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Modern antenna theory forms the bulwark of our knowledge of how radiation and metallic

structures interact in the radio frequency (RF) and microwave (MW) regions. The theory has not

yet penetrated the terahertz, infrared, and optical regions to the same degree. In this paper, we

provide a rigorous analysis of closed circular loop antennas from first principles. Using antenna

theory, we tie together their long wavelength behavior with their behavior at short wavelengths

through the visible region. We provide analytic forms for the input impedance, current, quality

factor, radiation resistance, ohmic loss, and radiation efficiency. We provide an exact circuit

model for the closed loop in the RF and MW regions, and extend it through the optical region.

We also provide an implicit analytic form for the determination of all modal resonances, allowing

prediction of the resonance saturation wavelength for loops. Through simulations, we find

that this behavior extends to hexagonal and square loops. All results are applicable to loop

circumferences as short as 350 nm. Finally, we provide a precise analytic model of the index of

refraction, as a tool in these computations, which works equally well for metals and semi-conductors.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816619]

I. INTRODUCTION

For decades, studies of radio frequency (RF) and micro-

wave (MW) antennas have produced an immense literature

on the interaction between radiation and resonant metallic

structures. Antenna theory at low frequencies uses classical

electromagnetic theory to calculate internal current distribu-

tions, and from these, bandwidth, quality factor (Q), radia-

tion resistance, radiation power density patterns, gain, and

directivity. Primarily, the theory calculates input impedance

and using it, models the antenna’s resistance, inductance,

and capacitance (RLC). One important result is a list of the

modal resonances of the antenna, which gives deeper knowl-

edge of its response to incident radiation. We now know how

to design antenna structures with optimized characteristics

and how to improve designs to work under different condi-

tions. This richness in understanding is still percolating to

the higher frequencies, in part because we have only recently

learned how to construct structures small enough to resonate

in this region, and partly because metal does not perform in

the optical region (OR) like it does in the RF, due to strong

dispersion and loss at these frequencies.

Applying antenna theory effectively in the near infrared

(NIR) and OR is important,1 because research in negative-

index meta-materials, single photon emitters,2 wireless

optical broadcasting links,3 bio-sensors,4 and light capture in

solar cells5,6 are all beginning to consider more and more

complicated metallic nano-structures in these regions. As

with antennas in the RF, the key function to obtain for nano-

scale structures is the input impedance. Four methods have

been developed:7 (1) the boundary-value method, (2) the

transmission-line method, (3) the Poynting vector method,

and (4) the integral equation method. Much progress has al-

ready occurred in this endeavor. By extending the standard

Pocklington integral equation to the optical region, for exam-

ple, Alu and Engheta,8 DeAngelis et al.,9 and Locatelli

et al.10 derived surface impedance functions for the dipole.

Indeed, Hanson11 developed the classical radiation efficiency

of the dipole in the high gigahertz (GHz) and low terahertz

(THz) regions using different metals. Alu and Engheta8

found the radiation efficiency and bandwidth for a nano-

dipole and nano-dimer, both fed by nano-transmission lines.

Less rigorous, but nevertheless effective, methods have been

used to derive impedance functions for bulk, single-surface,

and parallel-plate plasmons.12 Using these new methods,

which include the calculation of a “kinetic inductance” and

“coupling capacitance” or “gap capacitance” for simple LC

models, Delgado et al.13 and Corrigan et al.14 derived the

resonances of circular and square loops. All of this effort to

extend RF techniques to the OR is still in its infancy, and fur-

ther development promises to enhance our understanding of

complex antenna geometries.

Over the past decade, researchers have discovered that

the resonances of circular, square, and hexagonal loops are

particularly easy to change by modifying their diameter and

thickness and by introducing gaps in the circumference.

Many have explained this behavior with simplified RLC

models13,15–20 and by using plasmonic fluid flow equations,21

but the methods do not use standard antenna theory. Finally,

some researchers have calculated and identified experimen-

tally the resonance saturation of loops,22–29 but again using

simplified LC models.

In this paper, we provide a derivation of the input im-

pedance for circular loops in the NIR and OR from standarda)Electronic mail: arni.mckinley@gmail.com
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antenna theory. It takes into account the material characteris-

tics of the wire from which the loop is constructed. This is

an extension of an earlier work, which formulated the input

impedance in the RF region as a RLC circuit representa-

tion.30 In that work, we showed that the results also extended

to the high GHz regime. In order to extend the RLC model

to the NIR and OR, we derive additional terms, so that the

modal RLC elements of circular loops, constructed of met-

als, dielectrics, or semi-conductors can now be calculated at

any wavelength from the RF through the OR. We present an

approximate function that gives all of the modal resonances

of the loop as a function of its circumference; resonance

saturation is clearly evident as a result. We also show by the

use of simulations that these effects extend to hexagonal and

square loops.

