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How should we model individuals' behavior in economic models? Individuals are 

traditionally assumed to be rational with perfect foresight, now, however boundedly rational 

behavior is increasingly being studied. In evolutionary game theory, bounded rationality is 

often modeled by assuming that individuals have finite memories and use a fixed rule to 

choose a strategy to play. Although the evolutionary nature of such an approach is realistic, a 

major drawback is that only one decision rule is normally available to a player. 

In reality, humans experiment with many different decision rules over time. (See 

Arthur (1994) for an excellent discussion. He also sites psychology literature.) The literature 

on experimental economics claims that there is no single rule, which might describe human 

behavior (see Mookherjee and Sopher (1994, 1997), Cheung and Friedman (1997), Camerer 

and Ho (1999), Salmon (2001)). 

This paper studies an evolutionary model where several decision rules are available to 

each agent. To the best of my knowledge, it is the first attempt to model agents with sets of 

decision rules. In every period the agents have to choose a decision rule and then use this rule 

to select a strategy. The main questions of this paper are “How predictions of this model are 

different from evolutionary models, where agents have only one decision rule” and “Which 

rule(s) will survive in the long run?” 

There are a few papers in evolutionary game theory where authors model multiple 

decision rules by assuming that a part of the population for a player i position in the game 

always uses a particular decision rule and another part of the same population always uses 

another rule. Agents are chosen at random for player positions from the corresponding 

populations to play the game in every period (see Saez-Marti and Weibull (1999), Matros 

(2000), Josephson (2002)). The main assumptions of this literature are that any agent plays 

only one particular rule and any agent from the population i has a positive probability to play 

the player i position in the game in every period. The agents in this paper use an optimal rule 
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from their sets of rules in every period. This optimal rule may be the same decision rule from 

the set of rules or may vary across periods. Subsection II.2 clarifies the crucial difference 

between these two approaches. I show that even short run outcomes, or recurrent classes, are 

different in two cases. It is not surprising after that that these two approaches might lead to 

different long run predictions. More discussion on this issue can be found in my companion 

paper, Matros (2002). 

Arthur (1994) models agents with several predictions or hypotheses in the form of 

functions that map the past outcomes into next-period outcomes. However, he offers only 

computer simulation for a particular “Bar Problem”. I study an evolutionary framework 

similar to Eshel, Samuelson, and Shaked (1998), but my assumptions about agents differ. 

Whereas the agents in their model imitate others who earn the highest average payoffs in a 

Public Good game, the agents in my model have a set of two rules: the imitation and the best 

reply. 

In every period, N agents play a Public Good game. There are two strategies in the 

game. “Production” of a public good is a strictly dominated cooperative strategy. The agents 

are located on a circle and their utilities are increasing in the number of agents playing the 

strategy “Production” in their local 2k neighborhoods. Each agent observes a sample of plays 

of her 2k nearest neighbors from the previous period. She then searches for the current 

optimal decision rule. If the strategy chosen based on her last period decision rule performs 

best among her 2k neighbors in the sample, then the optimal decision rule is the last period 

decision rule. Otherwise, another decision rule is optimal. The boundedly rational agents next 

use the optimal rule to choose a strategy in the current period, but with some positive 

probability they make a mistake and instead choose either the best reply rule or the imitation 

rule at random. As is standard in the literature, the agents also make errors in using the rules 

with the result that they select a strategy at random with some small probability. 
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My choice of two decision rules is motivated by the fact that imitation is the first rule 

that a human being learns as a child. In time, humans become “smarter” and learn the best 

reply rule. There is a large volume of recent literature concerned with trying to identify the 

type of learning rules used by subjects in experiments. For example, result 4 in Huck, 

Normann, and Oechssler (1999) states: 

 

If subjects have the necessary information to play best replies, most do 

so, though adjustment to the best reply is almost always incomplete. If 

subjects additionally have the necessary information to “imitate the 

best”, at least a few subjects become pure imitators. 

 

The best reply rule and the imitation rule are typical decision rules in evolutionary 

models. The best reply rule usually leads to a rational outcome (see Young (1993, 1998), 

Kandori, Mailath, and Rob (1993), Ellison (1993), Blume (1993), Samuelson (1997)). 

Bergstrom and Stark (1993), Eshel, Samuelson, and Shaked (1998) show that the imitation 

rule can lead to a cooperative irrational outcome. Simulation evidence for the imitation 

behavior can be found in Nowak and May (1992, 1993) and Nowak, Bonhoeffer, and May 

(1994). 

To emphasize the difference in the long run predictions between the imitation and the 

best reply rules, I consider the Public Good game. On the one hand Eshel, Samuelson, and 

Shaked (1998) show that the imitation rule leads to the cooperative irrational outcomes in the 

Public Good game in the long run, even in the presence of mutations that continually 

introduce the rational strategy into the model. On the other hand, Young (1998) demonstrates 

that the best reply rule selects the rational uncooperative outcome. Moreover, Matros (2002) 

shows that the rational uncooperative outcome is a unique long run prediction, if there are 
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populations of agents for every player position, such that every population contains agents 

who use either the best reply rule or the imitation rule and every agent in the population i has 

a positive probability to play the player i position in the Public Good game in every period. 

Given these contrasting predictions this paper explores which outcome(s) will arise when 

agents can use both rules. 

First, the short run outcomes are described. Then, I obtain an ergodic Markov process 

on the finite state space and study the stationary distribution of this process, as the mistake 

and error probabilities tend to zero. There are two cases: the two neighbors case, k=1, and the 

general case, where each agent has more than two neighbors, k≥≥≥≥2. I analyze short and long 

run outcomes in both cases. It turns out that in the two neighbor case, k=1, the short run 

outcomes depend on the initial conditions, but the only rational uncooperative outcome is a 

unique long run prediction. The general case is more interesting. 

