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Abstract 

Substance Use Disorders (SUDs), are generally viewed as disorders of maladaptive 

reward memory and motivation. In SUDs, memories formed during drug use associate 

environmental stimuli with the rewarding effects of drugs. These stimuli can 

subsequently trigger craving, highly motivated drug-seeking and relapse, even after 

years of abstinence. An exciting new approach to combatting these maladaptive 

memories is via reconsolidation, the process by which memories become briefly 

unstable upon recall in order to strengthen or update before restabilising. In Chapter 1, I 

review reward memory mechanisms in SUDs along with pharmacological and 

behavioural determinants of memory reconsolidation to identify potential drug targets 

for interfering with reconsolidation. In Chapter 2, I use meta-analysis to assess the 

effects of two classes of drugs; N-methyl D-aspartate (NMDAR) antagonists and β-

Blockers on blocking reconsolidation of reward memory in rats and show that NMDAR 

antagonism is far more effective. Building on this knowledge, in Chapter 3, I show that 

10mg of the NMDAR antagonist memantine in combination with the retrieval of 

smoking cue-drug memory does not affect relapse or craving in a group of quitting 

smokers. As this null finding may have represented either a failure to destabilise 

memories or inefficacy of memantine, in Chapter 4 I use a reward conditioning 

paradigm in hazardous drinkers to show that NMDAR antagonist Nitrous Oxide can 

interfere with reconsolidation of cue-alcohol memory, when administered after a 

reminder of learning that induces a negative prediction error. Chapter 5 builds on 

emerging evidence of the necessity of prediction error to destabilise memory, using 

guided expectancy violation to destabilise naturalistic cue-alcohol memories in 

hazardous drinkers. Subsequent disgust counterconditioning updated these memories, 

reducing motivational salience and liking of alcohol stimuli, with associated reduction 
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in drinking. In Chapter 6 I discuss the research reported and suggest directions for 

further study. 
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Glossary of terms and abbreviations 

AMPA - α-amino, 3–hyroxy 5- methyl 4 - isoxazolepropionic acid, a synthetic 

specific agonist for the AMPA receptor. Mimics glutamate at AMPA receptors, but 

does not bind to NMDA receptors.  

AMPAR - α-amino, 3–hydroxyl 5 – methyl 4-isoxazole propionic acid receptor, a 

subtype of glutamate receptor involved in fast evoked post-synaptic potentials. It is 

responsible for much of the rapid excitatory action of glutamate throughout the brain.  

Consolidation – the protein synthesis – dependent stabilisation of short-term memory 

into long term memory following initial learning. Over time this involves a migration 

from primarily hippocampus-dependent neuronal encoding to distributed cortical 

encoding of memory traces.  

DA – Dopamine, a monoamine neurotransmitter found mainly in substantia nigra, 

tegmental, limbic and striatal neurons. It is heavily implicated in reward, learning and 

motivation particularly with regard to substance use disorders.  

LTP - Long-term potentiation, the lasting increase in evoked post-synaptic potentials 

following a high-frequency electrical stimulus train from an efferent neuron. This is 

believed to be the cellular mechanism underlying long-term memory. 

LTD – Long term depression, the lasting reduction in neuronal firing rates following a 

low-frequency electrical stimulus train, an important inhibitory neuronal tuning and 

learning mechanism 

mGluR – Metabotropic glutamate receptor, G-protein coupled glutamate receptors 

involved in synaptic plasticity. Unlike NMDARs and AMPARs, they are not ion 

channels, and modify cell signalling purely by second-messenger cascades involving 

cell plasma membranes. MGluRs can act as modulators of the NMDAR, increasing or 

decreasing its activity.   

MMMs – Maladaptive Motivational Memories. Memory traces formed through 

repeated drug use that link environmental stimuli with drug availability and rewarding 

effects. These memory traces imbue drug-related stimuli with aberrant motivational 

properties, promoting craving, drug seeking and using when the stimuli are encountered 

Model free – Learning that occurs without cognitive representation of the holistic 

network of states, transition probabilities and possible rewards (i.e. decision trees) that 

can be achieved in any given state. Such learning requires little cognitive effort, but it 

less flexible than cognitive, simulation-based learning. 

NAcc – Nucleus Accumbens, a region nested within the ventral striatum receiving 

inputs from the amygdala, hippocampus, hypothalamus and frontal cortex. This region 

is heavily implicated in reward processing and maladaptive learning in SUDs.   
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NMDA – N-Methyl D-aspartate, a synthetic specific agonist at the NMDA receptor. 

Mimics the action of glutamate at these receptors, without action at other glutamatergic 

receptors.  

NMDAR - N-Methyl D-aspartate receptor. A subtype of glutamate receptor that 

requires concurrent binding of glutamate and depolarisation to open its ion channel and 

allow calcium influx. The NMDAR is critical in synaptic plasticity, learning and 

memory.  

NRT – Nicotine replacement therapy, a form of substitute prescribing for smoking 

cessation 

PE – Prediction Error the mismatch between the outcome of a given stimulus or 

action stored in an existing memory trace and the outcome that is experienced following 

that stimulus or action. Acts as the primary driver of reinforcement learning through 

updating of stored values.  

PIT – Pavlovian to instrumental transfer, the process by which Pavlovian reward-

associated cues invigorate instrumental responses also associated with reward. This is 

an example of conditioned motivation whereby drug-associated cues motivate drug-

seeking and using.  

Reconsolidation – A process whereby consolidated memories can become briefly 

unstable upon retrieval, presumably to update or strengthen, and subsequently 

restabilise.  

Reinforcement learning - The computational description of the creation, storage and 

execution of memory traces that maximise reward and minimise punishment through 

updating values concerning the reward associated with different states and actions. 

Substitute Prescribing – A treatment approach most commonly used for opiate and 

nicotine addiction whereby a similar, but less potent compound to the addictive drug or 

the drug itself via a less harmful and addictive administration route are prescribed to 

reduce drug-associated harm and manage withdrawal. 

SUD – Substance Use Disorder. This term is used to be in keeping with DSM-5 

criteria for addictive disorders relating to drugs. The disorder is specific to the drug 

being abused, for example, one type of SUD is AUD (Alcohol Use Disorder). 

.  
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Chapter 1: Introduction
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1.1. Addiction: Cost and Treatment 

 

Humans have used recreational psychoactive drugs in various forms and for various 

sociocultural purposes for millennia. Their use has become deeply ingrained in 

worldwide cultures in many forms from the culturally normative (coffee, alcohol, 

nicotine) to the illicit. While there are many reported benefits of drug use, their use is 

also associated with serious negative outcomes in some individuals, among which 

addiction is the primary and most prevalent harm. The word ‘addiction’ comes from the 

Latin Addicere, meaning ‘to enslave’ and this is an accurate description of the 

experience of substance use disorders (SUDs). While the profile of SUDs are 

relatively unique to specific drugs or drug groups, common across all addictions is 

compulsive drug seeking and drug using behaviour, characterised by repeated relapse, 

with an accompanying loss of control over use, despite serious adverse consequences. 

Although the legal classification of drugs is not correlated with their holistic potential 

for harm (Nutt et al. 2010), the rationale for legal control over drugs is largely based in 

the harm and cost to individuals and society which is associated with addiction. At the 

individual level and depending on the abused substances, SUDs can be debilitating 

diseases leading to social recidivism, and can be responsible for health issues caused 

directly from the drug (such as ketamine-induced ulcerative cystitis) or indirectly (such 

as HIV/AIDS from sharing needles). There are further societal consequences of 

addiction, including crime to fund the purchase of drugs in the absence of gainful 

employment, the breakdown of social networks with the potential for domestic abuse 

(O'Farrell et al. 1999) and wider socioeconomic costs from treatment and recidivism.  

While it is difficult to accurately quantify the total social costs stemming from addiction 

(estimates tend to focus on illegal drugs, or subsets of illegal drugs), the charity 

Addaction estimates that the 1998 - 2008 cost of problematic drug use in the UK alone 
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reached £110 billion. £100 billion of this is attributable to the crime and policing costs 

associated with drug use and £10 billion to primary healthcare costs. Each addict is 

estimated to cost the taxpayer £44,000 per year that their addiction is not resolved 

(Addaction, 2008). To contextualise the scale of the economic burden of addiction, if 

this annual accumulated cost were eradicated, the savings would be sufficient to cover 

the cost of running the entire National Health Service for one year.  

There is a striking asymmetry between the cost of addiction and investment into 

treatment development. In the same period (1998-2008), a total of only £3 billion was 

spent on addiction treatment in total, a small percentage of which was spent on primary 

research into how to improve addiction treatments. Yet if 100,000 UK addicts could be 

‘cured’ of their addictions and return to the labour force they could contribute £4.4 

billion per year in tax revenue. Therefore, development of effective, durable treatments 

for addiction is an important goal from numerous perspectives. Effective treatments 

would reduce individual suffering, improving the quality of life for addicts, their 

families and their communities. From an economical perspective, such treatments 

would free resources to be deployed elsewhere in the healthcare system, while also 

enabling former addicts to contribute to the economy. 

Unfortunately, current treatments for drug addiction are not particularly effective.  Of 

the 366,217 addicts that entered UK NHS addiction services from 2005-2012, fewer 

than a third (29%) completed treatment and remained drug-free without returning in 5 

years (National Drug Treatment Monitoring System, 2012).  It should be noted that 

these statistics assume that all patients completing treatment and not returning to 

primary care did not relapse. Thus an unknown percentage of ‘successfully’ treated 

individuals is comprised of i) those who relapsed and decided not to return to treatment 

and ii) those who died. This estimate of treatment success is therefore likely overly 
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optimistic. As an example, although over half of UK smokers attempt to quit annually, 

only around 2-3% of ‘cold-turkey’ quitters are successful (West 2006). Notably, 

outcomes can be significantly improved by treatment options, but even with 

Varenicline, the most effective smoking cessation drug available (Fiore 2008), 

abstinence rates after 9 weeks are still only 21.9% (Jorenby et al. 2006). Given this poor 

success rate, there is wide scope for improvement in long-term addiction treatment 

efficacy in the long-term. 

One may ask, given the astounding progress over the last half century in treatment of 

many diseases, why are treatment prognoses for SUDs so poor? Answering this 

question requires a consideration of the predominant current treatment approach. For 

some addictive drugs, such as cannabis and ketamine, dedicated treatment programs 

simply do not exist, obviating a discussion of the major limiting factor in recovery in 

these populations. For other drugs, such as nicotine and opiates like heroin, the primary 

treatment approach is substitute prescribing usually supplemented by some form of 

psychosocial support. Nicotine replacement therapy (NRT) is currently the most 

widely-used pharmacological aid to smoking cessation in the UK and methadone and 

buprenorphine are the most commonly prescribed pharmacological treatments for 

heroin addiction. These treatments operate on principles of harm reduction, by replacing 

a primary addictive substance with a less physically harmful analogue (for example by 

reducing the carcinogenic load of smoking cigarettes). They also reduce secondary 

harms and risks of drug use, for example by reducing needle sharing among heroin 

users and ensuring a consistent dose of drug. They are also extremely important for 

managing the withdrawal syndrome induced by abstinence from drugs.  

Withdrawal is caused by homeostatic renormalisation of neurotransmitter, metabolic 

and endocrine function after continual allostatic changes incurred through drug use. The 
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recovery of these systems typically results in negative affect and anhedonia and can 

incur extremely unpleasant physical and psychological symptoms such as 

gastrointestinal distress, anxiety, hallucinations and seizures. Addicts are strongly 

motivated to avoid these withdrawal symptoms so negative reinforcement is a major 

driver for continued drug use or early relapse after abstinence. Thus substitute 

prescribing can be key to maintaining early abstinence from the abuse drug, but if it is 

to lead to eventual abstinence, it must follow a progressive titration schedule so that 

withdrawal symptoms can be managed. However, in the case of methadone, this 

detoxification is frequently not achieved and addicts often continue to use illicit opiates 

on top of their prescribed methadone treatment (Lions et al. 2014). As both methadone 

and nicotine replacement are themselves addictive, some may argue that the approach 

simply swaps one addiction for another. This ‘lesser of two evils’ approach is clearly 

not an optimal strategy for treating SUDs.  

Managing physical symptoms of drug withdrawal in drug addiction is undoubtedly 

important in engendering eventual abstinence. However, physical withdrawal represents 

only a single, short-term driver in the maintenance of addiction and should be 

considered a first step in an efficacious program, rather than a satisfactory treatment in 

its own right. In most addicts, full withdrawal and detoxification upon complete 

cessation of drug use occurs within seven to 28 days (Glauser et al. 1970; Smolka and 

Schmidt 1999; Weybrew and Stark 1967), yet addicts remain at high risk for relapse for 

many years after discontinuation of drug use (O'Brien 1997), highlighting the short-term 

palliative effect of replacement therapies and the absence of long-term treatment 

effectiveness.   

Rapid and full relapse also demonstrates that persistent - potentially permanent - 

neuropharmacological adaptations accompany addiction that far outlast the 
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physiological drivers of relapse (i.e. withdrawal). In recent years, mounting evidence 

has shown striking similarity between the neural adaptations seen in addiction and those 

seen in neural systems underlying motivated learning and memory (Kelley 2004). This 

is compelling evidence that long-term addiction operates primarily through maladaptive 

engagement of motivated memory processes. Treating these maladaptive memory 

systems will therefore be key to developing effective long-term treatments for SUDs. In 

the next section I will outline the research supporting this position and suggest ways in 

which these aberrant processes might be reversed.  

 

1.2 Drug Addiction as Maladaptive Motivated Memory and Behaviour 

 

Drug addiction is a multivariate problem. Its occurrence is the culmination of one or 

more of a heritable disposition to addictive behaviours (Kreek et al. 2005), epigenetic 

alterations caused by prenatal, perinatal or early developmental insults (Kippin et al. 

2007), acute and chronic environmental stressors (Gordon 2002), social vulnerability 

(Broms et al. 2004) and maladaptive physiological and neuropsychopharmacological 

processes (Belin et al. 2008; Everitt and Robbins 2005). While work is underway to 

delineate the contributions of these factors to addiction pathology, the required 

integration of knowledge across disciplines (genetics, developmental biology and 

psychology, epidemiology and neuroscience) is in its infancy. Further, these risk factors 

may be additive or interactive and their frequent collinearity currently makes it 

impossible to define clear cause-effect relationships in the pathogenesis of addiction. As 

such preventative interventions at the genetic or societal level are not realistic in the 

short term. Instead, research strategies that aim to understand and remediate the 

maladaptive neuropsychological processes underlying addiction at the level of ‘the 

individual’ are both tractable and realistic. This strategy benefits from intervening 
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proximally to symptomatology of SUDs. That is, these neuropsychological 

maladaptations are the ‘final common pathway’ in SUDs and therefore represent a 

relatively consistent treatment target. This thesis will explore one such strategy: 

Translating behavioural modelling in laboratory animals to human addicts in an attempt 

to overwrite maladaptive memories thought to underlie relapse in SUDs (Milton and 

Everitt 2012). 

Like many neuropsychiatric disorders, drug addiction can be thought of as 

malfunctioning of an adaptive plastic systems due to stresses that exceed the neural 

capacity for homeostasis and adaptive compensation (Koob and Le Moal 2001; Selye 

1936; 1973). In the case of drug addiction, this system is the brain’s reward learning and 

motivational machinery. Although an exhaustive discussion of the 

neuropsychopharmacology of memory is beyond the scope of this thesis, a brief review 

of the major neurotransmitter pathways involved in creating maladaptive motivational 

memories (MMMs) will contextualise the psychopharmacological issues that arise 

throughout the experimental work reported later. 

1.3. Drugs produce maladaptive motivational memories through hijacking of neural 

systems involved in reward learning. 

 

Although addictive drugs vary widely chemically and in their mechanisms of action, 

they have consistent downstream effects on monoaminergic, glutamatergic, GABAergic 

or endorphin-system signalling in the brain (Koob 1992b). While different drugs recruit 

different receptor and signalling pathways to produce their reinforcing effects, abused 

drugs converge on modulation of dopamine (DA) signalling in the midbrain, limbic 

system and cortex as a ‘final common pathway.’ Those drugs that produce the greatest 

direct or downstream DA increases in these areas, particularly in neurons terminating in 
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the Nucleus Accumbens (NAcc) tend to be the most addictive (Pierce and Kumaresan 

2006).  

Dopamine is central to reinforcement learning, that is, in encoding the rewarding 

effects of stimuli and representing associations between actions, stimuli and outcomes 

that control reward-related behaviour (Dayan and Balleine 2002). Via a related 

mechanism, DA signalling also conveys information about the salience or importance 

and worthiness of attention of environmental stimuli (Berridge and Robinson 1998). 

Dopamine promotes learning about rewards via phasic bursts of firing of striatal DA 

neurons. These patterns of responding are shown in Figure 1.1.  If an unexpected 

positive outcome occurs, a burst of action potentials is seen in DA neurons when the 

outcome is presented. If this favourable outcome is predicted by a previous stimulus, 

through repeated pairing of the stimulus and outcome, phasic DA neuronal bursts begin 

to occur upon the presentation of the predictive stimulus, rather than the reinforcer. 

Thus striatal DA  neurons encode temporal predictions of rewards (Schultz et al. 1997). 

If a reward is withheld following its predictor, a phasic suppression of DA neuron firing 

occurs. Dopamine thus acts as a learning signal, encoding the error between predicted 

and actual events. Contemporary models of reinforcement learning revolve around this 

‘prediction error’ (PE) signal as the primary driver of learning about rewards and 

extensive neurobiological evidence now support this proposal (Waelti et al. 2001). This 

PE signal is central to both Pavlovian and instrumental learning, as it can encode the 

outcomes of actions, tuning future action selection (Redgrave and Gurney 2006). 

Clearly not all learning can be reasonably conceptualised as involving reward and other 

types of learning may be relatively independent of dopamine. These learning modalities 

are not of immediate relevance to this thesis however, so will not be discussed here.  
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Figure 1.1. The role of dopamine in reward prediction and learning via phasic 

prediction error signalling 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unexpected delivery of a reward such as nicotine (used as the example here, but this 

may be any reward) causes a phasic increase in striatal dopamine burst firing known as 

a positive prediction error (PE). If a cue consistently predicts the occurrence of a 

subsequent reward (such as a lighter often predicts the administration of nicotine), the 

temporally-delayed pairing of these events sees a shift in DA neuron burst firing from 

the time of reward presentation to the time of cue presentation. As the association 

between the two is fully formed, the phasic firing becomes completely time-locked to cue 

occurrence. Once this association is formed, if the reward is omitted, a phasic reduction 

in striatal DA firing occurs (negative prediction error).  
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Addictive drugs produce phasic firing of basal-striatal-cortical DA neuronal activity and 

can create much higher frequency bursts than natural rewards such as food and water 

(Hernandez and Hoebel 1988). This activity creates a powerful learning signal and 

reinforcing effect that promotes learning about predictors of drugs and motivates 

behaviour towards further drug use. Human Positron Emission Tomography (PET) 

studies show that these spikes in DA-ergic activity correlate with the pleasure and 

feeling of ‘high’ derived from drugs of abuse (Volkow et al. 1997; Volkow et al. 1999) 

and the subjective experience of craving. In addition the salience attached to drugs 

versus natural rewards can be reduced via pharmacological manipulation of 

dopaminergic autoreceptors which dampen phasic DA activity  (Freeman et al. 2014).  

However, dopamine alone is not sufficient to produce lasting changes in neural memory 

circuits. The excitatory glutamatergic N-Methyl-D-Aspartate (NMDA) and α-amino, 

3–methyl 5- hyroxy 4-isoxazolepropionic acid (AMPA) receptors mediate neural 

signalling necessary to create and stabilise motivational memory traces.  Given the 

complexity and importance of these receptors and their properties in maladaptive 

memory formation and SUDs, a brief description of their pharmacology is warranted. 

NMDA receptors (NMDARs) are heterotetrameric ligand-gated ion channels, 

consisting of a combination of two subunit types (canonically, two GluN1 and two 

GluN2 subunits1). The subunit types themselves are heterogeneous, creating many 

isoforms of NMDARs throughout the brain.  A schematic of the NMDA receptor with 

ligand binding sites is given in Figure 1.2. A unique property of NMDARs, is their 

requirement for ligand binding at both glutamate and glycine sites and depolarisation of 

the postsynaptic membrane to remove the resting-state Mg2+ block from the ion 

channel. This requirement for concurrent ligand binding and depolarisation confers 

                                                           
1 The GluN2 subunit has four different types (GluN2a, b, c and d) which introduce 

considerable functional diversity to the receptor. These subunit types are variably 

expressed in the central nervous system.  
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NMDARs with the properties of a logical ‘AND’ gate. Moreover, NMDARs are highly 

permeable to Ca2+ a ubiquitous second messenger in neurons, required for the activation 

of a variety of downstream enzymes which result in long-term synaptic plasticity (see 

below). As such NMDARs can encode synaptic co-activation, underlying much of the 

synaptic and dendritic remodelling that comprises Hebbian, experience-dependent 

neural plasticity.  AMPA receptors (AMPARs) have a similar, heterogeneous tetrameric 

structure to NMDARs and are responsible for the majority of rapid excitatory signalling 

in the brain and for expressing NMDAR-mediated synaptic plasticity. They are 

continuously produced and shuttled to the neuronal plasma membrane where they 

migrate to synapses. Increasing the density of AMPARs on the post-synaptic membrane 

increases excitability and serves as a key mechanism in creating functional neural 

networks (Esteban et al. 2003; Song and Huganir 2002). 
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Figure 1.2. Schematic representation of the NMDA receptor 

 

 

 

 

 

 

 

 

 

 

 

This schematic shows a front view of a bisected NMDA receptor, with two of the four 

subunits visible. The existence of the GluN2b subunit here is simply an example and 

subunit composition may vary widely. Binding sites of endogenous ligands and drugs 

are shown as coloured shapes. In its resting state, the ion channel is blocked by Mg2+. 

Removal of this block by depolarisation plus binding at the receptor sites is necessary 

to allow calcium influx into the cell and subsequent signal transduction mechanisms to 

be activated. Drugs can antagonise the NMDAR via binding to the extracellular 

antagonist receptor site, or by binding to the channel receptor site, forming an artificial 

channel block. 
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Activating NMDARs triggers a cascade of intracellular events that produce lasting 

synaptic changes via signal transduction pathways involving intermediate protein 

kinases and transcription factors, resulting in transcription of DNA into mRNA and 

mRNA to new proteins. These pathways therefore lead to protein synthesis-dependent 

synaptic potentiation via modification of NMDAR and AMPAR channels (Ben-Ari et 

al. 1992; Chen and Huang 1992) and translocation and migration of synaptic and 

extrasynaptic AMPA/NMDA receptors (Esteban et al. 2003).  

NMDARs and AMPARs are therefore critical in long-term potentiation (LTP), long-

term depression (LTD) (Muller et al. 1988; Watt et al. 2004) and other forms of long-

term plasticity (O’Brien, Kamboj et al, 1998). Antagonism of NMDARs prevents the 

stimulus-dependent tuning of synaptic networks, and the induction of LTP in the rat 

hippocampus (Malinow et al. 1988) and impairs learning and memory in rats (Baker 

and Azorlosa 1996; Butelman 1989) and humans (Krystal et al. 1994; Morgan and 

Curran 2006).  Through these biochemical and neuronal pathways (drawn schematically 

in Figure 3), NMDARs underlie memory consolidation, the stabilisation of neuronal 

modification that converts short-term memory traces into long-term memories (Shimizu 

et al. 2000) that can persist across an organism’s lifetime.   

Phasic DA firing is dependent upon NMDAR inputs to ventral striatal DA neurons, as 

genetic modifications that disrupt the development of these inputs both prevent phasic 

(but not tonic) firing of DA neurons and the acquisition of conditioned behaviour. 

Critically, transgenic mice lacking these inputs show greatly reduced learning about the 

predictive nature of discriminative cues (Zweifel et al. 2009). Recurrent monoaminergic 

and glutamatergic projections from the NAcc to the amygdala, prefrontal cortex, 

hypothalamus and hippocampus convert the PE ‘learning signal’ into neural networks 

encoding the emotional, contextual and associative components of motivational 
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memories (Fields et al. 2007). These form integrated mesocorticolimic / 

nigrocorticostriatal circuits that are recruited by addictive drugs (Wise 2009).  These 

circuits are perfectly suited to encode the sensory inputs of predictive environmental 

stimuli (primary cortical areas), the outcomes predicted by these stimuli (hippocampus 

and basolateral amygdala), the valence and relevance of these stimuli (midbrain, 

striatum) according to physiological state (hypothalamus), the integration of these 

stimuli and outcomes into a wider allocentric spatial context (hippocampus) and to 

‘paint’ emotional (limbic system), hedonic and motivational (midbrain and striatal) 

value upon these stimuli in order to control appropriate behaviours (motor cortex) for 

maximising reward and avoiding punishment (Koob 1992a) (see figure 1.3 for a 

schematic of circuits involved in reward learning).  

Addictive drugs can directly increase NMDAR-mediated LTP in mesolimbic DA 

neurons (Bernier et al. 2011; Mansvelder and McGehee 2000) and alter the subunit 

composition, expression and distribution of AMPARs  (Beckerman et al. 2013; 

Mickiewicz and Napier 2011) thereby directly engaging the neural mechanisms of 

motivational memory through both glutamatergic and dopaminergic routes. These 

systems evolved to motivate animals to seek and interact with rewards and it is the 

hijacking of these systems that imbues drugs with addictive properties. By 

hyperactivating the neural mechanisms that underpin motivation, salience and 

reinforcement learning, such drugs produce maladaptive motivational memories that are 

key to the development of pathological drug use.   
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Figure 1.3. Neural networks involved in maladaptive motivational memory formation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is a schematic circuit diagram and does not represent anatomical location of 

structures involved, however, although the Nucleus Accumbens is not explicitly drawn 

in this diagram, it is a structure nested within the ventral striatum. It receives extensive 

cortical, hippocampal and amygdalar input, interfacing limbic affective processing, 

motivational processing and motor output to guide motivated behaviour. Training to 

asymptote performance levels (and continued training beyond this) and habit formation 

is believed to involve a shift of this interfacing to the dorsal striatum, creating more 

direct and less flexible input-output (stimulus-response) associations, explaining the 

resistance of habitual memory to changes in the values of reinforcers. This figure is 

reproduced from Kelley (2004). 
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1.4 Maladaptive cue-drug learning in context 

 

Recreational drug-taking occurs in the presence of various environmental stimuli, either 

distal or proximal to drug consumption. As with natural rewards, drug-induced phasic 

DA firing and related NMDAR/AMPAR mediated neuronal plasticity drives the 

formation of mnemonic associations between these stimuli or ‘cues’ and the availability 

and reinforcing effects of drugs.  

Imagine drinking a glass of red wine. The bottle and glass each have a distinctive shape, 

pouring the wine from the bottle to the glass produces unmistakable proprioceptive 

feedback and makes a specific sound. The wine itself has a distinctive colour, aroma 

and taste. All of these sensory inputs specify with relative certainty that ethanol will 

soon be entering the central nervous system, leading to a cascade of events ending in 

dopamine release in the striatum. Simultaneously activated are the cortical, limbic, 

motor and hippocampal networks encoding sensory inputs, affective status of the events 

and appropriate actions to be taken, respectively (see Figure 1.3).  Whenever wine is 

consumed in this manner, Pavlovian and/or instrumental associative memories are 

formed between these predictive sensory stimuli and the rewarding effects of wine via 

the dopaminergic and glutamatergic mechanisms described above. As such, following 

repeated wine drinking, cues like the aroma of wine and sight of a wine bottle elicit 

increased striatal dopaminergic activity, which imbues these cues with abnormally 

increased salience such that they grab attention (Robinson and Berridge 1993; 2001). 

These learned associations also produce the hallmark conditioned Pavlovian responses 

of craving and the urge to use drugs (Wong et al. 2006), motivated drug seeking, and 

instrumental responses, such as buying alcohol or picking up a glass and drinking.  

Reward values of stimuli do not simply exist in a unitary, homogenous state within 

organisms and may further vary across organisms. In normal adaptive motivated 
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behaviour (including non-dependent recreational drug use), the behavioural 

consequences of reward memory activation are modulated by both the physical state of 

the organism and frontal-cortical inhibitory mechanisms. Proprioceptive and 

homeostatic signals, operating via the hypothalamus, determine the motivational value 

of a reward in a given internal state of the organism (Berridge 2012).  

To illustrate this, let us return to our bottle of wine. Imagine that after a particularly 

busy and stressful week at work, you manage to submit a grant application just before 

the 8pm deadline on a Friday evening. Your co-applicant suggests that you go for a 

drink to celebrate and you decide to share a bottle of wine in the local pub. The 

combination of having finished the grant, the reduction in stress and the buzz from the 

bottle of wine is extremely rewarding, so you decide to share another. On the way home 

you realise you have not eaten any dinner and decide to stop off at the local kebab shop 

for some food. The next morning you wake up with a pounding headache and find the 

half-eaten kebab on your kitchen counter. You notice that the smell and sight of it are 

extremely unpleasant compared to how tasty it had seemed the night before. In the 

kitchen cupboard is an unopened bottle of wine. The thought of drinking any seems 

extremely unpleasant and makes you feel nauseous, when the previous night the wine 

had been highly rewarding. Thus, though food and drugs can be highly rewarding, they 

do not have a single a priori and immutable ‘reward value’, but rather this exists on a 

spectrum that is determined by the motivational homeostatic signals.  

Research has demonstrated that modulation of these signals can lead to diametric shifts 

in the motivational status of stimuli, turning highly salty solutions that were previously 

aversive into sought-after and liked rewards in rats (Robinson and Berridge 2013). In 

SUDs, drug cues and associated contexts can trigger unjustifiably strong motivation to 
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obtain and use drugs that is disproportionately large (Berridge 2012), overriding satiety 

and other inhibitory signals. 

The value of short-term rewards, such as drug use are also couched within the value of 

longer-term goals. Actions (such as drinking) are weighed against the value of their 

short-term (e.g. intoxication) and longer-term (e.g. hangover) outcomes and rational 

decisions are made regarding the utility of the action given the current state of the 

organism (Sutton and Barto 1998). Prefrontal inhibition of mesostriatal dopamine can 

thus reduce cue-induced drug seeking and prevent drug use, maintaining drug use at a 

healthy level.  However, chronic drug use causes adaptive down-regulation of frontal 

DA and reduces the expression of prefrontal D2 receptors, leading to increased drug use 

in an attempt to recover normal DA levels while reducing the reinforcing effects of 

natural rewards such as food and sex.  

Further, lowered prefrontal D2 expression is also associated with increased impulsivity 

(Lee et al. 2009) and reduced capacity for response inhibition (Ghahremani et al. 2012) 

due to reduced control of the prefrontal cortex over striatal dopamine levels in response 

to drugs (Volkow et al. 2007) and drug cues (Volkow et al. 2006). In concert with this 

reduction in regulatory control of drug use, cue-drug memories are continually 

reinforced, evolving from goal-directed, flexible stimulus-outcome or action-outcome 

memories to overlearned, inflexible stimulus-response habits (Everitt and Robbins 

2005), a process which relies upon NMDAR activity (Wang et al. 2009) and involves a 

shift of processing from the ventral to dorsal striatum. Development of such habitual 

memories and associated action patterns are central to the progression from recreational 

drug use to the compulsive patterns of drug seeking and use that characterise addiction 

(Belin et al. 2008). The key feature of these stimulus-response habitual memories is that 

they are independent of any cognitive representation of goal states and therefore 
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insensitive to modulation by the normal inhibitors of responding, satiety and reward 

devaluation. Rather they represent a relatively direct input-output circuit whereby 

stimuli such as drug cues can reliably and automatically produce conditioned responses 

leading to drug use. As exposure to drug cues is usually inevitable for an addict, 

habitual stimulus-response memory traces become a primary driver of drug use in 

addiction (rather than just the reinforcing effects of the drug itself). Once formed, 

associative cue-drug memories are long-lasting. This is why, after months or years since 

their last cigarette, under some circumstance whereby sensitised motivational systems 

are activated by drug cues, an ex-smoker may experience overwhelming cravings for 

cigarettes and relapse. While allostatic perturbations to normal neurotransmitter levels 

recover relatively rapidly after long-term cessation of drug use, cue-drug memories 

persist, underlying the quiescent long-term susceptibility to relapse that characterises 

addiction and its chronicity.   

