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ABSTRACT

A simple statistical model is used to partition uncertainty from different sources, in projections of future

climate frommultimodel ensembles. Three major sources of uncertainty are considered: the choice of climate

model, the choice of emissions scenario, and the internal variability of the modeled climate system. The

relative contributions of these sources are quantified for mid- and late-twenty-first-century climate pro-

jections, using data from 23 coupled atmosphere–ocean general circulation models obtained from phase 3 of

the Coupled Model Intercomparison Project (CMIP3). Similar investigations have been carried out recently

by other authors but within a statistical framework for which the unbalanced nature of the data and the small

number (three) of scenarios involved are potentially problematic. Here, a Bayesian analysis is used to

overcome these difficulties. Global and regional analyses of surface air temperature and precipitation are

performed. It is found that the relative contributions to uncertainty depend on the climate variable consid-

ered, as well as the region and time horizon. As expected, the uncertainty due to the choice of emissions

scenario becomes more important toward the end of the twenty-first century. However, for midcentury

temperature, model internal variability makes a large contribution in high-latitude regions. For midcentury

precipitation, model internal variability is even more important and this persists in some regions into the late

century. Implications for the design of climate model experiments are discussed.

1. Introduction

Currently, most projections of future global and re-

gional climate are derived from the outputs of coupled

atmosphere–ocean general circulation models (GCMs).

Projections have historically been conditioned upon

‘‘scenarios’’ of greenhouse gas emissions, each asso-

ciated with a particular ‘‘storyline’’ of economic and

societal development worldwide throughout the twenty-

first century (Naki�cenovi�c and Swart 2000). Although

the most recent set of climate model runs have replaced

these storylines with a set of representative concentration

pathways (RCPs) that are not associated explicitly with

socioeconomic storylines (van Vuuren et al. 2011), from

a user perspective their role is similar. In particular, the

choice of RCP, like the choice of storyline, will usually be

a source of uncertainty in climate projections in the sense

that different RCPs or storylines will lead to different

projections. From here on, we refer to this uncertainty as

‘‘scenario uncertainty.’’ Other sources of uncertainty in-

clude the choice of GCM (different GCMs yield different

projections for the same emissions scenario) and the

choice of initial conditions for the GCM runs (different

initial conditions yield different results). The extent to

which results are dependent upon initial conditions can

be regarded as ameasure of internal variability within the

modeled climate system.

The need to characterize uncertainty in projections of

future climate iswidely accepted, and this requires the use

of multiple models, scenarios, and runs to explore the

future climate response. However, it is expensive and

time consuming to produce projections using aGCM, and

it is therefore useful to identify which are the dominant

sources of uncertainty in order to understand where to
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focus resources. If, for example, internal variability is

relatively unimportant as a source of uncertainty, then it

may be better to use resources to consider alternative

scenarios and GCMs, rather than to produce many runs

from the same GCM–scenario combination.

The problem of partitioning uncertainty in climate

projections has been considered by several authors, no-

tably Hawkins and Sutton (2009), who characterized

projection uncertainty using heuristic measures of vari-

ability in ensembles of projections. Yip et al. (2011) took

a more formal approach, carrying out an analysis of vari-

ance (ANOVA) to partition variability into contributions

from different sources. ANOVA is a standard statistical

technique for this task and, for balanced data, the de-

composition of variability is unique and uncontroversial.

In the current context a simple way to create balance is to

stipulate that there are equal numbers of runs at each

GCM–scenario combination. However, when data are

unbalanced it is not clear how best to implement tradi-

tional ANOVA since the usual decomposition of vari-

ability is not unique (Searle et al. 2006, section 2.3b) so that

it can be difficult to identify which sources are dominant.

In this study, we use data from the phase 3 of theWorld

Climate Research Programme (WCRP) Coupled Model

Intercomparison Project (CMIP3) multimodel dataset

(Meehl et al. 2007), downloaded via the Program for

ClimateModelDiagnosis and Intercomparison (PCMDI)

website (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php).

Yip et al. (2011) used a subset of these data to partition

uncertainty in projections of global temperature, based

on a classicalANOVA.However, the full dataset is highly

unbalanced. Yip et al. (2011) dealt with this by consid-

ering only the seven GCMs that have more than one run

for each scenario and by choosing exactly two runs for

each GCM–scenario combination: a lot of relevant in-

formation was therefore discarded in their analysis.

We take a different approach to the problems caused

by lack of balance in the data. We use a random-effects

ANOVA (Searle et al. 2006; Gelman 2005). The effects

(deviations from an overall mean) of individual GCM

(G), scenario (S), and GCM–scenario (GS) combina-

tions are treated as being randomly sampled from

probability distributions representing respective super-

populations of effects, an ideamentioned in section 2c of

Yip et al. (2011). One possible interpretation of such a

superpopulation is that it represents the collection of all

potential GCMs that could be constructed using com-

binations of model components and modeling decisions

that are consistent with our current understanding of the

climate system [see Stephenson et al. (2012) for more

discussion of this point]. The superpopulation standard

deviation (SD) sG of this distribution summarizes vari-

ability of effects in the superpopulation of GCMs. We

can also estimate the finite-population standard deviation

sG: that is, an SD summarizing variability across the par-

ticular GCMs in the ensemble at hand. Section 3b gives

more details. Both types of SD are useful: the finite-

population SDs summarize variability in the effects of the

particular GCMs that have been included in the ensemble

under consideration and are thus analogous to the esti-

mates of uncertainty from a classical ANOVA approach

(Yip et al. 2011; Hingray et al. 2007; Raisanen 2001). The

superpopulation SDs represent variability among the

wider population of (actual and notional) GCMs from

which the ensemble at hand is considered to be drawn.