The cases k=2 and k>2 are considered separately. The case k=2 serves as an example. 

The case k>2 is quantitatively different from the case k=2, but qualitatively the same. All 

features of the short and long run behavior for the case k>2 are present in the case k=2. It is 

shown that if agents play the cooperative irrational strategy P at all in the long run, then they 

play this strategy in groups. I prove that both rational and cooperative irrational outcomes 

might arise if agents can use the best reply rule and the imitation rule. Moreover, the paper 

presents a condition – Theorem 3 - which completely describes the long run outcomes for any 

number of neighbors. This result also shows that it is enough to give just one decision rule per 

agent instead of sets of decision rules in order to obtain the same long run outcomes. The 

main message of the paper is that even though sets of decision rules can better represent 

human behavior, but the actual long run prediction of the model might coincide with a simpler 

model, where every agent has just one decision rule. It means that in many cases we do not 
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need a complicated model, where agents have sets of decision rules, instead one of the simpler 

models with just one decision rule per agent might be enough. 

The rest of the paper is organized as follows. Section I describes the model. Section II 

analyses the short run prediction of the model. Section III examines the long run prediction of 

the model, if the agents can make mistakes and errors. Section IV concludes. Proofs are given 

in the Appendixes. 

 

I. The Model: Public Good Game 

 

We will call the following game the Public Good Game. There are N players. A player 

can either produce a public good, which gives one unit of utility to 2k(<N) of her neighbors 

and incurs a net cost of 0<c<1 to the player herself, or do nothing at no cost. In other words, 

every player has two strategies: cooperate with other 2k players and Produce the public good, 

or be Selfish and not produce the public good. We will call these strategies P and S 

respectively. The payoff of agent i is then KP
i-c if agent i plays the strategy P and KP

i if agent 

i plays the strategy S, where KP
i∈∈∈∈ {0,…,2k} is the number of i’s neighbors, who play the 

strategy P. 

The one-shot Public Good game has one strict Nash equilibrium (S,…,S), where all 

players play the strategy S. Moreover, the strategy P is strictly dominated by the strategy S. If 

the Public Good game is played repeatedly, then the Folk Theorem can be applied1 and the 

play (P,…,P), where all players play the strategy P, can be sustained as an equilibrium in the 

infinitely repeated Public Good Game. 

We will consider the following evolutionary version of the Public Good Game. In 

each discrete time period, t=1,2,..., a population of N agents plays the Public Good Game. We 
                                                 
1 For discussion and applications of Folk Theorem see Fudenberg and Tirole (1991). 
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assume, as in Ellison (1993); Bergstrom and Stark (1993); and Eshel, Samuelson, and Shaked 

(1998), that the agents are located around a circle. An agent i chooses a strategy xt
i∈∈∈∈ {P, S} at 

time t according to a decision rule defined below. The play at time t is the vector 

xt=(xt
1,…,xt

N). 

Strategies are chosen as follows. At time t+1, each agent i inspects a sample            

(xt
i-k,…,xt

i-1,xt
i,xt

i+1,…,xt
i+k) of size 2k+1 of her 2k nearest neighbors and herself, taken from 

the previous play at time t. We assume that every agent has two decision rules. They are Best 

Reply (BR) and Imitation (IM). The BR rule means that an agent plays a strategy in period 

t+1, which is the best reply to her 2k neighbors strategy distribution (xt
i-k,…,xt

i-1,xt
i+1,…,xt

i+k) 

in the previous period t. An agent uses the IM rule in period t+1, if she plays a strategy, 

which gives the highest payoff among her 2k neighbors and herself in the previous period t. 

Suppose that an agent i uses the BR (IM) rule to choose a strategy in the beginning of the 

period t. The agent i uses the BR (IM) rule again in the period t+1, if this rule is the optimal 

current decision rule, and she switches to another decision rule IM (BR) otherwise. We 

assume that the last period rule is the optimal current decision rule, if an agent i observes that 

the strategy xt
i, chosen based on the BR (IM) rule in the period t, gives the highest payoff in 

the sample (xt
i-k,…,xt

i-1,xt
i,xt

i+1,…,xt
i+k). In other words, agent i observes the sample           

(xt
i-k,…,xt

i-1,xt
i,xt

i+1,…,xt
i+k) and corresponding payoffs of her neighbors. Then she identifies 

the highest payoff among her neighbors and herself. There exists exactly one strategy, which 

gives the highest payoff, because of our assumption 0<c<1. The last period rule is the optimal 

current decision rule if this strategy is the strategy xt
i. Note that the agents do not observe the 

decision rules of other agents, just their strategies. The assumption about which rule to use in 

the current period is very important and we will look at the following examples to see how 

agents can change the imitation rule into the best reply rule and vice versa. We will call an 
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agent, whose last period decision rule is BR, a maximizer, and an agent, whose last period 

decision rule is IM, an imitator.  

 

Example 1: Suppose that k=2 and an imitator observes the following sample 

 

P(PSP{IM}PP)PP, 

 

where the strategies in the brackets are the observed sample of the imitator and P is her own 

strategy choice. Only one agent plays the strategy S in the sample and the other four agents 

play the strategy P. The second neighbor to the right obtains the highest payoff to the strategy 

P (P marks her), which is 4-c. However, the agent, who plays the strategy S, receives payoff 

of 4. Thus the strategy S receives the highest payoff in the sample. It means that the imitation 

is not the optimal rule for the imitator and she will use the best reply rule in the following 

period. 