It will hopefully now be clear that cue-drug memories are central to the pathogenesis 

and maintenance of SUDs; that sensitised motivational mnemonic systems that increase 

the control drug cues exert over drug seeking and using explain the limited efficacy of 

existing pharmacological treatments for substance use disorders. Currently licensed 

pharmacological treatment options do not primarily address the role of maladaptive 

motivational memories in relapse. Any changes in these memories likely occur as a 

secondary consequence of abstinence. Shifting focus to directly targeting the memory 

mechanisms underpinning relapse may prove critical in developing more effective 

treatments for substance use disorders. Moreover, as the same basic maladaptive 

memory mechanisms are thought to be at play in the pathogenesis of addiction to all 

drugs, despite their widely varying pharmacology and sequelae, this approach may have 

general utility for a wide range of substance use disorders.  
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1.5. How to Treat Maladaptive Motivational Memories (MMMs)? 

 

Since Pavlov first delineated the characteristics of associative learning, or conditioning, 

the most effective and widely used method aimed at reducing conditioned responding 

has been extinction. Extinction involves repeatedly presenting a conditioned stimulus 

(for example, a light associated with a shock in a rat or a cigarette packet, which has 

become associated with smoking) without its reinforcing outcome (i.e. without the 

shock or without the inhalation of smoke). Such uncoupling of stimulus and outcome 

can reduce both conditioned Pavlovian (Pavlov 1927) and instrumental responses 

(Skinner 1938). However, there is now considerable evidence that extinction is not an 

un-learning of conditioned associations, but rather the creation of a parallel, inhibitory 

memory association that competes with the conditioned association for behavioural 

expression. In the standard rat light-shock paradigm, this means that, following 

conditioning and extinction two associations exist, one light/shock (the conditioned 

association) and one light/no shock (extinction association). Input parameters, such as 

context or the presence of ‘scene setting’ cues, determine which of these associations is 

expressed (Bouton and Bolles 1979).  

1.6. Out with the old: Extinction to treat MMMs 

 

Perhaps unsurprisingly, extinction has been the focus of experimental medicine that 

attempts to treat drug addiction through reduction of MMM expression. The homologue 

of extinction learning in laboratory animals is cue exposure therapy (CET) in human 

patients (Bouton et al. 2001). CET for substance use disorders involves repeatedly 

exposing participants to a drug cue (for example, a pint of beer) while the participant 

withholds the conditioned response (drinking from the glass) under the supervision of 

an experimenter or clinician. The aim of CET for SUDs is to extinguish conditioned 

responding such that drug cues become less likely to activate prepotent conditioned 
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motivational responses, less able to provoke craving and less likely to lead to drug use. 

CET has been extensively studied in the treatment of maladaptive motivational 

memories in substance use disorders (Conklin and Tiffany 2002; Dawe et al. 1993; 

Drummond et al. 1995; Drummond and Glautier 1994; Loeber et al. 2006; Niaura et al. 

1999), but has limited efficacy (Dawe et al. 1993; Drummond et al. 1990; Marissen et 

al. 2005; Niaura et al. 1999). This is due to a lack of generalisation of in-lab effects to 

other contexts, (renewal), recovery of drug responding following a single exposure to 

the drug (reinstatement) and instability of acute changes in outcome measures over time 

(spontaneous recovery).  

These phenomena occur because, as discussed, extinction is not erasure of conditioned 

memory traces, but increased inhibition of these memories via competing (conditioned 

stimulus- no drug) traces. In suppressing drug-seeking, extinction will thus only ever be 

as effective as the continued ability of the inhibitory memory trace to effectively 

compete with a conditioned drug-taking response. The rapid recovery of cue-induced 

responding for drugs following CET is one indication of the insufficiency of the 

inhibition of cue/drug memory traces engendered by CET. These traces therefore 

invariably recover and precipitate drug-seeking behaviour due to a greater retrieval 

propensity. When we consider the length of the learning history that established stimuli 

like lighters as drug cues (tens or hundreds of thousands of learning episodes over many 

years) compared to the length of typical in-lab or in-clinic cue exposure sessions (tens 

of trials over minutes or hours), and that repetition of cue-response pairings increases 

retrieval propensity (Ebbinghaus 1913) the long-term inefficacy of CET is perhaps 

unsurprising.  

One approach to overcome the disparity in learning strength between CET and 

conditioned cue-drug associations is to pharmacologically prime the neurotransmitter 
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systems underlying memory during CET to enhance the strength of the memories 

formed during the treatment. Given the centrality of NMDA receptors to learning and 

memory, enhancing NMDA-mediated neurotransmission is an attractive candidate for 

potentiating the strength of extinction learning in laboratory CET paradigms. Drugs 

which may achieve this goal are the amino acid D-serine (Schell et al. 1995) and the 

partial agonist antibiotic D-cycloserine (DCS) (Watson et al. 1990), both of which are 

co-agonists (with glutamate) at the glycine site of NMDA receptors. These compounds 

increase channel open probability (see Figure 1.2), although the extent to which this 

occurs is receptor subtype-dependent (Sheinin et al. 2001). Research investigating the 

effects of D-serine on memory in humans is extremely sparse, although some studies 

show remediation of cognitive deficits in medicated schizophrenic patients with co-

administration of D-serine and antipsychotics (Heresco-Levy et al. 2005; Tsai et al. 

1998), suggesting it may have cognitive enhancing effects. In this vein recent research 

has focused on combining DCS with CET to reduce the context-dependency of 

extinction learning and improve outcomes in CET for substance use disorders. 

While DCS has shown promise in animal models of addiction (Botreau et al. 2006) and 

human fear learning models (Grillon 2009; Kalisch et al. 2009), it has failed to show 

utility for CET in human drug-using populations (Hofmann et al. 2011; Kamboj et al. 

2012; Kamboj et al. 2011; Price et al. 2013; Yoon et al. 2013) and in some studies has 

been found to increase cravings following CET (Hofmann, Hüweler, MacKillop, & 

Kantak, 2011; Price et al., 2013). Some authors have suggested that failures with D-

Cycloserine are due to insufficiently powered or sensitive tests in humans to observe 

subtle effect of DCS on laboratory measures of components of cognitive processes 

involved in addiction. However, the extinction-enhancing approach may be flawed in 

more fundamental ways which proponents of this approach have tended to ignore 

(Myers and Carlezon Jr 2012). Rather than continued unproductive research in this 
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domain researchers should develop alternative experimental pharmacobehavioural 

approaches while considering five central criteria in appraising their potential as 

therapies in addiction (Das and Kamboj 2012). These criteria will be applied in 

appraising the strategies described in later sections of this thesis. 

1.7 Five criteria for appraising pharmacobehavioural treatments for addiction 

 

Treatments that will offer meaningful utility for SUDs must possess the following 

qualities if they are to be ultimately implemented in the clinic: 

1) Robust, reproducible effects on reducing relapse rates.  

2) Long-lasting efficacy 

3) Contextual invariance 

4) A feasible mode of clinical implementation  

5) Cost- and time-effectiveness.  

Considering the nature of associative learning in SUDs and the studies of DCS referred 

to above, these criteria would suggest that pharmacological enhancement of extinction 

should be abandoned as a strategy for treating SUDs. No study of DCS/CET has shown 

long-lasting effects on drug use or relapse rates, the primary outcomes of interest 

(failing criteria 1,2, and 3). The single small-scale study showing beneficial effects of 

DCS on CET (Santa Ana et al, 2009) found no such effect at four week follow up 

(failing criterion 2). In contrast the number and sample sizes of extant clinical studies 

with DCS/CET showing null or detrimental effects, suggest that if DCS does enhance 

extinction, the effect is very small and therefore likely to be of negligible practical 

importance in improving addiction treatment. Moreover, given the ratio of null to 

positive findings, it is also likely that positive findings with DCS/CET represent Type I 

errors.  
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More fundamentally, pharmacologically potentiated CET is likely to fail because 

extinction does not weaken or change pre-existing MMM traces, but, to a greater or 

lesser extent, temporarily prevents them from being expressed behaviourally. As 

previously discussed, the sheer amount of learning that occurs to establish stimuli as 

drug cues versus the amount of extinction that occurs in-lab may account for null effects 

of DCS. A 40-a-day smoker will experience 14,600 stimulus-response training episodes 

per year, which explains the difficulty in retraining these responses. DCS would have to 

increase memory strength to the extent that the gap is bridged between training histories 

that differ by orders of magnitude. This likely explains the disparity between the 

efficacy of DCS for extinction of fear memory in anxiety disorders (Smits et al. 2013) 

and SUDs and between animal and human models of appetitive memory (Dhonnchadha 

et al. 2010; Thanos et al. 2011). Prototypical anxiety disorders and lab-based learning 

paradigms represent extremely abbreviated learning histories compared to naturalistic 

human MMM formation. One potential solution to this issue is to massively increase the 

amount of extinction training during a course of CET such that extinction learning 

begins to approach the habitual levels of responding seen with cue-drug memories. 

This, however, would require inordinate amounts of treatment time which is unrealistic 

in terms of retention of patients and insufficiency of healthcare resources, thus failing 

criteria 4 and 5. 

DCS is a partial agonist at the glycine site and a weak potentiator of NMDA receptor 

activity, especially since normative synaptic glycine levels are likely to be at saturating 

levels (Forsythe et al. 1988). It may therefore be argued that more efficacious 

compounds than DCS should be used. While other compounds are currently being 

tested as memory enhancers (e.g. (Das et al. 2013b), an inescapable fact of human 

memory is that it is an extremely efficient and highly functional system. It therefore 

seems unlikely that a single pharmacological compound would produce such a profound 
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improvement on this evolutionarily fine-tuned system as to fundamentally redress an 

imbalance created through vastly mismatched training histories. Such an efficacious 

drug is not currently known to (and may never) exist. These factors reinforce the 

conclusion that use of cognitive enhancers to potentiate consolidation of extinction in 

CET is a deeply flawed approach. A more parsimonious approach is to degrade or 

change MMMs directly. 

1.8 In with the new: Reconsolidation interference to overwrite Maladaptive 

Motivational Memories 

 

The use of extinction in behavioural treatments of MMMs stemmed from the prevailing 

model of memory consolidation and stability over the last century, first proposed by 

Muller and Pilzecker (McGaugh 2000; Müller and Pilzecker 1900). This model 

proposes that, following learning, and consolidation of this learning into long-term 

memory, memories are stored in a stable, inactive state and are therefore resistant to 

interference. This model implies that there is a single window of opportunity to directly 

interfere with a maladaptive memory: during its consolidation. This was first evidenced 

by retroactive interference in word pair learning tasks demonstrating that after learning 

of cue-response word pairs, subsequent acquisition of a new list of cue-response pairs 

caused poorer recall of original word pair items at test both immediately and 24 hours 

later (Müller and Pilzecker 1900). Even non-verbal material (pictures of landscapes) 

produced this interference effect. However, this effect was only observed if the new 

items were learned shortly after the original list, before the first memory trace had a 

chance to stabilise. 

Subsequent studies by Duncan and colleagues (Duncan 1949) found that retrograde 

amnesia for learning was produced by electroconvulsive shock administered soon after 

learning (Duncan 1949). Research in animals showed that protein synthesis inhibition 
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did not impair acquisition of learned responses, but did impair their retention (Agranoff 

et al. 1966; Duncan 1949), suggesting that consolidation is underpinned by a late-phase 

form of LTP (Matthies et al. 1990) that involves re-scaffolding the synaptic architecture 

during learning to lay down new memories (Krug et al. 1984). Much research has now 

characterised late-stage LTP and memory consolidation at the cellular, molecular, 

systems, and behavioural levels. This shows, for example, that recruitment of 

immediate-early genes (Jones et al. 2001), changes in gene transcription (McMahon and 

Jones 1993; Nguyen et al. 1994) and activation of neurotrophic factors (Ying et al. 

2002) are involved in the process, which critically relies upon modification of neural 

activity in the hippocampus (Nadel and Moscovitch 1997; Zola-Morgan et al. 1986) 

Various lines of evidence suggested that once consolidated, memories become resistant 

to interference. For example amnestic drugs administered shortly after learning cause 

retrograde amnesia but do not impair memory if administered after the time-period in 

which consolidation occurs (Duncan 1949; McGaugh 1966). Over a longer time-course 

(weeks to years), a process of systems consolidation occurs, where memory traces 

become increasingly hippocampus-independent and cortically distributed, such that 

memories can be recalled by the external activation of neuronal nodes within the 

memory trace (McGaugh 2000). With more frequent recall and reinforcements, 

memories continue to become more strongly encoded (Ebbinghaus 1913) until an 

asymptote is reached. At this point, typical accounts of memory would suggest that 

there is no means of interfering with the memory trace, as even the archetypical amnesic 

patient H.M. retained remote memories from before surgery that bilaterally removed his 

medial temporal lobes (Scoville and Milner 1957).   

Traditional consolidation theory would therefore suggest that the modification of 

overlearned MMMs in SUDs is unachievable as it is virtually impossible to intervene 
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within the window of opportunity, before these memories are strongly consolidated and 

well-rehearsed. The last decade, however, has fundamentally challenged standard 

consolidation theory following the resurgence of interest in memory reconsolidation, 

the process whereby remote (consolidated) memories can become unstable at recall and 

susceptible to interference.  The phenomenon was first observed by D.J. Lewis and 

colleagues (Lewis and Maher 1965; Misanin et al. 1968) who observed that 

electroconvulsive therapy following a reminder cue of remotely trained memory 

produced amnesia for that memory in a similar fashion to post-consolidation 

electroconvulsive shock.  Lewis and colleagues, interested in time-course of 

consolidation and retrograde amnesia termed the phenomenon ‘Cue-dependent 

amnesia’, suggesting that retrieval of a memory renders it temporarily labile, requiring 

further stabilisation to persist in long-term storage. Subsequently, systemic protein 

synthesis inhibition following cue-induced memory recall was found to lead to 

retrograde amnesia for the learned information, in similar time-dependent manner as 

original consolidation (Judge and Quartermain 1982). After this research, however, 

interest in ‘Cue-dependent amnesia’ lost momentum and lay dormant until 1997 when 

Jean Przybylsawski and Susan Sara found amnesia for an over-trained spatial memory 

(radial maze) with NMDAR antagonist MK-801 following brief reactivation of this 

memory (Przybyslawski and Sara 1997). This effect was time-limited for drug infusions 

up to two hours after reactivation, displaying a gradient similar to that seen in initial 

memory consolidation. Noting similarities of these amnestic effects with those found in 

studies of consolidation, the authors named the phenomenon reconsolidation. This 

‘rebranding’ along with an interest in molecular models of memory processes and more 

sophisticated methods for manipulating the brain’s chemistry, sparked a renewed 

interest in the field. Sara notes, however that the choice of name was unfortunate 
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because, as will be seen, reconsolidation does not simply represent a recapitulation of 

consolidation. (Sara and Hars 2006) 

The contemporary explosion in reconsolidation research commenced with the 

publication of a study in Nature by Karim Nader and colleagues demonstrating that a 

Pavlovian conditioned tone-shock fear memory could be ‘erased’ by infusion of protein 

synthesis inhibitor, anisomycin, into the rat basolateral amygdala immediately following 

a brief reminder of the memory (a single presentation of the tone in the conditioning 

context) (Nader et al. 2000). This demonstrated that memory retrieval can spark a 

period of memory lability (memory destabilisation) and a subsequent requirement for 

restabilisation of the trace, which requires protein synthesis in the same brain areas 

necessary for initial consolidation. Although ‘reconsolidation’ literally refers to the 

ongoing requirement for restabilisation of memories following retrieval-induced 

destabilisation, the term is now generally used to refer to the entire phenomenon of 

memory destabilisation and restabilisation following retrieval. The potential of 

interfering with reconsolidation processes should be self-evident in that it offers the first 

viable means to weaken or change maladaptive memories, be they motivational as in 

addiction, or fear-based as in PTSD and anxiety disorders.  

Since publication of Nader et al’s study, hundreds of further papers examining the 

phenomenon of reconsolidation have been published, using various learning paradigms 

and post-retrieval interventions to understand its behavioural and molecular 

determinates. It is now generally accepted that reconsolidation exists as a 

computationally efficient and evolutionarily essential means for updating consolidated 

memory traces to maintain their relevance by incorporating pertinent new information 

(Lee 2009).  Although animal reconsolidation studies are numerous and rapidly 

expanding, there is thankfully a high review to research ratio, with up-to-date reviews 
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being steadily published (Alberini and LeDoux 2013; Besnard et al. 2012; Dudai 2006; 

Dudai and Eisenberg 2004; Finnie and Nader 2012; Lee 2009; Milton and Everitt 2012; 

Soeter and Kindt 2011; Sorg 2012; Torregrossa and Taylor 2013; Tronson and Taylor 

2007). I believe repeating such a review process will create redundancy, so a full 

synthesis will not be repeated here (the interested reader is encouraged to read any of 

the excellent referenced reviews). Instead, I will focus upon issues pertinent to the 

efficient translation of preclinical reconsolidation research into novel treatment 

modalities for SUDs.  
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1.9. Pharmacological mechanisms of memory reconsolidation 

 

Findings of consolidation research have largely driven the cellular and molecular 

interrogation of the reconsolidation process and therefore much of the preclinical 

research into memory reconsolidation has probed the process with drugs that are known 

to interfere with initial consolidation. The aim of this research is to understand the 

molecular pathways underlying reconsolidation, their relationship to behaviour and to 

identify potential drug targets that may be of therapeutic benefit in the clinic. Figure 1.4 

shows and describes a prototypical rat appetitive memory reconsolidation paradigm 

known as the Pavlovian to Instrumental Transfer (PIT) task. This task is used as an 

exemplar because it includes both Pavlovian and instrumental training and represents a 

means by which Pavlovian learning can modulate operant responding. Although the 

exact stimuli and reinforcement schedules differ across paradigms, the general 

procedure for interrogating a molecular pathway in reconsolidation is similar across 

paradigms.  
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Figure 1.4: The Pavlovian to Instrumental Transfer (PIT) paradigm in reconsolidation 

research 
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All preclinical reconsolidation studies consist of three key phases, typically separated 

by at least 24 hours: Acquisition, Test I, Reactivation/Intervention and Follow-up Test. 

Above is a schematic illustration of these phases in the PIT paradigm. In this paradigm, 

instrumental and Pavlovian associations are trained during separate acquisition phases. 

In the Pavlovian phase, one stimulus (in this example a yellow light CS+) preceded 

delivery of cocaine via an indwelling cannula located in the ventricles. Both the 

reinforcer and method of delivery may vary in reconsolidation research. The reinforcer 

may be morphine, nicotine, ethanol or dietary such as sucrose solution or chow. The 

drugs may be injected intracerebroventricularly, systemically, or in the case of food or 

sucrose, accessible via a tube or chow magazine. A control Pavlovian CS- (in this case a 

tone) never signals delivery of cocaine. The rat will associate the light with the drug 

reward and in some cases, begin to approach and interact with the light CS+. 

Subsequently, in the instrumental phase, two levers are available in the operant 

conditioning chamber. Pressing ten times on the CS+ lever (this reinforcement schedule 

may vary or be progressed to increasingly infrequent rewards) will cause an infusion of 

cocaine. Pressing on the other (CS-) lever will do nothing. The rat learns to repeatedly 

press the CS+ lever to receive an administration of cocaine.  

Once both of these are established, during the first transfer phase, both Pavlovian and 

instrumental stimuli are presented together. Presentation of the Pavlovian CS+ (light) 

can invigorate instrumental responding (increasing lever pressing rate) and reinstate 

lever pressing even following instrumental extinction. This is the ‘transfer’ effect of 

Pavlovian to instrumental learning. Presenting the Pavlovian CS- (tone) will not 

enhance lever pressing. Subsequently, during the reactivation/intervention phase, the rat 

is randomised to receive either memory reactivation + test drug (in this case NMDAR 

antagonist MK801), reactivation with placebo (in this case saline) or no reactivation + 

test drug. The MK801 is infused intracranially via the same cannulae that administered 

the cocaine and can be administered either prior to or after reactivation.  

The reactivation session consists of a brief (several minutes) reminder of the Pavlovian 

memory trace. The CS+ light is presented, but the cocaine is not delivered. It is thus 

similar to a single ‘extinction’ type trial. This procedure aims to reactivate and 

destabilise the memory trace, without causing extinction. Infusion of the test drug 

begins either immediately before or immediately after the brief reactivation session. 

Since abolition of the Pavlovian light cocaine memory trace will necessarily abolish 

the PIT effect (there is nothing to transfer), the subsequent follow-up transfer test 

should find no evidence of PIT if reconsolidation was successfully blocked by the 

reactivation + drug procedure. The PIT effect should still be evident in the groups that 

received the drug without reactivation and reactivation without the drug. These controls 

are necessary to determine that the abolition of responding was both reactivation-

dependent and drug-dependent.  

Any subsequent tests can determine the longevity of any reconsolidation blockade 

effects and susceptibility to spontaneous recovery. Reinstatement can also be assessed 

by giving the animals a priming dose of cocaine and re-introducing them to the test 

chamber. A lack of reinstatement and spontaneous recovery are often taken as evidence 

of memory erasure during reconsolidation.  
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The PIT paradigm described in Figure 1.4 is one of the more complex conditioning 

designs used to investigate drug seeking and abolition of reward memory by 

reconsolidation. However, it is the most direct measure of conditioned motivation, the 

modulation of motivated responding for drugs by a Pavlovian association. This type of 

conditioned responding is thought to be important in SUDs, where drug stimuli 

invigorate drug seeking, often via initiating craving. 

Simpler Pavlovian discriminative stimulus and instrumental paradigms are often 

conducted with a training phase consisting of either the Pavlovian or instrumental 

training described above. In these more basic paradigms, the test/reactivation phase, 

then aims to reactivate (or does not aim to reactivate) this single memory trace with or 

without the test drug: subsequent follow-up test phases assess memory abolition by 

reconsolidation blockade. For simple instrumental conditioning, lever pressing rates are 

the primary outcome. Purely Pavlovian responding is harder to measure, as the 

reinforcer does not require action from the animal. However, one frequently observed 

phenomenon (and primary outcome) in purely Pavlovian paradigms is conditioned 

approach, whereby the animal will move towards and make consummatory actions 

towards the location of reward delivery (e.g. the chow magazine) when a predictive 

CS+ is presented. The human analogue of this behaviour, however is poorly defined.  

One other important question to ask of drug-paired Pavlovian CS+s is whether they 

themselves gain reinforcing properties. Given the discussed role of dopamine in 

assigning reward value and salience to stimuli and the temporal shift of phasic DA 

firing from reward to cue during learning, it should be expected that Pavlovian drug 

cues themselves become motivational targets via conditioned reinforcement, indeed 

this is central to theories of drug addiction (Berridge and Robinson 1998). Conditioned 

reinforcement may be illustrated by the consumption of decaffeinated coffee. The 
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rewarding effects of caffeine imbue the olfactory predictor of coffee’s flavour with 

conditioned reinforcing properties, such that some people may enjoy drinking coffee 

even without the caffeine.  Further, smokers may report experiencing more reward from 

smoking a denicotinised cigarette than from intravenous nicotine itself (Rose et al. 

2000). Conditioned reinforcement is assessed in the acquisition of a new response 

paradigm. In this paradigm, an instrumental memory is trained whereby a correct lever 

press illuminates a CS+ light and delivers a reward. Subsequently, the light alone is 

used as the reinforcer to condition a new action (such as a nose-poke into a chow 

magazine). The speed with which the animal acquires the new response and persistence 

with which it makes this response to illuminate the light is a measure of the conditioned 

reinforcing effects of the stimulus. New response acquisition should be abolished if the 

original memory trace is reactivated and reconsolidation blocked.  

Research using paradigms such as this has shown that protein synthesis inhibitors, 

NMDAR antagonists and the β-Blocker Propranolol interfere with drug memory 

reconsolidation and disrupt the expression of conditioned approach, motivation (Lee 

and Everitt 2008b) and reinforcement (Milton et al. 2008a). These all represent ways in 

which Pavlovian memory traces interact with and modulate actions to increase drug 

seeking and using to provoke relapse. That these processes can be disrupted during 

reconsolidation is promising for the use of this approach to treat SUDs. 

Pharmacological studies such as these have shown that serial cascades of molecular 

processes underlie memory reconsolidation and that many of these processes overlap 

with those involved in initial consolidation. There are, however, doubly dissociable 

pathways that are unique to consolidation and reconsolidation, indicating that 

reconsolidation is not simply a ‘second round’ of consolidation (Lee et al. 2004; Lee 

and Hynds 2013a).  As with consolidation, reconsolidation is reliant upon gene 
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transcription and protein synthesis to instantiate and stabilise changes in synapses and 

dendrites. The first step in the process - destabilisation of memories following retrieval - 

requires degradation of synaptic proteins via ubiquitination, a biochemical process that 

tags protein molecules, allowing them to be recognised and targeted by proteasomes 

(Lee et al. 2008). As such, proteasome inhibitors – drugs that interfere with degradation 

of ubiquitin tagged proteins - prevent retrieval-induced memory destabilisation.  After 

this degradation of proteins underlying potentiated synaptic communication, de novo 

protein synthesis is subsequently required to re-build the synapse with new protein-

based elements such as neurotransmitter receptors, anchoring proteins and general 

scaffolding molecules. This synaptic remodelling is the physical and biochemical basis 

of memory-updating.  

This is why post-retrieval protein synthesis inhibition is the prototypical 

pharmacological means for interfering with memory restabilisation (Nader et al. 2000). 

Protein synthesis inhibitors such as anisomycin and cycloheximide interfere with 

translation of mRNA to proteins in the ribosome. As such, they directly interfere with 

the protein ‘building blocks’ of memory restabilisation, but are also highly toxic, as they 

indiscriminately prevent ongoing protein synthesis in all organs and tissues. For this 

reason, they cannot be used in humans and do not represent a drug class with 

translational potential. Further, the lack of specificity of protein synthesis inhibitors 

does not help to advance our understanding of specific mechanisms linking 

transcription, translation and myriad other biochemical events involved in restabilising 

reactivated memories, other than demonstrating the requirement for new proteins. 

More targeted manipulations of signal transduction pathways have revealed the 

requirement for various transcription factors in reconsolidation. Among these, cyclic 

adenosine monophosphate (cAMP) response element binding protein (CREB), Nuclear 
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Factor Kappa-B (NF-κB)(Yang et al. 2011b) and zinc-finger 268 (zif268, also known as 

Egr1) (Lee et al. 2006) are heavily implicated in reconsolidation of reward memory 

(Miller and Marshall 2005).The action of Zif268 and BDNF on consolidation and 

reconsolidation in the hippocampus show a double dissociation, with BDNF necessary, 

and Zif268 unnecessary for consolidation, and vice versa for reconsolidation.  

Membrane receptor activation targets transcription factors via intermediate enzymes 

known as protein kinases. During reconsolidation these kinases phosphorylate 

transcription factors and allow divergent and common routes to gene transcription from 

upstream activation of membrane-bound receptors (see Figure 1.5). Two particular 

kinases; Extracellular signal-Regulated Kinase (ERK) and Protein Kinases A (PKA) 

and C (PKC) have been shown to be necessary for reconsolidation, with PKA 

implicated more in fear memory consolidation (potentially due to its activation via β-

AR signalling and the key role of amygdalar β-AR in fear conditioning (Tronson et al. 

2006) and ERK critical in drug memory reconsolidation (Valjent et al. 2006). Together, 

these biochemical studies provide compelling evidence that reconsolidation, at least at 

the molecular level, is not simply lingering consolidation, but a separate process.  

More recent assessment of the involvement of receptor-kinase-transcription factor 

pathways has further delineated divergent hippocampal cellular mechanisms underlying 

consolidation and reconsolidation, suggesting that the picture may be more complex. 

Lee and colleagues (2013b) have shown that despite common requirement of NMDAR 

activation, the processes diverge in the intracellular kinases and transcription factors 

recruited.  Consolidation recruits an NMDA-ERK1-BDNF signalling pathway, while 

reconsolidation relies upon an NMDA- Inhibitor of Kappa Kinase alpha (IKKα)-NF-κβ 

– Zif268 pathway. This differentiation may be due to the differential dendritic 

neurotrophic requirements for reconsolidation versus initial consolidation. The latter 
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involves ‘building’ a whole new memory trace, while the former, if updating is 

relatively subtle, involves finessing or modifying these existing traces, rather than 

‘starting from scratch’. 

 It should be clear that the signal transduction pathways involved in memory 

reconsolidation are complex and far from fully elucidated. There are undoubtedly many 

more as yet unidentified co-factors, limiting steps and signal transduction mechanisms 

that will affect the extent to which memories successfully reconsolidate. Further, the 

requirement of certain intracellular events may vary interactively across neural regions 

and across types of memory, due to the variable input requirements (e.g. spatial, 

associative, and emotional) of different forms of memory and the differential 

behavioural outputs required from these memories. Despite these unknowns, there is 

obviously a great deal of potential for development of drug targets with increasing 

levels of specificity to modulate the molecular cascades referred to above and in Figure 

1.5. For the time being, it is also highly promising that neuropharmacological research 

consistently identifies the activation of glutamatergic and noradrenergic membrane 

receptors – the most upstream events in the cascades described above - as necessary for 

reconsolidation. Since safe, tolerable and pharmacologically potent drugs with high 

specificity for these receptors already exist for use in humans they deserve serious 

consideration as drugs for weakening MMMs in humans.  

As with other forms of synaptic plasticity, activation and trafficking of NMDARs and 

AMPARs receptors (Clem and Huganir 2010) is critical in reconsolidation. NMDAR 

manipulations have been consistently shown to affect reconsolidation, but the 

involvement of these receptors is complex. NMDAR activity is required for 

restabilisation of appetitive memory traces as evidenced by significant weakening of 

memory by  infusions of NMDAR antagonist MK-801 following memory retrieval 
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(Brown et al. 2008; Milton et al. 2008a; Milton et al. 2012; Przybyslawski and Sara 

1997), yet the effect is highly time-sensitive, with potentially opposite effects depending 

upon drug timing.  

Activation of NMDARs in the basolateral amygdala is necessary for the destabilisation 

of memory traces as antagonism of these receptors prior to retrieval prevents subsequent 

memory interference by post-retrieval anisomycin (Mamou et al. 2006). Therefore, 

depending on timing of drug administration, NMDAR antagonism may either interfere 

with memory reconsolidation, or prevent it from occurring in the first place. Recent 

research has shown that the temporal changes in the requirement for NMDARs 

activation during reconsolidation is receptor-subunit-specific, the GluN2b subunit being 

critical in the destabilisation, but not restabilisation of memories and GluN2a containing 

NMDARs critical in the restabilisation, but not destabilisation of memories (Milton et 

al. 2013).  

AMPARs are not involved in destabilisation, as pre-retrieval antagonism does not 

prevent post-retrieval amnesia following anisomycin (Mamou et al. 2006), but the 

phosphorylation of the AMPAR2 GluA1 subunit and removal of AMPA receptors from 

synaptic membrane is  a necessary component of  post-retrieval memory erasure (Clem 

and Huganir 2010). AMPA receptor translocation, protein kinase activation, immediate 

early gene expression and protein synthesis are all downstream consequences of 

NMDAR activation, so pharmacologically blocking NMDA receptors may be an 

effective means of preventing the subsequent molecular cascades necessary for 

restabilising memory traces. 

A key problem with the use of NMDAR antagonists for weakening MMMs is their 

tendency to be poorly tolerated and have numerous and hazardous side effects. For 

                                                           
2 Like NMDARs, AMPARs are heterotetrameric and comprise four subunits (GluA1,2,3 and 4) 

which assemble in various configurations.  
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example while the prototype NMDAR antagonists [5R,10S]-[+]-5-methyl-10,11- 

dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) and phencyclidine (PCP)  

produce sustained blockade of NMDARs they have powerful psychotomimetic effects 

and can produce organic damage to neural tissue (Olney’s lesions; (Olney et al. 1989).  

1.10. β-AR and NMDAR antagonism and human reconsolidation 

 

Within the pharmacopoeia of NMDAR antagonists, the substances that can be used 

relatively safely in humans are limited to ketamine, used frequently in paediatric 

anaesthesia and memantine, used to treat cognitive decline in Alzheimer’s. Like PCP, 

ketamine produces powerful dissociative and psychotomimetic effects, has relatively 

high abuse potential (Morgan et al. 2004) but is not seriously neurotoxic in the context 

of medically supervised and isolated dosing. Importantly however, it has very high 

affinity for the NMDAR and impairs the reconsolidation of morphine CPP in rats (Zhai 

et al. 2008). Conversely, memantine at therapeutic doses does not produce overt 

subjective effects, but has lower affinity at the NMDAR than ketamine (Rammes et al. 