In a similar spirit, the random effect associated with

a scenario represents variability in a notional population

from which the three scenarios represented in the en-

semble are considered to have been drawn: the use of

a random effect acknowledges that alternative scenarios

are possible. With only three scenarios available in the

ensemble at hand, however, it is hard to estimate super-

population quantities with any great precision; thus, we

expect, for example, that estimation of the superpopu-

lation SD sS here will be subject to much greater un-

certainty than that of the finite-population SD sS.

In section 2, we describe the data and the climate

change indices we derive from them. In section 3, we

outline some existing approaches to partitioning un-

certainty in climate projections andwe describe a random-

effects ANOVA model. In section 4, we fit this model

to indices of mid- and late-twenty-first-century global

temperature change. In section 5,we repeat this analysis at

a regional scale for each of 22 regions, considering changes

both in surface temperature and in precipitation. In

section 6, we discuss some implications of our findings for

the design of climate model experiments. Computer code

to implement this methodology is available online (at

http://www.homepages.ucl.ac.uk/;ucakpjn/).

2. CMIP3 data

Since 1992, the CMIP has coordinated several sets of

climate model runs from modeling centers around the

globe. Although the most recent set is phase 5 of the

Coupled Model Intercomparison Project (CMIP5), re-

leased in 2013, in the work reported here we analyze the

data from CMIP3 to provide absolute comparability

with the work of Yip et al. (2011). The generic issues are

exactly the same for any ensemble of GCM runs.

The CMIP3 multimodel dataset provides twenty-first-

century climate projections from 24 GCMs under three

future emissions scenarios developed by the Inter-

governmental Panel on Climate Change (IPCC) Special

Report on Emissions Scenarios (SRES) (Naki�cenovi�c and

Swart 2000). These scenarios are generally referred to as
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A1B,A2, andB1 andmaybe interpreted as relating to low

(B1), moderate (A1B), and high (A2) emissions of

greenhouse gases over the twenty-first century. Table 1

gives the number of runs available (for surface air tem-

perature) for eachGCM–scenario combination. A total of

145 runs are available.

The numbers of runs for each scenario reflect choices

made by individual modeling groups. Some GCMs have

multiple runs per scenario; some have none. As noted

above, this lack of balance complicates analysis of the

data: the presence of zero cells in Table 1, corresponding

to GCMs that provided no runs for a particular scenario,

is particularly problematic in this respect. To deal with

this in their analysis, Yip et al. (2011) included only

seven GCMs (GCMs 2, 17–21, and 24 in Table 1) and

chose exactly two runs for each GCM–scenario combi-

nation. In section 3b, we consider how to account for the

lack of balance and the sparseness of the data in order to

utilize all the CMIP3 data.

We consider two climate variables, (surface air)

temperature (in 8C) and precipitation (converted to

mmday21), because they are the most frequently stud-

ied (Giorgi and Francisco 2000a; Giorgi and Mearns

2002; Tebaldi and Knutti 2007). We define indices of

change for each variable. For temperature, the indices are

the changes in mean temperature in the periods 2020–49

(midcentury) and 2069–98 (late century), each relative to

themean temperature in 1970–99.We use 2098 rather than

2099 because some GCMs did not provide runs for the

whole of 2099. The precipitation indices are defined simi-

larly except that we use the percentage—rather than ab-

solute—change from the baseline 1970–99 period. In

almost all cases, to ensure that each of our change indices

can be regarded as if it was derived from a single long run,

TABLE 1. Numbers of runs for each combination of 24 GCMs and three socioeconomic scenarios (A1B, A2, and B1) for the global

temperature experiments in the CMIP3 archive.

GCM No. GCM acronym GCM expanded name A1B A2 B1

1 BCCR-BCM2.0 Bjerknes Centre for Climate Research Bergen Climate

Model, version 2.0

1 1 1

2 CGCM3.1 Canadian Centre for Climate Modelling and Analysis (CCCma)

Coupled Global Climate Model, version 3.1

5 5 5

3 CGCM3.1(T63) Canadian Centre for Climate Modelling and Analysis

(T63 spectral resolution)

1 0 1

4 CNRM-CM3 Centre National de Recherches Météorologiques Coupled Global
Climate Model, version 3

1 1 1

5 CSIRO Mk3.0 Commonwealth Scientific and Industrial Research Organisation

Mark 3.0

1 1 1

6 CSIRO Mk3.5 Commonwealth Scientific and Industrial Research Organisation

Mark 3.5

1 1 1

7 GFDL CM2.0 Geophysical Fluid Dynamics Laboratory Climate Model, version 2.0 1 1 1

8 GFDL CM2.1 Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 1 1 1

9 GISS-AOM Goddard Institute for Space Studies, Atmosphere–Ocean Model 2 0 2

10 GISS-E2-H Goddard Institute for Space Studies Model E2, coupled with

Hybrid Coordinate Ocean Model

3 0 0

11 GISS-ER Goddard Institute for Space Studies Model E, coupled with the

Russell ocean model

5 1 1

12 FGOALS-g1.0 Flexible Global Ocean–Atmosphere–Land System Model,

gridpoint version 1.0

3 0 3

13 ECHAM4 — 1 1 0

14 INM-CM3.0 Institute of Numerical Mathematics Coupled Model, version 3.0 1 1 1

15 INM-CM4.0 Institute of Numerical Mathematics Coupled Model, version 4.0 1 1 1

16 MIROC3.2(hires) Model for Interdisciplinary Research on Climate, version 3.2

(high resolution)