In Sec. II, we revisit classical theory of the circular loop

at long wavelengths. In Sec. III, we extend the theory to the

NIR and OR, showing how the input impedance changes as

a function of material characteristics, and we specify modifi-

cations to the RLC model of the loop. We also verify the

analytic theory using numerical simulations. In Sec. IV, we

present results, including calculations of resonance satura-

tion, current distribution, quality factor, radiation resistance,

ohmic loss, and radiation efficiency. Section V gives a com-

parison with the experimental literature.

II. A REVIEW OF CLOSED LOOP THEORY AT LOW
FREQUENCIES

The parameters of the circular loop are shown in Fig. 1(a).

An analytic form for its input impedance has been known since

the mid-1950s.31,32 In a recent paper,30 we derived a simplified

form by recasting the formulation as a RLC model. We

showed that the loop looks like an infinite set of series resonant

circuits in parallel

Z ¼ 1

�
1

Z0

þ
X1

1

1

Zm

" #
; (1)

where each series modal impedance is given by

Z0 ¼ ipn0a0 and Zm ¼ ipn0ðam=2Þ: (2)

The coefficients a0 and am are functions of frequency and

include integrals of Bessel functions. n0 � 377 X is the im-

pedance of free space. A RLC representation of (1) appears

in Fig. 1(b).

Equation (2) may be reformed to show the R, L, and C

used in each modal circuit

Zm ¼ Rm þ i xLm �
1

xCm

� �

¼ no kbrm �
m2

kbgm

 !
þ i kbllm �

m2

kbl�m

� �" #
; (3)

where rm, gm, llm, and l�m are unit-less functions of kb given

in Ref. 30, and

Rm ¼ n0 kbrm � m2=ðkbgmÞ
� �

Lm ¼ l0bllm

Cm ¼ �0bl�m=m2:

(4)

The term kb is the propagation constant of waves in free

space multiplied by the radius of the loop

kb ¼ xb=c ¼ 2pb=k ¼ ðloop circumferenceÞ=k:

It compares the circumference of the loop to the free-space

driving wavelength. l0 is the permeability and �0 the permit-

tivity of free space. A sizing parameter, X ¼ 2lnð2pb=aÞ, is

typically used in the low frequency literature; the larger X,

the thinner the loop.

A plot of (1) for a thin loop in the RF and MW regions

appears in Fig. 2. The loop resonates when the reactance

goes to zero. These “zero-crossings” (ZC) are of two types:

(1) resonances, where the current wave exactly reinforces

itself as it traverses the circumference, usually near integer

multiples of the circumference, i.e., k ¼ m� 2pb; and (2)

anti-resonances, where the current wave exactly cancels

itself, usually occurring near half integer multiples of the cir-

cumference (k ¼ m=2� 2pb). Both are important because,

at a resonance, the loop can accumulate and store energy,

while at an anti-resonance, it rejects incident energy.

Reactance plots of thicker loops suggest that as loops

FIG. 1. (a) Geometry of the classical loop antenna, showing the key variables.

The gap is infinitesimal and supports a “delta-function” driving voltage. (b) The

RLC model of a closed circular loop antenna in standard form.

FIG. 2. Plot of the input impedance for a thin loop (X ¼ 12; b=a ¼ 64) with

a circumference of 3 m. The first two zero-crossing resonances and anti-

resonances can be identified. These results apply to any perfectly conducting

closed loop where 2pb > 3 mm in the region 0 < kb < 2:5, since the mate-

rial characteristics do not affect the impedance.
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thicken, they tend to lose their zero-crossings except for the

first ZC anti-resonance.

Equally important are the loop’s modal harmonic

resonances, of which there are an infinite number. These

occur near, but are not identical with, the ZC resonances.

They are important because current in the loop peaks at the

modal resonances, rather than at the ZC resonances; one

would therefore design to these resonances for better radia-

tion efficiency.

Using (4), these modal resonances are found by solving

xmr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðLmCmÞ

p
¼ mc

b
ffiffiffiffiffiffiffiffiffiffiffiffi
llml�m

p or

kbmr ¼
2pb

kmr
¼ mffiffiffiffiffiffiffiffiffiffiffiffi

llml�m
p :

(5)

Our earlier paper showed how to solve this implicit

function for all of the modal resonances. The key point is

that the modal RLC elements are not constant with kb and

any model that treats them as constant is over-simplified.

Figure 3, for example, shows the variation of the resistance,

inductive reactance, and capacitive reactance for mode

0 through mode 2 as a function of kb for a given loop

circumference. Equation (4) applies to such loops where the

circumference is longer than 3 mm and 0 < kb < 2:5.