 Suppose now that a maximizer observes the following sample 

 

PP(PPS{BR}SS)SS, 

 

where she observes that two of her neighbors play the strategy S, the other two play the 

strategy P and S is her own strategy choice. The highest payoff to the strategy S in the sample 

is obtained by the maximizer and equals to 2. The second neighbor to the left obtains the 

highest payoff to the strategy P (P marks her), which is 3-c>2. Therefore the maximizer finds 

that the best reply rule is not optimal and will use the imitation rule in the following period. 
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Assume that the sampling process begins in the period t=1 from some arbitrary initial 

play x0 and some arbitrary initial decision rule distribution d0. We then obtain a finite Markov 

chain on the finite state space ({P,S})N×({BR,IM})N of states of the length 2N drawn from the 

strategy space ({P,S}) and the decision rule space ({BR,IM}), with an arbitrary initial play x0 

and some arbitrary initial decision rule distribution d0. Given a play xt and a decision rule 

distribution dt at time t, the process moves to a state of the form {xt+1; dt+1} in the next period, 

such a state is called a successor of {xt; dt}. We will call this process unperturbed adjusted 

dynamics with population size N and 2k neighbors, ADN,k,0,0. 

 

Example 2: Suppose that k=1, N=4, x0=(P,P,S,S) and d0=(IM,IM,BR,BR). 

In period 1, each agent i inspects a sample (x0
i-1,x0

i,x0
i+1) of size 3 of her 2 nearest 

neighbors and herself, taken from the previous play in period 0. Agents 3 and 4 (1 and 2) use 

the BR (IM) rule to choose a strategy in the beginning of period 0. Agents 3 and 4 use the BR 

rule again in period 1, because these agents observe that the strategy S gives a payoff of 1 unit 

and the strategy P gives a payoff of 1-c units (there is exactly one neighbor of every agent 

playing the strategy P). Therefore, the strategy S gives the highest payoff in the sample. 

However, agents 1 and 2 will switch to another decision rule, BR, because they also 

observe that the strategy S gives the highest payoff in their samples. It means that 

d1=(BR,BR,BR,BR). Hence, all agents will use the BR rule in period 1 and play the 

dominant strategy S, x1=(S,S,S,S). As a result the unperturbed adjusted dynamics process 

moves to the state {x1;d1} in period 1. 

 

The unperturbed adjusted dynamics process describes the short run behavior in the 

model, when there are no mistakes and errors in the agents’ behavior. Short run prediction is 

useful, because the predicted outcome(s) arise very fast, due to the local interaction structure 



 10

of the model, stay long (until a mistake or an error are made), and depend on the initial 

condition. 

Let us introduce some noise into the model. Humans can often use a specific rule, 

even though they might know that another rule is better in the current situation. To model that 

and the situation where a rule may be chosen by a mistake, we suppose that the agents use the 

optimal rule with probability 1-µµµµ and use a rule chosen at random with probability µµµµ≥≥≥≥0. 

Moreover, suppose that agents use a rule to choose a strategy with probability 1-εεεε and make 

an error and choose a strategy at random with probability εεεε>0. The resulting perturbed 

adjusted dynamics process ADN,k,µµµµ,εεεε is an ergodic Markov process on the finite state space 

({P, S})N×({BR, IM})N. Thus, in the long run, the initial state is irrelevant. We will pay 

special attention to the analysis of boundedly rational agents which is the case if probabilities 

of mistakes, µµµµ, and errors, εεεε, are small. 

 

II. Short Run: Recurrent Classes 

 

In what follows, we will make use of the following definitions. A recurrent class of 

the process ADN,k,0,0 (ADN,k,µ,0 for µ fixed and 0<µ<1) is a set of states such that there is zero 

probability of moving from any state in the class to any state outside, and there is a positive 

probability of moving from any state in the class to any other state in the class. We call a state 

h absorbing if it constitutes a singleton recurrent class. In this section we first analyze the 

situation when all agents always use the optimal rule, µ=0, and do not make errors. Then, we 

consider the process ADN,k,µ,0 for µ fixed and 0<µ<1 and find its recurrent classes. 
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II.1. Case µ=0 

 

Note that if every agent uses the imitation rule and plays the strategy P, then each 

agent obtains the same payoff and therefore the imitation rule is the current optimal decision 

rule. Moreover, as everyone plays the same strategy P, the imitation rule selects strategy P in 

the following period as well. It means that a state of the form: 

 

{(P,…,P);(IM,…,IM)}={P;IM} 

 

is absorbing. 

Suppose that all agents play the strategy S in the previous period. Either an agent uses 

the IM rule or the BR rule, she observes the only strategy S in her sample. It means that her 

decision rule is optimal. Both rules select the strategy S again in the following period. Hence, 

states in the form: 

{(S,…,S);(d,…,d)}={S;d} 

are absorbing, where d may be either BR or IM. Let all 2N states of the form {S;d} denote the 

set {(S;•••• )}. 

Other recurrent classes depend on the number of neighbors, k, and the size of the 

population, N. Let us start from the case k=1. 

 

II.1.1. Case k=1 

 

Note that a maximizer can never become an imitator in this case, because the maximal 

possible payoff to the strategy P in the maximizer’s neighborhood is 1-c. However, if at least 



 12

one neighbor plays the strategy P, then the maximizer’s payoff associated with her strategy S 

is at least 1. It means that a maximizer will always find her last period decision rule, BR, to be 

optimal and be the maximizer. 

However, an imitator can become a maximizer if she plays the strategy P and one of 

the following combinations of strategies occurs in her sample: 

 

(1)     (S,P,S), 

(2)     (S,P,P),S, 

(3)     P,(S,P,P), 

 

where the strategies in the brackets are the imitator’s observed samples, the first line arises if 

both neighbors of the imitator play the strategy S; the second line arises if one neighbor plays 

the strategy P and his neighbor in turn plays the strategy S; the third line arises if one 

neighbor plays the strategy S and his neighbor in turn plays the strategy P. It is 

straightforward to see from conditions (1)-(3) that an imitator finds her last period rule to be 

optimal only in the following two cases 

 

(4)     (P,P,P), 

(5)     S,(S,P,P),P, 

 

where the imitator observes only strategy P in her sample in the first case and she is in 

between a cluster of strategy S and a cluster of strategy P in the second case. Conditions (1)-

(5) provide a complete description of the absorbing states, if k=1. So, the following are the 

absorbing states: 

•  The state in which all agents are imitators and play the strategy P, {P;IM}. 
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•  The states in which all agents play the strategy S. The set {(S;•••• )} contains all such 

states. 

