to

predict future prices but to generate feasible scenarios that reflect price uncertainties

(Schumacher, 1993).

Table 2.1: Estimated Parameters for Electricity and Gas Prices

Electricity Gas
Starting price (e/MWh) 49.0 21.0
Yearly average spot price:
Price volatility (σe

o,σg
o) 27.5% 22.5%

Price correlation (ρo) 0.80
Quarter-yearly average spot price:
Price volatility (σe

q,σg
q) 30.1% 18.9%

Price correlation (ρq ) 0.83
Two-yearly futures:
Risk premium (Re,Rg) 13% 3%
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(a) Main Scenarios (b) Subscenarios

Figure 2.8: Scenario Generation

Table 2.2: Goodness of Fit

Shapiro-Wilk Test Breusch-Godfrey Test
Quarterly average electricity price p = 0.07 p = 0.58
Quarterly average gas price p = 0.34 p = 0.31

The scenario tree is generated through an extension of the log-transformed binomial

lattice (Gamba and Trigeorgis, 2001). At end of each main period, the average electricity

(gas) price can increase, U e
st1

= +1 (Ug
st1

= +1), or decrease U e
st1

= −1 (Ug
st1

= −1). Thus,

from each node there are four branches, each corresponding to a different state of the

average electricity and gas prices. The scenarios generated from the scenario tree are

Figure 2.9: Quarterly Average Electricity Price

27



called main scenarios and are indexed by st1 ∈ St1. We assume that the long-term average

gas and electricity prices follow GBMs with zero drift.

ln P̄ e
st1

= ln P̄ e
st−1
1

+ σe
o

√
HoU

e
st1

(2.15)

ln P̄ g
st1

= ln P̄ g

st−1
1

+ σg
o

√
HoU

g
st1

(2.16)

(U e
st1
, Ug

st1
) =


(+1,+1) with probability (1+ρo)

4

(+1,−1) with probability (1−ρo)
4

(−1,+1) with probability (1−ρo)
4

(−1,−1) with probability (1+ρo)
4

(2.17)

Once we generate for each main period and main scenario the average electricity (P̄ e
st1

)

and gas (P̄ g
st1

) prices, we generate scenario paths based on a scenario fan, which are referred

to as subscenarios and indexed by s2 ∈ S2. This way, we obtain the electricity (P e
st1,s2,m

)

and gas (P g
st1,s2,m

) spot prices for each subscenario and subperiod based on the average price

within the main scenario. Similarly as above, we assume that prices in subperiods follow

correlated GBMs with zero drifts and are generated through the well-known stochastic

differential equation of the correlated GBMs (Hull, 2012). In a discrete-time GBM with

zero drift, the difference follows a Wiener process. Accordingly, in correlated GBMs, the

corresponding Wiener processes are correlated:

P e
st1,s2,m

′ = P̄ e
st1

+
m′∑
m=1

σe
qε

e
st1,s2,m

(2.18)

P g
st1,s2,m

′ = P̄ g
st1

+
m′∑
m=1

(σg
qρqε

e
st1,s2,m

+ σg
q

√
1− ρ2

qε
g
st1,s2,m

) (2.19)

where εe
st1,s2,m

∼ N(0, 1) and εg
st1,s2,m

∼ N(0, 1). Finally, the prices of electricity (F e
st1

)

and gas (F g
st1

) futures contracts are calculated as the expected spot price in the main

scenario st1, where Qs2 is the probability of subscenario s2, multiplied by the risk premia

(Re for electricity futures and Rg for gas futures) representing the persistent differences

between the futures prices and their expected spot prices (Kettunen et al., 2010), which

are estimated using past futures prices and average spot prices (Table 2.1):
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F e
st1

=

(∑
s2∈S2 Qs2

1
M

M∑
m=1

P e
st1,s2,m

)
(1 +Re) (2.20)

F g
st1

=

(∑
s2∈S2 Qs2

1
M

M∑
m=1

P g
st1,s2,m

)
(1 +Rg) (2.21)

We illustrate the effect of physical and financial hedges on the decision-making process

through several cases, which differ in terms of available hedges (Table 2.3). The micro-

turbine parameters (Table 2.4) are collected from Siler-Evans et al. (2011), Giaccone and

Canova (2009), and Galanti and Massardo (2011).

We consider microturbines, small-scale gas turbines with capacity size less than 1000

kW (Pipattanasomporn, 2005), without heat exchangers (MT) and microturbines with

heat exchangers (MT-HX) with different capacity sizes. While an MT has lower total

efficiency than an MT-HX, MTs cost less and have been commercially available over a

longer period; therefore, they are often considered first for small-scale generation invest-

ment (McDonald, 2000; Zhu et al., 2002; Nascimento et al., 2008). Other parameters,

including electricity and heat loads, the CO2 tax, the risk-free interest rate, and the con-

fidence level for the CVaR, are specified in Table 2.5. Note that the tax on CO2 emissions

and operational and maintenance costs remain constant in real terms over the entire time

horizon. In each case, we examine different regimes in terms of the level of risk aversion

(B). With these numerical examples, we examine whether on-site generation investments

can be regarded as physical hedges to mitigate the microgrid’s risk exposure and how

they interact with financial hedges, such as electricity and gas futures. The optimisation

problems are implemented in the General Algebraic Modeling System (GAMS) using the

basic open-source nonlinear mixed integer programming (BONMIN) solver on a desktop

with an Intel Core i7 2.79GHz CPU and 8GB RAM. The running times range from 40 to

280 minutes.
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Table 2.3: Different Cases of Running the Microgrid

Case Electricity
futures

Gas
futures

DER
investment

1 - No hedges
2 - Electricity futures only X
3 - Gas futures only X
4 - Both futures X X
5 - Physical hedges X
6 - Physical hedges with
electricity futures

X X

7 - Physical hedges with
gas futures

X X

8 - Physical hedges with
both electricity and gas fu-
tures

X X X

Table 2.4: Available Technologies of Microturbines (MT) with and without Heat Ex-
changer (HX)

Technology
index (i)

Type of
generation unit

Capacity(
Ke
i (kWe)

) Electrical
conversion
efficiency

(Ee
i )

Total efficiency of
producing

electricity and
useful thermal

energy (Ee+EeEh)

Total
investment
cost (Me)

1 MT-small-1 200 30% 30% 0.20
2 MT-small-2 400 30% 30% 0.40
3 MT-medium 600 30% 30% 0.60
4 MT-HX-small-1 200 27% 78% 0.27
5 MT-HX-small-2 400 27% 78% 0.54
6 MT-HX-medium 600 35% 88% 0.77

Table 2.5: Microgrid Parameters and CO2 Tax

Length of main period (Ho) 2 a (17520 h)
Length of subperiod (Hq) 0.25 a (2190 h)
Electricity demand (De) 1 MWe

Heat demand (Dh) 1.5 MW
CO2 emissions tax (Lc) e21/ton
Operational and maintenance cost (V e) e2/MWh
Risk-free annual interest rate (r) 1%
Confidence level for the CVaR (A) 95%

2.4.2 Overview of Insights

Our findings confirm that on-site generation with CHP reduces both expected energy

costs and CO2 emissions compared to cases with no on-site investment. In addition, the
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results indicate that on-site generation can hedge against volatile electricity prices, even

if on-site generation has low efficiency or if the spread between electricity and gas prices

decreases. Finally, we show that on-site generation as a physical hedge can be substituted

with or complemented by financial hedges. The main results for a risk-neutral micro-

grid (B = 0) across different cases, with and without the possibility of CHP investment,

are summarised in Table 2.6. Table 2.7 presents the same results for a maximally risk-

averse (B = ∞) microgrid, i.e., with large values of B for which the CVaR reaches its

minimum. Note that, due to no-arbitrage futures pricing, i.e., price of futures cannot

be lower than expected spot prices for the corresponding period, futures purchases are

always zero in the risk-neutral regime. Table 2.8 shows how a lower gas spark spread,

the difference between the price of electricity and the cost of producing electricity using

a central gas-fired power plant, affects the microgrid’s investment decision. These results

are obtained either by increasing the gas spot price by 20% and 50%, or by decreasing

the electricity spot price by 16% and 33% compared to the original prices in each scenario.

Table 2.6: Results in a Risk-Neutral Regime (B = 0)

Case Expected
Cost
(Me)

CVaR
(Me)

Installed
Capacity

(kWe)

Expected
CO2

emissions
(kiloton)

Efficiency
of the

microgrid

Cases 1–4 and
Cases 5–8 w/o CHP

7.59 12.83 0 59.19 72.2%

Cases 5–8 w/ CHP 7.02 10.69 800 49.14 79.0%

Insight 1: CHP microturbines reduce the expected cost compared to purchas-

ing electricity from the market or generating electricity without heat recovery.

From Table 2.6, the installation of CHP in Cases 5–8-w/ CHP leads to a significant

decrease in expected cost compared to Cases 1–4 and Cases 5–8-w/o CHP. Over the

eight-year period, the reduction in expected cost with CHP is e0.58M. Furthermore,

compared to Cases 1–4, the overall efficiency of the microgrid increases in Cases 5–8-w/

CHP. Note that the benchmark for efficiency is relatively high, as significant proportions

of Germany’s electricity are generated using nuclear power and renewable energy sources,

15.4% and 24.1%, respectively 2. Nevertheless, this modest increase in efficiency in Cases

5–8-w/ CHP translates into a significant decrease in CO2 emissions over the eight-year

period. It is equivalent to a 2.3% annual rate of decline over the same period, which is

significantly larger than the 0.5% annual decrease recorded over the last eight-year period

in Germany. This result provides support for German CHP laws, which aim to promote

2Statistisches Bundesamt. Available: https://www.destatis.de/DE/ZahlenFakten/ImFokus/Energie/Kernenergie.html
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CHP installation in order to reach the 2020 targets.

Insight 2: On-site generation reduces the microgrid’s risk exposure compared

to purchasing electricity from the spot market.

The CVaR of the microgrid can be diminished by decreasing either its expected cost or

the volatility of its running cost. The microgrid’s CVaR is the highest when it meets

all of its electricity demand by purchasing from the spot market and uses the boiler for

heating, also purchasing all of its gas from the spot market. When CHP is installed in

Case 5-w/ CHP, both under risk-neutral and risk-averse regimes (see Tables 2.6 and 2.7),

the microgrid’s CVaR decreases by e2.14M compared to Case 1. As the difference be-

tween the expected cost in Case 5-w/ CHP and Case 1 is e0.58M, the remaining part of

the CVaR reduction, e1.57M, is due only to the lower volatility of the cost of running

the microgrid. Thus, the majority of the reduction in the CVaR arises from swapping

electricity spot purchases for gas spot purchases using CHP. The CVaR is reduced the

same way in Cases 5–8-w/o CHP, but the microgrid invests in on-site generation only

under risk-averse regimes. Since the MT w/o HX has low efficiency, it cannot reduce the

expected cost; however, it still can reduce the microgrid’s CVaR by using gas spot with

low volatility when the electricity price peaks.

Table 2.7: Results in a Risk-Averse Regime (B =∞)

Case Expected
Cost
(Me)

CVaR
(Me)

Installed
Capacity

(kWe)

Electricity
futuresa

Gas
futures

for
boiler b

Gas
futures
for MT c

Expected
CO2

emissions
(kt)

Efficiency
of the

microgrid

1 7.59 12.83 0 0% 0% 0% 59.19 72.2%
2 7.70 12.02 0 9.0% 0% 0% 59.19 72.2%
3 7.62 12.63 0 0% 10.7% 0% 59.19 72.2%
4 7.69 11.97 0 7.0% 3.8% 0% 59.19 72.2%
5-w/ CHP 7.02 10.69 800 0% 0% 0% 49.14 79.0%
6-w/ CHP 7.03 10.63 800 1.1% 0% 0% 49.14 79.0%
7-w/ CHP 7.06 10.48 800 0% 1.7% 3.0% 48.96 79.2%
8-w/ CHP 7.07 10.44 800 0.7% 1.6% 3.1% 48.96 79.2%
5-w/o CHP 7.88 12.30 800 0% 0% 0% 60.86 68.1%
6-w/o CHP 7.80 11.96 400 6.7% 0% 0% 60.02 70.0%
7-w/o CHP 7.91 12.06 800 0% 8.2% 0.4% 60.87 68.0%
8-w/o CHP 8.10 11.82 600 5.6% 9.2% 0.7% 61.20 68.3%
a Fraction of electricity consumption supplied from electricity futures
b Fraction of heat consumption from boiler supplied from gas futures
c Fraction of electricity consumption supplied from gas futures
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Insight 3: CHP facilitates risk management even when the expected gas spark

spread is negative.

When the difference between electricity and gas spot prices diminishes substantially and

the gas spark spread becomes negative, most gas-fired power plants stop operating. As

CHP is more efficient than large power plants, a risk-neutral microgrid in Case 5-w/ CHP

invests in on-site generation if the negative expected gas spark spread is the result of in-

creasing gas prices (see Table 2.8). However, if the negative gas spark spread is due to low

electricity prices, then continuous on-site generation with CHP also becomes uneconomi-

cal, and a risk-neutral microgrid is better off with purchasing all electricity from the spot

market. Nevertheless, a risk-averse microgrid still invests in a CHP unit as it can hedge

against electricity price volatility and decreases the microgrid’s CVaR (see Table 2.8).

These findings indicate that on-site generation, as a physical hedge, represents additional

value for risk-averse consumers, since, similarly to swaptions (Hull, 2012), it gives the mi-

crogrid an option to swap electricity price for gas prices. Thus, even under a decreasing

expected spark spread, on-site generation with CHP is an efficient risk management tool

for consumers exposed to volatile electricity prices.

Table 2.8: Installed On-Site Generation in Case-5-w/ CHP for Different Spark Spreads

Average ratio
of electricity
and gas spot

pricesa

Gas spark
spreadb

(e/MWh)

Installed
capacity at
B = 0
(kWe)

Installed
capacity at
B = 1
(kWe)

Original prices 3.0 11.46 800 800

Increasing gas prices
2.5 2.1 800 800
2.0 -13.3 600 600

Decreasing electricity prices
2.5 2.2 600 600
2.0 -8.3 0 600

a Average ratio of electricity and gas spot prices =
∑

sT1 ∈S
T
1

QsT1

∑
s2∈S2

Qs2

1

TM

∑
t∈T

∑
m∈M

(
P e
st1,s2,m

P g

st1,s2,m

)

b Spark spread =
∑

sT1 ∈ S
T
1

QsT1

∑
s2∈S2

Qs2

1

TM

∑
t∈T

∑
m∈M

(P e
st1,s2,m

−
P g

st1,s2,m

Ee
)

where Ee=50.00% by convention (CDC Climate Research - Methodology, 2013)

Insight 4: Electricity futures and on-site generation are substitutes.

As consumers also have the possibility to hedge against price risk via the financial markets,

it is important to assess how the availability of electricity futures affects the microgrid’s

investment decisions in on-site generation. Comparing the cases with risk-averse regimes,

Case 2 and Case 6-w/ CHP in Table 2.7, the proportion of electricity futures purchased

decreases significantly when CHP is present. Since CHP generation is very efficient, it can

decrease CVaR at a lower cost by producing energy on-site whenever the spot electricity
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price peaks. Therefore, electricity futures have less scope for CVaR reduction and are

used very rarely. On the other hand, when only the less efficient MT without HX can be

installed, the availability of electricity futures decreases the need for on-site generation.

This is why the installed capacity drops to 400 kWe in Case 6-w/o CHP compared to 800

kWe in Case 5-w/o CHP. Consequently, these findings show that electricity futures and

on-site generation are substitutes.

Insight 5: Gas futures and on-site generation are complements.

The microgrid can purchase gas futures for on-site generation or for the boiler. Since

the gas spot price has low volatility, gas futures for the boiler can reduce the CVaR only

slightly. Nevertheless, as the boiler is more efficient than MT w/o HX, these purchases as-

sist on-site investment in Case 8-w/o CHP, where the installed capacity is 200 kWe higher

compared to Case 7-w/o CHP, when only electricity futures are available (see Table 2.7).

Gas futures for on-site generation would increase the running cost of the microgrid in

Case 8-w/o CHP; however, the microgrid can mitigate some of the price volatility of spot

gas for the MT by purchasing gas futures for the more efficient boiler. On the other

hand, when CHP is installed, the microgrid purchases most of the gas futures for the MT,

thereby further reducing the microgrid’s exposure to electricity price volatility. While

the share of gas futures in electricity generation is still relatively small, i.e., 3.0% and

3.1% in Cases 7 and 8-w/ CHP, respectively, they contribute significantly to the CVaR

reduction of the microgrid. For example, in Case 7-w/ CHP, if the microgrid could not

use gas futures for MT, then the CVaR would increase by e0.11M. Therefore, while the

combined share of gas futures purchases for the MT and for the boiler are the lowest in

Cases w/ CHP, gas futures become more cost-effective in reducing CVaR when CHP is

present.

Summary

According to the European Cogeneration Review (2013), the biggest obstacles to CHP

adoption in Germany are risk aversion and an unfavourable gas spark spread. This is why

it is important to note that, in fact, on-site generation can work as a physical hedge by

reducing the consumers’ CVaR, which is not captured by NPV and real options analyses.

Under a positive gas spark spread, even cheaper but less-efficient technologies, i.e., mi-

croturbines without heat exchangers, can limit risk exposure to peaking electricity prices.