III. EXTENSION TO THE NEAR INFRARED AND
OPTICAL REGION

A. Derivation from first principles

In this section, we derive the input impedance of a circu-

lar loop in the optical region. The governing equation comes

directly from Maxwell’s equations in cylindrical coordinates.

An extra optical term is added to account for the dispersive

properties of the material, and the equation is solved for

the current. The input impedance is defined as the voltage

divided by the current at an infinitesimal gap placed in the

loop where excitation is applied. The behavior of the loop in

the OR differs from that in the RF because of wavelength

scaling, a phenomenon caused by the dispersive properties

of metals in this region.

King33 summarizes Storer’s31 and Wu’s32 derivation of

the input impedance function in the RF and except for inclu-

sion of the material characteristics, we follow it exactly for

the OR derivation. A delta function voltage generator,

V0dð/Þ, is located across an infinitesimal gap at / ¼ 0 (see

Fig. 1). The delta function requires E/ ¼ 0 except at / ¼ 0,

where it becomes infinite, but in such a manner that

ðDg=2

�Dg=2

E/bd/ ¼ �V0; (6)

where b is the radius of the loop and Dg is the width of the

gap.

This imposed electric field generates a scalar potential, U
and a vector potential, ~A, according to ~E ¼ � ~rU� @~A=@t.
This causes a current in the loop which induces a voltage drop

across the characteristic impedance of the metal, Zs. This im-

pedance is due to the material characteristics. Expanding in

cylindrical coordinates, and using expðixtÞ, gives

V0dð/Þ
b
� J/ð/ÞZs ¼

1

b

@U
@/
þ ixA/; (7)

J/ð/Þ is a current density distributed on the surface9,10,34–36

J/ð/Þ ¼ Jsð/Þdðq� aÞ ¼ Ið/Þdðq� aÞ
2pa

: (8)

In a perfectly conducting wire, the current moves every-

where to create an electric field which exactly cancels any

imposed electric field. Therefore, the driving field, E/,

appears only in the gap. As a result, a boundary condition for

the solution of Eq. (7) is that the total electric field, given by

the sum of the imposed field and the reactive field, is zero on

the surface of the wire; i.e., Zs ¼ 0.

In an imperfectly conducting wire, this is not the case;

the surface current produces an E/ field through the wire,

across the wire impedance, J/Zs. The propagation vector has

not only a primary component in the transverse direction but

also a component in the axial direction which grows larger

as the wavelength approaches the IR. This raises several dif-

ficulties in the solution of Eq. (7). An assumption that the

FIG. 3. (a) The resistance (Rm) and inductive reactance (XLm ¼ xLm) and

(b) the capacitive reactance (XCm ¼ �1=ðxCmÞ), for the zero-order and first

two modes for a size X ¼ 10 (b=a ¼ 24) loop. There is no zero mode capac-

itance. These results apply to perfectly conducting closed loops longer than

3 mm.
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wire is thin, a2 � b2, forces the axial component to zero,

and allows a simpler solution. Applying the solution to

thicker loops, therefore, will be less accurate than an applica-

tion to thinner loops. Moreover, applying the solution in the

IR and OR will also be less accurate.

From hereon, the derivation follows King33 precisely

and the result for the current is

Ið/Þ ¼
X1
�1

V0

i2pn0am=2þðb=aÞZs

� 	
e�im/

¼ V0

1

ipn0a0þðb=aÞZs
þ
X1
m¼1

2cosðm/Þ
ipn0amþðb=aÞZs

" #
: (9)

The input impedance at the gap becomes

Z ¼ V0

Ið/ ¼ 0Þ ;

¼ 1=
1

ipn0a0 þ ðb=aÞZs
þ
X1
m¼1

1

ipn0ðam=2Þ þ ðb=aÞðZs=2Þ

" #
;

¼ 1=
1

Z00
þ
X1
m¼1

1

Z0m

" #
; (10)

where

Z00 ¼ ipn0a0 þ ðb=aÞZs

Z0m ¼ ipn0ðam=2Þ þ ðb=aÞðZs=2Þ:
(11)

The difference between Eqs. (2) and (11) is an extra term

that depends on the wire impedance, Zs. The a0 and am coef-

ficients are given by King and can be found in our previous

paper.30 The functional character of Zs remains to be

determined.

B. The surface and characteristic wire impedance

The impedance, Zs, is required to go to zero at low

frequencies and to play a significant role in the mode sum-

mation at optical frequencies.