2008). Memantine has been found to block cocaine and morphine CPP reconsolidation 

(Alaghband and Marshall 2013; Popik et al. 2006) in rats, although it may paradoxically 

have opposite effects in the day old chick (Samartgis et al. 2012). Given that memantine 

is well tolerated, it is an extremely promising compound for blocking reconsolidation of 

MMMs in humans, although it has never been tested for this purpose. Testing of 

ketamine for use in MMM reconsolidation blockade should therefore be dependent on 

null effects from memantine, and efficacy and safety that outweighs its need for 

inpatient treatment through intravenous administration.  

Independently of the NMDAR, reconsolidation of appetitive memory in rats is also 

reliant upon on β-adrenergic (β-AR) signalling. Few systemically administered β-

blockers cross the blood-brain barrier although propranolol, which is widely used for 
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hypertension, does enter the central nervous system (CNS) and, in combination with 

memory reactivation, reduces the strength of morphine conditioned place preference 

(Robinson and Franklin 2010), cocaine cue-drug and cue-sucrose memory (Milton et al. 

2008a; Milton et al. 2008b) and instrumental sucrose memory (Diergaarde et al. 2006) 

in rats. Propranolol has also consistently been shown to block fear memory 

reconsolidation, with the potential for clinically-relevant benefits in humans (Kindt et 

al. 2009; Sevenster et al. 2013; Soeter and Kindt 2011). However, research into human 

appetitive memory reconsolidation blockade with Propranolol is lacking. β-ARs affect 

long-term plasticity through downstream signal transduction and protein synthesis in 

pathways that are different to, but sometimes convergent with, those initiated by 

NMDAR activation, as discussed previously (these are shown in Figure 1.5).  

In summary, both β-AR and NMDAR antagonists have potential therapeutic uses in 

blocking MMM reconsolidation in humans, but few studies in animals have directly 

compared their efficacy. Those that have found that both β-AR and NMDAR 

antagonism prevented the reconsolidation of Pavlovian conditioned reinforcement in an 

acquisition of a new response paradigm, but only NMDAR blockade prevented 

reconsolidation of Pavlovian conditioned approach (Milton et al. 2012) and PIT (Lee 

and Everitt 2008b). This suggests that NMDAR antagonism may have a more general 

and consistent effect in blocking the reconsolidation of memory processes important in 

relapse (outlined in Figure 1.4 and accompanying text), although this conjecture 

requires clarification from objective statistical treatment of the issue. Further, although 

many narrative reviews have highlighted the potential of interfering with memory 

reconsolidation via NMDAR and β-AR blockade, the approaches have not been trialled 

in humans and the lack of direct comparisons between the two make it unclear which 

class of drug shows most promise for weakening human MMMs and should be 

prioritised for testing in human models of SUDs.  
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Figure 1.5. Molecular pathways in memory reconsolidation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NMDAR and β-ARs are the key upstream mediators of memory reconsolidation and 

operate through both separate and convergent signal transduction pathways, recruiting 

protein kinases, cAMP response element binding protein (CREB) and ultimately 

immediate early genes, gene transcription and de novo protein synthesis. In the case of 

NMDAR activation, influx of Ca2+ sparks the activation of the MEK – ERK pathway 

through recruitment of small enzymes of the family Ras, Raf and Rap. This leads to gene 

transcription via CREB and zif268. Binding of noradrenaline to β-ARs activates Protein 

kinase A (PKA) through cyclic AMP (cAMP) and can either directly, or indirectly 

through ERK and ribosomal protein S6 kinase (RSK), activate transcription via CREB 

and zif268.  This figure has been modified to include the recently identified Ca2+ - IKKα 

– NF-κB – zif268 pathway (Lee and Hynds 2013a) that dissociates consolidation from 

reconsolidation. Figure adapted from Kelley (2004).  
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1.11 Methodological issues in reconsolidation 

 

Other than the sensitivity of reconsolidation to different pharmacological manipulations, 

a key issue in the field is the fact that reconsolidation does not occur under all 

circumstances when a memory is recalled. Null results in a reconsolidation study could 

lead to three possible conclusions: 

1) The manipulation used to interfere with reconsolidation was ineffective 

2) The reminder procedure employed failed to destabilise the memory in the first 

place, yielding a false negative for the manipulation 

3) The memory process being studied does not undergo reconsolidation. 

 

While early studies tended to default to conclusion three to explain observed null 

findings (Cammarota et al. 2004; Hernandez and Kelley 2004), subsequent positive 

results in experiments examining the same types of memory (Diergaarde et al. 2006; 

Tronel et al. 2005) suggest that conclusion one or two are more likely to explain null 

results. Where the same reconsolidation-blocking drug has been found not to affect 

reconsolidation in one study (Hernandez and Kelley 2004) but does in another (Exton-

McGuinness et al. 2014) and as there is no intuitive evolutionary reason why some 

forms of memory should undergo reconsolidation and others should not, conclusion two 

is often the most parsimonious explanation for null results.  As any intervention that 

interferes with reconsolidation of destabilised MMMs is predicated upon successful 

destabilisation of the memory in the first place, the methodological parameters 

determining memory destabilisation, commonly known as ‘boundary conditions’ have 

become the focus of reconsolidation research.  
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This research has shown that, in line with previous findings on amnesia gradients and 

the occurrence of systems consolidation,  older (Eisenberg and Dudai 2004; Frankland 

et al. 2006; Milekic and Alberini 2002), stronger (Eisenberg et al. 2003; Robinson and 

Franklin 2010; Robinson et al. 2011) memories are more resistant to destabilisation 

upon recall. In this context, ‘older’ memories refer to greater chronological age of 

memories (i.e. a greater amount of time since the memory was initially consolidated) 

and memory ‘strength’ refers to the number of training trials reinforcing the memory. 

One central function of reconsolidation is to strengthen memories when they are 

recalled and found to have positive predictive benefit, so ‘stronger’ memories will have 

potentially undergone successful reconsolidation many times. This is particularly 

pertinent for the translation of reconsolidation-based research to human drug users. 

Typically, conditioning in animal paradigms takes place over tens of trials within a few 

days, whereas in human MMM formation, conditioning takes place over tens of 

thousands of trials over the course of years. As such they may not amenable to 

reconsolidation interference in the same way as animal MMMs.  

 

However, research has demonstrated that reconsolidation of old, hippocampus-

independent memories does occur (Debiec et al. 2002) suggesting that appropriate 

manipulation of retrieval parameters allows older memories to destabilise, but these 

parameters may be somewhat different to those for younger, more weakly trained 

memories (Besnard et al. 2012). Robinson et al (2011) demonstrate that introducing a 

thirty day delay between training and memory reactivation (i.e. allowing more cortical 

consolidation) destabilises strongly trained memories upon retrieval, while a retrieval 

session closer to training does not. Thus allowing time for memory traces to consolidate 

independently of hippocampal involvement may be key to the disruption of older 

memories.  
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A further complication in interpreting null findings is that the length of the retrieval trial 

used may determine a switch between the mutually exclusive processes of extinction 

and reconsolidation (Pérez-Cuesta and Maldonado 2009). Long retrievals, or retrievals 

with multiple presentations of conditioned stimuli, tend to cause memory extinction, 

rather than destabilisation. As only one of these processes can occur and there is a 

discrete switch in the molecular machinery responsible for the two processes (involving 

the exclusive recruitment of BDNF (Kirtley and Thomas 2010), shorter retrieval trials 

are desirable when attempting to engage reconsolidation. On the other hand, retrieval 

trials cannot be too short because neither reconsolidation nor extinction will be engaged 

(Suzuki et al. 2004). Determining the optimum length of retrieval for memory 

destabilisation is thus a fine balancing act and as yet, there are no hard rules for 

determining optimal retrieval length based on learning history. Indeed, even if such 

rules for optimal retrieval lengths were found in animal models of addiction, their utility 

in humans would be questionable, given that learning history in human MMMs is 

difficult to determine. Reconsolidation research is therefore currently limited to 

inferring memory destabilisation at recall from the effects of post-retrieval 

manipulations on memory and somewhat arbitrarily determining the length of recall 

required to destabilise memories.  

 

Recently, an alternative requirement for memory destabilisation has been identified that 

may resolve the seemingly variable capacity of different memories to destabilise. Since 

one of the main functions of reconsolidation is to update memories, it follows that novel 

information regarding the memory should be available at recall. Indeed empirical 

research (Pedreira et al. 2004) and computational modelling (Osan et al. 2011) has 

shown this to be the case, with the correct level of mismatch between expectation and 



61 
 

actual reinforcement (value) driving memory updating via reconsolidation. Too great a 

mismatch, generated by massed presentation of CSs without their reinforcer (i.e. 

extinction) creates an entirely new memory trace. Thus the switch between 

reconsolidation and extinction may be determined by a mismatch comparator 

mechanism that assesses whether to update an existing trace or create a new one.  

 

The ‘mismatch’ referred to here can be formalised in terms of the Prediction Error (PE) 

previously discussed. As the putative learning signal in reinforcement learning, PE is 

necessary for updating memories and therefore for initiating reconsolidation (Sevenster 

et al. 2012; 2013). This could take the form of unexpected omission or reduction in 

value of a reinforcer (negative PE), unexpected presentation or increase in value of a 

reward (positive PE) (Liu et al. 2014) or temporal mismatch between expected and 

actual presentation of a reinforcer (Díaz-Mataix et al. 2013). Memory formation is not 

linear, but follows an approximately logarithmic or power curve, with early experience 

creating a large prediction error and correspondingly large changes in the memory, with 

early experience creating a large prediction error and correspondingly large changes in 

the memory. However, as memories age and more experience relevant to the trace is 

incorporated, the potential for large PE in the expected outcome decreases. In 

overlearned, habitual memory, such as some MMMs, there is likely to be no (or 

extremely little) PE in simple naturalistic recall as reinforcement follows such a 

repetitive, predictable pattern. This may explain both the resistance of strongly-trained 

memories to retrieval-induced destabilisation and the naturalistic persistence of MMMs.  

 

To date very few experimental studies have looked at truly strong or remote memories, 

on the scale that is seen in humans MMMs and virtually no experimental examination 

of the approach in humans exists.  It is proposed here that the disparity lies in 1) the 
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sometimes inconsistent results with reconsolidation-based interventions in animal 

reward learning studies (due to the subtleties of the boundary conditions described) 2) 

the limited choice from the pharmacopeia of potential reconsolidation-blockers in 

humans and 3) the exponentially greater complexity of determining what constitutes 

‘reactivation’ and prediction error in human memory where the training history is 

typically outside of experimental control.  

 

Many excellent narrative reviews of preclinical reconsolidation research exist, taking 

different positions of the scope and limits of the phenomenon while attempting to 

reconcile both positive and null findings (Dudai 2006; Dudai and Eisenberg 2004; 

Finnie and Nader 2012; Milton and Everitt 2012; Torregrossa and Taylor 2013; Tronson 

and Taylor 2007).  However, a common methodological limitation in rodent research is 

that small and variable numbers of animals are used, creating situations of potentially 

low and variable power. Behavioural observations based purely on the binary logic of 

null hypothesis significance testing (NHST) can occlude very similar effect sizes that 

may be equally important, but due to differences in group Ns and power, fall on 

different sides of the 0.05 ‘statistical cliff’. The conclusions of narrative reviews are 

biased by this issue and are likely to be the source of much of the inconsistency and 

disagreement between researchers in the field and the lack of headway made in 

translational research. A more objective assessment of effect sizes with regards to 

identified boundary conditions would thus be highly beneficial in progressing this field. 

 

1.12 Aims of the current thesis 

 

The work presented in this thesis represents an attempt to make the first steps in 

addressing these identified shortcomings, by translating the preclinical work on 
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reconsolidation of drug memories to clinical or clinically relevant populations of human 

drug users. The work presented herein is agnostic with regards to reconsolidation 

interference as a methodology, but aims to assess whether it genuinely represents an 

improvement upon current approaches.  In all the studies described herein, one eye is on 

the ultimate aim of improving long-term treatment outcomes for drug addicts, if only by 

ruling out potential dead-ends in research. While development of actual treatment 

programs is far beyond the scope of this modest work, I hope to lay the initial 

groundwork for future research into methods for treating MMMs in human addicts.  

 

1.12.1 Research Questions 

 

With this in mind, there are several overarching questions that this thesis aims to 

answer, at least in part. 

1) Of the established reconsolidation-blocking drugs, which are more likely to be 

effective at blocking MMM reconsolidation in humans? Are these effects related 

to identified boundary conditions and what are the sources of heterogeneity in 

findings? 

2) Can potential reconsolidation-blocking drugs reduce MMM strength in clinically 

relevant human samples?  

3) Are human MMMs resistant to destabilisation upon retrieval and if, so, what 

procedures are necessary to destabilise them? 

4) Are there effective drug-free approaches to targeting MMMs? 

1.12.2. Methodological approach to addressing these questions 

 

The first of these questions can be effectively addressed by systematic statistical 

evaluation of appropriate studies. Adding to the extant narrative reviews of research is 



64 
 

unlikely to represent an important advance in the field. The first empirical study of this 

thesis will therefore be a meta-analysis of preclinical studies using the two most 

translationally promising drug classes for blocking reconsolidation (NMDAR and β-AR 

antagonists) examining the moderating impact of identified ‘boundary conditions’.  

Building on the findings of this analysis and to address question two, I will adopt an 

‘experimental medicine’ approach to assess the feasibility and efficacy of 

pharmacological reconsolidation-interference in treating human MMMs. Chapter 3 

examines the effects of cue-drug memory retrieval with the NMDAR antagonist 

memantine in a population of quitting smokers. The third study attempts to extend our 

NMDA-ergic pharmacopoeia for reconsolidation blockade by examining the effects of 

Nitrous Oxide on the reconsolidation of associative alcohol memory in hazardous 

drinkers. Due to evidence from Chapter 2 that MMMs may be destabilisation-resistant, 

Chapter 5 then takes a slightly different tack, trialling a novel memory destabilisation 

procedure, extending recent research using a pharmacobehavioural approach to modify 

cue-drinking memories in heavy drinkers. Finally in Chapter 6 I discuss what I believe 

we can learn from the work contained in this thesis and what I evaluate to be the logical 

progression of reconsolidation research in human drug users going forward.   
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Chapter 2: The Effects of N-Methyl D-Aspartate and Β-Adrenergic Receptor Antagonists on the Reconsolidation of 

Reward Memory: A Meta-Analysis 
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2.1. Introduction 

 

2.1.1. Memory reconsolidation in addiction treatment 

 

Substance Use Disorders are chronic relapsing disorders that can be viewed as a disease 

of persistent maladaptive memory (Hyman, 2005, 2006; Everitt & Robbins, 2005; 

Milton & Everitt, 2012; Robinson & Berridge, 1993, 2005; Berridge, 2011) whereby 

adaptive associative memory processes that are used to direct action towards rewards 

are usurped by drugs and their associated stimuli or ‘cues’.  Cue-drug associations are 

long-lasting and direct behaviour towards drug-seeking and using long after withdrawal. 

As such, any effective long term anti-relapse treatment for addiction must address the 

control these memories exert over behaviour.  

 

Recent years have witnessed a proliferation of research interest in reward memory 

reconsolidation as a target model for weakening aberrant memory processes while 

memories are in a briefly labile state that putatively allows new information to enter the 

trace (Forcato et al, 2010; Lee, 2009). Protein synthesis inhibitors (Nader et al, 2000), 

inhibitors of transcription factors such as Zif268 (antisense oligodeoxynucleotides; Lee 

et al, 2004) and certain pharmacological challenges (Bernardi et al, 2006, 2009; Fricks-

Gleason & Marshall, 2008; Lee & Everitt, 2008a, 2008b, Milton et al 2008a, 2008b, 

2011) given after the reactivation of a conditioned reward memory can produce a 

profound deficit in expression of that memory at test. If similar effects can be 

reproduced for human maladaptive drug memories, long-term, context independent 

relapse attenuation may be achievable (Milton et al, 2012), or the efficacy of cognitive 

behavioural interventions may be improved by relative weakening of cue-drug 

associations. 
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To date, virtually all work examining reward memory reconsolidation has been 

conducted on laboratory animals. Using a variety of drug and genetic challenges, the 

neural pathways and processes involved in memory reconsolidation are beginning to be 

elucidated. While these assays have begun to map the molecular pathways in memory 

reconsolidation, the only drug interventions currently with real translatable utility for 

human investigation are those using classes of drugs that can be administered 

systemically and are either currently used, or have suitably safe analogues, in humans. 

 

Of drugs fitting this description, by far the most extensively studied are the N-Methyl D 

Aspartate (NMDA) and β-Adrenergic (β-A) system antagonists.  NMDA receptor 

(NMDAR) and β-Adrenoreceptor (β-AR) antagonism has been shown to interfere with 

the reconsolidation of conditioned reward memory (Przybyslawski et al, 1997; Bernardi 

et al, 2006, 2009), leading to decrements in memory expression. As antagonists at both 

of these receptors are available for use in humans, pharmacological NMDAR and β-AR 

blockade is thus a promising approach for interfering with drug memory 

reconsolidation, although human studies using these drugs are currently lacking and 

there is a clear need for translational work.  

 

Further, preclinical studies have not universally found that NMDAR or β-AR 

antagonism interferes with reward memory reconsolidation, indicating the involvement 

of boundary conditions determining the susceptibility of memories to post-retrieval 

NMDAR and β-AR antagonism. To effectively translate this treatment approach to 

human drug users it is critical to understand the limiting effects of these conditions. As 

several excellent, recent narrative overviews of this literature exist (Diergaarde et al, 

2006; Milton & Everitt, 2010; Milton & Everitt, 2012; Sorg, 2012, Torregrossa & 

Taylor, 2012; Tronson & Taylor, 2007), they will not be reviewed in depth here.  
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Rather, the purpose of the current chapter is to take an objective, statistical approach to 

assessing the relative magnitude of effects of β-AR and NMDAR antagonists on reward 

memory reconsolidation and examine the heterogeneity of effects herein based on 

putative moderating factors identified by previous research. 

 

2.1.2. Memory reconsolidation in addiction treatment 

 

Variability in findings has generally been addressed on the basis of theoretical, 

pharmacokinetic and methodological factors. Methodological factors are length of 

memory reactivation session (differentiating between reconsolidation and extinction; 

Suzuki et al, 2004), primary reinforcer used (drug or dietary rewards) and conditioning 

paradigm. Pharmacokinetic factors include drug dose, administration route and timing 

of administration relative to memory reactivation. Primary research is currently under 

way assessing how these factors affect the destabilisation and restabilisation of drug 

memories and constrain the effects of pharmacological assays on reconsolidation.  

 

As discussed in Chapter 1, multiple memory processes thought to contribute to relapse 

are studied in reconsolidation paradigms. Conditioned reinforcement (CR), conditioned 

motivation (CM) and conditioned approach (CA) (Milton & Everitt, 2010, Milton et al, 

2012) may be differentially susceptible to interference during episodes of 

reconsolidation. To clarify, these are processes by which drug-associated cues come to 

control drug seeking and using behaviour. They interact with situational factors 

controlling the expression of memory such as renewal, reinstatement and spontaneous 

recovery in order to maintain drug seeking and using. 
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Conditioned motivation as measured by the Pavlovian-to-instrumental transfer (PIT) 

test, increases motivated drug seeking in the presence of a drug-paired CS or context, 

due to the signalling of drug availability. Conditioned motivation is thus able to support 

increased drug use through environmental exposure to certain stimuli. Conditioned 

motivational properties of cues trigger a negative internal state akin to craving via 

peripheral stress hormones and amygdalar noradrenaline that promotes drug seeking, or 

that motivational cues trigger habitual responding, the interruption of which is 

experienced as craving (Tiffany, 1990).  Conditioned approach assessed with 

approach and autoshaping or maze procedures precipitates relapse by steering 

individuals towards the spatial locations previously paired with drugs, increasing 

proximity to both drug conditioned stimuli and drugs themselves. Conditioned approach 

appears to be dependent on spatial localisation of drugs and related stimuli as it is hard 

to induce conditioned approach when drugs are infused directly into an animal, for 

instance (Tomie et al, 2006). Its human analogue is measured through oculomotor and 

approach biases to drug cues in laboratory tests. These approach biases are both a 

function of the incentive value of drug cues (Robinson and Berridge 2001) and, through 

continued drug use, of stimulus-response habits (Tiffany, 1990; Mogg et al. 2005). 

 

Conditioned reinforcement can support responding for drug cues themselves despite 

drug reinforcement (DiCiano & Everitt, 2004) or reinforcer devaluation (Parkinson et 

al, 2005), and thus maintain drug-seeking for distal rewards. The conditioned 

reinforcing properties of drug-related stimuli can therefore play an important part in 

binding together the chains of instrumental responses necessary for drug attainment and 

use in human addicts.  

 



71 
 

The conditioned place preference (CPP) paradigm, where rats are trained to associate a 

contextual chamber with drug, deserves special consideration. There is some debate as 

to what memory process is tapped in CPP, with the potential involvement of several 

processes.  I argue that the responding seen in CPP reflects conditioned reinforcement. 

The lack of spatial localisation of drug administration precludes conditioned approach 

(Tomie et al, 2006; CPP paradigms almost always use experimenter-injected drugs 

before confinement to a specific chamber).  The association of a single chamber during 

learning to drug effects, rather than motivational drug-seeking states meaning 

conditioned motivation is unlikely. Thus the bias towards the drug-paired chamber at 

test is most likely to reflect reinforcing properties of the chamber’s contextual cues. 

Another possibility is that CPP could be supported by instrumental learning. This is to 

say, the extra time spent in the drug-paired chamber at test could be reflective of an 

instrumental drug-seeking response, much as in a maze paradigm. However, the passive 

administration of drug and subsequent lack of contingency upon behaviour make the 

acquisition of an instrumental association, or even superstitious conditioning, unlikely. 

For the current analysis, we therefore categorise CPP paradigms as measuring 

conditioned reinforcement.  

 

It is unclear whether reconsolidation of these three processes is equally susceptible to 

interference from β-AR and NMDAR antagonists. Different kinds of memory trace 

have been shown to be amenable or resistant to reconsolidation (Brown et al, 2008; 

Cammarota et al, 2004) and β-ARs and NMDARs may interactively or differentially be 

involved in the reconsolidation of different memory processes, particularly with regard 

to the role of arousal and stress in those processes (Roozendaal et al, 2009). 

Furthermore, all three processes may not contribute to relapse in human addicts equally. 

Treatment outcome may therefore be determined both by the relative expression and 
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dominance of variable memory processes and the amenability of these processes to 

intervention. Assessing the moderating impact of these processes on drug effects will be 

important for the identification of human targets for MMM reconsolidation.  

 

2.1.3. Pavlovian and instrumental memories 

 

A particularly prevalent proposed moderator of reconsolidation effects is the Pavlovian 

or instrumental nature of memory traces. While the former ‘class’ of memories have 

reliably been shown to undergo reconsolidation in several instances (Brown et al, 2008; 

Frick-Gleason & Marshall, 2008, Zhou et al, 2012; Wu et al, 2012), it has been 

suggested that evidence is weaker for the reconsolidation of instrumental memories 

(Hernandez & Kelley, 2004, but see Diergaarde et al, 2006 and Wouda et al, 2010). 

However, both types of memory putatively arise as a result of experience-dependent, 

NMDAR-mediated synaptic plasticity (Riedel et al, 2003; Yin et al, 2005) and should 

theoretically be susceptible to NMDAergic reconsolidation blockade under the right 

circumstances. In practice, both types of trace and their interaction are critical in 

understanding human addiction. This analysis will therefore seek to confirm whether 

reconsolidation effects truly are weaker for instrumental memories, based on previously 

conducted research. 

 

 

2.1.4. Rationale for meta-analysis 

 

Although putative moderators of memory susceptibility to reconsolidation interference 

have been identified, due to the problems of null hypothesis significance testing with 

relatively small Ns used in animal research and paucity of replication studies, the 
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importance and reliability of these moderators is currently unknown. The current study 

therefore used meta-analysis (Glass, 1977, Hedges & Olkin, 1980; Hedges & Vevea, 

1998; Hunter & Schmidt, 2000) to assess the overall magnitude of interference with 

reward memory reconsolidation by β-AR and NMDAR antagonists, compare the overall 

effects of these two classes of drug and assess the impact of the outlined 

methodological, pharmacokinetic and mnemonic variables on these effects using meta-

regression. The main aim of this analysis is to provide a quantitative synthesis of 

preclinical research that may be used for hypothesis generation in translational studies, 

particularly those geared towards relapse-prevention in substance dependence disorders 

and addiction. 
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2.2. Methods 

 2.2.1. Search Strategy 

 

ISI web of knowledge, PubMed, PsychInfo and SIGLE online databases were searched 

with the following term “Reconsolidation* OR re-consolidation* OR post-retrieval* 

OR post-reactivation* OR post-recall*” on 15/11/2011. The search was restricted only 

to papers written in English, as paper translation was not feasible within the scope of 

this review. No other restrictions were placed on the search criteria.  

The reference lists of included papers and recent review papers in the field were hand-

searched along with back issues and conference abstracts to 1996 of all journals in 

which included studies were published and other prominent journals in the field. This 

yielded no new studies. Authors of all included studies and other authors known to be 

actively researching in the field were contacted for unpublished or pre-publication 

information. This yielded one unpublished dataset (Milton et al, unpublished). Updating 

of the search on 20/03/2012 retrieved three studies that had been published since the 

original search (Wu et al, 2012, Zhou et al, 2012 Font & Cunningham, 2012) that were 

included in the review.  

2.2.2. Study selection 

  

Studies were included if they examined the effects of a β -AR or NMDAR antagonist on 

the reconsolidation of a reward memory in laboratory animals. A PRISMA schematic of 

the iterative study exclusion procedure is given in Figure 2.1. Excluded studies were 

independently cross-checked by myself and two colleagues for ineligibility. There are 

likely boundary conditions that differentiate whether reconsolidation or extinction 

processes are preferentially activated such as length of the reactivation procedure. Very 

short reactivations (< 1 minute) do not appear to trigger memory reconsolidation, but 
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much longer procedures (>30min) may preferentially activate extinction (Suzuki et al, 

2004). Furthermore, stimulus offset in the absence of reinforcement may be critical in 

determining whether extinction or reconsolidation occurs, independent of length of the 

reactivation procedure (Pedreira & Maldonado, 2003). Given that there are no definite 

cut-off criteria for determining whether extinction or reconsolidation occurs, studies in 

the current search were not excluded on the basis of reactivation length if the studies 

claimed to examine reconsolidation effects. Also, given that β -Adrenergic and 

NMDAergic antagonists tend to interfere with both extinction and reconsolidation and 

that this interference should manifest in opposite behavioural effects, if extinction were 

being targeted by drug challenges, an increase in responding at test should be seen. 

 

2.2.3 Study Quality Coding 

 

All identifying information relating to authors, institution from which studies originated 

and significance of results was removed from included papers. These blinded studies 

were then independently assessed by myself and two colleagues using a 23-item quality 

rating instrument created for this review (see Appendix I). The form was piloted by all 

authors and discrepancies and difficulties in applying the coding form were resolved by 

author discussion prior to coding of the entire study sample. Note that, quality ratings 

were determined based on published descriptions included in the methods and materials 

sections of papers. Thus incomplete reporting would impact negatively on study quality 

ratings. 
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Figure 2.1: PRISMA flow chart of study inclusion screening process 
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2.2.4 Data Extraction 

 

Information about study paradigm, species of animal studied, drug dose, drug timing 

and route of administration were extracted. Effect sizes were computed for simple 

between-subjects contrasts at primary post-reactivation test between reactivated, drug 

treated and reactivated, saline treated groups. This contrast was chosen as it best 

represents the effect of drug on reconsolidation. Some papers (Bernardi et al, 2006, 

2009; Itzhak et al, 2008; Otis & Mueller, 2011, Zhai et al, 2011) did not report between-

subjects effects at test, but rather gave statistics for single post-test, within group 

contrasts (i.e. time spent on drug paired floor vs. time spent on saline paired floor at test 

in the CPP paradigm). This caused two problems with data extraction. Firstly, in this 

paradigm, a successful blockade of reconsolidation is evidenced by a non-significant 

differential conditioned response at test when assessed within-subjects, whereas a 

between-subjects contrast of the same effect should yield a significant reduction in 

responding in the test group. The within-subjects single time-point contrast effect size is 

thus not representative of the effect of drug on reconsolidation. 

Secondly, due to the inherently correlated nature of within-subjects measurements and 

lack of reporting of this correlation, there are systematic differences in variance when 

comparing within- and between-subjects designs. As such, effect sizes for within-

subjects contrasts tend to be inflated relative to their between-subjects equivalents 

(Dunlap et al, 1996).  There is therefore no meaningful way to combine effect sizes 

from within-subjects and between-subjects test statistics, unless the correlation of 

within-subjects measures is known (Morris and DeShon, 2002). As only one paper in 

the current sample reported the relevant descriptive statistics (Milton et al, 2008a), 

primary authors were contacted for the necessary statistics to calculate effect sizes for 

between-subjects comparisons or adjustments of within-subjects (pre-test /post-test) 
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contrasts. If this information was not available from papers or authors, the study was 

excluded from the analysis. 11 effect sizes were excluded for this reason (Figure 2.1).  
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2.3. Results 

2.3.1. Included Data 

 

The literature search yielded 32 independent papers. For all relevant independent 

samples contrasts between test drug/reactivated and saline/reactivated groups were 

included. Pearson’s product moment correlation coefficient, r, was calculated from 

descriptive or test statistics for each of these contrasts. Pearson’s r was chosen due to 

ease of interpretation and several advantages over Cohen’s d (Rosenthal, 1991; Field, 

2001). In four studies (Font & Cunningham, 2012; Lee & Everitt, 2008b; Popik et al, 

2006; Milton et al, 2011), a common placebo group was used to calculate an effect size 

in two drug groups. In total, 30 effect sizes for NMDAR antagonists and 26 for β -

Adrenergic antagonists were extracted. These are listed by drug used, memory class and 

paradigm in Table 2.1.  
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Table 2.1: Effect sizes from all studies with extracted information on moderating variables, arranged by drug class. 

Study Authors Year 
Drug 

Class 
Paradigm 

Memory 

Class 

React 

Length 
UCS Test Drug 

Drug 

Timing 
Dose 

Admin 

Route 

Effect 

direction 
N r 

              

Brown et al 2008 NMDA CPP Pavlovian 15 Cocaine MK801 before 0.2mg/kg I.P + 20 0.55 

Kelley et al 2007 NMDA CPP Pavlovian 20 Cocaine MK801 before 0.3mg/kg I.V + 18 0.89 
Lee & Everitt 2008a NMDA Autoshaping Pavlovian 24 Dietary MK801 before 0.1mg/kg I.P + 16 0.82 
Lee & Everitt 2008a NMDA PIT Pavlovian 24 Dietary MK801 before 0.1mg/kg I.P + 14 0.88 
Lee & Everitt 2008b NMDA ANR Pavlovian 30 Dietary MK801 after 0.1mg/kg I.P + 14 0.2 
Lee & Everitt 2008b NMDA ANR Pavlovian 30 Dietary MK801 before 0.1mg/kg I.P + 14 0.43 
Lee & Everitt 2008b NMDA ANR Pavlovian 10 Dietary MK801 after 0.1mg/kg I.P + 18 0.43 
Lee & Everitt 2008b NMDA ANR Pavlovian 10 Dietary MK801 before 0.1mg/kg I.P + 18 0.62 
Lee & Everitt 2008c NMDA Operant Instrumental 15 Dietary MK801 after 0.1mg/kg I.P + 16 0.1 
Lee & Everitt 2008c NMDA Operant Instrumental 15 Dietary MK801 before 0.1mg/kg I.P + 16 0.34 
Milton et al 2012 NMDA PIT Pavlovian 30 Ethanol MK801 before 0.1mg/kg I.P + 13 0.35 
Milton et al 2008b NMDA ANR Pavlovian 15 Cocaine MK801 before 0.1mg.kg I.P + 18 0.50 
Milton et al 2008b NMDA ANR Pavlovian 15 Cocaine APV after 0.5µg/side BLA + 8 0.57 
Milton et al 2008b NMDA ANR Pavlovian 24 Cocaine APV before 0.5µg/side BLA + 12 0.63 
Milton et al 2012 NMDA Autoshaping Pavlovian 45 Ethanol MK801 before 0.1mg/kg I.P + 13 0.80 
Popik et al 2006 NMDA CPP Pavlovian 45 Morphine Memantine before 3.5mg/kg I.P + 19 0.30 
Popik et al 2006 NMDA CPP Pavlovian 45 Morphine Memantine after 7.5mg/kg I.P + 23 0.59 
Popik et al 2006 NMDA CPP Pavlovian 45 Morphine Memantine before 7.5mg/kg I.P + 17 0.65 

Przybyslawksi & Sara 1997 NMDA Maze Instrumental 5 Dietary MK801 after 0.05mg/kg I.P + 15 0.61 
Przybyslawksi & Sara 1997 NMDA Maze Instrumental 5 Dietary APV after 0.05mg/kg I.P + 15 0.81 
Przybyslawksi & Sara 1997 NMDA Maze Instrumental 5 Dietary MK801 after 0.05mg/kg I.P + 14 0.86 

Sadler et al 2007 NMDA CPP Pavlovian 30 Amphet MK801 after 0.1mk/kg I.P + 22 0.38 
Storozheva et al 2011 NMDA Pavlovian Pavlovian 3 Dietary MK801 before 50µg/Kg I.P + 16 0.89 

Torras-Garcia et al 2005 NMDA Pavlovian Pavlovian 1.5 Dietary APV after 2.5µg/µL I.V + 26 0.55 
von der Goltz et al 2009 NMDA Operant Instrumental 5 Ethanol MK801 after 0.1mg/kg I.P + 18 0.37 

Wouda et al 2010 NMDA Operant Instrumental 20 Ethanol MK801 after 0.1mg/kg I.P + 15 0.48 
Wu et al 2012 NMDA CPP Pavlovian 45 Morphine APV after 5µg/side NAcc + 20 0.22 
Wu et al 2012 NMDA CPP Pavlovian 45 Morphine APV before 5µg/side NAcc + 20 0.77 

Zhou et al 2011 NMDA CPP Pavlovian 15 Cocaine 7-CTKA before 5µg/µl VTA + 20 0.67 
Zhou et al 2011 NMDA CPP Pavlovian 15 Cocaine 7-CTKA after 5µg/µl VTA + 17 0.78 
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Paradigm Key: CPP = Conditioned Place Preference; Operant = Self-administration paradigm, ANR = Acquisition of a New Response; PIT = Pavlovian-

Instrumental Transfer; Pavlovian = Classical Conditioning. Administration route key: I.P = Intraperitoneal; I.V = Intravenous; S.C = Subcutaneous; I.C.V = 

Intracerebroventricular; BLA = Basolateral amygdala; VTA = Ventral tegmental area; NAcc = Nucleus Accumbens. Drugs Key: MK801= 5--methyl-10,11- 

dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine, APV = amino-5-phosphonovaleric acid, 7-CTKA =  7 Chlorokynuernic acid.

