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Abstract

We introduce a new solution concept for games in extensive form with perfect informa-

tion: the valuation equilibrium. The moves of each player are partitioned into similarity

classes. A valuation of the player is a real valued function on the set of her similarity

classes. At each node a player chooses a move that belongs to a class with maximum

valuation. The valuation of each player is consistent with the strategy profile in the sense

that the valuation of a similarity class is the player expected payoff given that the path

(induced by the strategy profile) intersects the similarity class. The solution concept

is applied to decision problems and multi-player extensive form games. It is contrasted

with existing solution concepts. An aspiration-based approach is also proposed, in which

the similarity partitions are determined endogenously. The corresponding equilibrium is

called the aspiration-based valuation equilibrium (ASVE). While the Subgame Perfect

Nash Equilibrium is always an ASVE, there are other ASVE in general. But, in zero-sum

two-player games without chance moves every player must get her value in any ASVE.
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1 Introduction

Learning the performance of every possible move in a game in extensive form may be quite

difficult if the game has many decision nodes and many moves at every decision node. An

alternative that we study here is the partitioning of all possible moves of a player into sets

of moves, referred to as similarity classes. Performance is attributed by the player to the

similarity classes rather than the individual moves. The performance of the similarity classes

of a player is expressed by a valuation, that is, a function which assigns a numerical value to

each of the similarity classes.

We introduce two new solution concepts for games in extensive form with perfect infor-

mation, based on similarity classes and their valuation: valuation equilibrium and sequential

valuation equilibrium. A Valuation Equilibrium is a profile of behavioral strategies such that

for some system of valuations two conditions are satisfied.

• Each player’s strategy must be optimal for her valuation. By this we mean that at

each node where she plays she chooses one of the moves that belongs to a class with

maximum valuation.

• Each player’s valuation must be consistent with the strategy profile. That is, the

valuation attached to a similarity class of a player is the expected payoff of the player

given that the path (induced by the strategy profile) intersects this class.

The consistency requirement imposes constraints only on the valuations of those sim-

ilarity classes that are reached with positive probability in equilibrium. Our second and

main solution concept, the sequential valuation equilibrium, imposes a stronger notion of

consistency that applies also to unreached similarity classes. Very much like the sequential

equilibrium (Kreps and Wilson 1982) the stronger notion of consistency requires that the

valuations of unreached similarity classes must be consistent with small perturbations of the

strategy profile.

In the main part of the paper we take the sequential valuation equilibrium as our starting

point and we analyze the properties of these equilibria for various similarity partitions.

We provide in subsection 2.4 a motivation for the sequential valuation equilibrium by a

learning model. We introduce a simple learning process in which the game is played repeat-

edly, and the players update their valuations after each round according to the outcome of the

round. Whenever this learning process converges, players asymptotically behave according

to a sequential valuation equilibrium.1

1In Jehiel and Samet (2000) we prove the convergence of similar learning processes for maximal similarity

classes.
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It should be noted that in most of this paper the similarity partition of moves is given

exogenously. These partitions should be thought of as being part of the description of the

environment much the same as information partitions are part of the description of a game

with imperfect information.2 However, in Section 5 we study similarity classes that are

determined endogenously according to a principle based on the aspiration idea.

We start, in Section 3, by making a few preliminary observations. We first show that

a sequential valuation equilibrium (SVE) always exists, for any given similarity partitions.

For maximal similarity partitions (i.e. no two moves belong to the same similarity class), an

SVE coincides with a Subgame Perfect Nash Equilibrium. Moreover, Sequential Equilibria

of games with incomplete information and perfect recall can always be represented as SVE

by suitable choices of similarity partitions. But, in general an SVE need not even be a Nash

Equilibrium.

Illustrations of the solution concept are introduced in Section 4. We first consider deci-

sion problems, and then move on to multi-player games. We provide a one-agent decision

problem involving chance moves such that in equilibrium the agent makes the worst possible

decision at every decision node, thus illustrating a sharp contrast with standard notions of

equilibrium. We next provide a two-player example, in which one of the players is better off

in equilibrium whenever he has a coarser similarity partition. We also provide an example of

complete information game in extensive form in which the SVE approach forces the players

to randomize at each of their decision nodes. The example also serves to contrast the SVE

approach with other approaches to the grouping of moves, in particular that of imperfect

recall (Piccione and Rubinstein 1997), and that of the analogy-based expectation approach

(Jehiel 2001).