A cylindrical wire, made of an imperfectly conducting

material, propagates an electromagnetic field inside that can

be described well using Bessel functions of the first kind. The

field external to the wire uses Hankel functions. Derivations

are shown in Stratton37 and Hanson.11 Novotny38 uses the

same approach to derive a theory of wavelength scaling in

dipoles. Stratton and Hanson give the surface impedance of a

cylindrical wire as

zs ¼
c

2par
J0ðcaÞ
J1ðcaÞ

in X/m, c is the transverse propagation constant in the wire,

and J0ðcaÞ and J1ðcaÞ are the zero and first order Bessel

functions of the First Kind. We have already included the

wire circumference 2pa in (8), and therefore, for the charac-

teristic wire impedance in ohms, we use

Zs ¼
c
r

J0ðcaÞ
J1ðcaÞ : (12)

Under these assumptions, the conductivity is directly related

to the index of refraction, g ¼ n� ij

c ¼ x
c

g and r ¼ ix�0ðg2 � 1Þ;
c
r
¼ �in0

g
g2 � 1

;

Zs ¼ �in0

g
g2 � 1

J0ðcaÞ
J1ðcaÞ :

(13)

C. Modeling the index of refraction

The conductivity of any material is, in general, complex

and can vary dramatically over the full range of frequencies

from DC to the visible. The magnitude of the conductivity of

gold, in particular, begins at 45� 106 S/m at DC, then falls

off by a factor of 30 between k ¼ 1:5 mm in the MW and

2 lm in the infrared, where the first measured index by

Johnson and Christy39 occurs. The imaginary part dominates

the real from 100 lm until the onset of the inter-band and

intra-band transitions in the middle of the visible region

(about 500 nm), where the real part again dominates and

gold picks up its yellowish color.

The decrease in conductivity is due to Drude’s behavior,

and in fact Drude’s model provides a reasonable representa-

tion of the permittivity to the onset of the transition bands.

Since the permittivity is the square of the index of refraction,

and since the conductivity is directly related to the index, it

is possible to develop a Drude-like model for the index itself.

However, it must be extended to include the critical points of

the band transitions. Several models appear in the literature

to do that. Etchegoin et al.40,41 and Vial and Larouche42 are

recent examples. The transitions appear in the models as a

summation of Lorentzian resonances where the critical tran-

sitions occur. We extend the model by Etchegoin’s group in

such as way as to ensure that both the index data by Johnson

and Christy and the DC conductivity of the metal are

satisfied

g2 ¼ 1�
f0x2

p

x
1

ðx� i2C0Þ
þ a
ðx� i2bC0Þ

� �

þ
X1
m¼1

fmx2
p

2xm

eip=cm

xm � xþ iCm
þ e�ip=cm

xm þ x� iCm

" #
; (14)

where xp is the metal’s plasma frequency, fn are the quantum

probabilities of transition, xm are the critical points, and Cm

are the Lorentz broadening terms for the transitions. Using

(14), the DC value of the conductivity is

r0 ¼
f0x2

p�0

2C0

1þ a
b

� 	
: (15)

Note that the Johnson and Christy data assume a expð�ixtÞ
dependence, instead of expðixtÞ as we used, and therefore,

their index, g ¼ nþ ij, is the complex conjugate of that

delivered by our model. Table I gives the parameter values

for gold, silver, and copper. With the proper parameters, (14)

is also a good model for many semi-conductor materials.
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Figure 4 shows the real and imaginary parts of the wire

impedance of a thin gold loop (X ¼ 12) given by (13) for

three different circumference lengths in the NIR and OR.

The principal reason for the sudden increases in the curves is

the effect of the transition bands on the Bessel function ratio,

J0ðcaÞ=J1ðcaÞ. The figure tells us that the degree to which a

given loop is affected by the transitions depends on its cir-

cumference and the driving wavelength. Different sized

loops respond to the same driving wavelength differently.

For example, a 600 nm circumference loop will be affected

by the transitions when the driving wavelength reaches the

length of the circumference, at 600 nm. But a 353 nm loop

will be affected when the driving wavelength reaches double

its circumference, at 700 nm. In any case, resonance satura-

tion puts all of the modal resonances of such loops outside

transition effects. We show in Sec. IV B that at optical

circumferences, these loops resonate in the region kb � 0:2,

shown by the insets.

D. The RLC model in the optical region

In our previous paper,30 we presented an exact RLC

model for the perfectly conducting closed loop. That model

may be applied to any thickness loop in the region

0 < kb < 2:5. Difficulties arise for loops when material char-

acteristics affect electron mobility. Analytically, the argu-

ment of the Bessel functions in (13) involves the index of

refraction and this makes a derivation of an exact RLC

model for the optical regime impossible. However, an ap-

proximate analytical form is easily found by assuming

ca� 1. Taking the Bessel functions to first order43 in ca, we

have

J0ðcaÞ
J1ðcaÞ �

1� ðcaÞ2=4

ðcaÞ=2
: (16)

Substituting into (13), the optical term, b=a� Zs, can be

approximated as

b

a
Zs ¼

n0

jg2 � 1j2

� kb

2
þ 2ðb=aÞ2

kb

 !
Imðg2Þ þ i

kb

2
ðjg2j2 � Reðg2ÞÞ

" #

þ i
n0

jg2 � 1j2
2ðb=aÞ2

kb
ð1� Reðg2ÞÞ

" #

¼ n0 kbrs �
1

kbgs

� �
þ i kblls �

1

kbl�s

� �" #
: (17)