Diergaarde et al 2006 β -A Operant Instrumental 10 Dietary Propranolol after 10 mg/kg S.C + 14 0.23 
Diergaarde et al 2006 β -A Operant Instrumental 20 Dietary Propranolol after 10 mg/kg S.C + 16 0.64 

Font & Cunningham 2012 β -A CPP Pavlovian 15 Ethanol Propranolol after 10 mg/kg I.P + 47 0.08 
Font & Cunningham 2012 β -A CPP Pavlovian 15 Ethanol Propranolol after 30 mg/kg I.P + 48 0.11 
Font & Cunningham 2012 β -A CPP Pavlovian 15 Ethanol Propranolol after 10 mg/kg I.P + 47 0.13 
Font & Cunningham 2012 β -A CPP Pavlovian 15 Ethanol Propranolol after 10 mg/kg I.P + 48 0.14 
Font & Cunningham 2012 β -A CPP Pavlovian 15 Ethanol Propranolol after 30 mg/kg I.P + 46 0.15 

Fricks-Gleason & 
Marshall 

2008 
β -A 

CPP Pavlovian 15 Cocaine Propranolol after 10 mg/kg S.C + 24 0.46 

Lee & Everitt 2008a β -A PIT Pavlovian 24 Dietary Propranolol before 10 mg/kg I.P + 16 0.32 
Milton Unpub. β -A ANR Pavlovian 15 Ethanol Propranolol after 10 mg/kg I.P + 33 0.40 

Milton et al 2012 β -A Autoshaping Pavlovian 45 Ethanol Propranolol before 10 mg/kg I.P + 13 -0.31 
Milton et al 2012 β -A PIT Pavlovian 24 Ethanol Propranolol before 10 mg/kg I.P + 13 0.27 
Milton et al 2008a β -A ANR Pavlovian 10 Cocaine Propranolol after 10 mg/kg I.P + 14 0.35 
Milton et al 2008a β -A ANR Pavlovian 10 Dietary Propranolol after 10 mg/kg I.P + 18 0.47 

Przybyslawksi et al 1999 β -A Maze Instrumental 5 Dietary Propranolol after 10 mg/kg I.P + 14 0.31 
Robinson & Franklin 2010 β -A CPP Pavlovian 30 Morphine Propranolol after 10 mg/kg S.C + 24 0.37 
Robinson & Franklin 2007 β -A CPP Pavlovian 10 Morphine Propranolol after 10 mg/kg S.C + 19 0.37 

Robinson et al 2011a β -A CPP Pavlovian 30 Morphine Propranolol after 40 mg/kg S.C - 18 -0.82 
Robinson et al 2011a β -A CPP Pavlovian 30 Morphine Propranolol after 10 mg/kg S.C - 18 -0.75 
Robinson et al 2011a β -A CPP Pavlovian 30 Morphine Propranolol after 10 mg/kg S.C - 18 -0.67 
Robinson et al 2011a β -A CPP Pavlovian 30 Morphine Propranolol after 40 mg/kg S.C - 18 -0.59 
Robinson et al 2011b β -A CPP Pavlovian 30 Morphine Propranolol after 10 mg/kg S.C + 26 0.10 
Robinson et al 2011b β -A CPP Pavlovian 30 Morphine Propranolol after 10 mg/kg S.C - 28 0.21 
Robinson et al 2011b β -A CPP Pavlovian 30 Morphine Propranolol after 10 mg/kg S.C + 21 0.24 
Roullet & Sara 1998 β -A Maze Instrumental 5 Dietary Timolol after 2.5µl/side I.C.V + 16 0.26 

Wouda et al 2010 β -A Operant Instrumental 20 Ethanol Propranolol after 10 mg/kg I.P + 22 0.52 



82 
 

2.3.2. Data synthesis and Statistical Approach 

 

Basic analysis was performed using hand-written formulae in Microsoft Excel and 

moderator analyses were performed with custom-written syntax by Field and Gillett 

(2010) in IBM SPSS Statistics v.19.  As an initial test of the homogeneity of variance of 

the effect sizes within the analysis revealed a highly significant degree of heterogeneity 

(see overall analysis below) and as there is rarely reason to assume that fixed effects 

models are appropriate when attempting to make inferences about real-world population 

effects (Field, 2001;2003; Hunter & Schmidt, 1990, 2000), a random-effects analysis 

model (Hedges & Vevea, 1998) was used to assess the effect sizes. All data thus 

represent Hedges and Vevea’s (1998) method applied on Fisher r-z transformed 

correlation coefficients after back-converting to Pearson’s r (product moment 

correlation coefficient). Effect size values were corrected for the positive bias inherent 

in Fisher’s r-z transformation using the equation r - [r(1 - r2)]/2(n -3) prior to applying 

the transformation. 

For analysis of moderator effects, a mixed-model was used whereby moderator 

variables are treated as fixed, but effect sizes random (Overton, 1998). Chi-square tests 

of moderator effects were used to assess categorical moderators and t-tests used to 

assess continuous variables entered into a meta-regression model.  

Due to the small sample size in the current analysis, it was not possible to examine the 

effects of all moderators simultaneously, as the resulting power to detect moderating 

effects would be extremely low, leading to a large type II error rate. As such, 

moderators were examined in conceptual clusters in order to best address the questions 

set out in the introduction of this chapter.  
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To assess sensitivity of findings to publication bias, the procedure developed by Vevea 

and Woods (2005), implemented in R (R development core team, 2008) by Field and 

Gillett (2010) was used. This procedure uses four a priori weight functions to assess the 

impact of four different levels of possible publication bias on estimates of population 

effect size.  These four weight functions represent moderate one-tailed, severe one-

tailed, moderate two-tailed and severe two-tailed publication bias.  

2.3.4. Overall Analysis 

 

A basic overall analysis was first performed on all effect sizes regardless of moderating 

variables. This assessed the effect size of the effects of any β-Adrenergic or 

NMDAergic antagonist on the reconsolidation of reward memory trained in any of the 

included paradigms. A stem and leaf plot of these effect sizes is given Figure 2.2, 

showing a modal class of 0.3 with a slight positive skew towards large effect sizes. The 

highly negative cluster of values at the top of the distribution are the effect sizes from 

Robinson et al (2011) where Propranolol significantly increased CPP scores  versus 

placebo at test. As these effect sizes came from a single study and were more than 3 

standard deviations from the mean effect size, they were excluded from all analyses as 

outliers, leaving 52 effect sizes (30 NMDA, 22 β -A) remaining  in the analysis.  The 

overall analysis yielded a population effect size of 0.47 (95% CI = 0.386(lower) to 0.546 

(upper)) with a highly significant associated z-score (z = 9.728, p < 0.001), suggesting a 

moderate-large overall effect of drug intervention on reconsolidation blockade, by 

Cohen’s (1977) criteria. A chi square test of Cochran’s Q statistic was highly significant 

[χ2(51) = 121.312, p <0.001], indicating heterogeneity in effect sizes and confirming 

that a random effects conceptualisation of the data was appropriate. Between-study 

variance, computed as Hedges and Vevea’s τ2 was 0.0787, suggesting a large degree of 

between-study variance. To assess robustness against the file-drawer problem, a fail-
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safe N (FSN) was calculated using Rosenthal’s (1991) procedure. This revealed that 

4089 ‘file drawer’ studies would be required to make the calculated effect size non-

significant. A FSN of greater than 5 times the number of studies in the analysis plus 10 

is considered robust against the file-drawer effect. As such, this effect can be considered 

robust against the file-drawer problem. 

 

Figure 2.2. Stem and leaf plot of effect sizes obtained from all studies: 
 
Stem  Leaf___________ 
 -1 
-.9 
-.8  2 
-.7  5 
-.6  7 
-.5  9 
-.4 
-.3  1 
-.2 
-.1 
  .0  8 
  .1  0, 0, 1, 3, 4, 5   
  .2  0, 1, 2, 3, 4, 6, 7  
  .3  0, 1, 2, 4, 5, 5, 7, 7, 7, 8 
  .4  0, 3, 3, 6, 7, 8 
  .5  0, 2, 5, 5, 7, 9  
  .6  1, 2, 3, 4, 5, 7 
  .7  7, 8 
  .8  0, 1, 3, 6, 9, 9 
  .9  0 
   1   
 __________________________                              

 

 2.3.5. Separate Analyses by Drug Class  

 

NMDAR  

Stem and leaf plots of effect sizes for NMDA and β -AR studies is are given in Figure 

2.3. For NMDAR effects, a population effect size of 0.613 (95% CI = 0.522(lower) to 0.69 

(upper)) with a highly significant associated z-score (z = 10.38, p < 0.001) was found, 

suggesting a large overall effect of NMDAR antagonism in reconsolidation blockade, 

by Cohen’s (1988) criteria. Cochran’s Q was highly significant [χ2(29) = 55.919, p 
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=0.02], indicating heterogeneity in effect  sizes. Between-study variance, computed as 

Hedges and Vevea’s τ2 was 0.0673. Rosenthal’s (1991) Fail-safe N (FSN) calculation 

revealed that 2274 ‘file drawer’ studies would be required to make the calculated effect 

size non-significant. The effect is thus robust against the file-drawer effect. 

 

Figure 2.3. Stem and leaf plot of effect sizes obtained from NMDA studies (k = 30) and 
β-adrenergic studies (k = 22): 
 
 
Stem  NMDAR Leaf_   β-AR Leaf__________ 
 
-.3      1    
-.2   
-.1  
  .0      8 
  .1  0    0, 1, 3, 4, 5     
  .2  0, 2     1, 3, 4, 6, 7 
  .3  0, 4, 5, 7, 8   1, 2, 5, 7, 7 
  .4  3, 3, 8    0, 6, 7 
  .5  0, 5, 5, 7, 9   2 
  .6  1, 3, 4, 7 
  .7  7, 8,     4 
  .8  0, 1, 2, 6, 8, 9, 9  
___________________________________________________________                                      

 

 

β-AR 

Inspection of the stem-and-leaf plot given in Figure 2.3 suggests lower overall effects 

of β-AR antagonists. The population effect size estimate for these studies was 0.24 

(95% CI = 0.156(lower) to 0.321 (upper)) with a highly significant associated z-score (z = 

5.485, p < 0.001), suggesting a small-medium overall effect of β-AR antagonism in 

reconsolidation blockade by Cohen’s (1977) criteria. Heterogeneity in these effect sizes 

was not found [χ2(21) = 17.073, p  = 0.707] and the τ2  statistic was cut off at 0, meaning 

a fixed-effects conceptualisation of these effects may be appropriate. However, as the 

power of this test is low, and this analysis examined heterogeneity in the absence of 

data stratification, this was not used to preclude the inclusion of β-AR effect sizes in 
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subsequent moderator analysis. A FSN calculation revealed that 246 ‘file drawer’ 

studies would be required to make the calculated effect size non-significant. The effect 

estimate can therefore be considered robust against the file-drawer problem.  

2.3.6. Moderator Analysis 

 

Drug Effects 

The effect of drug class was highly significant [χ2(1) = 29.5, p < 0.001], indicating that 

effect sizes associated with NMDAR blockade were significantly higher than those 

associated with β-AR blockade.  Thus NMDAR antagonism more robustly interferes 

with reward memory reconsolidation than does β-AR antagonism. 

Moderating effects of specific drug compound within drug class were assessed by 

entering this predictor into the model.  For NMDAR antagonists, there was no effect of 

specific compound (p =.806), suggesting NMDAR antagonism per se, regardless of 

compound used, interferes with reconsolidation. All β-AR studies used Propranolol, 

with the exception of one (Fricks-Gleason & Marshall, 2008), which used Timolol, thus 

moderator analysis of specific compound was not appropriate.  

2.3.7. Pharmacokinetic Factors 

 

An important question for the implementation of pharmacotherapy in the clinic is 

whether drug effects vary according to dose and time of administration relative to the 

reactivation session. Moderator analysis of pharmacokinetic factors for NMDAR and β-

AR drugs was performed for each drug class separately.  
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Drug Timing 

 

It is possible that drugs given prior to memory reactivation might have state-dependent 

effects on retrieval reconsolidation. To assess the impact of this on effect size, studies 

were split into those that administered drugs before and after reactivation. This dummy 

variable was entered into a moderator analysis along with drug class (NMDAR or β-

AR). Drug class significantly moderated effect sizes [χ2(1) = 17.253, p <0.001], but 

drug timing did not [χ2(1) = 1.991, p <0.001], suggesting that administration of drug 

before reactivation does not significantly influence effect sizes compared to after 

reactivation. The interaction between drug class and timing did not predict variation 

effect sizes above drug class (p >. 05) 

 

 Dose 

Since dosages of NMDAR and β -AR drugs across different administration routes 

cannot be converted to a common metric, moderator analysis of these factors was 

performed for each drug class separately. 19 studies gave doses (0.05, 0.1, 0.2 or 

0.3mg/kg) of MK801 systemically). For these studies, dose significantly moderated 

effect size [χ2(3) = 27.805, p < 0.001]. An approximate U-shaped dose-response curve 

between MK-801 dose and effect size was found (figure 2.4), with the highest rs for 

0.05 and 0.3 mg/kg doses, but lower rs for 0.1mg/kg and 0.2mg/kg doses. Note, 

however that only one study used the 0.2 and 0.3mg/kg doses each, so this relationship 

should be interpreted with caution.  For β-AR studies, with the exception of one contrast 

using Timolol, Propranolol was the test drug and always administered systemically. No 

effect of Propranolol dose on effect sizes was found (p = .464), however only two doses 
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(10mg/kg and 30mg/kg) were used across all studies, with only two studies using 

30mg/kg.  

 

Table 2.2.  Separate meta-analyses for different doses of MK801 

 

 

Figure 2.4: U-shaped dose-response curve of reconsolidation blockade by MK-801 

 

 

 

 

 

 

    95% CI for r    

Dose 

MK801 

(mg/kg) 

k τ2 Q(df) lower mean upper z p FSN 

          

0.05 3 .736 3.673(2) .605 .818 .921 5.023 <0.001 50 

0.1 14 .0508 21.612(13) .368 .518 .642 5.989 <0.001 296 

0.2 1 0 N/A .55 .55 .55 N/A N/A 0 

0.3 1 0 N/A .89 .89 .89 N/A N/A 0 
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Administration route  

As NMDARs in different neural loci may be involved in dissociable reconsolidation 

processes (e.g. labilisation vs., restabilisation; Ben Mamou et al, 2006), effects of 

systemic administration of NMDAR antagonists were compared to intracerebral  

administration as a whole and specific site of injection was assessed with moderator 

analysis. There was no difference between systemic and intracerebral administration (p 

= .445) or any moderating effect of neural injection site (p = .804). Note, however, as 

the latter test only assessed eight studies, sensitivity to variations in effect size was 

extremely low. β-AR studies only administered drugs systemically, so moderator 

analysis was not possible. 

 

 2.3.8. Mnemonic Factors 

 

Pavlovian/Instrumental 

Table 2.3 shows the results of separate meta-analyses of NMDAR and β -AR antagonist 

effects in learning paradigms that putatively require Pavlovian only (CPP, classical 

conditioning, autoshaping, PIT, ANR) vs. instrumental (operant, maze) memory traces. 

NMDAR antagonists caused the greatest disruption of reconsolidation of both types of 

memory. β -AR antagonism was associated with a larger effect on instrumental memory 

than Pavlovian memory. Memory type (Pavlovian vs. instrumental) and a dummy code 

for the interaction between memory type and drug class (NMDA vs. β -A) separately 

entered as predictors in a meta-regression found that memory type alone was not a 

significant predictor of effect size variation [χ2(1) = .141, p = .707], but the interaction 

was [χ2(3) = 32.836, p < 0.001] . Post-hoc analyses revealed greater effects of NMDAR 

than β -AR antagonists on reconsolidation of Pavlovian memory traces [χ2(1) = 33.525, 
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p < 0.001] but not instrumental memories [χ2(1) = .753, p =.386]. Within drug class, 

memory type did not moderate the size of NMDAR [χ2(1) =.452, p =.5]  or β-AR 

antagonist [χ2(1) =3.059, p =.08]   effects.  

Table 2.3. Separate meta-analyses of instrumental and Pavlovian memory paradigms 

for NMDAR and β -AR antagonists 

 

Relapse Process 

Table 2.4 shows the paradigms included in the current analysis along with the putative 

association and memory type being tapped. Separate meta-analyses for these effects are 

shown in Table 2.5.  

 

 

 

  

     95% CI for r    

Drug 

Class 

Memory 

Type 
k τ2 Q(df) lower mean upper z p FSN 

           

NMDA Pavlovian 23 .062 22.264(22) .529 .628 .714 9.638 <0.001 1460 

NMDA Instrumental 7 .102 6.127(6) .305 .559 .739 3.912 <0.001 83 

β -AR Pavlovian 17 0 11.066(16) .118 .210 .298 4.437 <0.001 115 

β -AR Instrumental 5 0 2.675(4) .210 .424 .599 3.705 <0.001 19 
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Table 2.4: Overview of conditioning tasks by process measured PIT = Pavlovian to 

Instrumental Transfer, ANR = Acquisition of a New Response, CPP = Conditioned 

Place Preference 

Association Type Tasks Memory Class 

Conditioned Approach 
Autoshaping 

Maze 
Pavlovian 

Instrumental 

Conditioned Motivation 
PIT 

Operant 
Pavlovian 

Instrumental 

Conditioned Reinforcement 
ANR 
CPP 

Classical 

Pavlovian 
Pavlovian 
Pavlovian 

 

 

Relapse process alone did not significantly explain variance in effect sizes (p =.312) but 

the interaction between drug class and relapse process significantly did moderate effect 

sizes [ χ
2(5) = 47.466, p = <0.001]. To assess this interaction, post-hoc tests were used 

to compare variations in effect sizes across relapse process within-drug-class and 

between drugs within relapse process. Alpha was set at 0.01 to control for the Type I 

error rate. No difference was observed between conditioned reinforcement (CR) and 

conditioned approach (CA) (p =.028) or conditioned motivation (CM) and CR (p = .29) 

for NMDAR antagonists, but effects were larger for CA than CM [χ2(1) =6.951, 

p=.008]. No differences were found in any relapse process contrasts for β -AR 

antagonists (all p > 0.08). NMDAR antagonists interfered with CR [χ2(1) =26.266, p 

<0.001] and CA [ χ2(1) =18.763, p <0.001] reconsolidation , but not CM reconsolidation 

[ χ2(1) =.063, p =.802] significantly more than β -AR antagonists (see figure 2.5) 
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Table 2.5: Separate meta-analyses for putative relapse process by drug class. 

 

Figure 2.5: Interaction between relapse process and drug class showing meta-analysis 

point estimates ± 95& CI.CR = Conditioned Reinforcement, CM = Conditioned 

Motivation, CA = Conditioned Approach 

 

  

    95% CI for r    

Drug Class k τ2 Q(df) lower mean upper z p FSN 
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2.3.9. Methodological Factors 

 

Primary reinforcer 

Table 2.6 shows separate meta-analyses carried out on effect sizes split by the primary 

reinforcer (UCS) used in the study. Only one study (Sadler et al, 2007) used 

amphetamine as a primary reinforcer, so analysis was not possible for amphetamine.  

UCS significantly predicted effect size variation [χ2(4) =16.524, p =.002]. To assess 

where the significant moderating impact of primary reinforcer lay, Bonferroni-corrected 

post-hoc comparisons were used to compare effect sizes for different reinforcers. This 

revealed no significant difference between ethanol and morphine (p =.146), but larger 

effects for dietary reinforcers [χ2(1) =10.055, p =.002] and cocaine [χ2(1) =15.037, p < 

0.001] than ethanol. The difference was not significant between morphine and dietary 

reinforcers (p =.106) or cocaine (p =.022) or between dietary reinforcers and cocaine (p 

=.545).  

Table 2.6: Separate meta-analyses for primary reinforcers 

 

 

 

 

    95% CI for r    

UCS k τ2 Q(df) lower mean upper z p FSN 

          

ethanol 13 .0203 13.608(12) .068 .214 .359 3.606 <0.001 90 

morphine 10 .0285 9.06(9) .236 .396 .534 4.606 <0.001 112 

dietary 12 .0634 11.321(11) .330 .505 .646 5.112 <0.001 198 

cocaine 9 .0334 7.768(8) .488 .635 .746 6.816 <0.001 214 



94 
 

Conditioning Paradigm: 

Table 2.7 shows the results of separate meta-analyses carried out for each conditioning 

paradigm. Drug class moderation of effect sizes was assessed for each paradigm. 

Significant moderating effects were found for CPP, maze and autoshaping paradigms, 

with NMDAR antagonist effects higher than β -AR for each (χ2 values and probabilities 

given in table 2.7). Note that the number of samples using the maze, PIT, autoshaping 

and operant procedures was very low, so results should be interpreted with caution. 

There was no effect of conditioning paradigm overall (p =.747).  

Table 2.7: Separate meta-analyses of conditioning paradigms 

 

 

 

 

 

 

 

 

 

 

 

Reactivation Length: 

Length of reactivation session entered as a continuous predictor in a random-effects 

meta-regression did not predict variation in effect sizes [t(49) = -.647, p = .521]. 

 

    95% CI for r      

Paradigm k τ2 Q(df) lower mean upper z p FSN 

Drug 

mode

ration 

χ2 (df) 

p 

            

CPP 23 .095 70.95 (22) .312 .444 .559 6.069 <0.001 890 
26.52 

(1) 
<0.001 

OPERANT 7 0 3.87(6) .227 .406 .559 4.221 <0.001 37 
.947  

(1) 
.331 

MAZE 5 .132 10.2(4) .320 .629 .817 3.557 <0.001 54 
7.53  

(1) 
.006 

PIT 4 .190 9.24(3) .067 .528 .803 2.214 0.027 18 
1.366 

(1) 
.243 

AUTO-

SHAPING 
3 .585 14.75(2) -.273 .572 .919 1.369 .171 13 

13.71 

(1) 
<0.001 

ANR 10 0 2.74(9) .315 .457 .579 5.778 <0.001 111 
.242 

(1) 
.623 
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2.3.10. Sensitivity Analysis 

 

To assess potential publication bias, funnel plots were first created and assessed for 

asymmetry. As larger study samples tend to provide better estimates of true effect sizes, 

an inverted funnel shape should be observed when effect sizes are plotted against 

standard error. Publication bias manifests in under-representation in the negative tail of 

the plot. Overall, the included studies were relatively homogeneous in standard error, 

although more studies were included with high effect sizes (see Figure 2.6). Application 

of a priori weights for moderate one-tailed and two-tailed selection bias did not 

appreciably alter the point estimate (0.42 and 0.44 respectively). If severe one-tailed 

selection bias were assumed, the point estimate would be reduced to 0.34 (0.39 for 

severe two-tailed selection bias; see (Figure 2.6). As severe selection bias represents an 

extreme scenario, and does not nullify the findings of the present analysis, the current 

effects appear relatively robust and publication bias is unlikely to represent a threat to 

the validity of the findings. Discussion of these effects will therefore concern the 

unadjusted effect estimates.  
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Figure 2.6: Funnel Plot of Fisher Z-r transformed effect sizes against standard error. 

Lines represent 95% confidence intervals 

 

 

 

 

 

 

 

 

 

 

For NMDAR antagonist studies, effect size distribution looked largely symmetrical, 

with little variation between studies in standard error (see Figure 2.7). No a priori 

selection bias weighting had an appreciable impact on this estimate (moderate one-

tailed = 0.59, severe one-tailed = 0.56, moderate two-tailed = 0.59 and severe two-tailed 

0.56). 

Figure 7: Funnel Plot of Fisher Z-r transformed effect sizes against standard error for 

NMDAR antagonist studies. Lines represent 95% confidence intervals 
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Inspection of the funnel plot for β-AR studies appears to show bias for large positive 

effect sizes (the left tail of the distribution is under-represented in Figure 2.8.). 

However, analysis revealed no significant impact of a priori selection bias weight 

functions on the point estimate. The point-estimate for this model was 0.24 and neither 

moderate (one-tailed = 0.208, two-tailed = 0.218) or severe (one-tailed = 0.168, two-

tailed = 0.19) selection bias would invalidate the findings.   

Figure 2.8: Funnel Plot of Fisher Z-r transformed effect sizes against standard error 

for β-AR antagonist studies. Lines represent 95% confidence intervals 

 

 

 

 

 

 

 

 

 

 

2.3.11. Study Quality Ratings 

 

Inter-rater reliability of the three judges’ (myself and two colleagues) study quality 

scores was assessed by calculating the intraclass correlation coefficient using a two-way 

mixed-model of consistency. This found an acceptable degree of inter-rater reliability, 

with an intraclass correlation coefficient of .787 (95% CI = .617(lower) to .889 (upper)). 

Averages of judges’ ratings were therefore entered into a meta-regression model to 

assess whether rated study quality predicted variation in effect sizes. Study quality was 

not related to effect size variation [β-coefficient = .0088 (95% CI = -.008 (lower) to .024 
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(upper)); t (49) = 1.027, p = .309], indicating that reported effects are not due to variations 

in methodological quality.  
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2.4. Discussion 

2.4.1. Overview of findings 

 

The current meta-analysis examined the effects of β-AR and NMDAR antagonists on 

the reconsolidation of reward memory. Overall, antagonism at either receptor caused a 

significant decrement in memory expression at test. However, large differences were 

found between NMDAR and β-AR antagonists, with NMDAR antagonists more 

robustly interfering with reconsolidation. Effects of relapse process (conditioned 

motivation, reinforcement or approach), primary reinforcer and dose were found on 

variation in effect sizes. An interaction between drug class and memory trace type 

(Pavlovian or instrumental) was also found, but no effect of memory type itself. 

β-AR antagonists were associated with a significant, but small (by Cohen’s criteria) 

overall effect (r = 0.24).  Furthermore, there was relatively little variation in these effect 

sizes, suggesting that moderating influences of experimental variables on the effects of 

these drugs are minimal. Conversely, NMDAR antagonists showed fairly large and 

reliable effects on reward memory reconsolidation (r = 0.613), with considerable 

heterogeneity in the effect sizes, highlighting the importance of moderating factors. A 

direct test of the relative effects of NMDAR and β-AR antagonists confirmed that 

overall, NMDAR antagonists had a far larger effect on reconsolidation than β-AR 

antagonists. This is in line with the fundamental role of post-synaptic NMDAR activity 

in mediating synaptic plasticity and associative learning (Cotman et al, 1988; Malenka 

& Nicoll, 2002).  The extent of the difference between NMDAR and β-AR antagonists 

was unexpected however, as both are thought to play important roles in associative 

memory formation and consolidation.  
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2.4.2. Impact of moderators 

 

Pharmacokinetic, mnemonic and methodological factors may all affect the impact of 

drugs on reconsolidation and these factors were assessed with meta-regression. Drug 

administration route and timing relative to reactivation did not systematically modulate 

effect sizes for either drug class. It is possible, however, that the lack of moderating 

effect of administration route was due to a lack of studies injecting drugs at specific 

neural loci (only two effect sizes each for drugs injected into the basolateral amygdala, 

nucleus accumbens and ventral tegmental area were included, and only one where drug 

was given intracerebroventricularly). Previous research has suggested that separate 

neural loci might be important for distinct stages of reconsolidation at different times 

(Théberge et al., 2010). In the basolateral amygdala, for example, NMDARs 

(particularly GluN2bs) are important in destabilisation of memory traces (Ben Mamou 

et al., 2006), such that NMDAR antagonism prior to reactivation may prevent 

reconsolidation from occurring.  However, intracranial drug administration at specific 

loci is unfeasible in humans, so the current observation of robust effects for 

systemically administered drugs is encouraging for the translation of the reconsolidation 

blockade approach to humans. Also encouraging is that timing of drug relative to 

reactivation did not moderate effect sizes. This demonstrates that the observed drug 

effects on reconsolidation are not attributable solely to state-dependent effects at recall 

and are in contrast to previous findings suggesting NMDAR antagonism only prior to 

reactivation can disrupt drug memories (Milton et al., 2008b). 

A tentative U-shaped dose-response curve was found for MK801 effects, but no 

moderating effect of dose was seen for Propranolol. Note, however, that only two doses 

of Propranolol were used in the included literature (10mg/kg and 30mg/kg) and only 
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two samples used the latter dose. This should therefore not be taken as firm evidence 

against dose-response effects of Propranolol on reconsolidation and highlights the need 

for dose-finding studies with both β-AR and NMDAR antagonists in human 

reconsolidation.  For NMDAR antagonists, dosing will also depend upon the specific 

pharmacodynamics of NMDAR antagonists to be used in humans, as MK801 is 

contraindicated for human use. However, the analysis revealed that the specific NMDA 

antagonist used (i.e. Memantine, MK801, D-APV, 7-CTKA) was not associated with 

variation in effect sizes. That is, inhibition of NMDAR activity through a diverse range 

of pharmacological mechanisms - channel blocking (MK801, Memantine), competitive 

antagonism of the glutamate binding site (D-APV) or the glycine site (CTKA) - is 

sufficient to disrupt reconsolidation. This is encouraging for translational research, as it 

suggests that NMDAR antagonists that are suitable for human use, such as Memantine, 

ketamine and Nitrous Oxide may effectively block reconsolidation. 

Destabilisation does not occur under all circumstances following memory retrieval (see 

Finnie & Nader, 2012 for a review), suggesting certain parameters may modulate the 

viability of reconsolidation disruption as a treatment strategy. It has been suggested that 

one such parameter is memory trace type (Hernandez & Kelley, 2004; Milton et al 

2012), with instrumental memories thought to be less susceptible to reconsolidation 

interference than Pavlovian memories. The current analysis found that memory type did 

not affect the size of reconsolidation effects overall. However an interaction between 

memory type and drug class was found, with NMDAR antagonists disrupting Pavlovian 

memory traces only to a greater extent than β-AR antagonists.  

This challenges the notion that instrumental memory traces are less susceptible to 

reconsolidation interference per se (NMDAR and β-AR antagonism were both still 

associated with fairly large effects on instrumental traces; r = .559 and .424, 
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respectively), and suggests that β-AR antagonists such as Propranolol may be as 

effective as disrupting instrumental memory traces as NMDAR antagonists, but may be 

far less effective for targeting Pavlovian memories. Targeting the NMDA receptor 

should therefore still be the first choice for interfering with memory reconsolidation. 

Instrumental memory reconsolidation should thus not be ruled out as a target for 

pharmacotherapy, but research should focus on delineating the roles of the different 

neurotransmitter systems in this process. It remains to be seen whether interfering with 

the reconsolidation of Pavlovian cue-drug memories alone will be sufficient for long-

term relapse reduction in human addicts, or whether their instrumental counterparts also 

need to be targeted to optimise relapse prevention. 