In the last section of the paper, the similarity partitions are endogenized. We assume

that players categorize moves according to whether they deliver less, more or the same level

of payoff as a benchmark payoff referred to as the aspiration level, which is assumed to be

the equilibrium payoff. We refer to such equilibria as aspiration-based sequential valuation

equilibrium (ASVE). While the Subgame Perfect Nash Equilibrium is always an ASVE, other

strategy profiles may be ASVE. But, in zero-sum two-player games without chance moves a

player must get her value in any ASVE.
2From the viewpoint of learning, this amounts to assuming that players do not change their similarity

relations during the learning process.
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2 Valuation Equilibria

2.1 Games and strategies

Consider a finite game G with perfect information and a finite set of players I. The game

is described by a tree (Z,N, r,A), where Z and N are the (finite) sets of terminal and non-

terminal nodes, correspondingly, r is the root of the tree, and A the set of arcs. Elements of

A are ordered pairs (n,m), where m is the immediate successor of n.

For each i ∈ I, the function fi : Z −→ R is i’s payoff. The set Ni for i ∈ I is the set of

nodes in which it is i’s turn to play. The sets Ni are disjoint. The moves of player i at node

n ∈ Ni are the nodes in Mi(n) = {m | (n,m) ∈ A}. Denote Mi =
⋃

n∈Ni
Mi(n).

A (behavioral) strategy for player i is a function σi defined on Ni such that for each

n ∈ Ni, σi(n) is a probability distribution on Mi(n).

The nodes in N \ ∪i∈INi belong to Nature, which has a fixed strategy.

For a strategy profile σ = (σi)ı∈I , let P σ the probability over Z induced by σ and Nature’s

strategy. That is, P σ(z) is the probability that z is reached when σ is played.

2.2 Similarity and valuation

Player i has a relation of similarity on Mi, her set of moves. We assume that it is an

equivalence relationship and denote by Λi the partition of Mi into similarity classes. For

m ∈ Mi, λ(m) denotes the similarity class in Λi that contains m. For each similarity class

λ ∈ Λi, we let Z(λ) be the set of all terminal nodes that are descendants of some node in λ.

A valuation for player i is a function vi : Λi −→ R.

2.3 Equilibria

We say that the strategy σi is optimal for the valuation vi, if for each n ∈ Ni and m ∈ Mi(n),

σi(n)(m) = 0 whenever m /∈ arg maxm∈Mi(n) vi(λ(m)). That is, if i chooses in each of her

nodes, with probability 1, only those actions that belong to similarity classes with maximal

valuation.

We say that the valuation vi is consistent with the profile σ if for each λ ∈ Λi, with

P σ(Z(λ)) > 0, vi(λ) =
∑

z∈Z(λ) P σ(z)fi(z)/P σ(Z(λ)). That is, if the valuation of a similarity

class λ is i’s expected payoff given that (at least) one of the nodes in λ was reached. We note

that if σ is completely mixed (i.e. σi(n)(m) > 0 for all i and (n,m) ∈ A,n ∈ Ni - we write

σ > 0) then there exists a unique valuation v which is consistent with σ.

Definition 1 A strategy profile σ = (σi)i∈I is a valuation equilibrium (VE) if there exists

a valuation profile v = (vi)i∈I such that for each i,

4



• σi is optimal for vi,

• vi is consistent with σ.

Note that being consistent with σ does not impose any restriction on the valuation of

similarity classes that are not reached under σ. Thus, it is possible that a strategy profile is

supported by a valuation for the “wrong” reason. Player i may avoid all actions in a certain

similarity class because it has a low valuation. This low valuation, in turn, is arbitrarily

small, and bears no relation to the payoffs at terminal nodes that are reached from the class.

Still, consistency is maintained because the class is never reached.

To avoid such equilibria we refine the notion of VE in a way that parallels the notion of

sequential equilibrium. We require that the valuation v reflects possible payoffs at nodes that

are not reached, much the same as beliefs in sequential equilibrium reflect possible beliefs at

nodes that are not reached.

We say that a valuation vi is sequentially consistent with the strategy profile σ, if there

exists a sequence of completely mixed strategy profiles (σk)∞k=1 such that σk converges to σ,

and vk
i converges to vi, where vk

i is the unique valuation consistent with σk.

Definition 2 A strategy profile σ, is a sequential valuation equilibrium (SVE) if there

exists a valuation profile v = (vi)i∈I such that for each i,

• σi is optimal for vi,

• vi is sequentially consistent with σ.