Using (10) and the definitions

R0m � no kbðrm þ rsmÞ �
1

kb

m2

gm
þ 1

gsm

 !" #
;

L0m � lobðllm þ llsmÞ;

C0m � �ob
1

ðm2=l�m þ 1=l�smÞ
;

the modal input impedance in (10) becomes approximately

Z0m � R0m þ i xL0m �
1

xC0m

� �

¼ no kbðrm þ rsmÞ �
1

kb

m2

gm
þ 1

gsm

 ! !

þ ino kbðllm þ llsmÞ �
1

kb

m2

l�m
þ 1

l�sm

� �� �
; (18)

TABLE I. Parameter fits for (14) for gold, silver, and copper.

r0 � 106

ðf=mÞ a b f0

C0

(eV) f1

x1

(eV) c1 C1

Au 45 1.540 13.180 0.37 0.005 0.20 2.62 4.00 0.60

Ag 63 0.100 0.350 0.94 0.010 0.14 4.32 4.62 0.34

Cu 60 0.035 0.005 1.00 0.064 0.23 2.30 3.53 0.52

f2

x2

(eV) c2

C2

(eV) f3

x3

(eV) c3

C3

(eV)

xp

(eV)

Au 0.35 3.70 4.00 1.10 0.60 7.00 4.00 2.20 9.0

Ag 0.45 5.50 12.32 1.40 0.40 7.53 4.00 2.10 9.0

Cu 0.22 3.14 2.56 0.95 0.32 4.87 2.70 1.10 8.4

FIG. 4. The characteristic wire impedance, Zs of a thin loop

(X ¼ 12; b=a ¼ 64) for three circumferences in the OR, from (13); (a) resist-

ance and (b) reactance. The inset shows the region where closed loops reso-

nate: 0:05 < kb < 0:2. Thicker loops show smaller values.

044317-5 McKinley, White, and Catchpole J. Appl. Phys. 114, 044317 (2013)



where

rsm ¼
Imðg2Þ=ð4jg2 � 1j2Þ if m > 0

Imðg2Þ=ð2jg2 � 1j2Þ if m ¼ 0;

(

gsm ¼
�jg2 � 1j2=ððb=aÞ2Imðg2ÞÞ if m > 0

�jg2 � 1j2=ð2ðb=aÞ2Imðg2ÞÞ if m ¼ 0;

(

llsm ¼
ðjg2j2 � Reðg2ÞÞ=ð4jg2 � 1j2Þ if m > 0

ðjg2j2 � Reðg2ÞÞ=ð2jg2 � 1j2Þ if m ¼ 0;

(

l�sm ¼
�jg2 � 1j2=ððb=aÞ2ð1� Reðg2ÞÞÞ if m > 0

�jg2 � 1j2=ð2ðb=aÞ2ð1� Reðg2ÞÞÞ if m ¼ 0:

(

Since the index of refraction is wavelength dependent, it

is not sufficient to specify only a value for kb in order to cal-

culate the modal RLC elements. One must specify a circum-

ference as well. Fig. 5 compares the reactance of (10) using

the exact Zs term (12) and using the approximate Zs term

(18) for various circumferences of a thin loop, X ¼ 12

(b=a ¼ 64). For circumferences larger than 20–30 lm, the

approximate reactance in (18) is a poor fit with the exact

result given by (12). But for 6 lm and shorter, the agreement

is very good. Therefore, any calculations with the approxi-

mation (16) can be applied to loops with circumferences

shorter than about 10 lm.

E. Simulation verification

Figures 2, 6, and 7 show the input impedances for three

gold nano-loops with different circumference lengths, one in

the GHz region, one in the NIR, and one in the OR, as given

by (10) and by simulation using CST Microwave

Studio
TM

(MWS).44 The accuracy of the analytic model

depends to some extent on the handling of the infinite sum-

mation of (10). In our previous paper,30 we followed Storer’s

approach31 by summing to the fourth mode, then adding an

extra term to account for the effect of the higher modes. This

is a valid approach for the RF, but optical loops require more

summation terms. To obtain the results in Figs. 2, 6, and 7,

we elected to sum the first 30 modes and then added only a

portion (25%) of Storer’s extra term. This was selected

by fitting the simulation data to the theory for the entire

FIG. 5. The reactance for three gold thin loops (X ¼ 12; b=a ¼ 64) of differ-

ing circumferences, comparing the effect of the exact optical term (12) with

the approximate (17). The smaller the loop, the more exact the optical term

approximation becomes.