•  A state in which all agents are imitators and play the strategy P except two adjacent 

agents, who use either the BR rule or the IM rule and play the strategy S:  

  …P,…P,S,S,P,…P,… 

•  A state in which all agents are imitators and play the strategy P except three adjacent 

agents, who use either the BR rule or the IM rule and play the strategy S:  

  …P,…P,S,S,S,P,…P,… 

•  … 

•  A state in which three adjacent agents are imitators and play the strategy P, and other 

agents use either the BR rule or the IM rule and play the strategy S:  

  …S,…,S,P,P,P,S,…S,… 

These examples, and combinations constructed from them, include all of the possibilities 

for the absorbing states. Note that in all absorbing states both strategies must appear in 

clusters. We then have the following proposition.2 

 

PROPOSITION 1: Suppose that N≥≥≥≥5. The absorbing states of the unperturbed process 

ADN,1,0,0 are (i) the states in which all agents play the strategy S, (ii) the state in which all 

agents are imitators and play the strategy P, and (iii) the states in each of which a cluster of 

imitators, playing the strategy P, of the length three or longer are separated by a cluster of 

imitators or maximizers, playing the strategy S, of the length two or longer. 

 

 

                                                 
2 A formal proof is available from the author on request. 
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II.1.2. Case k=2 

 

The story is different now. A maximizer, who plays the strategy S, can become an 

imitator if she faces the following situation in her sample: 

 

(6)     (S,S,S,P,P),P,P, 

 

where strategies in the brackets are the observed sample and S is her own strategy choice. 

An imitator can become a maximizer if she plays the strategy P and one of the 

following combinations of strategies occurs in her sample: 

A) All neighbors play the strategy S. 

B) Only one neighbor plays the strategy P. 

C) Two neighbors play the strategy P and the maximal payoff to this strategy is less than 

the maximal payoff to the strategy S in the sample. 

D) Only one neighbor plays the strategy S and her payoff is higher than the maximal 

payoff to the strategy P in the sample. 

It is straightforward to see that the state {P;IM} and states in the set {(S;•••• )} are absorbing. 

The following examples show that there are other recurrent classes. 

 

Example 3: Suppose that N=7 and k=2. See Figure 1. 

 

Insert Figure 1 here. 

 

There are five imitators, who play the strategy P, and two maximizers, who play the strategy 

S. It is easy to see that every agent finds that her strategy performs best in her sample. For 



 15

example, every imitator has the best imitator, marked IM, in the sample. The best imitator 

receives 4-c, which the highest payoff among all agents. It means that each imitator finds her 

decision rule to be optimal. Every maximizer does not have the best imitator in the sample, 

which means that their payoffs, 3, are the highest in their samples. Therefore both maximizers 

find that the best reply rule is optimal. It means that every agent finds her last period decision 

rule to be optimal. These optimal rules select the last period strategies again. Hence, Figure 1 

gives an example of an absorbing state. 

 

The following example shows that a recurrent class can contain several states. 

 

Example 4: Suppose that N=9 and k=2. See Figure 2. 

 

Insert Figure 2 here. 

 

There are eight imitators, who play the strategy P, and one maximizer, who plays the strategy 

S, in the first circle on Figure 2. The maximizer obtains 4, which is the highest payoff among 

all agents. Therefore, all four agents, who have the maximizer’s strategy in their samples, find 

that their decision rules are not optimal. These four agents will use the best reply rule instead 

of the imitation rule in the following period. The best reply rule selects the strategy S in the 

following period, as it is shown in the second circle on Figure 2. There are five maximizers 

and four imitators in the second circle. The imitators find that the imitation rule is optimal and 

they continue to play the strategy P. Two maximizers on the boundary between maximizers 

and imitators observe that two neighbors play the strategy P and the other two play the 

strategy S. The highest payoff to the strategy P is equal to 3-c, which is greater that 2, which 

is the highest payoff to the strategy S in the sample. Therefore, these two maximizers find that 
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the best reply rule is not optimal and they use the imitation rule in the following period. We 

observe this in the third circle on Figure 2. There are three maximizers and six imitators in the 

third circle. Once again, all imitators find that the imitation is the optimal decision rule and 

play the strategy P in the following period. Two maximizers on the boundary between 

maximizers and imitators observe that two neighbors play the strategy P and the other two 

play the strategy S. The highest payoff to the strategy P is equal to 3-c, which is greater that 2, 

which is the highest payoff to the strategy S in the sample. Therefore, these two maximizers 

find that the best reply rule is not optimal and they use the imitation rule in the following 

period. It explains how the process moves from the third to the first circle on Figure 2. The 

cycle repeats again. Hence, Figure 2 gives an example of a recurrent class, which contains 

three states. 

 

With these two examples in mind, it is easy to see how conditions (6), (A) – (D) 

provide a complete description of recurrent classes, if k=2. The following are recurrent 

classes: 

•  The state in which all agents are imitators and play the strategy P. 

•  The states in which all agents play the strategy S. The set {(S;•••• )} contains all such 

states. 

•  A state in which all agents are imitators and play the strategy P except two adjacent 

imitators or maximizers, who play the strategy S:     

 …P,…,P,S,S,P,…P,… 

•  A set of three states, consisting of:      

 …P,…,P,S,P,…P,…     

 …P,…,P,S,S,S,S,S,P,…P,…     

 …P,…,P,S,S,S,P,…P,…. 
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These examples and combinations constructed from them include all of the possibilities 

for recurrent classes. As it is in the case k=1 both strategies must appear in clusters in all 

recurrent classes. 