Furthermore, conforming to the results of Maribu and Fleten (2008), we find that con-

sumers can decrease their expected cost by investing in CHP, which can also function as an

efficient hedge in case of a significant reduction in the average gas spark spread. However,

a liquid electricity futures market might have an adverse effect on on-site generation.
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Indeed, the availability of electricity futures can decrease the willingness of risk-averse

consumers to invest in technologies w/o CHP since they can be as effective in reducing

CVaR as on-site generation without heat recovery. By contrast, the availability of gas

futures can contribute to more investment in on-site generation, as shown in Cases 7-w/

and w/o CHP. While financial hedges play an important role in risk management, from

a social point of view, CHP investments provide more benefits in terms of lower CO2

emissions and more reliable electricity supply. Thus, policies affecting electricity and gas

markets can also influence progress towards the 2020 CHP goals in Germany. To exam-

ine how the interaction between physical and financial hedges affect on-site generation

investment, we investigate each type of hedge separately and perform sensitivity analyses

in terms of electricity price volatility as well as and electricity and gas price correlation.

2.4.3 Insights without On-Site Generation

In order to understand better the interaction between financial and physical hedges, we

first examine the effectiveness of financial hedging alone. To do so, we focus on the

efficient frontier for Cases 1–4. Such frontiers are delimited by varying the B parameter

in order to make determinations about the mean-risk tradeoff. The rate of tradeoff can be

analysed through comparing the slope of the mean-risk efficient frontier, from which we

can derive the amount of CVaR reduction per e1 increase in the expected cost. Fig. 2.10

shows the efficient frontier for Cases 1–4. The largest decrease in CVaR is between B = 0

and B = 0.35. At this level of risk aversion, gas futures are more efficient than electricity

futures at reducing CVaR, i.e., a e1 increase in expected cost with gas futures leads to

larger CVaR reduction, but the effect of electricity futures is larger, i.e., they reduce the

CVaR by e0.78M compared to e0.19M with gas futures. This is because the electricity

spot price is more volatile than the gas spot price, which means that electricity futures

can reduce CVaR to a larger extent, even though their risk premium is higher (Table 2.1).

Hence, a microgrid with only financial hedges can reduce its CVaR mostly by purchasing

electricity futures.
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Figure 2.10: Efficient Frontiers for Cases 1–4

2.4.4 Insights with MT without Heat Recovery

To further elaborate on the main insights, we also examine the mean-risk tradeoff of cases

without CHP. Compared to the financial hedges in Cases 2–4, MT w/o HX on its own

is less effective. The maximum CVaR reduction in Case 5-w/o CHP is 4%, compared to

7% with financial hedges, and it is reached at a much higher cost. The reason for this is

that the MT w/o HX has a low electrical conversion rate, which can be used only in a

few scenarios, but its capital cost increases the microgrid’s expenditure in each scenario.

Conversely, the microgrid can decide in every main period whether to enter into futures

contracts, which makes financial hedges less burdensome on the expected cost.

Insight 2-w/o CHP: Less efficient on-site generation can also reduce the mi-

crogrid’s risk exposure.

From the results presented in Tables 2.6 and 2.7, we conclude that microturbines with-

out heat exchangers are always inferior to CHP, but they still can function as a physical

hedge. In the risk-neutral regime (B = 0), the microgrid does not install any on-site

generation in cases w/o CHP. Nevertheless, in risk-averse regimes (B > 0), the microgrid

installs microturbines whenever they are available. Furthermore, the more risk averse the

microgrid becomes, the more generation capacity it installs (Fig. 2.11). As above, the

reason for this is that the volatility of the gas spot price is lower than that of the elec-

tricity spot price. The microgrid can, therefore, decrease its CVaR by installing on-site

generation and swapping the volatile electricity spot price for the less volatile gas spot
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price. For example, in Case 5-w/o CHP at B = 0.37, the microgrid invests in 200 kWe

of on-site generation (Fig. 2.12). Due to its low efficiency, the microturbine supplies only

3.6% of the electricity load but has the potential to supply 20%. Thus, even though the

microturbine lies mostly idle, it still enables the microgrid to avoid peaking electricity

prices, thereby significantly decreasing its CVaR.

Insight 4-w/o CHP: The degree of the substitution effect between electricity

futures and on-site generation is determined by the level of risk aversion.

Figs. 2.11 and 2.12 show that the microgrid invests in less on-site generation capacity

when electricity futures are available. This indicates that electricity futures and on-site

generation are substitutes in the sense that increasing the purchases of electricity futures

reduces the scope of on-site generation for CVaR reduction. Conversely, lowering the

risk premium for electricity futures (decreasing the investment cost of MT) reduces the

risk-averse demand for on-site generation (electricity futures). However, this substitution

effect is asymmetric with the cross-price elasticity depending on the level of risk aversion.

At B = 100, a one percentage point decrease in the risk premium for electricity futures

leads to lower on-site generation investment. On the other hand, at the same level of

risk-aversion, only a 20% decrease in the investment cost would result in more on-site

generation investment and less futures purchases. At a lower level of risk aversion, B = 1,

when the microgrid installs the 200 kWe MT, a 14% decrease in the price of MT is sufficient

to increase the demand for on-site generation to 400 kWe, while only a 12% decrease in

the risk premium would result in no on-site investment and increased electricity futures

purchases. The substitution effect between electricity futures and on-site generation is

asymmetric because their effects on CVaR reduction are also asymmetric. Investing in

on-site generation gives the option to the microgrid to swap gas spot prices for electricity

prices. With on-site generation with low efficiency, the spread between gas and electricity

spot prices has to be sufficiently large so that the CVaR reduction from on-site generation

remains larger than the increase in the expected cost. As such a high price spread occurs

infrequently, the 400 kWe MT remains idle predominantly, while the 200 kWe MT is

sufficient most of the time. This is why the substitution effect of electricity futures is

larger when the 400 kWe MT is installed. Thus, in terms of CVaR reduction, MT w/o

HX is the most competitive against financial futures if installed in small capacity.

Insight 5-w/o CHP: The complementary effect between gas futures and on-

site investment depends on the level of risk aversion.

At B = 100 in Case 8-w/o CHP, a two percentage point decrease in the risk premium

for gas futures increases the demand for on-site generation from 600 kWe to 800 kWe.

At the same level of risk aversion, a 10% decrease in the investment cost increases the
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on-site investment to 800 kWe and, hence, increases the demand for gas futures for boiler

from 5.1% to 6.9% of the heat demand. Thus, gas futures have a larger impact when the

marginal CVaR reduction of on-site investment is small, which in Case 8-w/o is also due

to the presence of electricity futures, which are substitutes to on-site generation. This is

why in Case 7-w/o CHP, when electricity futures are not available, the marginal effect

of on-site generation on CVaR reduction increases and the role of gas futures becomes

more limited. At the risk-aversion levels specified on Fig. 2.11, a decrease in the risk

premium for gas futures does not lead to more investment. On the other hand, a decrease

in the investment cost leads to more investment, which in turn leads to more gas futures

purchases. Therefore, in Case 7-w/o CHP, on-site generation is a better complement as

it has a stronger effect on gas futures purchases than gas futures purchases have on the

investment decision. Nevertheless, the presence of gas futures still affects the investment

decision, as indicated by the mean-risk efficient frontiers of Cases 5 and 7-w/o CHP. When

gas futures are present, in Case 7-w/o CHP, investment decisions are triggered at lower

B compared to Case 5. For example, the microgrid invests in 400 kWe at B = 0.35 when

gas futures are available and at B = 0.50 when gas futures cannot be purchased.

Figure 2.11: Efficient Frontiers for Cases 5–8 w/o CHP with Installed Capacity Indicated
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Figure 2.12: Efficient Frontiers for Cases 5–8 w/o CHP with Spot and Futures Purchases
Indicated

2.4.5 Insights with CHP

Having demonstrated the effectiveness of CHP in decreasing the microgrid’s expected

cost, we now further examine Cases 5–8-w/ CHP by focusing on the CHP’s role in risk

management. As shown in Fig. 2.13, Cases 5–8-w/ CHP have much lower expected cost

and CVaR than Case 1. Furthermore, the installed generation capacity is the same in all

risk-neutral and risk-averse regimes. As the CHP is efficient, the microgrid uses on-site

generation to decrease its expected cost in the risk-neutral regime whenever the electricity

price peaks. Thus, there is no scope for further CVaR reduction by swapping electricity

for gas and, hence, the microgrid does not install more capacity in risk-averse regimes.

Insight 4-w/ CHP: The substitution effect of electricity futures for on-site

generation is much weaker with CHP in comparison with MT w/o HX.

While the shares of both electricity and gas futures are lower compared to Cases 5–8-w/o

CHP, the decrease in the use of electricity futures is larger than that of gas futures (see

Case 8-w/ CHP in Fig. 2.14 and Case 8-w/o CHP in Fig. 2.12). When the installed

generation capacity cannot be used economically, the electricity spot price is low with

low volatility; therefore, the microgrid purchases electricity futures at only those main

scenario nodes when the average gas spot price is relatively high and the electricity spot

price is still volatile. As this happens rarely, the share of electricity futures is much lower

than in cases w/o CHP. This indicates that MT w/ HX and electricity futures are sub-
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stitutes. Since the microgrid invests in CHP in the risk-neutral regime, the substitution

effect between on-site generation and electricity futures is much smaller for the risk-averse

microgrid. In Case 6-w/ CHP at B = 100, only a 9 % decrease in the risk premium for

electricity futures leads to 200 kWe less on-site investment. In the same case, the in-

vestment cost of MTs w/ HX needs to increase by 40% to trigger additional electricity

futures purchases. As the share of electricity purchases is low, increased risk premiums

for electricity futures cannot affect the investment decision. Thus, investment in CHP is

relatively insensitive to large changes in the electricity futures market.

Insight 5-w/ CHP: Gas futures for the boiler are substitutes, while gas futures

for MT are complements for CHP investment.

The effect of gas futures on the use of on-site generation is somewhat ambiguous. On the

one hand, the use of on-site generation increases the value of gas futures for MT; thus, gas

futures and on-site generation are complements. On the other hand, gas futures might

decrease the risk-averse demand for CHP as they can reduce the CVaR when used with

the boiler. While in cases w/o CHP the boiler was operated independently of the MT,

in cases w/ CHP, the microgrid does not run the boiler and the CHP at full capacity at

the same time as this would generate heat waste. This is why gas futures for boiler and

on-site generation with CHP can be substitutes. In Case 7-w/ CHP at B = 100, a change

in the risk premium for gas futures does not affect the investment decision. However,

when the investment cost increases, the demand for gas futures for MT decreases, while

the demand for gas futures for boiler increases. The same interaction can be observed

when we run Case 8-w/ CHP but without gas futures for MT. In the most risk-averse

regime, the microgrid decreases its investment to 600 kWe and increases its electricity

futures and gas futures for boiler purchases. Comparing the effects of electricity and gas

futures, in Case 8-w/ CHP, a 9% in the risk premium of electricity futures results in a 200

kWe decrease in on-site investment. However, if this is accompanied by a 1% decrease

in the premium of gas futures, then the microgrid maintains its 800 kWe investment.

Thus, gas futures and on-site generation are complements as the substitution effect of gas

futures for the boiler is dominated by the complementary effect of gas futures for MT in

most cases. The substitution effect of gas futures eclipses the complementary effect only

when the economics of CHP deteriorate significantly. For example, in Case 8-w/ CHP at

B = 100, if the cost of CHP increases by 40%, then the microgrid invests in less on-site

generation; however, if gas futures for the boiler were not available, then it would still

invest in 800 kWe CHP. Thus, the availability of gas futures results in more investment

in CHP under current market conditions.
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Figure 2.13: Efficient Frontiers for Cases 5–8 w/ CHP with Installed Capacity Indicated

Figure 2.14: Efficient Frontiers for Cases 5–8 w/ CHP with Spot and Futures Purchases
with B = 0, B = 1, and B = 100

2.4.6 Sensitivity Analysis

The increasing share of renewable generation has had a profound effect on the German en-

ergy markets. Ketterer (2014) shows that intermittent generation increases the wholesale

electricity price. Furthermore, Paraschiv et al. (2014) find that the sensitivity of electric-

ity price to gas price decreases over time due to the promotion of renewable energies. As
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these trends are expected to continue, we carry out sensitivity analyses in terms of in-

creased electricity price volatility as well as gas and electricity price correlation. First, we

run the optimisation problem with long-term (σe
Y) and short-term (σe

Q) electricity price

volatility increased by 10%. Second, we run the optimisation problem with the long-

and short-term correlation of electricity and gas prices halved, i.e., lowering them from

ρY = 0.80 and ρQ = 0.83 to ρY = 0.40 and ρQ = 0.42, respectively.

Insight 6: With higher electricity price volatility, the value of on-site genera-

tion as physical hedges increases compared to financial hedges.

Fig. 2.16 illustrates the efficient frontiers for Cases 5–8-w/o CHP. In all cases, the mi-

crogrid invests in 1000 kWe on-site generation in the risk-neutral regime, compared to

no investment with the original electricity price volatility (Fig. 2.11). Again, the aver-

age share of on-site electricity generation is small (less than 25%). However, when the

electricity price peaks, the microturbine works at full capacity. This way, the microgrid

can decrease its expected cost and CVaR by 3% and 9%, respectively, compared to Cases

1–4 in the risk-neutral regime. This is larger than the CVaR reduction produced by the

combined use of electricity and gas futures in Case 4 (Fig. 2.15). Even with volatile spot

prices, the CVaR-reducing potential of financial hedges diminishes whenever spot prices

exhibit large drops. This, however, does not affect negatively the capacity investment de-

cisions, as the microgrid can purchase electricity from the spot market if prices decrease,

while using on-site generation to hedge against price jumps.

Figure 2.15: Efficient Frontiers for Cases 1–4 with B = 0, B = 0.35, B = 1, and B = 10
for Increased Electricity Price Volatility
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Figure 2.16: Efficient Frontiers for Cases 5–8 w/o CHP with B = 0, B = 0.35, B = 1,
and B = 10 for Increased Electricity Price Volatility

The CVaR reduction of the microgrid is even larger with CHP (Fig. 2.17). The microgrid

invests in 1000 kWe capacity in risk-neutral regimes in Cases 5–8 w/ CHP and in risk-

averse regimes in Cases 6–8. Investing in 1000 kWe capacity means that, in some cases,

the microgrid generates more heat from heat recovery than it requires. However, as the

gap between electricity and gas spot price volatilities widens, the value of the option to

swap electricity at a higher spot price for gas at a lower price substantially increases.

Figure 2.17: Efficient Frontiers for Cases 5–8 w/ CHP with B = 0, B = 1, and B = 10
for Increased Electricity Price Volatility
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Insight 7: Under lower levels of electricity and gas price correlations, on-site

generation works less efficiently as a physical hedge, but the complementary

effect of gas futures increases.

In Cases 5, 6, and 8-w/ CHP, the risk-averse microgrid decreases the installed capacity

to 800 kWe from the risk-neutral investment level of 1000 kWe (Fig. 2.18). In the

risk-neutral regime, compared to the same cases with the original correlation rates, the

microgrid requires a higher installed capacity in order to generate more electricity when

the price difference is sufficient to recover the investment cost. However, a more risk-averse

microgrid installs less capacity, as in scenarios with high gas prices and low electricity

prices the microgrid cannot operate its CHP. In Case 7-w/ CHP, when gas futures are

available, the risk-averse microgrid does not need to decrease its investment at B = 1

because it can use gas futures to hedge against uncorrelated volatile gas spot prices.

However, in the most risk-averse regime (B = 10), even the presence of gas futures is

not enough to maintain a higher investment level. Nevertheless, if the risk premium

for gas futures decreases by 1%, then even in the most risk-averse regime the microgrid

maintains its 1000 kWe capacity investment. This again indicates that gas futures and

on-site generation interact complementarily. In this case, the complementary effect of

gas futures is larger compared to the cases with original correlation or increased price

volatility, when CHP can reduce the CVaR significantly on its own.

Figure 2.18: Efficient Frontiers for Cases 5–8 w/ CHP with B = 0, B = 0.35, B = 1, and
B = 10 for Decreased Correlation of Electricity and Gas Spot Prices
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2.5 Conclusions

Deregulation has introduced new challenges and opportunities within the energy sector.

On the one hand, consumers face uncertain electricity and gas prices, which significantly

increases their risk exposure. On the other hand, consumers can now invest in on-site

generation or use futures to hedge against increased price risk. While financial hedges

play an increasingly important role in the energy markets, investment in new technologies

provides more social benefits, such as higher energy efficiency and lower CO2 emissions,

as shown in Siddiqui et al. (2005). Still, despite the ongoing efforts of policymakers in

Germany to support CHP implementation (Kraft-Wärme-Kopplungs-Gesetz, 2002, 2008,

2012), the investment rate is lagging behind the desired targets.

Possible explanations for this are volatile gas spark spreads and risk aversion among

smaller potential investors. Indeed, managing the risk from such ventures requires more

sophisticated decision support. Using stochastic programming, we show that even if the

gas spark spread decreases or the correlation between gas and electricity prices deterio-

rates in Germany, then on-site generation still remains an effective physical hedge against

electricity price volatility, which is likely to increase due to the rising share of intermittent

generation. Since conventional decision-making frameworks do not take into account risk

aversion, decision makers using these techniques might overlook the significant value of

CHP as physical hedge. As CHP is more energy efficient than purchasing electricity from

the grid and using a gas-fired boiler for heat production, it is also associated with lower

CO2 emissions and can help to achieve the 2020 goals set by the EU. The microgrid’s

CVaR can be further decreased by combining on-site generation with electricity and gas

futures. While we demonstrate that electricity futures and on-site generation are sub-

stitutes, the availability of electricity futures impede investments mostly in technologies

without CHP. Microturbines with heat recovery are more efficient hedges as they can

swap the high volatility of the electricity price for the low volatility of the gas spot price.

Consequently, the microgrid is not exposed to peaks in electricity price when the use of

financial futures would be a more costly alternative.

Intriguingly, we show that gas futures and on-site generation can complement each

other, as a microgrid is more likely to install additional generation capacity when gas

futures are available. In fact, the availability of gas futures can neutralise the substitu-

tion effect of electricity futures, thereby contributing to higher investment. Nevertheless,

the interaction between financial and physical hedges depends on both the level of risk

aversion of the microgrid and on the behavior of the underlying electricity and gas prices.