FIG. 6. Verification of Theory: Impedance for two circular thin loops, calcu-

lated from (10) compared with numerical simulations. (a) 2pb ¼ 3000 nm

and (b) 2pb ¼ 600 nm.

FIG. 7. Verification of theory (expanded axis): The impedance of a circular

thin loop of circumference is 353 nm. The first ZC resonance is at

353=0:057 ¼ 6192 nm.
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frequency range from RF to OR. The match between theory

and numerical simulation is very close for all three loops.

The analytic theory assumes a thin loop, so thicker loops

will not show as close an agreement.30 We show a compari-

son with the experimental literature for thick loops in Sec. V.

IV. RESULTS

A. Optical impedance of the circular loop

An examination of Figs. 2, 6, and 7 shows that the extra

optical term in (11) causes the input impedance function to

compress; all resonances migrate toward wavelengths longer

than the circumference. Three points are important: (1) the

shape of the functions is essentially the same; (2) the zero

crossings migrate; and (3) the magnitude of the impedance

increases with shorter circumferences. The first point means

that all loops respond similarly to incident energy. The sec-

ond means that the ZC resonances move toward smaller

values of kb as the circumference decreases; the ZC resonan-

ces must therefore eventually saturate. The third means that

smaller loops carry smaller current magnitudes and lag the

driving field.

In Fig. 6(b), notice that although the loop circumference

matches a wavelength in the mid-visible region, the loop’s

first ZC resonance is at 600=0:095 ¼ 6316 nm, well outside

the OR. However, the highest resonance shown occurs at

600=0:5 ¼ 1:2 lm.

B. Resonance saturation of loops in the optical region

Several authors22,24,26,38,45 have noticed that as dipoles

and loops are made shorter, they tend to resonate at wave-

lengths longer than their lengths or circumferences would

suggest. Indeed, they eventually reach a minimum wave-

length below which they will not resonate. Our model gives

an accurate functional curve for this behavior in loops. The

reason is the extra optical term in (11).

Using the approximation (18), we can derive an equiva-

lent expression to (5), which gives the modal resonances in

the OR

kbmr ¼
2pb

kmr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l�m=l�sm

l�mllm þ l�mllsm

s
: (19)

Since this assumes the small ca approximation, it applies

only to loops with circumferences less than 10 lm. It is also

less accurate for loops of thickness X � 7 (that is, for

b=a � 5:3). llm and l�m are the low frequency, unit-less,

functions related to the loop inductance and capacitance,

respectively, found in our previous paper.30 llsm and l�sm are

the high frequency additions coming from the new optical

term. Figure 8 shows a plot of (19) for loops of various thick-

nesses, compared with data taken from simulations. The

theory is less accurate for thick loops, because of the

assumption that a2 � b2. Even so, the analytic model

matches numerical simulations down to thicknesses of

X ¼ 8 (b=a ¼ 8:7). We see immediately a resonance satura-

tion for each loop. The cutoff for the thinnest loop is about

6.2 lm, below which closed, gold nano-loops will have no

first harmonic (m¼ 1) resonance. Theory predicts a cutoff

for the thickest loop of about 600 nm, but the simulations put

it at about 1.0 lm.

Resonance saturation occurs for hexagons and squares

as well. Figure 9 shows ZC resonances for simulated

circular, hexagonal, and square loops, compared with the ZC

resonances identified from numerical input impedance plots

of circular loops using (10). The radius of the wire, a, for

these loops is taken to be the radius of a circumscribing

circle through the middle of the wire at the corners. The

circle circumscribing the hexagon or square itself has radius

b. We conclude that the shape of the loop is not an important

parameter for saturation.

C. Current, quality factor, radiation resistance, ohmic
loss, and radiation efficiency of optical loops

The distribution of current on a circular loop in the OR

is given by (9) and (10) with V0 ¼ 1. It is composed of a

FIG. 8. The first modal resonance (m¼ 1) as a function of the circumference

for four gold loops of various thicknesses, given by (5). All loops show cut-

offs in the near infrared, except the thickest.

FIG. 9. The first ZC resonances of simulated gold circular, hexagonal, and

square nano-loops of size X ¼ 10 ðb=a ¼ 24Þ compared with ZC resonances

measured from plots using (10). The line joins the points calculated from

(10) as a guide to the eye.
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zero-order DC current and cosine terms associated with each

mode. Figure 10 shows the current magnitude at / ¼ 0 for a

600 nm circumference loop as a function of kb. The first ZC

resonance occurs at kb � 0:1, but the current peak occurs at

kb � 0:09. This slight discrepancy occurs for all loops, even

at long wavelengths, as Table II shows. Interestingly, the ta-

ble also shows that the current peaks occur at the modal
resonances. This is important because loops radiate best

where the current is high, consequently one should design to

the modal resonances, not the ZC resonances. Moreover,

since there are high peaks at many modes for thin loops,

such loops will radiate at many harmonics. This is one rea-

son why loops are not used for communication in the RF

region. Since the modal resonances for thicker loops overlap

more than in thin loops, their current peaks are not as pro-

nounced and their current peaks are smaller and broader.