1 0 1

17 MIROC3.2(medres) Model for Interdisciplinary Research on Climate, version 3.2

(medium resolution)

3 3 3

18 ECHO-G ECHAM4 and the global Hamburg Ocean Primitive Equation 3 3 3

19 ECHAM5 — 4 3 3

20 MRI-CGCM2.3.2a Meteorological Research Institute Coupled Atmosphere–Ocean

General Circulation Model, version 2.3.2a

5 5 5

21 CCSM3.0 Community Climate System Model, version 3.0 7 5 8

22 HadCM3 Hadley Centre Coupled Model, version 3 1 1 1

23 HadGEM1 Hadley Centre Global Environment Model, version 1 1 1 0

24 PCM1 Parallel Climate Model, version 1 4 4 4

Total 57 40 48
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we take the 1970–99 data from the twentieth-century cli-

mate simulation (20C3M) model runs that were used to

initialize the corresponding twenty-first-century runs

(see http://www-pcmdi.llnl.gov/ipcc/time_correspondence_

summary.htm). There are two exceptions. The first is

GCM 15, for which there was an error in the forcings for

the 20C3M run used to initialize the scenario runs (here,

we have used the corrected 20C3M run, noting that,

according to the URL given above, the climate of the

year 2000 is very similar in the two runs). The other

exception is GCM 24, for which the twenty-first-century

runs were not initiated from a twentieth-century run.

For this reason (i.e., to avoid using these data inap-

propriately), we will not include any data from GCM 24

in our analyses. We do, however, include values from

GCM 24 in Fig. 1, because it has some relevance to

comparisons with the results of Yip et al. (2011) made at

the end of section 3a.

In section 4, we consider indices relating to changes in

global mean temperature. In section 5, we carry out

regional-scale analyses separately for each of the 22

regions considered by Giorgi andMearns (2002). Giorgi

and Francisco (2000b) provide the definitions of 20 of

these regions in terms of latitude and longitude. The

definitions of the two remaining regions, northern

Australia and southern Australia, are given by the IPCC

Data Distribution Centre (http://www.ipcc-data.org/

sres/scatter_plots/scatterplots_region.html).

The raw data are monthly averages generated on

a coarse GCM-specific spatial grid. Following Giorgi

and Mearns (2002), for each GCM the data for a given

month are spatially interpolated onto a common 0.58
grid using the bicubic spline interpolation function

interp() in the R library akima (Gebhardt et al. 2013),

before being averaged over each region of interest. Then

the monthly averages are converted into averages over

the time periods of interest, weighted by the cosine

of the latitude of the grid point location, from which the

respective indices of change are derived.

Figure 1 summarizes the results of this procedure

when applied to surface air temperature over the entire

globe. For a given GCM the values under scenario B1

are generally lower than under scenarios A1B and A2.

The exception is GCM 24, for which there are two

FIG. 1. Global temperature change indices for each available GCM–scenario combination:

(top) 2020–49 and (bottom) 2069–98.
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unusually large values for 2020–49: as discussed above,

the reason for this is that the twenty-first-century runs

for this GCM were not initialized using the corre-

sponding twentieth-century runs and are therefore not

directly comparable. Overall, themodeled temperatures

for scenarios A1B and A2 are similar for 2020–49, but

A2 tends to produce larger values thanA1B for 2069–98.

3. Statistical models for partitioning variability

In the following, we letYijk; i5 1, . . . , nG; j5 1, . . . , ns;

and k 5 1, . . . , Kij be an index of change for GCM i,

scenario j, and run k. For the CMIP3 data, nG5 23, nS5
3, and Kij varies between 0 and 8 (see Table 1).

a. A fixed-effects ANOVA model

Hawkins and Sutton (2009) proposed some heuristic

ways of partitioning variability. Yip et al. (2011) put that

work on a more formal footing using a statistical model:

namely, a two-way fixed-effects ANOVA,

Yijk 5m1ai 1bj 1 gij 1 �ijk, i5 1, . . . , nG,

j5 1, . . . , nS,k5 1, . . . ,Kij , (1)

where m is the overall mean change in the index, over all

GCMs and scenarios; ai is an adjustment for GCM i; bj is

an adjustment for scenario j; gij is a scenario-specific

additional adjustment forGCM i; and the error terms �ijk
are independent identically distributed random vari-

ables with mean 0 and variance s2, representing residual

variability between runs: this can be considered as var-

iability that is internal to the modeled system.

The GCM–scenario interaction effects fgijg are re-

ferred to as interaction effects and measure how vari-

ability over GCMs changes with scenario or, equivalently,

how the variation between scenarios differs between

GCMs: as, for example, with the mid-twenty-first-century

projections of global temperature in Fig. 1, where one

GCM seems to rank scenario B1 differently from most of

the others, as discussed above.

Consider a balanced design withKij5K. 1 for all i, j

(i.e., K runs for each GCM–scenario combination) and

constraints �iai 5�jbj 5 0, �jgij 5 0 for i 5 1, . . . , nG
and �igij 5 0 for j 5 1, . . . , nS to avoid parameter re-

dundancy. IfK5 1 it is not possible to estimate both the

interaction effects and the error variance s2 without

making extra assumptions about the form of the in-

teraction effects.

We define the overall mean Y ... 5 (1/nGnSK)

�i�j�kyijk. Using a similar ‘‘bar–dot’’ notation, where dots

are used to indicate suffices over which averaging has taken

place, GCM-specific means areYi��, i5 1, . . . ,nG; scenario-

specific means are Y �j�, j5 1, . . . ,nS; and means for specific

GCM–scenario combinations are Yij�, i5 1, . . . , nG, j5
1, . . . , nS. The least squares estimates of the quantities in (1)

are m̂5Y ..., âi 5Yi�� 2Y ..., b̂j 5Y �j� 2Y ..., ĝij 5Yij� 2
Yi�� 2Y �j� 1Y ..., and �̂ijk 5 Yijk 2Yij� (Yip et al. 2011).