Drug effects varied according to the putative ‘relapse process’ targeted by conditioning 

paradigms. Conditioned approach was more readily disrupted than conditioned 

motivation by NMDAR antagonists, and NMDAR antagonists caused greater disruption 

in conditioned reinforcement and conditioned approach (but not conditioned 

motivation) than β-AR antagonists. This dissociation is consistent with findings of 

separate amygdalar neuronal assemblies encoding conditioned motivation and 

reinforcement (Tye & Janak, 2007) and the involvement of amygdalar noradrenergic 

neurons in regulating autonomic arousal, stress and affective content associated with 

memory (reviewed by Roozendaal et al, 2009). As conditioned motivation reflects a 

state of cue-induced arousal, involving affective states, hyperlocomotor activation and 

possibly conditioned withdrawal, it is likely to involve both neurotransmitter systems 

regulating learned associations (i.e. glutamatergic projections from the BLA to the PFC 

and NAcc) and the arousing, affective correlates of those associations, via projections 

from the central nucleus of the amygdala, hypothalamus and brainstem. β-A receptors 

may therefore be an important target for reducing conditioned motivation in particular. 

Indeed, human studies of fear memory reconsolidation using Propranolol have shown 
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that the treatment attenuates the autonomic and affective components of fear memory, 

but not the knowledge of associations themselves (Brunet et al, 2008; Kindt et al, 2009). 

Conditioned approach and reinforcement, on the other hand, may rely more upon 

midbrain dopaminergic signalling modulated by glutamatergic afferents, to control 

behavioural outcomes (Kalivas & Volkow, 2005). There is currently limited research 

with compounds acting on the dopaminergic system to assess the role of dopamine in 

reward reconsolidation, which is surprising, given the extensive literature on its role in 

addiction, reward learning and prediction error. We therefore encourage research using 

dopaminergic drugs to examine the contribution of dopamine to reconsolidation.  

The primary reinforcer used to train behaviour significantly moderated the effect of 

reconsolidation blockade on memory expression at test.  This was due to greater effects 

on animals conditioned to dietary rewards (sucrose, food pellets) and cocaine than 

ethanol.   It is unclear why this should have been the case, given the putative centrality 

of midbrain dopamine release and associative memory to addictive processes (Hyman, 

2005; Kelley, 2004). However, dissociable neuronal ensembles have been identified that 

encode different motivationally relevant stimuli (Carelli & Wondolowski, 2003) and 

dopaminergically-encoded reward prediction error learning signals are thought to be key 

to memory destabilisation (Schultz et al, 1997; Pessiglione et al, 2006; Osan et al, 2011) 

by signalling expectancy mismatch. This raises the intriguing possibility that 

compounds whose self-administration is more directly associated with increased DA 

transmission (food and cocaine; Hernandez & Hoebel, 1988; Ritz et al, 1987) may form 

memory traces that are more amenable to destabilisation through more robust negative 

prediction error upon their omission. Ethanol primarily acts to increase DA via 

GABAergic mechanisms and directly antagonises NMDARs at high doses (Mukherjee 

et al, 2008), potentially causing adaptations that interfere with NMDAergic memory 

destabilisation. Thus memories related to those drugs that rely more on non-
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dopaminergic neurotransmitter systems for their reinforcing effects may be less 

susceptible to reconsolidation blockade by NMDAR and β-AR antagonists. This is 

highly speculative, however, and remains to be tested in humans. However, this does 

highlight the fact that the differences, as well as the commonalities between addictions 

to different substances should be considered when designing interventions (Badiani et 

al, 2011).  It will be important to assess reconsolidation-blocking interventions in 

human alcohol users to assess whether ethanol reinforced memories are genuinely 

resistant to reconsolidation. Given the legality of alcohol and its subsequent frequent 

use across varying contexts, alcohol MMMs perhaps represent some of the hardest 

memory traces to destabilise. Thus if therapeutic effects can be shown in this group, this 

will be promising for the application of the approach to other addictions.  

Interestingly, neither learning paradigm nor length of reactivation procedure explained 

variation in effect sizes. Various parameters putatively determine whether 

reconsolidation or extinction is activated by cues (Pedreira & Maldonado, 2003; Suzuki 

et al, 2004), but the current analysis revealed that effects of NMDAR and β-AR 

antagonists are relatively invariant across length of reactivation procedures. Again, this 

is encouraging for translational work, as a concern with the use of reconsolidation 

interference for treating addiction is the sensitivity of the procedures to unavoidable 

variance in clinical application. The current findings suggest that other factors, such as 

mismatch between expected and actual outcomes, new information about stimuli and 

stimulus offset may thus be more important for triggering reconsolidation than absolute 

length of memory reactivation (Pedreira, 2004; Osan et al, 2011). 

Publication bias is a constant threat to the validity of research based on published data. 

However, accounting for potential publication bias did not dramatically affect the 

estimates of effect size in the current analysis. As such, there is reasonable certainty that 
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the observed pattern of results is genuine and not an artefact of the propensity of 

journals to publish positive findings. 

 

2.4.3. Limitations and recommendations for future research 

 

While the current analysis aimed to inform the early translation of preclinical work in 

reward memory reconsolidation, I acknowledge some limitations associated with such a 

task. As previously mentioned, while preclinical studies can provide a good model of 

the basic learning processes involved in addiction, they are unable to represent the full 

complexity and inherent variability of human drug addiction.  If, for example, we accept 

the maladaptive memory model of relapse, in reality there is virtually never a case 

where both Pavlovian and instrumental memory traces are not involved in addictive 

behaviour. In humans, illicit drugs are never passively administered in the absence of 

action nor consumed in the absence of rich sensory stimuli. The Pavlovian learning that 

imbues cues with conditioned motivational, reinforcing or attractive properties feeds 

into habitual actions, or chains of actions required in order to obtain and consume a 

drug. In humans, relapse behaviour is likely to be determined by more complex, higher-

order associative networks of Pavlovian and instrumental memories over longer periods 

of time than in rats. In rat paradigms, drugs are often administered contingent upon, or 

relatively soon after, the presentation of a simple CS or execution of a simple 

instrumental response.  In humans, there can be extended periods of time and a 

multitude of necessary intermediate responses between cue presentation and drug 

seeking and reward. It is unclear, for instance, how well the behaviour of a heroin addict 

who must first steal money, perhaps travel considerable distance to meet a dealer and 

procure the drug, then prepare the drug for use, is modelled by a simple approach or 

lever press response. Disruption of Pavlovian or instrumental ‘links’ in extended 
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associative memory chains may thus reduce the ability of drug cues to precipitate 

relapse, but some of the links may be more easily targeted or lead to greater 

improvements in outcome. This is a general issue for the translation of preclinical 

research to humans, as the associative networks maintaining addictive behaviour in 

humans are almost certainly more complex, variable and temporally extended than those  

created by experimental manipulation in rats. There is thus much human research to be 

done to assess the relative impact on relapse rates of degrading different links in these 

associative networks with reconsolidation-based pharmacotherapy. The clinical viability 

of such an approach is still currently unknown. 

Because preclinical studies are highly controlled and thus sensitive to experimental 

manipulation, we can expect some attenuation of effects in humans. This may be 

problematic for β-AR antagonists in the present instance, as the observed effects in 

animals were modest. This would fall foul of Criterion 1 of the appraisal criteria for 

assessing drug efficacy outlined in Chapter 1.  Accounting for attenuation, β-AR 

antagonism may not be the optimal way for interfering with maladaptive reward 

memory in humans. This is not to say that we discourage research with β-AR 

antagonists in humans, but direct comparison with NMDAR antagonists in humans will 

be critical in determining the extent to which these results translate to clinical 

intervention. 

There is currently a lack of human research into the effects of NMDAR and β-AR 

antagonists on appetitive memory reconsolidation. However, early findings in human 

fear and anxiety studies, which typically precede equivalent addiction studies, are 

encouraging (Kindt, 2009; Soeter & Kindt, 2010; Schwabe et al, 2012). However, the 

neural, behavioural and psychological divergence between appetitive and aversive 

memory mean it is no simple task to translate findings from one domain to the other.  
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More primary research into the role of β-ARs and NMDARs in the reconsolidation in 

human appetitive memory is therefore encouraged. One human study examining 

Propranolol for blocking the reconsolidation of MMMs in cocaine addicts has been 

conducted since the publication of this meta-analysis (Saladin et al. 2013). The findings 

of improvements following Propranolol with memory reactivation were in the modest 

range predicted by this meta-analysis and were not enduring (thus not meeting Criterion 

2 outlined in Chapter 1).  

In summary, the present analysis is highly encouraging for translational use of NMDAR 

antagonists to interfere with reward memory reconsolidation. Weaker support was 

found for the use of β-AR antagonists, but further human research will be needed to 

assess whether effects are robust enough to be of utility in the clinic. Pharmacokinetic, 

mnemonic and methodological factors can modulate the effects of these drugs on 

reward memory reconsolidation, but these effects must be replicated in humans, where 

basic proof-of-principle work is required. Translating this research approach to human 

drug users, it would be prudent to focus on modulation of the NMDAR as a key drug 

target. 
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Chapter 3: Translating Basic Reconsolidation Research to Human Addiction: An Investigation of Memantine with 

Cue-Drug Memory Retrieval as an Adjunct to Voluntary Smoking Cessation.
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3.1. Introduction 

  

Antagonising NMDARs or β-ARs during reconsolidation (Lee and Everitt 2008a; 

Milton et al. 2008a) should putatively inhibit reward memory restabilisation, weakening 

reactivated memory traces.  However, meta-analytic evidence (see Chapter 2) 

demonstrates that of these two drug types, NMDAR antagonists display much more 

robust effects in blocking restabilisation (Das et al. 2013a). 

Blocking NMDARs may therefore be an effective pharmacological strategy for 

weakening MMMs, yet it is unclear how well this approach will translate to human 

drug-using populations. This uncertainty is driven primarily by the sensitivity of 

pharmacological memory blockade to boundary conditions at recall, the paucity of 

tolerable NMDAergic antagonists available for human use and the simple lack of 

research using the approach in humans. 

Regarding the first of these issues, as reconsolidation is a memory updating and 

maintenance process (Lee 2009), unexpected new information regarding the retrieved 

memory is necessary to destabilise the trace at recall (Lee 2009; Pedreira et al. 2004). 

The necessity of this this mismatch between predicted and occurring events (Sevenster 

et al. 2013), known as a  prediction error (Schultz et al. 1997) is consistent with 

computational models of reinforcement learning, in that it acts as a learning signal to 

spark memory updating via reconsolidation. Incorporating uncertainty into reward 

availability during MMM retrieval procedures may thus be key to their destabilisation 

and subsequent weakening.  

Further, the length of the memory retrieval period and number of unreinforced 

presentations of cues are also critical in destabilising memories, as they determine the 

switch between the mutually exclusive (Merlo et al. 2014) processes of reconsolidation 

and extinction (Osan et al. 2011; Pérez-Cuesta and Maldonado 2009; Suzuki et al. 
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2004). Longer reactivations with more unreinforced cue presentations bias in favour of 

extinction, which is undesirable due to the fragility of extinction-based therapeutic 

effects. Very short reminders fail to engage either process, however (Suzuki et al. 

2004), so reactivation procedures should be brief, but not too brief. Exactly how long is 

optimal in human drug users is still unknown, however, and no clear moderating effect 

of retrieval length was observed taking the ‘bird’s eye view’ during meta-analysis in 

Chapter 2.  

The limited NMDAergic antagonist pharmacopoeia of reconsolidation-blocking agents 

available for human use is due to the tendency of high-affinity channel blocking 

NMDAR antagonists like ketamine and phencyclidine to cause dissociation, 

hallucinations and psychosis-like symptoms (Muetzelfeldt et al. 2008) and potentially 

lesions in neural tissue (Olney et al. 1989). 

Memantine, a novel, channel blocking non-competitive NMDAR antagonist does not 

exhibit the side effects of other NMDAR antagonists at low doses (Parsons et al. 1999), 

is very well tolerated in humans and is already prescribed for memory loss in humans 

with Alzheimer’s disease. Memantine has been shown to interfere with MMM 

restabilisation in preclinical studies (Alaghband and Marshall 2013; Popik et al. 2006). 

It is therefore an attractive candidate for translational attempts to pharmacologically 

weaken MMMs during reconsolidation.  

However, findings with memantine in reconsolidation are inconsistent, as it has been 

shown to enhance reconsolidation in day-old chicks (Samartgis et al. 2012). It also 

promotes neurogenesis, which may lead to enhancement or weakening of memory 

depending on the nature of hippocampal memory encoding (Akers et al. 2014). Further, 

it has not yet been tested in the context of blocking human MMMs. Given the 

aforementioned differences between human MMMs and lab-learning paradigms, the 
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current study sought to test whether memantine could interfere with the reconsolidation 

of cue-smoking memories in quitting tobacco smokers, a prototypical addicted 

population. If so, it should ameliorate cognitive measures of MMM strength and 

ultimately reduce relapse.  

3.1.1.Specifying an appropriate memantine dose 

 

Due to the lack of human research looking at blocking MMM restabilisation and the 

novel pharmacodynamics of memantine at the NMDA receptor (Rammes et al. 2008; 

Xia et al. 2010), there is very little information upon which to base a memantine dose 

for the current study. Meta-analysis suggested a non-linear dose-response effect of MK-

801 on reward memory reconsolidation blockade, with low doses exhibiting greater 

efficacy than moderate doses. Although memantine has lower NMDAR affinity than 

MK-801 (Rammes et al. 2008), low doses of the drug have been found to induce 

memory impairments in rats, with higher doses generating an intolerable side effect-

profile (Creeley et al. 2006). Further, in populations of cloned human receptors, 

memantine in high concentrations antagonises both NMDARs and nicotinic 

acetylcholine receptors (Maskell et al. 2003). This lack of specificity impedes the 

attribution of any observed effects to glutamatergic systems.   

Human research in smokers has utilised up to 40mg memantine. At this dose, 

memantine produced significant dizziness, light-headedness, detachments from reality 

and temporal distortion and prevented the ‘buzz’ smokers experienced following a 

cigarette (Jackson et al. 2008). The current study aimed to minimise this side-effect 

profile, maximise NMDAR specificity of memantine and avoid the potential dip in 

efficacy of moderate-dose NMDA antagonism. As such, a relatively low dose of 10mg 

memantine was selected. This is generally the maximum single oral dose prescribed to 

Alzheimers patients (www.namenda.com).          
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3.2 Methods 

3.2.1. Participants & Design 

 

Power analysis based on a meta-analytic effect size of r = 0.67 determined a total N of 

12 was required for 0.8 power at α = 0.05. However, to account for attenuation in 

NMDAR antagonist effects across species, a more conservative r of 0.35 was adopted 

for all studies using NMDAR antagonist studies, yielding a required N of 57 for 0.8 

power at α = 0.05. Expecting minimal attrition rates, fifty nine smokers were therefore 

recruited via online advertisements and the University College London postgraduate 

subject pool. Inclusion criteria were scoring >4 on the Fagerstrom Test of Nicotine 

Dependence (FTND) (Heatherton et al. 1991), smoking > 10 cigarettes per day, 

seriously wanting to stop smoking as indexed by endorsing item 1 or 2 on the 

Motivation to Stop Smoking Scale (Kotz et al. 2013). Exclusion criteria were ages <18 

or >65, current / history of mental health or neurological conditions, concurrent 

addiction to any other substance, use of any illicit drug more than once per week, use of 

an NMDAR antagonist (e.g. ketamine) more than once per month, pregnancy or 

breastfeeding, compromised renal or hepatic function. Of the participants randomised to 

a group, four did not attend the second study session and were lost to all further follow-

up. We utilised an intention-to-treat approach such that all participants randomised to 

groups contributed data to the statistical analyses. 

A randomised, double-blind, placebo-controlled design was used to assess the effects of 

10mg memantine in blocking reconsolidation. To assess drug and reactivation 

dependency of effects, participants were therefore randomly assigned to one of three 

groups: Reactivation of smoking MMMs with memantine (REACT + MEM, N = 19), 

Reactivation of smoking MMMs with Placebo (REACT+PLA, N =20), or memantine 

without reactivation of smoking MMMs (NO REACT + MEM, N = 20). 10mg 
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Memantine Hydrocloride in pill form (Namenda) was obtained from UCH pharmacy 

and formulated in opaque gelatine capsules with lactose powder filler for those groups 

receiving memantine. Placebo capsules were identical red gelatine capsules filled with 

lactose powder only. 

 

3.2.2. Apparatus & Tasks: 

 

Smoking memory reactivation stimuli consisted of in-vivo smoking cues (a pack of 

Marlboro cigarettes, lighter and ashtray) and six thirty second video clips depicting 

smoking paraphernalia (cigarettes, lighters and ashtrays) and people smoking in various 

locations.  The non-reactivation cues consisted of six similar thirty second clips that did 

not depict smoking or smoking-related cues and numbered cards and a pencil. The 

videos were kindly provided by Joel Erblich (Tong et al. 2007). 

A visual probe task was used to assess attentional bias to smoking cues on Day 8 of the 

study. The task consisted of smoking pictures paired with composition-matched neutral 

images (n = 20) or control neutral-neutral (n = 20) pairs. The picture pairs were 

developed and kindly provided by Karin Mogg and are described fully in Mogg et al. 

(2003). Pairs of pictures appeared for 500ms or 2000ms and were replaced by a probe 

either contralateral or ipsilateral to the target (smoking-related). Trial presentation was 

counterbalanced for stimulus onset asynchrony (500/2000ms), target side (left or right) 

and probe congruence with target (congruent/incongruent). The shoulder buttons on a 

Microsoft Sidewinder gamepad were used to respond to the side upon which the probe 

appeared.  

A saccade/antisaccade task was used to assess baseline oculomotor response inhibition. 

In both phases, red target circles appeared either on the near (x,y screen location 
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412,384) or far (212,384) left or near (612, 384) of far (812, 384) right of the screen, 

twelve times in each location in a random order. Correct saccades or antisaccades ended 

the trial, otherwise it timed out after 3000ms. The saccade phase required participants to 

saccade to red target circles from fixation in the centre of the screen. Participants were 

instructed to ‘Simply look from the central fixation to the red circle’ during this phase. 

The antisaccade phase required participants to make a saccade to the point on the screen 

in the exact mirror-image location of the red target circle without first looking at the 

target. Participants were told that they had to ‘Look at the opposite point on the screen 

to where the red circle appears, while inhibiting their natural tendency to look at the 

circle first’. The saccade phase was always completed prior to the antisaccade phase to 

familiarise participants to the oculomotor response requirements.  

An adaptation of the Effort Expenditure and Reward Responsivity Task (EEfRT) by 

Treadway and colleagues was used to assess motivation for non-drug reward at baseline 

and on Day 8. The reader is referred to Treadway et al (2009) for a full description of 

the task. Briefly, on each of 48 trials the participant was required to choose between an 

‘easy task’ (tapping the space bar 30 times in 7 seconds) and hard task (tapping it 100 

times in 21 seconds). All tapping had to be performed with the little finger of the non-

dominant hand. On each trial, a fixed reward of 50p was available for successful 

completion of the easy task and a variable reward between 70p and £2.00 (in 10 pence 

increments) for the hard task. Participants had 5 seconds to choose one of the tasks to 

complete in each trial or one was chosen randomly. An associated ‘win probability’ was 

displayed as the choice was being made that showed probability of winning on that trial 

if the task was completed. This was either low (12%), medium (50%) or high (88%). 

The monetary value of the sum of two randomly selected trials on which the participant 

won was added to their payment.  
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Level of nicotine dependence at baseline and at each follow-up was assessed with the 

Fagerstrom Test of Nicotine Dependence (FTND) (Heatherton et al. 1991). Participants 

completed an online ‘smoking diary’ every evening for a minimum of one week prior to 

Day 1 and continuously from then up to three weeks following Day 8.  The diary was 

implemented in UCL Opinio (http://opinio.ucl.ac.uk) and recorded how many cigarettes 

participants smoked on a daily basis.  At baseline, cigarette craving was assessed using 

the 10-item Questionnaire on Smoking Urges (QSU) (Tiffany and Drobes 1991). 

Withdrawal-related symptoms were assessed with the Mood and Physical Symptoms 

Scale (MPSS) (West and Hajek 2004). State anxiety was assessed with the Spielberger 

State-Trait Anxiety Index (STAI, (Spielberger et al. 1970), depressive symptomatology 

with the Beck Depression Inventory (BDI)(Beck et al. 1988), levels of anhedonia with 

the Temporal Experience of Pleasure Scale (TEPS) (Gard et al. 2006) and levels of 

social support with the Perceived Social Support scale, friend (PSS-FR) and family 

(PSS-FA) (Procidano and Heller 1983) versions. Single-item VAS scales given pre and 

post-video assessed cue-induced craving from the videos used in the memory 

reactivation procedure. These 100m scales required participants to mark down the 

strength of their urge to smoke and were anchored ‘No urge at all’ and ‘Strongest Urge 

Ever’. Visual analogue scales were used to assess drug-related changes in mood from 

baseline to peak effects. These were the mood rating scale (MRS) and bodily symptoms 

scale (BSS) (Bond and Lader 1974). 

For tasks involving eye tracking (dot probe and saccade/antisaccade), eye movements 

were recorded with a desktop-mounted Eyelink 1000 eye tracker (SR Research, Ontario, 

Canada) using a stabilised head configuration where participants’ heads were stabilised 

in a chin rest 70cm from the 1024x768 monitor used to display all computer tasks. Prior 

to, during and after participants watched the reactivation or control videos, 

Electrocardiogram (ECG) and skin conductance was recorded using and Equivital EQo2 

http://opinio.ucl.ac.uk/
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Lifemonitor belt  and sensor with auxiliary skin conductance electrodes (Hidalgo, 

Cambridge, UK) attached to the medial phalanges of the participants’ left hand with 

AMBU white sensors.  Blood pressure was measured with an Omron 708-BT electronic 

blood pressure cuff (Omron, Japan).  

 

3.2.3. Procedure 

 

Following screening, the first study session (Day 1) was arranged with the participant 

such that it would fall on their target ‘quit day’. This was at least 7 days from screening 

and participants began filling out the daily online smoking diary immediately for the 

week preceding Day 1. Participants were asked to make any necessary arrangements to 

make their quit as successful as possible, including informing friends and family, 

getting rid of cigarettes and smoking paraphernalia prior to Day 1 and purchasing 

nicotine gum if they intended to use it. Participants were required to refrain from 

smoking for 1 hour prior to the beginning of Day 1, to fast for at least 3 hours prior and 

to avoid the use of alcohol or any illicit drug in the 24 hours preceding sessions.   

 

Day 1 

After providing written informed consent, participants were given the capsule 

containing either 10mg memantine or placebo and took it immediately with water. 

Breath carbon monoxide was then measured with a Micro+ carbon monoxide meter 

(Bedfont Scientific, Kent, United Kindgom). Participants then completed the baseline 

MRS, BSS, QSU, MPSS, STAI, BDI, TEPS, PSS-FR and PSS-FA. Following this, they 

completed the saccade/antisaccade and EEfRT tasks. At the end of the EEfRT task, 

participants were required to sit in a waiting room until 3 hours had elapsed since they 
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took the pill. This was based on oral memantine reaching peak plasma concentrations at 

3 – 7 hours post-administration (Product Monograph, Lundbeck; (Periclou et al. 2006)). 

We aimed to conduct the memory reactivation at 3.5 hours to coincide with plasma 

levels peaking during the reconsolidation window. After the break, participants re-

completed the MRS and BSS and then were fitted with the electrode belt for ECG and 

skin conductance electrodes.  

Reactivation Procedure 

Participants were given a box and told not to open it until instructed to do so via the 

computer screen. Two boxes were prepared for the smoking memory reactivation 

groups (MEM + REACT, PLAC + REACT), which contained a lighter, an ashtray and a 

full, open box of Marlboro cigarettes with one cigarette protruding. The items were 

anchored in the boxes in the same configuration.  In the no-reactivation group, the box 

contained stacks of cards with numbers written on their surfaces. The experimenter was 

blind to the contents of the boxes and the correct box/videos were selected via an 

alphabetic code attached to each participant number. Participants were informed that 

that they would shortly watch a video and open the box and that the box contained the 

materials for a task they may need to complete after watching the videos. This 

instruction was included to induce uncertainty in reward availability, with the aim of 

destabilising cue-drug MMMs.  Prior to starting the videos, a five minute heart rate 

baseline, blood pressure and single-item cigarette craving was recorded.  

When the experimenter started the videos, instructions appeared on screen asking 

participants to watch carefully and try to imagine being in the depicted scenes as much 

as possible, imagining the sights smells, sensations and sounds as if they were really 

there. They were then instructed to open the box in front of them and take note of its 

contents. They were reminded that, following the video, they may have to complete the 
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task in the box. The videos then played and after their conclusion, more instructions 

appeared informing participants that they would not complete the task, to close the box 

and to alert the experimenter. Another blood pressure and single item VAS craving 

measure was then recorded and a 5 minute period of heart rate post-video collected. 

Following this, to ensure ‘cognitive offset’ of the scenes depicted in the videos, high 

load working-memory tasks were completed by the participants. These were Verbal (M) 

and Category (fruit) fluency, digit span forwards and backwards and the Wisconsin Test 

of Adult Reading (WTAR). This concluded Day 1 testing. 

Day 8  

Participants returned to the study centre and a carbon monoxide reading was taken. 

They then re-completed all questionnaire measures from Day 1 along with the EEfRT 

task. Following this, the video procedure was again performed along with heart rate, 

blood pressure and craving measures. Finally, the visual probe task was completed and 

this concluded testing. Participants were reminded that they must continue to fill out the 

smoking diary for three more weeks. To incentivise this, payment was split between the 

end of Day 8 and the end of the three week diary period, with full payment only being 

made if completed diaries were received. 

Follow-up measures were completed by telephone at three month intervals for up to one 

year. Due to time constraints on the study, continued follow-ups were terminated 

following relapse to baseline levels of smoking. If participants became uncontactable 

for 3 month follow-up, their scores on the FTND and cigarettes smoked per day were 

returned to baseline level.  
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3.2.4. Data Preparation 

 

Heart rate data from the EQo2 were extracted in plain text format for the pre, peri- and 

post-video epochs. Artefacts were removed by calculating mean R-R interval for the 

recording period and excluding any R-R intervals that fell more than 3 standard 

deviations outside of this mean. Inspection of waveforms before and after this 

confirmed that this successfully removed all visually identified artefacts. From trimmed 

data, single heart rate (HR) and heart rate variability (HRV) measures were taken as the 

mean and standard deviation of R-R (SDRR) intervals across the record, respectively.   

Eyetracking data were extracted using SR Research’s dedicated Dataviewer program. 

For the visual probe, dwell time (summated duration of all fixations occurring on each 

picture during the trial period), initial fixation times and durations on each image were 

extracted. Data were not included for any trials that did not have a dwell time of at least 

100ms on each image. Fixations on images occurring <100ms after image onset were 

excluded, as these reflect anticipatory fixation upon image locations, rather than 

stimulus-base orienting (Mogg et al. 2005). For the probe reaction time data, trials 

where reaction times were >3 SDs from mean RT were excluded.  For the 

saccade/antisaccade task, saccade latency and prosaccade errors in the antisaccade 

phase were extracted. The latter were calculated as any saccade ending in the area 

occupied by the target circle.  

We used an intention-to-treat analysis, so scores from all participants randomised into 

the study were used to assess intervention effects on primary outcomes. Four 

participants did not attend their Day 8 sessions (one participant from MEM no REACT 

and 3 from MEM + REACT). For these participants, variables about which we had 

information from baseline (smoking and mood variables, EEfRT performance and peri-
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video psychophysiological data) were returned to their baseline values to give a 

conservative estimate of treatment effects.  

For the visual probe data, scores were imputed using the estimation maximisation 

method as Little’s test indicated that data were missing completely at random (χ2 (69) = 

77.094, p = 0.236). Variables used to predict scores were baseline FTND, baseline and 

Day 8 cigarettes per day, behavioural inhibition scores, Day 8 craving (QSU and pre-

post video craving VASs) and existing visual probe data. In the neutral-neutral pairs, 

one image was arbitrarily designated as the ‘target’ image to aid comparison with the 

smoking-control image pairs. All data were analysed in IBM SPSS Version 21 for 

Windows. Data were analysed blind and Group identity codes were only unblinded after 

analysis was completed. 
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3.3. Results 

 

3.3.1. Baseline Smoking and Subjective measures: 

 

Descriptive statistics for baseline measures of smoking dependence and questionnaire-

based assessments of factors important in successful smoking abstinence are given in 

Table 3.1. All statistics are presented as mean± standard deviation. One-way ANOVAs 

were used to assess whether the groups differed at baseline on any of these measures, 

and a more conservative alpha of 0.01 was adopted due to the large number of 

comparisons. Welch’s ANOVA was used to compare time since last cigarette and 

MPSS mood due to heterogeneity of variance between groups in these variables. The 

groups did not differ on any of the variables at baseline, although there was a trend for 

higher craving as measured by the QSU in MEM no REACT compared to 

PLAC+REACT. 

  



122 
 

Table 3.1: Descriptive statistic and associated significance of tests of group means for 

smoking and mood variables at baseline. All tests were one-way ANOVA except where 

marked with a subscript W, indicating that Welch’s ANOVA was used.* = significant at 

0.05. Values are means ± SD 

 MEM No 

REACT        

(N = 20) 

PLAC+REACT 

(N = 20) 

MEM+REACT 

(N =19) 

Significance 

of 

Difference 

     

Age 27.45±6.91 28.35±7.04 29.32±9.9 P = 0.769 

Years in Education 15.33±1.98 16.45±3.02 15.47±2.9 P = 0.304 

Pre Quit FTND 5.4 ± 1.05 5.6 ± 1.05 5.0 ± 0.75 P = 0.150 

Pre Quit Cigarettes 

Per Day 

14.2±4.27 14.45±3.33 14.53±3.2 P = 0.958 

Years smoking 11.68±5.41 10.75±6.59 11.24±7.36 P =0.904 

Pre Quit CO (ppm) 7.84±5.7 9.8±4.4 11.95±6.5 P =0.081 

Number previous 

quits 

2.11±1.2 2.45±1.7 2.53±2.25 P =0.736 

Previous longest 

quit (days) 

188.58 ± 358.3 121.85±249.67 169.16±493.95 P =0.852 

Last cigarette (mins) 833.7±184.51 

 

248.45±294.94 

 

204.16±227.08 

 

P=0.416w 

QSU Baseline 37.75±14.93 25.45±10.23 32±12.88 P=0.014* 

MPSS Mood 0.96±0.69 0.63±0.35 0.72±0.48 P=0.185w 

MPSS Urge 

Frequency 

2.15 ±1.31 1.75±1.07 1.95±1.13 P =0.563 

MPSS Urge Strength 2.40±1.31 1.90±1.21 1.63±0.68 P =0.098 

BIS Total 69.65±11.40 61.6±12.51 69.63±11.28 P =0.053 

STAI 36.95±11.83 32.6±7.87 33.05±6.91 P =0.266 

BDI 2.1±2.51 2.1±1.83 2.26±1.48 P =0.958 

TEPS Anticipatory 4.56±0.79 4.7±0.58 4.59±0.77 P =0.815 

TEPS 

Consummatory 

4.59±0.84 4.74±0.8 4.72±0.79 P =0.818 

BAS DRIVE 8.9±1.74 9.05±2.21 8.42±2.29 P =0.623 

BAS FUN 7.2±2.21 7.6±2.01 6.53±2.34 P =0.311 

BAS REWARD 8±1.75 7.45±1.93 6.89±1.79 P =0.177 

BIS 12.9±3.6 12.3±2.56 13.26±2.98 P =0.615 

PSS-FR 14.85±4.92 15.3±3.05 14.84±3.88 P =0.919 

PSS-FA 11.75±6.23 12.6±5.92 10.53±6.34 P =0.576 
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3.3.2. Changes in Smoking behaviour: 

 

A mixed 2 (baseline, test) x 3 (Group) ANOVA found a significant reduction in breath 

carbon monoxide [Time main effect F(1,56) = 141.822, p  < 0.001, ηp
2= 0.717] and 

number of cigarettes smoked [Time main effect F(1,56) = 10.586, p = 0.002, ηp
2= 

0.159] in all groups from Day 1 to Day 8.  However, no main effects of Group or Group 

x Time interactions were observed.  Reductions in momentary craving measured by the 

QSU, were seen between Days 1 and 8 in all groups [Time main effect F(1,56) = 

19.333, p  < 0.001, ηp
2= 0.257]. A main effect of Group was also observed [F(2,56) = 

5.788, p  < 0.001, ηp
2= 0.171], driven by consistently higher general craving in MEM 

NO REACT than PLAC+REACT [t(38) = 3.39, p = 0.004, r = 0.48]. QSU at test was 

positively correlated with Day 8 smoking levels (r(59)  = 0.367, p = 0.004) and 

predicted 3 month FTND score (r(59)  = 0.5, p < 0.001) and time to relapse (r(59)  = -

0.367, p = 0.004), however there were no group differences in FTND [F(2, 56) = 0.569, 

p = 0.569, η2=0.02 ] or cigarettes smoked per day [F(2, 56) = 0.355, p = 0.703, η2=0.01] 

at 3 months.  