Under increased electricity price volatility, on-site generation becomes more attractive,

and even the installation of a less efficient microturbine without heat recovery can reduce

expected cost. In contrast, when the correlation between electricity and gas spot prices

is halved, on-site generation works less efficiently as a physical hedge on its own and the

complementary effect of gas futures increases.
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Chapter 3

Optimal Operation of Combined

Heat and Power under Uncertainty

and Risk Aversion

3.1 Introduction

Apart from the investment decision, large consumers need to consider also their medium-

term operational risk management problem. In deregulated electricity industries, a con-

sumer has the opportunity to meet its electricity and gas demand by purchasing from the

spot and futures markets or through on-site generation. Recently, trade in both medium-

term gas and electricity futures has increased (EEX Press Release, 2014) and now the

potential consumers can choose from different futures contracts in terms of load profile

and the length of the contract. While purchasing futures contracts can reduce the risk

associated with the volatility of spot prices, it can also mean higher operational costs

because of risk premia of futures contracts. Another option is on-site generation, which

requires more sophisticated decision support and is exposed to the gas price volatility.

Similarly, consumers relying on purchases from wholesale electricity markets can benefit

from large price drops in countries with high share of intermittent generation but are

exposed to increasing price volatility (Woo et al., 2011). Thus, there are a lot of tradeoffs

to consider that may not be evaluated adequately via conventional deterministic models.

Addressing this problem can encourage on-site investment, which in turn can lead to

lower CO2 emissions compared to purchasing electricity from the main grid (Siddiqui et

al., 2005). For the aforementioned reasons, Germany has adopted three CHP laws to sup-

port investment into small- and large-scale CHP (Kraft-Wärme-Kopplungs-Gesetz, 2002,

2008, 2012). However, the targets regarding the higher share of cogeneration have not yet

been achieved (Streckiene et al., 2009).

Some of the possible reasons for lower than expected investment in CHP are the
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electricity and gas price uncertainties in deregulated industries (European Cogeneration

Review - Germany, 2013). Koller et al. (2012) argue that middle level-managers show

strong bias against risk as a result of flawed reward systems within companies. They

find that lead managers are often unwilling to tolerate uncertainty even when a project’s

potential earnings far outweigh its potential losses.

In order to examine the risk that large consumers face, we formulate a multi-stage,

mean-risk optimisation model for the medium-term operational risk management of a

microgrid with installed CHP. Our objective is to gain insights into managing risk in a

microgrid over a one-month period using futures contracts and on-site generation. We as-

sume uncertain electricity and gas spot prices and the availability of monthly and weekly

electricity futures and monthly gas futures. The microgrid needs to meet its electricity

demand by either purchasing electricity from the markets or through on-site generation.

In addition, the microgrid needs to satisfy its heat loads by using either a boiler or heat

recovery. Thus, compared to the previous chapter which considered quarterly average

spot prices and yearly futures contracts, we provide a more realistic description of oper-

ational hedging strategies for a large consumer. We find that the use of CHP not only

lowers the microgrid’s expected running cost significantly but also reduces its risk expo-

sure compared to on-site generation without heat recovery or to purchasing all electricity

from the main grid. We also find that the availability of monthly gas futures increases

on-site generation with CHP, thus indicating that CHP and gas futures are complements.

3.2 Literature Review

Research interest in consumer energy procurement has steadily grown over the last two

decades. Studies with deterministic models demonstrate that consumers participating

in the electricity market can reduce their costs significantly. Through a case study, Ta-

lati and Bednarz (1998) present different methodologies for large industrial customers to

manage their electricity purchases in a competitive power industry. They suggest that

future regulatory changes are likely to trigger higher electricity pool prices, which might

justify investments in cogeneration. Kirschen (2003) considers some aspects of the elec-

tricity market from the perspective of a large consumer. Specifically, he points out that

electricity markets could benefit consumers, but this requires adoption of more sophis-

ticated decision support. In this vein, Conejo et al. (2005) consider a large consumer

that procures its electricity demand from both pool and bilateral transactions, or through

operating a self-production unit. They provide a procedure that, provided all the re-

quired information is available, allows a large consumer to decide optimally its mix of

purchases from different electricity sources. Siddiqui et al. (2005) compare the economic

benefit of installing different types of DG (reciprocating engines with or without heat

recovery and photovoltaic panels) at a hypothetical microgrid that supplies heat, cooling,
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and electricity to a commercial building using the DER-CAM. Using mixed-integer linear

programming (MILP), they find that investing in gas-fired CHP turbines leads to the

lowest energy cost and also reduces CO2 emissions.

Studies incorporating uncertain energy prices also demonstrate the economic benefit

of procurement management and on-site generation. Yan and Yan (2000) discuss the

demand-side bidding and purchase allocation in day-ahead and real-time markets. By us-

ing dynamic programming, they find an effective energy purchase strategy that results in

lower procurement cost. The same problem is addressed by Liu and Guan (2003) but they

also consider the price volatility by including the variance of the cost of purchase in the

objective function. They provide an analytical solution to optimal demand bids. Conejo

and Carrión (2006) approach the same problem as Conejo et al. (2005), but they consider

pool price volatility as well. By applying a mean-variance methodology, they minimise

the procurement cost of a large consumer while limiting the risk of its cost variability.

Siddiqui and Marnay (2008) also use real options to evaluate the investment decision of

a hypothetical California-based microgrid with gas-fired DG. They study separately the

effect of stochastic long-term gas prices, operational flexibility (i.e., the option of islanding

from the macrogrid), and uncertain electricity prices. Siddiqui and Marnay (2008) find

that both high electricity price volatility and operational flexibility increase the value of

the project.

While Conejo and Carrión (2006) and Siddiqui and Marnay (2008) take into account

market uncertainties, they do not address the operational risk of a consumer. One of the

main mathematical tools used to model decision making under uncertainty is stochas-

tic programming. Kettunen et al. (2010) use stochastic programming to examine the

optimal operation of an electricity retailer that faces price and demand uncertainties.

Pineda (2008) models the decision problem of a power producer company with stochastic

electricity spot prices and uncertain availability of the generating units. Carrión et al.

(2007) consider the same procurement problem as Conejo et al. (2005) and Conejo and

Carrión (2006) but via stochastic programming. They find that as risk aversion increases,

the consumer purchases less electricity from the spot market relying more on monthly

contracts while the share of on-site generation only slightly decreases.

Our research contributes to the existing literature as follows. Similarly to Carrión et

al. (2007), we examine a large consumer, but we also study the use of CHP in addition to

a microturbine without heat recovery. Furthermore, we assume that both electricity and

gas spot prices are uncertain and futures prices are marked-to-market in every period.

Similarly to our optimal DER selection problem, we provide insights into the interaction

of financial hedges and on-site generation, but we focus on a microgrid’s risk management

in the medium term instead of its long-term investment decisions. We find that on-site

generation with a CHP unit increases the demand for monthly gas futures significantly

compared to on-site generation with an MT and a boiler unit. In addition, operating
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CHP can substitute entirely off-peak monthly and weekly base load electricity futures,

but it has less effect on monthly base load futures purchases.

3.3 Decision-Making Framework

3.3.1 Assumptions

We address the operation of a microgrid over a one-month time horizon that comprises

four weeks. Each week is subdivided into T time periods of equal duration. The microgrid

consists of a gas-fired microturbine with heat recovery, a boiler unit, and deterministic

electricity and heat loads. The microgrid can purchase electricity from the spot market

and from the weekly and monthly futures markets. The monthly electricity futures have

either an off-peak load, a peak load, or a base load profile, while the weekly electricity

futures contracts can be purchased for base load and peak load periods. The microgrid

can also generate electricity using gas from the spot and monthly futures markets while

recovering waste heat. When the CHP unit is not in operation, the microgrid employs its

boiler unit to meet its heat demand using gas from the spot and monthly futures markets.

The microgrid’s objective is to minimise the expected value of its procurement cost while

limiting its volatility through incorporating risk aversion measured by CVaR.

To reduce computational complexity, we approximate the true distribution of the

random electricity and gas prices by an approximation in the form of a five-stage scenario

tree (Fig. 3.1) in which each non-root node corresponds to a state of the world spanning

one week. Each node of the tree represents a point at which decisions are taken based

on the realisation of the random parameters up to the stage of that node. Note that in

our nodal formulation the non-anticipativity constraints are incorporated implicitly, i.e.,

before the scenario tree branches, we do not know at which node we will be at the next

stage. A path in the tree from the root (i.e., first-stage) node to a node at the last stage

represents a scenario.

The microgrid’s decision sequence is as follows. At stage 1, the microgrid chooses

how many monthly and week-1 electricity and gas futures it purchases. At stage 2, the

microgrid observes the realised spot prices for week 1. Depending on how much electricity

and gas it purchased from the futures markets, it then decides, for each subperiod of week

1, how much electricity and gas to purchase on the spot markets, how much electricity to

produce on-site, and whether to meet the heat demand using the boiler or heat recovery.

While there are no monthly futures purchases at stages 2–5, the weekly futures and spot

decision-making procedure is repeated analogously for the remaining three weeks. Finally,

as this paper concerns only the operational decisions of a microgrid, we disregard capital

costs of the on-site generation units.
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Figure 3.1: Scenario Tree

3.3.2 Nomenclature

Sets and Indices

a(n): ancestor node of node n ∈ N−1

C := {b, o, p}: set of futures contracts in terms of load profile, which can be either base

(b), off-peak (o), or peak load (p)

Dn: descendant nodes of node n ∈ N
N : set of nodes in the scenario tree

N−1: subset of nodes excluding the root node in the scenario tree, i.e., N−1 := N \ {1}
Ns: set of nodes that scenario s ∈ S passes through

S: set of scenarios, i.e., s ∈ S is a path from the root node (n = 1) to a node at the last

stage W + 1

T := {1, ..., T}: set of time periods at each node n ∈ N−1
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Tc: set of time periods with load profile c ∈ C at each node n ∈ N−1

T̂ := {1, . . . , T · W}: auxiliary set of time periods for electricity spot price scenario

generation

T̃ := {1, . . . , T
2
·W}: auxiliary set of time periods for gas spot price scenario generation

W := {1, ...,W + 1}: set of stages

Random Parameters

F e
c,a(n): price of weekly electricity futures contracts of type c ∈ C fixed in node a(n),

n ∈ N−1, for delivery in the coming week (e/MWhe)

P e
n,t: spot price of electricity at node n ∈ N−1 in time period t ∈ T (e/MWhe)

P g
n,t: spot price of gas at node n ∈ N−1 in time period t ∈ T (e/MWh)

Fixed Parameters

εe
t̂
: error term of the ARIMA model for electricity spot prices in time period t̂ ∈ T̂

(e/MWhe)

εg
t̃
: error term of the dynamic regression model for gas spot prices in time period t̃ ∈ T̃

(e/MWh)

ζ, µk, ψk: parameters used in the dynamic regression model for gas spot prices, k ∈ N
θk,Θk, φk,Φk: parameters used in the ARIMA model for electricity spot prices, k ∈ N
Πe
m,c,Π

e
w,c: risk premia of monthly and weekly electricity futures contracts of type c ∈ C

Πg
m: risk premium of monthly gas futures contracts

σe, σg: standard deviations of the error term of the electricity and gas price processes

A: confidence level for the CVaR

B: risk weight

Eb: boiler conversion efficiency, i.e., volume of useful heat produced from one MWh of

natural gas (MWh/MWh)

Ee: electrical conversion efficiency, i.e., volume of electricity produced from one MWh of

natural gas (MWhe/MWh)

Eh: heat-recovery rate from on-site generation, i.e., volume of useful heat captured while

producing one MWhe of electricity (MWh/MWhe)

De
w(n),t: electricity load in stage w(n) ∈ W , n ∈ N−1, and period t ∈ T (MWe)

Dh
w(n),t: heat load in stage w(n) ∈ W , n ∈ N−1, and period t ∈ T (MW)

Hc,w(n),t: length of energy delivery by a contract of type c ∈ C in stage w(n) ∈ W ,

n ∈ N−1, in period t ∈ T (h)

Jw(n),t: length of time period t ∈ T in stage w(n) ∈ W , n ∈ N−1 (h)

Kb: capacity of the boiler unit (MW)

Ke: capacity of electricity generation unit (MWe)

Lec: price of monthly electricity futures contracts of type c ∈ C (e/MWhe)
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Lg: price of monthly gas futures contracts (e/MWh)

P̂ e
t̂
: spot price of electricity in time period t̂ ∈ T̂ used for electricity spot price scenario

generation; P̂ e
s,t̂

for scenario s ∈ S (e/MWhe)

P̃ e
t̃
: spot price of electricity in time period t̃ ∈ T̃ used for gas spot price scenario genera-

tion; P̃ e
s,t̃

for scenario s ∈ S (e/MWhe)

P̃ g

t̃
: spot price of gas in time period t̃ ∈ T̃ used for gas spot price scenario generation;

P̃ g

s,t̃
for scenario s ∈ S (e/MWh)

qs: probability of scenario path s ∈ S
w(n) ∈ W : stage of node n ∈ N

Decision Variables

γs: cost of satisfying the electricity and heat loads in scenario path s ∈ S (e)

ηs: auxiliary variable to estimate the conditional value-at-risk (CVaR) in scenario path

s ∈ S (e)

ξ: VaR at confidence level A (e)

xb
n,t: gas purchased from the spot market for boiler heat production in node n ∈ N−1

during period t ∈ T (MWh)

xe
n,t: electricity purchased on the spot market in node n ∈ N−1 during period t ∈ T

(MWhe)

xg
n,t: gas purchased on the spot market for on-site electricity generation in node n ∈ N−1

during period t ∈ T (MWh)

ye
c,a(n): electricity delivered by weekly futures of type c ∈ C in node n ∈ N−1 (MWe)

zb: natural gas delivered by monthly futures for boiler heat production during the whole

month (MW)

ze
c : electricity delivered by monthly futures of type c ∈ C during the whole month (MWe)

zg: natural gas delivered by monthly futures for on-site electricity generation during the

whole month (MW)

3.3.3 Model Formulation

Objective Function

The objective function in Eq. (3.1) minimises the sum of the expected value (first term)

and a weighted CVaR of the cost of running the microgrid (second term:

minimise
∑
s∈S

qsγs +B
(
ξ +

1

1− A
∑
s∈S

qsηs

)
(3.1)
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Constraints

Eqs. (3.2)–(3.3) are necessary for calculating the CVaR of the cost of running the microgrid

up to the end of the time horizon, ∀s ∈ S:

γs − ξ − ηs ≤ 0 (3.2)

ηs ≥ 0 (3.3)

Eq. (3.4) calculates the cost of running the microgrid in scenario s ∈ S:

γs =
∑

n∈Ns\{1}

∑
t∈T

(∑
c∈C

(zecL
e
cHc,w(n),t + ye

c,a(n)F
e
a(n)Hc,w(n),t)

+ xe
n,tP

e
n,t + (zg + zb)LgJw(n),t + (xg

n,t + xb
n,t)P

g
n,t

)
(3.4)

Eqs. (3.5)–(3.6) ensure that the electricity and heat demands are met at all time, ∀n ∈
N−1,∀t ∈ T :

xe
n,t +

∑
c∈C

(ye
c,a(n)Hc,w(n),t + ze

cHc,w(n),t)

+ Ee(xg
n,t + zgJw(n),t) ≥ De

w(n),t (3.5)

EhEe(xg
n,t + zgJw(n),t)

+ Eb(xb
n,t + zbJw(n),t) ≥ Dh

w(n),t (3.6)

Eqs. (3.7)–(3.8) ensure that the DER and boiler capacity limits are observed, ∀n ∈
N−1,∀t ∈ T :

Ee(xg
n,t + zgJw(n),t) ≤ KeJw(n),t (3.7)

Eb(xb
n,t + zbJw(n),t) ≤ KbJw(n),t (3.8)

Finally, all of the purchase decision variables must be non-negative, ∀n ∈ N−1,∀t ∈
T ,∀c ∈ C:

xe
n,t ≥ 0, xg

n,t ≥ 0, xb
n,t ≥ 0, ye

c,a(n) ≥ 0,

ze
c ≥ 0, zg ≥ 0, zb ≥ 0 (3.9)

3.4 Numerical Examples

While Germany is one of the largest CHP markets in the world, the share of cogeneration

in its electricity production at 14.5% is still relatively low compared to other European
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countries, such as The Netherlands and Denmark with a 30% and a 53% share, respec-

tively. Germany, with similar weather conditions to The Netherlands and Denmark, has a

huge potential to increase its CHP generation both in the residential and commercial sec-

tors (BMU, 2007). Furthermore, additional CHP capacity can also contribute to efficient

and more reliable energy supply to counteract the growing intermittent production. Con-

sequently, the German government has set a target to raise the level of electricity produced

by CHP to 25% by 2020. To examine how operational risk from energy price uncertain-

ties can be managed in a microgrid in Germany, we solve the optimisation problem using

German electricity and gas spot and futures prices. For all risk-averse optimisations, a

confidence level of A = 95% is used in the calculation of CVaR.

3.4.1 Spot Market Data

The parameters to generate the electricity and gas price scenarios are estimated using data

from the European Energy Exchange’s (EEX) German electricity and gas spot markets

between 1 January 2010 and 2 December 2012 (Fig. 3.2). We use the hourly electricity

spot prices to calculate the daily average peak (8 AM–8 PM) and off-peak (8 PM–8 AM)

prices (P̂ e
t̂
). By using a daily peak and off-peak (T = 14) instead of an hourly (T = 168)

granularity, we keep our problem tractable while capturing the daily variability of the

electricity price.

