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Abstract 

At the molecular level living cells are enormously complicated complex adaptive 

systems in which intertwined genomic, transcriptomic, proteomic and metabolic 

networks all play a crucial role. At the same time, cells are spatially heterogeneous 

systems in which subcellular compartmentalization of different functions is 

ubiquitous and requires efficient cross-compartmental communication. Dynamic 

redistribution of multitudinous proteins to different subcellular locations in response 

to cellular functional state is increasingly recognized as a crucial characteristic of 

cellular function that seems to be at least as important as overall changes in protein 

abundance. Characterization of the subcellular spatial dynamics of protein 

distribution is a major challenge for proteomics and recent results with MCF7 breast 

cancer cells suggest that this may be of particular importance for cancer cells.  
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Cancer and complexity 

Our oldest description of cancer was discovered in Egypt and dates back to 3000 BC. 

Breast cancer was described in the Edwyn Smith Papyrus with a written verdict: 

“There is no treatment” [1]. Much of the anatomical and clinical knowledge obtained 

in the 16th and 17th centuries was followed by progress in pathology and 

experimental research in cancer treatment and scientific surgery in the 18th and 19th 

centuries. Today cancer still constitutes a major scientific endeavour occupying 

chemists, biologist, geneticists and physicists [101]. Cancers have been found in 

everything from coral to budgerigars and dinosaurs [102]. Despite at least 3 013 022 

publications on cancer (1818-2014) and large-scale “omics” studies for humanity, 

cancer is still the “Emperor of all maladies”[2]. Although mortality levels are lower 

than for infectious/parasitic and heart disease [103], cancer remains a fascinating 

scientific challenge, fundamentally due to its fearsome complexity. 

A major complexity problem in cancer is occasioned by the fact that heterogeneity is 

a ubiquitous feature of tumors. Carcinogenesis is not a single step process and 

initiation through proliferation and metastasis stages are thought to be dynamically 

influenced by accumulation of a large number of genetic mutations [3]. Each round 

of cell division may cause increased instability and complexity of the genome that 

enhance tumor progress [3]. The enigmatic heterogeneity within the same kind of 

tumor makes manifestation of the disease unpredictable and greatly complicates 

clinical diagnosis via characteristics such as morphological features, cellular 

biomarkers, hormonal receptors, gene expression, propensity to metastasize and 

recurrence potentials [4,5]. It has been suggested that cancer should be regarded as a 

chaotic process [6] and there is some recent evidence for stochastic changes in breast 

cancer cell lines [7]. Although progress is being made, advances in effective disease 

diagnosis, management and prognosis would be achieved by further understanding of 
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the basis of this heterogeneity. 

In the age of large-scale “omics” that followed on the completion of human genome 

sequencing, the development of ever more powerful DNA sequencing methods, of 

DNA-microarray technology and of proteomics led to two major large-scale methods 

for investigation of breast cancer and other diseases: (1) large-scale genome-wide-

association-strategies (GWAS) that involve screening of large number of patients to 

identify genetic mutations correlated with disease [8,9], and (2) extensive 

investigation of differential gene expression via transcriptomics and proteomics [10]. 

The large-scale GWAS strategies have been found to have limitations, e.g. in 

complex diseases many common disease-correlated mutations are neither necessary 

nor sufficient for the disease and often seem only to be deleterious in the context of 

the genome/proteome of an individual [11]. This has led to proposals that such data 

needs to be integrated with transcriptomic, proteomic, metabolomic and clinical 

information to develop ‘functional-network-based’ conceptual models of normal 

function, disease, diagnostics and therapy [12,13]. Large-scale screening of mRNA 

levels showed that multiple and extensive changes in mRNA levels are commonly 

seen in breast cancer [14-17]. More recently such studies have been extended to 

involvement of micro-RNAs [18] and epigenetic modulation of chromatin [19]. 

There were important reasons [20] to complement this work with high throughput 

proteomics methods, including that protein abundance may be different than 

transcript abundance and that for genetic variation, translation and protein stability 

may be more determinant for protein abundance than transcript levels [21]. Recent 

work on tumor samples suggests that transcriptomics and proteomics measurements 

of total abundance monitor different aspects of cancer cell function and provide 

highly complementary information [22]. 

These methods are accompanied by very large numbers of more conventional but 
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increasingly powerful molecular and cell biology studies that focus on specific local 

features within highly complex cellular networks and which are collected and 

collated in data bases such as GO, REACTOME, etc. For example, cancer-related 

eukaryotic cell proliferation is known to involve complex molecular choreography of 

mitogens that stimulate cell growth, membrane receptors, their signaling pathways, 

and downstream effectors of cell division and cellular metabolic state [15,23,24]. 

Very complex cellular signalling systems modulate cancer cell function through 

post-translational modifications such as phosphorylation [25] and 

methylation/acetylation [26].  Large-scale proteomics detection of PTMs like 

phosphorylation or acetylation has been crucial in this area [27]. 