The quantities used by Yip et al. (2011) to quantify

uncertainty attributable to model, scenario, model–

scenario interaction, and internal (between run) varia-

tion are M5�iâ
2
i /nG, S5�jb̂

2

j /nS, I5�i�jĝ
2
ij/nGnS,

and V5�i�j�k�̂ijk/nGnSK, respectively. These quan-

tities are proportional to the usual mean squares in an

ANOVA framework. However, standard formulas for

the expected values of these mean squares show that

interpretation of these quantities is not as straightfor-

ward as it first appears. For example, to compare the

relative contributions of scenario choice and internal

variability to the total uncertainty under model (1),

a natural measure is [n21
S �jb

2
j ]/s

2, and it is tempting to

estimate this as S/V. However, the results of Searle et al.

(2006, section 4.3) show that the expected value of S is

(nS 2 1)(nGnSK)21s2 1 n21
S �nG

i51b
2
j , and the expected

value of V is (K 2 1)K21s2. It is clear that the ratio

S/V will tend to overestimate the quantity of inter-

est, therefore, because of the presence of (nS 2 1)

(nGnSK)21s2 in the expected value of S and the factor

(K 2 1)K21 in the expected value of V. Bias in the esti-

mation of n21
S �jb

2
j by S may be small if s2 is small.

However,Vmay very substantially underestimate s2 ifK

is small (e.g., by a factor of 2 if K5 2), an issue noted by

Déqué et al. (2007). Similar issues arise in the comparison

of other measures of variability from model (1).

When the design is unbalanced interpretation of M, S,

I, and V is even less clear. This motivates use of a related

framework under which these problems can be addressed

without discarding data. We achieve this using a random-

effects ANOVA model (see section 3b), defining ex-

plicitly the quantities to be inferred from data.

In Fig. 2, we compare the results from the methodol-

ogy of Yip et al. (2011, their Figs. 3a and 4b) with the

corresponding plots obtained using our approach de-

scribed below. In reproducing the Yip et al. (2011) plots

we have used a slightly different baseline period (1970–

99 rather than 1971–2000), because for some of the

models the SRES experiment data start in 2000; further,

since they included runs from GCM 24, we have done

the same here, selecting the two runs that did not result

in obviously anomalous behavior. Although there are

some differences in the relative contributions from in-

ternal variation, in this case s2 is small enough that its

presence in the expected value of S has little impact. The

most interesting difference is that in Yip et al. (2011)

(and in Hawkins and Sutton 2009) scenario uncertainty

becomes more important than GCM uncertainty at ap-

proximately 2050, whereas under our approach this does
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not occur until approximately 2070. These differences

are the result of using different statistical approaches

and different data and will depend on the behavior of

the datasets involved. However, the plots in the top row

of Fig. 2 suggest that, in this particular case, the overall

effect of including data from more models, as well as

more runs from existing models, is to increase estimates

of model uncertainty and (toward the end of the twenty-

first century when the differences between scenarios

become apparent) scenario uncertainty.

b. A random-effects ANOVA model

In the fixed-effects ANOVA model (1), standard

analysis methods focus on the specific effects faig, fbjg,

and fgijg for the ensemble under consideration. By con-

trast, in a random-effects version of the same model (see,

e.g., Searle et al. 2006) individual effects are not of direct

interest but rather are considered to be sampled from

some larger population, and it is the variability within this

larger population that is the focus of the analysis.

Equation (1) still applies: that is,

Yijk 5m1ai 1bj 1 gij 1 �ijk, i5 1, . . . , nG,

j5 1, . . . , nS,k5 1, . . . ,Kij , (2)

but now ai is considered to be a normally distributed

random variable with mean zero and variance s2
G [we

write ai ;N(0, s2
G), with similar notation for other

FIG. 2. Comparison of (left) Yip et al. (2011) with (right) the proposed approach. Sources of uncertainty in global,

decadal CMIP3 projections of global temperature change, relative to the baseline period 1970–99. (a),(b) Estimates

of variances M, S, I, and V (Yip et al. 2011) and finite-population variances s2G, s
2
S, s

2
GS, and s2R. (c),(d) Estimates as

a fraction of the sum of the variances.
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random variables]; bj ;N(0, s2
S); gij ;N(0, s2

GS); �ijk ;
N(0, s2

R); and all random variables are assumed to be

independent.

The terms in (2) have the same interpretation as those

in (1) but now, instead of focusing on the individual ef-

fects (the a, b, and g) we are interested in (the relative

magnitudes of) the superpopulation SDs sG, sS, sGS,

and sR as representing a partitioning of uncertainty that

acknowledges the potential for additional GCMs and

emissions scenarios that are not represented in the data

available. We also examine the relative magnitudes of

the finite-population SDs sG, sS, sGS, and sR, where,

for example, sG is defined via s2G 5 (1/22)�23
i51(ai 2a)2

and a5 (1/23)�23
i51ai, as these summarize variabilities

within the ensemble at hand. The presence of the error

terms �ijk in (2) mean that parameters in the finite-

population SDs cannot be observed exactly; they can

only be estimated and the estimates have some un-

certainty associated with them. However, ai, for exam-

ple, may be estimated precisely if there are many runs

under GCM i. For a discussion of superpopulation and

finite-population effects, see Gelman and Hill (2003,

section 21.2).

c. Statistical inference for random-effects ANOVA

In situations where there are reasonably large num-

bers of groups (corresponding to GCMs and scenarios

here) but where the data are unbalanced, random-effects

models such as (2) are often fitted using restricted maxi-

mum likelihood (REML) estimation (Patterson and

Thompson 1971; Harville 1977), with standard errors and

confidence intervals computed using simulation (e.g.,

a 95% confidence interval for a particular parameter such

as sG is obtained from the 2.5% and 97.5% sample per-

centiles of fits from simulated datasets). We illustrate this

procedure below, using the R library lme4 (Bates et al.