Figure 3.2: German Off-Peak and Peak Load the Electricity Prices and the Logarithm of
the Prices

We assume that electricity prices can be described by a seasonal autoregressive in-

tegrated moving average (ARIMA) process because it takes into account the seasonal
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patterns and periods of volatility that electricity prices typically exhibit (Weron, 2007;

Cowpertwait and Metcalfe, 2009). In ARIMA models, autoregression terms express that

the modelled variable depends linearly on its previous values, while the moving average

terms incorporate the effect of previous error terms. Once we decide how many seasonal,

autoregressive and moving average terms to use, we fit the model using maximum like-

lihood function with starting values minimising the conditional sum of squared errors

(Box and Jenkins, 1976). Seasonal ARIMA models can be substantially large in terms

of the number and combination of terms. Thus, we estimate the number of (seasonal

and non-seasonal) autoregressive and moving average terms iteratively by comparing the

Akaike information criterion (Cowpertwait and Metcalfe, 2009). The parameters of the

ARIMA process are given in Table 3.1. Both the autocorrelation and partial autocor-

relation function demonstrate that the peak and off-peak electricity prices follow strong

weekly seasonality (Figs. 3.3-3.4), which equals to a 14-period seasonality.

Figure 3.3: Partial Autocorrelation Function of the Electricity Price

As Fig. 3.5 shows, the selected model resulted in residuals that are approximately white

noise.

Thus, we find that the following seasonal ARIMA process provides the best fit to the
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Figure 3.4: Autocorrelation Function of the Electricity Price

electricity prices P̂ e
t̂
, t̂ ∈ T̂ := {1, . . . , T ·W}:

(1− φ1 − φ2 − φ3)(1− Φ1B
14)(1−B)(1−B14)P̂ e

t̂
=

(1 + θ1 + θ2 + θ3 + θ4)(1 + Θ1B
14 + Θ2B

15)εe
t̂
. (3.10)

Here, we apply the backshift operator Bk to specify lagged prices, i.e., BkP̂ e
t̂

= P̂ e
t̂−k, and

we assume that εe
t̂
, t̂ ∈ T̂ , are independent and identically distributed normal random

variables with zero mean and constant standard deviation σe.

The gas price (P̃ g

t̃
) is assumed to follow a dynamic regression process dependent on

the generated electricity price. Since gas spot prices have a daily granularity, we calculate

the daily electricity price using the average of the respective peak and off-peak prices,

∀t̃ ∈ T̃ := {1, . . . , T
2
·W}:

P̃ e
t̃ =

P̂ e
2t̃−1

+ P̂ e
2t̃

2
. (3.11)

The best fit to the daily gas spot prices P̃ g

t̃
, t̃ ∈ T̃ , is the following dynamic regression
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Figure 3.5: Autocorrelation Function of the Residuals

model:

P̃ g

t̃
= ζ + µ1P̃

g

t̃−1
+ µ4P̃

g

t̃−4
+ µ6P̃

g

t̃−6

+ψP̃ e
t̃

+ ψ3P̃
e
t̃−3

+ ψ5P̃
e
t̃−5

+ εg
t̃
, (3.12)

where we assume that εg
t̃
, t̃ ∈ T̃ , are mutually independent and identically distributed

normal random variables with zero mean and constant standard deviation σg, and in-

dependent from εe
t̂
, t̂ ∈ T̂ . The estimated parameters of process (3.10) and (3.12) are

displayed in Table 3.1.

For our numerical example, we build a scenario tree with seven branches per non-

terminal node, resulting in a total of S = 2401 scenarios. To examine the stability of the

scenario tree, we run the optimisation problem of a risk-neutral consumer for additional

scenario trees, with branches ranging from 3 to 7, each of them ten times. We find

that with seven branches, the stability of the expected running cost is adequate, i.e.,

the standard deviation of the average expected cost is small, therefore, we deem 2401

scenarios sufficient. To construct the scenario tree, we sample S electricity price paths{
P̂ e
s,t̂

}
t̂∈T̂ , s ∈ S := {1, . . . , S}, from process (3.10) and corresponding S gas price paths{

P̃ g

s,t̃

}
t̃∈T̃ , s ∈ S, from process (3.12). These scenario paths are then used to construct
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the scenario tree according to the following relations, ∀t ∈ T ,∀s ∈ S, ∀n ∈ Ns \ {1}:

P e
n,t = P̂ e

s,t+T [w(n)−2] (3.13)

P g
n,t =

 P̃ g

s, t
2

+T
2

[w(n)−2]
if t is even

P̃ g

s, t+1
2

+T
2

[w(n)−2]
if t is odd

(3.14)

Note that, while we generate gas prices for T
2
· W periods, the scenario tree contains

T ·W time periods. For this reason, Eq. (3.14) assigns the same gas price to consecutive

peak and off-peak periods. Furthermore, to obtain a valid scenario tree, electricity and

gas prices at a given time period, but in different scenarios s and s′ have to be equal

if they share the same history of observations. In other words, the relations P̂ e
s,t̂

= P̂ e
s′,t̂(

P̃ g

s,t̃
= P̃ g

s′,t̃

)
must be enforced if scenarios s and s′ pass through the same nodes up to

and including the stage of time period t̂ ∈ T̂
(
t̃ ∈ T̃

)
. To provide a quick overview of the

results of the scenario generation, Figure 3.7 presents pairs of electricity and gas prices

(red circles) from generated 2401 scenarios and pairs of daily gas and peak or off-peak

load electricity prices (black squares) recorded between January 2010 and December 2012.

While most of historical data are within the area covered by generated scenarios, they

tend to correspond to lower prices. The reason for this is that the generated scenarios

represent winter prices, which are usually higher, while historical data cover the whole

year. Nevertheless, our model seems to capture adequately both the correlation between

and the range of electricity and gas prices.

Table 3.1: Estimated Process Parameters for Electricity and Gas Prices

φ1 = −0.7612 θ3 = −0.1612
φ2 = 0.4368 θ4 = −0.1584
φ3 = 0.2010 Θ1 = −0.0897
Φ1 = −0.8610 Θ2 = −0.8714
θ1 = 0.2168 σe = 43.40
θ2 = −0.7014

ζ = 0.5820 ψ = 0.0183
µ1 = 0.9397 ψ3 = −0.0106
µ4 = −0.8830 ψ5 = −0.0126
µ6 = 0.1343 σg = 0.8206

3.4.2 Forward Market Data

One of the main requirements for generation price scenarios is to provide an arbitrage-

free pricing environment (Klaassen, 2002), i.e., it is not possible to decrease both the

CVaR and expected cost at the same time by purchasing futures. Thus, to maintain

the no-arbitrage principle, we calculate the gas and electricity futures prices using the

corresponding average spot prices and risk premia as follows, for all c ∈ C and all non-
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Figure 3.6: 90% Confidence Interval of the Average Expected Cost in the Risk-Neutral
Regime

Figure 3.7: Generated Scenarios of Electricity and Natural Gas Prices Historical Data
From January 2010 to December 2012

terminal nodes n ∈ N :

F e
c,n =

(
1
|Dn|

∑
n′∈Dn

1
|Tc|
∑

t∈Tc P
e
n′,t

)
(1 + Πe

w,c) (3.15)

Lec =
(

1
|N−1|

∑
n∈N−1

1
|Tc|
∑

t∈Tc P
e
n,t

)
(1 + Πe

m,c) (3.16)

Lg =
(

1
|N−1|

∑
n∈N−1

1
|T |
∑

t∈T P
g
n,t

)
(1 + Πg

m) (3.17)

The risk premia for gas and electricity futures are calculated from the EEX Phelix and

Natural Gas Futures markets and the corresponding spot prices from the 2011–2012 period

(Table 3.2). Note that, in accordance with the Phelix market, only monthly electricity

futures have off-peak load profiles. The electricity and heat loads are based on a typical
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winter energy consumption of a small hospital provided by Energy Systems Research Unit

at the University of Strathclyde (Fig. 3.8).

Figure 3.8: Electricity and Heat Consumption

Table 3.2: Risk Premia for Futures

Πe
m,b = 0.021 Πe

w,b = 0.009

Πe
m,o = 0.020 Πe

w,p = 0.041
Πe

m,p = 0.083 Πg
m = 0.004

3.4.3 Technology Data

We compare the optimal operation of the microgrid with no on-site generation, with

on-site generation without heat recovery (MT), and with on-site generation with heat

recovery (CHP). The electrical conversion efficiency (Ee) of the microturbines is 35%, and

the CHP’s heat-recovery rate (Ee · Eh) is 52.5%, while the boiler’s conversion efficiency

(Eb) is 90%. These parameters are in line with Moran et al. (2008), Siddiqui et al. (2005),

and Wickart and Madlener (2007). Finally, we consider on-site generation at 300 kWe,

600 kWe, and 900 kWe capacity levels.

3.5 Results

3.5.1 Main Insights

The optimisation problems are implemented in the General Algebraic Modeling System

(GAMS) using GUROBI solver on Windows workstation with an Intel Core i7 3.3GHz
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CPU and 16 GB RAM. The computational times range from 13 to 278 seconds. Our

results support previous findings that, compared to purchasing electricity from the main

grid, on-site generation with CHP reduces significantly the microgrid’s expected energy

cost, contributes to higher energy efficiency, and, hence, to lower CO2 emissions. In

addition, we find that on-site generation with CHP can decrease the microgrid’s CVaR

and, consequently, can function as a physical hedge against financial risk. Using on-site

generation reduces both the expected running cost of the microgrid and its CVaR (Table

3.3). While higher installed capacity results in lower expected cost for both CHP and

MT, interestingly, the 300 kWe CHP unit reduces the expected cost more than even the

900 kWe MT unit.

Table 3.3: Results for Running the Microgrid under Risk-Neutral Regime (B = 0)

Case Expected
cost
(ke)

CVaR
(ke)

Efficiency of
the

microgrid

Expected
CO2

emissions
(kiloton)

No on-site
generation

79.6 86.8 71.2% 0.92

300 kWe MT 78.7 86.0 69.1% 0.69
600 kWe MT 77.9 85.2 67.1% 0.86
900 kWe MT 77.0 84.6 65.2% 0.83
300 kWe CHP 71.8 78.3 75.1% 0.77
600 kWe CHP 64.0 70.0 79.5% 0.62
900 kWe CHP 58.1 64.0 82.2% 0.50

Figs. 3.9 and 3.10 present the histograms of the savings compared to no on-site

generation for each scenario. The distributions of the cost reduction with MT are right-

skewed with similar central tendencies, whereas with CHP, the distributions of the cost

reduction are close to symmetric, and the median saving increases significantly with larger

capacity. Thus, with MT, a lower cost reduction is much more likely than with CHP, the

use of which can result in small and large cost reductions with similar probabilities.

In terms of CVaR reduction, the difference between MT and CHP is even more pro-

nounced. First, note that the CVaR of the microgrid can be decreased either by reducing

the expected cost or by reducing the volatility of the cost of running the microgrid. While

MT reduces the CVaR at each capacity level, the CVaR reductions are, in fact, smaller

than the reduction in expected cost, i.e., the CVaR relative to the expected cost is increas-

ing. On the contrary, CHP always results in a larger CVaR reduction than the reduction

in expected cost. As the standard deviation of the gas spot price is lower than that of

the electricity spot price – 4.7% compared to 25.0% – the CHP reduces the CVaR of the

microgrid by efficiently swapping electricity for gas. To generate one MWhe of electricity,

both MT and CHP require 2.8 MWh gas, but the CHP unit recovers 1.5 MWh heat at the

same time, thereby reducing the microgrid’s gas purchases. Since heat consumption is on
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Figure 3.9: Cost Savings with MT Compared to No On-Site Generation

Figure 3.10: Cost Savings with CHP Compared to No On-Site Generation

average 60% higher than the electricity consumption in peak periods, and only 6% larger

in off-peak periods, the microgrid uses CHP the most when the electricity price is more

volatile. Thus, the CHP not only needs to swap less gas for a MWhe of electricity but

also does this in periods with more volatile electricity prices. This is why the reduction in

relative standard deviation for each scenario is much lower with MT (Fig. 3.11) than with

CHP (Fig. 3.12). Due to the high level of heat consumption in peak periods, operating

CHP units with larger capacity size results, on average, in a higher level of reduction in
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relative standard deviation.

Figure 3.11: Reduction in Relative Standard Deviation with MT Compared to No On-Site
Generation

Figure 3.12: Reduction in Relative Standard Deviation with CHP Compared to No On-
Site Generation

3.5.2 On-Site Generation with Futures

To examine further the risk-reducing characteristics of on-site generation, we run the

microgrid’s optimisation model with a 600 kWe MT or CHP unit together with the option

63



of purchasing electricity and gas futures. We find a strong interaction between on-site

generation and financial hedges, i.e., the type of on-site generation determines which

futures the microgrid purchases. Fig. 3.13 shows the efficient frontiers of a microgrid

with only futures purchases, with MT installation and futures purchases, and with CHP

installation and futures purchases. These frontiers are delimited by varying B parameter

in order to illustrate the mean-risk tradeoff. First, note that on-site generation with MT

on its own (at B = 0) has a higher CVaR than a risk-averse microgrid with only futures

purchases (at B = 0.2), thereby indicating that financial futures are more efficient hedges

than an MT. While electricity futures fix the electricity price and can eliminate price

volatility, a microgrid with MT needs to buy spot gas at variable price. Although the

volatility of gas spot price is much lower than that of the electricity spot price, because

of the low total efficiency of MT, the microgrid needs to purchase more spot gas, which

results in higher CVaR compared to purchasing only futures. Conversely, a microgrid with

a CHP unit has much lower CVaR than the most risk-averse microgrid that buys only

futures. In addition, financial futures are more efficient at reducing CVaR together with

CHP, i.e., they have lower mean-CVaR tradeoff, which is shown by the flatter efficient

frontier.

Considering the microgrid with only financial hedges, Fig. 3.14 indicates that the

more risk-averse the microgrid becomes, the more monthly base load futures it purchases.

In the most risk-averse regime at B = 10, the microgrid’s CVaR reduction amounts to

e4.9k, which is 5.6% of the CVaR at the risk-neutral regime at B = 0. The reason

why the microgrid mostly purchases base load contracts is that the hospital’s electricity

consumption differs only slightly between peak and off-peak periods. Thus, purchasing

monthly electricity base load futures, which have lower risk premia than monthly peak load

contracts and just slightly higher risk premia than monthly off-peak contracts, provides

a cheaper hedge. Similarly, with increasing risk aversion, the microgrid purchases more

monthly gas futures for boiler. At its maximum level of risk aversion (B = 10), the

microgrid meets 73.7% of its heat demand through monthly gas contracts (Fig. 3.15).

In comparison to a microgrid with only futures trading, in a risk-averse microgrid

with MT, the share of monthly base load electricity futures decreases significantly and is

only non-negligible with higher levels of risk aversion (Fig. 3.16). The microgrid meets

on average 20% of its electricity consumption with on-site generation using gas spot.

With risk aversion, the share of off-peak monthly futures and weekly base load futures

in electricity consumption first increases and later slightly decreases. This indicates that

monthly base load futures are substitutes for weekly base load and monthly off-peak

load electricity futures. Furthermore, the share of on-site generation with spot gas also

decreases slightly from 19.2% at B = 0 to 16.5% at B = 10. Thus, the microgrid uses

its MT well below its capacity limit, which would be 62.5% on average, and, in order to

decrease its CVaR, it has to operate the MT less. As using the MT has an undesirable
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Figure 3.13: Efficient Frontiers with Futures Purchases
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Figure 3.14: Electricity Consumption Without On-Site Generation

effect on the microgrid’s CVaR, it purchases electricity futures with the lowest risk premia,

such as weekly base load and monthly off-peak load contracts. Since a microgrid with

MT can use only the boiler to meet its heat demand, its heat consumption is the same as

with no on-site generation, i.e., monthly gas future purchases increases with risk aversion

(Fig. 3.15).

Finally, Fig. 3.17 shows the share of on-site generation and futures purchases in

the electricity consumption of a microgrid with an installed CHP unit. The presence
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Figure 3.15: Heating Consumption with Only Available Futures
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Figure 3.16: Electricity Consumption with MT

of CHP increases the demand for monthly gas futures significantly. An MT unit with

lower energy efficiency cannot use monthly gas contracts due to their higher prices, which

would negate its achievable cost reduction. A microgrid with a CHP unit, on the other

hand, can tolerate the risk premia, and with fixed gas prices, it attains greater CVaR

reduction. In fact, the total share of on-site generation with CHP increases from 56.3%

at B = 0 to 57.7% at B = 10. Thus, the CVaR-reducing demand for both gas futures

and on-site generation with CHP increase at the same time, which indicates that they are
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complements. Compared to a microgrid with MT, a microgrid with CHP purchases almost

no off-peak monthly and weekly base load electricity futures, and slightly less monthly

base load futures. As CHP decreases the microgrid’s CVaR on its own, the scope for CVaR

reduction from electricity futures is much lower. The microgrid purchases only monthly

electricity base load futures in considerable amount since, as Fig. 3.14 indicates, these

futures can be used the most efficiently to reduce the microgrid’s CVaR when the 600

kWe CHP unit is not enough to meet all electricity demand. Still, the share of electricity

futures is much lower compared to the one of the microgrid with no on-site generation and

microgrid with MT, thereby indicating that on-site generation with CHP and electricity

futures are substitutes. As a result of the high share of on-site generation, on average

64.6% of the microgrid’s heat consumption is met through heat recovery. In the most

risk-averse regime at B = 10, the microgrid’s CVaR reduction amounts to e4.1k which is

5.9% of the CVaR at the risk-neutral regime at B = 0. This is slightly higher in relative

terms than the maximum CVaR reduction in a microgrid with no on-site generation,

which indicates that gas futures are more efficient in reducing CVaR when used with

CHP.
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Figure 3.17: Electricity Consumption with CHP

3.6 Conclusions

With growing demand for cheap and reliable electricity, microgrids are likely to play a vital

role in the future energy industry. In accordance with previous studies, our results show

that a microgrid with an installed CHP unit can, indeed, contribute to energy savings

and lower CO2 emissions. To encourage customer adoption, numerous initiatives and
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subsidy schemes have been introduced by the EU and its member states. However, the

development of the microgrid and CHP sectors have been slower than expected. One of

the possible reasons for this is the financial uncertainty associated with operating on-site

generation due to deregulated energy markets.