A key feature long known from molecular and cell biology, but so far often ignored 

in many large-scale studies, is that cellular function is highly dependent on the spatial 

distribution of many cellular components, ranging over metabolites, low molecular 

weight signaling molecules (e.g. GTP, Ca2+, NADH, ROS), proteins, lipids, tRNA 

[28], etc. An emerging theme, that is the focus of this report, is that the subcellular 

distribution of proteins is dynamic and context-dependent, that proteins may have 

different functions at different subcellular locations, that the dynamic distributions 

are a crucial feature of cellular function and that perturbation of spatial control may 

be an important feature of cancer. Indeed, we suggest that dynamic alterations of 

subcellular spatial distribution of proteins is at least equally important to changes in 

total protein abundance in cellular function.  

Indications for the importance of dynamic subcellular distribution of proteins. 

There are innumerable conventional cell biology studies that demonstrate 

functionally relevant subcellular translocation of specific individual proteins, even 

for proteins that were once regarded as “housekeeping” proteins [29-31]. The 

different subcellular translocation of the isoforms of hexokinases, HKI and HKII, is 
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known to be a mechanism of cellular regulation addressing the cell to catabolic or 

anabolic glucose utilization both in proliferating cells or in cancer cells [32]. Two 

isoforms of pyruvate kinases, PKM1 and PKM2, have diverse involvement in 

metabolic pathways. These include the shuttling of pyruvate preferentially to lactate 

dehydrogenase instead of to mitochondria that underlines the major role of the 

cytoplasmic PKM2 isoform in tumor progression [33], translocation into the nucleus 

that occurs in response to different apoptotic stimuli [34], and participation in nuclear 

transcription complexes in response to hypoxia [35]. Another example of crucial 

subcellular redistribution is BRCA1, well known for its nuclear-cytoplasmic 

trafficking in breast cancer [36]; recently, its redistribution to the cytoplasm in 

malignant breast cancer tissues has been supposed to be a defence mechanism of the 

cell probably associated with a more intense cellular apoptotic activity [37]. 

However, study of expression and subcellular localization for single proteins or small 

groups of proteins may often limit understanding of cellular mechanisms because of 

the complex networking of biological systems. Moreover the high number of 

moonlighting proteins with different functions in various subcellular compartments 

as well as massive spatio-temporal and condition-dependent redistribution of proteins 

makes understanding even more complicated. 

Methods for Global Determination of Protein Distributions.  

There are a very large number of proposed methods for monitoring protein location 

within cells. These have been extensively reviewed recently [38]. The vast majority 

of these methods involve the tagging of proteins with some sort of detectable marker. 

This can limit their applicability to global monitoring of dynamic protein 

distribution, but they may be highly attractive as techniques for confirming results 

for specific proteins obtained with global methods. We do not consider these 

methods further here and refer readers to the above review. 
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At present there seem to be three technologies that are capable of global monitoring. 

For lower eukaryotes such as yeast, it is possible to use molecular biology methods 

to introduce markers on a genome-wide scale. Such methods have been used to show 

that about 4-5% of yeast proteins are subject to subcellular translocation under 

hypoxia [39] and to show that at least a third of yeast mitochondrial proteins have 

additional subcellular locations outside of mitochondria [40]. For higher eukaryotes 

and study of issues such as cancer, there currently seem to be only two appropriate 

technologies available, each of which has strengths and disadvantages.  

Antibody-based proteomics includes techniques that are often used to detect/evaluate 

one or a few proteins such as immunohistochemistry (IHC), enzyme-linked immune-

sorbent assay (ELISA), western blot, and immunoprecipitation (IP). The large-scale 

platforms include tissue microarrays (TMAs) and reverse phase protein arrays 

(RPPAs) that can provide the tools and the strategies to generate systematic analysis 

using specific antibodies. However, a common limitation is that antibodies must be 

available and are greatly variable in terms of sensitivity and specificity [41]. 

Furthermore, a quantitative approach cannot be easily robust; the order of 

magnitudes in the proteome is widely variable [42]. 

The other global method is MS-based analysis of subcellular fractions, which is the 

main focus in the following text. This has been used for some time to investigate 

protein content of selected subcellular organelles [38], but often without 

consideration of dynamic changes in their protein content. This method seems to 

have greater dynamic range and greater ability to accurately quantitate moderate 

changes in abundance at a given subcellular location compared to the antibody 

methods. These features can be crucial, e.g., in the detection of trace amounts of 

cytosolic metabolic enzymes involved in nuclear functions or in the measurement of 

changes in cellular function by coordinated, moderate changes of many proteins in 
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complex networks.  

Workflows for MS-based quantitative shotgun subcellular proteomics using 

differential isotope labelling by metabolic incorporation or chemical labelling are 

now well established (Fig.1). The huge raw data files obtained from high-resolution 

mass spectrometers requires a powerful processing platform with quantitative 

proteomics software and subsequently rigorous procedures for result validation to 

avoid erroneous protein identification and to obtain statistically reliable quantitative 

information. An important consideration with this method is the reliability of protein 

distributions based on the breakage and fractionation of cells and this is considered in 

further detail below. 

Static Studies of the Global Subcellular Distribution of Proteins. 