It is easy to see that sequential consistency implies consistency, and thus an SVE is also

a VE.

2.4 Learning processes that lead to valuation equilibria

We illustrate reinforcement learning processes, the limit points of which must be valuation,

or sequential valuation equilibria. In Jehiel and Samet (2000) such a process has been studied

for the case that the similarity relation is maximal (i.e., no two distinct nodes are similar).

The processes here are variants of the learning model in Jehiel and Samet (2000).

Consider the infinitely repeated game of G. We denote by h an infinite history in the

repeated game, and by ht the finite history of the first t rounds in h. Assume that at the

beginning of the repeated game each player has some initial valuation, and after each round

she revises her valuation. After a given finite history ht of the repeated game, the valuation
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of a move m of player i is her average payoff in those rounds in ht in which she made a move

similar to m. If no such move was made, then m has the initial valuation.

Assume further that the strategies of the players in the repeated game satisfy the following

condition. For each finite history ht and player i there exists ε = ε(ht, i), such that player i’s

strategy in G, after ht, σht
i , is ε-optimal for her valuation vht

i . That is, for any m′ ∈ Mi(n),

if vht
i (m′) < max vht

i (m)− ε, then m′ is played with probability 0. Moreover, we assume that

for each i, ε(ht, i) → 0 when t →∞.

Consider now the event E that σht
i converges to σ. That is, E is the set of infinite histories

h such that the strategy profiles along h converge to σ. For each set of end nodes Z(λ) that

has a positive probability under σ, vht must converge. Let v be valuation which is the limit

of vht on sets Z(λ) with positive probability, and defined arbitrarily small on all other such

sets.

Since σht
i is ε-optimal for vht

i , and since ε converges to 0 when t →∞, it follows that the

limiting strategy σi is optimal for the limiting valuation vi.

Consider now a set of end nodes in Z(λ) that has a positive probability under σ. By the

stability theorem (see Loève (1963)) the frequency of the end nodes in Z(λ) along histories

in E, converges to the conditional probability of these nodes according to σ. This shows that

v is consistent with σ. Thus, the limit σ is a valuation equilibrium.

Suppose now that for each history ht, σht > 0. Let E be the event that for each subtree

of G the conditional probability of σht converges. In particular σht converges to a strategy

profile σ. Moreover, the valuations vht also converge on each set Z(λ). As before, σ is optimal

for v. Consider the valuation uht which is the unique valuation consistent with σht . Then,

using again the stability theorem we can show that uht converges to v, which shows that σ

is a sequential valuation equilibrium.

3 General Properties

3.1 Existence

Since each SVE is also a VE it is enough to prove the existence of an SVE.

Proposition 1 For each game G there exists at least one sequential valuation equilibrium.

Proof. The strategy of proof is the same as that for the existence of sequential equilibria

(Kreps-Wilson 1982). Consider the set Σε of strategy profiles σε that satisfy σε > ε. For any

strategy profile σε ∈ Σε there exists a unique valuation v(σε) such that for each i, vi(σε) is
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consistent with σε. By the equations that define valuations, v(σε) depends continuously on

σε in Σε.

We say that player i’s strategy σi is ε-optimal for the valuation vi, if for each n ∈ Ni and

m ∈ Mi(n), σi(n)(m) = ε whenever m /∈ arg maxm∈Mi(n) vi(λ(m)). Consider the correspon-

dence that associates with each σε ∈ Σε the set of all strategy profiles σ̂ε ∈ Σε such that for

each i, σ̂ε
i is ε-optimal for the valuation vi(σε). It is easy to see that this correspondence is

upper hemicontinuous with non-empty closed convex values. It follows by Kakutani’s fixed

point theorem that there exists σε such that for each i, σε
i is ε-optimal for the valuation vε

i

which is the unique valuation i consistent with σε.

By compactness, there are σ and v and a subsequence of σεk with εk → 0 such that

both σεk → σ and v(σεk) → v. By continuity σ is optimal for v and hence it is a sequential

valuation equilibrium.

3.2 The trivial similarity relations

For the two trivial similarity relations, the largest and the smallest, the characterization of

VE’s and SVE’s is rather simple.

Proposition 2 Suppose that for each player i all the nodes in Mi are similar. Then every

strategy profile is a SVE.

Proposition 3 Suppose that for each player i no two different nodes in Mi are similar. Then

a strategy profile is SVE iff it is a Subgame Perfect Nash Equilibrium.

