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Novelty and Impact Statement 

Early detection of epithelial ovarian cancer (EOC) remains a substantial clinical challenge. We leveraged in 

vitro three-dimensional models to identify biomarkers secreted by ovarian cells at the earliest stages of 

neoplastic transformation. In an analysis of >200 primary tumours, 3 of the biomarkers identified were 

associated with high tumour grade in early-stage EOCs. We also identified novel prognostic biomarkers. This 

report demonstrates the value of transformation models for discovery of candidate tumour biomarkers. 
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Abstract 

Epithelial ovarian cancer is still considered the most lethal gynecological malignancy and improved early 

detection of ovarian cancer is crucial to improving patient prognoses. To address this need, we tested whether 

candidate EOC biomarkers can be identified using three-dimensional in vitro models. We quantified changes in 

the abundance of secreted proteins in a 3D genetic model of early-stage EOC, generated by expressing 

CMYC and KRASG12V in TERT-immortalized normal ovarian epithelial cells. Cellular proteins were labeled in 

live cells using stable isotopic amino acid analogues, and secreted proteins identified and quantified using 

liquid chromatography-tandem mass spectrometry. 37 and 55 proteins were differentially expressed by CMYC 

and CMYC+KRASG12V expressing cells respectively (P<0.05; >2-fold). We evaluated expression of the top 

candidate biomarkers in ~210 primary EOCs: CHI3L1 and FKBP4 are both expressed by >96% of primary 

EOCs, and FASN and API5 are expressed by 86% and 75% of cases. High expression of CHI3L1 and FKBP4 

was associated with worse patient survival (P=0.042 and P=0.002 respectively). Expression of LGALS3BP was 

positively associated with recurrence (P=0.0001) and suboptimal debulking (P=0.018) suggesting that these 

proteins may be novel prognostic biomarkers. Furthermore, within early stage tumours (I/II), high expression of 

API5, CHI3L1 and FASN was associated with high tumour grade (P=3x10-4, P=0.016, P=0.010, respectively). 

We show in vitro cell biology models of early-stage cancer development can be used to identify novel 

candidate biomarkers for disease, and report the identification of proteins that represent novel potential 

candidate diagnostic and prognostic biomarkers for this highly lethal disease. 
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Introduction  

Despite recent advances in surgery and chemotherapy, epithelial ovarian cancer (EOC) remains the most 

lethal gynecologic malignancy, mainly due to the absence of specific symptoms and a lack of effective 

screening tools. The majority of patients present with advanced stage disease where the 5-year survival rate is 

only 27%. For advanced stage tumours, recurrence rates are over 60 per cent, and 20 per cent of these 

patients respond poorly to platinum-based chemotherapy. Therefore, detecting patients with early EOC 

continues to be an urgent clinical need and it remains a clinical priority to detect high-grade serous EOC early 

during disease development.  

Given the difficulties accessing the ovary for biopsy and the rapid rate at which the most aggressive EOC 

subtypes progress, the identification of clinical biomarkers detectable in the blood would represent a significant 

advance for the identification of patients with EOC. Currently the most widely used ovarian cancer biomarker is 

serum CA125, and this marker is particularly good at detecting disease recurrence. A second marker, HE4, 

was approved in 2009 for monitoring ovarian cancer progression, and can be elevated in EOC patients in the 

absence of CA125. However both CA125 and HE4 show poor specificity for ovarian cancer and can be 

elevated in other cancer types, such as endometrial cancer 1-3, or benign conditions such as endometriosis. 

Moreover neither marker can reliably detect early-stage EOC. It is clear that improved diagnostic tools are 

urgently needed, particularly for diagnosing ovarian cancer in premenopausal women 4. One of the major 

challenges in diagnosing ovarian cancer is that the associated symptoms are broad and non-specific to this 

disease. In cases of suspected EOC, levels of serum CA125, often together with HE4, are measured and a 

pelvic ultrasound performed. In the United States, a Risk of Malignancy Algorithm (ROMA) score is then 

calculated, which also takes into consideration menopausal status and serum CA125 plus HE4 levels. Women 

with suspected malignancies are immediately referred to a specialist multidisciplinary team for treatment, but in 

the majority of cases, women diagnosed with sporadic EOC only become symptomatic once disease has 

spread throughout the peritoneum. Consequently most cases of EOC are diagnosed at an advanced stage.  

Ideally, women over the age of 40 or with a family history of breast and ovarian cancer who are at the greatest 

risk of developing EOC would regularly be screened for an early-stage EOC biomarker and late-stage 

detection would be a rare occurrence. Unfortunately there is currently no known biomarker that is sensitive or 
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specific enough to be used to screen for early-stage EOC. The discovery and development of reliable 

biomarkers for early-stage ovarian cancer have no doubt been hindered by the scarcity of tissue and sera 

specimens from these patients. Some of the challenges of performing biomarker discovery using human serum 

specimens include variations due to sample processing, inter-patient variability and histological heterogeneity. 