The development of methods for subcellular fractionation to gain more insight into 

protein function has been emphasized since at least 1946 on the basis of the idea that 

"The physiology of the cell cannot be fully understood unless we succeed in 

determining the constitution of its parts..." [43]. The by now large body of work on 

the proteomes of specific subcellular organelles has often been dominated by the 

concept that highly pure organelle preparations are required [38]. This focus has 

carried over to a number of studies of the overall global distribution of proteins to 

multiple subcellular locations under static (non-stimulated) conditions, where 

emphasis has often been placed on determining the location of a protein. While 

highly purified organelles allow determination of what might be termed “permanent 

resident” proteins, we believe that this limited focus constrains elucidation of cellular 

function. Much as the original central dogma of molecular biology (one gene implies 

one mRNA implies one protein) has been well and truly superseded, so there has 

long been strong evidence that the often unconsciously assumed corollary (one 

protein implies one cellular location implies one function) is equally superseded. The 
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cell biology literature is full of thousands of examples of proteins with multiple 

subcellular locations and multiple functions. The GO database contains annotations 

to multiple subcellular locations for 36% of human proteins and this is certainly an 

underestimate. We consider that the most important proteins for coordination of 

cellular function over spatially and functionally inhomogeneous cells are likely to 

usually be those that are not “permanent residents”, but rather translocate to different 

subcellular locations/functions in response to cellular state. These may be 

“peripheral” proteins in any given subcellular organelle and may often be lost during 

stringent preparation of highly purified organelles. To give a specific example, 

nuclear respiratory factor 2 (NRF2) is a critical transcription factor for response to 

oxidative stress [44]. It is normally present in the cytoplasm complexed with its 

inhibitor KEAP1 and tethered to the outside of mitochondria by interactions of this 

complex with PGAM5 [45], which places NRF2 in proximity to sources of reactive 

oxygen species (ROS) from the mitochondrial respiratory chain. A crucial aspect of 

NRF2 function is its translocation from this peripheral mitochondrial location to the 

nucleus under conditions of oxidative stress. Hence, in looking at cancer and other 

cells there hence seem to be three crucial questions. (1) how many such multiply 

located/potentially translocating proteins are there? (2) How many proteins are 

shared between functionally essential organelles such as the nucleus and 

mitochondria (this section)? (3) how can we reliably identify and verify the 

functional importance of the dynamic redistribution of such proteins (next section)?  

In a paper published by Qattan et al [46], three crucial features of the subcellular 

distribution of proteins in MCF7 breast cancer cells were established: (a) large 

numbers of proteins are distributed over multiple subcellular locations, (b) there is 

substantial variation between different proteins in their relative amounts in different 

locations, but many proteins have appreciable quantities in various locations, and (c) 
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those proteins widely distributed over different locations are also those with currently 

annotated participation in the widest variety of functional processes. In this work, a 

quantitative proteomic method was used to study the static distribution of subcellular 

proteins in MCF7 breast cancer cells by combination of sucrose density gradient 

subcellular fractionation and tandem-MS-based shotgun proteomics analysis. Four 

separated portions of the sucrose gradient that roughly corresponded to four major 

organelle compartments (cytosol, plasma membrane, endoplasmic reticulum and 

mitochondrion) were subjected to detailed analysis. Stringent controls of the degree 

of purification/contamination/reproducibility of the gradient fractions were applied 

and the relative amounts of proteins localized in one or the other cellular 

compartment measured. A strong linear correlation was found between the relative 

abundance of each protein and the spectral counts of tryptic peptides, as already 

demonstrated by others [47,48]. Thus, spectral counts, calculated by the integration 

of the normalization by Scaffold software and the use of normalized spectral 

abundance factors (NSAF), the latter for counterbalancing the spectral contribution 

of larger proteins, were used as directly corresponding to relative abundance of 

characteristic proteins in the label-free quantification experiments [46,49]. Lower 

abundance proteins with only one assigned peptide or small numbers of counts were 

excluded from the analysis. Different proteins showed different abundance patterns 

over the four compartment (Fig. 2C) and these patterns provided evidence that the 

presence of proteins in multiple locations could not be due to artefacts of the sucrose 

gradient fractionation (Fig. 2D). Each protein was characterized by one or more 

(protein, location, abundance) data points. For 2184 proteins, the 4638 data points 

(an average of 2.1 locations per protein) were used to calculate apparent mole 

fraction distributions of the proteins over 1-4 of the cellular compartments. The 

allowed space for mole fraction distribution was widely occupied (Fig. 2E), 
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indicating good sampling and systematic dispersion of many proteins over multiple 

locations with appreciable abundance in the different locations. As an overall result, 

the data was consistent with detection of 46.7% of the 2184 proteins in multiple 

subcellular locations, this being a lower limit because of the sampling properties of 

spectral counting [46]. Examination of the biological processes in which these 

proteins have been implicated suggested correlation between multiple subcellular 

locations and multiple functional roles [46].  

