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Abstract In this paper we assume a multivariate risk model has been developed for a portfolio and
its capital derived as a homogeneous risk measure. The Euler (or gradient) principle, then, states that
the capital to be allocated to each component of the portfolio has to be calculated as an expectation
conditional to a rare event, which can be challenging to evaluate in practice. We exploit the copula-
dependence within the portfolio risks to design a Sequential Monte Carlo Samplers based estimate to
the marginal conditional expectations involved in the problem, showing its efficiency through a series of
computational examples.
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1 Introduction

Since financial institutions are in the business of managing and reallocating risks, an important part of
their internal risk management is to have an appropriate level of capital as a buffer against unexpected
losses. Typically, retail banks, investment banks and insurance companies must satisfy their local jurisdic-
tion version of capital adequacy, which are usually specified by the local regulatory authorities according
to some version of either the Basel II/III banking supervision guides or the Solvency II insurance guides.

In this context capital may refer to two different quantities: Economic Capital (EC) or Regulatory
Capital (RC). The first is the capital that would have be chosen in the absence of regulation. It represents
the amount the institution estimates in order to remain solvent at a given confidence level and fixed time
horizon and is set in order to meet some credit risk rating. The Regulatory Capital, in turn, reflects the
needs given by regulatory guidance and rules. It is important to note that the capital actually been held
by the institution (henceforth referred to as capital) will always be the maximum between the EC and
the RC.

Both for banks and insurance companies, regulation has evolved towards Regulatory Capital based on
risk measures (see Section 2). For banks, the Basel II accord set the standard to the Value at Risk (still
in use at Basel III) while insurance directives such as Solvency II and the Swiss Solvency Test diverge
on the risk measure to be used (the first suggests the usage of Value at Risk and the former Expected
Shortfall). It is important to note that although the RC and the EC will differ in most of the financial
institutions, both quantities are usually based on the same class of risk measures, differing only on the
confidence level.
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Business line
1 Corporate finance
2 Trading and sales
3 Retail banking
4 Commercial banking
5 Payment and settlement
6 Agency services
7 Asset management
8 Retail brokerage

Event type
1 Internal fraud
2 External fraud
3 Employment practices and workplace safety
4 Clients, products and business practices
5 Damage to physical assets
6 Business disruption and system failures
7 Execution, delivery and process management

Table 1.1 Basel II business lines (left) and event types (right) – see [5], Annexes 8 and 9.

This work is focused on studying the problem of capital allocation, with particular focus on Oper-
ational Risk (OpRisk) capital – see [42] for an text-book introduction to OpRisk modelling. In order
to solely study this aspect, we will assume that the parametric risk models have been selected and the
parameter estimations performed in each business unit or division for all the relevant risk types. Then
using these models the bank or insurance company has obtained an estimate of the total capital from
the model. Based on this capital figure, our work aims to study a problem that follows the calculation
of the capital to be held, namely the second order problem of the capital allocation to different divisions
and business units as a capital charge (see Table 1.1). Once the overall capital is calculated, the financial
institution faces the problem of how to allocate this given capital among different risk sources, in order to
understand how much each risk cell contributes to the total risk (capital) and in order to asses their risk
management controls and performance, as part of the process discussed in the Pillar III of Basel II/III.
Put another way there is a capital charge that must be allocated to each division and business unit
which must reflect commensurately the risk profile of the given business unit. This continues to provide
an incentive for banks following the Advanced Measurement Approach (AMA) to carefully model their
dependence structures.

Apart from the fact that losses in some of the these risk cells may be dependent, the Basel II accord
[5] §657 ensures that the capital estimate can have diversification benefits if dependency modelling is
approved by the local regulator. In other words, the bank may be authorized to set aside less Regulatory
Capital if they can demonstrate evidence for dependence features in their loss processes between each
business line or between risk types within a business line.

We will also assume the dependency among all risk cells in the portfolio is known from the first phase
of model selection and estimation. More precisely, we will assume that the bank’s portfolio consists of d
individual losses (in a risk cell level) denoted by X1, ..., Xd, each one modelled as random variables (rv’s)
with continuous cumulative distribution function (cdf) given by Fi, i = 1, ..., d.

The dependence structure of the losses will be given by a (known) copula C(u1, ..., ud) (see Appendix
B for the definition and some results regarding copulas), leading to a joint distribution of the losses given
by

FX(x) = C
(
F1(x1), ..., Fd(xd)

)
,

where X = (X1, ..., Xd), and x = (x1, ..., xd).

In the recent years many academic works were devoted to the joint modelling of operational losses
and it impact on capital calculation. Recently, [7] introduced a zero-inflated dependence model, which is
then coupled using different copulas (Archimedean, elliptical, individual Student’s t and vine). Previously,
[23] used α-stable marginal distributions and Student’s t copulas (both symmetric and skewed ones); [6]
derived approximations for the operational Value at Risk assuming generalized Pareto distributions and
Lévy copulas. In the context of OpRisk, [39] developed a dynamic OpRisk model with copula dependence
structures between the frequency, severity and annual loss as possible model structures. In addition, a
detailed account of dependence modelling and capital estimation can be found in [14] and [38].

The remainder of the paper is structured as follows. In Section 2 we present results related to risk
contributions, and special attention is drawn to the Euler allocation rule and its duality with expectations
conditional to rare events. After understanding the relationship between the Euler principle and condi-
tional expectations, Section 3 presents different methods to estimate these expectations: from a simple
Monte Carlo scheme to recently developed Importance Sampling approaches. To be able to discuss the
Sequential Monte Carlo Sampler (SMCS) algorithm proposed, Section 4 briefly discusses how to design
a sequence of probability densities converging to the conditional distribution involved in the allocation
problem. The formal sequential procedure is, then, carefully described in Section 5 and the algorithm’s
ingredients necessary for the allocation problem designed in Section 6. We conclude the paper with some
simulation examples on Section 7 and final remarks on Section 8.
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2 Risk contributions and capital allocations

This section recalls a few key results that have been developed primarily relating to coherent capital
allocation principles. A brief overview is provided for the relevant theory of risk contributions, with a
focus on Euler allocation principles, for which a more detailed introduction is provided in [33], Section
6.3, [45] and [41], Section 3.

In general one may consider the notation in which X1, ..., Xd denotes the returns of d different assets
in a portfolio. In the case of OpRisk modelling, this notation will correspond to losses from d different
business unit and risk type combinations within divisions of a banking or insurance institution.

If the weights of these assets in the portfolio are given by λ = (λ1, ..., λd) ∈ Λ ⊂ Rd \ {0} then we
will denote the portfolio-wide loss by

X(λ) =

d∑
i=1

λiXi. (2.1)

In particular, if λ = (1, ..., 1) we will write X = X(λ). In the case of OpRisk modelling this aggregate

loss amount given by
∑d
i=1 λiXi would represent the institution-wide total annual loss and typically the

weights would be unity.
If all the losses X1, ..., Xd are defined in a common probability space (Ω,F ,P), then we denote

ρ : Ω → R a generic risk measure. Given a specific risk measure ρ, the function rρ : Λ → R such that
rρ(λ) = ρ(X(λ)) will be called risk-measure function.

In the context of OpRisk, the Basel II/III guidelines specify clearly the recommended regulatory re-
quirements for capital adequacy standards. For instance in the European Union (EU) region the Capital
Requirements Directives (CRD) for the financial services industry have developed a supervisory frame-
work to reflect its guidelines on capital measurement and capital standards. In the EU region the CRD-IV
package entered into force on 17 July 2013 and reflects the Basel III standards expanding existing Basel
II regulatory EU directives (2013/36/EU) and EU regulation (575/2013). These EU directives, like their
counterparts in other jurisdictions include specifications on the amounts of Tier I and Tier II capital,
liquidity ratios and other relevant capital adequacy criteria. In this paper we are not so interested in spe-
cific break up of capital components, instead in this regard, throughout this paper we will refer to capital
rather loosely as corresponding to generically the total amount of assets that a financial institution must
hold to mitigate their yearly loss exposure obtained from quantification of a risk measure based on the
institutions OpRisk models.

From now on, let us assume the bank’s capital is defined as a function of a given risk measure ρ,
defined as either the standard deviation, the Value at Risk or the Expected Shortfall (see Definition 2.1).
For example, for regulatory purposes the OpRisk capital to be held is given by ρ(X(λ)) = V aRα(X(λ)),
with α = 0.999 for the Regulatory Capital and α = 0.9995 for the Economic Capital, for example.

Definition 2.1 (Particular choices of risk measures) If X1, ..., Xd are continuous random variables,

and X =
∑d
i=1Xi three of the most popular choices of risk measures are given by

1. Standard deviation: ρ(X) =
√
V ar(X);

2. Value at Risk: ρ(X) = V aRα(X) := inf{x ∈ R : FX(x) = α};
3. Expected Shortfall: ρ(X) = ESα(X) := E[X |X ≥ V aRα(X)].

Assuming the risk measure ρ has been chosen and that ρ(X(λ)), the risk (capital) of the portfolio
(institution) has already been calculated, the allocation process consists of understanding how much of
the risk (capital) is due to each of the constituents of the portfolio. In the case of OpRisk, this involves
understanding what each divisions total capital requirement would be across all the Basel III risk types,
as well as what each individual business units and risk types combinations capital requirement should be,
based on a “fair” risk based capital allocation from the institutions total capital requirement. This involves
the disaggregation of the total institutions capital back down the business unit/risk type structure that
will be specific for a given institution but can be generically represented for instance by the 56 business
unit/risk type categories proposed in Basel II/III.

More formally, let us denote by C ρ
i (λ) the capital allocated to one unit of Xi when the portfolio’s loss

is given by X(λ). For the sake of simplicity, to derive the Euler allocation we will accept the following
set of assumptions.

Assumptions 2.2 If the individual and portfolio losses are given, respectively by X1, ..., Xd and Equation
(2.1) then we assume that

(i) the capital allocated to the position λiXi is given by λiC
ρ
i (λ);
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(ii) the overall risk capital rρ(λ) is fully allocated to the individual positions in the portfolio:

d∑
i=1

λiC
ρ
i (λ) = rρ(λ). (2.2)

The interpretation of the first assumption is that we require proportional positions to have proportional
capital shares and the second one ensures the total capital will be allocated to the individual positions.
As a result of these assumptions, we only need to calculate C ρ

i (λ), for i = 1, ..., d.
Following the nomenclature in [33], we will say C ρ

i : Λ→ Rd is a per-unit capital allocation principle
if (2.2) is satisfied for all λ ∈ Λ.

So far we have not imposed or assumed any specific requirement on the risk measure used as a base
for the allocation principle, but to introduce the popular Euler allocation principle we need to restrict
ourselves to the class of positive homogeneous (of degree one) risk measures.

Definition 2.3 (Positive homogeneity) A risk measure ρ is said to be positive homogeneous (of
degree one) if ρ(λX) = λρ(X), for any random variable X and λ > 0.

It is straightforward to verify that Value at Risk (VaR) is positive homogeneous, as well as any
coherent risk measure (in the sense of [2]). For positive homogeneous risk measures it is also trivial to
show that the associated risk measure function rρ satisfies rρ(tλ) = trρ(λ). Therefore, applying Euler’s
homogeneous function theorem (see Appendix A) on rρ, we have that

rρ(λ) =

d∑
i=1

λi
∂rρ
∂λi

(λ) (2.3)

The combination of (2.2) and (2.3) leads to the so-called Euler allocation principle (sometimes referred
as allocation by the gradient), where the capital allocated to the i-th component of the portfolio is given

by the partial derivatives, with C ρ
i (λ) :=

∂rρ
∂λi

(λ).
The Euler allocation principle arises in different contexts in the literature. For example, in [19] and

[29] the Euler principle is motivated by two (different) sets of axioms, leading to coherent allocation
principles (for a relationship between coherent risk measures and coherent capital allocations see [8]).