2014) to perform REML estimation.

However, with only three scenarios there is little in-

formation in the data about sS. In such situations

Gilmour and Goos (2009) argue against the use of

REML because sS can be underestimated, estimates of

zeromay be produced, and estimates of uncertainty tend

to underestimate the true uncertainty. In such situations,

a Bayesian analysis may be preferable.

In Bayesian inference (Bernardo and Smith 2003) the

parameter vector u of a model, here u5 (m, sG, sS, sGS,

sR), is treated as a random variable. A prior distribution

p(u), representing uncertainty about u in the absence of

the data y, is specified. Let L(u; y) denote the likelihood

function: that is, probability density of y as a function of

u. Then inference is based on the posterior distribution

which is proportional to L(u; y)p(u). In all but the sim-

plest problems, an explicit expression for the posterior

distribution is not available. However, samples from it

may be obtained using Markov chain Monte Carlo

(MCMC) techniques (Gilks et al. 1996; Gelman and

Rubin 1992); by drawing sufficiently large samples, we

may characterize any aspect of the posterior distribution

(e.g., the mean, median, and percentiles) to any desired

degree of accuracy. In particular, a 95% credible in-

terval for any quantity of interest is determined by the

2.5% and 97.5% percentiles of its posterior distribution.

In the work reported below, MCMC sampling is carried

out using WinBUGS (Lunn et al. 2000) via the R library

arm (Gelman et al. 2010).

Operationally, perhaps the most obvious difference

between Bayesian and other methods of statistical in-

ference is the incorporation of the prior distribution

p(u). Ideally, this represents the analyst’s uncertainty

about themodel parameters u in the absence of any data;

often a noninformative prior is used in an attempt to

ensure that the results are not influenced by what are

seen as the analyst’s subjective judgments. In situations

such as that considered here, however, the data them-

selves may provide relatively little information about

some model parameters such as sS. In such cases, it may

be worth specifying a weakly informative prior (Gelman

2006) that encapsulates some basic constraints on the

parameters but that otherwise allows the likelihood

component to dominate the posterior distribution. If the

prior is approximately flat over the range of u values that

are consistent with the data, then the results from

a Bayesian analysis will be dominated by the contribu-

tion of the likelihood to the posterior in this range so

that the influence of the prior can be considered un-

important: in such situations, we expect good agreement

betweenREML estimates and themode of the posterior

distribution [i.e., the value u for which the posterior

density p(u j y) is maximized]. In a Bayesian setting

however, estimation is usually based on the mean of the

posterior distribution rather than its mode [the reasons

for this are set out in Gilmour and Goos (2009)] and, if

the posterior is highly skewed, its mean andmode can be

very different. This in itself can account for differences

between Bayesian and frequentist analyses. In the cur-

rent context, the posterior distribution of sS is highly

positively skewed (see Figs. 3 and 4), so the posterior

mean is much greater than the posterior mode and

a Bayesian analysis is probably preferable, as explained

in Gilmour and Goos (2009).

Gelman (2006) considers what kind of prior distribu-

tion should be placed on a variance component s when

the available data provide only limited information

about it: in the present context, this is the situation for sS

because data are available for just three emissions sce-

narios. He shows that a weakly informative prior is

1 DECEMBER 2014 NORTHROP AND CHANDLER 8799



necessary, to downweight the posterior probability of

physically implausible values. Gelman (2006) and N. G.

Polson and J. G. Scott (2012) demonstrate that a half-

Cauchy (A) prior, with probability density function

(pdf),

p(s)5
2

pA

�
11

s2

A2

�21

, s. 0, (3)

is more appropriate than the commonly used uniform,

log-uniform, or inverse-gamma priors. For a suitable

value of A the half-Cauchy prior encourages the poste-

rior distribution for s to place high probability on a re-

alistic range. However, the prior has a ‘‘heavy tail’’ (i.e.,

the pdf decays slowly as s increases), and this prevents

the prior from having an undue influence if the data

suggest a larger than anticipated value of s. This be-

havior is demonstrated in the plots relating to sS in

Figs. 3 and 4.

4. Global temperature change

In this section, we present the results of REML and

Bayesian analyses of the global temperature data using

model (2). For the latter, we use independent half-

Cauchy priors for the variance components, choosing

the scale parameter A to provide weak prior in-

formation. For the 2020–49 indices we useA5 0.58C and

for 2069–98 we use A 5 18C, based on the following

reasoning: Suppose that two of the sources (GCM, sce-

nario, and simulation run) of uncertainty are kept con-

stant while the other is varied. It would be very unlikely

that the resulting projections would have a range of

more than, say, 108C in their temperature projections by

themidcentury andmore than, say, 208Cby the end of the

century. Under model (2), as a rule of thumb the range of

the randomeffects fromeach source of uncertainty can be

considered to correspond very roughly to four standard

deviations (or 4s); thus, for each source of uncertainty,

we judge that the corresponding random-effects standard

deviation s does not exceed 2.58C for the midcentury

projections and 58C for end-of-century projections.