Similar methods were subsequently applied to the partitioning of proteins between 

the nucleus and mitochondria of MCF7 cells [49]. Western blot analysis of proteins 

constitutively present in mitochondria, the nucleus or other cytoplasmic organelles 

was used to validate the reproducibility of the fractionation procedures prior to MS 

analysis (Figure 3A). For instance, the detection of marker proteins in the expected 

N, M or C subcellular preparations {mitochondria: SDHB, MT-ND1; nucleus: 

ORC2; Golgi apparatus: KDEL; endoplasmic reticulum: ERN1, nucleus and 

cytoplasm: HDAC} confirmed the recovery, reproducibility and purity level of 

fractions used for MS analysis (Figure 3A). 

Following the MS analysis, the subcellular localization attributed to functionally 

interesting proteins can be further confirmed by Western blot analysis (Figure 3B). 

Many functionally interesting proteins were found to have multiple locations, e.g. 

“mitochondrial” proteins (MT-CO2, CYC1, ATP5B, PCK2, SDHA) were observed in 

both the nucleus and mitochondria, in agreement with the MS results. Overall, 985 

proteins were found to be common to mitochondria and the nucleus in MCF7 cells 

[49]. This is a large number compared to previous studies of highly purified 

mitochondria/nuclei, which we believe reflects the stripping of important proteins by 

stringent organelle purification methods, e.g. NRF2 or the hexose kinases (HK1, 

HK2) from the glycolysis enzymatic cascade that are known to shuttle between 
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mitochondria and nuclei in functional roles that determine the metabolic fate of 

glucose and are thought to be crucial to cancer metabolism [50].  

As noted above collation of results in databases such as GO, LOCATE and iLOC-

EUK [38] of large numbers of more conventional cell biology measurements are also 

consistent with multi-site location of high percentages of cellular proteins. 

Monitoring by antibody methods is also converging on this conclusion [51]. 

This brings us to the third critical question noted above: (3) how can we reliably 

identify and verify the functional importance of the dynamic redistribution of such 

proteins? 

Global Dynamics of Subcellular Protein Distribution. 

There are by now a number of studies of dynamic changes in the proteome of 

subcellular organelles using MS-based methods. These were reviewed recently [38]. 

Particularly notable have been several studies of expression levels and subcellular 

localization of endogenous proteins in HeLa cells [52,53] and viral infections [54]. In 

the following we limit discussion to several recent SILAC differential labelling 

studies using a “subcellular spatial razor” approach that are consistent with the 

conceptual framework outlined above: nucleo-ctyoplasmic trafficking of proteins 

following engagement of cell cycle checkpoints for DNA replication [55] or 

exposure to oxidative stress [56] (in human fibroblasts) as well as the response of 

MCF7 breast cancer cells to estrogen stimulation [57].  

Tandem-mass spectrometry-based shotgun proteomics now allows the rapid, accurate 

and highly sensitive identification and quantification of several thousand proteins 

from complex biological samples. The variability caused by pre-MS steps has meant 

that the development of a reliable method for quantitative analysis is still considered 

challenging [58]. However, careful attention to the sources of variability can produce 
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data with a high degree of accuracy and reproducibility [46,49,55-57]. Software 

capable of dealing flexibly and efficiently with quantitative analysis of massive data 

sets, such as MaxQuant [58,59] and Perseus, are an essential requirement. In recent 

studies of the subcellular nucleo-cytoplasmic protein abundance changes for human 

IMR90 fibroblasts following mild tert-butyl peroxide (TBP) oxidative stress [56] or 

following cell cycle arrest at the origin activation checkpoint for DNA replication 

[55], as well as for MCF7 breast cancer cell following exposure to estrogen (E2) 

[57], 12-16 large data sets were processed in parallel with MaxQuant and Perseus. 

The processed data for the unfractionated total cell lysate (T), the nucleus-enriched 

samples (N), and the corresponding nucleus-depleted samples (C) in three replicates 

monitored large numbers of proteins. For example, this included 4386 different 

proteins for estrogen-stimulated MCF7 cells, (3604 reliably quantified according to 

stringent selection criteria [57]) and 3589 proteins for oxidatively stressed human 

IMR90 fibroblasts [56]. For each protein, the corresponding SILAC ratios provided 

measures of the changes in the total cellular abundance (St), or in the nuclear (Sn) or 

cytoplasmic (Sc) compartmental abundance. For the two studies of IMR90 

fibroblasts, the distribution profiles of the SILAC ratios (Sn, Sc and St) showed typical 

Gaussian scatter and outlier analysis such as the Significance B score used in 

MaxQuant could be used to select proteins showing significant changes in total or 

compartmental abundance. Good reproducibility over the replicates for the SILAC 

ratios indicated that with careful sample preparation, reliable, global, dynamic 

protein quantification of different subcellular compartments is possible [56,57].  