Assuming that X1, ..., Xd are continuous random variables at the point at which the risk measure
is evaluated, we now present some explicit forms of the Euler contributions, based on the different risk
measures presented in 2.1.

Proposition 2.4 If X =
∑d
i=1Xi and X = (X1, ..., Xd) has a joint continuous density, then the Euler

allocation takes the following form

1. Standard deviation: ρ(X) =
√
V ar(X) =⇒ C σ

i (Xi) =
Cov(Xi, X)√

V ar(X)
;

2. Value at Risk: ρ(X) = V aRα(X) =⇒ C V aR
i (Xi) = E[Xi |X = V aRα(X)];

3. Expected Shortfall: ρ(X) = ESα(X) =⇒ CES
i (Xi) = E[Xi |X ≥ V aRα(X)].

Proof See [33], Section 6.3 and references therein.

Remark 2.5 Proposition 2.4 is still valid even if the distribution of X is not continuous but other technical
conditions should be satisfied (see [44] and [26]).

2.1 Euler allocation in a hierarchical structure

Here we briefly extend the concept of Euler allocations to a Bank structure divided, for example, in
Business Units and Event types, as in Table 1.1.

Let us assume a bank has a structure given as in Figure 2.1, comprising of K Business Units (B.U.’s)

and dl Event Types (E.T’s) in each of its B.U.’s (l = 1, ...,K). In this context we define d =
∑K
l=1 dl

as the total number of cells for which capital should be allocated, X =
∑d
i=1Xi the bank loss and

X[l] =
∑dl
m=1Xm for l = 1, ...,K the loss in the l-th B.U..

Assuming the bank capital is given by ESα(X) (as in Definition 2.1) then the Euler principle states
that the capital at the B.U. level should be given by E[X[l] |X > V aRα(X)] for each B.U. l = 1, ...,K. To
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Bank

B.U.2

E.T.1 E.T.2E.T.1

B.U.1

E.T.2 E.T.3

B.U.k

E.T.2 E.T.3E.T.1 E.T.4

b b b

Fig. 2.1 Hierarchical bank structure, with k B.U.’s.

allocate the capital calculated for the l-th unit to its E.T.’s we can assume this capital is a (homogeneous)
risk measure defined as

ρ(X[l]) = E[X[l] |X > V aRα(X)].

Then, following the Euler principle it is easy to check the allocation for the m-th E.T. in the l-th B.U. is
given by

E[Xm |X > V aRα(X)].

The reader should note that the same allocations could have been derived “heuristically” in the following
way. First the total capital ESα(X) is allocated directly to each of the d E.T.’s. Then for the l-th B.U.
the capital is computed as the sum of the allocations at the dl E.T.’s in this unit. Although the result
would be the same, we emphasize the first method, as it is a direct application of the Euler principle
(twice).

3 From capital allocation to conditional expectations

In this section we explore the fact that, using the two most important risk measures for OpRisk, the
capital allocation framework just described under the Euler allocation principle can be redefined as the
calculation of conditional expectations. This is practically a very appealing result as it means that the
allocation of the capital can be estimated using specialized Monte Carlo sampling solutions, presented in
detail below.

Throughout it will be assumed that the marginal loss processes are continuous random variables.
Therefore, one has that all the marginal inverse distribution functions (quantile functions) F−1i are well
defined and are also continuous. Moreover, one may apply Sklar’s theorem to state that the dependence
structure of the loss vector X will be uniquely determined by a copula function C (see Appendix B for
some results on copula theory). Formally the joint cdf and pdf of the vector X can be written as

FX(x) = P[X1 ≤ x1, ..., Xd ≤ xd] = C(F1(x1), ..., Fd(xd)) and

fX(x) = c
(
F1(x1), ..., Fd(xd)

) d∏
i=1

fi(xi),

where C and c are the copula and copula density, respectively.
From Proposition 2.4 we can see both the allocation based on VaR and on ES can be calculated as

an expectation of the form

Cρi (Xi) = E[h(X) | g(X) ∈ A], (3.1)

for the following choices of h, g and A:

1. For VaR: h(X) = Xi, g(X) =
∑d
i=1Xi, A =

[
V aRα(

∑d
i=1Xi), V aRα(

∑d
i=1Xi)

]
;

2. For ES: h(X) = Xi, g(X) =
∑d
i=1Xi, A =

[
V aRα(

∑d
i=1Xi), +∞

)
.
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Note that in any practical scenario α will be chosen to be close to one and both conditioning events
will have very small probabilities, ie, P[g(X) ∈ A] ≈ 0. More precisely, the event will have probability
1−α for the ES case and probability zero (regardless of the choice of α) in the VaR case, since the set A
is just a point. Therefore in practice, in the VaR case one would work instead with an ε approximation
by setting the conditioning event as the ε-ball of A given by Bε(A) specified according to Bε(A) =[
V aRα(

∑d
i=1Xi)− ε, V aRα(

∑d
i=1Xi) + ε

]
for some small positive ε in the neighbourhood of zero, ε ∈

n.e.(0+). This type of approach was advocated in [25] and [18].

From a risk management perspective, many other choices of h and g can be of interest. For example,
if one is interested in measuring the impact of marginal tail events in the portfolio, one could calculate
expectations of the form E[

∑d
i=1Xi |Xk > V aRα(Xk)], where the choices of h, g and A are trivial.

In practice, apart from very particular choices of dependence structure and marginal distributions
(eg, [3]), analytic representations for the expectation in (3.1) will not be available and we will need to
resort in some numerical approximation to evaluate such quantities in practice. There are several classes
of algorithm of relevance to undertake this task so, before presenting our Sequential Monte Carlo (SMC)
Samplers based solution, we review some of the most recent proposals in the literature.

3.1 Simulation methods to calculate conditional expectations of rare-events

In order to fix the notation to be used throughout this work, in this section we describe a generic Monte
Carlo based estimator, before detailing a few specialized approaches to be compared with our proposed
method. It is important to recognize the difference between Monte Carlo, Importance Sampling and
Sequential Monte Carlo Sampler based solutions. These are different categories of solution technique as
will be detailed below.

The generic expectation E[h(X) | g(X) ∈ A] can be approximated via a Monte Carlo simulation

through the use of a set of N weighted samples {x(j), W (j)}Nj=1, with
∑N
j=1W

(j) = 1, from the conditional
distribution fX(x | g(x) ∈ A). The approximation for the expectation is, then, given by

E[h(X) | g(X) ∈ A] ≈
N∑
j=1

W (j)h(x(j)).

For example, if we can directly sample i.i.d. realizations from the distribution of X | g(X) ∈ A (eg, using
a rejection scheme) we would have W (j) = 1/N . In general, though, samples from the above conditional
distribution are not readily available and we need to use an importance sampling distribution (coupled
with a rejection step), calculating the weights accordingly to remove bias. In both cases a rejection
mechanism can be used, accepting only those particles satisfying the conditioning event. However, if done
naively this would result in very large rejection rates that would behave poorly as the conditioning event
becomes rarer or the dimension d gets large.

In this setup, the conditioning event we are interested in can be defined as [X ∈ GX] , where

GX := {x ∈ Rd : g(x) ∈ A}, (3.2)

since g(X) ∈ A ⇐⇒ X ∈ GX. Given that our multivariate loss model is uniquely characterized by a
copula (either explicitly or implicitly, through a parametric joint distribution) the region GX in Rd holds
a close relationship with some region in [0, 1]d. Formally, if we define

GU :=
{
u ∈ [0, 1]d :

(
F−11 (u1), ..., F−1d (ud)

)
∈ GX

}
(3.3)

then it holds that

x ∈ GX ⇐⇒ u ∈ GU.

Therefore, similarly to the simulation of an unconditional multivariate distribution, to sample x =

(x1, ..., xd) from the distribution of
(
X | g(X) ∈ A

)
we can

1. Produce a weighted sample {u(j), W (j)}Nj=1 from C such that u(j) = (u
(j)
1 , ..., u

(j)
d ) ∈ GU for all

j = 1, ..., N ;

2. Return the weighted sample {x(j), W (j)}Nj=1 where x
(j)
i = F−1i (u

(j)
i ), for i = 1, ..., d, j = 1, ..., N .



SMC Samplers for capital allocation under copula-dependent risk models 7

Note that one can calculate conditional expectations with respect to X as follows

E[h(X) | g(X) ∈ A] = E
[
h
(
F

(−1)
1 (u1), ..., F

(−d)
d (ud)

)
|u ∈ GU

]
(3.4)

≈
N∑
j=1

W (j)h
(
F

(−1)
1 (u

(j)
1 ), ..., F

(−d)
d (u

(j)
d )
)
. (3.5)

Clearly, if all the marginal quantile functions F−1i are known, then the difficulty of the proposed
approach is to sample from the constrained copula. The idea of performing the sampling procedure in the
constrained copula space has been independently developed by Arbenz, Cambou and Hofert in [1] (see
an overview of their algorithm in section 3.3), where an importance sampling distribution is designed to
target the distribution of u |u ∈ GU.

In this paper, instead of targeting the rare region u ∈ GU we propose to sequentially target less rare
regions, in a specially designed SMC Sampler procedure that is made precise in Sections 4 and 5.

Before presenting these specialized algorithms, it is informative to briefly comment on alternative
Importance Sampling (IS) based approaches in the actuarial literature. At this stage we observe that there
are many different types of rare-event simulation algorithms available, and the choice of a particular type
will depend principally on how one defines the notion of a “rare-event” in the sample space. Although the
following brief discussions on alternative IS based solutions are not directly targeting the same type of
multivariate rare-event problems as faced in the case of capital allocation, they are informative to discuss
especially with regard to the concept of relative error.

We also note that there are classes of asymptotic approximation results available for approximation of
capital allocations. For instance, in order to estimate expectations of the form (3.1) in a bivariate set-up,
[9] assume that large values of g(X) correspond to high values of h(X) (in their case h(X) = Xi). Under
these constraints, the authors use results from Extreme Value Theory (EVT) to derive an estimator of
(3.1) and study some of its properties. We refer the interested reader to references in [9] for further
background on such asymptotic approximations and instead we continue to focus upon sampling based
solutions.

3.2 Related Monte Carlo and Importance Sampling approaches

In the particular case of Gaussian copulas [25] presents an IS scheme to approximate conditional expecta-
tions. For the same family of models, [43] more recently proposed a method based on Fourier transforms to
compute marginal risk contributions. In [32] the author develops a class of IS based estimators that satisfy
a condition of bounded relative error. In particular they estimate tail events in a univariate framework
via IS based distributions constructed from exponential families which will guarantee bounded relative
error in estimated tail functionals. The class of methods they develop revolves around exponential tilting
of the tails of the target distribution, also known in the actuarial literature as the Esscher transform or
tempering. In addition, it is argued in [32] that for tail events, the variance or standard error is a less
desirable quantity to consider in assessing the performance of algorithm, compared to a version scaled by
the mean such as the relative error. Therefore, [32] proposed consideration of the relative error which is
simply the ratio of the estimators standard error deviation to its mean. In Section 5.3 we present some
discussion of this concept in the context of the SMC algorithms proposed.

The approach proposed in [32] selects the IS distribution to minimize the relative error of the rare-
event probability by rewriting the problem as the solution to the minimization of the Renyi generalized
divergence. In several simple univariate examples one can prove the relative error can be bounded if
selected in this manner. This is interesting as it is contrary to other IS based approaches which seek to
minimize the importance sampling weights variance. The closest class of IS based solution to our proposed
SMC Sampler solution has been developed recently by [1]. We present this briefly before detailing our
approach.