We present a multi-stage mean-risk stochastic optimisation model that can be used to

reduce a microgrid’s operational risk exposure through on-site generation and electricity

and gas futures purchases. By applying this model to a hypothetical hospital, we find

that on-site generation, either with MT or with CHP, can reduce the expected operational

cost of energy procurement. However, the reduction in expected cost with MT without

heat recovery is minimal, and the microgrid’s CVaR relative to its expected cost is larger

than without on-site generation. This is in contrast to the results in Chapter 2, where

we find that on-site generation without heat recovery can function also as a physical

hedge, i.e., it can reduce the variability of the microgrid’s expected cost. As the decision

time periods are much longer in the previous technology selection model than in the

operational model, i.e., 2190 hours compared to 12 hours, this indicates that an MT unit,

because of its low efficiency, cannot exploit the difference in gas and electricity prices

when it is sustained for only a short period. In contrast, a microgrid with CHP can

lower its expected cost significantly, on average 8.7-fold more than MT, and can reduce

the microgrid’s CVaR both in absolute terms and relative to its expected cost. This

supports our findings in Chapter 2, and confirms the value of CHP as a physical hedge.

Furthermore, when the microgrid has access to futures markets, we find that monthly

gas futures and on-site generation with CHP exhibit complementarity, i.e., the presence

of gas futures increases the demand of a risk-averse microgrid for on-site generation.

Therefore, improving gas futures market liquidity can contribute to customer adoption of

DG and, hence, it can lead to more sustainable electricity generation. On the other hand,

we find that electricity futures are substitutes for on-site generation. Nevertheless, both

the microgrid’s attributes as a physical hedge and its interaction with gas futures can

be utilised only with a stochastic programming model. Thus, in contrast to the extant

literature, we provide a risk-management strategy for improving the viability of CHP as

well as policy insights regarding access to liquid futures markets.
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Chapter 4

Transmission and Wind Investment

in a Deregulated Electricity Industry

4.1 Introduction

4.1.1 Background

Restructuring of the electric power industry was precipitated by the belief that the reg-

ulated paradigm would not meet growing demand efficiently (Hyman, 2010). As the

functions of the industry such as generation, distribution, and retailing could be handled

together by an investor-owned utility (IOU) with transmission planning and reliability

under the auspices of a system operator, there was little incentive to develop new tech-

nologies for the market when profits were regulated. At the same time, since a single IOU

operated in each area and prices were merely set administratively, there was no need for

either risk management or strategic analysis. Although a plethora of post-restructuring

market designs have emerged (Wilson, 2002), they have generally required incumbent

IOUs to divest their generation assets with transmission and distribution remaining reg-

ulated. Consequently, these reforms have introduced endogenous price formation and im-

perfect competition, which necessitate a strategic view of decision making (Hobbs, 1995;

Helman, 2004). Moreover, market-driven transmission investment has been proposed by

the US FERC’s July 2002 Standard Market Design (SMD) and the EU’s Regulation EC

1228/2003 (Commission of the European Communities, 2003).

Recently, sustainability issues have entered the policy debate. Several governments

are committed to CO2 emissions targets in order to mitigate the effects of climate change,

e.g., the EU’s aim of 20-20-20 by 2020 (Communication from the European Commission,

2014). The policymaking dilemma is to forge a delicate balance between achieving the

targets while not interfering with industry. Ironically, relative to the centralised paradigm,

policymakers have ceded more control to industry while simultaneously having set loftier

goals in terms of economic efficiency and environmental sustainability. Since much of
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the transition to a sustainable energy system will rely on wind as a lynchpin technology,

aspects of wind such as intermittency, non-dispatchability, and remoteness mean that

policymakers will need to consider concomitant transmission expansion when devising

measures to encourage wind investment (Kunz, 2013). Consequently, policymakers re-

quire a deeper understanding of how market designs interact with strategic behaviour in

delivering outcomes.

4.1.2 Literature Review

Under regulation, conventional least-cost methods could be employed to determine opti-

mal transmission and generation investment (Hobbs, 1995). However, with deregulation,

transmission and generation investment are made by separate entities with distinct and

often conflicting incentives. For example, regulated transmission system operators (TSOs)

seek to maximise social welfare, while power companies are interested in profit maximisa-

tion. In order to handle such game-theoretic interactions, complementarity modelling has

been proposed to find Nash equilibria, i.e., solutions from which no agent has a unilateral

incentive to deviate (Gabriel et al., 2012; Ruiz et al., 2014). Furthermore, complemen-

tarity modelling is amenable for analysing strategic behaviour in deregulated electricity

industries due to its accommodation of physical features of the power system, i.e., Kir-

choff’s laws and intermittent generation (Hobbs, 2001).

The interaction of market agents maximising their objective functions results in an

equilibrium problem. Since for linear and convex non-linear programs the Karush-Kuhn-

Tucker (KKT) optimality conditions are both necessary and sufficient (Gabriel et al.,

2012), the solution to agents’ problems are equivalent to solutions of the corresponding

complementarity problem (Fig. 4.1). Bi-level models are particularly relevant for policy

analysis of the strategic interactions that arise when a dominant (leader) agent influences

equilibrium prices by anticipating the decisions of followers at the lower level. Effectively,

the leader’s optimisation problem is constrained by a set of optimisation problems and

equilibrium constraints at the lower level. If each lower-level problem is convex, then it

may be replaced by its KKT conditions, thereby re-formulating the bi-level problem as a

mathematical program with equilibrium constraints (MPEC). Ruiz and Conejo (2009) ad-

dress the optimal offering strategy of a dominant power company with endogeneity in the

objective function, i.e., the income of the power company is the product of the generation

level and the equilibrium demand, which in turn depends on the generation level. Con-

sequently, this results in an MPEC with non-linear objective function which tends to be

difficult to solve (Bussieck and Vigerske, 2010). Ruiz and Conejo (2009) demonstrate that

such problems may be resolved by using strong duality (Bertsekas, 1999) to render the

problem as a MILP and to treat complementarity conditions via disjunctive constraints

(Fortuny-Amat and McCarl, 1981). An alternative approach is presented in Wogrin et al.
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Figure 4.1: Equilibrium Problems and Their Re-Formulations

(2011) where the endogeneity in the MPEC’s objective function is re-formulated through

bi-linear expansion.

Closer to our effort are Garcés et al. (2009) with a welfare-maximising TSO at the

upper level making transmission investment constrained by market clearing at the lower

levels and Baringo and Conejo (2012) with a cost-minimising TSO at the upper level

making both transmission and wind investment decisions constrained by market-clearing

decisions of producers at the lower level(s). In contrast to Burke and O’Malley (2010) that

assume a fixed transmission network, Baringo and Conejo (2012) illustrate the need to con-

sider transmission and wind jointly. Still within a bi-level framework, Wogrin et al. (2013)

use the framework of Kreps and Scheinkman (1983) to investigate a two-stage duopoly

in which producers make investment decisions in the first stage and operational ones in

the second stage. Within multi-stage games, Fudenberg and Tirole (1991) distinguish

closed-loop and open-loop information structures. A game corresponds to the closed-loop

information structure if participants can condition their decisions at any given stage on all

the decisions made up until that stage. Conversely, in a game with an open-loop informa-

tion structure, the history of play does not have any effect on the participants’ decisions,

which depend only on the corresponding time period. Wogrin et al. (2013) find that a

closed-loop bi-level equilibrium problem with equilibrium constraints (EPEC) yields the

same result as an open-loop mixed-complementarity problem (MCP) for any conjectural
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variation in the spot market as long as there is a single load period and the spot market

is at least as competitive as in the Cournot case. This justifies a single-level approxima-

tion of the producers’ bi-level problem. Such an equivalence may still hold when there

are multiple load periods as demonstrated by an example from Wogrin et al. (2013).

However, at the same time, Wogrin et al. (2013) present a counter-example in which the

installed capacity is actually lower in the closed-loop (EPEC) model relative to the open-

loop (MCP) model when spot markets are closer to being perfectly competitive, thereby

indicating that open-loop results may not always generalise for multiple time periods.

Moving on to a tri-level model, Sauma and Oren (2006, 2007) have a welfare-maximising

TSO at the upper level making transmission investments, producers at the middle level

making generation capacity investments, and market clearing at the lower level. Thus,

this is a more complicated problem than even an EPEC, but Sauma and Oren (2006, 2007)

do not attempt to solve it directly. Rather, they compare pre-determined transmission

investment proposals from the perspective of various planners. In contrast to Sauma and

Oren (2006), Sauma and Oren (2007) focus on market power by the producers and note

that diverging objectives for the TSO may lead to politically infeasible investment plans.

Although transmission expansion has largely remained under the control of regulated

TSOs, market-based models for transmission investment have been proposed in both the

UK and the US. For example, Hogan (1992) posits a role for a merchant investor (MI)

who would build new transmission lines motivated by the collection of congestion rents

between grid nodes. However, the efficient outcomes hypothesised by Hogan (1992) under

the MI are subverted if market power exists (Joskow and Tirole, 2005). In discussing

the landscape for merchant transmission investment in Europe, Kristiansen and Rosellón

(2010) note that financial transmission rights (FTRs) would be beneficial for dealing with

externalities and providing hedging capabilities for investors. Yet, empirical analyses of

markets for FTRs in the US have shown inefficiencies, e.g., divergent forward and spot

prices for congestion rents, to exist in their operations, especially in congested regions

(Bartholomew et al., 2003).

4.1.3 Research Objectives and Contribution

Given this background, we aim to gain policy insights into market design by analysing

transmission and wind investment by distinct agents reflecting strategic behaviour: at the

upper level, we posit that a TSO or an MI invests in new transmission lines (acting as

a Stackelberg leader), while at the lower level, profit-maximising conventional and wind

producers make investment and operational decisions with transmission flows governed by

the relevant grid owner. In contrast to Baringo and Conejo (2012), we allow for market

power at the lower level and find that this specification of industry (as behaving either

perfectly competitively or à la Cournot) affects both lower- and upper-level decisions.
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Moreover, unlike the extant literature, we investigate the implications of transmission

investment made by an MI in a bi-level model. Finally, similarly to Tanaka and Chen

(2013), we explore the impact of a policy measure such as the renewable portfolio stan-

dard (RPS). In this type of scheme, producers are required to supply a certain percentage

of electricity from renewables to meet the quota set by the government (Kovacevic et al.,

2013). They can either generate electricity from renewable sources for which they receive

renewable energy certificate (REC) on a pro rata basis, or they can comply with the reg-

ulation by purchasing the required amount of RECs. As RECs are traded on a separate

certificate market, theoretically, such regulation leads to efficient outcomes (Haas et al.,

2011). A similar scheme is the cap-and-trade mechanism for emissions, which could also

be investigated using our approach (Limpaitoon et al., 2014). In a cap-and-trade system,

a limit is set on the total amount of greenhouse gases that can be emitted by specified

sectors in a given year. Within the cap, companies receive emission allowances that they

can trade with one another as needed. To avoid severe fines, at the end of year, each

participating company must possess enough allowances to cover its greenhouse emissions

it released.

We demonstrate that results are largely intuitive if producers at the lower level are

price takers: generation capacity is added by the least costly producers, the conventional

producer at the node with the highest demand does not face competition, and power

flows from the less costly wind producer to the node with more capital-intensive (wind)

producers. The impact of having the TSO or the MI at the upper level affects mainly the

magnitudes of the outcomes and not their fundamental compositions. Under a lower-level

industry behaving as a Cournot oligopoly, however, regardless of the market design (TSO

or MI), a greater fraction of generation comes from wind because producers withhold

capacity. Their exercise of market power causes a welfare-maximising TSO to subsidise

wind to boost consumer surplus and a profit-maximising MI to build more transmission

lines in order to encourage more transmission flow. The somewhat counterintuitive re-

sult under a Cournot oligopoly leads to power flow from a wind producer to the node

where a conventional producer was the sole incumbent. Finally, by implementing an RPS

constraint requiring a given percentage of energy to be provided by renewable sources,

we examine how the renewable-boosting outcome of the oligopoly may be attained even

under perfect competition.
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4.2 Problem Formulation

4.2.1 Nomenclature

Indices and Sets

i ∈ I: power producers

Ic ⊆ I: conventional power producers

Iw ⊆ I: wind power producers

n ∈ N : grid nodes

n+
` : node index for starting node of line `

n−` : node index for ending node of line `

` ∈ L: transmission lines

j ∈ J`: discrete capacity level of transmission investment on line ` (including the existing

level, j0)

L+
n : set of lines starting at node n

L−n : set of lines ending at node n

t ∈ T : time periods

s ∈ S: scenarios

Parameters

Carc
`,j : amortised expansion cost (including for the existing level, Carc

`,j0
= 0) of line ` with

capacity level j (e/MW)

Karc
`,j : transmission capacity (including for the existing level, Karc

`,j0
) of line ` with capacity

level j (MW)

B`,j: network susceptance of line ` with capacity level j (1/Ω)

Sn ∈ {0, 1}: dummy parameter for slack node (–)

Aintn : intercept of the inverse demand curve at node n (e/MW)

Aslpn : slope of the inverse demand curve at node n (e/MW2)

Θi′,i,n: conjectured response of producer i′ on the change in sales by producer i at node n

(–)

Cinv
n,i : amortised investment cost of producer i at node n (e/MW)

Cprod
n,i : generation cost of producer i at node n (e/MW)

Kprod
n,i : initial generation capacity of producer i at node n (MW)

En,t,s: availability factor for wind generation at node n in period t for scenario s (–)

Ps: probability of scenario s (–)

R: renewable portfolio standard (RPS) requirement (%)
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Primal Variables

dn,t,s: voltage angle at node n in period t for scenario s (rad)

u`,j: transmission investment in capacity level j for line ` (MW)

f`,j,t,s: realised flow on line ` at capacity level j in period t for scenario s (MW)

f̂`,t,s: realised flow on line ` in period t for scenario s (MW)

ginvn,i : generation capacity investment at node n by producer i (MW)

qprodn,i,t,s: generation at node n by producer i in period t for scenario s (MW)

qselln,i,t,s: sales at node n by producer i in period t for scenario s (MW)

pn,t,s: electricity price at node n in period t for scenario s (e/MW)

Dual Variables

µ+
`,j,t,s, µ

−
`,j,t,s: shadow price on capacity for transmission line ` at capacity level j in period

t for scenario s (e/MW)

ψ`,j,t,s: shadow price on electricity flow on line ` at capacity level j in period t for scenario

s (e/MW)

κ`,t,s: shadow price on electricity flow on line ` in period t for scenario s (e/MW)

τn,t,s: congestion fee at node n in period t for scenario s (e/MW)

ξn,t,s: dual for slack node n in period t for scenario s (–)

λc
n,i,t,s, λ

w
n,i,t,s: shadow price on generation capacity at node n for producer i in period t

for scenario s (e/MW)

θi,t,s: shadow price on energy balance for producer i in period t for scenario s (e/MW)

υt,s: renewable energy certificate (REC) price in period t for scenario s (e/MW)

4.2.2 Assumptions

We assume that transmission capacity expansion can be made in discrete levels, j ∈ J`,
for each line ` ∈ L of the network. The susceptance of a line, B`,j, and, thus, the

power flow, f`,j,t,s, depend on the chosen capacity level. Following Baringo and Conejo

(2012), we use a DC load-flow approximation for network power flows, which is an ac-

ceptable convention in power systems economics as long as voltage angle differences are

small, and assume that the realised power flow on line ` for capacity level j in pe-

riod t and scenario s is proportional to the susceptance and voltage angle difference,

i.e., f`,j,t,s = u`,jB`,j(dn+
` ,t,s
− dn−` ,t,s

), ∀`, t, s, ∀j ∈ J`. If capacity level j is for line

`, then u`,j = 1 with f`,j,t,s being positive or negative, depending on the direction of

the flow. Furthermore, for j′ ∈ J` \ {j}, u`,j′ = 0 such that f`,j′,t,s = 0 without any

artificial constraints on the voltage angles. Thus, the realised flow on line ` can be

computed as f̂`,t,s =
∑

j∈J` f`,j,t,s, ∀`, t, s. As a result, the net imports at node n are∑
`∈L−n f̂`,t,s −

∑
`∈L+n f̂`,t,s.
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Each producer is either conventional (using fossil fuel) or wind. Conventional pro-

ducers, i ∈ Ic, have linear cost functions, while wind producers, i ∈ Iw, do not incur

operational costs. In addition, conventional producers can decide how much to generate,

whereas wind output is variable and non-dispatchable, i.e., determined by the availability

factors En,t,s. Such variability in wind output may be due to differing wind potentials

at various locations and uncertainty in future efficiency improvements of the technology.

Other sources of variability, such as demand uncertainty, river inflows, and plant outages,

likewise, drive investment decisions. However, whereas power companies may have years

of experience in forecasting these sources, this may not be the case for the future availabil-

ity of wind. Moreover, with the expected growth in renewables, wind power may account

for a substantial share of variability in a future power system, and we take this as our

main focus while acknowledging that it is not the only driver of investment. Meanwhile,

since market rules like priority of wind production limit curtailment except in extreme

situations, we assume wind to be non-dispatchable. Nevertheless, our model can easily

be adapted to incorporate the dispatch of wind production. We account for variability

in wind output by assuming a known and discrete distribution described by a number of

scenarios capturing the wind availability factors (En,t,s) and their probabilities (Ps).