The subcellular spatial razor formulation can distinguish between changes in total 

protein abundance (St) and redistribution (Sn/Sc) to/from a target organelle (e.g. the 

nucleus). For all three of the systems so far analyzed with this framework, correlation 

between changes in total abundance and in subcellular nuclear/cytoplasmic 



 14 

redistribution has been found to be low, i.e. changes in compartmental abundance do 

not simply mirror changes in total protein abundance [56,57]. The orthogonal basis 

set {St, Sc/St, Sn/St} for the three measured SILAC ratios separates changes in total 

protein abundance (St) from a distribution plane (Sc/St, Sn/St) that reflects the 

redistribution of a protein. Conservation of mass (highly reproducible subcellular 

fractionation and no differential protein losses between stimulated/unstimulated 

samples during MS sample preparation) requires that the data points lie in 2 

quadrants corresponding to N → C or C → N redistribution of the protein (Fig. 4A) 

and provides a convenient formulation for visualizing/evaluating the reliability of the 

compartmental changes [56,57]. The 3D spatial razor model allows characterization 

of both total and compartmental changes in protein abundance for each individual 

protein (Fig. 4B,C). For instance, the analysis of datasets for estradiol-stimulated 

MCF7 cells showed N → C redistribution of NHP2L1, AGR3, and ERP29 proteins 

accompanied by different changes in their total abundance, as well as marked N → C 

nuclear redistribution of EZR and SUB1 (PC4) with little or no change in total 

abundance as a result of cellular information transfer between different subcellular 

locations upon estradiol stimulation (Fig. 4B) [57]. Similarly, for oxidative stress of 

IMR90 cells, eight subunits of the CCT protein folding complex showed a substantial 

C → N redistribution while proliferating cell nuclear antigen (PCNA) showed an 

opposite N → C redistribution (Fig. 4C), both with a little or no change in total 

abundance and suggestive of “catalytic” transfer of information between different 

subcellular compartments [56]. 

An important feature of the subcellular spatial razor formulation is that it is 

overdetermined and explicitly includes conservation of mass in the quantitative 

evaluations [56,57]. This offers new perspectives for checking the selectivity of the 

detected changes and for evaluation of any effects of “impurity” of the subcellular 
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fractions used in the MS analyses. For example, consistent with the idea that many 

proteins are dispersed over multiple subcellular locations, the nuclear preparation 

analysed in the oxidative stress experiments on IMR90 cells contained 371 proteins 

annotated by GO to mitochondria, only 147 of which were currently also annotated 

to the nucleus by GO. However, only a small proportion of these “mitochondrial” 

proteins showed any change in their fraction in the nucleus in response to oxidative 

stress (Fig. 5) and similar changes in a small proportion of the nuclear proteins was 

observed for those annotated to endoplasmic reticulum, plasma, membrane, the Golgi 

apparatus, lysosomes, endosomes and peroxisomes [56]. Such data patterns are very 

strong evidence that those proteins showing changes in nuclear abundance represent 

selective trafficking for a specific subset of cellular proteins and are not a 

consequence of contamination of the nuclear preparations with other cellular 

components. How the inclusion of a conservation of mass test can be used with 

outlier analysis to select the most reliable changes in compartmental redistribution 

has been described [57]. Importantly, comparison with the results obtained for cell 

cycle arrest at the origin activation checkpoint showed that different proteins show 

nucleo-cytoplasmic trafficking, with different changes in the nucleus for specific 

proteins from cellular functional networks such as the TCA cycle, glycolysis and the 

proline regulatory axis [55,56]. That is, high specificity in the nuclear response to 

different cellular stimulations was demonstrated. In short, as predicted some years 

ago [46], evidence for the functional importance of the subcellular distribution of a 

protein can be detected by differential changes in its location under functional 

stimulation in highly enriched although not exhaustively purified subcellular 

fractions. This is crucial for detecting the functional involvement of translocating, 

but “non-permanent-resident” proteins in different subcellular locations/organelles.  
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For the response of IMR90 cells to oxidative stress or activation of DNA replication 

checkpoints, 3-4% of the monitored proteins were found to show appreciable 

changes in compartmental abundance, with changes in total abundance (St) and in 

compartmental redistribution (Sn/Sc) contributing roughly equally. Similarly, 

subcellular translocation of 4-5% of cellular proteins was observed in a genome-

wide, fluorescence based study of the response of yeast cells to hypoxia [39]. 

For MCF7 breast cancer cells, a very different pattern was observed following 

exposure to estradiol. Many more of the monitored proteins (about 20%) showed 

substantial changes. However, of 331 proteins with >2-fold changes in at least one of 

the SILAC ratios, only 5 proteins showed >2-fold changes in total abundance (St). 

For the other proteins the >2-fold change corresponded to the changes in partitioning 

of the protein between the nuclear/cytoplasmic compartments, with a strong 

preponderance of proteins showing N  C redistribution (Fig. 6). A crucial feature 

was that >2-fold changes in compartmental abundance were much more prominent 

than changes in overall abundance. Furthermore, the identities of many of these 

proteins were consistent with previous studies of estrogen receptors. For example, in 

the nucleus the ERα and ERβ receptors have been shown to interact with 498 other 

proteins, only 70 of which are common to both [60]. Of these proteins, 357 were 

detected in the MCF7 estrogen stimulation experiments: 58 proteins showed >2-fold 

decrease in nuclear abundance, and a further 76 showed appreciable nucleo-

cytoplasmic redistribution, but none of them showed >2-fold change in total 

abundance. Of the roughly 1000 proteins that are partitioned between the nucleus and 

mitochondria, 249 showed evidence of nucleus  cytoplasm redistribution upon 

exposure to estrogen. For the 134 proteins showing the most significant changes in 

nucleo-cytoplasmic distribution, investigation of the biological processes in which 

they are implicated using REACTOME [61,62] showed association with core cellular 
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processes (gene expression, the cell cycle, protein metabolism, mRNA metabolism) 

and potential changes in more specific biological processes distributed spatially over 

the cytoplasm, plasma membrane and nucleus [57]. In short, this work revealed that 

the dominant response of MCF7 breast cancer cells to estradiol is not changes in the 

total cellular abundance of proteins, but rather a massive change in their spatial 

distribution between the nucleus and cytoplasm, with indications that this influences 

functional processes at many other subcellular spatial locations. 