For completeness, we also include the characterization of VE’s, when the similarity rela-

tion is maximal, which is simple for the generic case:3

Proposition 4 Suppose that for each player i no two different nodes in Mi are similar, and

for every two terminal nodes z 6= z′, fi(z) 6= fi(z′). Then a strategy profile σ is VE iff the

probability P σ it induces over the terminal nodes assigns probability 1 to one of these nodes.

3.3 Games with imperfect information

Consider an imperfect information game defined on the tree (Z, N, r,A) with payoff function

fi. Let Υi be the partition of i’s nodes, Ni, into information sets of player i, and Λi the
3When fi(z) = fi(z

′) a mixed distribution over z and z′ can be sustained provided player i gets a chance

to choose between the subgames containing z and z′ at some decision node. In the generic case considered in

the proposition it can be shown by contradiction that no randomization can occur on the equilibrium path

(take the last reached node such that the behavior at that node is random).
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partition of i’s moves, Mi, into actions. Thus for any action λ = {m1, . . . , mk} ∈ Λi all the

nodes in λ have different immediate predecessors, and the set of these immediate predecessors

{n1, . . . , nk} is an information set in Υi.

Proposition 5 Consider a game with imperfect information and perfect recall defined on

(Z, N, r,A) with payoff functions (fi)i∈I and action partitions (Λi)i∈I . Let an assessment

(σ, µ) of this game (where µ denotes a belief system) be a Sequential Equilibrium. Then σ is

a Sequential Valuation Equilibrium of the game (Z, N, r,A) with payoff functions (fi)i∈I and

similarity relations (Λi)i∈I .

Proof. For each player i we define a valuation vi as follows. For an action λ ∈ (Λi), vi(λ)

is i’s expected payoff when she chooses action λ, conditional on being at information set in

which λ is available. This expected payoff is computed using the probability of the nodes

in the information set (given by µ) and the the probability of reaching each of the terminal

nodes (given by σ). By the very definition of sequential rationality, σi is optimal for vi.

The strategy profile σ is the limit of strategy profiles σk > 0. For each σk we define the

valuation vk as above (where the probability of each node in the information set is given by

σk). The expected value of an action λ of player i is exactly
∑

z∈Z(λ) P σ(z)fi(z)/P σ(Z(λ)),

and therefore vk is consistent with σk. Since µ is the limit of the the conditional probabilities

of σk on information sets, it follows that vk → v.

4 Illustrations

We now provide some illustrations of how the SVE concept works. We start with decision

problems and then move to multi-player setups.

4.1 Decision problems

Obviously, in a decision problem the agent cannot benefit from the grouping of moves into

similarity classes. It can only prevent him from making optimal decisions in all circumstances.

The following example illustrates a more dramatic case in which due to similarity grouping,

making the worst decision is a valuation equilibrium, while making the best one is not. It is

somewhat surprising in light of the optimality requirement in valuation equilibrium.

Example 1. The decision tree is depicted by the solid lines in figure 1. At the root r,

nature chooses one of three nodes x, y and z with equal probability. At each of these nodes,

the decision maker can choose between a good action or a bad one, where the payoff is higher

in the first. The payoffs are written next to these nodes. The three doted lines connect
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similar nodes. Thus, the set M is partitioned into the similarity classes {gx, gz}, {bx, by}, and

{gy, bz}.
The strategy σ that selects at each of the nodes x, y and z the bad action is a VE. To

see this, consider the valuation v given in the figure. Obviously, it is consistent with σ, and

σ is optimal for v. Moreover, σ is also a SVE. Indeed, for each k let σk be the strategy

in which the good action in each node has probability 1/k and the bad one 1 − 1/k. The

unique valuation that is consistent with σk is given by vk({gx, gz}) = 3, vk({bx, by}) = 5, and

vk({gy, bz}) = 4(1−1/k)+12(1/k). Obviously, σk → σ, and for small enough k, σ is optimal

for vk.

Note, however, that the strategy τ that selects the good action in each node is not a

valuation equilibrium. Indeed, for a valuation u to be consistent with τ , it must satisfy

u({gx, gz}) = 3 and u({gy, bz}) = 12. But τ is not optimal for such u (consider node z).

Figure 1: A valuation equilibrium in a decision problem

.... . . . . . . . . . . . .

.............