Alternative approaches to biomarker discovery involve the analysis of in vitro or in vivo models. Some good in 

vivo models have recently been developed for certain ovarian cancer histotypes 5-9 and xenograft models have 

been shown to be a valuable part of biomarker development for breast cancer 10. In vitro genetic models can 

also be developed, and in our laboratory we have developed three-dimensional models of early-stage ovarian 

cancers that mimic the molecular profiles of human ovarian cancers 11, 12. In this study we sought to use a 

sensitive quantitative mass spectrometry approach to analyze proteins differentially expressed and secreted in 

our models of early-stage ovarian cancer, coupled with a comprehensive analysis of candidate biomarker 

expression in a large series of primary human ovarian cancer specimens. We demonstrate that using in vitro 

genetic models of ovarian cancer is a highly effective approach to the discovery of much needed candidate 

biomarkers for EOC. 
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Results 

Analysis of the Secretome of Early-Stage Models of Epithelial Ovarian Cancer 

Overexpression of CMYC and deregulation of the MAPK pathway (usually due to activating mutations in 

KRAS) are common events across all EOC histotypes (Figure 1a), with CMYC amplification/overexpression 

occurring in 39-67% of cases, and MAPK pathway activation in 40-67% of cases 13-20. We developed models of 

early ovarian cancer by stably overexpressing CMYC and KRASG12V in two phenotypically normal TERT-

immortalised ovarian surface epithelial cell lines derived from two different patients (IOSE11 and IOSE19).  

Overexpression of CMYC alone (IOSE11CMYC and IOSE19CMYC, collectively termed IOSECMYC) was sufficient to 

induce anchorage-independent growth and reduced rates of apoptosis. Subsequent expression of KRASG12V 

(IOSE11CMYC.KRAS and IOSE19CMYC.KRAS, collectively termed IOSECMYC.KRAS) resulted in increased cellular 

invasion. When grown as three-dimensional (3D) cultures, the marker expression, histology and transcriptomic 

profiles of these transformation models reflected those of human tumours 11, 21.  

To identify novel candidate biomarkers of EOC, we labeled the transformation models with both heavy and 

light amino acids to enable us to perform stable isotope labeling by amino acids in cell culture (SILAC). The 

labeled IOSE, IOSECMYC and IOSECMYC.KRAS cell lines were cultured as 3D spheroids and secreted proteins 

harvested. Quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to accurately 

quantify changes in the abundance of secreted proteins between the normal and transformed cell lines. A total 

of 1,241 protein groups were identified by LC-MS/MS, with 2,633 protein quantifications determined across 

reciprocally labeled duplicates of the three sample groups (IOSE, IOSECMYC and IOSECMYC.KRAS) which were 

each equal pools of two separate clones (see Supplementary Table 1 for complete dataset). When fold-change 

(>2 or <0.5-fold) and P value (P<0.05) cut-offs were applied, 32 proteins were up-regulated and 5 proteins 

were down-regulated in the IOSECMYC models, while 54 proteins were up-regulated and 1 down-regulated in the 

IOSECMYC.KRAS models, compared to parental IOSE cells (Supplementary Table 2).  

Gene ontology (GO) analyses of proteins specific to the IOSECMYC models revealed significant enrichment of 

proteins involved in extracellular matrix reorganization (P=0.012) and hypoxia (P=0.020) (Figure 1b), whereas 

terms specific to CMYC and KRASG12V expression were predominantly associated with RNA metabolism and 

splicing (Figure 1c). Inosine monophosphate (IMP) and purine processing were significantly enriched in the list 
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of proteins commonly changing in both the IOSECMYC and the IOSECMYC.KRAS models (Figure 1d). In the analysis 

of proteins commonly changing in both models, the most significantly enriched cellular compartment term was 

“proteinaceous extracellular matrix” (P=0.035); as expected our methodology enriched for proteins expressed 

in the extracellular milieu. 

13 gene products were significantly changing >2-fold in both the IOSECMYC and IOSECMYC.KRAS models: ADSl, 

API5, CHI3L1, CPE, FASN, FKBP4, LGALS3BP, NDRG1, PFAS, RCC2, SORD, TIMP1 and U2AF2. Proteins 

were prioritized based on subcellular location, and, using gene expression data from The Cancer Genome 

Atlas (TCGA), on directionality of changes in expression in our data and primary ovarian tumours (Table 1 and 

Figure 2). Using this approach we prioritized additional proteins that were unique to each gene: PCOLCE was 

highly up-regulated in the KRASG12V model, and PARP1, CSF1, POSTN and DPP4 were differentially 

expressed in the CMYC model. We were able to validate the findings of the MS-based analysis for API5, 

CHI3L1, CPE, FASN, FKBP4, NDRG1, PFAS, SORD, POSTN, PARP1, PCOLCE and DPP4 by 

immunoblotting the individual clones of the test samples (Figure 2a and c). CHI3L1, FASN, SORD, API5, 

FKBP4 and PFAS were all reproducibly up-regulated in IOSECMYC and IOSECMYC.KRAS models, detected both in 

secreted and total cell lysates (Figure 2a and Table 1). Results for LGALS3BP, RCC2 and CSF1 were 

equivocal (data not shown).  