3.3 Arbenz-Cambou-Hofert algorithm

In common with the proposed sampling method in this paper, the approach recently developed in [1]
involves sampling from a target distribution given by a constrained copula. This is particularly rele-
vant as it leads to convenient bounded state spaces for sampling, since the support of the copula when
unconstrained is [0, 1]d and consequently the constrained copula will be on a sub-space of this hypercube.
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Unlike our proposed solution, the approach of [1] involves developing an Importance Sampling (IS)
scheme targeting the constrained copula distribution. However, in contrast to our approach their method
does not involve any intermediate sequence of constrained regions leading smoothly up to the rare-event
constraint. Instead, they try to directly approximate the optimal importance sampling proposal. This
is in general a very challenging task and they have some interesting insight. For this reason we briefly
present their methodology below as it will form a direct comparison with the approach we develop.

In [1] the aim of their work is to generate a sample from the unconditional copula with most of the
particles satisfying a condition such as (3.3). In order to generate these samples, an importance sampling
distribution FV is designed as a mixture of conditional copulas. More formally, the IS distribution is
defined as

FV(u) =

∫ 1

0

C [λ](u)dFΛ(λ), (3.6)

where C [λ] is the distribution of U conditional on the event that at least one of its components exceeds
λ, ie,

C [λ](u) = P[U1 ≤ u1, ..., Ud ≤ ud | max{U1, ..., Ud} > λ].

In the main algorithm presented in [1], samples from the importance distribution are generated by
rejection, but a “conditional sampling algorithm” is also presented. Overall, an appealing aspect of their
proposed method is that it does not make use of the copula density explicitly. This can be advantageous
in settings in which the copula density is computationally expensive to be calculated or even unknown.
However, as with all Monte Carlo methods, there are also drawbacks to the proposed approach that we
will argue can be overcome through development not of an IS solution but instead via a Sequential Monte
Carlo Sampler (SMC Sampler) solution in the constrained copula space.

Under simplifying assumptions on the joint behaviour of U, an optimal distribution for FΛ is presented,
but in general the only restriction on the choice of the mixing distribution FΛ is that P[Λ = 0] > 0. To
sample from X |X > B one of the algorithms proposed is given as follows.

Algorithm 1: IS-ACH algorithm from [1].

Inputs: N: desired sample size for FV; FΛ: mixing distribution (as in (3.6)) ;
for j = 1, ...N do

Sample Λ(j) ∼ FΛ ;

Sample u(j) ∼ C until max{u(j)1 , ..., u
(j)
d } > Λ(j) ;

Define x
(j)
i := F−1

i

(
u
(j)
i

)
for i = 1, ..., d ;

Compute the importance weight w(j) := w(u(j)) as in [1], Section 5 ;

Compute the normalized importance weight W (j) = w(j)∑N
j=1 w

(j) ;

Define {ũ(jk)}Ñk=1 as the sub-set of {u(j)}Nj=1 such that
∑d
i=1 x̃

(jk)
i > B;

end

Result: Weighted random samples (of random sample size Ñ):
{
u(j), W (j)

}Ñ
j=1

;

Some points need to be stressed about Algorithm 1. First, let E[NV] denote the expected number of
draws from C in order to have a sample satisfying max{u1, ..., ud} > Λ. It can be easily shown that (see
[1], Lemma 4.2)

E[NV] =

∫ 1

0

1

1− C(λ1)
dFΛ(λ),

where 1 = (1, ..., 1) ∈ Rd. Therefore, to generate a sample of fixed size N from FV it is necessary to
sample (on average) N × E[NV] times from C.

Another important aspect of this algorithm pertains to an understanding of the number of “particles”
(samples) which are obtained with non-zero weight. Since p0 := P[Λ = 0] is necessarily positive, we can
ensure some of the N samples from FV will be actually from the unconditional copula C, meaning that
p0× 0.99× 100% of the particles are expected not to satisfy the condition

∑d
i=1Xi > V aR0.99(

∑d
i=1Xi).

For λ > 0 the same behaviour is expected, leading, in practice, to Ñ (as defined in the last step of
Algorithm 1) being smaller than N , and in cases of relevance to capital allocation, this difference can be

significant, with Ñ << N . In capital allocation problems such cases can prove to be a serious problem in
terms of computational cost and efficiency for this IS based approach as will be discussed in Section 7.

Next we will present a completely different class of methods to the IS based solutions discussed. These
will be based on a class of algorithms that extends IS solutions to sequential settings, known in statistics
literature as Sequential Monte Carlo Samplers (SMC Samplers). To understand SMC Samplers we first
recall the SMC algorithm before showing its generalization to the class of SMC Sampler algorithms.
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4 Reaching rare-events through sequences of intermediate sets

The idea of using intermediate sets to approximate the conditional density fX|g(X)∈A(x) is to start
sampling from the unconditional distribution fX(x) and move the weighted particles towards the rare
conditioning set through “not so rare” sets.

Using the notation from the previous section, for a fixed function g and set A, let {At}Tt=1 be a
sequence of nested sets shrinking to A, ie, At ⊂ At−1 and At ↓ A, when t → T . This sequence of sets
defines a sequence of regions (as before):

GXt := {xt ∈ Rd : g(xt) ∈ At},
GUt :=

{
ut ∈ [0, 1]d :

(
F−11 (ut,1), ..., F−1d (ut,d)

)
∈ GXt

}
.

Although it is true that

xt ∈ GXt
⇐⇒ ut ∈ GUt

,

with ut = (ut,1, ..., ut,d) :=
(
F1(xt,1), ..., Fd(xt,d)

)
we will see in the sequel that working in the bounded

space [0, 1]d we will have some advantages in the design of the algorithm. In this set-up our goal will

be ultimately to have (weighted) samples
{

u
(j)
T , W

(j)
T

}N
j=1

from the conditional copula c(uT |uT ∈ GUT
)

which would be then transformed through the marginal inverse cdf’s in order to get a weighted sample
from fX(x |x ∈ GXT

).

Following the notation to be used in Section 5.2 we define our target distribution at each time step
(level) t = 1, ..., T as

πt(ut) :=
c(ut)1{ut∈GUt}(ut)

P[Ut ∈ GUt
]

. (4.1)

4.1 Copula Constrained Geometry

Before we formalize the algorithm to sample from the constrained copula we will study some properties
of the restricted region in the copula space, defined in (3.2) and (3.3), for the particular case where

g(X) =
∑d
i=1Xi and A = [B,+∞). The idea is that the knowledge of the restricted region can help us

to design more efficient sampling schemes. Similar analyses can be performed for different restrictions.

In Rd our interest is to study points such that
∑d
i=1 xi = B which turn out to be equivalent to points

in [0, 1]d such that
∑d
i=1 F

−1
i (ui) = B. It is easy to see that each of these curves (in Rd or in [0, 1]d) will

lie in a d− 1 dimensional space. Formally, these curves are defined through the following mappings

G̃X :=

{
(x1, ..., xd−1) ∈ Rd−1 : (x1, ..., xd−1, B −

d−1∑
i=1

xi)

}
,

G̃U :=
{
u−d := (u1, ..., ud−1) ∈ [0, 1]d−1 :

(
u1, ..., ud−1, r(u−d)

)}
, (4.2)

where r(u−d) := Fd

(
B −

∑d−1
i=1 F

−1
i (ui)

)
.

First of all, note that if g is a generic continuous function and all the marginal cdfs F1, ..., Fd are
continuous then the curve G̃U (defined similarly to (4.2) ) will be continuous. Moreover, the region GU in
(3.3) will not be the union of disjoint set, but only one continuous region. Some other properties of these

regions may be derived in particular cases. For example, we know that in the linear case (g(X) =
∑d
i=1Xi)

the curve in [0, 1]d will pass through the points
(
F1(B), 0, ..., 0

)
,
(
0, F2(B), 0, ..., 0

)
, ...,

(
0, ..., 0, Fd(B)

)
.

Another interesting information about the curve G̃U is given by its curvature, as seen in the next
Proposition.

Proposition 4.1 The curve G̃U defined in (4.2) is convex at (u1, .., ud−1, r(u−d)) if

〈u−d, ∇2r(u−d)u−d〉 > 0, ∀u−d ∈ Rd−1,

where 〈x,y〉 is the inner product of x and y and ∇2f is the Hessian matrix of f .
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Fig. 4.1 Frank copula with parameter 2, Log-Normal marginal cdf’s, both with same µ = 3, and σ1 = 0.4, σ2 = 0.6. (Top
row) Constraint in the original space, for B = 0, 23, 46 (Bottom row) Constraint in the Copula space, [0, 1]2, for equivalent
levels.

In the particular case where r(u−d) := Fd

(
B −

∑d−1
i=1 F

−1
i (ui)

)
the general terms of the Hessian

matrix are given by

∂2r

∂uj∂uk
(u−d) =

f ′d

(
B −

∑d−1
i=1 xi

)
fj(xj)fk(xk)

, ∀j 6= k, j, k = 1, ..., d− 1

∂2r

∂u2j
(u−d) =

f ′d

(
B −

∑d−1
i=1 xi

)
fj(xj) + fd

(
B −

∑d−1
i=1 xi

)
f ′j(xj)

[fj(xj)]
3 ,

∀j = k, j = 1, ..., d− 1

where, once again, we use the notation xi = F−1i (ui) to make the above formulas more appealing.
From Proposition 4.1, in the very particular case where d = 2 and X1, X2 ≥ 0 (representing losses,

for example) the concavity of G̃U is determined only by the sign of

f ′2 (B − x1) f1(x1) + f2 (B − x1) f ′1(x1).

This is due to the fact that the denominator is the power of a density function (non-negative) and that
x1 is non-negative.

On Figure 4.1 we can see that for different constraint levels the curve in [0, 1]2 presents different
shapes, continuously varying from a convex to a concave region.

5 Sequential Monte Carlo Methods (SMC)

In this section we will introduce the general class of algorithms known as Sequential Monte Carlo (SMC)
and an important variant for rare-event simulation, the SMC Samplers classes of methods. This family
of Monte Carlo algorithms has been developed to approximate sequences of integrals constructed from
a sequence of probability density functions. Of course, adjustments are possible when the interest lies
only in one distribution, such as the terminal distribution in a sequence of intermediate increasingly rare
events, such as was shown in the ideas presented in Section 4).

SMC methods have emerged out of the fields of engineering, probability and statistics in recent years.
Variants of the methods sometimes appear under the names of particle filtering or interacting particle
systems e.g. [40], [20], [16], and their theoretical properties have been extensively studied in [13], [16],
[11], [30]. For a recent survey in the topic, with focus on economics, finance and insurance applications
the reader is referred to [12] and [18]. For an application to rare events in a financial context, see [10].
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The general context of a standard SMC method is that one wants to approximate a (often naturally
occurring) sequence of probability density functions (pdf’s)

{
π̃t
}
t≥1 such that the support of every

function in this sequence is defined as supp
(
π̃t
)

= Et and the dimension of Et forms an increasing

sequence, i.e., dim
(
Et−1

)
< dim

(
Et
)
. For example, the reader can think of E1 = Rd, ..., Et = Rd×t,

which will be precisely the sequence to be used throughout this work.
We may also assume that π̃t is only known up to a normalizing constant,

π̃t(x1:t) = Z−1t f̃t(x1:t),

where x1:t := (x1, ...,xt) ∈ Et = Rd×t. As in section 3.1, the approximation for π̃t is given by a weighted
sum of random samples (also known as “particles”).

Procedurally, we initialize the algorithm sampling a set of N particles from the distribution π̃1 and set

the normalized weights to W
(j)
1 = 1/N , for all j = 1, ..., N . If it is not possible to sample directly from π̃1,

one should sample from an importance distribution q̃1 and calculate its weights accordingly (see Algorithm
2). Then the particles are sequentially propagated thorough each distribution π̃t in the sequence via three
main processes: mutation, correction (incremental importance weighting) and resampling. In the first
step (mutation) we propagate particles from time t − 1 to time t and in the second one (correction) we
calculate the new importance weights of the particles.