..............

r

1/3

1/3 1/3

x
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gx bx

gy

bygz

bz

1 0

10

12

5

4

v = 5v = 3

v = 4

In Example 1 the role of nature is crucial. In a decision problem without moves of nature,

similarity grouping cannot be so detrimental as can easily be shown:

Proposition 6 In a decision problem (i.e., a game with one player) without moves of nature,

any strategy σ that guarantees the maximal payoff is a sequential valuation equilibrium.

4.2 Multi-player setups

In decision problems, we have seen that the grouping of moves may hurt the agent. Clearly,

this may also happen in multi-agent setups. But, a new observation is that grouping may
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sometimes help the player when there are other players around. The following example

illustrates the claim.

Example 2. In the game in Figure 2 there are two players A and B. Each player in her

turn can chose between two actions “take” or “pass”. Nodes are labelled as in the figure and

payoffs appear next to the final leaves.

Figure 2: A sequential valuation equilibrium in a two player game

r

t1 t2 t3

p1 p2 p3

A B A

(0, 0) (2, 2) (1, 3)

(0, 0)

In the Subgame Perfect Nash Equilibrium of this game players A and B pass in the first

two moves, and A takes in the third and her payoff is 1.

Assume now that player A bundles the moves p1 and p3 into a single similarity class

denoted Pass, while all other similarity classes are singletons. Consider the following strategy

profile σ: player A passes at nodes r and p2, and B takes at node p1. To see that σ is a

SVE, consider the valuations vA and vB that assigns to each of the moves ti the payoff of the

appropriate player at this node, while vA(Pass) = 2 and vB({p2}) = 0. It is readily verified

that σi, for i = A,B, is optimal for vi. In this SVE player A’s payoff is 2, which is more than

what he gets in the SPNE.

The next example serves to illustrate that SVE may force randomization in circumstances

in which it would not arise in standard notions of equilibrium.

Example 3. The game in Figure 3 differs from that in Figure 2 only in the payoffs. We

assume that the similarity relation is the same as in the previous example. Here there is a

unique SVE, and it employs mixed strategies. At the root r player A chooses p1, while at p2

she chooses each of t3 and p3 with probability 1/2. Player B chooses each of t2 and p2 with

probability 1/2. The valuations that make this strategy profile a SVE are as follows. The

valuation of each of the moves ti is the appropriate payoff at this node. For p3, vB({p3}) = 2,

which is the expected payoff of this move for B. To find vA(Pass), we note that Z(Pass),

the set of terminal nodes reached from Pass is {t2, t3, p3}. The conditional probability of

these nodes are 1/2, 1/4 and 1/4 respectively. Thus vA(Pass) = 1
2 · 3 + 1

4 · 2 + 1
4 · 0 = 2.
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Figure 3: An SVE may require mixed strategies when Nash does not

r

t1 t2 t3

p1 p2 p3

A B A

(−1, 0) (3, 2) (2, 1)

(0, 3)

4.3 Other approaches to move bundling

We use Example 3 for comparison between valuation equilibria and some alternative ways of

bundling moves.

Imperfect Recall (Piccione-Rubinstein 1997): Suppose that player A does not recall whether

he is at node r or at node p2 with a common action space {take, pass}.4 The correspond-

ing equilibrium (multi-self approach) is that i) Player A mixes 1
4 take + 3

4pass in his unique

memory set {r, p2} and ii) Player B passes at node p1. In this case, player A behaves in the

same way at his two nodes. The outcome is never t2. The other three outcomes t1, t3, p3 all

occur with positive probability.

Other similarity classes and Imperfect Recall: It is also instructive to analyze the same

game with the valuation equilibrium approach whenever player A uses two similarity classes,

Pass = {p1, p3} and Take = {t1, t3}, and player B treats his two moves t2 and p2 separately.

In this case, there are several SVE’s. For example, one SVE is that: Player A mixes 1
5 t1 + 4

5p1

at node r and 1
2 t3 + 1

2p3 at node t = 3; Player B Passes at node t = 2. The valuations that

support this equilibrium are vA(Take) = vA(Pass) = 1, and vB({t2}) = vB({p2}) = 2.