Assessment of the MPSS found no change in mood [Time main effect F(1, 56) = 2.239, 

p =0.14, ns], but significant decreases in all groups in urge to smoke frequency [Time 

main effect  F(1,56) = 6.393, p= 0.014, ηp
2 = 0.102] and strength [Time main effect  

F(1,56) = 4.778, p= 0.033, ηp
2= 0.079]. Again, no group differences or Group x Time 

interactions were observed.  
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Table 3.2: Smoking outcomes across the experimental groups.  

Values are counts or mean ± SD 

Group 
MEM No REACT 

(N = 20) 

PLAC+REACT 

(N = 20) 

MEM+REACT 

(N = 19) 

Day 8 

 N abstinent/still smoking 
7/13 11/9 6/13 

Day 8 CO (ppm) 6.45±6.38 6.8±6.12 8.21±4.65 

Day 8 N smoking 

less/smoking as much 
15/5 18/2 12/7 

Pre Quit Cigarettes Per 

Day 
14.2±4.27 14.45±3.33 14.53±3.2 

Day 1-Day 8 cigs per day 4.13 ±4.48 3.2±3.93 6.66±6.3 

Post Day 8 cigs per day 3.84±4.97 3.58±4.78 5.89±5 

3 month cigs per day 7.91±6.45 8.55±7.0 10.44±5.45 

 

3.3.3. Survival Analysis: 

 

Cox regression analysis was used to assess binary coded relapse latency (relapsed at 

time N/ abstinent at time N) across the three groups. Participants’ relapse latencies were 

censored if they were not smoking at the final follow-up time point available for that 

participant. A survival plot for each group is shown in Figure 3.1. Although the plot 

shows better absolute survival in the PLAC+REACT group, group was not significantly 

predictive of relapse latency [χ2 (2) = 4.453, p = .109]. Curves are only plotted to 85 

days as there was no change in relapse status up to 365 days in any participants who 

were abstinent at this time point.  
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Figure 3.1: Survival curves for relapse latency by experimental group.  

Group did not significantly predict relapse latency. Records are truncated at 80 days due to no change from this point to 365 days. 
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3.3.4. Reactivity to smoking cues 

 

A 2 (Day 1, Day 8) x 2 (pre-video, post-video) x 3(Group) mixed ANOVA found a 

decrease in craving in all Groups from Day 1 to Day 8 [Time main effect F(1,56) = 

22.114, p < 0.001, ηp
2= 0.283] and a trend for an increase in craving pre to post-video 

on both study days [pre-post main effect F(1,56) = 3.017, p = 0.088,  ηp
2=0.051]. No 

effects of Group or interactions were found.  Systolic and Diastolic blood pressure were 

assessed using mixed ANOVAs with factors identical to that for craving. No effects of 

the video, Group or study day were observed for systolic blood pressure (all Fs < 2.3, ps 

> 0.1). No effects of video or study day were found for Diastolic blood pressure (all Fs 

< 1, ps > 0.45), but a main effect of Group was observed, with lower diastolic blood 

pressure in MEM no REACT than PLAC+ REACT and MEM + REACT [Group main 

effect F(2,56) = 3.728, p = 0.03, ηp
2= 0.117]. 
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Table 3.3. Descriptive statistics for measures of smoking cue reactivity. Data represent 

means ± SD 

 

 

MEM No REACT 

(N = 20) 

 

PLAC+REACT 

(N = 20) 

 

MEM+REACT 

(N = 19) 

 
Pre Peri Post Pre Peri Post Pre Peri Post 

SC Day 

1 

3.16 ± 

2.91 

3.58 ± 

3.62 

4.5 ± 

4.05 

3.84± 

2.16 

4.70 ± 

2.22 

5.54 ± 

2.68 

4.47 ± 

2.83 

5.13 ± 

3.18 

6.05± 

3.61 

SC Day 

8 
3.57 ± 

2.6 

4.04 ± 

3.116 

4.85 ± 

3.64 

3.57 ± 

1.86 

3.6 ± 

2.06 

4.23 ± 

2.53 

4.27 ± 

2.64 

4.39 ± 

2.53 

5.42± 

2.87 

HRV 

Day 1 

10.14 ± 

6.57 

6.86 ± 

4.8 

8.34 ± 

4.34 

6.87 ± 

3.81 

5.58 ± 

4.05 

7.46 ± 

4.34 

7.05 ± 

3.75 

6.08 ± 

4.13 

7.69± 

4.35 

HRV 

Day 8 

9.53± 

5.42 

7.86 ± 

5.39 

10.64 ± 

5.66 

7.92 ± 

4.18 

7.25 ± 

7.37 

7.79 ± 

5.57 

8.17± 

4.70 

5.69 ± 

3.70 

6.71± 

3.97 

Craving 

Day 1 

48.35 ±  

14.87 
- 

46.55 ±  

22.75 

41.73±  

27.93 
- 

49 ±  

27.18 

48.5 ±  

25.77 
- 

53.7±  

31.78 

Craving 

Day 8 

34.75 ±  

25.95 
- 

35.19 ±  

24.64 

22.55±  

17.47 
- 

25.8 ±  

22.75 

29.42±  

26.75 
- 

39.37±  

34.12 

Systole 

Day 1 

106.9 ±  

11.9 
- 

105.1 ±  

9.35 

110.25±  

15.21 
- 

108 ±  

14.70 

108.84±  

13.12 
- 

109.9±  

14.87 

Diastole 

Day 1 

65.25 ±  

6.912 
- 

66.4 ±  

5.932 

71.3±  

12.13 
- 

71.7 ±  

10.87 

70.736±  

9.825 
- 

71.95±  

10 

Systole 

Day 8 
103.2 ±  

10.13 

- 

101.55 

±  

8.438 

109.35 ±  

12.59 

- 107.5 ±  

13.52 

109.47±  

15.77 

- 110.4±  

15.42 

Diastole 

Day 8 
63.9 ±  

8.12 
- 65.3 ±  

4.47 

71.85 ±  

10.25 
- 70.45 ±  

9.47 

71.11 ±  

11.13 
- 71.37±  

9.91 

          

 

A 3 (Time: pre-video, peri-video, post-video) x 2 (Day: day 1, Day 8) x 3 (Group) 

ANOVA on HRV data found a quadratic main effect of Time [F(2, 112) = 11.925, p < 

0.001, ηp
2= 0.176], with an overall reduction of HRV peri-video [pre vs. peri t(58) = 

4.262, p < 0.001, r = 0.49; peri vs. post t(58) = 3.938, p = 0.001, r = 0.46].  A trend-

level Time x Day x Group interaction was also found [F(4,112) = 2.354, p = 0067, ηp
2

 = 

0.078]. This interaction showed that the reduction of HRV from pre-to-peri video was 

significant only in the MEM NO REACT group [t(58) =  2.917,  p = 0.015, r = 0.36].  
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Skin conductance data also showed a Time main effect [F(2,112) = 47.211, p < 0.001, 

ηp
2

 = 0.457], with mean conductance increasing in a linear fashion from pre-to-peri 

[t(58) =  4.01,  p = 0.001, r = 0.47] and peri-to-post video  [t(58) =  7.197,  p < 0.001, r 

= 0.69]. This was qualified by a Day x Time interaction [F(2,112) = 3.688, p = 0.029, 

ηp
2

 = 0.062], with skin conductance rising across all time points but not pre-video to 

peri-video on Day 8 [t(58) =  0.91,  p = 0.429, r = 0.12]. 

3.3.5. Visual Probe 

 

Dwell times were assessed independently for 500ms trials and 2000ms trials, as dwell 

time the 2000ms trials may represent intentional inhibition of gaze to target images and 

is therefore of separate interest. 2 (Type: smoking pairs, neutral pairs) x 2 (Target:  

target image, control image) x 3 (Group) mixed ANOVAs were used to assess all eye 

tracking data.  

Analysis of 500ms trials found main effects of Type [F(1,56) = 5.729, p = 0.02, ηp
2= 

0.093], Target [F(1,56) = 5.295, p = 0.025, ηp
2= 0.086] and importantly a Type x Target 

[F(1,56) = 7.428, p = 0.009, ηp
2= 0.117] and Type x Target x Group interaction [F(2,56) 

= 3.31, p = 0.043, ηp
2= 0.106]. The Target x Type interaction confirmed the salience of 

the smoking images, as there was greater dwell time on the smoking target image in the 

smoking-control image pairs [t(58) = 3.183, p = 0.002, r = 0.39]  but not in the neutral-

neutral image pairs [t(58) = 0.29, n.s]. The Type x Target x Group interaction indicated 

greater attentional bias in MEM NO REACT than PLAC + REACT and 

MEM+REACT, evidenced by greater dwell time on the smoking target vs. control 

image in this group [t(58) = 3.846, p < 0.001, r = 0.45], but not MEM+REACT and 

PLAC+REACT  [ts < 1, n.s.] 

Analysis of the 2000ms dwell times found a main effect of Type [F(1,56) = 22.706, p < 

0.01, ηp
2= 0.288] and a borderline Type x Target interaction [F(1,56) = 3.891, p = 
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0.053, ηp
2= 0.065], indicating greater overall attention to image pairs containing a 

smoking image and, within these pairs, borderline longer looking at the smoking target 

image  [t(58) = 2.01, p = 0.05,  r = 0.25].  

Analysis of first fixation times found a main effect of Target F(1,56) = 10.004, p = 

0.003, ηp
2= 0.152] subsumed under a Target x Type interaction F(1,56) = 6.617, p = 

0.013, ηp
2= 0.106]. The interaction was driven by more rapid fixations on smoking 

target images than control images [t(58) = 5.376, p < 0.001, r = 0.58], with no 

difference in initial fixation times in neutral-neutral pairs[ t < 0.5, n.s.]. 

A trend for a Target x Type x Group interaction was found for first fixation durations 

F(2,56) = 2.908, p = 0.063, ηp
2 = 0.094]. In accordance with the 500ms dwell time data, 

this was driven by longer initial fixation on smoking images relative to control images 

in MEM NO REACT  [t(58) = 2.982, p = 0.004,  r = 0.36].  
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Figure 3.2: Dwell times during visual probe task on smoking and neutral images in 

500ms trials (Panel A) and 2000ms trials (Panel B). Bars represent mean ± SEM. 

 

 

 

 

 

 

 

 

3.3.6. EEfRT Task 

 

Probability of choosing the hard task was calculated as per Treadway et al. (2009) and 

GLM analysis performed with a mixed ANOVA with a within-subjects factor of 
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Group with probability of choosing hard as the dependent variable. In line with 

Treadway et al. (2009) a main effect of Probability was found [F(1,56) = 105.98, p < 

0.001, ηp
2= 0.654], with a significant linear increase in proportion of hard task choices 

as probability of win increased [12% vs 50% t(58) = 7.966, p < 0.001, r  = 0.72; 50% vs 

88% t(58) = 8.344, p < 0.001, r  = 0.74]. No effects of Group [F(2, 56) = 1.303, p = 

0.28, ηp
2= 0.044] , Day [F(1, 56) = 0.583, p = 0.448, ηp

2= 0.001] or interactions [all Fs < 

1.7, ps > 0.15] were observed. We also found no correlation between performance on 

the EEfRT task measures of smoking abstinence or anhedonia as assessed by the TEPS 

and BDI [all rs < 0.2, ps > 0.1].  

3.3.7. Drug guess 

 

A chi square of group x participant’s guess on drug (don’t know, drug, placebo) found a 

significant effect of group [χ2(4) = 11.74, p = 0.019], with fewer participants in the 

MEM NO REACT group guessing that they received the drug than the other two 

groups. Ns per group were as follows : Guessing Drug MEM + REACT = 9, PLAC + 

REACT = 9, MEM NO REACT = 4; Guessing Placebo, MEM + REACT = 6, PLAC + 

REACT = 4, MEM n REACT = 7,  Guessing Don’t know MEM + REACT = 4, PLAC 

+ REACT = 7, MEM NO REACT = 12.  
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3.4. Discussion 

 

Employing a translational medicine paradigm, the current study assessed the potential 

of memantine as an adjunct to voluntarily quitting in cigarette smokers via inhibiting the 

reconsolidation of maladaptive cue-smoking memories. Ten milligrams of memantine 

in combination with smoking cue memory retrieval did not significantly impact 

smoking levels, latency to relapse, craving, cue salience or reactivity to smoking-related 

stimuli, indicating that memantine did not block the reconsolidation of retrieved cue-

smoking MMMs.  

Memantine, in the absence of reactivation, was associated with greater attentional bias 

to smoking cues at test. However, this group experienced higher craving prior to and 

after capsule treatment and lower belief in receiving the active drug. Correlations 

between craving and outcome measures suggest this may be responsible for observed 

group differences, that these differences are not reconsolidation-dependent and that the 

experimental manipulation did not affect smoking outcomes.  

All groups reduced their smoking over the course of the study as measured by smoking 

diary and confirmed by CO levels. The high rates of short-latency relapse observed here 

are typical of smoking cessation and may have masked intervention effects by reducing 

power to assess long-term group differences. The physiological allostatic drivers of 

early relapse may be unaffected by memantine, as it fails to improve partial abstinence 

in reducing smokers (Thuerauf et al. 2007). The effects of successful MMM 

reconsolidation blockade also likely appear later in abstinence, when following 

homeostatic restoration, sensitised mnemonic reward systems play a more significant 

role in relapse.  

Reconsolidation-blocking treatments may be best employed as relapse-preventing, 

rather than abstinence-promoting interventions (Milton and Everitt 2012), or may need 
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to be employed in combination with withdrawal management strategies such as nicotine 

replacement therapy. A repeat of the current study in smokers who have already 

achieved abstinence for a minimum period (one month, for instance) may therefore be 

warranted. 

NMDAR antagonists have potential for reducing the potency of MMMs. Our failure to 

translate preclinical findings to human addicts is important for the future development 

of this field. Previously, attempts to translate preclinical memory-based SUD 

pharmacotherapies have persevered despite poor chances of achieving clinically 

relevant outcomes (Das and Kamboj 2012; Kamboj et al. 2012; Kamboj et al. 2011) and 

lack of a cohesive methodological framework, incurring substantial financial and 

research costs.  This research highlights several priority areas of experimental 

refinement in response to the observed null results, which, whilst being mindful of 

clinical relevance, should take precedence in the advancement of this field.  

As reconsolidation of drug memories is a ‘silent’ process, only inferred via interference 

during the reconsolidation window, an epistemological problem exists for null findings 

which may be attributable to a drug’s inefficacy in interfering with restabilisation, or a 

lack of memory destabilisation during retrieval. In order to disentangle these, retrieval 

procedures that consistently destabilise MMMs and alternative compounds that 

effectively and consistently block restabilisation are required.  

In animals, robust blockade of restabilisation of MMMs is achieved using compounds 

that interfere directly or upstream of neuronal protein synthesis or transcription. This 

action makes these compounds highly toxic and unsuitable for human use. To date no 

drug has shown reliable blockade of MMM reconsolidation in humans (Saladin et al. 

2013). For safety and tolerability, memantine is an attractive NMDAR antagonist for 

use in the context of interfering with human MMM reconsolidation. However the 
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current findings do not support this application. Although the dose used here was low, 

memantine (Creeley et al. 2006) shares with other NMDAR antagonists (Das et al. 

2013a) a complex, non-linear dose-response relationship in mnemonic function 

implying that optimal dosing is not simply a case of ‘more-is-better.’  

Memantine also has unique kinetic properties at the NMDAR (Black et al. 1996; 

Blanpied et al. 1997) which may be undesirable in the context of blocking memory 

restabilisation. In particular, it may not produce the sustained level of NMDAR 

blockade necessary for sufficient disruption in synaptic plasticity during the temporally 

limited reconsolidation window due to its relatively low affinity, rapid off-rate receptor 

kinetics (Rammes et al. 2008) and preference for extrasynaptic rather than synaptic 

NMDARs (Xia et al. 2010).   

In contrast, MK-801 (Dizoclipine), the prototypical antagonist for reconsolidation 

blockade – is paradigmatic with regard to its selectivity, affinity, voltage-dependence 

and essential irreversibility of blockade during memory destabilisation. The dissociative 

and psychotomimetic effects are products of the same kinetic profile at NMDARs that 

cause robust interference with restabilisation, so these effects may be necessary when 

blocking MMM reconsolidation via NMDARs. While neurotoxicity precludes the use of 

MK 801 in humans, ketamine may be a realistic alternative. It is approved for human 

use despite its side effects and already shows some promise for the treatment of SUDs 

(Krupitsky and Grinenko 1997).  

Oral memantine’s slow peak plasma latency means it must be administered prior to 

memory retrieval in order to peak post-retrieval. As activation of GluN2b subunit-

containing NMDARs is required for memory destabilisation at recall, prior antagonism 

can reduce the ability of memories to destabilise (Mamou et al. 2006) and it is possible 

that this occurred in the current study. Further, NMDAR blockade can engender 
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aberrant prediction error, potentially interfering with successful destabilisation or 

producing paradoxical effects on memory retention (Corlett et al. 2013). Dosing after 

retrieval would potentially allow restabilisation of memory before sufficient NMDAR 

blockade was achieved, reducing the efficacy of the intervention (Milton et al. 2008a; 

Wu et al. 2012). Ideally, NMDARs should be rapidly antagonised, with high receptor 

saturation, following memory destabilisation. This may preclude the use of oral 

preparations of NMDAergic drugs for this purpose and in humans and may require 

intravenous or intranasal dosing post-reactivation. If these formulations prove 

ineffective in reducing MMM strength, NMDAR antagonism may need to be 

abandoned as a pharmacological target in favour of alternative receptor pathways 

implicated in memory restabilisation (Blundell et al. 2008; Carrera et al. 2012; de 

Oliveira Alvares et al. 2008; Makkar et al. 2010). Identifying tolerated pharmacological 

means for consistently blocking MMM reconsolidation in humans will be key in 

moving this field forward. 

An alternative explanation for these null findings is that memanatine does interfere with 

memory restabilisation, but that smoking MMMs were not effectively destabilised by 

the reactivation procedure used here. This procedure was designed in an attempt to 

improve the potential for memory destabilisation by presenting prototypical smoking 

cues and engendering uncertainty about reinforcement by telling participants they ‘may 

or may not be required to complete the task in the box’ (i.e. smoke) following the cue 

videos, while withholding reward. This is equivalent to the prototypical reminder 

without reinforcement in animal reconsolidation studies.  

However, given their age and strength (Gräff et al., 2013; Robinson and Franklin, 

2010), it is possible that the reminder structure did not destabilise smoking MMMs. It 

remains unknown whether the same reminder parameters that destabilise the relatively 
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recently-acquired, univariate memory traces studied in lab reconsolidation paradigms 

also successfully destabilise years-old human MMMs. This research suggests that they 

may not. This failure of MMMs to destabilise may be due to insufficient generation of 

prediction error at retrieval (Sevenster et al. 2013). As learning reaches asymptotic 

levels (as is the case with MMMs in smoking), trace flexibility decreases along with 

prediction error magnitude (Schultz et al. 1997). Knowing what constitutes a prediction 

error during retrieval of MMMs, where the learning history is unknown, represents a 

major challenge for this field. A fruitful approach may be to explicitly maximise the 

occurrence of prediction error through verbal instructions to participants, however this 

must be assessed experimentally. 

Alternatively, it is possible that reconsolidation simply does not occur at any 

meaningful level for memories as strongly encoded as cue-smoking MMMs in daily 

smokers. Many researchers have identified the potential of reconsolidation interference 

for treating SUDs, however there is a notable paucity of human research directly 

assessing whether the laboratory findings are applicable to clinical populations. This 

research shows we next need to re-assess whether destabilisation of extremely robustly 

trained MMMs is possible and, if so, what retrieval procedures can reliably produce 

these effects.   

In summary, this study found no evidence for 10mg memantine blocking the 

reconsolidation of cue-smoking memories on any measure of cue reactivity, craving, 

salience or relapse in quitting smokers. So while memantine in combination with 

memory reactivation does not appear to be a clinically useful strategy for smoking 

cessation given the current findings, methodological and epistemological issues must be 

addressed in reconsolidation research to allow the accurate assessment of the clinical 

potential of post-destabilisation interventions for SUDs.   
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Chapter 4:  An Investigation of the Potential Use of Nitrous Oxide for Blocking Reconsolidation of Alcohol Memories 

in Heavy Drinkers 
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4.1 Introduction 

 

Despite the theoretical clinical promise of pharmacologically weakening maladaptive 

motivational memories during their reconsolidation, my own (see Chapter 3) and 

others’ findings with available ‘reconsolidation blockers’ in substance-using 

populations have so far produced disappointing outcomes. This inefficacy may be 

attributed to insufficient interference with the cellular signalling mechanisms 

responsible for restabilising memories. My meta-analysis suggests that limited 

effectiveness is particularly evident with β-adrenergic receptor (β-AR) antagonists.  

Given the null findings with memantine in smokers (Chapter 3) and the potentially 

limited efficacy of β-blockers, there is a serious need for drug discovery for human 

MMM reconsolidation blockade. As a potent NMDAR antagonist, ketamine is one 

potential option, but its pharmacokinetics and psychoactive profile currently dictate 

medically supervised, in-patient administration. Less invasive alternatives are therefore 

needed but, as already discussed such NMDAergic drugs are lacking. One potential 

therapeutic agent in this context is Nitrous Oxide (N2O). N2O, also known as ‘laughing 

gas’ has been used as an obstetric and dental analgesic and anaesthetic as well as a 

recreational dissociative drug for over two hundred years (Goerig and Schulte am Esch 

2001). 

 Humphry Davy was a famous proponent of the drug (Davy 1800) which is still widely 

used today owing to its ease of administration, rapid onset/offset kinetics and excellent 

safety profile. Despite its recreational and medical popularity, the mechanism of action 

of N2O remained elusive until relatively recently when it was found to act upon 

GABAergic and NMDAergic neurotransmission. In vitro, N2O reduces NMDAR 

transmission by 31% (Yamakura and Harris 2000). In rats, N2O has now been shown to 
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operate primarily through NMDA antagonism (Jevtović-Todorović et al. 1998; 

Jevtovic-Todorovic et al. 2001).  

Likely due to its NMDAergic action, N2O also acts as a dose-dependent amnestic with 

mild memory impairment at 30% N2O in air (Dunlosky et al. 1998) and an inability of 

humans to encode new information at concentrations of 40% N2O in air (Robson et al. 

1960). This pharmacological profile, along with its ease and safety of administration, 

make N2O an attractive compound for interfering with memory reconsolidation. 

However its ability to do so has never been tested. Prior to trialling a drug of unknown 

efficacy, off-label, for reconsolidation blockade in a clinical population, proof-of-

principle research into its efficacy is both prudent and important.  

Owing to the null results of Chapter 3 the current study sought to test whether N2O 

could block the reconsolidation of human associative reward memory. To do so, a more 

sensitive experimental approach was used than in Chapter 3, using in-lab reward 

conditioning to assess the effects of N2O in combination with retrieval of conditioned 

memories. This approach has several important advantages when testing a compound as 

a reconsolidation blocker for the first time: 1) Control over conditioning histories, 

allowing a guarantee of prediction error at retrieval; 2) Ability to incorporate 

experimental biomarkers of efficacy (e.g. pupil dilation to in-lab conditioned stimuli) 

that would not be possible in a more clinical study; 3) Excellent cost- and time- 

effectiveness when considering the uncertainty of translation following my results in 

Chapter 3; 4) Greater certainty in null results, as the memory traces being targeted are 

not naturalistic and heterogeneous.  

To maintain the clinical relevance of the experiment, an alcohol-reinforced Pavlovian 

and instrumental conditioning task was therefore utilised with a sample of hazardous 

beer drinkers who could win beer reward through effective performance in the task. The 
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experiment followed a typical experimental memory reconsolidation paradigm (Figure 

1.4 and accompanying text), with acquisition of reward contingencies during session 

one, reactivation or no reactivation with drug or placebo during session two and test of 

memory retention during session 3 taking the form of a reacquisition task.  The 

inclusion of Pavlovian and instrumental elements in the conditioning task were to allow 

direct comparison of drug effects on the two types of memory, something that has been 

lacking in previous research. A simple, 100% reinforcement schedule was employed 

between conditioned stimuli and their respective outcomes. While this is not necessarily 

representative of real-world reinforcement contingencies, it allows a prediction error to 

be generated at retrieval from a single unreinforced presentation of a CS. 

The task was designed such that pupil dilation could be reliably measured during task 

performance, as pupil size is a reliable measure of outcome certainty (Preuschoff et al. 

2011), reward prediction and dopaminergic function (O'Doherty et al. 2003) and 

autonomic arousal. It is therefore the ideal measure for assessing the strength of reward 

memory associations. It was hypothesised that N2O administration after reactivation of 

learned information would reduce pupil dilation to conditioned stimuli at test and, more 

tentatively, impair correct responding to these stimuli.  
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4.2 Methods 

4.2.1. Participants and Design 

 

The power calculation was as per Chapter 3. Fifty-nine hazardous beer drinkers were 

recruited from University College London using internal study advertisement networks 

and convenience sampling from the local community. Participants were randomly 

allocated to one of three groups: those who would receive N2O after reactivation of the 

conditioning task (N2O + REACT, N = 20), those who would receive it without 

reactivation of the task memory (N2O no REACT, N = 22) and those would receive 

normal air after reactivation of both tasks (Air + REACT Group, N = 17). Treatment 

administration was single-blind (participants, but not experimenter were blinded). 

Differing Ns per group were due to drop-outs from initial randomisation and 

experimenter error in re-randomising replacement participants. 

Inclusion criteria were: current hazardous drinking defined as a score of 8 or more on 

the Alcohol Use Disorders Identification Test (AUDIT) (Saunders et al. 1993); 

consumption of more than twice the daily governmental allowance of alcohol (i.e.> 3 

units for females, > 4 units for males) on at least four days per week; fluent English and 

normal or corrected-to-normal colour vision.  

Exclusion criteria were past or current diagnosis of drug or alcohol use disorders as 

determined by endorsement of three or more items coded as ‘3’ on the Structured 

Clinical Interview (SCID) of the DSM IV ( First, Spitzer, Gibbon, & Williams, 2002); 

current mental health issues requiring treatment; any current major physical health 

issue; current pregnancy or breastfeeding, regular (>4 times per month) recreational use 

of N2O or other NMDA antagonists, vitamin B12 deficiency (owing to N2O effects on 

B12 metabolism) and pneumothorax.  Participants were reimbursed at the rate of £7.50 
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per hour. All procedures were approved by the University College London research 

ethics committee. 

4.2.2. Apparatus and Tasks 

 

Subjective Assessments: 

The digit span forward and backward assessed baseline working memory capacity 

(Baddeley 1992). Alcohol use assessments were the timeline follow-back (TLFB; 

Sobell and Sobell 1992), stages of change readiness and treatment eagerness scale 

(SOCRATES) (Miller and Tonigan 1996).The behavioural inhibition/behavioural 

activation scale (BIS/BAS) was used to assess trait reward responsiveness (Carver and 

White 1994).  

The acute subjective effects of nitrous oxide were measured with the Clinician 

Administered Dissociate States Scale (CADSS) (Bremner et al. 1998) and Bodily 

Symptoms Scale (BSS)(Bond and Lader 1974).  

Beer Conditioning Task: 

The task consisted of three phases: Acquisition, Reactivation and Reacquisition, 

performed on sessions 1, 2 and 3 of the study respectively. A schematic of the 

acquisition phase is given in Figure 4.1.  

Acquisition 

During acquisition, participants were informed that they were able to win beer during 

the task by learning the association between shapes appearing on-screen, responses and 

outcomes and that they would consume this beer at the end of the task. Four black and 

white simple shapes (a triangle, star, plus sign and circle) were used as the conditioned 

stimuli (CSs) in the task. All stimuli were presented centrally on a 21 inch VGA colour 
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monitor with a static red (RGB = 200, 0, 0) background for 4000ms per trial. The 

stimuli were luminance-matched to prevent non-specific effects on pupillary responses.  

One stimulus was designated as a Pavlovian CS+ (CS+Pav), such that it was rewarded 

with 10ml beer without participants making any response. Two stimuli were designated 

as instrumental CS+s. For both of these a mannequin figure would appear above or 

below the stimulus in a counterbalanced fashion and participants could move the 

mannequin towards or away from the central stimulus using designated ‘up’ and ‘down’ 

keys. For CSin1, participants were rewarded with 10ml beer if they moved he 

mannequin towards the central stimulus. For CSin2, participants were rewarded 10ml 

beer if they moved the mannequin away from the central stimulus.  The final stimulus 

was designated the CS- and was never rewarded. If participants made the correct 

response, or were shown the CS+Pav, they would see an outcome screen informing 

them they had won 10ml beer. If they made the incorrect response or were shown the 

CS-, they saw an outcome screen informing them they had won nothing. Outcome 

screens were displayed for 3000ms. Following the outcome screen, a running total of 

the amount of beer won so far was displayed for 2000ms. All CS/outcome 

contingencies were on a 100% reinforcement schedule. 

A schematic of typical Pavlovian and Instrumental trials is given in Figure 4.1. As eye 

movements affect pupil dilation, participants were asked to maintain their gaze upon a 

central fixation spot throughout the task. Each trial began with experimenter-verified 

drift correction to ensure central fixation. The CS then appeared, followed by outcome 

and running total. So that participants could practice moving the mannequin without 

looking away from the central fixation, a baseline practice block began the task, where 

participants moved the mannequin first toward, then away from all stimuli. Prior to 

beginning acquisition, participants rated how much they thought each shape was 
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associated with winning beer from 0-‘definitely will not win beer’ to 10 ‘definitely will 

win beer’.  

Acquisition was split into four blocks, each block consisting of four presentations of 

each stimulus, pseuorandomised with the stipulation that no more than two consecutive 

presentations of each stimulus could occur. At the end of the first and second halves of 

acquisition, outcome expectancies were re-rated on the same scale used at baseline.  

Reactivation 

At the beginning of the reactivation task, participants were told they would resume the 

task from day one in which they could win beer and that they would again consume the 

won beer at the end of the task. They were explicitly told that the contingencies between 

the stimuli and outcomes were exactly the same as previously. They then re-rated all 

stimuli for explicit outcome contingency from 0-‘definitely will not win beer’ to 10 

‘definitely will win beer’.  Following this the task proper began. Each stimulus 

conditioned on Day 1 was only presented once in a randomised order. For CSin1 and 

CSin2 the mannequin appeared and could be moved, however following 4000ms of 

stimulus presentation, the stimuli disappeared and no feedback was presented. Due to 

the 100% reinforcement schedule during acquisition, this lack of feedback and 

reinforcement forced a negative prediction error, which is necessary for memory 

destabilisation. During reactivation, all stimuli were presented on a laptop with a 15 

inch screen with identical stimuli and background luminance to those used in the 

Acquisition phase. 

Reacquisition 

This task was identical to the first half of Acquisition, with the following exceptions. 

First, there was no practice block at the start of the task; the task began with the explicit 
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outcome contingency rating for each stimulus. Second, in addition to the trial 

randomisation stipulation of no more than two consecutive presentations of a given 

stimulus, each stimulus was presented once in each four trials so that reacquisition rates 

were comparable across stimuli. Each stimulus was presented eight times and the task 

finished with a final explicit contingency rating. 

Figure 4.1: Example of a Pavlovian and an instrumental trial in the beer conditioning 

task. Although ‘win’ trials are shown here, the feedback could also show ‘you win 

nothing’ if the incorrect instrumental response is made or CS- is presented. 

 

 

 

 

 

 

 

 

 

Physiological Measures: 

During acquisition and reacquisition of the beer conditioning task, pupil dilation was 

measured at 1000Hz with an Eyelink 1000 desktop-mounted infrared eye tracker (SR 

Research, Ontario, Canada). Blinks were detected using the manufacturer’s algorithms 

on default settings. Where pupil data was unavailable due to blinks, the fifty samples 

prior to and after the blink were discarded and linear interpolation used to fill in the 
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missing sample data.  Pupillometry data were exported then smoothed, epoched and 

down-sampled to 100Hz using custom-written scripts in Matlab (Mathworks, Boston, 

MA).  