Dynamic Subcellular Distribution of Proteins in Normal and Pathological 

Cellular Function. 

Evidence of dynamic redistribution of proteins to and from the 

nucleus/mitochondria/cytoplasm and other subcellular locations following external 

perturbations such as environmental cues [63], cell cycle arrest [55,56], hormonal 

stimulation [64], oxidative stress [65-67], or viral infections [68-71] is increasing 

rapidly. In a model eukaryotic system, about 50% of a partially characterized yeast 

proteome (60%) showed dynamic redistribution between the cytosol and different 

organelles in response to the environmental switches [63]. There is no longer any 

doubt that dynamic, coordinated, context-dependent redistribution of multitudinous 

proteins over many subcellular locations is a central mechanism in cellular function.  

These recent studies are beginning to characterize the general nature of the 

involvement of subcellular translocation of proteins in normal cellular function. For 

example, limited perturbations of healthy cells, including yeast subjected to hypoxia 

[39] and human fibroblasts subjected to mild oxidative stress [56] or to cell cycle 

arrest at the origin activation checkpoint for DNA replication [55], have typically 

found appreciable changes for 3-5% of proteins. Changes in total cellular abundance 

and in subcellular spatial redistribution were found to be of about equal importance 

in producing the spatial partitioning of proteins over compartments that are the basis 
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of cellular response to such stimulations. At the present time, there are indications 

from studies of viral infection [12,54,68-72] and from the studies of MCF7 breast 

cancer cells [46,49,57] that strong perturbations in basal protein distributions and 

massive protein redistribution following stimulations may be characteristic of 

disease.  

Attempts to define general features of cancer [23,24,73] include uncontrolled 

proliferation and modified metabolism, especially of metabolism connected with the 

oxidative state of cells. The latter has been a focus of cancer research ever since 

Warburg [74]. The series of experiments on cell cycle arrest at the origin activation 

checkpoint [55] and response to oxidative [56] in fibroblasts as well as the response 

of MCF7 cells to estradiol stimulation thus provide a beginning to comparing protein 

redistribution in important core processes in healthy and cancerous cells. In fact, the 

series of investigations of cell cycle arrest in IMR90 human fibroblasts [55,56,75] 

were undertaken to investigate the possible use of pharmaceutical modulators of the 

CDC7-kinase in cancer therapeutics [55,56,75,76]. So far the overall indications are 

that healthy cells show strongly regulated, coordinated changes in both total 

abundance and subcellular spatial distribution of relatively small sets of proteins that 

are highly characteristic of the cellular response to specific stimulations. In contrast, 

massive changes in subcellular spatial distribution dominated much more limited 

changes in total abundance for proteins of MCF7 cells subjected to estradiol 

stimulation. In fact, estrogen receptors themselves undergo subcellular spatial 

redistribution in many functional contexts and this is known to be connected to core 

cellular processes, e.g. efflux of ERα from the nucleus is associated with repression 

of cell cycle progression and S-phase proliferation in MCF7 cells [77]. Estrogen 

receptors are targeted for proteasomal degradation through a transcription-coupled 

pathway requiring new protein synthesis [78,79] and the proteomics experiments also 
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detected major changes in proteasomes that could be coupled to estrogen receptor 

turnover as well as many other functional processes in both the nucleus and 

cytoplasm [80]. This led to suggestions that the modified metabolic properties of 

cancerous MCF7 cells may be mainly based on perturbed spatial distribution of 

proteins, that this also opens the possibility that transformation and tumorigenicity 

may also be strongly influenced by perturbed spatial distribution of proteins, and that 

refocusing on the dominant mechanism for response of breast cancer cells to 

estradiol may have important consequences for development of therapeutics [57]. 

New Challenges for Proteomics and Bioinformatics and Progress Towards 

Medical Applications. 

The high degree of spatial/functional inhomogeneity of cells and the need for 

efficient subcellular communication means that the study of dynamic spatial 

distribution of subcellular proteins is of fundamental importance to improving 

understanding of cellular processes underlying human diseases. Indeed, this 

remarkable phenomenon occurs in any kind of cell: roughly half of all subcellular 

proteins are known to translocate into another compartment to reach their functional 

location [81], while most of the ~1,000 different “resident” proteins contained in 

mitochondria are imported from the cytosol to exert their functional role [82]. 