Tissue Microarray Analysis of Novel EOC Biomarkers 

Antibodies for 8 proteins (API5, CHI3L1, FASN, FKBP4, LGALS3BP, PCOLCE, PFAS and SORD) were 

suitable for immunohistochemistry in primary tissues; five of these (API5, CHI3L1, FASN, FKBP4, and 

LGALS3BP) showed strong expression in at least half of a test set of 6-8 primary ovarian tumour tissues 

(Table 1). We expanded the analysis of these five proteins, by evaluating their expression in ~210 primary 

EOCs. Immunohistochemical staining was performed in primary EOC tissues organized in two tissue 

microarrays (TMAs) that included 101 early stages (stage I/II) tumours of mixed histologies (summarized in 

Supplementary Table 3). Examples of the staining can be found in Figure 3. CHI3L1 and FKBP4 were both 

expressed by 96% of all EOCs overall, FASN by 86%, API5 by 75% and LGALS3BP by 56% of tumours. We 

also evaluated expression of API5, CHI3L1, FASN, FKBP4, and LGALS3BP in 2 histologically normal ovaries; 

API5, FASN and LGALS3BP showed no expression in normal ovarian tissues, while CHI3L1 and FKBP4 
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showed weak expression in 1/2 and 2/2 cases respectively. Analysis of NDRG1 was also performed; NDRG1 

was expressed in 47% of early stage and 36% of late stage ovarian cancers. A detailed analysis of this 

potential biomarker can be found in the report of Pejovic et al (manuscript in preparation). 

We tested for associations between biomarker expression and clinico-pathological characteristics, comparing 

tumours exhibiting negative protein staining (0) to all tumours with evidence of positive staining (weak staining, 

1; moderate staining, 2 and strong staining, 3). We also compared negative and weakly expressing tumours 

(0,1) with moderate and strongly stained tumours (2,3) (Supplementary Tables 4-9). Expression of all 5 

candidates was significantly associated with high tumour grade in at least one analysis (P<0.05, Fisher’s exact 

test). When we tested for associations with tumour stage, API5 expression was positively associated with 

tumour stage with stage IV tumours showing the highest expression (P=0.009). We also found evidence of 

associations with stage for LGALS3BP (P<0.0001), which was expressed in 43 percent of stage I/II tumours 

and 62 percent of stage III/IV tumours, and for FASN (P=0.046).  

Given the urgent need to diagnose high-grade tumours at an early stage, we analysed marker expression in 

early-stage tumours specifically (stage I/II). Each biomarker was expressed in early-stage tumours; FASN, 

FKBP4 and CHI3L1 were expressed in greater than 91 per cent of early-stage cases. In early-stage tumours 

(I/II), expression of API5, CHI3L1 and FASN was associated with high tumour grade (FIGO G2 and G3) 

P=3x10-4, P=0.016, P=0.010, respectively, Table 2). Expression of API5, FKBP4 and LGALS3BP was 

positively associated with tumour recurrence (P=0.010, P=0.029 and P=1.0x10-4) and positive expression of 

LGALS3BP was associated with optimal debulking status (P=0.018) as well as patient age (P=0.005).  

For some of the markers, expression was associated with histological subtype. API5 expression was 

heterogeneous across histotypes (P=6.0x10-4, ANOVA), with serous and clear cell tumours showing the 

highest frequencies of expression. CHI3L1 expression was lower in mucinous EOCs compared to other 

histotypes (P=0.019) and LGALS3BP expression was highest in serous and mucinous tumours (P=0.019). 

FASN and FKBP4 expression showed no reproducible associations with histotype.  

Kaplan-Meier survival analyses with log-rank testing were performed to test for associations between 

biomarker expression and survival. Positive expression of CHI3L1 and FKBP4 was associated with 

significantly worse overall survival (P=0.002 and P=0.042, respectively) (Figure 4). Finally, we performed 
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survival analyses for the top 5 biomarkers using gene expression data for ~780 serous ovarian cancers, 

adjusted for age, stage and debulking status; higher expression of FASN and LGALS3BP was associated with 

improved overall survival (P=0.024 and P=0.001 respectively, Cox regression analyses, Wald statistics) 

(Supplementary Table 10). 
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Discussion 

Ovarian cancers are highly lethal malignancies, and it is clear that substantial reductions in patient mortality 

could be achieved by earlier detection. Given the difficulties accessing the ovary for biopsy, and the rapid rate 

at which some EOCs progress, a blood-based biomarker would be the ideal modality for epithelial ovarian 

cancer (EOC) screening. While CA125 is an excellent biomarker for monitoring disease recurrence, in the 

Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening trial of over 28,000 women, screening with 

CA125 had no effect on ovarian cancer mortality rates 22 and so it is clear that novel biomarkers for early stage 

detection are urgently needed. This study aimed to address this need by using gene-specific 3D cell biology 

models of ovarian cancer for the discovery of novel candidate diagnostic biomarkers, followed by validation in 

a large series of >200 primary EOC tissues. We discovered a number of promising candidate biomarkers, 

including API5, CHI3L1, FKBP4, FASN and LGALS3BP. The most commonly expressed biomarker in our 

study was FKBP4, which was expressed by 96.1% of EOCs, with moderate and strong staining in 82.8% of 

cases. Moderate or high FKBP4 expression was also associated with a poorer prognosis. FKBP4 has not 

previously been implicated in EOC development, but this protein may have a role in regulating the response to 

steroid hormones, exposure to which significantly modulates a woman’s risk of EOC. FKBP4 is a co-chaperone 

known to be involved in steroid hormone receptor signaling, including that of the progesterone receptor 23 and 

expression of FKBP4 is vital for uterine receptivity required for embryo implantation 24. While FKBP4 has not 

been extensively studied in cancer, a recent study correlated FKBP4 expression with resistance to doxorubicin 

and docetaxel in breast cancer 25.  