 

PROPOSITION 2: Suppose that N≥≥≥≥6. The recurrent classes of the unperturbed process 

ADN,2,0,0 are (i) the states in which all agents play the strategy S, (ii) the state in which all 

agents are imitators and play the strategy P, and (iii) the sets containing states in each of 

which a cluster of imitators, playing the strategy P, of the length four or longer are separated 

by clusters of maximizers or imitators, playing the strategy S, of the length five or less. These 

sets are either singletons (in which case all clusters of the strategy S are of the length two) or 

contain three states [in which case any cluster of the strategy S of the length one (three or 

five) in one of the states moves to a cluster of the strategy S of the length five (one or three) in 

the other]. 

 

PROOF: See the Appendix A. 

 

II.1.3. General Case k>2 

 

After we have found out the recurrent classes in the case k=2, it is easy to see that the 

following are recurrent classes if k>2: 

•  The state in which all agents are imitators and play the strategy P. 

•  The states in which all agents play the strategy S. The set {(S;•••• )} contains all such 

states. 
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•  A state in which all agents are imitators and play the strategy P except two adjacent 

imitators or maximizers, who play the strategy S:     

 …P,…,P,S,S,P,…P,… 

•  A set of three states, consisting of:      

 …P,…P,S,P,…P,…       

 …P,…P,S,…,S,P,…P,…     

 …P,…,P,S,S,S,P,…P,…, 

where there is one agent, who plays the strategy S in period t; there are 2k+1 agents, who play 

the strategy S in period t+1; there are three agents, who play the strategy S in period t+2. The 

cycle is repeated after that. 

These examples and combinations constructed from them include all of the 

possibilities for recurrent classes. Again, both strategies must appear in clusters in all 

recurrent classes. 

 

THEOREM 1: Suppose that k>2 and N≥≥≥≥k+4. The recurrent classes of the unperturbed 

process ADN,k,0,0 are (i) the states in which all agents play the strategy S, (ii) the state in which 

all agents are imitators and play the strategy P, and (iii) sets containing states in which there is 

a cluster of imitators, playing the strategy P, of the length k+2 or longer are separated by 

clusters of maximizers or imitators, playing the strategy S, of the length 2k+1 or less. These 

sets are either singletons (in which case all clusters of the strategy S are of the length two) or 

contain three states [in which case any cluster of the strategy S of the length one (three or 

2k+1) in one of the states moves to a cluster of the strategy S of the length 2k+1 (one or 

three) in the other]. 

 

PROOF: See the Appendix A. 
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The following subsection clarifies the main difference between the approach of this 

paper and other papers in the field. Typically authors model multiple decision rules by 

assuming that a part of the population for a player i position in the game always uses a 

particular decision rule and another part of the same population always uses another rule. 

Agents are chosen at random for player positions from the corresponding populations to play 

the game in every period (see Saez-Marti and Weibull (1999), Matros (2000), Josephson 

(2002)). I will fix 0<µ<1, such that the agents can use the best reply rule and the imitation 

rule in every period. We can think that there is a population of agents for every player 

position in the Public Good game and that µ share of each population contains agents, who 

always use the best reply rule, and the other part of the populations, 1-µ share, always use the 

imitation rule. 

 

II.2. 0<µ<1 

 

If agents can use both decision rules in every period with positive probability, then 

only rational outcomes will survive as the short run outcomes. The intuition is simple: if 

occasionally all agents use the best reply rule in one period, then only the strategy S will be 

present thereafter. The following proposition is a corollary of Matros (Theorem 1, 2002). 

PROPOSITION 3: If µ is fixed and such that 0<µ<1, then only states from the set {(•••• ,S)} are 

absorbing states of the unperturbed process ADN,k,µµµµ,0. 

 

PROOF: See the Appendix A. 

 

This finishes the description of the short run outcomes. 
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III. Long Run: Mutations 

 

So far we have considered only the short run behavior. The long run behavior of the 

adjusted dynamics process ADN,k,µµµµ,εεεε will be analyzed in this section by letting agents make 

mistakes or/and errors. Firstly, we consider the situation, where both mistakes and errors tend 

to zero, µ→→→→0, εεεε→→→→0. Secondly, we analyze the situation, where µ is positive and fixed (the 

agents can always use both decision rules) and the probabilities of errors tend to zero, εεεε→→→→0. 

 

III.1. µ→→→→0, εεεε→→→→0 

 

From Propositions 1 and 2 and Theorem 1, it follows that there are four “types” of the 

recurrent classes. In most cases, mistakes in each “type” of the recurrent classes, which can 

happen with probability µ, lead to another recurrent class of the same type. Agents have to 

make errors, which can happen with probability εεεε, in order to move from a recurrent class of 

one type to a recurrent class of another type. Movements between the recurrent classes of 

different types rather than movements inside of the recurrent classes are of our interest. To 

make the exposition as simple as possible we suppose that µ=εεεε in this section. This 

assumption affects the long run outcomes. Although the results in general case µ→→→→0, εεεε→→→→0 are 

quantitatively different from the case µ=εεεε→→→→0, but the case µ=εεεε→→→→0 contains all qualitative 

features of the general case. Moreover, we can avoid all complications with the order of limits 

with our assumption. We are now in a position to state the main results on the long run 

behavior. 
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III.1.1. Case k=1 

 

Proposition 1 claims that there are three types of candidates for the long run outcomes. The 

following result specifies a unique prediction. 

 

PROPOSITION 4: The limiting distribution of the adjusted dynamics process ADN,k,εεεε,εεεε puts 

positive probability only on states from the set {(S;•••• )}, where all agents play the strategy S. 