This method can be seen as a sequence of IS steps, where the target distribution at each step t is
f̃t(x1:t) (the unnormalized version of π̃t) and the importance distribution is given by

q̃t(x1:t) = q̃1(x1)

t∏
j=2

Kj(xj−1,xj), (5.1)

where Kj(xj−1, · ) is the mechanism used to propagate particles from time t − 1 to t, known as the
mutation stage. The algorithm works in the following way:

Algorithm 2: Standard SMC algorithm.

Inputs: IS density q̃1, (forward) mutation kernels
{
Kt(xt−1,xt)

}T
t=1

;

for j = 1, ..., N do

Sample x
(j)
1 from X1 ∼ q̃1( · ) (Mutation step);

Calculate the weights w
(j)
1 =

f̃1(x
(j)
1 )

q̃1(x
(j)
1 )

;

end

Calculate the normalized weights W
(j)
1 =

w
(j)
1∑N

j=1 w
(j)
1

(Correction step);

for t = 2, . . . , T do
for j = 1, ..., N do

Sample x
(j)
t from Xt

∣∣Xt−1 = x
(j)
t−1 ∼ Kt(x

(j)
t−1, · ) (Mutation step);

Create the vector x
(j)
1:t := (x

(j)
1:(t−1)

, x
(j)
t ) ;

Calculate the weights w
(j)
t =

f̃t(x
(j)
1:t )

q̃t(x
(j)
1:t )

= w
(j)
t−1

f̃t(x
(j)
1:t )

f̃t−1(x
(j)
1:t−1)Kt(x

(j)
t−1,x

(j)
t )︸ ︷︷ ︸

incremental weight: α̃(x
(j)
1:t )

;

end

Calculate the normalized weights W
(j)
t =

w
(j)
t∑N

j=1 w
(j)
t

(Correction step).

end

Result: Weighted random samples
{
x
(j)
1:t , W

(j)
t

}N
j=1

approximating π̃t, for all t = 1, ..., T ;

If
{
x
(j)
1:t , W

(j)
t

}N
j=1

is a set of weighted particles returned by the SMC algorithm then

N∑
j=1

W
(j)
t ϕ(x

(j)
1:t ) −→ Eπ̃t [ϕ(X1:t)] :=

∫
Et
ϕ(x1:t)π̃t(x1:t)dx1:t, (5.2)

π̃t–almost surely as N → +∞, for any test function ϕ such that the expectation of ϕ under π̃t exists.

Remark 5.1 The reader should note that the knowledge of π̃t up to a normalizing constant is sufficient
for the implementation of a generic SMC algorithm, since the normalized version of the weights would
be the same for both π̃t and f̃t.



12 Rodrigo S. Targino et al.

The optimal selection of the mutation kernel (SMC importance distribution) for SMC methods is
widely studied and a good tutorial review on the optimal choice minimizing the variance of the incremental
importance sampling weights is overviewed in [21]. There are also a range of known probabilistic properties
of the SMC algorithm available in the literature, for a tutorial in the insurance context on these properties
see [18]. This includes details on central limit theorem results for SMC algorithms along with asymptotic
variance expressions, finite sample bias decompositions and propagation of chaos as well as finite sample
concentration inequality bounds. There are also tutorials available on SMC algorithms in general such as
[21] and the book length coverage of [16].

5.1 Resampling and Moving particles

In practice the generic algorithm presented in the previous section will eventually (as t increases) be
based only in a few distinct particles, in the sense that almost all the other particles will have negligible
weights. This phenomenon is known as particle degeneracy.

To overcome this problem, when the system is too degenerate one can resample all the particles x1:t
after the correction step, choosing the j-th one with probability proportional to W

(j)
t . In [31] it was

suggested using the Effective Sample Size (ESS) to measure the sample degeneracy, where

ESSt :=

 N∑
j=1

(W
(j)
t )2

−1

and resample steps should be performed only when ESSt < M – as a rule of thumb we can set M = N/2.

It is important to note that after this step we need to set W
(j)
t = 1/N for all particles, since they are all

identically distributed.
Although the resample step alleviates the degeneracy problem, its successive reapplication, at each

stage of the sampler, produces the so-called sample impoverishment, where the number of distinct particles
is extremely small. In [24] it was proposed to add a move with any kernel such that the target distribution
is invariant with respect to it to rejuvenate the system. This kernel may be, for example, a Markov Chain
kernel, which would begin with equally weighted samples from the target distribution and then perturb
them under a single step of a Metropolis Hastings accept-reject mechanism. This would preserve the
target distribution and add diversity to the particle cloud.

More precisely, we can apply any kernel M(x1:t, x∗1:t) that leaves π̃t invariant to move particle x1:t to
x∗1:t (the star will denote particles after the “move” step), ie,

π̃t(x
∗
1:t) =

∫
M(x1:t, x∗1:t)π̃t(x1:t)dx1:t.

Two of the simplest ways to construct such a kernel M are to use a Gibbs sampler or a Metropolis-
Hastings (M-H) algorithm. To use a Gibbs sampler algorithm, the full conditional distributions
π̃t(x1:t,i |x1:t,1, ...,x1:t,i−1,x1:t,i+1, ...,x1:t,d), for i = 1, ..., d, must be known up to proportionality, while
for the M-H they are not necessary. On the other hand, in the M-H algorithm one needs to design a
proposal density Q(x1:t,x

∗
1:t) that moves the particle x1:t to x∗1:t or some component of it such as xt to

x∗t . The Gibbs sampler is presented as Algorithm 3. For the Metropolis-Hastings and/or more details on
MCMC methods, see, for example,[22].

Algorithm 3: Gibbs Sampler algorithm.

Inputs: Full conditional pdf’s: π̃t(x1:t,1 |x1:t,2, ...,x1:t,d), ..., π̃t(x1:t,d |x1:t,1, ...,x1:t,d); Sample from π̃t:
x1:t = (x1:t,1, ...,x1:t,d) ;
Sample x∗

1:t,1 ∼ π̃t(x1:t,1 |x1:t,2, ...,x1:t,d) ;

Sample x∗
1:t,2 ∼ π̃t(x1:t,2 |x∗

1:t,1,x1:t,3, ...,x1:t,d) ;

...
Sample x∗

1:t,d ∼ π̃t(x1:t,d |x∗
1:t,1, ...,x

∗
1:t,d−1) ;

Result: New sample from π̃t: x∗
1:t = (x∗

1:t,1, ...,x
∗
1:t,d) ;

Including both the resampling and the “move” steps into the generic SMC algorithm leads to the
“Resample-Move” algorithm, first presented in [24] and subsequently widely used in the SMC literature.

The generic class of SMC algorithms whilst widely used in practice can not be directly applied to
the problems addressed in this work, since all the distributions in the sequence (4.1) are defined over the
same support, ie, Et = E and not Et = E × ... × E as required by the SMC algorithms just described.
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To overcome this problem a specialized variation of this method, named SMC Samplers is introduced in
the next section.

5.2 SMC Samplers

Having presented the SMC class of algorithms, we now present in contrast to these the class of SMC
Sampler algorithms which involve the same mechanism as the SMC algorithm also using a mutation,
correction and resampling stage at each iteration. However, the class of SMC Sampler algorithm is
importantly different in the space that the sequence of distributions being sampled from are defined
upon. Differently from Section 5, our interest now is to approximate a generic sequence of probability
distributions {πt}Tt=1 such that supp(πt) = supp(πt−1) = E for all t = 1, ..., T (once again one may think
of E = Rd). Here we may also assume our target distribution is only known up to a normalizing constant,
ie, πt(xt) = Z−1t ft(xt). For notational clarity, functions in the enlarged space will be denoted with a

upper tilde, as f̃t : Et −→ R.
The idea presented on [37] and [17] is to transform this problem into one resembling the usual SMC

formulation, where the sequence of target distributions {f̃t}Tt=1 is defined on the product space, i.e.,

supp(f̃t) = E × E × ...× E = Et.

The construction of f̃t (the density in the path space) is carried out as:

f̃t(x1:t) = ft(xt)f̃t(x1:t−1|xt), for t = 2, ..., T (5.3)

where f̃t(x1:t−1|xt) is a probability distribution on the space Et−1, for all xt ∈ E. Similarly to (5.1) we
can carry out the construction of the importance distribution at time t.

As noticed in [37] and [17], a wise choice for f̃t(x1:t−1|xt) is given by

f̃t(x1:t−1|xt) =

t−1∏
s=1

Ls(xs+1,xs),

where the each Ls is the density of an (artificial) backward Markov kernel. It is important to note that,

by construction, f̃t(x1:t) admits ft(xt) as a marginal, since∫
f̃t(x1:t)dx1:t−1 = ft(xt)

∫ t−1∏
s=1

Ls(xs+1,xs)dx1:t−1 = ft(xt), ∀t > 1.

Moreover, provided that f̃t admits ft as a marginal the normalizing constant of the enlarged density
will be the same as the original density:∫

f̃t(x1:t)dx1:t =

∫ ∫
f̃t(x1:t)dx1:t−1dxt =

∫
ft(xt)dxt = Zt.

Now that we are back to the SMC framework from last section, we can easily write the SMC Sampler
algorithm (Algorithm 4). Moreover, the Resample-Move strategy from Section 5.1 can still be utilized.

5.2.1 Backward kernels selection

The introduction of the sequence of kernels {Lt−1}Tt=2 creates a new degree of freedom in SMC samplers
when compared with usual SMC algorithms, where only the forward mutation kernels {Kt}Tt=1 should
be designed. In this section we will discuss how to, given the kernels {Kt}Tt=1, optimize the choice of
backward kernels {Lt−1}Tt=2.

Denote by qt(xt) the marginal importance distribution at time t, which is given by

qt(xt) =

∫
q̃t(x1:t)dx1:t−1 =

∫
q1(x1)

t∏
j=2

Kj(xj−1,xj)dx1:t−1. (5.4)

In the case in which we know how to calculate qt in exact form we can simply approximate the target

distribution ft by a weighted sample {x(j)
t ,W

(j)
t }, where xt ∼ qt and Wt is the normalized version of

wt := ft(xt)
qt(xt)

. From the definition of qt we can see that sampling from qt is simple if it is easy to sample

from q1 and from all the kernels Kt. On the other hand, the density of qt will only be tractable if we are
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Algorithm 4: SMC Sampler algorithm.

Inputs: IS density q1, (forward) mutation kernels
{
Kt(xt−1,xt)

}T
t=1

, (artificial) backward kernels{
Lt−1(xt,xt−1)

}T
t=1

, move kernel Mt(x̂t, xt);

for j = 1, ..., N do

Sample x
(j)
1 from X1 ∼ q̃1( · ) (Mutation step);

Calculate the weights w
(j)
1 =

f̃1(x
(j)
1 )

q̃1(x
(j)
1 )

;

end

Calculate the normalized weights W
(j)
1 =

w
(j)
1∑N

j=1 w
(j)
1

(Correction step);

for t = 2, . . . , T do
for j = 1, ..., N do

Sample x
(j)
t from Xt

∣∣Xt−1 = x
(j)
t−1 ∼ Kt(x

(j)
t−1, · ) (Mutation step);

Using (5.3) and (5.1), calculate the weights w
(j)
t =

f̃t(x
(j)
1:t )

q̃t(x
(j)
1:t )

= w
(j)
t−1

ft(x
(j)
t )Lt−1(x

(j)
t ,x

(j)
t−1)

ft−1(x
(j)
t−1)Kt(x

(j)
t−1,x

(j)
t )︸ ︷︷ ︸

incremental weight: α(x
(j)
t−1,x

(j)
t )

;

end

Calculate the normalized weights W
(j)
t =

w
(j)
t∑N

j=1 w
(j)
t

(Correction step). ;

if ESSt < N/2 then
for j=1,...,N do

Resample x̂
(j)
t = x

(k)
t with prob. W

(k)
t (Resample step) ;

Sample x
(j)
t ∼Mt(x̂

(j)
t , · ) (Move step);

Set W
(j)
t = 1/N ;

end

end

end

Result: Weighted random samples
{
x
(j)
t , W

(j)
t

}N
j=1

approximating πt, for all t = 1, ..., T ;

able to solve the marginalization integral (in t − 1 dimensions) – which, in practice will hardly ever be
the case.