Systolic/diastolic blood pressure was measured via an Omron 708BT electronic blood 

pressure cuff (Omron, Tokyo, Japan). Blood alcohol content measurements were 

collected with a Lion 500 portable Alcometer (Lion Instruments, UK). Heart rate was 

measured using a pulse oximeter (HeartMath UK, London, UK) attached to the 

participant’s earlobe. 

 

4.3.3. Procedure 

 

The experimental sessions occurred in two study centres. Sessions one and three were 

conducted in an experimental psychology unit in an academic centre. Session two was 

conducted in a medical setting where N2O could be safely administered. 

Session 1 

Upon arrival at the study centre, all participants were breathalysed and if Blood Alcohol 

Concentration was below 0.001 ng/dl, completed written informed consent.  One 

participant was excluded for having a BAC over the cut-off. Participants then completed 

an immediate prose recall and digit span. Following this, the TLFB for the previous two 

weeks, SOCRATES and BIS/BAS, were completed prior to the acquisition phase of the 

beer conditioning task. After acquisition, the experimenter measured the millilitres of 

beer won in the task into a chilled pint glass. Participants then had ten minutes to drink 

as much of the beer as they wanted. The beer was chilled Stella Artois.  This completed 

Day 1 testing. 

Session 2 (Day 1 + 48 hours) 
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Participants attended the medical centre where their BAC was again confirmed via 

breathalyser prior to testing. The correctly sized face mask for N2O administration was 

then determined to minimise time between reactivation and administration of N2O or air 

placebo. The pulse oximeter was then attached to record baseline heart rate and 

participants completed the BSS and CADSS baseline measures followed by a baseline 

blood pressure reading. Participants then completed the 48 hour delayed prose recall. 

Participants in the N2O + REACT and N2O no REACT groups then completed a short 

filler N-back task so that the number and timing of tasks and cognitive load was 

consistent across groups during the session. Immediately after this, the N2O + REACT 

group completed the beer conditioning reactivation and N2O no REACT group 

completed a no-reactivation control task (a word-pair learning task). The Air + REACT 

group completed both the control task and beer conditioning reactivation tasks in a 

counterbalanced order.  

Drugs 

Drug or air (placebo) administration began as quickly after the reactivation tasks as 

possible.  Drug was a gaseous solution of 45% N2O and 55% Oxygen. This was filled 

into 100 litre administration bags from regulated canisters of N2O and O2 (British 

Oxygen Supplies, UK) prior to participant arrival to avoid potential hazards of 

pressurised gas inhalation. A one-way pressure valve attached to a hose was connected 

to the face mask so that exhaled air could not re-enter the administration bag and dilute 

its contents. In both drug and placebo conditions, the hose was attached to the valve 

sealing the full administration bag. In the drug groups, the valve was then opened so 

that the participant began breathing the contents of the bag, whereas in the placebo 

group, the valve was left closed so that participants continued to breathe normal air 

through the hose. The bag was placed out of sight so that the participants could not see 
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the bag volume decreasing or remaining the same. In all conditions, participants were 

equilibrated for five minutes to attain a standard blood concentration of 45% N2O. The 

CADSS, BSS and blood pressure reading were completed 10 minutes after onset of 

drug administration. Following equilibration, participants were maintained on N2O or 

air for a further 15 minutes (20 minutes total administration time) after which time, the 

mask was removed, participants had five minutes re-equilibration time and a final blood 

pressure reading was taken.  

Session 3 (Day 1 + 96 hours) 

Participants returned to the original study centre and after providing a BAC reading, 

completed the TLFB, beer winning task reacquisition phase and free consumption of the 

beer they had won. Following this, participants were fully debriefed and reimbursed 

according to the hourly rate. This concluded the testing sessions.  

 

4.3.4. Statistical approach: 

 

With the exception of sample-by-sample pupillometry data which were analysed with 

custom routines written in Microsoft Excel and Matlab, all data were analysed in IBM 

Statistical Package for the Social Sciences v. 21 for Windows. Data were analysed using 

the General Linear Model with between and within-subjects factors as appropriate. 

Where the assumptions of homogeneity of variance and normality of error distribution 

were violated in t-tests and one-way ANOVA, unequal variances t-tests and Welch’s 

ANOVA were used with bootstrapped parameter estimates, respectively. Where 

sphericity was violated in repeated measures, the Huynh-Feldt correction was used. 

Uncorrected degrees of freedom are reported in this case for ease of interpretation, but 

p-values represent post-correction significance levels. For multiple comparisons 
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following omnibus tests, the Bonferroni correction was applied to maintain alpha at 

0.05. For baseline self-report and demographic variables, alpha was set at 0.01 to reduce 

Type I error and avoid unacceptably low power. To examine differences in the temporal 

dynamics of pupil responses across the different CSs, paired samples t-tests were 

conducted on a sample-by-sample basis.  These data were sampled at 100 Hz, resulting 

in 400 samples in the 4 seconds of CS presentation. A false discovery rate (FDR) 

correction (Benjamini and Hochberg 1995) was applied to the sorted significance levels 

of these analyses to control Type I error rate at 0.05.    

To remove the effects of non-specific, slow-changing pupil size variation across trials 

during conditioning and reacquisition, pupil dilation for each trial is expressed as a 

proportion change from the pupil size during the first sample of each trial (i.e. pupil size 

at trial onset) such that, in every trial for sample 1 to 400, pupil dilation n = (pupil size 

at sample n – pupil size at sample 1)/pupil size at sample 1. The mean of this 

proportional increase in each trial was used as the outcome measure of pupillary 

responses to assess learning effects on pupil dilation (O'Doherty et al. 2003).  
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4.3 Results 

 

4.3.1. Baseline self-report and demographic 

 

Descriptive statistics for baseline alcohol use measures, BIS/BAS and working memory 

are given in Table 4.1. One way ANOVAs conducted on these data found no significant 

group differences in any of these measures at the lower alpha = 0.01. Therefore the 

groups did not differ on any trait or alcohol use measures relevant to the study.  
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Table 4.1: Descriptive statistics for baseline variables. Where within-group variance was 

heterogeneous, Welch’s ANOVA was used and this is denoted by FW. Due to the large number of 

ANOVAs conducted, a more conservative alpha of 0.01 was adopted. Values are mean ± SD 

 

N2O no 

REACT 

(n = 20) 

N2O + REACT 

(n = 22) 

Air + REACT 

(n = 17) 

ANOVA 

(df = 2,56) 

Age 23.27±3.57 24.2±2.85 23.35±4.82 F  = 0.372, p = 0.690 

Yeas Education 16.61±2.29 17.6±2.08 16.76±1.71 F  = 1.327, p = 0.273 

BMI 22.29±2.89 24.28±2.84 22.18±2.03 F  = 3.884, p = 0.026 

AUDIT 12.27±3.84 11.9±2.9 13.53±3.81 F  = 1.050, p = 0.356 

SCID 1.41±1.09 0.75±0.96 1±1 F  = 2.209, p = 0.119 

Last alcohol drink (hours 

ago) 
29.86±14.93 27.5±14.72 32.68±14.40 F  = 0.568, p = 0.569 

Drinking days per month 14.64±4.95 12.36±6.45 16.03±4.52 F  = 1.946, p = 0.153 

Drinks per session 6.28±2.79 7.13±2.54 8.03±2.94 F  = 1.689, p = 0.195 

TLFB daily beer baseline 1.65±0.62 1.61±1.18 1.90±0.92 F  = 0.512, p = 0.601 

TLFB daily wine baseline 0.39±0.734 0.25±0.29 0.45±0.49 F  = 0.886, p = 0.417 

TLFB daily spirits 

baseline 
0.49±0.54 0.54±0.64 1.08±0.88 F  = 1.65, p = 0.201 

TLFB daily beer post 1.61±0.61 1.53±1.32 1.87±1.00 F  = 0.556, p = 0.576 

TLFB daily wine post 0.28±0.48 0.30±0.48 0.47±0.60 F  = 0.684, p = 0.508 

TLFB daily spirits post 0.42±0.43 0.45±0.48 0.75±0.67 F  = 2.143, p = 0.126 

SOCRATES ambivalence 9.68±3.10 7.75±2.97 9.29±1.99 F = 1.241, p = 0..297 

SOCRATES recognition 12.59±2.98 10.2±2.66 12.29±2.97 F  = 0.452, p = 0.639 

SOCRATES taking steps 18.13±6.10 13.4±4.04 17.64±5.23 F  = 1.33, p = 0.273 

BAS drive 10.63±1.98 11.1±2.71 9.52±3.14 F  = 1.732, p = 0.186 

BAS fun 13.09±2.09 13.3±1.83 12.52±3.60 F  = 0.441, p = 0.645 

BAS reward 16.77±1.90 17.15±1.69 15.82±4.82 Fw = 0.675, p= 0.516 

BIS 20±3.20 20.9±3.52 18.58±7.02 Fw = 0.864, p =0.431 

Digit Span forward 6.72±1.80 5.85±2.18 5.23±1.64 F  = 3.053, p = 0.055 

Digit Span Backward 5.90±1.30 5.9±1.29 5.52±1.17 F  = 0.531, p = 0.590 
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4.3.2. Beer Conditioning Task 

 

For acquisition and reacquisition data, in order to assess changes across time while 

constraining degrees of freedom in statistical tests, trials were split into four equal 

‘blocks’ for each CS for both acquisition and reacquisition.  

Contingency awareness 

Outcome expectancy ratings across Acquisition, Reactivation and Reacquisition are 

shown in Figure 4.2. A 4 (CS type) x 3 (time: Baseline, Middle & End ratings) x 3 

(Group) mixed ANOVA indicated successful explicit acquisition of outcome 

contingencies, evidenced by main effects of CS [F(3, 168) = 153.107, p < 0.001, ηp
2 = 

0.732] and Time [F(2, 112) = 14.927, p< 0.001, ηp
2 = 0.210], subsumed under a CS x 

Time interaction [F(6, 336) = 53.528, p< 0.001, ηp
2 = 0.489]. This interaction 

represented significant increases in beer reinforcement expectancy from baseline to the 

later time points for CS+Pav, CSin1 and CSin2 [all t values (58) > 3.833, p values < 

0.0015, rs > 0.44, corrected], with no change from mid-acquisition onwards for CS+Pav 

or CSin1 [all ts (58) < 2, ps > 0.44, corrected], but a borderline-significant increase from 

mid-to end acquisition for CSin2 [t(58) =2.466, p = 0.05, r = 0.308, corrected] a 

significant decrease in reinforcement expectancy for the CS- from baseline to the 

subsequent time points [all ts (58)> 11.67, ps < 0.001, rs > 0.83 corrected], again with 

no change from mid-acquisition until the end phase [all ts (58) < 2, ps > 0.95, 

corrected]. No main effects or interaction with Group were found.  

For reacquisition, retention of contingencies was evidenced by a main effect of CS 

[F(3,168) = 340.452, p< 0.001, ηp
2 = 0.859], with lower reward expectancy for CS- than 

all other CSs [ts(58) > 20.77, rs > 0.93] and greater expectancy for CSin1 than CSin2 

[t(58) =3.51, r = 0.42]. Further reacquisition of contingencies was shown by a main 
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effect of Time [F(1,56) = 6.046, p = 0.017, ηp
2 = 0.097] and CS x Time interaction 

[F(3,168) = 3.545, p = 0.025, ηp
2= 0.06]. The interaction was driven by increases in 

expectancy ratings across time for CS+Pav [t(58) = 2.858, p = 0.006, r = 0.351, 

corrected] and CSin2 [t(58) = 2.467, p = 0.017, r = 0.308, corrected] only. No main 

effect of Group [F(2,56) = 1.34, p = 0.27, ηp
2 = 0.046] or interactions with Group (all ps 

> 0.1) were observed.  

Exploratory post-hoc analysis of reacquisition by Group found significant increases in 

expectancy ratings for all CSs except CS- in N2O no REACT [all ts (21) > 2.01, ps < 

0.047, rs > 0.4, corrected], with no increases in expectancy of any stimuli in the N2O + 

REACT group [all ts(19)<1.8, ps> 0.08, corrected] and an increase only in CS+Pav 

expectancy in the Air + REACT Group [t(16) = 2.147, p = 0.036, r = 0.47, corrected]. 

CS rating data from reactivation showed a main effect of CS [F(3, 105) = 115.438, p< 

0.001, ηp
2 = 0.767], driven by higher expectancy ratings for all CSs than the CS- (all ts 

(38) > 11.35, ps < 0.001, rs > 0.87, corrected) and for CSin1 than Csin2 [t(37) = 2.836,  

p = 0.045, r  =0.41, corrected]. 
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Figure 4.2. Changes in explicit outcome expectancy ratings through Acquisition, 

Reactivation and Reacquisition. Note there are no data for the N2O no REACT group 

for Reactivation, as they did not have the task reactivated. Bars represent mean ±SEM 

 

 

 

 

 

 

 

 

 

 

Reaction times for Instrumental stimuli 

Reaction times to CSin1 and CSin2 during Acquisition were analysed with a 2(CS) x 

4(Block) x 3 (Group) ANOVA. Conditioning was evidenced by a main effect of Block 

F(3, 168) = 35.151, p < 0.001, ηp
2 = 0.386], with reaction times to both CSs reducing 

significantly across blocks 1, 2 and 3 (all ps < 0.001) but not between blocks 3 and 4 

[t(58) =1.78, p = 0.482], indicating ceiling-level instrumental responding by the end of 

Block 3. A main effect of CS was also observed [F(1, 56) = 41.438, p< 0.001, ηp
2 = 

0.425] , indicating significantly faster RTs for CSin1 (approach-to-win) than CSin2 

(avoid-to-win). No group effects or interactions were observed (see Figure 4.3. for 

reaction time data). RTs to CSs during reacquisition were assessed via an identical 

0

1

2

3

4

5

6

7

8

9

10
B

A
S

E
L

IN
E

M
ID

 A
C

Q

E
N

D
 A

C
Q

R
E

A
C

Q
 S

T
A

R
T

R
E

A
C

Q
 E

N
D

B
A

S
E

L
IN

E

M
ID

 A
C

Q

E
N

D
 A

C
Q

R
E

A
C

T
IV

A
T

IO
N

R
E

A
C

Q
 S

T
A

R
T

R
E

A
C

Q
 E

N
D

B
A

S
E

L
IN

E

M
ID

 A
C

Q

E
N

D
 A

C
Q

R
E

A
C

T
IV

A
T

IO
N

R
E

A
C

Q
 S

T
A

R
T

R
E

A
C

Q
 E

N
D

N 2 O  N O  R E A C T N 2 O  +  R E A C T A I R  +  R E A C T

B
EE

R
 E

X
P

EC
TA

N
C

Y
 R

A
TI

N
G

CS+Pav CSin1

CSin2 CS-



155 
 

ANOVA to Acquisition. This showed a main effect of CS only [F(1, 56) = 83.016, p< 

0.001, η2
p = 0.597], with faster RTs to Csin1 than CSin2. Again, no effects of Group or 

interactions were found (all ps > 0.12).  

Figure 4.3: Reaction times to instrumental stimuli across acquisition and reacquisition. 

Bars represent mean ± SEM. 

 

 

Accuracy  

Accuracy data are represented in Figure 4.4. Acquisition of correct responses was 

assessed with a 2 (CSin1, CSin2) x 4 (Block) x 3 (Group) mixed ANOVA. Main effects 

of CS [F(1, 56) = 16.581, p< 0.001, ηp
2=0.228], and Block [F(3, 168) = 45.803, p< 

0.001, ηp
2=0.45] were found, subsumed under a Block x CS interaction [F(3, 168) = 

10.253, p< 0.001, ηp
2=0.155]. This was driven by more correct responses to Csin1 

(approach to win) than CSin2 (avoid to win) in the first two blocks (both p< 0.001), but 

no difference in correct responding in the final two blocks of acquisition (ps >0.58), 
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consistent with pre-potent Pavlovian approach-to-win biases for potential reward stimuli 

retarding learning rate (Guitart-Masip et al. 2012). 

Note that there are only two ‘blocks’ of accuracy data for Day 3, as accuracy is the 

number of instrumental trials correctly responded to and there are twice as many trials 

overall on Day 1 as Day 3. Splitting accuracy data into four blocks (each representing 

only two trials) resulted in single incorrect responses exerting too much influence over 

means and artificially decreasing the apparent accuracy on Day 3.These were therefore 

split into two blocks of four trials, to allow comparison across days.  

Analysis of Reacquisition accuracy data again found main effects of CS [F(1,56) = 

14.165, p< 0.001, ηp
2=0.202] and Block F(1, 56) = 11.541, p =0.001, ηp

2=0.171] plus 

CS x Group [F(2, 56) = 3.425, p = 0.039, ηp
2=0.109], and CS x Block interactions [F(1, 

56) = 10.941, p = 0.002, ηp
2=0.163]. The CS x Group interaction was driven by lower 

accuracy in responding to CSin2 compared to Csin1 in N2O + REACT [t(19) = 3.013, p  

= 0.004, corrected] and N2O no REACT groups [t(21) = 3.757, p < 0.001, corrected], 

but not the Air + REACT group where correct responding was equally high for both (p 

> 0.99), reflecting a practice and memory strengthening effect of the retrieval session 

(Karpicke and Roediger 2008; Karpicke and Roediger III 2007). The CS x Block 

interaction indicated an increase in response accuracy across blocks for Csin2 only 

[t(58)= 3.619, p = 0.001, r  = 0.429]. 
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Figure 4.4. Accuracy of instrumental responding across acquisition and reacquisition. 

Date represent means ± SEM. 
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4.3.3. Pupillometry Data 

 

Acquisition 

4(CS) x 5 (Baseline, Block 1 - 4) x 3 (Group) mixed ANOVA found differential 

conditioning of pupillary responses to CSs evidenced by main effects of CS [F(3, 168) = 

92.604, p< 0.001, η2
p= 0.623], Block [F(4, 224) = 10.774, p< 0.001, ηp

2 = 0.161] and a 

CS x Block interaction [F(12, 672) = 7.833, p< 0.001, η2
p = 0.123]. The interaction 

represented statistically equivalent pupillary responses to all CSs at baseline [all ps > 

0.09, corrected], but greater pupil dilation for instrumental CSs than CS+Pav and CS-

from Block 1 onwards [all ts (58) > 8.5, ps < 0.001, corrected], with no differences 

between CS+Pav and CS- (all ps> 0.9) or CSin1 and CSin2 (all ps > 0.33). No main 

effects or interactions with Group were found, indicating equivalent conditioning of 

pupillary responses across groups.  

Participant-averaged temporal dynamics of pupil dilation in each block of trials during 

acquisition is shown in Figure 4.4 panel A. To further investigate temporally-dependent 

differentiation of responses to the CS+Pav and CS- and between Csin1 and CSin2, two-

tailed t-tests were employed on a sample-by sample basis using Benjamini and 

Hochberg’s (1995) False Discovery Rate (FDR) correction with an alpha of 0.05. This 

analysis showed differentiation of waveforms for CS+Pav and CS- in Block 2 of 

acquisition, with greater pupillary contraction to CS+Pav relative to CS- (p FDR < 0.05 

from sample 182 to 400, i.e. 1.82 to 4s). This likely indicates the parasympathetic 

nervous effect of reward expectation without the requirement to respond.  

Reacquisition 

A 4(CS) x 4(Block 1 to 4) x 3 (Group) mixed ANOVA found main effects of CS [F(3, 

168) = 58.51, p< 0.001, η2
p = 0.476], Block  [F(3, 168) = 4.79, p = 0.003, ηp

2 = 0.32]  
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and CS x Group interaction [F(6, 168) = 2.267, p= 0.039, η2
p = 0.075]. The CS x Group 

interaction was investigated by testing the simple effect of Group for each CS. 

Consistent with the behavioural data, this was driven by significantly lower pupil 

dilation to CSin2 in the N2O + REACT group than N2O no REACT [t(41) = 3, p = 

0.014, r = 0.42, corrected] and Air + REACT[t(37) = 2.647, p = 0.036, r  = 0.4, 

corrected] groups, with no difference between the latter two [t(35) = 0.176, p> 0.95, 

corrected] see Figure 4.5. 

 

Figure 4.5: Pupillary responses to CSs during reacquisition across experimental 

groups. Data points represent mean ± SEM.  
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reduced differentiation can be seen to be relatively consistent across blocks in this 

group, mirroring impaired reacquisition observed in the accuracy data.  The high level 

of differentiation between CSs evident in Block 1 in the Air + REACT group again is in 

line with the accuracy data and suggests reacquisition of behavioural responses was not 

observed in this group due to ceiling-level retention of contingencies during Block 1. 

Descriptive statistics of FDR corrected sample-wise t-tests between CSin1 and CS- and 

CSin2 and CS- are shown in Table 4.2, where it can be see that peak significance of 

curve differentiation and number of significantly different samples is generally lowest 

for N2O + REACT, but especially so for Csin2 vs CS-.  

Table 4.2. Descriptive statistics of sample-wise paired t-tests on CSin1 and CSin2 vs 

CS- across groups. 

  CSin1 vs. CS- CSin2 vs. CS- 

  N sig samples peak significance N sig samples peak significance 

N2O + 

REACT 

Block 1 89 0.00310132 47 0.00192076 

Block 2 320 0.00267599 0 0.02762411 

Block 3 0 0.02562344 102 0.00084196 

Block 4 263 0.00100590 318 0.00123484 

N2O no 

REACT 

Block 1 319 0.00014829 334 0.00002452 

Block 2 271 0.00165630 301 0.00003757 

Block 3 0 0.01051599 308 0.00081022 

Block 4 0 0.00929262 356 0.00003123 

Air + 

REACT 

Block 1 300 0.00003668 357 0.00002250 

Block 2 300 0.00553294 277 0.00103307 

Block 3 306 0.00035630 241 0.00010061 

Block 4 0 0.01694430 289 0.00020743 
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4.3.4. Acute Effects of Nitrous Oxide 

 

The analysis of BSS measures of subjective drug effects focused on items measuring 

anxiety, memory impairment, euphoria, drowsiness, difficulty concentrating and 

confusion as these were most pertinent to the known effects of N2O. In all cases, these 

items were assessed with 3 (Group) x 2 (baseline, gas treatment) mixed ANOVAs. 

Significant decreases in anxiety were seen in all groups after 15 minutes of inhalation 

[F(2, 56) = 27.119, p< 0.001, ηp
2 = 0.326], with no change in self-rated memory 

impairment or drowsiness. Main effects of Time [F(2, 56) = 5.373, p = 0.024, ηp
2 = 

0.088] and Group [F(2, 56) = 4.048, p = 0.023, ηp
2 = 0.126] were found for 

concentration, with difficulty concentrating increasing across time overall and lower 

overall concentration in N2O+REACT  than Air + REACT [t(35)= 2.656, p = 0.031, r 

= 0.41]. Although confusion increased only in the groups receiving N2O [N2O + 

REACT baseline = 27.45, on-drug = 35; N2O no REACT baseline =20.77, on drug = 

36.27, Air + REACT baseline = 13.41, on-air = 12.02], the Group x Time interaction 

did not reach significance. A Time x Group interaction was observed for confusion 

[F(2,56) = 4.586, p = 0.014, ηp
2 = 0.141], with increases in confusion in the 

N2O+REACT [t(19) = 5, p< 0.001, r = 0.75] and N2O no REACT [t(21) =2.389, p = 

0.02, r = 0.46] groups only. A Time x Group interaction was also found for euphoria 

[F(2,56) = 3.76, p = 0.029, ηp
2 = 0.118] with euphoric increases in the N2O+REACT 

[t(19) =4.324, p< 0.001, r = 0. 7] and N2O no REACT [t(21) =2.697, p = 0.009, r = 

0.5] groups only. Dissociation also increased significantly in the N2O+REACT [t(19) 

=5.734, p< 0.001, r = 0. 8] and N2O no REACT [t(21) =4.34, p< 0.001, r = 0.69] 

groups, but not the Air + REACT group [Group x Time interaction: F(2,56) = 9.078, 

p< 0.001, ηp
2 = 0.245].  
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Effects of N2O were seen on systolic blood pressure from baseline to on-drug [Group x 

Time interaction: F(2, 56) = 7.114, p = 0.002, ηp
2 = 0.22], with a reduction in blood 

pressure from baseline to on-drug seen only in the Air + REACT group [t(16) = 3.998, p 

= 0.005, r = 0.71] indicating N2O counteracted the hypotensive effect of sitting still and 

anxiolysis from habituation to wearing the breathing apparatus. No effects were seen on 

diastolic blood pressure. 
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Figure 4.5. Within-trial temporal dynamics of pupillary dilation. A: Acquisition, pupil 

dilation responses during the four acquisition blocks, subject-averaged across groups 

as groups did not differ in acquisition. Differentiation of CSin2 and CSin2 and CS+Pav 

and CS- can be seen from Block 1 onward, with earlier temporal shift of curve 

differentiation as the blocks progress. B: Reacquisition Pupil data split by Group. 

Reduced differentiation and lack of reacquisition of pupillary responses among stimuli 

can be seen in the N2O + REACT group. Y axes represent proportional pupillary 

dilation, X axes represent time (in seconds) since trial onset. 
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4.4. Discussion 

 

The current study sought to test whether the NMDAR antagonist gas Nitrous Oxide 

would interfere with the reconsolidation of Pavlovian and instrumental reward 

memories trained in the lab in hazardous drinkers. The main finding was that 45% N2O 

in O2 following reactivation of conditioned alcohol reward memory produced lower 

differentiation of conditioned pupillary responses to CSs during a test reacquisition task 

compared to groups who received N2O without reactivation or reactivation without 

N2O. This was in line with behavioural data, showing fewer correct instrumental 

responses in the N2O+REACT group during reacquisition relative to the Air + REACT 

group. No evidence of reacquisition in the Air REACT group (as evidenced by no 

increases in responding through the reacquisition task), was found, due to ceiling-level 

retention of conditioned responding from the beginning of reacquisition. This is likely 

due to the practice effect of Day 3 reactivation in this group, consistent with the well-

known effect of successful retrieval (Ebbinghaus 1913) and reconsolidation (Inda et al. 

2011; Lee 2008) on memory strengthening. Exploratory analysis of group effects on 

explicit expectancy ratings during reacquisition corroborated this finding, showing no 

increase across the reacquisition in the N2O+ REACT group. Together, these findings 

indicate that N2O in combination with reactivation of a conditioned reward memory 

negated any reactivation-dependent memory enhancement, reduced discriminative 

responding to discrete reward cues and prevented reacquisition of these responses. This 

pattern of results is best explained by interference of memory restabilisation by N2O, 

possibly through its action at the NMDA receptor, although this mechanism will require 

verification by in vivo pharmacological studies.  

Although the effect of reconsolidation interference on reacquisition seen here is 

tentative, it is reminiscent of Monfils and colleagues’ (2009) findings using a retrieval-
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extinction procedure to persistently attenuate fear memory and retard reacquisition of 

conditioned responses compared to a conditioning-naïve group. Soeter and Kindt (2011) 

have also shown preventative effects of pharmacological reconsolidation interference on 

generalising reacquired conditioned responding, leading them to suggest that 

reacquisition following reconsolidation is somehow qualitatively a different process to 

initial learning. The pharmacological and behavioural nature of this qualitative 

difference is currently highly speculative and will require further investigation. From a 

clinical standpoint, a pharmacological intervention that can both reduce the strength of 

cue-based responding for drug rewards and have a latent inhibiting effect on the 

reacquisition of these responses is highly desirable, as it would provide longer-term 

inoculation against the re-formation of MMMs that could re-ignite compulsive drug use 

in vulnerable individuals. This is encouraging for the potential of N2O as a therapeutic 

intervention, however this effect will require examination and replication in a larger 

sample.  

However, it should be clear that the effects of Nitrous Oxide observed hardly constitute 

‘memory erasure’, as has been observed in other pharmacological reconsolidation 

interventions with animals (Nader et al. 2000). The explicit knowledge of outcome 

contingencies was relatively unaffected by post-retrieval N2O, despite less accurate 

responding to instrumental stimuli in the N2O + REACT group than the Air + REACT 

group. A similar decrease in performance at the beginning of acquisition was seen in the 

N2O no REACT group whose lack of a memory reactivation session should have caused 

between-session decay of memory trace strength, thus N2O may be said to prevent the 

memory strengthening effect of successful reconsolidation. In this capacity it could still 

have important therapeutic benefits and due to its excellent safety profile and minimal 

side effects at the doses used here, could be administered during repeated therapy 

sessions. However, N2O does carry abuse potential and can lead to neuropathy in 
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repeated high doses (Nevins 1980), so further research will be required to investigate 

optimum dosing schedules that maximise therapeutic benefit while minimising the 

potential for harm.  

The observed effects of N2O and memory reactivation on pupil dilation to CSs, an 

autonomic measure of learning and reward responsiveness, are analogous to findings in 

fear conditioning with the β-Blocker propranolol. Propranolol following fear memory 

reactivation leaves the expectancy-related aspects of the memory intact, but reduces the 

autonomic fear component, indexed by the potentiated startle response (Kindt et al. 

2009). Indeed, despite reports of episodic memory loss following ketamine 

(Muetzelfeldt et al. 2008) and N2O (Parbrook 1967), pharmacological ‘erasure’ of 

explicit episodic or semantic memory during reconsolidation has yet to be demonstrated 

experimentally in humans. This in itself may be an unachievable and undesirable aim, 

as, ethical concerns of this possibility aside, the aim of targeting MMMs in addiction is 

to remove their relapse inducing potential. This does not necessitate explicitly 

‘forgetting’ that a cue is associated with a drug, rather involves removing the aberrant 

motivational properties of MMMs that lead to drug seeking. The current findings 

suggest N2O may therefore have utility for this purpose, but its fulfilment of the clinical 

utility criteria outlined in Chapter 1 still needs to be established, particularly with 

regard to levels of drinking and abstinence in populations of heavy drinkers wishing to 

cut down or stop their alcohol use.  

Pupil dilation is a measure of autonomic arousal (Bradley et al. 2008) but also 

expectancy of reward (O'Doherty et al. 2003) and certainty of outcome, with greater 

dilation indicating greater certainty of reward (Preuschoff et al. 2011). These 

moderators of pupil size are obviously inter-related and likely represent part of a larger 

motivational preparatory response in response to reward cues. Thus the reduction in 
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pupillary responses to instrumental CSs observed here is suggestive of a reduction in 

potential maladaptive motivational processes that underlie relapse in addiction. The 

question of the mechanism of action of this effect, however, cannot be answered by the 

current study which, along with the limited sample size, represents its main limitation. 

 It cannot be determined, for instance, whether the N2O after reactivation increased 

uncertainty of appropriate cue-response relationships via direct degradation of cue-

outcome contingencies (which would explain the reduction in pupil dilation and 

accuracy relative to the placebo group; Preuschoff et al., 2011) or whether it reduced the 

subsequent capability of those cues to recruit motivational circuitry (and respond in 

order to win beer) via downstream dopaminergic mechanisms. N2O may thus have 

reduced conditioned motivation (and therefore pupillary responses) through degrading 

upstream associative components of memory traces, but this may have been mediated 

by a subsequent reduction in dopaminergic reward mechanisms. In future research, 

motivational manipulations, such as fluid deprivation or priming doses of beer may be 

employed to differentiate these mechanisms. Another avenue of investigation could be 

to vary the effort costs associated with different CSs and assess whether N2O effects are 

dependent upon these costs (and therefore motivation). 

It is interesting to note that, in the current experiment, N2O after reactivation did not 

appear to affect responding to Pavlovian cues. Historically, reconsolidation is more 

readily seen for Pavlovian memory traces, although recent evidence has confirmed its 

occurrence even for well-learned instrumental memories (Exton-McGuinness et al. 

2014). Given the 100% reinforcement schedule in the current experiment, which was 

employed so that prediction error could be guaranteed during reactivation, the learning 

of cue-outcome relationships reached ceiling level very rapidly and it is perhaps 

unsurprising that these responses were relatively unaffected, given their ease of 
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recollection. Indeed, the main effects of reconsolidation interference by N2O were seen 

for the avoid-to-win instrumental stimulus. This is objectively the hardest stimulus for 

which to learn the correct response, as it requires model-based cognitive flexibility to 

make an unusual response, rather than relying upon the frequently encountered, model-

free approach-to-win response, causing a Pavlovian action learning bias (Guitart-Masip 

et al. 2014). That this more difficult-to-acquire response was most affected by the N2O 

suggests that over-learning may be a constraint in memory interference by N2O 

following reactivation. This must be tested to fully assess its potential in substance use 

disorders, where overlearned, habitual responding is the norm. Indeed, instrumental and 

Pavlovian cues should be employed more frequently in the same learning paradigms to 

allow their direct comparison in terms of reconsolidation interference effects, as 

naturalistic drug use always involves an instrumental component.  