FASN was also frequently expressed in EOC specimens. FASN has also not previously been reported as a 

diagnostic biomarker for EOC, but it is known to be overexpressed in many cancers and has been proposed as 

a therapeutic target in ovarian cancer and other malignancies 26-29. FASN expression is positively correlated 

with ER and PR expression in endometrial cancer 27 and has been implicated in ERBB receptor signaling in 

ovarian cancer 28. FASN is involved in the synthesis of long chain saturated fatty acids, which are components 

of lipid rafts on the cell membrane that form sites of transmembrane protein localization. Treatment with a 

FASN inhibitor inhibited cell growth in vitro and in vivo, reduced PI3K signaling, and induced the apoptosis of 

chemoresistant ovarian cancer cells 28, 29. Not only is FASN up-regulated in our model of EOC development 
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derived from ovarian surface epithelial cells, but FASN is also up-regulated in early EOC precursor lesions in 

the fallopian tube, which are also cells of origin for a subset of ovarian cancers, further evidence to suggest 

that FASN may be a reliable biomarker of early-stage EOC 30. 

Of the biomarkers identified, CHI3L1 has been most widely studied as an EOC biomarker 31-39 and it was first 

postulated as an early-stage EOC biomarker a decade ago 34. In our study, CHI3L1 was expressed in the 

majority of EOC cases, with 66% of early-stage tumours showing moderate or strong expression. CHI3L1 is a 

secreted glycoprotein that can be detected in the blood, and in EOC patients plasma levels of CHI3L1 

positively correlate with tumour grade 37 and previous studies find that CHI3L1 appears to offer no advantage 

over CA125 as a screening biomarker for detection of early-stage EOC 32. In our study CHI3L1 was strongly 

associated with a poorer prognosis, and high serum CHI3L1 is reportedly an independent negative prognostic 

factor in EOC patients 33, 36, so while CHI3L1 is unlikely to be a useful diagnostic biomarker, it may be a useful 

prognostic tool.  

While LGALS3BP was expressed at the lowest frequency (56%) of the biomarkers identified, this protein is 

nonetheless of interest as a cancer biomarker. Functional data suggest that LGALS3BP is a multi-functional 

protein with a role in centrosome biology 40 and the promotion of oncogenic signaling via integrins 41. 

LGALS3BP has shown promise as a biomarker of early neuroblastoma and neuroblastoma relapse and can be 

readily measured in blood sera by ELISAs 42. LGALS3BP expression occurs in multiple cancer types, which 

may suggest it may not be an optimal biomarker for EOC due to a lack of specificity, but that this protein may 

be generally involved in tumourigenesis and may therefore represent a novel therapeutic target. LGALS3BP 

demonstrated strong associations with clinical parameters; positive staining of LGALS3BP protein was strongly 

associated with tumour recurrence and optimal debulking, suggesting a biological role for LGALS3BP in 

promoting aggressive tumour phenotypes. Whilst we did not detect an association with LGALS3BP protein and 

survival in the Kaplan-Meier survival analyses, we did note an association between positive LGALS3BP 

expression and worse survival that was nearing statistical significance (P=0.075). Further analyses into the 

functional role of LGALS3BP in models of advanced EOC are clearly warranted. 

As part of this study we also performed survival analyses for the top 5 candidate biomarkers, based on protein 

expression in ~200 EOC cases, and gene expression in ~800 serous ovarian cancer cases. We identified 
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CHI3L1, FKBP3, FASN and LGALS3BP as novel prognostic biomarkers. These gene expression and protein 

analyses identified different results, which is likely due to the differences in sample size between the two 

analyses, and the relatively low concordance between gene expression and protein abundance. However both 

RNA and protein biomarkers can be useful clinical biomarkers and it is clear that the prognostic markers we 

identified warrant further study as prognostic tools or therapeutic targets. 

Additional candidates that we identified but did not follow-up in more detail also warrant further study, such as 

CSF1, PARP1, PCOLCE, THBS1 and TIMP1. Notably, of these, PARP1 is known to be commonly expressed 

in EOC 43 and is an effective anti-cancer therapy target, but as yet, has not been evaluated as a blood-borne 

biomarker for EOC. Other candidate markers we identified are less well characterized. For example, API5 is an 

anti-apoptotic protein and has not previously been reported as a biomarker, but was strongly, positively 

associated with tumour grade in early-stage EOCs, which may suggest a role for this protein in the 

development of apoptosis resistance during tumourigenesis in high-grade ovarian cancer. 