The high current in the very low kb region is due to the

zero-order term in (9). The peak and half power points can

be directly measured from the curve, which allows a calcula-

tion of the loop’s modal quality factor. Q is calculated using

kbr=ðkbu � kblÞ, where “u” and “l” refer to the upper and

lower half power points, respectively. Table III shows the

peak current magnitude and Q as a function of the circumfer-

ence of the loop, taken from such calculations.

The radiation efficiency of the loop is the power radiated

divided by power input. This leads to

�rad ¼
Rrad

Rrad þ Rloss
:

The radiation resistance is normally taken at the ZC reso-

nance, since reactance goes to zero. However, since the cur-

rent peak and the resonance are slightly different, and since

one would construct a loop at the current peak, we will take

the radiation resistance to be that at the kb position of

the peak, Rres, calculated by (10). Since there is additional

loss in the optical region, the radiation resistance is

Rrad ¼ Rres � Rloss.
10 The radiation efficiency, then, is

�rad ¼
Rres � Rloss

Rres
:

We follow Hanson46 in deriving Rloss from the ohmic power

loss

Pohmic ¼
1

2
RlossjIinj2 ¼

ReðzsÞ
2

ð2p

0

jI/j2bdð/Þ (20)

and therefore

Rloss ¼
b

a

ReðZsÞ
jIinj2

1

2p

ð2p

0

jIð/Þj2dð/Þ:

FIG. 10. The squared magnitude of the current as a function of kb for a gold

loop of circumference of 600 nm. The first, second, and third harmonic

peaks are marked. The upper and lower half-power points of the first peak

are also marked.

TABLE II. Zero-crossing resonances from (10), modal resonances from

(19), and squared current peaks from (9) at / ¼ 0 for thin gold closed loops.

This table shows that the current peaks occur at the modal resonances rather

than at the ZCs.

X ¼ 12
Resonance #1 Resonance #2

2pb ZC m¼ 1 jIj2Peak ZC m¼ 2 jIj2 Peak

lm kb kb kb kb kb kb

� 3000 1.09 1.07 1.04 2.15 2.10 2.15

10.00 0.86 0.81 0.80 1.70 1.59 1.60

8.00 0.80 0.75 0.73 1.56 1.47 1.47

6.00 0.70 0.66 0.64 1.35 1.28 1.28

3.00 0.43 0.41 0.40 0.83 0.79 0.78

0.86 0.14 0.13 0.13 0.26 0.24 0.24

0.60 0.10 0.09 0.09 0.18 0.17 0.17

0.35 0.06 0.05 0.05 0.11 0.10 0.10

TABLE III. Squared current peak, radiation resistance, ohmic loss, radiation

efficiency, and quality factor of gold closed loops with varying circumfer-

ences, and sized X ¼ 10 and 12. All measures given for the first modal reso-

nance of the loop. Note that the currents are calculated using V0 ¼ 1:0 in

(10).

X ¼ 10

2pb jIj2jPk Rrad Rloss � Q

lm 10�6A2 X X
� 3000 56.2 115 1 1.00 3.7

10.00 47.7 134 22 0.86 3.8

8.00 48.5 136 27 0.83 3.9

6.00 43.0 131 38 0.77 4.0

3.00 34.5 86 92 0.48 4.6

0.86 8.7 4 324 0.01 5.9

0.60 4.5 1 450 0.00 5.8

0.35 1.6 0 782 0.00 5.6

X ¼ 12

� 3000 52.0 128 0 1.00 5.0

10.00 15.4 81 150 0.35 3.5

8.00 11.9 76 193 0.28 3.3

6.00 8.20 59 262 0.19 3.2

3.00 2.70 32 537 0.06 3.0

0.86 2.40 10 1849 0.01 2.8

0.60 1.20 31 2563 0.01 2.7

0.35 0.40 21 4509 0.00 2.6

044317-8 McKinley, White, and Catchpole J. Appl. Phys. 114, 044317 (2013)



Table III gives a comparison of various measures for the

loops of Table II at the first modal resonance for two thick-

nesses of wire. The thicker loop shows higher currents

throughout the range, lower losses due to the thicker wire

size, higher radiation efficiencies, and higher Q.