The chosen values of A place small (’0.13) prior prob-

ability on these eventualities. We use the same prior

distribution for all the s parameters. We use a non-

informative N(0, 106) prior for the mean parameter m.

a. Results: Sources of uncertainty

Figures 3 and 4 show the prior distributions and pos-

terior distributions of the superpopulation SDs. For sG,

sGS, and sR the information provided by the data via the

likelihood has dominated, as was intended. This can be

FIG. 3. Global temperature change 2020–49. Posterior distributions of sG, sS, sGS, and sR (histogram) are based on

half-Cauchy (0.5) prior distributions (solid lines).
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inferred from the fact that the priors are virtually flat

over intervals for which the posteriors are nonnegligible.

This is not the case for sS: the half-Cauchy prior pro-

vides weak information to prevent very unrealistic

values of sS from appearing in the posterior simulations.

Table 2 summarizes inferences from the REML and

Bayesian analyses. As anticipated from the discussion in

section 3c, the REML point estimates of sS are much

smaller than the Bayesian point estimates (and similar

to the posterior modes in Figs. 3 and 4) and the REML-

based confidence intervals are much narrower than their

Bayesian equivalents. As noted by Gilmour and Goos

(2009), these features of the REML inferences are not

desirable: they reflect a lack of information about sS

rather than strong evidence that its value is small. A

further consequence is that the Bayesian interval esti-

mates for m are wider than those from the REML

analysis. For the other variance components there are

FIG. 4. Global temperature change 2069–98. Posterior distributions of sG, sS, sGS, and sR (histogram) are based on

half-Cauchy (1) prior distributions (solid lines).

TABLE 2. REML and Bayesian inferences of the global temperature data based on model (2). REML: estimate, standard error, and 95%

confidence interval. Bayes: posterior mean (median), posterior standard deviation, and 95% credible interval.

2020–49 2069–98

Analysis

Estimate/posterior

mean (median)

Std error/

SD

95% confidence/

credible interval

Estimate/posterior

mean (median)

Std error/

SD

95% confidence/

credible interval

m REML 1.085 0.072 (0.941, 1.220) 2.473 0.353 (1.775, 3.167)

Bayes 1.091 (1.090) 0.176 (0.754, 1.422) 2.474 (2.479) 0.581 (1.339, 3.553)

sG REML 0.231 0.036 (0.156, 0.301) 0.433 0.069 (0.297, 0.565)

Bayes 0.239 (0.234) 0.038 (0.177, 0.327) 0.445 (0.437) 0.074 (0.329, 0.614)

sS REML 0.097 0.046 (0.009, 0.190) 0.601 0.279 (0.093, 1.167)

Bayes 0.217 (0.156) 0.204 (0.058, 0.723) 0.804 (0.660) 0.564 (0.311, 2.160)

sGS REML 0.039 0.009 (0.018, 0.055) 0.120 0.016 (0.089, 0.150)

Bayes 0.041 (0.040) 0.009 (0.025, 0.060) 0.123 (0.121) 0.017 (0.095, 0.161)

sR REML 0.045 0.004 (0.038, 0.053) 0.050 0.004 (0.041, 0.058)

Bayes 0.046 (0.046) 0.004 (0.040, 0.055) 0.051 (0.050) 0.004 (0.043, 0.059)
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only small differences between the REML andBayesian

inferences.

Figure 5 summarizes the posterior distributions of the

superpopulation and finite-population standard de-

viations. The posteriors of the superpopulation SDs are

positively skewed: relatively small values of these

quantities are inconsistent with the data, but relatively

large values cannot be ruled out. As expected (section

3c), the finite-population SDs have smaller posterior

medians and narrower interval estimates than the su-

perpopulation SDs. This is especially pronounced for

scenario (sS and sS).

In any Bayesian analysis, it is helpful to explore the

sensitivity of results to a plausible range of prior distribu-

tions. Here, we have repeated the analysis above for dif-

ferent values of A in the prior (3). We find that only

inferences about sS are sensitive to this choice. For ex-

ample, for 2020–49, the estimated median and 95% cred-

ible interval for sS are 0.1368C and (0.054, 0.542)8C for

A5 0.25 and 0.1668C and (0.058, 0.875)8C for A5 1. For

sG these values are 0.2348C and (0.176, 0.330)8C for A 5
0.25 and 0.2438C and (0.182, 0.342)8C for A 5 1. The es-

timated posterior distributions of the finite-population

SDs are virtually constant over awide range of values ofA.

The superpopulation standard deviation estimates in

Table 2 and Fig. 5 reveal the dominant sources of un-

certainty in projections of global mean temperature. For

the 2020–49 time horizon, sG has the largest posterior

mean value, closely followed by sS. This suggests that

over this time period the dominant source of uncertainty

is the choice of GCM, followed by the choice of emis-

sions scenario. Later in the century (2069–98), however,

variability over scenarios is greater than variability over

GCMs. The same general findings apply if we compare

finite-population SDs, although the importance of sce-

nario is reduced because the posterior medians of sS are

smaller than the respective posterior medians of sS. In

both time periods, internal variability (represented by

the residual standard deviation sR) is estimated to be

much smaller than variability over GCMs and over

scenario. Internal variability is estimated to be smaller in

2069–98 than in 2020–49. It could be that global warming

reduces variability in global temperature. By 2069–98,

variability attributable to GCM–scenario interaction

has overtaken internal variability.