We used a model that is based on deregulation of the MAPK/PI3K pathways and overexpression of CMYC. 

This study also provides insight into novel functions for CMYC and KRASG12V in ovarian cancer biology. Most 

notably, in cells expressing KRASG12V we detected an enrichment of proteins involved in RNA splicing and 

RNA processing. While MAPK signaling has been previously implicated in splicing of single RNA molecules 44, 

these data suggest that mutant KRAS expression may affect splicing on a global level, through interactions 

with splicing factors such as SF3A1 and SF3B1. The receptor tyrosine kinase-MAPK pathway is altered in 40% 

of EOCs 15 and CMYC in up to 67 percent of cases overall, while 8q24, the CMYC locus, is associated with 

genetic susceptibility to EOC in the general population 45. Although the biomarkers we identified were found to 

be relevant to the majority of EOCs, not all EOCs harbor alterations in these pathways, and MAPK/PI3K 

signaling is more commonly deregulated in certain histological subtypes versus others. Moreover, it is now 

clear that ovarian cancer subtypes arise from different cellular precursors, including fallopian tube secretory 

epithelial cells 5, 46 and endometriosis epithelial cells 9, 47. Additional models may be developed using these cell 

types, with subtype-specific alterations such as p53, PAX8 and BRCA1 loss to mimic in the development of 

high-grade serous ovarian cancer, or HNF1B overexpression to model the early development of clear cell 

ovarian cancer. Analysis of the secretome of a series of histotype-specific early-stage models could be used to 
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develop a panel of diagnostic biomarkers that would be expected to show greater sensitivity and specificity 

than any one biomarker alone. One caveat with this approach is that our hypothesis is based on the 

assumption that early-stage detection can prevent advanced-stage disease. This is strongly supported by 

clinical evidence that patients with high-grade serous cancer detected at stage I/II have better overall survival 

than patients with high-grade serous ovarian cancer detected at stage III/IV 48. The results of large-scale 

ongoing screening trials, particularly the UKCTOCS study 49, will therefore be of significant relevance to 

biomarker discovery studies for EOC; this trial will report on whether early-stage detection can improve 

mortality, an assumption that has yet to be definitively demonstrated for EOC, but is key to the successful 

translation of early-stage biomarkers into the clinical setting. 

To explicitly demonstrate the clinical potential of these biomarkers, the next stage for this research will be to 

test the abundance of these candidate biomarkers in the blood sera of women preceding a diagnosis of 

ovarian cancer. Four of the top five biomarkers identified were expressed in the majority of EOCs, three of 

which (API5, CHI3L1 and FASN) were associated with higher tumour grade in early-stage tumours. Early-

stage high-grade tumours are a group of malignancies that most urgently need early detection, suggesting 

follow-up of API5, CHI3L1 and FASN in patient sera specimens should be prioritized. In addition, high 

expression of these 3 proteins (CHI3L1, FKBP4, and LGALS3BP) was associated with worse disease 

outcome, making them potential prognostic factors. While this study demonstrates a proof-of-principle, 

ultimately it is hoped that these biomarkers could lead to much needed earlier detection of ovarian cancer. 
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Materials and Methods 

Cell Culture and SILAC Labeling  

Immortalized ovarian surface epithelial cell lines (IOSE11, IOSE19) and those overexpressing CMYC 

(IOSE11CMYC, IOSE19CMYC) and expressing mutant KRAS (IOSE11CMYC.KRAS, IOSE19CMYC.KRAS) have been 

previously described 11, 21. Cell lines were routinely tested for Mycoplasma contamination and profiled by STR 

typing at the University of Arizona Genomics Core facility for authentication. Cells were transferred into SILAC 

DMEM (Pierce) with 15% dialyzed fetal bovine serum, suitable for SILAC (Sigma). Heavy or light arginine and 

lysine (Pierce) were added to the cell culture media such that the two clones of each cell line were reciprocally 

labelled. Culture media were also supplemented with 0.5 µg/mL hydrocortisone, 5 µg/mL insulin (both Sigma) 

and 10 ng/mL epidermal growth factor (Invitrogen); media for the CMYC and CMYC+KRASG12V overexpressing 

cell lines was additionally supplemented with 3 µg/mL blasticidin-S hydrochloride (Sigma) or 125 or 1000 

µg/mL G418 (for IOSE11 and IOSE19 models, respectively) to maintain selection. Cells were cultured for >6 

passages before use. Total cell lysates were prepared and the labeling efficiency tested by GeLC-MS/MS as 

described below. Labeling efficiency was determined to be >97% for all 6 sample types and arginine to proline 

conversion was determined to be <6% in all cases.  

Preparation of Secreted Proteins 

Plates for three-dimensional culturing were prepared by twice coating P100 dishes with polyHEMA (Sigma) 

dissolved in 95% ethanol (VWR). Coated plates were washed for 5 mins in PBS before use. 50x106 cells were 

plated onto polyHEMA-coated plates for 48 hours to induce spheroid formation. To serum starve, spheroids 

were washed three times with PBS and placed in serum-free media supplemented with heavy or light amino 

acids for 24 hrs. Conditioned media were then harvested, supplemented with protease inhibitor cocktail 

(Sigma) and concentrated using polyethersulfone membrane Vivaspin® 20 columns (Vivaproducts) with a 10K 

molecular weight cut-off. Protein concentrations were then determined using a Bradford assay (Pierce). 

Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) 

Equal amounts of protein from the two clones of each model cell line were mixed according to heavy or light 

labeling status, and then mixed with an equal amount of oppositely labeled parental cell line pool. Thus, the 
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light CMYC and light CMYC+KRASG12V pools were each compared with the heavy IOSE pool and vice versa 

generating 4 samples for analysis. 50 µg protein of each was then separated on a 15 cm 10% SDS-PAGE gel 

and stained with InstantBlue Coomassie stain (Expedeon). Lanes were sliced into 43 pieces. Proteins were 

reduced with dithiothreitol, alkylated with iodoacetamide, digested with trypsin and the resulting peptides 

extracted, all according to our standard procedures 50. Extracted peptides were then analyzed in an LTQ 

Orbitrap XL mass spectrometer (Thermo Scientific) coupled to an Ultimate 3000 chromatography system 

(Dionex). Reversed-phase chromatographic separation was carried out on a 75 µm i.d. X 250 mm Acclaim 

PepMap100 C18 Nanocolumn, 3 µm bead size, 100 Å pore size (Dionex; #164261) with a linear gradient of 

10–50% solvent B (99.9% ACN/0.1% FA). The mass spectrometer was operated in the data-dependent mode 

to automatically switch between Orbitrap MS and iontrap MS/MS acquisition. Survey full scan MS spectra 

(from m/z 390 to 1700) were acquired in the Orbitrap with a resolution of 60,000 at m/z 400 and an automatic 

gain control target value of 5x105 ions. The six most intense ions were selected for CID with fragmentation ions 

detected in the LTQ ion trap. Target ions that had been selected for MS/MS were dynamically excluded for 60 

s. For accurate mass measurement, the lock mass option was enabled using the polydimethylcyclosiloxane ion 

m/z 455.120025) as an internal calibrant. For peptide identification, protein group assembly and relative 

quantification, raw data files produced in Xcalibur software (Thermo Scientific) were processed using 

MaxQuant version 1.3.0.5 (Max Planck Institute of Biochemistry) and searched against the human UniProtKB 

database (release 2012_09 of 03-Oct-12: 538,010 entries). The database was also concatenated with 

reversed copies of all sequences, whereby each lysine and arginine residue was swapped with the preceding 

amino acid for determination of FDR. Searches were performed using the following parameters; MS tolerance 

was set to ±10 ppm and MS/MS tolerance to 0.8 Da, minimum peptide length was set to 7 amino acids and 2 

missed cleavages were allowed. Carbamidomethylation of cysteines was set as a fixed modification, whilst 

methionine oxidation and protein N-terminal acetylation were set as variable modifications. MS/MS spectra, 

pre-determined to result from heavy-labelled peptides were submitted to the database with the Lys6 and Arg10 

labels set as additional fixed modifications, whilst un-determined spectra were searched separately with the 

labels set as variable modifications. Identified peptides and proteins were filtered with an FDR of 1%. 

Whenever the set of identified peptides in one protein was equal to or contained the set of peptides identified in 

another, these two proteins were joined as a protein group. Shared peptides remained in all groups where they 
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were identified, but were most parsimoniously associated with the protein group containing the highest number 

of peptides (razor peptides). Proteins were required to contain at least two peptides, of which one was group 

unique. Peptide ratios were calculated as the median of all evidences of a SILAC peptide pair and were 

normalized separately for lysine and arginine-labeled peptides and for each LC-MS/MS run. Protein ratios were 

calculated as the median of normalized razor and unique peptides and a minimum of 3 ratio counts were 

required for quantification. Protein groups were imported into Perseus (Max Planck Institute of Biochemistry) 

and the significance of up/down-regulated changes in protein expression was determined. Proteins were 

accepted as being significantly up/down-regulated with a significance B value of <0.05. Significance B was 

corrected for multiple-hypothesis testing with a Benjamini-Hochberg FDR.  

Tissue Microarray Construction, Staining and Analysis 

We created a TMA of 55 early-stage ovarian carcinomas at the University of Southern California (USC). Blocks 

of early-stage ovarian tumour specimens were retrieved from the archives at USC+County Hospital. 

Hematoxylin and eosin (H&E) stained tumour sections were examined to identify morphologically 

representative regions. Core biopsies (1 mm diameter) were punched from each tumour and transferred to a 

receiver paraffin block. One section of the TMA was stained with H&E to verify the presence of the tumour. The 

ovarian cancer population-based tissue microarray from Oregon Health & Science University has been 

previously described 43. For immunohistochemical (IHC) staining, sections (4µm) were deparaffinized with 

xylene, then washed with ethanol. Sections were incubated with 3% H2O2 for 10 minutes and blocked for 30 

minutes using a serum-free protein block (Dakocytomation). Sections were treated with an EDTA buffer saline 

solution, microwaved for 20 minutes, and then incubated with primary antibodies (see Supplementary Table 9) 

for 1 hour at room temperature. As a chromogen the diaminobenzidine complex was used. Two pathologists 

(PMF, MS) scored marker expression using a double-head microscope. Intensity of staining was scored as 0, 

negative; 1 low; 2, moderate, and 3, strong. This evaluation was performed twice, with a one-month period 

intervening and there any discordant scoring was reviewed by both pathologists and a consensus reached. We 

tested for differences in marker expression in association with patient characteristics and clinical parameters 

using Fisher’s Exact and Chi Squared Tests. Kaplein-Meier survival estimates using log-rank testing were 
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determined for each marker after stratifying tumours into negative/low expression (0,1) versus moderate/high 

(2,3) expression. 