Thus, in this case, even though player A bundles {p1, p3} on the one hand and {t1, t3} on

the other, the situation is very different from the one analyzed above in which player A does

not distinguish between nodes t = 1 and 3. Here, in contrast to imperfect recall, SVE does

not require that player A behaves similarly at r and p2. Moreover, with our definition of

consistency, the equilibrium arising with the imperfect recall approach is not an SVE with

our assumed similarity partitioning. It would be if the consistency criterion were defined by

weighting final payoffs according to the number of times the corresponding path intersects
4”take” corresponds to t1 and t3; ”pass” corresponds to p1 and p3.
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the similarity classes.5

Analogy-based Expectation (Jehiel 2001): Suppose that player B only has an expectation

about the average pass/take behavior of player A all over the game (i.e., player B bundles

player A’s two nodes r and p2 into a single analogy class, see Jehiel 2001). The only analogy-

based expectation equilibrium is such that: i) Player A passes at node r and takes at node

p2, ii) Player B passes at node p1 (with the belief that player A mixes 1
2 take + 1

2pass at his

two nodes r and p2). In this case, the outcome is t3. The behavior of player A at nodes r

and p2 is not the same and there is no mixing.

5 Aspiration-based equilibria

We now investigate similarity relations on moves that are based on the performance of these

moves relative to the equilibrium payoff. We refer to the idea of aspiration because the clas-

sification of a move in these similarity relations depends only on whether the move performs

better, worse or similarly to the benchmark equilibrium payoff.

Formally, for a strategy profile σ and a node n ∈ N∪Z, we denote by ui(n, σ) the expected

payoff of player i in the subgame Gn with root n, with the strategy σn induced on Gn by σ.

That is, denoting by Z(n) the terminal nodes of Gn,

ui(n, σ) =
∑

z∈Z(n)

P σn
(z)fi(z).

We denote the expected payoff of player i in the game ui(r, σ) by ui(σ). This expected payoff

will be interpreted as the aspiration level of player i induced by σ.

Given a strategy profile σ, we define for each player i the aspiration-based similarity
5If player A were to mix 1

4
take + 3

4
pass at his two nodes and player B were to pass at node p1 (as in the

imperfect recall approach), the corresponding valuations for player A would be:

vA(Take) =
(1/4)(−1) + (3/4)(1/4)(2)

1/4 + (3/4)(1/4)
=

2

7

and

vA(Pass) =
(3/4)(1/4)(2)

3/4
=

1

2

Thus, vA(Pass) > vA(Take) and player A should Pass rather than mix at his two nodes. (Hence, player A’s

strategy is not a best-response to his valuations.)

By contrast, if the consistency criterion incorporates the number of times pathes intersect the similarity

classes, then while vA(Take) is unchanged, vA(Pass) should be replaced by

(3/4)(1/4)(1)(2)

3/4(1/4 + (2)(3/4))
=

2

7

and with this alternative definition, the (multi-self) imperfect recall equilibrium would be an SVE.
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partition Λi(σ) = {λ+
i (σ), λ0

i (σ), λ−i (σ)} by:

λ+
i (σ) = {m ∈ Mi | ui(m,σ) > ui(σ)}

λ0
i (σ) = {m ∈ Mi | ui(m,σ) = ui(σ)}

λ−i (σ) = {m ∈ Mi | ui(m,σ) < ui(σ)}

Note that one or two of these three sets may be empty.

Definition 3 A strategy profile σ in the game G is an aspiration-based sequential val-

uation equilibrium (ASVE) if σ is a sequential valuation equilibrium with respect to the

aspiration-based similarity partitions Λ(σ) = (Λi(σ))i∈I induced by it.

It follows from Proposition 8 below that for each game G there exists an ASVE. To study

the properties of ASVE it is useful to note that sequential consistency with σ of a valuation

vi on Λi(σ) implies that vi reflects the objective differences of utility in the three elements of

the partition.

Lemma 1 Suppose that a valuation vi on the aspiration-based similarity partition Λi(σ) is

sequentially consistent with σ. Then,

• if λ+
i (σ) 6= ∅, then vi(λ+

i (σ)) > ui(σ),

• if λ0
i (σ) 6= ∅, then vi(λ0

i (σ)) = ui(σ),

• if λ−i (σ) 6= ∅, then vi(λ−i (σ)) < ui(σ),.