The introduction of backward kernels {Lt−1}Tt=2 helps us (in most of the practical cases) to avoid the

computation of qt. On the other hand, since f̃t and q̃t admits, respectively, ft and qt as marginals, Lemma
5.2 tells us the price we need to pay: an increase in the variance of the importance weights. Fortunately,
the same Lemma provides us some insights on how to optimally choose the backward kernels.

Lemma 5.2 Let f(x1,x2) and g(x1,x2) be two probability densities with supp(f) ⊂ supp(g). Then

V arg

(
f(X1,X2)

g(X1,X2)

)
≥ V arg

(
f1(X1)

g1(X1)

)
,

where f1(x1) =
∫
f(x1,x2)dx2 and g1(x1) =

∫
g(x1,x2)dx2.

Proof From the variance decomposition, we have that

V arg

(
f(X1,X2)

g(X1,X2)

)
= V arg

(
Eg

[
f(X1,X2)

g(X1,X2)

∣∣∣X1 = x1

])
+ Eg

[
V arg

(
f(X1,X2)

g(X1,X2)

∣∣∣X1 = x1

)]
≥ V arg

(
Eg

[
f(X1,X2)

g(X1,X2)

∣∣∣X1 = x1

])
,

since f, g ≥ 0 (they are densities).
The result follows from the fact that the ratio of marginal densities can be rewritten as the following

conditional expectation:

f1(x1)

g1(x1)
=

∫
f(x1,x2)

g1(x1)g2|1(x2|x1)
g2|1(x2|x1)dx2

= Eg

(
f(X1,X2)

g(X1,X2)

∣∣∣X1 = x1

)
.
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ut

As mentioned previously, Proposition 5.3 shows how to design the backward kernels {Lt−1}Tt=2 in
order to minimize the variance of the importance weights.

Proposition 5.3 (Optimal backward kernel) The kernel

Loptt (xt+1,xt) :=
qt(xt)Kt+1(xt,xt+1)

qt+1(xt+1)
is optimal in the sense that V arq̃t(w

opt
t (X1:t)) ≤ V arq̃t(wt(X1:t)),

where woptt (x1:t) =
ft(xt)

qt(xt)
.

Proof If we substitute the optimal kernel into the definition of importance weights we have that

woptt (x1:t) =
f̃t(x1:t)

q̃t(x1:t)

=
ft(xt)

∏t−1
s=1 L

opt
s (xs+1,xs)

q1(x1)
∏t
j=2Kj(xj−1,xj)

=
ft(xt)

∏t−1
s=1

qt(xt)Kt+1(xt,xt+1)
qt+1(xt+1)

q1(x1)
∏t
j=2Kj(xj−1,xj)

=
ft(xt)

qt(xt)
.

The result, then, follows from Lemma 5.2.

From Proposition 5.3 we can see that if we know how to sample from qt(xt) then the SMC sampler
algorithm reduces to a sequence of Importance Sampling steps, where at each time t we sample particles

from qt(xt) and correct the bias through the weights wt(xt) = ft(xt)
qt(xt)

.

Independent kernel One situation where we know how to calculate qt(xt) is when Kt(xt−1,xt) does
not depend on xt−1, making the mutation step completely memory-less. As an abuse of notation, let
Kt(xt) := Kt(xt−1,xt). This choice is not always recommended to be used in practice due to difficulties
in designing an appropriate kernel. In this case it is easy to see that it is possible to perform a sequence
of Importance Sampling steps, since

qt(xt) =

∫
q1(x1)

t∏
j=2

Kj(xj−1,xj)dx1:t−1

=

∫
q1(x1)

t∏
j=2

Kj(xj)dx1:t−1

=

(∫
q1(x1)dx1

)t−1∏
j=2

∫
Kj(xj)dx1:t−1

(∫ Kt(xt)dxt

)
= Kt(xt).

Approximations of the optimal kernel Various approximations of the optimal backward kernel have
been proposed in the literature (see, for example [17], Section 3.3.2) but here we will discuss only one of
them.

If we rewrite the optimal backward kernel from Proposition 5.3 as

Loptt (xt+1,xt) =
qt(xt)Kt+1(xt,xt+1)∫
qt(xt)Kt+1(xt,xt+1)dxt

it suggests that a sensible approximation for this kernel is to use πt instead of qt. In this case,

Loptt (xt+1,xt) ≈
ft(xt)Kt+1(xt,xt+1)∫
ft(xt)Kt+1(xt,xt+1)dxt

, (5.5)

since the normalizing constants of π cancel out.
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Although the integral in the denominator of (5.5) is (usually) not analytically tractable we can use

the weighted sample {x(j)
1:t , w

(j)
t }Nj=1 from πt generated by the SMC sampler procedure to approximate

Loptt as

Lt(xt+1,xt) =
ft(xt)Kt+1(xt,xt+1)∑N
j=1 w

(j)
t Kt+1(x

(j)
t ,xt+1)

. (5.6)
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Fig. 5.1 Evolution of particles in the SMC algorithm, with marginals Xt,i ∼ LN(10− 0.1i, 1 + 0.2i), i = 1, 2, t = 1, ..., T ;
Gumbel(θ = 1.5); N = 200 particles and T = 20 equidistant levels from B1 = 0, ..., BT = 100, 000; (top) t = 4, (middle)
t = 10, (bottom) t = 14. The level sets in the background represent the structure of the base, unconstrained copula.

5.2.2 Forward kernels selection

So far we have discussed how to design backward kernels Lt that are optimal for specific choices of forward
kernels Kt. We now present possible choices of Kt in order to have simple forms of importance weights
when used with the optimal choice of backward kernel.

In this sense, one convenient choice for the forward kernels Kt is to assume they are such that
Kt(xt−1,xt) has πt as invariant density, ie,

πt(xt+1) =

∫
Kt+1(xt,xt+1)πt+1(xt)dxt.



SMC Samplers for capital allocation under copula-dependent risk models 17

Proceeding this way, we can choose the backward kernel as follows,

Lt(xt+1,xt) =
πt+1(xt)Kt+1(xt,xt+1)

πt+1(xt+1)
, (5.7)

which is a reasonable approximation for the optimal backward kernel from Proposition 5.3. It also worth
noticing the kernel defined on (5.7) is the reversal Markov kernel associated with Kt+1.

For theoretical purposes, we may also assume the forward kernel mixes perfectly, ie, Kt+1(xt,xt+1) =
πt+1(xt+1). This choice of kernels is obviously not feasible in practice, since πt+1(xt+1) is precisely
the density we are trying to sample from, but it can provide us interesting insights. In this case, the
incremental weights of the SMC sampler algorithm (see Algorithm 4) are given by

α(xt−1,xt) =
ft(xt)Lt−1(xt,xt−1)

ft−1(xt−1)Kt(xt−1,xt)
∝ πt(xt−1)

πt−1(xt−1)
,

which makes the weights at time t independent of the particles sampled at time t.

5.3 Generalizing the relative error expression to the path-space IS and SMC Sampler

As in Equation (3.4), throughout this section we will assume we are interested in estimating conditional

expectations such as E[h(X) |X ∈ GX] = E[ϕ(U) |U ∈ GU] where h(X) = h
(
F

(−1)
1 (u1), ..., F

(−d)
d (ud)

)
=:

ϕ(U). Moreover, let us denote by pt = P[Xt ∈ GXt
] = P[Ut ∈ GUt

]. Throughout this section we will
denote by EπT [·] the expectation with respect to the density πT .

In general, given ϕ̂ an estimate for E[ϕ(U) |U ∈ GU] a reasonable efficiency measure is given by its
variance (the smaller the variance the better). In many cases, however, both the quantity of interest and
the variance of the estimator are so small that using the variance as a measure efficiency is meaningless.
For example, let us assume the quantities of interest are given by zs = P[U ∈ As], for some sequence
of sets As ↓ ∅ when s → ∞. It is trivial to see that if the estimator of the probability via simple Monte
Carlo is denoted by ϕ̂s then V ar(ϕ̂s)→ 0 when s→∞.

In such scenarios, as discussed in [4], Chapter VI, the relevant performance measure is to verify if the
(unbiased) estimators possess bounded relative error, ie, if

lim sup
s→∞

V ar(ϕ̂s)

z2s
<∞.

In this section we present the generic variance expression for three different estimators, targeting Eπt [ϕ(Ut)],
namely: Importance Sampling (IS), Path space Importance Sampling (PIS) and Sequential Monte Carlo
Sampler (SMCS). The reader should note, from (5.8), that the last two algorithm are asymptotically un-
biased, but may have some finite sample bias. For some specific quantities, [1] show that their estimator
will produce bounded relative error and the same is valid for the Importance Sampling algorithm from
[32], when targeting small probabilities.

For SMC Samplers [17] provide two Central Limit Theorem (CLT) results in “extreme” cases: the first
one deals with the case when no resampling is performed and the second one for the case of resampling
(using multinomial resample) at each iteration of the algorithm. These two cases will be briefly reviewed
in the sequel, in order for us to have interpretable results for the asymptotic variances.

In both cases, under suitable integrability conditions discussed in [17], Proposition 2, the following
convergence in distribution is valid when the number of particles tends to infinity,

√
N
( N∑
j=1

W
(j)
t ϕ(U(j))− Eπt [ϕ(Ut)]

)
=⇒

N→+∞
N(0, σ2

t ), ∀t = 1, ..., T (5.8)

where the normalized weights W
(j)
t calculated in the SMC Sampler algorithm (see Algorithm 4) and the

limiting variance σ2
t are dependent on the resampling strategy.
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5.3.1 Importance Sampling (IS)

Let us assume we use a density q0(u0) as an importance distribution targeting πT (u) = π(u)1{u∈GUT }(u)/pT
(as in 4.1)). If we denote the Importance Sampling estimator for ϕ(U) by

ϕ̂IS :=
1

N

N∑
j=1

ϕ(u
(i)
0 )wIS(u

(i)
0 ), (5.9)

where wIS(u0) := wIS(u0) = πT (u0)
q0(u0)

then we have that

V ar(ϕ̂IS) =
1

N

[∫
π2
T (u)

q20(u)
ϕ(u)q0(u)du−

(∫
πT (u)

q0(u)
ϕ(u)q0(u)du

)2
]
.

In particular, if πT ≥ q0 πT -almost surely (eg, the IS distribution is the unconditional distribution π),
then

V ar(ϕ̂IS) ≥ 1

N
V arπT (ϕ(U)). (5.10)

In the capital allocation problem we know the probability of the conditioning event is chosen to be
pT = 1−α, meaning that the target distribution πT will be known (including its proportionality constant)
if π is perfectly known. In this scenario, if the importance distribution is the unconditional density, ie,
q0 ≡ π then the importance weights can be perfectly calculated. However, in many interesting cases either
π or q0 may only be known up to a constant. In this case it is necessary to use the “self-normalized”
version of the importance weights, namely,

w
(i)
IS-SN =

πT (u(i))/q0(u(i))∑N
j=1 πT (u(j))/q0(u(j))

. (5.11)

When the self-normalized importance weights are used to estimate ϕ(U) it is easy to show the variance
of the new estimator will be larger than the one defined in (5.9). More formally, if we define ϕ̂IS-SN :=∑N
j=1 ϕ(u

(i)
0 )wIS-SN (u

(i)
0 ), then

1

N
V arπT (ϕ(U)) ≤ V ar(ϕ̂IS) ≤ V ar(ϕ̂IS-SN ).