IRB Approval 

All patient samples used in this study were collected with informed patient consent and all protocols were 

preformed with approval from the institutional review boards at the University of Southern California, University 

College London or Oregon Health & Science University. 

Survival Analyses Using Gene Expression Microarray Data  

The methods for the gene expression survival analyses have been previously described 51. Briefly, the 

CuratedOvarianData 52 were downloaded and data extracted for serous ovarian cancer cases, profiled using 

Affymetrix U133 arrays, where survival outcomes were known. Datasets were combined using the Combat 

method, and Cox regression analyses performed to test for associations between expression of candidate 

genes and overall survival. Analyses were performed in ‘R’ using the Bioconductor package 

(www.bioconductor.org). 
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Figure and Table Legends 

Figure 1. Discovery of candidate biomarkers using genetic models of EOC and gene ontology analyses 

of identified proteins. (a) Frequency of CMYC amplification/overexpression, KRAS mutation and MAPK 

alteration in EOC, stratified by histological subtype. † Frequency of MAPK alterations were calculated as 

cumulative frequencies of KRAS, BRAF, HER2, EGFR and EGFR mutation/overexpression (where available) 

using the references cited. HGSOC, high-grade serous ovarian cancer; EC, endometrioid ovarian cancer; 

CCOC clear cell ovarian cancer; MOC, mucinous ovarian cancer. (b-d) DAVID (david.abcc.ncifcrf.gov) was 

used to perform gene ontology analyses of proteins uniquely changing in (b) IOSECMYC models or (c) 

IOSECMYC+KRAS models. Genes commonly changing following both CMYC and CMYC+KRAS expression are 

shown (d). 

Figure 2. Immunoblotting and analysis of gene expression for the top candidate biomarkers. (a) 

Candidate biomarkers (Table 2) were validated by Western blotting. Western blotting for LGALS3BP, CSF1 

and RCC2 was also performed, but yielded inconclusive results (data not shown). (b) Analysis of gene 

expression for candidate biomarkers using TCGA gene expression microarray data. Statistically significant 

differences in gene expression (tumour versus normal) are indicated in bold (P<0.05). 

Figure 3. Immunohistochemistry of the top 5 candidate novel EOC biomarkers. Examples of negative (0), 

weak (1), moderate (2) and strong (3) staining are shown. LGALS3BP did not show different grades of 

expression and so was scored as negative (0) or positive (1). Brightfield microscopy, brown color indicates 

positive staining, samples were counterstained with eosin (blue). 

Figure 4. Survival Analyses. Moderate or strong expression of (a) CHI3L1 and (b) FKBP4 is associated with 

significantly worse overall survival. Kaplan-Meier survival curves. 

Table 1. Top candidate biomarkers. We selected proteins that were commonly changing in the IOSECMYC and 

IOSECMYC+KRAS models for further follow-up; 13 genes were significantly changing over 2-fold in both sets of 

models, all of which were up-regulated. Four of the top candidates are known MYC targets (FASN, FKBP4, 

NDRG1 and SORD) 53. Candidates were prioritized based on subcellular location and gene expression in The 

Cancer Genome Atlas (TCGA) gene expression microarray dataset of 489 high-grade serous ovarian cancers 

and 8 normal fallopian tubes. † Categories for subcellular location: 0, cytosolic with no evidence of secretion; 1, 
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membrane bound; 2, secreted. # Gene expression in TCGA is opposite to direction in change of protein 

abundance in SILAC experiment and so these candidates were excluded from further analyses. $ U2AF1 and 

ADSL are widely/ubiquitously expressed respectively, and so were excluded from downstream analyses. 

Validation by Western blotting was performed on the secreted protein lysates used for biomarker discovery, as 

well as in independent preparations of total cell lysates (TCLs) from the models cultured in 2D and 3D. 

Immunohistochemistry was performed on whole sections of primary ovarian cancer tissues. % IHC for NDRG1 

was performed as part of a larger study, focused on detailed analysis of NDRG1 (Pejovic et al, manuscript in 

preparation). 

Table 2. Associations between biomarker expression and tumour grade in early stage (I/II) EOCs. 

Statistically significant associations are shown in bold (Fishers Exact Tests). 
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Supplementary Table Legends 

Supplemental Table 1. Full LC-MS/MS dataset showing protein identifications and quantification in the four 

comparisons.  

Supplemental Table 2. Proteins differentially secreted in IOSECMYC and IOSECMYC+KRAS models. Results 

from reciprocal labeling experiments are shown, where fold-change was statistically significant in at least one 

experiment (P<0.05, bold font) and directionality shows the same trend in both experiments. 