While any producer can install capacity at any node and sell electricity generated else-

where by accessing transmission capacity, most power companies are well diversified and

may own a portfolio of both conventional and wind plants. However, specialisation also

leads firms to concentrate on particular technologies, e.g., Limpaitoon et al. (2014) report

that the largest two firms in California have proportionately less conventional generation

than the others as part of their portfolios. Thus, it is appropriate to think of each producer

in our model as being a composite producer of a particular type (either predominantly

conventional or predominantly wind). We assume that each node n in our transmission

grid has its own linear inverse demand, pn,t,s = Aintn − Aslpn
∑

i∈I q
sell
n,i,t,s, in each period

t and scenario s, which depends on sales at the node by all producers in equilibrium.

Depending on the market design, each producer is part of either a Cournot oligopoly or

a perfectly competitive industry. The degree of market power is reflected by the conjec-

tured price response, which is the first derivative of the inverse demand with respect to

electricity sold by a given producer, i.e., ∂pn,t,s

∂qselln,i,t,s
= −Aslpn

(
1 +

∑
i′∈I\{i}Θi′,i,n

)
,∀n, i, t, s,

where Θi′,i,n =
∂qsell

n,i′,t,s
∂qselln,i,t,s

for i′ ∈ I \ {i} and Θi′,i,n = 1 otherwise. Hence, we model perfect

competition and Cournot oligopoly when
∑

i′∈I\{i}Θi′,i,n equals −1 and 0, respectively.

We formulate the transmission-expansion problem of the MI as a bi-level problem:

transmission investment decisions are made at an upper level by the MI in anticipation

of subsequent investment in and operation of wind and conventional generation capacity

by the producers, transmission flow decisions of the MI, and market clearing, all cap-

tured by a number of lower-level problems. Effectively, we have a dominant MI investing
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in transmission capacity with wind and conventional producers as followers. We do not

consider competing MIs for three reasons. First, this would typically involve a third

decision-making level for procurement of transmission investment rights, which would

make the problem a tri-level one (Sauma and Oren, 2007) and, therefore, much more

computationally challenging. Second, only a few entities have the expertise to carry out

transmission projects, e.g., the BritNed DC cable between the UK and The Netherlands

was constructed in 2011 as a joint venture formed by a private holding company involving

the National Grid and TenneT. Third, we would like to compare the MI and TSO market

designs, and introducing a third level with procurement auctions would preclude such an

analysis.

To approximate the impact on generation expansion and operational planning, the

producers’ problems are single level. This leads to an open-loop problem (MCP) for

the producers rather than a more complicated closed-loop one (EPEC). While treating

the producers’ problems over two levels may impact our results based on the findings of

Wogrin et al. (2013), we feel justified in using an open-loop representation of the pro-

ducers’ problems because the discrepancy between open- and closed-loop models occurs

only for departures from a Cournot setting. Indeed, the imperfectly competitive nature

of most electricity spot markets implies that it is important to focus on the Cournot case,

which is a central point of our paper and an issue that is relatively unaddressed in most

hierarchical models of transmission investment. Although transmission and generation

investment decisions are static, we allow for dynamic operational decisions and allocation

of transmission capacity over time and scenarios. Thus, investment decisions are made

in a first stage without anticipation of the wind output, whereas operational decisions

are adapted to the realised scenario of availability factors, which leads to a two-stage

stochastic program (Fig. 4.2). The stochastic bi-level problem can be re-formulated as an

MPEC with equilibrium constraints obtained by deriving the optimality conditions for all

lower-level problems. Since the lower level comprises convex optimisation problems, their

KKT conditions are sufficient for optimality.

As benchmarks, we consider market designs with either a welfare-maximising central

planner (CP) or a TSO. Since the CP mimics the regulated paradigm by controlling all

aspects of the energy market, it solves a single-level stochastic problem covering transmis-

sion and generation investment as well as generation dispatch and transmission flows. Like

the MI, the TSO has a bi-level stochastic programming problem with all decisions made

as per the MI market design. The only difference is that the TSO maximises expected

social welfare (SW) rather than expected profit from grid operations. Finally, in antici-

pation of forthcoming EU 2030 targets, we also run a numerical example with a stringent

RPS target of 80%. This is plausible because the EU will require a 40% reduction in CO2

emissions by 2030 relative to 1990 levels, which necessitates a deep decarbonisation of the

power sector specifically due to foreseen electrification of the transport sector. Hitting
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Figure 4.2: Decision-Making Levels

these targets will mean surmounting numerous technical challenges, but we are focused

more on the implications of market design in such a transition assuming legally binding

policy commitments.

4.2.3 Merchant Investor

MI’s Upper-Level Problem

At the upper level, the MI decides on the transmission capacity level of a number of exist-

ing or potentially newly constructed transmission lines in order to maximise its expected

profit given by the difference between grid congestion rents and investment costs:

max
{u`,j}

∑
s∈S

Ps
∑
t∈T

∑
n∈N

τn,t,s

( ∑
`∈L−n

f̂`,t,s −
∑
`∈L+n

f̂`,t,s

)
−
∑
`∈L

∑
j∈J`

Carc
`,j u`,j (4.1)

s.t. u`,j ∈ {0, 1}, ∀`,∀j ∈ J` (4.2)∑
j∈J`

u`,j = 1, ∀` (4.3)

Note that if u`,j0 = 1, then existing capacity remains and no new capacity is con-

structed. We model congestion pricing by assuming that all power flows through a hub

node of the network without generation and consumption (Hobbs, 2001). Thus, transmis-

sion flow between any two nodes is assumed to take place in two parts. The electricity

flows from the injecting node to the hub node and then from the hub node to the receiving
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node. As we use a linearised DC approximation for network load flows, the choice of hub

node is arbitrary, i.e., load flows resulting from a unit injection at one node and a unit

withdrawal at another do not depend on the selected hub through which the transmission

is routed. We further assume that the MI charges a node-dependent congestion fee, τn,t,s,

for transmitting power from this hub to each node. The shadow price on market-clearing

condition (4.35) sets the congestion fee. Upper-level problem (4.1)-(4.3) is constrained by

lower-level problems and equilibrium conditions.

MI’s Lower-Level Problem

At the lower level, the MI determines flows on existing and newly constructed lines in

order to maximise expected congestion rents:

max
Γ

∑
s∈S

Ps
∑
t∈T

∑
n∈N

τn,t,s

( ∑
`∈L−n

f̂`,t,s −
∑
`∈L+n

f̂`,t,s

)
(4.4)

s.t. f`,j,t,s = u`,jB`,j(dn+
` ,t,s
− dn−` ,t,s) (ψ`,j,t,s),

∀`, t, s, ∀j ∈ J` (4.5)

f`,j,t,s ≤ Karc
`,j (µ+

`,j,t,s), ∀`, t, s, ∀j ∈ J` (4.6)

− f`,j,t,s ≤ Karc
`,j (µ−`,j,t,s), ∀`, t, s, ∀j ∈ J` (4.7)

f̂`,t,s =
∑
j∈J`

f`,j,t,s (κ`,t,s), ∀`, t, s (4.8)

Sndn,t,s = 0 (ξn,t,s), ∀n, t, s (4.9)

dn,t,s u.r.s., ∀n, t, s; f`,j,t,s u.r.s., ∀`, t, s, ∀j ∈ J`,

f̂`,t,s u.r.s., ∀`, t, s (4.10)

where Γ = {f̂`,t,s, f`,j,t,s, dn,t,s} and u.r.s. denotes variables of unrestricted sign. Con-

straint (4.5) defines the flow on each line for each capacity level as a function of the

difference in voltage angles, transmission capacity choice (fixed at the upper level), and

line susceptance (Baringo and Conejo, 2012). The upper and lower limits on transmission

flows for each capacity level of each line are set by (4.6) and (4.7), respectively, while

(4.8) indicates the realised flow on each line. Restrictions (4.9) set the slack node for

calculating voltage angles of the network. Moreover, the corresponding dual variables are

in brackets.

The KKT conditions for the MI’s lower-level problem are:

− Ps(τn−` ,t,s − τn+
` ,t,s

) + κ`,t,s = 0 with f̂`,t,s u.r.s.,
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∀`, t, s (4.11)

ψ`,j,t,s + µ+
`,j,t,s − µ

−
`,j,t,s − κ`,t,s = 0 with f`,j,t,s u.r.s.,

∀`, t, s, ∀j ∈ J` (4.12)

−
∑
`∈L+n

∑
j∈J`

u`,jB`,jψ`,j,t,s +
∑
`∈L−n

∑
j∈J`

u`,jB`,jψ`,j,t,s

+ Snξn,t,s = 0 with dn,t,s u.r.s., ∀n, t, s (4.13)

f`,j,t,s − u`,jB`,j(dn+
` ,t,s
− dn−` ,t,s) = 0

with ψ`,j,t,s u.r.s., ∀`, t, s, ∀j ∈ J` (4.14)

0 ≤ Karc
`,j − f`,j,t,s ⊥ µ+

`,j,t,s ≥ 0, ∀`, t, s, ∀j ∈ J` (4.15)

0 ≤ Karc
`,j + f`,j,t,s ⊥ µ−`,j,t,s ≥ 0, ∀`, t, s, ∀j ∈ J` (4.16)

f̂`,t,s −
∑
j∈J`

f`,j,t,s = 0 with κ`,t,s u.r.s., ∀`, t, s (4.17)

Sndn,t,s = 0 with ξn,t,s u.r.s., ∀n, t, s (4.18)

Producers’ Lower-Level Problems

Each conventional producer i ∈ Ic decides on investment and operation of generating

units by maximising expected profit. This is revenue minus congestion rent, operating

cost, compliance cost with the RPS stemming from renewable energy certificates (RECs),

and investment cost:

max
Γi

∑
s∈S

Ps
∑
t∈T

∑
n∈N

((
Aintn − Aslpn

∑
i′∈I

qselln,i′,t,s

− τn,t,s
)
qselln,i,t,s − (Cprod

n,i − τn,t,s +Rυt,s)q
prod
n,i,t,s

)
−
∑
n∈N

Cinv
n,i g

inv
n,i (4.19)

s.t. qprodn,i,t,s ≤ Kprod
n,i + ginvn,i (λc

n,i,t,s), ∀n, t, s (4.20)∑
n∈N

qprodn,i,t,s −
∑
n∈N

qselln,i,t,s = 0 (θi,t,s), ∀t, s (4.21)

qprodn,i,t,s ≥ 0, qselln,i,t,s ≥ 0, ∀n, t, s, ginvn,i ≥ 0, ∀n (4.22)

Here, Γi = {qprodn,i,t,s, q
sell
n,i,t,s, g

inv
n,i }. Congestion pricing implies that a producer receives a

payment to send power from the generation node to the hub node, while it makes a

payment to send power from the hub node to the sales node. Correspondingly, the cost of
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transmitting electricity from node n to node n′ is −τn,t,s+ τn′,t,s. Since in our model every

flow is routed through the hub node, this pricing method ensures that producers selling

electricity at their local nodes do not pay for transmission as their payments and receipts

cancel out. Also, note that the cost of transmission can be negative, which implies that

the grid owner subsidises the the load flow. The transmission payments are again shadow

prices from the market-clearing condition (4.35). The problem is subject to capacity

constraints on production (4.20) and energy balance between total production and sales

(4.21). Following Tanaka and Chen (2013), we account for the renewable energy credit

(REC) payment via the exogenous RPS fraction, R, and the shadow price on the RPS

constraint (4.36).

The KKT conditions for this problem are:

0 ≤ −Ps
(
Aintn − Aslpn

(
(1 +

∑
i′∈I\{i}

Θi,i′,n)qselln,i,t,s

+
∑
i′∈I

qselln,i′,t,s

)
− τn,t,s

)
+ θi,t,s ⊥ qselln,i,t,s ≥ 0,∀n, t, s (4.23)

0 ≤ Ps(C
prod
n,i − τn,t,s +Rυt,s) + λc

n,i,t,s − θi,t,s

⊥ qprodn,i,t,s ≥ 0,∀n, t, s (4.24)

0 ≤ Cinv
n,i −

∑
s∈S

∑
t∈T

λc
n,i,t,s ⊥ ginvn,i ≥ 0,∀n (4.25)

0 ≤ Kprod
n,i + ginvn,i − q

prod
n,i,t,s ⊥ λc

n,i,t,s ≥ 0, ∀n, t, s (4.26)∑
n∈N

qprodn,i,t,s −
∑
n∈N

qselln,i,t,s = 0 with θi,t,s u.r.s., ∀t, s (4.27)

Each wind power producer i ∈ Iw faces a similar problem:

max
Γi

∑
s∈S

Ps
∑
t∈T

∑
n∈N

((
Aintn − Aslpn

∑
i∈I

qselln,i,t,s

− τn,t,s
)
qselln,i,t,s + (τn,t,s + (1−R)υt,s)q

prod
n,i,t,s

)
−
∑
n∈N

Cinv
n,i g

inv
n,i (4.28)

s.t. qprodn,i,t,s = En,t,s(K
prod
n,i + ginvn,i ) (λw

n,i,t,s),

∀n, t, s (4.29)∑
n∈N

qprodn,i,t,s −
∑
n∈N

qselln,i,t,s = 0 (θi,t,s), ∀t, s (4.30)

qprodn,i,t,s ≥ 0, qselln,i,t,s ≥ 0, ∀n, t, s, ginvn,i ≥ 0, ∀n (4.31)

Note that in the objective function production costs of wind power production are as-
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sumed to be negligible and REC payments are replaced by earnings from RECs. Further-

more, the constraint (4.20) is replaced by (4.29) to reflect the non-dispatchable nature of

wind.

The corresponding KKT conditions are:

(4.23), (4.27)

0 ≤ −Ps(τn,t,s + (1−R)υt,s) + λw
n,i,t,s − θi,t,s

⊥ qprodn,i,t,s ≥ 0,∀n, t, s (4.32)

0 ≤ Cinv
n,i −

∑
s∈S

∑
t∈T

λw
n,i,t,sEn,t,s ⊥ ginvn,i ≥ 0,∀n (4.33)

qprodn,i,t,s − En,t,s
(
Kprod
n,i + ginvn,i

)
= 0 with λw

n,i,t,s u.r.s.,

∀n, t, s∀t, s (4.34)

Equilibrium Conditions

Market-clearing conditions stipulate that the transmission flow supplied by the grid owner

to node n equals the producers’ demand for transmission capacity, which they require in

order to sell electricity at this node:

∑
i∈I

qselln,i,t,s −
∑
i∈I

qprodn,i,t,s +
∑
`∈L+n

f̂`,t,s −
∑
`∈L−n

f̂`,t,s = 0,

with τn,t,s u.r.s., ∀n, t, s (4.35)

The RPS constraint requires that share of wind power production from the total produc-

tion is at least R:

0 ≤
∑
n∈N

∑
i∈Iw

qprodn,i,t,s −R
∑
n∈N

∑
i∈I

qprodn,i,t,s ⊥ υt,s ≥ 0,

∀t, s (4.36)
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MI’s MPEC Formulation

The MI’s MPEC is:

max
{u`,j}∪Γ∪Γi∪ΞMI

(4.1)

s.t. (4.2)− (4.3); (4.11)− (4.18); (4.23), (4.27) ∀i ∈ I;

(4.24)− (4.26) ∀i ∈ Ic; (4.32)− (4.34) ∀i ∈ Iw;

(4.35)− (4.36)

where ΞMI = {µ+
`,j,t,s, µ

−
`,j,t,s, ψ`,j,t,s, κ`,t,s, ξn,t,s, λ

c
n,i,t,s, λ

w
n,i,t,s, θi,t,s, τn,t,s, υt,s} are lower-level

dual variables.

4.2.4 Transmission System Operator

At the upper level, the TSO decides on transmission capacity such as to maximise expected

social welfare. To determine the social welfare, we calculate first the consumers’ surplus

by integrating the inverse demand function from zero demand to the equilibrium demand.

The social welfare is then given by subtracting the producers’ variable and investment

costs as well as the cost of grid expansion from the consumers’ surplus:

max
{u`,j}

∑
s∈S

Ps
∑
t∈T

(∑
n∈N

(
Aintn

∑
i∈I

qselln,i,t,s

− 1

2
Aslpn

(∑
i∈I

qselln,i,t,s

)2)−∑
i∈Ic

∑
n∈N

Cprod
n,i q

prod
n,i,t,s

)
−
∑
i∈I

∑
n∈N

Cinv
n,i g

inv
n,i −

∑
`∈L

∑
j∈J`

Carc
`,j u`,j (4.37)

s.t. (4.2)− (4.3)

At the lower level, the TSO enforces network feasibility constraints, i.e., load power

flows are determined by voltage angle differences and they cannot exceed line capacities,

(4.5)-(4.10), in which u`,j is fixed at the upper level. Thus, the TSO’s MPEC is:

max
{u`,j}∪Γ∪Γi∪ΞTSO

(4.37)

s.t. (4.2)− (4.3); (4.5)− (4.10); (4.23), (4.27) ∀i ∈ I;

(4.24)− (4.26) ∀i ∈ Ic; (4.32)− (4.34) ∀i ∈ Iw;
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(4.35)− (4.36)

where ΞTSO = {λc
n,i,t,s, λ

w
n,i,t,s, θi,t,s, τn,t,s, υt,s}.