5.3.2 Path space Importance Sampling (PIS)

When no resampling is performed in the SMC Sampler algorithm, it is easy to see that, at each time
step, it collapses to an Importance Sampling algorithm in the Path space (PIS). Since the particles have
no interaction, the (unnormalized) weights in (5.8) will be given by

wPIS,t(Ut) =
π̃t(u1:t)

q̃t(u1:t)
,

where q̃t(u1:t) = q̃1(u1)
∏t
j=2Kj(uj−1,uj) and π̃t(u1:t) = πt(ut)

∏t−1
s=1 Ls(us+1,us). In this case the

following result is valid.

Proposition 5.4 (Path Importance Sampling (PIS) CLT) Under the integrability assumptions
given in [17], Proposition 2, the asymptotic variance, as the number of particles increases to infinity, in
(5.8) is given by

σ2
t = σ2

PIS,t :=

∫
π̃2
t (u1:t)

q̃t(u1:t)
{ϕ(ut)− Eπt [ϕ(Ut)]}2du1:t (5.12)

In the particular case where the forward kernel is perfectly mixing and the backward kernels are given
by (5.7) then it is easy to show that

σ2
PIS,t =

∫
π2
1(u0)

q0(u0)
du0

t∏
k=2

∫
π2
k(uk−1)

πk−1(uk−1)
duk−1V arπt(ϕ(U)). (5.13)
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Moreover, let us assume the sequence of distributions is given by (4.1). Then, each integral can be
simplified to

∫
π2
k(uk−1)

πk−1(uk−1)
duk−1 =

∫
π2(uk−1)1{uk−1∈GUk}(uk−1)

π(uk−1)1{uk−1∈GUk−1
}(uk−1)

pk−1
p2k

duk−1

=
pk−1
pk

∫
π(uk−1)1{uk−1∈GUk}(uk−1)

pk
duk−1

=
pk−1
pk

.

But since the events become rarer the larger the index k, then pk−1

pk
> 1 (and the same argument holds

for the first integral, if, as in the IS algorithm, we start sampling from the unconditional distribution)
and for N sufficiently large,

V ar(ϕ̂PIS,T ) ≈ 1

N
σ2
PIS,t >

1

N
V arπT (ϕ(U)).

5.3.3 Sequential Monte Carlo Sampler (SMCS) – resampling at every time step

When resampling is performed at every step of the SMC algorithm we can still calculate the variance σ2

from (5.8) through the Proposition 5.14. The estimate calculated through this scheme will be denoted
here ϕ̂SMCS .

Proposition 5.5 (Always-Resampling SMC Sampler (SMCS) CLT) Under the integrability as-
sumptions given in [17], Proposition 2, the asymptotic variance in (5.8) is given by

σ2
t =σ2

SMCS,t :=

∫
π̃2
t (u1)

µt(u1)

(∫
ϕ(ut)π̃ (ut|u1) dut − Eπt (ϕ(U))

)2

du1

+

t−1∑
k=2

∫
(π̃t(uk)Lk−1(uk,uk−1))2

(πk−1(uk−1)Kk(uk−1,uk))

(∫
ϕ(ut)π̃ (ut|uk) dut − Eπt (ϕ(U))

)2

duk−1duk

+

∫
(πt(ut)Lt−1(ut,ut−1))2

(πt−1(ut−1)Kt(ut−1,ut))
(ϕ(ut)− Eπt (ϕ))2 dut−1dut.,

(5.14)

where π̃n(uk) :=
∫
π̃n(u1:n)du1:k−1duk+1:n and π̃n(un|uk) :=

∫
π̃n(u1:n)du1:k−1duk+1:n/π̃(uk).

As in the previous section, if we assume the mutation kernel is perfectly mixing and if we use the
approximation of the optimal kernel given by (5.7) then the variance in (5.14) can be simplified to

σ2
SMCS,t =

∫
π2
t (ut−1)

πt−1(ut−1)
dut−1V arπt(ϕ(U)), (5.15)

from which it becomes clear from (5.13) and (5.15) that σ2
PIS,t > σ2

SMCS,t, which implies that

V ar(ϕ̂SMCS,T ) < V ar(ϕ̂PIS,T ).

6 Design of a SMC sampler with linear constraints for capital allocation

In this section we return to the problem of sampling from the distribution of
(X
∣∣ ∑d

i=1Xi > B) producing samples from U ∈ GU, as explained in section 3.1. To use the algorithm
specified in Section 5.2 we still need to design: (1) the forward kernels Kt(ut−1, ut), (2) the backward
kernels Lt−1(ut, ut−1) and (3) a Markov Chain move kernel M (in the spirit of Section 5.1). For the
backward kernel we will use the approximation to the optimal one presented in section 5.2.1; the forward
kernel and the “move” kernel will be presented, respectively in sections 6.1 and 6.2
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6.1 Forward Kernel

For the forward kernel Kt(ut−1,ut), if we can guarantee that any move from ut−1 to ut will already be
in GUt

then we will not loose any particle in the mutation step, improving the efficiency of the algorithm.
Since we are developing the sampling procedure in [0, 1]d then, under the assumption that we can precisely
characterize the constraint region GUt (ie, we can calculate F−1i for all i = 1, ..., d) then we can propose
a “slice-sampling” procedure for Kt.

The idea of this type of kernel is that we can first sample d− 1 coordinates of the ut vector (chosen
randomly) and then, conditional on these values, sample the last component constrained to an interval

that will ensure that
∑d
i=1 xi > Bt. In general these kernels will look like

Kt(ut−1, ut) =

d∑
m=1

[
K

(−m)
t (ut−1,−m,ut,−m)K

(m)
t (ut−1,m, ut,m)

]
pm, (6.1)

where pm is the probability of the m-th coordinate being the last one to be chosen,

ut,−m = (ut,1, ..., ut,m−1, ut,m+1, ..., ut,d) is the vector ut without its m-th coordinate and K
(−m)
t is the

kernel that moves the d − 1 dimensions of ut−1,−m to time t. Similarly, K
(m)
t denotes the kernel that

moves ut−1,m to ut,m ensuring that
∑d
i=1 xt,i > Bt.

To guarantee the condition is satisfied, K
(m)
t needs to be defined over [But (m), 1], where

But (m) := F−1m (Bxt (m)) (6.2)

with

Bxt (m) := max

{
0, Bt −

d∑
i=1
i6=m

Fi(ut,i)

}
. (6.3)

For simplicity, we can choose the last move to be uniformly distributed in [But (m), 1], leading to

K
(m)
t (ut−1,m, ut,m) =

ut,m
1−But (m)

1{ut,m∈[But (m),1]}(ut,m).

Again, for the sake of simplicity, we will only discuss the case where K
(−m)
t consists of independent

moves in each dimension, ie,

K
(−m)
t (ut−1,ut) =

d∏
i=1
i 6=m

K
(−m,i)
t (ut−1,i, ut,i). (6.4)

Moreover, it will be assumed that pm = 1/d, for all m = 1, ..., d.

Uniform moves in GU The first (näıve) idea is to define the move in each component of u as uniform,

leading to a marginal kernels K
(−m,i)
t (ut−1,i, ut,i) = ut,i1{ut,i∈[0,1]}(ut,i) and, consequently,

Kt(ut−1,ut) =
1

d

d∑
m=1

 d∏
i=1
i 6=m

ut,i1{ut,i∈[0,1]}(ut,i)

( ut,m
1−But (m)

1{ut,m∈[But (m),1]}(ut,m)

)
.

As we can see from the construction of this kernel, it is clearly independent of ut−1 and the comments
by the end of Section 5.2.1 apply, meaning that the problem reduces to a series of Importance Sampling
problems.
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Fig. 6.1 Example of the Global Beta kernel for a Gumbel(1.5) copula with Log-Normal marginals: (µ1 = 0.6, σ1 = 1.4),
(µ2 = 0.4, σ2 = 1). The boundary are such that F−1

1 (u1) + F−1
2 (u2) > 2.25 and 3.57.

Global adaptive Beta moves in [0, 1]d−1 One strategy to use the information contained in ut−1 in
the mutation step is to use the whole set of weighted particles at t− 1 to estimate the parameters of the
mutation kernel (subject to some restriction).

Since our kernels are defined in [0, 1] a reasonable idea is to use a global Beta kernel, in the sense
that all particles at time t− 1 will be mutated through the same kernel. To select the parameters of the
Beta distribution we match the first two moments of the Beta distributions with its sample moments at

time t − 1. Formally, let us denote {u(j)
t−1, W

(j)
t−1}Nj=1 the set of N weighted particles at time t − 1 and

K
(−m,i)
t (ut−1,i, ut,i) = Beta(ut,i; αt−1,i, βt−1,i), where the RHS term denotes the density of a random

variable Yt−1,i Beta distributed with parameters αt−1,i and βt−1,i evaluated at ut,i. Then matching the
first two moments we have

E[Yt−1,i] =
αt−1,i

αt−1,i + βt−1,i
=

N∑
j=1

W
(j)
t−1u

(j)
t−1,i =: µ̂t−1,i,

V ar(Yt−1,i) =
αt−1,iβt−1,i

(αt−1,i + βt−1,i)2(αt−1,i + βt−1,i + 1)
≈ µ̂2t−1,i −

N∑
j=1

Wt−1

(
u
(j)
t−1,i

)2
:= σ̂2

t−1,i

and after some algebra we find

α̂t−1,i =
(1− µ̂t−1,i)
σ̂2
t−1,i

µ̂2
t−1,i

β̂t−1,i = α̂t−1,i

(
1

µ̂t−1,i
− 1

)
.

Therefore an approximation for the mutation kernel at time t and dimension i – as in (6.4) – is given
by

K
(−m,i)
t (ut−1,i, ut,i) ≈ Beta(ut,i; α̂t−1,i, β̂t−1,i). (6.5)

Remark 6.1 It is important to emphasize the kernel in (6.5), when plugged into (6.4) and (6.1), does not
require any tuning and is not independent of ut−1,i, since the parameters of the Beta distribution depend
on these values.

Figure 6.1 exemplifies the mutation of one particle ut−1 = (0.2, 0.7) (which is in the (t−1)-th level set)
to ut = (0.6, 0.9) (which is in the t-th level set). The mutation starts moving the first coordinate of ut−1
through a Beta distribution and then the second coordinate is moved following a uniform distribution
defined in the appropriate region.

6.2 Markov Chain move kernel

Since the forward kernels designed in Section 6.1 ensure the new particles will satisfy the condition at
level t one possibility is to use the same kernel as a proposal in a M-H algorithm. The drawback would
be that in higher dimensions the acceptance rate of the M-H would be extremely small. Instead, here
we propose the usage of a Gibbs sampling algorithm, that should be always preferred when the full
conditional densities are known.
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Fig. 6.2 Example of the move kernel for a Gumbel(1.5) copula with Log-Normal marginals: (µ1 = 0.6, σ1 = 1.4), (µ2 =
0.4, σ2 = 1). The boundary is such that F−1

1 (u1) + F−1
2 (u2) > 3.57.

Suppressing the dependence in t in the vector u and denoting v∗(m) := (u∗1, ..., u
∗
m, um+1, ..., ud) we

have that the full conditional for a generic m = 1, ..., d can be written as

πt(u
∗
m |u∗1, ..., u∗m−1, um+1, ..., ud) =

πt(u
∗
1, ..., u

∗
m, um+1, ..., ud)

πt(u1, ..., um−1, um+1, ..., ud)

∝ πt(v∗(m))

∝ c(v∗(m))1{v∗(m)∈GUt}(v
∗(m)).