Moreover, numerous mislocalized proteins have been associated with human 

diseases as diverse as Alzheimer’s disease or various types of cancer and aberrant 

localization of proteins has been shown to contribute to the pathogenesis of many 

human diseases [83].  

The correct assignment/quantitation of proteins in diverse subcellular compartments 

based on quantitative high-throughput proteomics data promises to shed new light on 

many biological mechanisms. Continuing advances in proteomics MS technology 

will be important [58]. However, since each protein may have multiple subcellular 
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locations and its distribution over different locations may change as a function of cell 

cycle stage, metabolic, environmental and culture conditions, measuring context-

dependent subcellular trafficking of proteins is a challenging task. For many 

subcellular organelles numerous examples of functionally important “peripheral” 

proteins are already known. This suggests that fractionation methods should be as 

simple and mild as possible and that compensatory analyses of the type exemplified 

by the subcellular spatial razor formulation are likely to be the most informative 

approach. There is also a need for improved databases that explicitly tie together 

function/location as pair relationships for individual proteins. At present databases 

such as GO obscure crucial information by neglecting this. Furthermore, the highly 

complex data that is now emerging from studies of context-dependent subcellular 

protein trafficking indicates that we should begin thinking about cellular function in 

terms of higher level cellular processes that are distributed over diverse cellular 

spatial locations and begin building models of cellular function that explicitly take 

such spatial dispersion into account. 

The development of reliable quantitative proteomics has many potential applications 

to clinical settings. In this context, great challenges for oncologists are to ensure the 

availability of early detection/diagnostic tools and to develop methods for dealing 

with the enigmatic heterogeneity within the same kind of tumour (intra-tumour 

heterogeneity). Detection and therapeutic interventions for most cancer types have 

evolved over the past century, but are still limited to localized forms of cancer and/or 

advanced stages [84]. Moreover, better detection, targeted therapeutics and 

monitoring of cancer must be linked to the underlying biological processes 

associated with the initiation, proliferation, and metastasis stages [84,85]. Finding 

ways of rational diagnosis and prognosis is not an easy target and so far often does 

not take into consideration all the advances in the research platforms, in particular, 
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genomics and proteomics. 

It is becoming more apparent that relying on global genomics information is a 

valuable asset to formulate a hypothesis, identify recognizable tissue signatures, and 

seek correlations to medical conditions, but the functional states of cells are beyond 

the scope of genomics alone. The more focussed approach of proteomics is 

complementary to genomics and can define the functional products (proteins) of the 

deregulated genes in space and time, which increases our understanding of the 

underlying biological processes [86,87]. One of the challenges but also opportunities 

faced by the comprehensive study of proteomes is that the estimated 20-30,000 

human genes can give rise to over one million different proteins with very wide 

range in orders of magnitude of abundance [88]. Moreover, transformation of cancer 

cells is associated with major changes in the functional units (proteins), thereby 

altering the protein locations, concentrations, signalling pathways, and ultimately the 

function of the cells. Protein expression, function, location and structural mapping 

are all proteomics approaches that are integral to systems biology. They can enhance 

discovery of candidate cancer biomarkers with a high degree of specificity, 

sensitivity, classification and staging, thereby aiding in standardization of targeted 

approaches to therapy [89].  

Expert commentary: “vision of the author” 

Recent advances in the characterization of the subcellular location of proteins now 

indicate that dynamic trafficking of multitudinous proteins over many subcellular 

locations is a central mechanism in cellular function. This appears to be a key feature 

in coordination of the spatially heterogeneous distribution of different cellular 

functions. In MCF7 breast cancer cells massive nuclear-cytoplasmic redistribution of 

proteins is the dominant response to stimulation with estrogen, far outweighing 

changes in total protein abundance. Many examples of proteins with different 
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functional roles in different subcellular compartments are already known and the 

number of proteins so identified is poised to grow enormously. Proteins can only 

exert functions in locations where they exist and the recent results indicate that 

subcellular redistribution of proteins is of at least equal importance to changes in 

their total abundance in achieving the changes in compartmental abundances that are 

the basis of cellular response. There is now an urgent need for global characterization 

of the dynamic subcellular partitioning of proteins for many cell types and functional 

contexts. 

Five year view: 

We expect that in the next several years there will be major improvements in 

methodology and collection of massive amounts of global data on the dynamics of 

protein location in cells. We expect that such global analysis will be essential to 

reliable integration/interpretation of the massive numbers of more conventional 

investigations of localized features of complex cellular networks. For example, 

recent global analyses of nuclear cytoplasmic trafficking in the context of oxidative 

stress [56] and of transcriptional targets of NRF2 [90] suggest new interpretations of 

the crucial role(s) of NRF2 in oxidative stress responses that are linked to heme/iron 

homeostasis or to proteins that contain heme/iron as cofactors and that were largely 

missed by inference from large numbers of conventional experiments [56]. Similarly, 

results on trafficking in the context of response of MCF7 cells to estrogen have 

suggested that nuclear hormone receptors may be master integrators of spatial 

coordination in cells [57]. It is increasingly apparent that spatial coordination is a key 

aspect of cellular function in both healthy and disease states. We expect that 

differential network analysis [91] of global features of spatial control will begin to 

define high level functional processes/networks that are spatially dispersed across 

many cellular locations. Integration of such information with genomic, 
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transciptomic, and metabolomic information will be crucial to unravelling the 

enormously complicated complex adaptive systems that cells represent and to 

exploiting the information in medical and other applications.  