 

PROOF: See the Appendix B. 

 

We shall consider more interesting cases now. The case k=2 is the first to be analyzed. The 

general case k>2 will follow it. 

 

III.1.2. Case k=2 

 

Proposition 2 states that there are four types of short run outcomes. The following result 

specifies when the irrational cooperative behavior will be observed in the long run. 

 

PROPOSITION 5: If N>48, then the limiting distribution of the adjusted dynamics process 

ADN,k,εεεε,εεεε  puts positive probability on all recurrent classes except states in which all agents 

play the strategy S. 

 

PROOF: See the Appendix B. 
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III.1.3. Case k>2 

 

The general case is similar to the case k=2. Although in Proposition 5 we only describe a 

condition, which guarantees the irrational cooperative behavior in the long run, the following 

result completely describes all possibilities in the general case. 

 

THEOREM 3: If N>4(k+1)(k+2), then the limiting distribution of the adjusted dynamics 

process ADN,k,εεεε,εεεε  puts positive probability on all recurrent classes except absorbing states in 

which all agents play the strategy S. If N<4(k+1)(k+2), then the limiting distribution of the 

adjusted dynamics process ADN,k,εεεε,εεεε  contains only the absorbing states, where all agents play 

the strategy S. If N=4(k+1)(k+2), then the limiting distribution of the adjusted dynamics 

process ADN,k,εεεε,εεεε  puts positive probability on all recurrent classes. 

 

PROOF: See the Appendix B. 

 

Theorem 3 describes for which parameters N and k the long run prediction of the 

model contains cooperative irrational outcomes. If we fix k, such that 2k+1=N, then the 

unique prediction of the model is the outcome where all agents play the strategy S. Now, if we 

keep fixed k and start to increase the number of agents on the circle, N, then the rational 

outcome – all agents play the strategy S – will be the unique long run prediction until 

N=4(k+1)(k+2). If we increase the number of agents on the circle, N, further, then the long 

run prediction changes. The irrational cooperative outcomes will appear if the number of 

agents on the circle is much bigger that the number of neighbors, or formally, 

N>4(k+1)(k+2). Similar effects arise if the number of agents on the circle, N, is fixed and we 

start to decrease the number of neighbors, k. 
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Theorem 3 shows also that for any given pair of parameters N and k, there exists one 

rule per agent, instead of the set of two rules, such that if all agents use this particular rule, 

then the long run prediction is the same as if the agents had the sets of rules. In particular, if 

N<4(k+1)(k+2), then such a rule is the best reply rule, if N≥≥≥≥4(k+1)(k+2), then such a rule is 

the imitation rule.  

 

III.2. Fixed µµµµ, 0<µ<1 

 

From proposition 3 and theorem 2, we conclude that all agents must play the strategy 

S in the long run, because all agents play the strategy S in every absorbing state. This result is 

consistent with similar results in Saez-Marti and Weibull (1999), Matros (2000) and 

Josephson (2002). 

 

IV. Conclusion 

 

This paper analyzes the evolutionary version of the Public Good game where agents 

can use two decision rules. I model this framework as a Markov chain on a finite state space. 

It is shown that the short run behavior of the system can have four types: (i) all agents play 

the cooperative production strategy, (ii) all agents play the rational selfish non-productive 

strategy, (iii) there are agents playing both strategies so that between two clusters of agents 

playing the cooperative strategy there is a cluster of two agents playing the rational strategy 

or (iv) there are agents playing both strategies so that between two clusters of agents playing 

the cooperative strategy there is a cycle, when the number of agents playing the rational 

strategy in the cluster varies from one to 2k+1, then to three and then back to one. 



 24

This result is consistent with the results in Bergstrom and Stark (1993) and Eshel, 

Samuelson, and Shaked (1998), where agents use only the imitation rule and have two, k=1, 

or four, k=2, neighbors. One of the contributions of this paper is to show that this result is 

robust to the introduction of the best reply rule into the system. 

 Another contribution is a condition - Theorem 3 - between the number of neighbors, k, 

and the total number of the agents, N, which completely describes the long run behavior of 

the perturbed process. So far in the literature (see Bergstrom and Stark (1993) and Eshel, 

Samuelson, and Shaked (1998)) only the two, k=1, and four neighbor, k=2, cases have been 

considered. I demonstrate that even with the possibility of using the best reply rule, the 

cooperative irrational behavior might be sustained not only in the short run, but also in the 

long run. At the same time, my condition shows the limit of Eshel, Samuelson, and Shaked 

(1998) results for an arbitrary number of neighbors. They fix the number of the neighbors, 

two or four, and find the total number of agents, N, such that the irrational cooperative 

behavior will survive in the long run. Theorem 3 describes the long run outcomes for any 

number of the neighbors, k, and for any total number of agents, N. 

 Theorem 3 also reveals that it is enough to have just one decision rule per agent in 

order to obtain the same long run outcomes as we obtain in the case of the sets of two decision 

rules. Which rule to use for this purpose depends on the parameters N and k of the model. 

This result is very important, because it means that we can use simple models with just one 

decision rule to analyze human behavior: the long run prediction is the same with more 

complicated models. It is an open and interesting question for the future research: whether it 

is always the case that for any sets of decision rules and any game there always exists a 

unique decision rule per agent, such that the long run prediction in both cases are the same. 

In concluding it should be noted that my model could be extended to the case where 

agents can use any sets of rules. For discussion of this see my companion paper, Matros 
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(2002), where I analyze a bigger set of rules, but assume that agents have a positive 

probability to use any rule from their sets of rules in every period. It is possible that the 

different choices of the set of rules may change the results of this paper, but the exploration of 

this possibility is left for future research. 

 

Appendix A 

 

PROOF OF PROPOSITION 2: It is straightforward that the states in which all agents play the 

strategy S or all agents are imitators playing the strategy P are absorbing. 