Note that the full conditional distribution for the m-th coordinate of u is a probability distribution for u∗m.
On the other hand, since u∗1, ..., u

∗
m−1, um+1, ..., ud are fixed, we can rewrite the condition [v∗(m) ∈ GUt ]

as u∗m ∈ [Bu(m), 1], with Bu(m) as in (6.2).
To sample u∗m from its full conditional distribution one can use a univariate slice sampler algorithm

(see [35]), which only requires the full conditional target up to a normalizing constant. In Figure 6.2 we
present an example of such a Markov Chain move. On the RHS, the initial point is (u1, u2) = (0.9, 0.3).
First the support of the full conditional distribution is calculated, ie, Bu(1) = 0.6 and plotted as a
cross on the second figure. Then, a value u∗1 = 0.8 is sampled from π(u1 |u2 = 0.3) (a square in the
second plot). On top of the second plot we present the full conditional distribution (truncated on the
left at Bu(1) = 0.6. For this value we find that Bu(2) = 0 and the support of the next full conditional
distribution is [0, 1] (the actual density is plotted vertically). The second coordinate u∗2 = 0.7 is then
sampled from π(u2 |u∗1 = 0.8). In the last plot we have the final move, from (u1, u2) = (0.9, 0.3) to
(u∗1, u

∗
2) = (0.8, 0.6).

7 Case Studies

In this section we present some simulation examples of the performance of the proposed Copula-Constrained
SMC Sampler algorithm. For all the simulations and density calculations we made extensive use of the
R-package copula [28].

The aim of all methods presented here will be to calculate conditional expectations of the form

E

[
Xk |

d∑
i=1

Xi > V aRα(

d∑
i=1

Xi)

]
, for k = 1, ..., d (7.1)

where the α quantile (V aRα) is assumed to be perfectly known (see comments bellow) and
α ∈ (0.1, 0.2, ..., 0.9, 0.95, 0.99, 0.995, 0.999, 0.9995, 0.9999, 0.99995). Moreover, as in [1], we will assume
the marginal distributions of X are Log-Normal with

Xi ∼ LN(10− 0.1i, 1 + 0.2i), i = 1, ..., d.

For all the examples presented here, since we are not able to express the V aRα of the aggregated
process in a closed form, the first step is to to calculate a reliable approximation of this quantity, for each
level α of interest. This is done through a Monte Carlo simulation of the loss vector X = (X1, ..., Xd) –
from which we can compute the aggregate loss – of fixed size Nq = 10, 000, 000. Given a particular sample
of size Nq, all the quantiles of the aggregate loss can be calculated. This process is, then, repeated for
Nrep = 500 times, and the α-quantile is set as the average of the α-quantiles over all the 500 runs. The
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reader should note that the estimate of extreme quantiles (for example α = 0.9999) will be less precise
than the estimate of lower quantiles (such as α = 0.3), but for the purpose of comparing the proposed
algorithm with competing strategies this is irrelevant, as long as the quantile used in the conditioning
argument of (7.1) is the same for all methods.

After calculating the quantiles for all levels α (which are, from now on, assumed to be exact) the
baseline comparison values for the expectations in (7.1) are calculated as follows. For each level α we
sample as many loss vectors X as necessary in order to have a sample of size NMC = 1, 000 satisfying
the condition

∑d
j=1Xi > V aRα(

∑d
i=1Xi). At this point we note that this naive Monte Carlo sampling

strategy is very inefficient and would never be utilized in practice, due to the huge computational cost,
but it provides us reference comparison to our more efficient SMC Sampler. To perform these simulations
we required the usage of hundreds of cores from UCL Legion High Performance Computing Facility.

The expectations in (7.1) are, then, estimated as

ϕ̂MC =
1

NMC

NMC∑
j=1

X
(j)
i ,

where X(j), j = 1, ..., NMC are the samples satisfying the condition. This procedure is repeated Nrep =

500 and the Monte Carlo estimate ϕ̂MC is taken as the average over these Nrep repetitions, as follows

ϕ̂MC =
1

Nrep

Nrep∑
k=1

ϕ̂
(k)
MC ,

where ϕ̂
(k)
MC stands for the estimate (using NMC particles) from the k-th run (out of Nrep). Analogously

we can also define the variance of the MC estimator, V ar(ϕ̂MC). Moreover, we will denote by NSMC the
number of particles used in the SMC algorithm, and by V ar(ϕ̂SMC) the variance of its estimate, also
calculated using Nrep runs.

One may observe that the expected number of samples in the Monte Carlo scheme in order to have
NMC samples satisfying the α condition is equal to MMC = NMC/(1−α), which can be prohibitive if α
is very close to 1.

For all the examples, the efficiency of the algorithm will be measured with respect to the Variance
Reduction when compared with a simple Monte Carlo scheme (properly normalized). More formally, if
the SMC algorithm uses T levels to approximate (7.1) then we will denote by Variance Reduction the
ratio:

Variance Reduction = NMC × V ar(ϕ̂MC)

/
T ×NSMC × V ar(ϕ̂SMC). (7.2)

We note this is a conservative measure of the Variance Reduction, as typically practitioners may only
use in the denominator NSMC × V ar(ϕ̂SMC). In addition, the Variance Reduction must be analysed in
conjunction with the estimation bias. For this purpose we will study the Relative Bias, defined as the
relative difference from the SMC estimate to the MC estimate (assumed to be the truth, due to the very
large sample sizes taken):

Relative Bias =
ϕ̂SMC − ϕ̂MC

ϕ̂MC

If the level of interest of the expectations in (7.1) is, for example, α = 0.999 then, the SMC algorithm
designed here will use as intermediate levels the quantiles α = 0.1, 0.2, ..., 0.9, 0.95, 0.99, 0.995. Although
expectations conditional on quantiles at lower levels, such as 0.1, ..., 0.9 are not of direct interest for risk
managers, as a by-product of the SMC algorithm, weighted samples from all the intermediate levels will
be created and all the conditional expectations can be estimated.

7.1 Clayton copula dependence between risk cells

In this first study we assume we have a simple business unit and risk cell structure in which it is assumed
that the dependence is on the annual losses and given simply by a Clayton copula. We first study a
representative simple case, with dimension d = 5 (see Definition B.4) and investigate the behaviour of
the proposed algorithm for different parameters values with fixed number of particles NSMC = 250. To
choose the parameters of interest we set the multivariate coefficient of (lower) tail dependence λl (see
[15] or Definition B.5 and Figure 7.1) to be approximately equals to 0.25, 0.5, 0.75 and 0.9, which led to
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Fig. 7.1 Coefficient of multivariate lower tail dependence for a 5-dimensional Clayton copula.

θ = 0.16, 0.33, 0.78 and 2.12 (see Figure 7.1). To compare with the results presented in [1], the parameter
value θ = 1 is also considered.

On Figure 7.2, we present the Relative Bias (top row) and Variance Reduction (bottom row) for all the
range of different copula parameters and quantile levels. For ease of presentation, only three expectations
are shown, namely the first marginal (i = 1), the last marginal (i = 5) and the sum of all marginal
expectations (which is precisely the Expected Shortfall for the aggregated loss). From the Relative Bias
analysis one can see that, regardless of the copula parameter and quantile levels, the estimation error is
always smaller than 4% (in absolute value).

Since the estimates are unbiased, it makes sense to look at the Variance Reduction set of plots (bottom
row of Figure 7.2). In the vertical axis of the plot the log10(Variance Reduction) is presented, meaning
that, for example, the variance of the SMC algorithm is 101.17 ≈ 15 times smaller than the MC scheme
when θ = 2.12 and α = 0.999. The horizontal line at 0 defines the threshold where the SMC method
outperforms a simple Monte Carlo: when the Variance Reduction is bellow the line the MC variance is
smaller. As one should expect, for lower quantile levels a simple MC scheme should be preferred over the
SMC method, since the condition in (7.1) can be easily satisfied with a reasonably small sample size.
On the other hand, as soon as the conditioning event becomes rarer, the variance of the simple Monte
Carlo scheme starts to increase polynomially fast when compared with the variance of the proposed SMC
algorithm.

The rarer the conditioning event the more computationally efficient it becomes to use the SMC
Sampler method proposed. As previously mentioned, when α ≈ 1 the number of Monte Carlo samples
required in order to generate one sample satisfying the conditioning event increases like 1/(1 − α). On
the contrary, the SMC sampler is constrained to always use a fixed number of particles, independently of
the rareness of the event. This is a significant advantage of such an approach.

For the ACH Importance Sampling algorithm of [1], discussed in Section 3.3, we follow the suggestion
proposed in the original work involving the use of a discrete version of the optimal mixing distribution
FΛ (see (3.6)) with mass concentrated on the following 20 points: xk = 1− 0.5k, k = 1, ..., k. For a fixed
quantile level α and parameter θ, the calibration of FΛ follows the proposed procedure in [1], Section 6.1
which uses the stop-loss as the objective function

Ψ̃(u) = max

{
d∑
i=1

F−1i (ui)− V aRα

(
d∑
i=1

F−1i (ui)

)
, 0

}
.

Whilst the SMC algorithm is asymptotically unbiased (although it can be seen from Figure 7.2 the
bias can be negligible even for finite NSMC) the IS - ACH is unbiased for any finite sample size NIS <∞.
Therefore it is not necessary to analyse the Relative Bias of the method.

On the other hand, following the notation on Section 3.3 for a fixed parameter θ a new efficiency
measure can be studied as a function of α. We will denote by PIS(α) the “percentage of particles with
non-zero weight” for the α quantile. Formally this quantity is defined as

PIS(α) =
E[Ñ ]

E[NV]NIS
, (7.3)
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Fig. 7.2 Relative Bias (top) and Variance Reduction (bottom) for the 5-dimensional Clayton copula using the SMC
algorithm. Using the notation from (7.1), • Marginal for i = 1, • Marginal for i = 5, • Sum of all the marginal conditional
expectations (Expected Shortfall).

where NIS is the desired sample size of the algorithm and Ñ and E[NV] are, respectively, the number of
particles with non-zero weight and the number of draws in the rejection algorithm in order to have one
sample from FV (see Section 3.3). Intuitively we should expect some Variance Reduction if, and only if,
the quantity PIS(α) is larger than 1− α.

As in the analysis made for the SMC algorithm, for the IS-ACH we also look at the (rescaled) Variance
Reduction. To take into account the rejection steps in the algorithm we worked with the following Variance
Reduction formula

Variance Reduction = NMC × V ar(ϕ̂MC)

/
E[NV]×NIS × V ar(ϕ̂IS). (7.4)

From Figure 7.3 (top) we can see that the percentage of particles with non-zero weight, PIS(α), is
always smaller than the 1 − α, indicating an inefficiency of the IS - ACH. This inefficiency is verified
in the bottom of the same figure, where the scaled Variance Reduction (as of 7.4) is presented. As in
the SMC case, the Variance Reduction factor increases as a function of α, but in the IS-ACH case it is
always smaller than 1. Although this is the case, we can expect the method to be efficient (in the Variance
Reduction sense) as we get even closer to α = 1.

7.2 Gumbel copula dependence between risk cells

In the second example we analyse the impact of the dimension in the estimation of conditional expecta-
tions when the copula is assumed to be from the Gumbel family (see Definition B.4). In this case we have
chosen one parameter value (θ = 1.25) in order to have values for the coefficient of multivariate upper
tail dependence (λu from [15] and Definition B.5) ranging from very mild dependence (λu ≈ 0.25) up to
very strong dependence (λu ≈ 0.9) in a highly constrained copula density, ie, a single Gumbel copula in
up to 7 dimensions.