Proof: To see the first inequality, let M = {m1, . . . , mk} be a maximal set of points in

λ+
i (σ), such that each point in M does not have a descendant in λ+

i (σ). Then Z(λ+
i (σ)) =

∪k
j=1Z(mj), and the latter set is a disjoint union. Choose ε > 0 such that ui(mj , σ) > ui(σ)+ε

for j = 1, . . . k. For a strategy profile ν which is close enough to σ, also ui(mj , ν) > ui(ν) + ε

for j = 1, . . . k. Let ν be such a completely mixed strategy profile and let v′i be i’s valuation

for ν. Note that for a descendant z of mj , P νmj

(z) = P ν(z)/P ν(Z(mj)). Thus,

v′i(λ
+
i (σ)) =

∑

z∈Z(λ+
i (σ))

P ν(z)fi(z)/P ν(Z(λ+
i (σ)))

=
k∑

j=1

[
∑

z∈Z(mj)

P ν(z)fi(z)/P ν(Z(mj))]P ν(Z(mj))/P ν(Z(λ+
i (σ)))

=
k∑

j=1

ui(mj , ν)P ν(Z(mj))/P ν(Z(λ+
i (σ))) > ui(ν) + ε
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By the sequential consistency of vi with σ it follows that vi(λ+
i (σ)) ≥ ui(σ) + ε > ui(σ).

The last inequality is similarly proved. To show the equality we choose a subset M of

λ0
i (σ) as above. For each mj , ui(mj , σ) = ui(σ). Let ε > 0. Then for a strategy profile

ν which is close enough to σ, |ui(mj , ν) − ui(ν)| < ε. For a completely mixed ν and its

corresponding valuation v′i we conclude by the above equations that

|v′i(λ0
i (σ))− ui(ν)| = |

k∑

j=1

ui(mj , ν)− ui(ν)P ν(Z(mj))/P ν(Z(λ0
i (σ)))|

≤
k∑

j=1

|ui(mj , ν)− ui(ν)|P ν(Z(mj))/P ν(Z(λ0
i (σ)))| < ε

Since this is true for any ν close enough to σ it follows that |vi(λ0
i (σ))−ui(σ)| ≤ ε, and since

this is true for any ε it follows that vi(λ0
i (σ)) = ui(σ).

Figure 4: An ASVE which is not an equilibrium

r

t1 t2

(1, 1)
p1 p2

A B

(1, 2) (1, 0)

1/2 1/2

1/2 1/2

An ASVE is not necessarily an equilibrium, as demonstrated in the game in Figure 4.

Consider the strategy profile σ where player A plays t1 and p1 with probability 1/2 each,

and player B plays t2 and p2 with probability 1/2 each. Obviously, σ is not an equilibrium.

However, player’s B expected payoff is 5/4 and therefore λ−2 (σ) = {t2, p2}. Thus, σ2 is

optimal for v2. It is easy to see that the rest of the requirement for ASVE are satisfied for σ.

Even though the above ASVE is not an equilibrium, in ASVE player B obtains no less

than her individually rational payoff (which is 1). This is no coincidence.

Proposition 7 Suppose that G is a game without moves of nature. Let ρi be the individual

rational payoff of player i in the game G. If σ is an ASVE, then for each i, i’s expected

payoff in G under σ, ui(σ) is at least ρi.

Proof: Assume to the contrary that ui(σ) < ρi. We show that for each n ∈ N ∪ Z, if i’s

individual rational payoff in the subgame Gn, ρi(Gn) is at least ρi, then ui(n, σ) > ui(σ). The

14



proof is by induction on the depth of the subgame. This trivially holds for n ∈ Z. Suppose

now that ρi(Gn) ≥ ρi and the claim holds for all the subgames of Gn. If n ∈ Nj for j 6= i,

then it must be the case that for each m ∈ Mj(n), ρi(Gm) ≥ ρi. Thus by the induction

hypothesis for all m ∈ Mi(n), ui(m,σ) > ui(σ). Therefore also ui(n, σ) > ui(σ). Suppose

now that n ∈ Ni. Then there exists at least one m ∈ Mi(n) such that ρi(Gm) ≥ ρi. By the

induction hypothesis, ui(m,σ) > ui(σ). It follows that m ∈ λ+
i (σ). Since the latter set is not

empty, and σi is optimal for vi, it follows by Lemma 1 that σi selects at n, with probability

1, nodes in λ+
i (σ). Hence, by the definition of this set, ui(n, σ) > ui(σ). In particular, since

ρi(Gr) = ρi, we derive the contradiction ui(r, σ) > ui(σ).

In particular for two-person zero-sum game we conclude:

Corollary 1 If G is a two-person zero-sum game without moves of nature, and σ is an

ASVE, then players’ equilibrium payoffs correspond to the value of the game.

The case of a single decision maker also follows immediately from Proposition 7.