V. COMPARISON WITH THE LITERATURE

Most fabricated and measured loops are found in the meta-

materials literature as square split-ring resonators (SRRs) and

have gaps cut in the circumference of the loops. Recently, how-

ever, Halpern and Corn29 have published a fast, low-cost fabri-

cation technique in which the loop radius and wire radius are

quite accurately fashioned. They fabricated gold, silver, and

nickel loop arrays on glass substrates, and showed further that

the loop resonances could be tuned by adjusting the loop radius

and thickness. Figure 11 shows resonance peaks from absorb-

ance spectra for gold loops with thicknesses between

X ¼ 5:6 to 7. Despite the fact that these loops are in a large

array on a substrate, the results fit our calculations well.

Schaffner47 studied a gold circular loop fabricated on an

ITO-glass substrate with a circumference of 0.31 lm (b ¼
49 nm) and a¼ 16 nm (X ¼ 6). He shows a measured scatter-

ing response at 0.90 lm.

Rockstuhl et al.48 studied gold square loops on quartz

substrate with sides of 400 nm and rectangular wire thickness

of 60� 20 nm. An equivalent square loop in our measures is

a ¼ 56:5 nm and b ¼ 240 nm (X ¼ 6:6). The circular cir-

cumference, therefore, is 1.5 lm. They report a measured

spectral reflectance peak at 2.2 lm. The resonant wavelength

of their square loop is red-shifted in Fig. 11 compared to

theory, as would be expected from our comparison of loops

shown in Fig. 9.

We note that all of these experimental results include

the effect of substrates, which the analytical theory does not

include.

VI. DISCUSSION

In general, closed loops follow the low frequency ana-

lytic theory, (1) through (5), with an extra term prominent in

each mode (see (9) and (10)). The extra term accounts for

material dispersion at frequencies higher than the MW

region, where electrons can no longer oscillate in phase with

the incident energy. This slowing leads to wavelength scal-

ing. The index of refraction completely accounts for these

influences and appears prominently in this extra term.

Careful modeling of the index is important, because the OR

introduces inter-band and intra-band transitions that affect

conductivity. We therefore use an extended Drude’s model

to compute the index.

For gold, the extra term begins to influence the input im-

pedance and current calculation at loop circumferences

shorter than 3 mm, but dominates by 10 lm. The low fre-

quency input impedance model leads to a RLC circuit repre-

sentation of the loop, where element values are not

constants, but rather functions of the circumference of the

loop compared with driving wavelength, i.e., functions of

kb ¼ 2pb=k. As the driving wavelength reaches the MW re-

gime, wavelength scaling sets in, and these RLC values also

become functions of the index of refraction, which is inher-

ently a function of wavelength.

The modal harmonic resonances are important, because

the current peaks occur there, rather than at the zero-crossing

resonances of the loop. All modal harmonic resonances satu-

rate; the first mode (m¼ 1) saturates in the NIR for all loops

thinner than X ¼ 6. The “roll-off” away from the linear

slope toward saturation is rather abrupt, so that a rather large

number of loop circumferences will give resonances at

roughly the same wavelength (see Fig. 8).

The quality factor (Q) of thin gold loop antennas begins

around 5 in the low frequencies and reduces as Drude’s

behavior sets in, until it saturates at about 2.5. Interestingly,

the Q of thick gold loops increases from about 3.7 at long

wavelengths to 5.5 at saturation. The radiation efficiency

decreases dramatically for both thick and thin loops as the

driving wavelength shortens, due to increased losses. These

data imply that the performance of OR loops is substantially

poorer than their performance at RF.

VII. CONCLUSION

We present an analytic theory of closed loop antennas

from the RF through the OR, using standard antenna theory.

This results in an exact function for the input impedance at

all frequencies, an exact RLC representation at long wave-

lengths and an approximate RLC representation when the

material characteristics of the wire influence behavior from

about 3 mm into the OR. We provide an expression for the

characteristic wire impedance, give values at example wave-

lengths, and show the effects this term has on loop resonan-

ces. We calculate the input impedance, modal harmonic

resonances, current, current peaks, quality factor, radiation

resistance, ohmic loss, and radiation efficiency. We show

how to identify ZC resonances and ZC anti-resonances from

the reactance of the loop. We also provide a useful model of

the index of refraction for metals and semi-conductors, with

parameter fittings for gold, silver and copper.

The analytic theory gives detailed behavior for circular

loops up to the sizes and thicknesses of SRRs and loop arrays

FIG. 11. A comparison of three studies from the literature with theory for

loops of size X ¼ 5:6 to 7.
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currently being fabricated. The theory covers the RF, MW,

low THz, NIR, and OR at least to 350 nm. Our work suggests

that hexagonal and square loops also fit aspects of the theory,

in particular, the effect of resonance scaling.

The theory takes standard antenna theory for loops in

the RF and MW regimes and extends it to the nano-scale. As

a result, it provides an understanding of how and why loops

behave so differently in the NIR and OR. It provides a case

study of using standard antenna tools in these regimes and

consequently should provide a foundation for designing

complex structures with enhanced reception and radiation at

these short wavelengths.
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