 To find the remaining recurrent classes, consider what happens to a cluster of imitators 

playing the strategy P. From conditions (A) – (D), it follows that any cluster of the strategy P 

of the length one, two or three will immediately disappear. So, imitators can play the strategy 

P in groups of the length four or longer. Consider what happens to a cluster of agents playing 

the strategy S. From the condition (6), it follows that any such a cluster of the strategy S of the 

length three or longer will shrink in the following period.3 It will shrink until the cluster 

becomes the length of two or one. The cluster of agents playing the strategy S of the length 

two will not change. However, if only one agent plays the strategy S among four neighbors, 

each of whom plays the strategy P, then the whole neighborhood – all five agents - will play 

the strategy S in the following period. Note that four neighbors will change their decision 

rules first in the following period. Then this cluster of agents playing the strategy S shrinks to 

the cluster of the length three (two agents change their decision rules from the best reply to 

the imitation), or to the cluster of the length four (one agent changes his decision rules from 

                                                 
3 Note that the “shrinking” agents will change their decision rules. In general it might be the case that some 
agents use the imitation rule to select the strategy S in the current period. These agents will switch to the best 
reply rule and play the strategy S in the following period. However, the strategy choices of imitators, who play 
the strategy P, do not change in these circumstances and after finite number of periods the cluster of agents 
playing the strategy S of length one or two will arise. 
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the best reply to the imitation and the other switches from the imitation to the best reply). 

Then the cluster of the strategy S shrinks to the length one or two and the cycle is repeated 

again. 

 

PROOF OF THEOREM 1: It is obvious that the states in which all agents play the strategy S 

or all agents are imitators playing the strategy P are absorbing. 

 To find the remaining recurrent classes, consider what happens to a cluster of imitators 

playing the strategy P. Note that any cluster of the strategy P of the length 1, 2,…, k+1 will 

immediately disappear. So, imitators can play the strategy P in groups of the length k+2 or 

longer. Consider what happens to a cluster of agents playing the strategy S. Any such a cluster 

of the length three or longer will shrink in the following period.4 It will shrink until the cluster 

of the strategy S of the length of two or one. The cluster of agents playing the strategy S of the 

length two will not change. However, if there is only one agent who plays the strategy S 

among her 2k neighbors, each of whom plays the strategy P, then the whole neighborhood – 

all 2k+1 agents - will become maximizers and play the strategy S in the following period. 

Then this cluster of agents playing the strategy S shrinks to the cluster of the length three, 

then one and the cycle is repeated again. 

 

PROOF OF PPOPOSITION 3: It is immediate that any state from the set {(•••• ,S)} is absorbing. 

We will show that there are no other absorbing states. Suppose that the unperturbed process 

ADN,k,µµµµ,0 is in an arbitrary state in period t. There is a positive probability that every agent 

uses the best reply rule in period t+1, because µ>0 and fixed. It means that all agents will play 

the dominant strategy S in period t+1. 

                                                 
4 It might stay the same size one more period if some agents use the imitation rule to select the strategy S in the 
current period. These imitators will switch their decision rule to the best reply and will play the strategy S again 
in the following period. Imitators, who play the strategy P in the current period, will use the same rule in the 
following period and play the strategy P. 
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Appendix B 

 

We will need the following definitions. 

 

Definition 1: ADN,k,εεεε,εεεε is a regular perturbed Markov process if ADN,k,εεεε,εεεε is irreducible for 

every εεεε, such that εεεε∈∈∈∈ (0,εεεε*], and for every state h, h′∈∈∈∈ ({P, S})N×({BR, IM})N, ADN,k,εεεε,εεεε
hh’ 

approaches ADN,k,0,0
hh’ at an exponential rate, i.e. limεεεε→→→→0ADN,k,εεεε,εεεε

hh’=ADN,k,0,0
hh’ and if 

ADN,k,εεεε,εεεε
hh’>0 for some εεεε>0, then 0<limεεεε→→→→0ADN,k,εεεε,εεεε

hh’/(εεεεr
h→h′))<∞ for some rh→h′≥0. The real 

number rh→h′ is the resistance of the transition h→h′. 

 

LEMMA 1: The adjusted dynamics process ADN,k,εεεε,εεεε is a regular perturbed Markov process. 

 

PROOF: ADN,k,εεεε,εεεε is a regular perturbed Markov process for the same reason as shown by 

Young (1998) when he considers adaptive play. 

 

Definition 2: (Young, 1993) Let ρρρρ(εεεε) be the unique stationary distribution of an irreducible 

process ADN,k,εεεε,εεεε. A state h is stochastically stable if limεεεε→→→→0ρρρρh(εεεε)>0. 

 

Let the process ADN,k,εεεε,εεεε have recurrent classes E1,...,EM. For each pair of distinct 

recurrent classes, a pq-path is a sequence of states ζ=(hp,...,hq) beginning in Ep and ending in 

Eq. The resistance of this path is the sum of the resistances on the edges composing it. Let rpq 

be the least resistance over all pq-paths. Construct a complete directed graph with M vertices, 

one for each recurrent class. The weights on the directed edge Ep→Eq is rpq. A tree rooted at 

El is a set of M-1 directed edges such that, from every vertex different from El, there is a 
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unique directed path in the tree to El. The resistance of such a rooted tree Ψ(El) is the sum of 

resistances rpq on its M-1 edges. The stochastic potential of a recurrent class El is the 

minimum resistance over all trees rooted at El. The following theorem is analogous to results 

of Freidlin and Wentzell (1984) on Wiener processes. Foster and Young (1990) introduced 

the theorem to economics for continuous state spaces. Young (1993, 1998) contains a discrete 

version of the theorem. 