Key issues:  

1. Analytical methods that can follow dynamic subcellular redistribution of proteins 

have become available, with a prominent role for MS-based proteomics. 

2. Large proportions of cellular proteins are distributed to multiple subcellular 

locations and may have different functions in those locations. 

3. The subcellular spatial distribution of proteins is dynamic, changes with cellular 

state and is a central mechanism of cellular function. Nuclear-cytoplasmic trafficking 

of proteins is the dominant response for MCF7 cells exposed to estrogen. 

4. Present evidence suggests that changes in subcellular location of proteins are of at 

least equal importance to changes in total protein abundance in cellular response to 

environmental cues, cell cycle stages, hormonal stimulation, oxidative stress, etc.  

5. Dynamic protein redistribution provides a means to coordinate function over the 

spatial inhomogeneity of cells. 

6. Coordinated changes in abundance/distribution of relatively small sets of proteins 

seem to be characteristic of cellular response to specific perturbations in healthy 

cells. 

7. Early evidence from studies of viral infection and breast cancer cells suggests that 

disregulated cellular spatial control may be a feature of disease states. 

8. New high level models of cellular function that include dispersion of functional 

systems over multiple subcellular locations and include dynamic redistribution of 

proteins need to be constructed. 
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9. The information needs to be integrated with genomics, transcriptomics and 

metabolomics to obtain integrated, comprehensive models of cellular function.  

10. These new concepts of cellular function will offer many opportunities in medical 

diagnostics and therapeutics as well as other applications.  
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Figure 1.  Workflow for subcellular analysis with quantitative shotgun proteomics. 
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Figure 2. Proteomics approach to assess global static subcellular distribution of proteins. (A) 

Sucrose gradient fractionation for different organellar compartments (cytoplasm - C, plasma 

membrane - P, endoplasmic reticulum – ER, mitochondrion – M). (B) Proteins from each 

compartment are analysed by MS and a set of {protein, fraction, spectral counts} data points 

is assembled. Proteins identified by only one peptide or with few spectral counts are filtered 

out. (C) Hierarchical clustering and heat map for the amount of each protein in the four 

compartments. Individual proteins are represented by a single row, each fraction is 

represented by a single column and each cell represents the abundance of a protein in a 

compartment. The color scale is for normalized relative abundance from 6.0 (red) to 1.0 

(yellow) to 0.0 (blue, not detected)  (D) Quantitative abundances (relative) for the distribution 

of different proteins over the four compartments indicate the distributions are not due to 

artefacts in the sucrose gradient fractionation. The data is used to calculate the mole fraction 

of each protein in the four compartments. (E) Primary mole fractions vs secondary mole 

fractions for proteins with a primary location and 1 (green), 2 (blue), or 3 (red) secondary 

locations 
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Figure 3. Alternative approaches to validation of results: (A) Demonstration of reproducibility of 

fractionation in three replicates by Western blotting of proteins contained in a cellular total lysate (T) 

or in nuclear (N), mitochondrial (M) and cytoplasmic (C) subcellular preparations. (B) Western blot 

[49], and (C) immunofluorescence [56] analysis to confirm subcellular localization obtained by MS 

analysis. 
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Figure 4. Three-dimensional data representation for the subcellular spatial razor model. (A) For the 

orthogonal 3D space {Sn/St, Sc/St, St}, the theoretical distribution plane {Sn/St, Sc/St} for different 

values of fu (the fraction of protein in the nucleus in the unstimulated cells) as the fraction of the 

protein in the nucleus in the stimulated cells (fs) varies over 0 < fs < 1. (B) Six proteins plotted in the 

3D space {Sn/St, Sc/St, St} for estrogen stimulated/unstimulated MCF-7 cells showing scatter over the 

replicates [57]. (C) Proteins or protein complexes plotted in the 3D space {Sn/St, Sc/St, St} for TBP-

induced oxidative stress of human fibroblasts [56]. In panels B and C the axis perpendicular to the 

page is color coded for changes in total abundance (St). The orange bounding lines show 2-fold 

changes in (Sn/Sc). 
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Figure 5. Analysis of the enrichment/purity of the nuclear fraction. Left: log2(Sn/St) = 

log2(fs/fu) as a function of the average number of ratio counts over the nucleus and 

total data sets for proteins with GO annotation to mitochondria and nucleus (red, 143 

proteins) or to mitochondria but not nucleus (blue, 218 proteins). Right: number of 

proteins versus log2(fs/fu). 
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Figure 6. Three-dimensional plot for 331 proteins with significant changes upon 

estrogen stimulation of MCF7 cells. The legend (lower left) shows the symbol 

coding for >2-fold changes only in Sn, only in Sc, in both Sn and Sc, for Sn/Sc only, 

and for St. Increases/decreases are color coded (upper right legend). 

 