Corollary 2 If G is a decision problem without moves of nature, then an ASVE is an optimal

decision.

Figure 5: An equilibrium which is not an ASVE

r

t1 t2

(2, 2)
p1 p2

A B

(1, 1) (0, 0)

We have seen that an ASVE is not necessarily an equilibrium. Conversely, an equilibrium

of G is not necessarily an ASVE. To see this consider the game tree in Figure 5. The strategy

profile σ = (t1, t2) is a (non-perfect) Nash equilibrium. But λ−2 (σ) = {t1} and λ+
2 (σ) = {p2}

and the consistent valuations of these classes must be 0 and 2 correspondingly. Since σ2 is

not optimal for v2, it follows that σ is not an ASVE.

The situation is different for Subgame Perfect Nash Equilibria.

Proposition 8 A Subgame Perfect Nash Equilibrium of G is an ASVE.
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Proof: Let σ be a subgame perfect equilibrium of G. Using completely mixed strategy

profiles that converge to σ we can define for each player i a valuation vi on Λi(σ) which is

sequentially consistent with σ. At each node n ∈ Ni, σi selects with probability 1 nodes

m ∈ Mi which maximize ui(m,σ). By Lemma 1, σ selects with probability 1 nodes with the

highest valuation at n. Thus, σi is optimal for vi.

Remark: Observe that unlike Proposition 7 and Corollaries 1 and 2, Proposition 8 holds

also when there are moves of nature. This is because it relies only on Lemma 1, which holds

for such cases.

Finally, we consider the following behavioral assumption:

Behavioral Assumption (BA): Whenever two successors belong to the same similarity

class, they are chosen with equal probability (i.e. σi(n) assigns the same probability to m,

m′ in Mi(n) whenever λ(m) = λ(m′)).

Such a behavioral assumption may reflect the idea that if two successors belong to the

same similarity class nothing allows the player to distinguish their relative strength, thus

suggesting that the two moves should be chosen with equal probability.

We note that while a subgame perfect equilibrium is always an ASVE, it need not in

general satisfy this equal probability assumption with respect to the associated aspiration-

based partitioning.

The following example illustrates this claim in the strong sense that the outcome of the

unique subgame perfect equilibrium may not be supported as the outcome of an ASVE with

such a behavioral requirement.

Example 4. The game in Figure 6 differs from that in Figure 3 only in the payoffs.

Figure 6: Moves in the same class must not have equal probability

r

t1 t2 t3

p1 p2 p3

A B A

(2, 3) (3, 2) (4, 5)

(5, 0)

The subgame perfect equilibrium results in the outcome t2. The associated aspiration-

based similarity classes are: λ−A = {t1}, λ0
A = {p1}, λ+

A = {t3, p3} and λ−B = {p2}, λ0
B = {t2}.

By our assumed behavioral requirement, player A should play t3 and p3 each with probability
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half at node p2. But, this in turn implies that vB(p2) = 5+0
2 = 2.5 > 2 = f2(t2). Hence, by

the optimality of player B’s strategy, player B should play p2 and not t2 at node p1. Hence,

the perfect equilibrium outcome cannot be supported as the outcome of an ASVE satisfying

(BA).

Remark: In zero-sum two player games without chance moves, an ASVE satisfying (BA)

exists, and it leads to the value of the game, as shown in Corollary 1.

6 Concluding remarks

This paper has introduced a new solution concept viewed as the limiting point of a learning

process in which players would only try to learn the average performance of playing over

bundles of moves. The underlying model (as outlined in subsection 2.4) belongs to the family

of reinforcement learning models such as the ones considered in AI in the tradition of Samuel

(1959) (see Sutton and Barto 1998 for a recent textbook on this literature). Note that in

contrast to how reinforcement learning is modeled in game theory (see Fudenberg and Levine

1998 for a textbook on this) our underlying reinforcement learning does not consider the

reinforcement of strategies (but rather the reinforcement of similarity classes). In Jehiel and

Samet (2000) we considered the case where moves rather than strategies are reinforced and we

showed the convergence to the Subgame Perfect Nash Equilibrium in extensive form games

with complete information. In this paper, we went one step further by assuming that moves

are bundled together into similarity classes and that reinforcement bears on the similarity

classes rather than on the moves separately.

Clearly, it remains to analyze further how players bundle moves into similarity classes, but

the present paper should be suggestive enough that this line of thought leads to considerations

previously unexplored in game theory.
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