 

THEOREM 2: (Young 1998) Let ADN,k,εεεε,εεεε be a regular perturbed Markov process and let 

ρρρρ(εεεε) be the unique stationary distribution of ADN,k,εεεε,εεεε, for εεεε>0. Then, limεεεε→→→→0ρρρρ(εεεε)=ρρρρ(0) exists 

and is a stationary distribution of ADN,k,0,0. The stochastically stable states are precisely the 

states contained in the recurrent classes of ADN,k,0,0, having minimum stochastic potential. 

 

PROOF OF PROPOSITION 4: From Proposition 1, it follows that any absorbing state can 

contain N, N-2, N-3, N-4,…, 4, 3 or 0 imitators, who are playing the strategy P. Note that it is 

enough to make just one error to move from an absorbing state with m imitators, playing the 

strategy P, to an absorbing state with m-1 imitators, playing the strategy P, where 

m∈∈∈∈ {4,5,…,N-2}. Similarly, one error is enough to move from the absorbing state, where N 

imitators play the strategy P, to the state, where N-3 imitators play the strategy P; and from 

the absorbing state, where 3 adjacent imitators play the strategy P and other agents play the 

strategy S, to the state, where all agents play the strategy S. Note that there must be at least 

three errors to leave the state, where all agents play the strategy S. It means that the states 

where all agents play the strategy S have minimal stochastic potential. 

 

PROOF OF PROPOSITION 5: From Proposition 2, it follows that any recurrent class can 

contain N, N-2, N-3, N-4,…, 5, 4, or 0 imitators, who are playing the strategy P. Note that it 
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is enough to make just one error to move between two recurrent classes, which have a cluster 

of the strategy P of the length m and a cluster of the strategy P of the length m+1, where 

m∈∈∈∈ {3,4,…,N-3}. One error is enough to move between the absorbing state {P;IM} and 

recurrent classes, where N-2 imitators play the strategy P. It means that all recurrent classes 

different from the absorbing states in which all agents play the strategy S have the same 

stochastic potential. 

Four errors are required to move from the absorbing state in which all imitators play 

the strategy S, to states in which only 2 agents play the strategy S (for N even), or to sets of 

blinkers in which 1, 5, or 3 agents play the strategy S. Note that all absorbing states in the set 

{(S;•••• )} have the same stochastic potential, because one error is enough to move between 

absorbing states {S;BR} and {(S,…,S);(IM,BR,…,BR)}, {(S,…,S);(IM,IM,BR,…,BR)} and 

{(S,…,S);(IM,BR,…,BR)}, …, {S;IM}, and {(S,…,S);(IM,…,IM,BR)}. 

What is the smallest number of errors, which it is necessary to make in order to move 

from a recurrent class with at least four imitators, who play the strategy P, to a recurrent class, 

where all agents play the strategy S? Proposition 2 tells us that the string of imitators playing 

the strategy P is at least of the length four and the string of the strategy S is at most of the 

length five in any recurrent class. There must be at least one error per string of the strategy P 

in order to move to an absorbing state, where all agents play the strategy S. After such an 

error every string of the strategy P must be at most of the length three in order to disappear in 

the following period. It is possible for a string of the maximal length of seven. That string 

must be between two strings of the strategy S, each of those has the maximal length of five. 

Hence, at least N/12 errors are necessary to move from any recurrent class to an absorbing 

state in which all agents play the strategy S. It means that all absorbing sets except the states, 

where all agents play the strategy S, have minimal stochastic potential, if N>48. 
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PROOF OF THEOREM 3: From Theorem 1, it follows that any recurrent class can contain N, 

N-2, N-3, N-4,…, k+3, k+2, or 0 imitators, who are playing the strategy P. Note that it is 

enough to make just one error to move between two recurrent classes, which have a cluster of 

the strategy P of the length m and a cluster of the strategy P of the length m+1, where 

m∈∈∈∈ {k+2,k+3,…,N-3}. One error is enough to move between an absorbing state {P;IM} and 

an absorbing state, where N-2 imitators play the strategy P. It means that all recurrent classes 

different from the absorbing states in which all agents play the strategy S have the same 

stochastic potential. 

(k+2) errors are required to move from the absorbing state in which all imitators play 

the strategy S to a recurrent class in which only 2 agents play the strategy S (for N even) or to 

sets of blinkers in which 1, 2k+1, or 3 agents play the strategy S. These (k+2) errors must 

create a cluster of the strategy P of the length k+2. Note that all absorbing states in the set 

{(S;•••• )} have the same stochastic potential, because one error is enough to move between 

absorbing states {S;BR} and {(S,…,S);(IM,BR,…,BR)}, {(S,…,S);(IM,IM,BR,…,BR)} and 

{(S,…,S);(IM,BR,…,BR)}, …, {S;IM}, and {(S,…,S);(IM,…,IM,BR)}. 

What is the smallest number of errors, which it is necessary to make in order to move 

from a recurrent class with at least (k+2) imitators, who play the strategy P, to a recurrent 

class, where all agents play the strategy S? Theorem 1 tells us that the string of imitators 

playing the strategy P is at least of the length (k+2) and the string of the strategy S is at most 

of the length (2k+1) in any recurrent class. There must be at least one error per string of the 

strategy P in order to move to an absorbing state, where all agents play the strategy S. After 

such an error every string of the strategy P must be at most of the length (k+1) in order to 

disappear in the following period. It is possible for a string of the maximal length of (2k+3). 

That string must be between two strings of the strategy S, each of those has the maximal 

length of (2k+1). Hence, at least N/[(2k+3)+(2k+1)]=N/4(k+1) errors are necessary to move 
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from any recurrent class to an absorbing state in which all agents play the strategy S. It means 

that all recurrent classes except the absorbing states, where all agents play the strategy S, have 

minimal stochastic potential, if (k+2)<N/4(k+1), or 4(k+1)(k+2)<N. The statement of the 

theorem follows immediately. 
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