b. Results: Individual GCMs and scenarios

The top plots in Figs. 6 and 7 summarize the posterior

distributions of the effects of individual GCMs and

scenarios on our climate indices: that is, (m1a1, . . . ,m1
a23) and (m 1 b1, m 1 b2, m 1 b3), respectively. We can

see that GCM 16 [MIROC3.2(hires)] gives atypically

high projections of global temperature change and that

projected temperature changes are greatest under sce-

nario A1B in the midcentury and under scenario A2 in

the late century. The plots on the bottom left in these

figures show how GCM-specific effects [the terms fm 1
gijg in model (2)] vary with scenario. For clarity here, we

FIG. 5. Global temperature change. Summaries of the posterior distributions for the super-

population standard deviations (sG, sS, sGS, and sR) and finite-population standard deviations

(sG, sS, sGS, and sR) are shown. Medians (dots), 50% intervals (thick lines), and 95% intervals

(thin lines) are plotted. The 50% intervals extend from the 25th to 75th percentiles of the

respective posterior distributions; 95% intervals extend from the 2.5th to 97.5th percentiles.

Periods are (top) 2020–49 and (bottom) 2069–98.
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have plotted only the six GCMs considered by Yip et al.

(2011) that remain after the exclusion of GCM 24.

The bottom right of Figs. 6 and 7 are normal quantile–

quantile (QQ) plots of the posteriormedians of the data-

level errors �ijk5 yijk2 (m1 ai1 bj1 gij); i5 1, . . . , 23;

j5 1, 2, 3; and k5 1, . . . ,Kij: their purpose is to check the

assumption in model (2) that these errors are normally

distributed, since in this case the points on the QQ plots

should lie roughly on a straight line. For 2020–49 (Fig. 6)

the points lie remarkably close to the line. For 2069–98

(Fig. 7) the curvature might suggest a slight (positive)

skew in the error distribution: this is driven by single

runs with values that are greater than those of their

counterparts (see, e.g., scenario A2 for GCM 21 and

scenario A1B for GCM 19 in Fig. 1).

c. Model checking

We have also carried out posterior predictive checks

(see, e.g., Gelman et al. 2003, chapter 6) to assess

whether the model is consistent with the data. We

compare the real data to 10 000 datasets simulated from

the posterior predictive distribution under the model.

The real data should not behave very differently to the

simulated datasets. To examine this, we choose test

summaries to reflect important aspects of the data. The

test summaries we use are based on derived datasets

containing (i) all responses; (ii) the 23 mean responses

for each GCM; (iii) the 3 mean responses for each sce-

nario; (iv) the 64 mean responses for each GCM–

scenario combination; and (v) for GCM–scenario

FIG. 6. Summaries of posterior distributions for global temperature change for 2020–49. (top)Medians (dots), 50%

intervals (thick lines), and 95% intervals (thin lines) for each (left) GCM and (right) scenario. (bottom left) GCM–

scenario interaction plot of posterior medians by GCM and scenario, for selected GCMs. The labels give the GCM

number. The dashed horizontal lines are drawn at the posterior mean of the overall mean change m. (bottom right)

Normal QQ plot of the posterior median of data-level errors. The vertical gray lines are 95% intervals for the

data-level errors.
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combinations with more than 1 run, residuals, defined as

the differences between the responses and the corre-

sponding mean value in (iv). The datasets (i)–(v) are

chosen as summaries of total variability, variability

across GCM, scenarios, GCM–scenario combinations

and runs respectively. For each simulated derived

dataset we calculate eight statistics: minimum, the

quartiles, maximum, interquartile range, mean, and

standard deviation. We also calculate these statistics for

the derived datasets based on the real data. For each

statistic, we calculate the proportion of the simulated

values that are greater than the corresponding statistic

from the real data to give a posterior predictive p value.

Formal treatment of these p values is complicated by the

fact that if the model is true the p value is more likely to

be near 0.5 than near 0 or 1 (Meng 1994), but values near

0 or 1 may highlight a potential discrepancy between

model and data. We find (details are provided as sup-

plementary material) that these checks indicate good

agreement between model and data, lending support to

the conclusions from the modeling exercise.

5. Regional analyses of temperature and
precipitation

For many purposes, uncertainties in projections of

global temperature change are less relevant than those

in projections of regional changes; regional precipitation

FIG. 7. Summaries of posterior distributions for global temperature change 2069–98. (top) Medians (dots), 50%

intervals (thick lines), and 95% intervals (thin lines) for each (left) GCM and (right) scenario. (bottom left) GCM–

scenario interaction plot of posterior medians by GCM and scenario, for selected GCMs. The labels give the GCM

number. The dashed horizontal lines are drawn at the posterior mean of the overall mean change m. (bottom right)

Normal QQ plot of the posterior median of data-level errors. The vertical gray lines are 95% intervals for the

data-level errors.
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changes are also likely to be critically important. In this

section, therefore, we repeat the analysis of the previous

section for both temperature and precipitation changes,

within each of the 22 regions outlined in section 2.

a. Regional temperature

We repeat within each region the Bayesian analysis of

section 4 using the same half-Cauchy priors: A5 0.5 for

2020–49 and A 5 1 for 2069–98. Figure 8 summarizes

(using the posterior median and 50% central credible

intervals) the estimated posterior distributions of the

superpopulation standard deviations sG, sS, sGS,

and sR, globally and in each region, for 2020–49 and

2069–98. We use 50% intervals to prevent the large un-

certainty in sS from dominating the plots. If we compare

the posterior medians of the superpopulation SDs we

find that, for 2020–49, variability over GCMs is greater

than variability over scenarios and runs for each region

and variability over runs is greater than variability over

scenarios in some regions, predominantly in the north.