4.2.5 Central Planner

The CP’s optimisation problem can be solved as stochastic mixed-integer non-linear pro-

gramming (MINLP) problem. The non-linearity stems from constraint (4.5), which in-

cludes the product of two decision variables. The CP’s MINLP is formulated as:

max
{u`,j}∪Γ∪Γi

(4.37)

s.t. (4.2)− (4.3); (4.5)− (4.10); (4.20) ∀i ∈ Ic;

(4.21)− (4.22) ∀i ∈ I; (4.29) ∀i ∈ Iw; (4.35);∑
n∈N

∑
i∈Iw

qprodn,i,t,s ≥ R
∑
n∈N

∑
i∈I

qprodn,i,t,s

∀n, t, s (4.38)

4.3 Problem Re-Formulations

Since MPEC model formulations involve a large number of complementarity constraints,

they are highly non-linear. Currently, solvers for such non-linear problems are experi-

mental and cannot guarantee global optima (Rosenthal, 2014), i.e., MPEC solvers based

on the reduced gradient method are likely to converge to a local optimum (Gabriel et

al., 2012). The MI’s MPEC formulation poses additional difficulties since its objective

function is also non-linear due to endogeneity. The MI’s income is the sum of the products

of the transmission flow and the congestion fee on each line, however, the congestion fee

itself depends on the flow determined by the MI. Nevertheless, these MPEC problems

can be re-cast as MILPs or mixed-integer quadratic programs (MIQPs), which can be

then solved with advanced branch-and-cut algorithms. While research on solving MINLP

problems is further ahead (Lee and Leyffer, 2012), it is still a new field, and solving an

MINLP, if it is possible at all, takes much longer than solving an MILP. Therefore, we

re-formulate the CP’s MINLP problem as well.

Thus, starting with the MI’s MPEC formulation, we linearise its objective function by

applying strong duality (Luenberger and Ye, 2008) from linear programming (LP) to its

lower-level problem (4.4)-(4.10):
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∑
s∈S

Ps
∑
t∈T

∑
n∈N

τn,t,s

( ∑
`∈L−n

f̂`,t,s −
∑
`∈L+n

f̂`,t,s

)
=
∑
s∈S

∑
t∈T

∑
`∈L

∑
j∈J`

Karc
`,j (µ+

`,j,t,s + µ−`,j,t,s)

Consequently, the non-linear part of the MI’s objective function can be replaced by a

linear expression to yield the following objective function:∑
s∈S

∑
t∈T

∑
`∈L

∑
j∈J`

Karc
`,j (µ+

`,j,t,s + µ−`,j,t,s)

−
∑
`∈L

∑
j∈J`

Carc
`,j u`,j (4.39)

For this to hold, the primal and dual solutions, f̂`,t,s, τn,t,s, µ
+
`,j,t,s, and µ−`,j,t,s must satisfy

the KKT conditions of the MI’s lower-level problem.

Next, the KKT conditions can be replaced by disjunctive constraints (Fortuny-Amat

and McCarl, 1981). For the MI’s lower-level problem, constraints (4.11)-(4.18) can be

re-formulated as:

− Ps(τn−` ,t,s − τn+
` ,t,s

) + κ`,t,s = 0,∀`, t, s (4.40)

ψ`,j,t,s + µ+
`,j,t,s − µ

−
`,j,t,s − κ`,t,s = 0,∀`, t, s, ∀j ∈ J` (4.41)

−
∑
`∈L+n

∑
j∈J`

B`,j(ψ`,j,t,s − ψaux`,j,t,s) +
∑
`∈L−n

∑
j∈J`

B`,j(ψ`,j,t,s

− ψaux`,j,t,s) + Snξn,t,s = 0, ∀n, t, s (4.42)

− u`,jMd ≤ ψ`,j,t,s − ψaux`,j,t,s ≤ u`,jM
d,

∀`, t, s, ∀j ∈ J` (4.43)

− (1− u`,j)Md ≤ ψaux`,j,t,s ≤ (1− u`,j)Md,

∀`, t, s, ∀j ∈ J` (4.44)

−Karc
`,j u`,j ≤ f`,j,t,s ≤ Karc

`,j u`,j, ∀`, t, s, ∀j ∈ J` (4.45)

− (1− u`,j)M flow ≤ f`,j,t,s −B`,j(dn+
` ,t,s
− dn−` ,t,s)

≤ (1− u`,j)M flow, ∀`, t, s, ∀j ∈ J` (4.46)

0 ≤ Karc
`,j − f`,j,t,s ≤Marc+warc

+

`,j,t,s, ∀`, t, s, ∀j ∈ J` (4.47)

0 ≤ µ+
`,j,t,s ≤Marc+(1− warc+`,j,t,s), ∀`, t, s, ∀j ∈ J` (4.48)

0 ≤ Karc
`,j + f`,j,t,s ≤Marc−warc

−

`,j,t,s, ∀`, t, s, ∀j ∈ J` (4.49)
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0 ≤ µ−`,j,t,s ≤Marc−(1− warc−`,j,t,s), ∀`, t, s, ∀j ∈ J` (4.50)

f̂`,t,s −
∑
j∈J`

f`,j,t,s = 0 , ∀`, t, s (4.51)

Sndn,t,s = 0, ∀n, t, s (4.52)

u`,j ∈ {0, 1}, ∀`,∀j ∈ J`, f̂`,t,s u.r.s., ∀`, t, s

f`,j,t,s u.r.s., ∀`, t, s, ∀j ∈ J`, dn,t,s u.r.s., ∀n, t, s

ψ`,j,t,s u.r.s., ψaux`,j,t,s u.r.s., ∀`, t, s, ∀j ∈ J`

κ`,t,s u.r.s., ∀`, t, s, ξn,t,s u.r.s., ∀n, t, s

warc
+

`,j,t,s,∈ {0, 1}, warc
−

`,j,t,s ∈ {0, 1}, ∀`, t, s, ∀j ∈ J`

τn,t,s u.r.s., ∀n, t, s (4.53)

For conventional producer i ∈ Ic, the KKT conditions (4.23)-(4.27) are re-formulated

in the same manner:

0 ≤ −Ps
(
Aintn − Aslpn

(
(1 +

∑
i′∈I\{i}

Θi,i′,n)qselln,i,t,s

+
∑
i′∈I

qselln,i′,t,s

)
− τn,t,s

)
+ θi,t,s ≤M sellwselln,i,t,s,

∀n, t, s (4.54)

0 ≤ qselln,i,t,s ≤M sell(1− wselln,i,t,s) ∀n, t, s (4.55)

0 ≤ Ps(C
prod
n,i − τn,t,s +Rυt,s) + λc

n,i,t,s − θi,t,s

≤Mprodwprodn,i,t,s, ∀n, t, s (4.56)

0 ≤ qprodn,i,t,s ≤Mprod(1− wprodn,i,t,s), ∀n, t, s (4.57)

0 ≤ Cinv
n,i −

∑
s∈S

∑
t∈T

λc
n,i,t,s ≤M invwinvn,i , ∀n (4.58)

0 ≤ ginvn,i ≤M inv(1− winvn,i ), ∀n (4.59)

0 ≤ Kprod
n,i + ginvn,i − q

prod
n,i,t,s ≤Mλcwλ

c

n,i,t,s, ∀n, t, s (4.60)

0 ≤ λc
n,i,t,s ≤Mλc(1− wλcn,i,t,s), ∀n, t, s (4.61)∑

n∈N

qprodn,i,t,s −
∑
n∈N

qselln,i,t,s = 0, ∀n, t, s (4.62)

θi,t,s u.r.s., ∀t, s (4.63)
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wprodn,i,t,s, w
sell
n,i,t,s, w

λc

n,i,t,s ∈ {0, 1}, ∀n, t, s (4.64)

winvn,i ∈ {0, 1}, ∀n (4.65)

Analogously, for wind producer i ∈ Iw, the disjunctive constraints are the same as in

(4.54)-(4.65) with the following replacements for (4.56), (4.58), (4.60), and (4.61), which

correspond to (4.32)-(4.34):

0 ≤ −Ps(τn,t,s + (1−R)υt,s) + λw
n,i,t,s − θi,t,s

≤Mprodwprodn,i,t,s, ∀n, t, s (4.66)

0 ≤ Cinv
n,i −

∑
s∈S

∑
t∈T

λw
n,i,t,sEn,t,s ≤M invwinvn,i , ∀n (4.67)

qprodn,i,t,s − En,t,s(K
prod
n,i + ginvn,i ) = 0, ∀n, t, s (4.68)

λw
n,i,t,s u.r.s., ∀n, t, s (4.69)

Finally, the market-clearing and RPS constraints (4.35)-(4.36) become:∑
i∈I

qselln,i,t,s −
∑
i∈I

qprodn,i,t,s +
∑
`∈L+n

f̂`,t,s −
∑
`∈L−n

f̂`,t,s = 0,

∀n, t, s (4.70)

0 ≤
∑
n∈N

∑
i∈Iw

qprodn,i,t,s −R
∑
n∈N

∑
i∈I

qprodn,i,t,s ≤Mυwυt,s,

∀t, s (4.71)

0 ≤ υt,s ≤Mυ(1− wυt,s), ∀t, s (4.72)

τn,t,s u.r.s., ∀n, t, s (4.73)

wυt,s ∈ {0, 1}, ∀t, s (4.74)

Hence, the MILP for the MI is:

max
{u`,j}∪Γ∪Γi∪ΞMI∪ΦMI

(4.39)

s.t. (4.2)− (4.3); (4.40)− (4.53); (4.54)− (4.55), (4.57), (4.59),

(4.62)− (4.65) ∀i ∈ I; (4.56), (4.58), (4.60), (4.61) ∀i ∈ Ic;

(4.66)− (4.69) ∀i ∈ Iw; (4.70)− (4.74)

where ΦMI = {wprodn,i,t,s, w
sell
n,i,t,s, w

inv
n,i , w

λc

n,i,t,s, w
λw

n,i,t,s, w
arc+

`,j,t,s, w
arc−

`,j,t,s, w
υ
t,s, ψ

aux
`,j,t,s}.
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Since the TSO’s objective function (4.37) is quadratic, we directly use disjunctive

constraints to formulate its MPEC as an MIQP:

max
{u`,j}∪Γ∪Γi∪ΞTSO∪ΦTSO

(4.37)

s.t. (4.2)− (4.3); (4.8)− (4.10); (4.45)− (4.46); (4.54)− (4.55), (4.57), (4.59),

(4.62)− (4.65) ∀i ∈ I; (4.56), (4.58), (4.60), (4.61) ∀i ∈ Ic;

(4.66)− (4.69) ∀i ∈ Iw; (4.70)− (4.74)∀`, t, s, ∀j ∈ J`

where ΦTSO = {wprodn,i,t,s, w
sell
n,i,t,s, w

inv
n,i , w

λc

n,i,t,s, w
λw

n,i,t,s, w
υ
t,s}.

Likewise, the CP’s MINLP may be re-formulated as an MIQP:

max
{u`,j}∪Γ∪Γi

(4.37)

s.t. (4.2)− (4.3); (4.8)− (4.10); (4.20) ∀i ∈ Ic;

(4.21)− (4.22) ∀i ∈ I; (4.29) ∀i ∈ Iw;

(4.35); (4.38); (4.45)− (4.46)

4.4 Numerical Examples

4.4.1 Data

We implement the three market designs on a three-node network with two operating hours

and scenarios (Fig. 4.3). The arrows indicate forward directions for the flows, i.e., the cor-

responding decision variable will have a positive (negative) sign if the realised flow is in the

indicated (opposite) direction. All nodes are initially disconnected, but transmission lines

with attributes given in Fig. 4.4 may be built. In the DC load-flow model, the ease with

which current passes through a line is denoted by susceptance. In Fig. 4.4, we indicate

the transmission capacity (susceptance) by the broken (solid) series measured on the left

(right) axis. Specifically, we consider fifteen discrete capacity levels with corresponding

susceptances. The susceptance of a line is determined by several factors, such as physical

characteristics of the conductor, i.e., its length, cross-section area, and material compo-

sition, and it is affected also by conditions the line is used in, i.e., applied voltage, air

temperature, and atmospheric pressure. Assuming typical values for aluminium conduc-

tors, we calculate the transmission capacities and susceptances based on Reta-Hernández

(2012). Although in our example the network is initially disconnected, because we discre-

tise the transmission capacity levels, we could easily implement an instance with positive
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Figure 4.3: Transmission Network with Three Nodes

initial line capacities. Since we model representative hours, the transmission investment

costs for lines of length 700 km are amortised on an hourly basis assuming a construc-

tion cost of $1080/(MW-km), which is in line with Baringo and Conejo (2102). These

costs range from e11.9/MW to e337/MW for 220 kV lines corresponding to capacities

3.7 MW to 103.7 MW, respectively. For generation, we use the US Energy Information

Administration’s 2014 Annual Energy Outlook to calculate operating costs and amortised

capacity costs of conventional ($2930/kW capital cost and 40% efficiency for coal) and

wind plants (capital costs of $2210/kW and $6230/kW for onshore and offshore turbines,

respectively). All amortisation assumes a lifetime of 20 years and an interest rate of 3%

per annum. Finally, in Table 4.1, we assume that the demand centre is at node 1 (with an

existing conventional plant), but potential wind resources are based at thinly populated

locations (nodes 2 and 3).

Table 4.1: Demand and Production Parameters

Parameter n = 1 n = 2 n = 3
i = 1 i = 2 i = 3

Aint
n 110 70 60

Aslp
n 1 1 1

En,s,1 0 0.30 0.45
En,1,2 0 0.33 0.50
En,2,2 0 0.27 0.41
Cinv

n,i 12.58 9.47 26.71

Cprod
n,i 21 0 0

Kprod
n,i 15 0 0
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Figure 4.4: Transmission Line Parameters

4.4.2 Computational Issues

The problems are implemented in GAMS running on a Windows workstation with a 3.30

GHz Intel i7 core processor and 16 GB RAM. While the MI’s MPEC is re-formulated as an

MILP, the CP’s MINLP and the TSO’s MPEC are re-formulated as MIQPs. All problems

are solved via GUROBI. Computational times with two periods and two scenarios range

from less than one second (CP and all TSO instances) to 855 s (MI with PC) and 7735 s

(MI with CO). In the latter instance, there are 3,481 equations, 1,520 continuous variables,

and 484 discrete variables. The relative optimality gap is set to 5%.

4.4.3 Example 1: Base Case without RPS

As a benchmark, we find that the CP simply matches the most efficient resource with the

most valuable demand nodes (Table 4.2). The conventional producer at node 1 serves all

of the local demand, while transmission lines are constructed from nodes 2 to 3 with an

effectively zero expected profit, E[Πn,i], for producers if the subsidy on congestion rent

from the CP and the legacy capacity for the conventional producer are ignored. More-

over, the expected profit from grid operations, E[Πarc], is negative as congestion rents are

internalised in a centrally planned economy. Meanwhile, the TSO’s result under perfect

competition is similar to that of the CP aside from the levying of congestion rents, which

drives the producers’ expected profits to zero (with the exception of the conventional

producer). This is in contrast to Sauma and Oren (2006) because of the difference in

formulation: we have sales and dispatch decisions made by producers, whereas Sauma

and Oren (2006) assume that only dispatch is made by producers with sales and flow
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decisions performed by a welfare-maximising TSO. The MI under perfect competition de-

livers a lower social welfare because of its incentive to maximise its own expected profit,

which is attained by reducing line capacities to boost congestion rents. Consequently, the

producers adopt less generation capacity, and the expected nodal prices and differences

in expected congestion rents are higher. For example, under the MI, it costs a perfectly

competitive producer at node 2 nearly e16/MW to send power to node 3 as opposed to

about e4/MW with a TSO. Hence, the MI delivers lower social welfare and less renewable

generation than the TSO.

Under a Cournot oligopoly, producers have the incentive to withhold generation ca-

pacity in order to boost expected profits. Anticipating this strategic behaviour, the TSO

supports expected SW by effectively subsidising wind generation by investing heavily in

line 1. This creates an opening for the wind producer at node 2 to benefit at the expense

of the conventional producer at node 1. Consequently, the generation investment and

operations observed under perfect competition are altered as a result of the exercise of

market power by the producers and the countervailing decisions of the TSO at the upper

level. For an MI, the strategic withholding by producers at the lower level is likewise

undesirable because it cuts into transmission flows. Recognising this, the MI mitigates

losses to its profit by encouraging transmission. Thus, for different reasons than the TSO,

the MI also invests in more distinct lines under Cournot oligopoly than under perfect

competition. However, total transmission capacity drops under the Cournot setting be-

cause of the producers’ propensity to withhold generation and the MI’s reluctance to

subsidise wind to increase social welfare. Finally, although the MI’s actions result in wind

investment at node 3, expected renewable generation, E[RG], is greatest under the TSO.

4.4.4 Example 2: Renewable Portfolio Standards

Given that the EU’s 2030 objective is to decrease CO2 emissions by 40% relative to 1990

levels, i.e., implying a deep decarbonisation of the power sector, we run our model with

an RPS target of 80% (Table 4.3). We find that the effective subsidy for wind (and tax on

conventional generation) enables the high penetration of renewables seen under Cournot

oligopoly in Table 4.2 to be achieved here even under perfect competition. In effect,

RPS mimics the high renewable penetration with alteration of generation patterns under

oligopoly.

4.4.5 Larger Problem Instances

In order to investigate the robustness of our insights, we also implement two additional

examples. For the three-node network with four scenarios and eight time periods, com-

putational times for the CP and TSO market designs are again less than one second.