The SMC algorithm was studied for examples including dimensions d = 2, 3, ..., 7 with NSMC = 250
particles and the results are presented on Figure 7.5. From the top row we can see the Relative Bias
of the conditional expectations for low dimensional copulas (eg, d = 2 or d = 3) is well behaved, being
at most 5% of the true (Monte Carlo) value when d = 2 for all quantiles, but when the dimensionality
of the problem increases a larger bias is observed. This is expected, as a single Gumbel copula in 7
dimensions, for instance, is highly constrained and its mass is mostly concentrated in a small area of the
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Fig. 7.3 Ratio between the percentage of particles with non-zero weight and 1−α (top) and Variance Reduction (bottom)
for the 5-dimensional Clayton copula using the IS - ACH algorithm. Using the notation from (7.1), • Marginal for i = 1, •
Marginal for i = 5, • Sum of all the marginal conditional expectations (Expected Shortfall).
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Fig. 7.4 Coefficient of multivariate upper tail dependence for a Gumbel(1.25) copula.

upper right quadrant of the 7-dimensional hypercube [0, 1]7. In the worst case, for the first marginal of a
d dimensional copula the Relative Bias reaches more than 40% of the true value. To reduce this bias, one
must increase the number of particles in the SMC Sampler. Here we have selected a very conservative
set of NSMC = 250 particles. Next we studied the bias reduction as the number of particles increases,
verifying the asymptotic unbiasedness of the SMC Sampler when NSMC →∞.

From the bottom row of Figure 7.5 we can see that in all dimensions presented the SMC method is
highly effective regarding decreasing the variance of the estimates when the quantile is larger than 0.999
but, as in the Clayton case, it is less efficient than a simple MC when the quantile is low.

Even though the bias involved in the SMC procedure is large for dimensions larger than d = 3, Figure
7.6 shows that one can decrease the absolute bias by increasing the sample size used in the SMC algorithm.
For example, for the first marginal in 6 dimensions the Relative Bias goes from −35% to −30% when the
number of particles increases from NSMC = 250 to NSMC = 1, 000. The drawback of the increase in the
sample size is that the method gets less effective in the Variance Reduction sense, although even in the
case where d = 6 and NSMC = 1, 000 we still observe some humble improvement in the variance.
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Fig. 7.5 Relative Bias (top) and Variance Reduction (bottom) for the Gumbel(1.25) copula using the SMC algorithm.
Using the notation from (7.1), • Marginal for i = 1, • Marginal for i = d, • Sum of all the marginal conditional expectations
(Expected Shortfall).
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E.T.1 E.T.2 E.T.1E.T.3 E.T.2 E.T.3 E.T.4

B.U.1 B.U.2

Bank

θ1 = 0.75 θ2 = 1

θ0 = 0.5

Fig. 7.7 Hierarchical Clayton Copula.

It is important to note that the estimation of expectations of the form (7.1) in the Gumbel model is
extremely challenging, specially due to the fact that, differently from the Clayton copula, the Gumbel
copula possess an intricate dependence structure near the upper right corner of the unit cube. In this
case the exploration of the [0, 1]d needs to be done in a (even more) careful way, in order to avoid regions
with low probability density. In practice it will also be important to consider the design of the mutation
kernel in the SMC Sampler algorithm if higher dimensions are considered.

7.3 Hierarchical Clayton copula dependence between Business Units and Event Types

As a final example, we show the utilization of the SMC Sampler method in a hierarchical allocation
process (as in Section 2.1). As a toy model, we assume a bank is divided in two different Business Units
(B.U.). For the first one it is assumed that Operational Losses are due to three different Event Types
(E.T.), while for B.U.2 losses may come from four different E.T.. For the simulation and also density
calculation, in this example we made use the R-package HAC [36].

This bank structure can be conveniently modelled with the help of a Hierarchical Archimedean Copula
(HAC), also known as Nested Archimedean Copula (see [36] and references therein). For this example
we have chosen a Hierarchical Archimedian Copula as in Figure 7.7. The dependence of the three E.T.’s
on B.U.1 is given by a Clayton copula with parameter θ1 = 0.75, while within the 4 E.T.’s in B.U.2 the
dependence is modelled through a Clayton copula with parameter θ2 = 1. Moreover, any loss on B.U.1 is
related to losses in B.U.2 through a Clayton copula with parameter θ0 = 0.5. The copula for this model
is given by

C(u) = C0(C1(u1; θ1), C2(u2; θ2); θ0),

where C( · ; θ) denotes a Clayton copula with parameter θ and u = (u1, ..., u7), u1 = (u1, u2, u3), u2 =
(u4, u5, u6, u7). The reader should note that C0( · ; θ0) is not a copula between aggregated losses. It is also
important to stress the fact that this choice of parameters will ensure the Hierarchical Copula is a well
defined copula, since all the members are from the same family and the parameters are decreasing from
the highest to the lowest level (see, for example, [27]).

As in the non-nested Clayton case, from Figure 7.8 we can see the SMC Sampler procedure is unbiased
for NSMC = 250, with Relative Bias smaller than 5% in absolute terms. The method also decreases the
variance of the estimates when the quantile level in the conditional event is larger than α = 0.99, from
where we can state its effectiveness.

8 Conclusion and Final Remarks

With focus on the capital allocation problem for copula-dependent risks, we presented a Sequential Monte
Carlo (SMC) Sampler algorithm to calculate conditional expectations where the conditioning event is
rare. We exploit the copula structure to design a SMC algorithm whose efficiency is analysed through
the Variance Reduction (see Equation 7.2) when compared to a simple Monte Carlo scheme.

If, in addition to the Variance Reduction, the computational time is to be computed, one should be
extremely careful, as it will be strongly dependent the programming language used, the hardware and
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Fig. 7.8 Relative Bias (top) and Variance Reduction (bottom) for the Hierarchical Clayton copula from Figure 7.7 using
the SMC algorithm with NSMC = 250 particles. Using the notation from (7.1), • Marginal for i = 1, • Marginal for i = 7,
• Sum of all the marginal conditional expectations (Expected Shortfall).

also the actual implementation of the algorithms. For example, in R most of the basic functions (including
sampling from simple distributions) can be used in a vectorial form, meaning that applying the function
to a vector will be much faster than calculating the function values serially, ie, inside a for loop. For the
sake of simplicity, both in the simple MC and in the SMC schemes we sampled one value at a time and
did not make use of any vectorial form.

Due to the nature of the allocation problem, there is no need for the algorithm presented to be
run online. In most of the cases it will be used once a month or even once a year. Nevertheless, if the
performance of the SMC algorithm needs to be improved specialized libraries such as the LibBi (see [34])
can be used.

Although the code used for this paper has not been thoroughly optimised, some computational analysis
can still be done. For the Clayton example from Section 7.1 (with parameter θ = 1), for each quantile
level, Table 8 presents (1) the time (in minutes) necessary to run the SMC algorithm; (2) how many
times the SMC algorithm is slower than the simple Monte Carlo; (3) the Variance Reduction factor (as
of (7.2)) for the quantities in (7.1), where ES denotes the sum of the expectations (Expected Shortfall).

Variance Reduction

Quantile SMC time
SMC time

MC time
k=1 k=5 ES

0.1 0.32 53.83 0.34 1.95 0.46
0.2 0.64 68.97 0.27 1.16 0.29
0.3 0.97 73.94 0.11 0.14 0.37
0.4 1.30 75.04 0.07 1.89 0.19
0.5 1.63 73.09 0.19 0.16 0.18
0.6 1.97 68.15 0.35 0.03 0.28
0.7 2.31 61.41 0.42 0.21 0.78
0.8 2.65 52.55 0.30 0.38 0.21
0.9 3.00 39.28 0.44 2.94 1.83

0.95 3.35 26.34 0.29 0.33 4.10
0.99 3.70 9.64 2.79 5.36 3.54

0.995 4.04 4.56 2.98 6.54 21.87
0.999 4.39 1.28 16.56 7.20 71.37

0.9995 4.74 0.56 94.74 88.12 172.51
0.9999 5.08 0.15 224.82 154.54 272.74

0.99995 5.42 0.06 1891.81 205.48 593.32

Table 8.1 Computational time (in minutes) and Variance Reduction for the SMC algorithm when compared to a simple
Monte Carlo scheme.
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On this particular implementation of the algorithm, for low quantiles we can see that the MC scheme
is considerably faster for the same accuracy of the SMC method. For example, when α = 0.4 the MC
method is 75 times faster than the SMC and the Variance Reduction on the first marginal expectation is
0.07, meaning that the MC variance is around 14 times smaller than the SMC variance.

On the other hand, for higher quantiles, in particular after α = 0.99, the SMC method starts to
become more appealing, since the Variance Reduction gets larger than the difference in time. It’s worth
noticing the proposed SMC method has been designed to be used on extreme quantiles where lower
quantiles are only used as intermediate steps.

The computing times presented on Table 8 were measured using R 3.1.0 in a Intel Xeon E5-1650,
3.20GHz and 16GB RAM. For each quantile level the algorithms were run 10 times and the values
presented are an average over these 10 runs.

The R code used is available upon request from the authors.
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A Euler’s homogeneous function theorem

Definition A.1 (Homogeneous function) A function f : U ⊂ Rd → R is said to be homogeneous of
degree τ if, for all h > 0 and u ∈ U with hu ∈ U the following equation holds:

f(hu) = hτf(u).

Theorem A.2 (Euler’s homogeneous function theorem) Let U ⊂ Rn be an open set and f : U →
R be a continuously differentiable function. Then f is homogeneous of degree τ if, and only if, it satisfies
the following equation:

τf(u) =

n∑
i=1

ui
∂f

∂ui
, u = (u1, ..., un) ∈ U, h > 0

B Copulas and Sklar’s theorem

Definition B.1 (Copula) A d-dimensional copula is a distribution function on [0, 1]d with uniform
marginal distributions.

Theorem B.2 (Sklar) Let FX be a joint distributions with margins F1, ..., Fd. Then there exists a copula
C : [0, 1]d → [0, 1] such that

FX(x) = C
(
F1(x1), ..., Fd(xd)

)
, ∀x = (x1, ..., xd) ∈ R

d
. (B.1)

If the margins are continuous then C is unique, given by

C(u1, ..., ud) = FX(F−11 (u1), ..., F−1d (ud))

Conversely, if C is a copula and F1, ..., Fd are univariate distributions, then the F defined in (B.1) is a
joint distribution function with margins F1, ..., Fd.

Moreover, if we assume that F1, ..., Fd are differentiable, then the joint density function of X can be
written as

fX(x) = c
(
F1(x1), ..., Fd(xd)

) d∏
i=1

fi(xi),

where

c(u1, ..., ud) =
∂dC(u1, ..., ud)

∂u1...∂ud

and fi is the density of Xi.
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Definition B.3 (Archimedean generator) An Archimedean generator is a continuous, decreasing
function ψ : [0,∞] → [0, 1] that satisfies ψ(0) = 1, limt→∞ψ(t) = 0 and is strictly decreasing on
[0, inf{t : ψ(t) = 0}].

Definition B.4 (Archimedean copulas) A d-dimensional copula is called Archimedean if it is of

C(u; ψ) = ψ(ψ−1(u1) + ψ−1(ud)), u = (u1, ..., ud) ∈ [0, 1]d, (B.2)

where ψ is the Archimedean generator.

Family Parameter Generator ψ(t)

Clayton θ ∈ (0,∞) (1 + t)−1/θ

Gumbel θ ∈ [1,∞) exp−t1/θ

Table B.1 Commonly used Archimedean generators

Definition B.5 (Multivariate coefficients of tail dependence) For the copulas defined in Table
B.1 the multivariate coefficients of upper and lower tail dependence are defined, respectively, as

λu = lim
u→1−

P[U1 > u |U2 > u, ..., Ud > u]

= lim
t→0+

∑d
i=1

(
n
n−i
)
i(−1)iψ′(it)∑n−1

i=1

(
n−1
n−1−i

)
i(−1)iψ′(it)

λl = lim
u→0+

P[U1 ≤ u |U2 ≤ u, ..., Ud ≤ u]

=
d

d− 1
lim
t→∞

ψ′(dt)

ψ′
(
(d− 1)t

)
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