For 2069–98 we find that the scenario is a greater source

of variability than earlier in the century, and the scenario

contributes at least as much variability as GCM in most

regions and much more in many regions. The corre-

sponding figures for the finite-population standard

deviations sG, sS, sGS, and sR (not shown but available

FIG. 8. Regional analyses of change in mean surface temperature from 1980–99 to (top) 2020–49 and (bottom)

2069–89. Posterior quartiles: median (dots) and central 50% credible intervals of the superpopulation standard

deviations. The global analysis is summarized in the bottom left. From left to right, the ordering is GCMs, scenarios,

GCM–scenario interaction, and runs. The vertical scales are different for the global and regional analyses.
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as supplementary material) provide the same general

findings.

b. Regional precipitation

We repeat the Bayesian analyses for the precipitation

indices (percentage changes from the 1980–99 mean),

using a half-Cauchy scale parameter ofA5 2.5 for 2020–

49 and A 5 5.0 for 2069–98. These values are chosen

using the same argument used for temperature in section

4: here we consider as very unlikely a range of 50%

points by midcentury and 100% points by the end of the

century.

There are four fewer runs for precipitation than

temperature: under scenario A1B, GCM 11 (GISS-ER)

has three fewer runs and GCM 12 (FGOALS-g1.0) has

one fewer. Figure 9 summarizes the estimated posterior

distributions of the superpopulation standard deviations

sG, sS, sGS, and sR globally and in each region, for

2020–49 and 2069–98.

The findings are quite different to those for temper-

ature. For 2020–49, globally variability over GCMs is

greatest, but there is relatively high variability over

different runs from the same GCM. Regionally, there is

a similar picture, but in many areas variability over runs

FIG. 9. Regional analyses of percentage change in mean precipitation from 1980–99 to (top) 2020–49 and

(bottom) 2069–89. Posterior quartiles: median (dots) and central 50% credible intervals of the superpopulation

standard deviations. The global analysis is summarized in the bottom left. From left to right, the ordering is GCMs,

scenarios, GCM–scenario interaction, and runs. The vertical scales are different for the global and regional

analyses.
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is similar to variability over GCMs (in western North

America the former is greater than the latter) and in

many regions variability over scenarios seems relatively

unimportant. For 2069–98, globally the scenario is more

important than in 2020–49, but in many regions the

scenario still seems relatively unimportant. A reviewer

has pointed out that scenario uncertainty is very low in

regions, such as Southeast Asia and South Africa, where

large precipitation changes are projected but there is no

consensus among the models on the sign of the change.

The result is a multimodel mean that is close to zero

under all scenarios. In such regions the uncertainty at-

tributed to model–scenario interaction tends to be

greater than scenario uncertainty, suggesting that un-

certainty due to model depends on scenario. In contrast,

in areas like Alaska and Greenland, all models indicate

an increase in precipitation that increases with in-

creasing greenhouse gas emissions (analogous to the

situation that applies, in all regions, for temperature),

leading to large scenario uncertainty. The corresponding

figures for the finite-population standard deviations sG,

sS, sGS, and sR (not shown but available as supplemen-

tary material) provide the same general finding. These

results show that relative contributions to climate un-

certainty of GCM, scenario, and internal variability

depend on climate variable, region, and time horizon.

6. Discussion

Running climate simulations is a time-consuming ex-

ercise so it is important to make the outputs as useful as

possible. Statistical models, with parameters that relate

to scientific questions of interest, can help to inform the

design of future climate experiments. They can answer

questions like the following: How can fixed computa-

tional resources be allocated in order to estimate pa-

rameters with greatest precision? What data would be

needed to estimate the parameters with desired pre-

cision? One possible objection to the models of the type

we consider is that the uncertainties due to, for example,

scenario and scenario-specific GCM run are funda-

mentally different in their nature. However, our analysis

does quantify the implications of making choices be-

tween different models, scenarios, and simulation runs.

For model (2) in section 3b, choosing a good design is

difficult because optimal designs depend on the relative

sizes of the superpopulation SDs, which are unknown

(Khuri 2000). Thus, some prior information (perhaps

based on the results in sections 4 and 5) or a design that

adapts to incoming data is necessary. In the current

context, for situations where internal variability is rela-

tively unimportant, it is not worth running many simu-

lations per GCM–scenario combination.

The results in this paper can be used to infer where the

major sources of variation lie. For example, the analysis

of global temperature in section 4 suggests that vari-

ability between runs, for a given GCM–scenario com-

bination, is far smaller than between GCMs and

scenarios. Therefore, it is more important to devote

resources to quantifying variation over GCMs and sce-

narios than over such runs. For global temperature it is

better to use multiple GCMs and scenarios than multi-

ple runs at single GCM–scenario combinations. How-

ever, the analyses reported in section 4a show that for

some regions variability over runs is greater than vari-

ability over scenarios, particularly for 2020–49; multiple

runs for each GCM–scenario combination are therefore

desirable to quantify uncertainty if interest lies in these

regional quantities. In the precipitation analyses of

section 5b we find that variability over runs is generally

of greater importance than in the temperature analyses.

In some instances it is the largest source of variability

and in some regions it is a greater source of variability

than scenarios even in 2069–98.

Thus, different climate variables can have competing

design requirements and compromise may be necessary

in designing climate experiments to meet several ob-

jectives. These results do not provide any clear guidance

for something like the CMIP experiments, which have

multiple potential uses. However, they do provide

guidance for users who might want to select a small

subset of CMIP runs to assess, for example, the potential

impacts of climate change. Impacts studies often involve

the selection of a relatively small number of GCM runs

to drive their models: the methodology introduced here

can provide guidance on how to ensure that the domi-

nant sources of uncertainty are represented in such an

exercise.
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