However, those for the MI market designs balloon to 9 h (with PC) and 35 h (with

91



Table 4.2: Results for Example 1

Cournot Oligopoly Perfect Competition CP
MI TSO MI TSO

E[SW ] 3549.50 3860.19 4073.66 4154.39 4154.69
E[RG](%) 46.80 87.83 39.65 44.83 44.83
E[Πarc] 63.72 -4351.73 155.27 20.97 -29.17∑

j∈J1

u1,jK
arc
1,j 3.70 61.00 0.00 0.00 0.00∑

j∈J2

u2,jK
arc
2,j 6.10 30.50 12.20 24.40 24.40∑

j∈J3

u3,jK
arc
3,j 0.00 0.00 0.00 0.00 0.00

E[flow1] -3.67 -58.45 0.00 0.00 0.00

E[flow2] 6.10 29.52 12.20 24.05 24.05

E[flow3] 0.00 0.00 0.00 0.00 0.00
E[p1] 58.41 36.81 33.58 33.58 33.58
E[p2] 43.31 51.06 31.82 31.84 31.84
E[p3] 48.17 30.48 47.80 35.95 35.95
E[τ1] -6.76 22.31 0.47 -0.16 -
E[τ2] -12.29 76.07 -1.30 -1.90 -
E[τ3] 0.00 44.90 14.69 2.21 -
E[Π1,1] 1100.45 233.60 188.70 188.70 182.68
E[Π2,2] 592.09 4672.03 0.00 0.00 56.15
E[Π3,3] 33.05 0.00 0.00 0.00 0.00
ginv1,1 32.91 0.00 61.42 61.42 61.42
ginv2,2 121.56 356.34 167.94 207.35 207.35
ginv3,3 12.74 0.00 0.00 0.00 0.00

CO). Nevertheless, the qualitative insights are similar to those in Example 1. For a six-

node network (Fig. 4.5) with eight candidate transmission lines, computational times

for the CP and TSO market designs are about four minutes, and the results are as for

the three-node network, i.e., transmission lines are built to transfer the wind power to

consumption centres. However, the MI market designs become more challenging to solve

without recourse to decomposition, which is an area for future work.

4.5 Discussion and Conclusions

Deregulation of the power sector has created various market designs to balance competing

economic and social objectives. Here, we take a complementarity approach to compare

MI and TSO market designs in analysing a transition to a more sustainable electricity in-

dustry. By re-formulating the bi-level problems as MPECs and then as MILPs or MIQPs,

we implement these market designs for a three-node example and along with an RPS

requirement. We demonstrate how market design and market power interact to result in

seemingly counterintuitive outcomes. In particular, we note that under the CP and TSO

(with perfect competition) market designs, the results are similar. Intuitively, the conven-

tional producer satisfies all of the local demand, while a transmission line linking nodes

with wind producers is constructed. This results in generation expansion by the conven-
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Table 4.3: Results for Example 2

Cournot Oligopoly Perfect Competition CP
MI TSO MI TSO

E[SW ] 2705.35 3860.18 3084.858 4073.84 4073.84
E[RG](%) 80.10 87.80 80.10 81.57 81.57

E[υ] 48.85 0.00 49.07 4.09 -
E[Πarc] 576.93 -4351.73 1010.291 158.68 -39.61∑

j∈J1

u1,jK
arc
1,j 12.20 61.0 18.30 48.80 48.80∑

j∈J2

u2,jK
arc
2,j 12.20 30.5 6.10 24.40 24.40∑

j∈J3

u3,jK
arc
3,j 3.70 0.00 0.00 0.00 0.00

E[flow1] -12.20 -58.44 -18.30 -48.25 -48.25

E[flow2] 8.08 29.524 6.10 23.68 23.68

E[flow3] -3.70 0.00 0.00 0.00 0.00
E[p1] 79.80 36.80 72.83 36.85 36.85
E[p2] 40.94 51.06 22.44 31.26 31.26
E[p3] 47.48 30.47 49.89 36.33 36.33
E[τ1] -10.48 11.94 -9.698 2.80 -
E[τ2] 3.50 11.65 0.076 0.00 -
E[τ3] -0.32 13.44 0.00 2.50 -
E[Π1,1] 286.29 233.60 188.70 188.70 243.42
E[Π2,2] 844.81 4672.02 0.00 0.00 143.57
E[Π3,3] 33.73 0.00 0.00 0.00 0.00
ginv1,1 0.51 0.00 5.38 9.90 9.90
ginv2,2 164.49 356.34 239.84 368.89 368.89
ginv3,3 18.09 0.00 8.897 0.00 0.00

tional producer and the cheaper (on-shore) wind producer, and power flows towards the

location of the more expensive (off-shore) wind producer. The MI market design under

perfect competition is qualitatively similar in terms of transmission investment, genera-

tion expansion, and power flows. However, since the MI is concerned about maximising its

own expected profit only, it strategically invests in less transmission capacity to increase

congestion rents, thereby earning positive expected profit. The expected generation from

renewables is similar to that under the CP and TSO (with perfect competition) market

designs.

Allowing for market power at the lower level leads to less generation investment as

producers seek to drive up the market-clearing price. Under the TSO market design with

a Cournot oligopoly, the conventional producer’s act of withholding investment, indeed,

increases its own expected profit and average prices across the network. However, this

withholding could have a deleterious effect on social welfare, which the TSO seeks to

mitigate by effectively subsidising more transmission investment along lines involving the

on-shore wind producer. Consequently, this countervailing action by the TSO creates

an opening for the on-shore wind producer to expand generation capacity in order to

offset some of the effects of the market power exercised by the conventional producer.

Somewhat counterintuitively, expected generation from renewables increases significantly

with a Cournot oligopoly vis-à-vis perfect competition, and the on-shore wind producer
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Figure 4.5: Transmission Network with 6 Nodes

actually exports power to the conventional producer’s node.

This rather surprising result is also encountered in the MI market design with a

Cournot oligopoly but for different reasons. As with the TSO, the lower level now has

producers with the incentives to withhold generation capacity in order to increase ex-

pected profits and prices. However, such behaviour will conflict with the MI’s objective

to maximise expected profit, which consists of the product of congestion rents and power

flows. Since the latter are adversely affected by the producers’ withholding, the MI takes

countermeasures to prevent power flows from dropping too much. Thus, it also invests in

lines connecting the on-shore wind producer with the rest of the network, albeit by much

less than the TSO. This enables power generation by not only the on-shore wind pro-

ducer but also the more expensive off-shore wind producer. With an RPS constraint, the

enhanced role for wind producers supported by complementary transmission investment

is observed even when the lower level does not have producers behaving à la Cournot.

Hence, the desirable policy target of significant renewable penetration may be attained

(even in the presence of conflicting game-theoretic incentives) without the need to tolerate

market power.
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Chapter 5

Summary and Conclusions

In the next 25 years, energy demand is projected to grow by 1.5% annually, amounting

to a 50% expansion compared to today’s demand levels (EIA, 2013). While estimates

might differ, there is unanimous agreement that the energy use will increase dramatically

over the coming years. Hence, in order to meet future energy demands, wide-ranging

investments and technological developments will be required.

Since the 1990s, to encourage more efficient electricity generation, a number of coun-

tries have undertaken steps to increase competition in their electricity industry. The main

driving force behind the deregulation has been to lower electricity prices and to spur tech-

nological innovation. The more competition, the more likely the electricity prices are to

reach the limits set by the fuel costs. However, due to exercise of market power by power

companies in lightly regulated industries, deregulation has not achieved this goal yet. At

the same time, deregulation has led to higher price uncertainties. Another factor playing

an important role in the energy industry is the need to reduce CO2 emissions to mitigate

the effects of climate change. Emissions from power stations using fossil fuels account for

approximately 30% of the total greenhouse gas emissions in the EU (WRI, 2008). Thus,

improving the energy efficiency of fossil-fired power plants is one of the keys to reducing

greenhouse gas emissions. Parry et al. (1999) argue that the most efficient solution would

be to price the negative externalities of coal- and gas-fired generation effectively, i.e.,

to introduce taxes on emissions. However, such policies have garnered limited political

support (Borenstein, 2011). Hence, many governments have preferred to create policies

to promote renewable electricity generation more directly, i.e., by introducing subsidies.

This has led to a large increase in intermittent generation in the EU, which means that

unpredictable weather conditions play an ever-increasing role in electricity generation,

and, hence, in determining electricity prices. Therefore, to counter the effects of uncer-

tain energy prices triggered by deregulation and increased intermittent generation, large

consumers need to apply risk management to energy procurement.

These two factors have also affected generation and transmission investments. TSOs

need to invest in new lines in order to integrate new wind generation, but in a deregulated
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industry they do not have the means to recoup their capital costs directly or to control

generation investment decisions.

The objective of this thesis has been to address these two problems, viz., the risk

management of a microgrid with physical and financial hedges and transmission expan-

sion with concurrent wind energy investments. Chapter 2 focused on the investment

decision of a large consumer and showed that, for consumers facing electricity and heat

demand, CHP can be efficiently used not only to decrease the running costs but also to

hedge against price jumps. In order to provide deeper insights into risk management and

operational flexibility, Chapter 3 proceeded with the medium-term management problem

of a microgrid with installed CHP. It was found that CHP as a physical hedge is more

efficient in reducing the microgrid’s risk exposure than the available financial products.

Finally, in Chapter 4, the joint problem of wind energy investment and transmission ex-

pansion was considered, along with an examination of the role that market designs and

the producers’ market power can play in accommodating transmission expansion and in-

vestments in wind energy. We find that it is in the interest of both the TSO and the MI,

albeit for different reasons, to mitigate the restrictive behaviour of the incumbent producer

in a Cournot oligopoly, which can support policies towards profit-oriented transmission

expansion.

5.1 Optimal Selection of Distributed Energy Resources

under Uncertainty and Risk Aversion

According to the US Environmental Protection Agency (EPA, 2012), an additional 40

GW of CHP generation capacity, i.e., an increase of around 50% from the current level,

would save 293 TWh of energy, reduce CO2 emissions by 150 million tons, and result in

savings of around $10 billion for consumers per year. In line with these findings, a num-

ber of countries are aiming to accelerate investment in CHP. In Germany, over the last

twelve years, the government has removed barriers and introduced subsidies to promote

CHP development. Despite these efforts, however, customers’ adoption of cogeneration is

lagging behind the targets. The European Association for the Promotion of Cogeneration

(European Cogeneration Review - Germany, 2013) argues that the main reasons behind

the low adoption rate are the volatile gas spark spreads and risk aversion among the

smaller potential investors.

To provide investment decision support, we develop a mean-risk optimisation model

for the long-term risk management problem of a hypothetical microgrid using mixed-

integer, multi-stage stochastic programming. We find that investing in CHP reduces the

expected energy costs of a microgrid significantly compared to purchasing electricity from

the market or generating without heat recovery. More important, with an adequate risk
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management strategy, on-site generation can lead to a lower risk exposure compared to

purchasing electricity from the spot market. Due to its high efficiency, CHP facilitates

risk management even when the expected gas spark spread is negative. As CHP can swap

electricity with high volatility for gas with low volatility, investing in CHP is somewhat

similar to purchasing a swaption, an option to exchange the streams of payments with

different volatilities. Thus, CHP can be regarded as a physical hedge, and, consequently,

it also interacts with financial hedges. In particular, we find that electricity futures and

on-site generation are substitutes, while gas futures and on-site generation are comple-

ments. Nevertheless, the degree of both substitution and complementary effects depends

on the level of risk aversion. We note that, with higher electricity price volatility, the

value of on-site generation as a physical hedge increases as compared to financial hedges.

On the other hand, under lower levels of electricity and gas price correlations, on-site

generation works less efficiently as a physical hedge, but the complementary effect of the

gas futures increases. Accordingly, improving the liquidity of the gas futures market can

contribute to better customer adoption of the DG.

As an analysis focusing on the long-term decisions, this work is limited by some sim-

plifications that enabled the investment problem to be computationally feasible. Since

the quarterly average spot prices have a lower volatility than the hourly spot prices, using

them underestimates the CVaR-reducing impact of the CHP. Furthermore, while yearly

futures are available, consumers can also purchase weekly and monthly electricity futures

for the base load, peak load, and off-peak load periods as well as monthly gas futures, a

fact that increases the CVaR-reducing potential of financial hedging. Besides improving

the granularity of the decision making, as a next step, we would also like to investigate

path-dependent investment decisions, which could shed light on the use of real options

in risk management (Wang and Neufville, 2004). Another direction for future work is

to examine the same problem using the linear decision rule approach which, unlike sce-

nario tree-based approximations, provides scalable optimisation models (Rocha and Kuhn,

2012).

5.2 Optimal Operation of Combined Heat and Power

under Uncertainty and Risk Aversion

In addition to examining the long-term investment decisions, large consumers also need

to take into account operational decisions when considering the risk management of a mi-

crogrid. For this reason, the focus of this study is on the optimal operation of a microgrid

with installed CHP in the medium term. We present a multi-stage stochastic mean-risk

optimisation model, which can be used to reduce the risk exposure of a microgrid through

on-site generation and electricity and gas futures purchases. We examine a one-month
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operational period, and, to make the study problem as realistic as possible, we incorporate

all the available financial products from the EEX Phelix Futures market. The microgrid

can purchase monthly electricity futures with an off-peak load, a peak load, or a base

load profile, as well as weekly electricity futures contracts for the base load and peak load

periods. Furthermore, the microgrid, with an installed CHP unit, can generate electricity

using gas from the spot and monthly futures markets, while recovering the waste heat.

To supply additional heat, the microgrid can produce heat with the boiler unit also, using

gas from the spot and monthly futures markets.

Similarly, as in the long-term management problem, we find that a microgrid with

CHP can lower its running costs significantly and reduce its risk exposure as well. Com-

paring on-site generation with heat recovery and that without it, we find that an installed

MT unit can lower the operational costs of the microgrid but to a much smaller extent

than a CHP unit. Furthermore, while operating an MT unit reduces the CVaR in absolute

terms due to the lower running costs, it increases the CVaR of the microgrid relative to

its expected cost. In contrast to on-site generation without heat recovery, using a CHP

unit reduces the CVaR by a wider margin both in absolute and relative terms and results

in a preferential distribution of the relative standard deviation of operational costs. Thus,

while results of the dissertation’s investment model assert that a MT with and without

heat recovery can function as a physical hedge, we find that from a medium-term perspec-

tive only a CHP can take this role. By implementing different types of futures contracts,

we also gain a better understanding into interactions of physical and financial hedges. In

particular, with increased risk aversion, the substitution effect of on-site generation with

CHP for monthly base load futures decreases. Such interactions can be exploited only

through sophisticated decision support systems that can enable consumers to decide on

their optimal hedging levels. Advanced microgrids are capable of integrating multiple

DERs, e.g, wind and solar power, and energy storage as well, and may even sell electricity

to the grid. Exploring operational risk management in such microgrids is worthy of a

future study (Lasseter, 2011; Lidula and Rajapakse, 2011).

5.3 Transmission and Wind Investment in a Deregu-

lated Electricity Industry

In the EU, annual investments in wind power have increased from around 3.2 GW in 2000

to 11.2 GW in 2013, with a total installed capacity of 117.3 GW (Wind Energy report,

2014). Since wind power is inherently variable and uncertain due to weather factors, the

continuously increasing wind power capacity negatively affects transmission networks. In

fact, the European Network of Transmission System Operators for Electricity (ENTSO-E)

has identified 100 bottlenecks in its network development plan (European Transmission
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System Operators, 2012) with 80% of them related to the integration of renewables. Not

only do such bottlenecks result in high electricity prices but also they can lead to black-

outs. In fact, most of the major blackouts in the US over the last 35 years have been

linked more to transmission problems than to generation (Lévêque, 2006).

Thus, maintaining a reliable power supply necessitates investments in both national

and cross-border electricity transmission. In the EU, the total investment requirement

for the high-voltage grid is estimated to be between e68-104 billion (European Climate

Foundation, 2012; von Hirschhausen et al., 2014; Egerer et al. 2013). In addition to im-

posing such huge financial burdens, the transmission expansion projects are also known

to be intriguingly complex. First, transmission planning needs to consider both short-

term dispatch efficiency and long-term incentives for generation investment. Second, in

the context of a deregulated electricity industry, the incumbent and future generators,

or retail companies, all have conflicting interests and might try to influence the relevant

decision makers (Lévêque, 2006). While some generators will argue for more transmission

to gain access to new markets, others will argue against transmission expansion to keep

local prices high and maintain their market power. From the perspective of the retail

companies, more transmission results in lower costs and weakened market power for the

incumbent producers.

In order to gain insight into the transmission expansion problem, generation invest-

ments need to be considered concurrently. We develop a stochastic bi-level programming

model that, depending on the market design, has either an MI or a TSO making trans-

mission investment decisions at the upper level, and power producers - both wind and

conventional - determining generation investment and operations at the lower level. First,

these problems are formulated as MPECs, and then, by re-formulating them as MILPs

or MIQPs, we solve them for a three-node example. To provide policy insights into the

increasing renewable generation, we include also the RPS requirement. The interaction of

market design and market power, i.e., either perfect competition or Cournot oligopoly, is

examined. We find that, in a perfectly competitive market, wind producers are limited by

the incumbent conventional producers, regardless of whether it is the TSO or the MI that

makes the transmission expansion. In contrast, somewhat counterintuitively, oligopolis-

tic behaviour by the producers creates an opening for the wind producers because of

withholding by the incumbent producer. To mitigate the decreased SW under Cournot

oligopoly, the TSO needs to build more lines than under perfect competition and has

to subsidise electricity transmission effectively. Correspondingly, the MI builds a lower

transmission capacity but more lines to increase the transmission flows in an attempt to

maximise its expected profits. Thus, for distinctly different reasons, greater renewable

penetration is observed than under perfect competition. However, with an RPS policy,

greater renewable penetration can be achieved even under perfect competition.

Although this study reflects the salient features of the power sector, such as the strate-
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gic behaviour, loop flows, and variable, non-dispatchable wind output under different

market designs, it may be enhanced further. Possible pathways for extension are imple-

mentation of the models on more realistic test networks, a larger number of scenarios

for the wind output and a bi-level representation of the producers’ behaviour, which will

necessitate recourse to decomposition algorithms. Furthermore, in this study we assume

that the lower-level decisions of the producers are open loop, in order to have only one

strategic decision maker at the upper level. Relaxing this supposition to have a closed-

loop problem for some producers would lead to an equilibrium problem with equilibrium

constraints (EPEC). Finally, including risk-constrained investment strategies in our model

might provide better understanding of transmission expansion decisions. These additional

model implementations can serve as topics for further research, which could build on the

findings presented here.
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