Supplemental Table 3. Patient population characteristics for the tissue microarrays used in this study 

Supplemental Table 4. Analysis of API Expression and Associations with Clinical Parameters. Statistically 

significant associations are shown in bold (Fishers Exact and Chi Squared Tests). 

Supplemental Table 5. Analysis of FASN Expression and Associations with Clinical Parameters. Statistically 

significant associations are shown in bold (Fishers Exact and Chi Squared Tests). 

Supplemental Table 6. Analysis of FKBP4 Expression and Associations with Clinical Parameters. Statistically 

significant associations are shown in bold (Fishers Exact and Chi Squared Tests). 

Supplemental Table 7. Analysis of CHI3L1 Expression and Associations with Clinical Parameters. Statistically 

significant associations are shown in bold (Fishers Exact and Chi Squared Tests). 

Supplemental Table 8. Analysis of LGALS3BP Expression and Associations with Clinical Parameters. 

Statistically significant associations are shown in bold (Fishers Exact and Chi Squared Tests). 

Supplemental Table 9. Antibodies used for western blotting and immunohistochemistry; suppliers and 

dilutions used. 

Supplemental Table 10. Survival analyses. Expression of each gene was analyzed as a continuous variable, 

and adjusted for age at diagnosis, stage and debulking status. 
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Table 1 

      Average Fold-change Validation (Western) Immunohistochemistry 

No Models Protein 
Subcellular 
Location

†
 

TCGA P 
Value 

TCGA 
Direction 
(Tumours 
v Normal) 

IOSE v 
CMYC 

 IOSE v 
CMYC+ 
KRAS 

In Discovery 
Samples 

In 
Independent 
TCL (2D) 

In 
Independent 
TCL (3D) 

% 
Expressing 
Tumours  

N 

1 
CMYC & 
KRASG12V CHI3L1 2 0.723 NA 11.94 14.37 Yes No No/Yes 100 4 

2 
CMYC & 
KRASG12V LGALS3BP 2 0.013 Up 2.54 6.03 No No No 50 4 

3 
CMYC & 
KRASG12V TIMP1# 2 0.027 Down 2.62 4.06 NA NA NA NA NA 

4 
CMYC & 
KRASG12V CPE 1/2 0.750 NA 8.05 7.40 Yes No No 100 4 

5 
CMYC & 
KRASG12V U2AF2$ 0 0.003 Up 3.32 4.69 NA NA NA NA NA 

6 
CMYC & 
KRASG12V KRT1# 1 0.001 Down 2.09 3.08 NA NA NA NA NA 

7 
CMYC & 
KRASG12V NDRG1% 0/1 0.005 Up 4.08 3.61 Yes Yes  NA NA NA 

8 
CMYC & 
KRASG12V RCC2 0 2.92x10-7 Up 3.54 4.20 No No No NA NA 

9 
CMYC & 
KRASG12V FASN 0 0.008 Up 3.94 3.82 Yes/No Yes Yes 100 6 

10 
CMYC & 
KRASG12V SORD 0/1 0.993 NA 3.53 4.28 Yes Yes Yes 0 6 

11 
CMYC & 
KRASG12V API5 0 1.41x10-5 Up 3.09 3.15 Yes Yes No 83.3 5 

12 
CMYC & 
KRASG12V FKBP4 0 0.001 Up 3.93 3.07 Yes Yes Yes 100 6 

13 
CMYC & 
KRASG12V ADSL$ 0 0.990 NA 2.78 2.95 NA NA NA NA NA 

14 
CMYC & 
KRASG12V PFAS 0 0.302 NA 4.20 3.45 Yes Yes No 66.6 6 

15 
KRASG12V 

only PCOLCE 2 0.899 NA - 63.92 Yes NA NA NA NA 

16 
CMYC 
only PARP1 0 2.22x10-8 Up 2.46 - Yes NA NA NA NA 

17 
CMYC 
only CSF1 2 0.034 Down 6.45 - No NA NA NA NA 

18 
CMYC 
only POSTN 2 0.034 Down 0.40 - Yes NA NA NA NA 

19 
CMYC 
only DPP4 2 0.239 NA 0.15 - Yes NA NA NA NA 
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Novel EOC biomarkers identified using 3D in vitro models 

Table 2 

  
Negative versus all positive expression 

Negative/weak versus moderate/strong 
expression 

Marker Grade Grouping 0 1,2,3 P-value 0,1 2,3 P-value 

API5 
FIGO 1 12 15   24 3   
FIGO 2/3 18 49 0.142 32 35 3.00E-04 

FASN 
FIGO 1 7 20   12 15   
FIGO 2/3 4 65 0.010 15 54 0.042 

FKBP4 
FIGO 1 1 25   9 17   
FIGO 2/3 5 58 0.667 11 52 0.097 

CHI3L1 
FIGO 1 5 21   12 14   
FIGO 2/3 2 67 0.016 20 49 0.146 

LGALS3BP 
FIGO 1 19 8   NA NA   

FIGO 2/3 39 29 0.351 NA NA NA 
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