The current findings further support the importance of prediction error in destabilising 

memories. The reactivation procedure explicitly included a negative prediction error for 

each CS and the effects of N2O suggest this was sufficient to destabilise a lab-trained 

reward memory. It remains to be seen whether this would hold for more robustly 

learned associations and the logical progression of this work would be to replicate and 

extend the findings to naturalistic MMMs. A stronger effect of N2O might be seen with 

a longer dosing period. The reconsolidation window lasts up to several hours 

(Przybyslawski and Sara 1997) and N2O was only administered for 20 minutes 

following reactivation, with rapid offset of central effects following cessation. Oral 

drugs have much longer centrally-active half-lives but are slow to peak, meaning they 

must be administered prior to memory reactivation to interfere with reconsolidation. 

The current findings raise the intriguing possibility of using N2O’s rapid-onset to block 

NMDARs immediately after reactivation and simultaneously using a slower-peaking 
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oral preparation of an NMDA antagonist to maintain receptor occupancy throughout the 

reconsolidation window.  

In summary, this is the first study to identify Nitrous Oxide as a reconsolidation-

blocking drug with potential therapeutic benefits in humans. Its safety, accessibility and 

ease of administration make it an attractive option for this purpose versus other 

compounds of the same class. Although the current study had a limited sample size and 

the findings were relatively modest, given the risk-to-benefit potential of using N2O to 

block the reconsolidation of MMMs, further work examining the drug for this purpose 

is clearly warranted. 
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Chapter 5: Reversing the motivational status of alcohol cues via counterconditioning during reconsolidation 
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5.1 Introduction 

 

Despite the promise of preclinical research pharmacologically neutralising the impact of 

MMMs during reconsolidation, early translational attempts to do the same in humans 

have had little to no impact on relapse rates (see Chapter 4 and (Saladin et al. 2013). As 

discussed in previous chapters, these null effects may be attributable to insufficient 

blockade of memory restabilisation by the test drug or failure of the reminder procedure 

to destabilise relevant memories (Piñeyro et al. 2014).  

Recent research has demonstrated that prediction error (PE) is a key mediator of 

memory destabilisation at recall (Pedreira et al. 2004; Sevenster et al. 2012; 2013). 

Failures to destabilise memory traces may therefore be attributable to insufficient 

generation of PE during reminder procedures. Building on this hypothesis, in Chapter 4 

I reported evidence for memory weakening by NMDA antagonist gas Nitrous Oxide 

when administered after a reminder procedure that engendered negative prediction 

error. This is supportive both of the necessity of PE for destabilising human cue-alcohol 

memories and the importance of NMDAR activation for memory restabilisation. 

However, it does not follow that such a retrieval procedure would be sufficient in all 

circumstances. 

Although the N2O effect was demonstrated in a clinically relevant population 

(hazardous beer drinkers), with a clinically and ecologically relevant reward outcome 

(beer consumption), the memories targeted were of novel stimuli, conditioned in a 

single context (the lab), which is dissimilar to a naturalistic drinking environment. The 

number of pairings of cues with beer reward was therefore far fewer than those 

occurring naturally in a real-world context. Further, in the lab, where learning history 

was controlled, it was possible to guarantee PE at recall as the reinforcement schedule 
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during training was 100%, so the reminder structure necessitated only single 

unreinforced presentations of CSs to generate a negative prediction error. In naturalistic 

human drug use, where learning history is unknown but likely involves thousands or 

hundreds of thousands of learning trials in multiple contexts, such a guarantee is not 

possible. Such extensive training and aging of memories involves a shift to distributed 

cortical encoding of memories (Morris 2006). This may confer the resistance to 

destabilisation observed in older, more robust memories (Gräff et al., 2013 ; Robinson 

and Franklin 2010; Wang et al. 2009).  

Furthermore, temporal difference models of associative learning predict that the 

magnitude of changes in stored values of stimuli or states decrease as learning 

continues. Consider the following prototypical equations describing reinforcement 

learning, based on the Bellman equation (Bellman and Dreyfus 1962): 

V (St) = E[Rt | St] + E[V(St + 1) | St] 

Where V (St) is the value of the state St, E[Rt | St] is the expected reward R, in state St 

and E[V(St + 1) | St] is the expected reward R in the next state St + 1, given the current 

state (Sutton and Barto 1998). Clearly the two sides of these equations only balance 

when the value V is correct, that is if the expected rewards (or lack of rewards) in these 

states occur.  If incorrect, there is a discrepancy between the expected and actual 

outcomes such that: 

δt = Rt + Vt (St + 1) - V (St) 

Where δt is the PE between predicted and actual reward. This error is summed onto the 

stored value V, updating expected V such that: 

Vt + 1 (St)  Vt (St) + α δt 
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That is, the updated value upon the next encounter with state will equal the old value 

plus constant coefficient of the prediction error. This constant represents the learning 

rate, with a smaller constant equating a slower learning rate.  Variations on this function 

form the basis of many forms of associative learning theory. Note that this type of 

learning is ‘model free’ in that it requires no overall cognitive representation of states, 

their available rewards and how they are connected, but simply sums prediction errors 

on to stored values upon every encounter with a state. As experience accrues, the stored 

values thus home in on an accurate representation of the average reward available given 

different states or stimuli.  Magnitude of iterative ‘updating’ thus decreases as learning 

continues (Dayan and Balleine 2002; O'Doherty et al. 2003; Rescorla and Wagner 1972; 

Schultz et al. 1997; Sutton and Barto 1981; Sutton and Barto 1998). That is to say, the 

PE signal (the putative primary driver of associative learning) magnitude decreases as 

learning continues and predictions of outcomes become more accurate.  

Because this kind of learning is thus based purely on trial-and-error experience it can 

operate at a relatively simplistic, automatic level. However, this also makes model-free 

Pavlovian learning somewhat inflexible compared to goal-directed, model-based 

cognitive representations of values in certain states. If the learning rate constant α is 

low, changes in stored values can be very slow. Within this formalisation of learning, 

reconsolidation should be a primary process by which state or action values are updated 

(Lee 2009). However, this represents a problem with reconsolidation of MMMs in 

SUDs (Torregrossa and Taylor 2013), where inflexible, hyper-valuation of drugs and 

their predictors promotes consistent drug-seeking and using (Huys et al. 2014). Unless 

interventions are staged to deliberately generate large prediction errors, in naturalistic 

experience, large PEs are unlikely to occur in memories as well-trained as MMMs. In 

this case, the resistance to destabilisation of strongly trained MMMs may be due to the 
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difficulty in engendering a PE large enough to challenge the outcome predicted by the 

memory trace and spark updating.   

It is currently unknown whether such over-trained naturalistic MMMs such as those in 

Alcohol Use Disorder and smoking can be reliably destabilised at all in humans.  A key 

preliminary goal for this field is therefore developing memory reactivation procedures 

that reliably destabilise over-learned MMMs in the absence of knowledge of learning 

history. If this achievable, maximising PE during MMM retrieval should, theoretically, 

maximise the probability of destabilisation. If such a procedure is successful, it will be 

possible to begin to assess the efficacy of post-reactivation interventions in reducing 

clinically relevant markers of disordered substance use.  

The only study to date showing lasting benefits of reconsolidation interference in a 

human drug-using population utilised a behavioural, rather than pharmacological 

intervention following memory destabilisation (Xue et al. 2012). This study built on the 

retrieval-extinction procedure developed by Monfils and colleagues (2009) and Schiller 

and colleagues (2009) and involved extinction training following a brief reminder of a 

conditioned memory. Extinction following memory destabilisation in the 

‘reconsolidation window’ putatively updates and overwrites conditioned cue-outcome 

associations with cue-no outcome associations while the memories are unstable, causing 

a permanent change in memory expression.  

Adopting this procedure in detoxified inpatient heroin addicts, Xue and colleagues 

(2012) showed that a single video presentation of heroin-associated cues ten minutes 

prior to repeated exposure of these cues in the absence of heroin use (extinction) 

reduced cue-induced craving for heroin up to 6 months later compared to standard 

extinction. A purely behavioural approach to updating MMMs is appealing, as it can be 

more targeted than systemic drug administration and avoids the side-effects of NMDAR 
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antagonists. However results with this retrieval-extinction method have been 

inconsistent in both fear learning (Chan et al. 2010; Soeter and Kindt 2010) and cue-

drug learning paradigms (Millan et al. 2013) and it is unknown whether equivalent 

effects to Xue et al (2012) would be observed in non-abstinent users in an outpatient 

setting or extend to different drugs of abuse.  

As with pharmacological interventions, null results may be due to failure to destabilise 

memory, but may also be attributable to the insufficiency of extinction as a corrective 

learning modality. Extinction following retrieval primarily targets associative 

components of memories (Costanzi et al. 2011), with any changes in conditioned 

reinforcing or motivating effects of drug cues occurring secondary to a reduction in 

their predictive utility.  

Pairing drug cues instead with an aversive consummatory outcome may more directly 

and powerfully reverse conditioned reinforcement and motivational sensitisation to drug 

cues by devaluing cues and engendering disgust, a salient (Berridge 2009), universal 

(Olatunji and Sawchuk 2005) and robust (Olatunji et al. 2007b) anti-consumption 

response. If such a counterconditioning procedure is performed during reconsolidation, 

it may be possible to reverse the valuation (conditioned reinforcement) and attractive 

value (conditioned approach) of drug-related cues, manifesting in reduced liking and 

attentional capture by these cues respectively. It is possible that this will also reduce 

drinking by decreasing the positive modulating effect these cues have on alcohol 

consumption (conditioned motivation).  

The development of reconsolidation-based therapies for SUDs therefore requires a 

procedure for generating sufficient PE during recall of cue-drug memories that 1) does 

not require knowledge of learning history 2) can destabilise networks of well-learned 

cue-drug associations and 3) is clinically practicable (Chapter 1 criterion 4) and enables 
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changes that persist across changes in context (Chapter 1 criterion 3) . Further, 

corrective learning following memory destabilisation should ideally have broad 

spectrum effects on the motivational salience of alcohol cues.  

The current study therefore aimed to generate a large PE during recall of well-learned 

cue-alcohol memories in a sample of hazardous beer drinkers. We hypothesised that 

explicitly instructing participants that they would drink beer after viewing prototypical 

beer cues, but then withholding the alcohol at the moment of expected reinforcement 

would generate maximal PE at recall and destabilise alcohol MMM networks. 

Following this, it was hypothesised that counterconditioning of reactivated cues with 

disgusting outcomes would update cue-drinking MMM networks, replacing 

motivational alcohol associations with disgust/avoidance associations. If successful, this 

procedure should reduce the valuation, motivational salience and positive outcome 

expectancies of alcohol stimuli and increasing cue-induced disgust in response to these 

stimuli.  
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5.2. Methods 

5.2.1. Participants and Design: 

 

The study by Xue and colleagues (2012) does not contain sufficient information to 

calculate an effect size for the retrieval + extinction effect on heroin craving. However, 

highly significant effects were found at 180 days with Ns of 16 per group. Expecting 

attenuation of effects owing to the ‘Winner’s curse’ phenomenon (Young et al. 2008), 

we therefore conservatively retained the moderate effect size estimate of f = 0.35 used 

previously to calculate required N. Fifty-nine hazardous, non-dependent beer drinkers 

were recruited from University College London internal study advertisement networks 

and from via convenience sampling from the locale. Participants were randomly 

assigned to one of three groups that differed only in the nature of the MMM 

‘reactivation session’ 10 minutes prior to counterconditioning on Day 1. The Control 

group (n = 19) received no reactivation of cue-alcohol memories; the REACT + PE 

group (N = 20) received a ‘reminder’ of cue-drinking memories with an explicitly 

guided PE prior to counterconditioning. Finally, the REACT-no PE group (N = 20) 

received a reminder of cue-drinking memory with no PE.  

Inclusion criteria were current hazardous drinking defined as a score >8 on the Alcohol 

Use Disorders Identification Test (AUDIT)(Saunders et al. 1993) but <3 items coded as 

3 on the Structured Clinical Interview for DSM (SCID; First, Spitzer, Gibbon, & 

Williams, 2002); consumption of > 3 units for females, > 4 units for males on at least 

three days per week; fluent English and normal or corrected-to-normal colour vision.  

Exclusion criteria were age <18 >65, past or current diagnosis of drug or alcohol use 

disorders, any currently medicated mental health issues, any current major physical 

health issue; current pregnancy or breastfeeding. Participants were reimbursed at the 
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rate of £7.50 per hour. All procedures were approved by the University College London 

Research Ethics Committee.  

5.2.2. Apparatus and Tasks 

Questionnaire Measures: 

Drinking in the week prior to the study and after the intervention was assessed with the 

Timeline Follow Back (Sobell and Sobell 1992). Disgust sensitivity at baseline and 

following re-exposure to cues was measured with the Disgust Propensity and Sensitivity 

Scale –Revised (DPSS-R; (Olatunji et al. 2007a) and drinking concern/readiness to 

change was assessed with the Stages Of Change Readiness And Treatment Eagerness 

Scale (SOCRATES; Miller and Tonigan, 1996). SOCRATES yields three subscales of 

‘Recognition’, ‘Ambivalence’ and ‘Taking Steps’, representing stages of behaviour 

change.  Momentary craving for alcohol was assessed with the Alcohol Craving 

Questionnaire (ACQ-NOW) (Singleton et al. 1994) and expectancies of drinking-related 

outcomes were assessed with the Negative Alcohol Expectancy Questionnaire (NAEQ) 

(McMahon and Jones 1993). The NAEQ yields subscales of negative consequences on 

the ‘Same Day’ as drinking, ‘Next Day’ and ‘Continued’ consequences of alcohol use. 

Reward Responsivity was assessed with the Behavioural Inhibition/Behavioural 

Activation Scale (BIS/BAS) which yields three ‘activation’ subscales of ‘Drive’, ‘Fun’ 

and ‘Reward’ and one ‘Inhibition’ subscale. 

CSs 

Four prototypical beer images were selected to act as MMM reactivation cues and 

subsequently as CS+s in the counterconditioning task. These depicted beer taps on a 

bar, a poured pint of beer, an ice bucket filled with beer bottles and a can of beer being 

poured into a pint glass, in order to represent the major modes and stages of beer 

consumption. Multiple, prototypical beer CSs were used to maximise activation of 
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MMM networks and generalisation of the association between beer-related stimuli and 

disgusting outcomes as the use of single discrete stimuli in reconsolidation paradigms 

can lead to effects that are highly specific to that stimulus, rather than generalising to 

novel stimuli within the class of the reactivated stimulus (Pearce 1987). 

Two novel beer images, used on Day 8 in the liking (picture rating) and attentional bias 

task depicted pints of beer on a table and a pint of beer being consumed along with two  

novel wine images depicting a glass of wine next to a wine bottle and a glass of wine 

being consumed.  

Two CS-s were used in retrieval and counterconditioning to control for non-associative 

effects of the procedures. These depicted a cup of coffee and a can of cola with a glass. 

Soft drink images were used as CS-s to rule out generic decrease in liking of 

consumable stimuli due to anti-consummatory effects of exposure to the disgust UCSs.   

Control ‘no-reactivation’ cues presented during the retrieval stage in the Control group 

depicted whole oranges, an orange being squeezed, a glass of orange juice and a woman 

consuming orange juice. The beer and orange juice cues were equated as much as 

possible to minimise any effects that were not specific to the reactivation manipulation. 

All stimuli were presented via 1024x768 pixel flat screen 21 inch monitor. 

UCSs 

Four pictorial disgusting images were used as UCSs. Three were taken from the 

International Affective Picture System database (Lang et al. 2005). These depicted a 

toilet covered in fecal matter (image 9301), a man vomiting (image 9325) and a badly 

wounded human hand (image 9405). An additional image was sourced from the internet 

depicted a septic wound on a human foot that was infested with maggots. Highly bitter 

drinks were made by mixing 80μL 2.5% Denatonium Benzoate (Bitrex solution; 
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Macfarlan Smith Ltd, City, UK) in 120ml water. This solution was divided into eight 

15ml drinks. Bitrex was kindly provided free of charge by Macfarlan Smith Ltd. 

Memory retrieval: 

A schematic representation of the retrieval-counterconditioning tasks is given in Figure 

5.1. In the control condition, a 150ml glass of chilled orange juice was placed in front of 

the participants as the computer task began. In both the REACT+PE and REACT No PE 

conditions, an identical glass of 150ml chilled non-alcoholic beer was placed in front of 

the participants. Non-alcoholic beer was used to avoid any confounding effects of 

priming doses of alcohol. Participants were not aware that the beer was non-alcoholic. 

On screen-instructions informed participants that the experiment examined how viewing 

images affected their perception of the taste of drinks and that they would rate a series 

of images, then consume the drink in front of them. They were told that they were to 

consume the entire amount according to on-screen prompts, which were a sequence of 

screens displaying ‘PICK UP DRINK’ ‘PREPARE TO DRINK’ and ‘DRINK NOW’, 

each screen displayed for 2000ms. An example of these screens was given and 

participants were told only to drink when ‘DRINK NOW’ appeared on screen.   

Participants’ understanding of the instructions was confirmed before they began rating 

the images. The Control group then rated the four orange juice images and two CS- 

images (coffee and cola); the REACT+PE and REACT no PE groups rated the four beer 

CSs and two CS-. Order of CS presentation was randomised. All ratings were made on 

the scale 0 (extremely unpleasant) to 10 (extremely pleasant) via labelled keys on the 

keyboard. Following the final rating, the drinking prompts began. In the Control and 

REACT no P.E. groups, these screens proceeded as per the instructions and they 

consumed the beer or orange juice, as expected. In the REACT no PE group, this 

recapitulated a standard drinking episode, and therefore no new information was 
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available to destabilise memory. In the REACT + PE group, the first two prompt 

screens were as expected, but the final screen unexpectedly displayed the words ‘STOP! 

DO NOT DRINK’, followed by ‘Put the drink down and alert the experimenter’. In all 

groups, the glass was then removed and the distractor tasks began.  
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Figure 5.1 Schematic of Day 1 retrieval/counterconditioning procedure. Four beer or orange juice cues plus two control soft-drink cues were 

baseline-rated during ‘retrieval’ of cue valuation memory. Beer images were subsequently paired with Bitrex or disgusting pictures. The control 

group baseline rating of beer images was at the start of counterconditioning, prior to any pairing with UCSs, to provide a baseline in this group and 

equate the number of cue exposures in each group. 
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Distractor Tasks: 

Participants completed verbal and category fluency tests, digit span forwards and 

backwards (Wechsler 2008), Trail making version A (numeric) and B (alphanumeric) 

(Reitan 1958) and digit cancellation tasks. These distractor tasks were chosen due to 

their high attentional and working memory demands. As offset of reactivated stimuli is 

critical for the switch between memory reconsolidation and extinction, high working 

memory tasks prevented maintenance of rated stimuli in working memory during the 10 

minute period between retrieval and counterconditioning. Performance in the distractor 

tasks was not of primary interest to the current study and is therefore not reported here. 

Counterconditioning: 

Counterconditioning began immediately after completion of the distractor tasks. On-

screen instructions told participants that they would now continue rating pictures and 

consuming samples of drinks, some of which may be extremely bitter, but were 

completely harmless. As before, participants were instructed to consume the entire drink 

placed in front of them whenever the words ‘DRINK NOW’ appeared on the screen.  

An example of typical ‘drink’ trial and example ‘picture’ trial are shown in Figure 5.2. 

During the task, a CS image appeared in a box on the left side of the screen and then an 

‘outcome’ image would appear on the right (UCSs). The outcome image was either a 

disgusting picture from the IAPS picture (visual UCS) or the words ‘DRINK NOW’ 

(gustatory US). Participants were required to make two pleasantness ratings per trial; 

the first when the CS image appeared to rate its pleasantness and the second after offset 

of the UCS outcome (after viewing the UCS image or consuming the drink) to rate the 

pleasantness of the outcome. All ratings were on the scale 0 (Extremely Unpleasant) – 

10 (Extremely Pleasant). Each CS was presented four times during the 

counterconditioning. Two of the beer CS+s were paired with the disgusting picture 
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outcomes (each CS was paired once with each of the UCS images) and two of the beer 

CSs were followed by 15ml 0.067% aqueous Bitrex solution on a 100% reinforcement 

schedule. The soft-drink images were paired with neutral images from the IAPS.  

A single, pseudorandomised trial order was used for all participants. Trials were 

randomised with the stipulation that the same UCSs could not occur in consecutive 

trials and that no more than two trials of the same CS could occur consecutively. 

Participants in the Control condition rated the four beer CSs at the beginning of the 

counterconditioning session. The purpose of this was firstly to provide a baseline 

measure of liking for these stimuli and secondly to ensure that identical numbers of CS 

presentations were given in each group so that effects could not be attributed to 

differential amounts of CS exposure, a problem with previous retrieval-extinction 

paradigms (Millan et al. 2013) 

Visual probe  

On day eight a visual probe task was conducted to index attentional bias. Ten pairs of 

composition-matched image pairs were used as stimuli in this task, with each pair 

including a ‘target’ and ‘non-target’ image. The ‘targets’ consisted of the four beer 

CS+s used in the counterconditioning task, two neutral CS-s used in 

counterconditioning, two novel beer images and two novel wine images, all of which 

were paired with composition-matched ‘non-target’ images that did not depict alcohol 

or soft drinks. All image pairs were rendered as high definition .jpegs of 300 x 300 

pixels. On-screen, the left image was centred at screen coordinates 256,384 and right 

image at 768, 384. 

Trials began with a drift correction, where central fixation was verified by the 

experimenter. Image pairs then appeared for 2000ms, after which the images 

disappeared and a triangular probe appeared in the location where one of the images had 
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been. The triangle either pointed upwards or downwards and participants had to respond 

as to the orientation of the probe as quickly and accurately as possible using ‘up’ and 

‘down’ arrow keys on the keyboard. These behavioural measures were simply to ensure 

continued engagement in the task as in practice they were superseded by eye-tracking 

which directly measures attentional allocation to stimuli. Participants were instructed to 

try and take in both pictures while they were displayed on- screen. 

Each image pair was presented 8 times in a random order, balanced for laterality of 

target image (left or right), laterality of probe location (ipsilateral to target image, 

contralateral to target image) and probe orientation (pointing up or down). Eye 

movements during the task were tracked with an Eyelink 1000 desktop mounted eye 

tracker (SR Research, Ontario, Canada) with a sampling rate of 1KHz. Participants’ 

heads were stabilised 60 cm away from the computer screen throughout.  

Blinks were removed using the manufacturer’s algorithms on default settings. For each 

image pair, mean attentional bias scores were calculated by subtracting total time 

fixating on matched control image from total time spent fixating on target image –, so 

positive scores indicate a bias towards target images and negative scores a bias away 

from them. Fixations occurring <100ms after image pair onset were excluded from 

dwell time calculation, as they represent pre-emptive looking to stimulus locations 

(Mogg et al. 2003). 
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Figure 5.2. Schematic of a typical ‘drink’ trial and ‘picture’ trial during counterconditioning. There were 8 gustatory CS-UCS (drinking) trials and 

8 pictorial CS-UCS trials in total. On each trial, a pleasantness rating of both the CS and ‘outcome’ was made. 
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5.2.3. Procedure 

 

Baseline measures: 

Twenty four hours prior to attending the study centre, participants completed and 

returned the SOCRATES, NAEQ and TLFB measures. TLFB was assessed for the 

week prior to the study and a daily average beer consumption was computed. These 

measures were completed prior to Day 1 to minimise the amount of alcohol memory 

retrieval immediately prior to the manipulation on Day 1.  

Day 1: 

Participants were not informed of the exact nature of the study in order to maintain the 

necessary surprise element for generating prediction error. Instead they were told that 

the experimenters were interested in taste perception and learning processes in heavy 

drinkers. As part of this, participants were told they would be required to rate pictures 

and consume samples of different drinks, some of which might be very bitter. 

Participants were randomly allocated to one of the three groups. After providing written 

informed consent, participants completed the DPSS-R and immediately began the 

relevant retrieval phase of the retrieval-counterconditioning procedure. After this, all 

participants completed the distractor tasks, which lasted 10 minutes in total, before 

completing the counterconditioning task. The eight Bitrex-containing drinks used in the 

counterconditioning were stored in an opaque box, so that participants were unaware 

how many more drinks they were required to consume. New drinks were placed in front 

of participants immediately after consumption of the previous drink.  At the end of the 

task, participants received two squares of milk chocolate to get rid of the taste of Bitrex. 
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Day 8: 

One week later (Day 8), participants re-rated the pleasantness of all CSs from Day 1, 

along with novel beer and wine images. Attentional bias, an index of motivational 

salience, towards these images was then assessed using the visual probe task. 

Participants then completed the ACQ-NOW and DPSS-R to assess alcohol craving and 

disgust sensitivity following re-exposure to alcohol cues. Amount of beer consumed 

over the week since intervention was then recorded with the TLFB. Participants were 

then fully debriefed as to the nature and aims of the experiment and paid. This 

completed the testing.  

5.2.4. Statistical Analysis 

 

All data analysis was performed using IBM SPSS version 21 for Windows. All data 

were checked for normality, homogeneity of variance and sphericity (for repeated-

measures with K>2 comparisons) inspection of histograms and z-scored 

skewness/kurtosis, Levene’s test and Mauchly’s test, respectively. Any outliers more 

than 3 standard deviations away from the sample mean for that variable were replaced 

with a score falling 3 standard deviations from the mean. Non-normal data were 

transformed where skewed. If this did not normalise the distribution, non-parametric 

equivalents of tests were used as appropriate. Descriptive statistics represent 

untransformed data, unless stated otherwise, in order to aid interpretation of results. 

Where homogeneity of variance was violated in one-way ANOVA, Welch’s F test is 

reported. Where sphericity was violated, the Huynh-Feldt correction was applied to the 

degrees of freedom and significance levels. Uncorrected degrees of freedom are 

reported here, with corrected p values.  For single time-point measurements, one-way 

ANOVA was used to assess group differences and for repeated measurements, mixed 

ANOVA with a between-subjects factor of Group was used. Significant k >2 main 
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effects and interactions in omnibus ANOVAs were investigated with independent or 

paired-samples t-tests on marginal means, where appropriate. Although all follow-up 

comparisons on omnibus tests were planned a priori, p values for these tests are 

Bonferroni- corrected to control Type I error.   
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5.3 Results 

5.3.1. Baseline drinking and questionnaire data 

 

Descriptive statistics for baseline measures of drinking behaviour, attitudes to alcohol, 

disgust sensitivity, readiness to change and behavioural inhibition/activation are given 

in Table 5.1. Groups did not differ on any of these measures prior to the 

retrieval/counterconditioning intervention (all ps > 0.07). 

Table 5.1: Baseline demographic variables, drinking level and questionnaire measures. 

Values are mean ± SD 

  Control 

(N = 19) 

REACT + 

PE (N = 20) 

REACT No 

PE (N=20) 

AUDIT  14.58±4.72 15.8±4.05 15.1±4.75 

     

NAEQ 

SAME DAY 40.74±7.87 41.75±9.73 42.350±7.59 

NEXT DAY 36.21±9.37 36.1±11.43 36.65±8.94 

CONTINUED 29.47±13.04 29±8.52 31.1±6.42 

     

SOCRATES 

RECOGNITION 11.32±3.16 11.2±3.81 13.2±3.38 

AMBIVALENCE 8.16±3.56 8.25±3.02 10.3±3.21 

TAKING STEPS 17.63±7.15 14.9±5.7 17.25±5.9 

     

DPSS-R 

SENSITIVITY 12.68±3.61 14.8±6.69 12.6±3.03 

PROPENSITY 18.16±2.19 16.9±3.32 16.7±2.64 

TOTAL 30.84±4.86 29.9±5.44 29.3±4.49 

     

AGE  23.16±7.49 21.5±1.73 23.15±7.44 

     

DRINKING 

DAILY PINTS 

BEER 
1.36±1.15 1.31±0.75 1.86±1.27 

DAILY SINGLE 

SPIRITS 
0.74±.0.7 1.26±0.86 1.68±1.79 

DAILY 

GLASSES WINE 
0.5±0.67 0.65±0.71 0.23±0.34 

     

BIS/BAS 

BAS DRIVE 11.68±1.95 11.95±1.54 10.8±1.82 

BAS FUN 13.68±2.26 13.25±1.25 13.1±1.97 

BAS REWARD 17.63±1.67 17.45±1.93 16.95±1.54 

BIS 20.58±3.01 21.15±3.31 19.75±3.67 
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5.3.2. Counterconditioning 

 

Counterconditioning of stimulus valuation was assessed via a 2 (CS Type: beer picture 

CS+s, neutral picture CS-s) x 5 (Trial: Baseline, trial 1 – 4) x 3 (Group: Control, 

REACT + PE, REACT no PE) mixed ANOVA. CS pleasantness ratings during the 

retrieval phase were the baseline ratings in the REACT+PE and REACT No PE groups 

and ratings at the beginning of the counterconditioning were the baseline in the Control 

group (see Figs 5.1 and 5.2).  Main effects of CS Type [F(1,56) = 7.842, p = 0.007, ηp
2 

= .123] and Trial [F(4, 168) = 3.026, p = 0.041, ηp
2 = .051] and critically, a CS Type x 

Trial interaction F(4, 224) = 9.902, p < 0.001, ηp
2 = .15]  were found.  Planned follow-

up pairwise comparisons of the interaction found no significant difference between 

liking of beer and neutral beverage CSs at baseline t(58) = 0.29, p  > 0.5, r  = 0.04], but 

greater liking of neutral CSs from trial 2 of conditioning t(58) = 3.38, p  = .001, r  = 

0.41],  subsequently [Trial 3 t(58) = 3.93, p  < .001, r  = 0.46; Trial 4 t(58) = 3.52, p  = 

.001, r  = 0.42] (see Figure. 3).  

Figure 5.3. Differential evaluative conditioning of CS+s and CS-s across the 

counterconditioning task. Data are mean ± SEM 

 

5.3

5.7

6.1

6.5

6.9

7.3

baseline 1 2 3 4

Li
ki

n
g 

R
at

in
g

TRIAL

CS +

CS -



192 
 

 

UCS ratings 

Ratings of UCSs (IAPS disgust pictures, Bitrex or neutral pictures) were assessed with 

3 (UCS) x 3 (Group) x 4 (Trial) mixed ANOVA. A large effect of UCS [F(2, 112) = 

156.65, p = < 0.001, ηp
2 = .737] was observed, indicating unconditioned aversion to the 

Bitrex [t(58) =  13.6, p < 0.001, r = 0.87] and picture UCSs [t(58) =  15.79, p < 0.001, r 

= 0.9] relative to the neutral pictures. Descriptive statistics are given in Table 5.2.  

Table 5.2.  Ratings of aversion to UCSs (0 = most disgusting thing ever to 10 = most 

pleasant thing ever). Values represent mean ± standard deviation. 

 Control REACT no PE REACT + PE 

Bitrex 1.59±1.3 2.11±1.6 1.29±1.45 

Disgust Pictures 1.89±1.44 2.22±1.18 2.26±1.61 

Neutral Pictures 5.23±1.77 5.36±1.45 5.45±1.73 

 

Contingency Awareness: 

Chi Square analysis comparing awareness of contingencies between CSs and UCSs 

across groups found no differential frequency of contingency awareness across groups 

χ2(2) = 2.636, p = 0.268. Ns of contingency awareness were as follows: Control group, 

10 aware, 9 unaware, REACT+PE group 12 aware, 8 unaware, REACT no PE group 7 

aware, 12 unaware.  
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5.3.3. CS Rating Task 

 

A 3 (Group) x 4 (Picture Type; Beer CS+s, Neutral Cs-s, novel beer, wine) mixed 

ANOVA assessed ratings of CSs from Day 1, along with ratings of novel beer pictures 

and novel wine pictures. Novel stimuli were included to assess generalisation of liking 

effects to unconditioned alcohol stimuli. A Picture Type main effect [F(3, 168) = 8.44, 

p  < 0.001, ηp
2 = .131] and Group x Picture Type interaction was observed [F(6, 168) = 

2.622, p = 0.028, ηp
2 = 0.086]. Planned, Bonferroni-corrected comparisons of alcohol 

CS+s and novel alcohol pictures to neutral CS- ratings were performed in each group. 

These comparisons showed lower liking for previously rated beer CS+s [t(19) =3.27, p 

= 0.011, r = 0.6], as well as new beer [t(19) = 3.91, p = 0.001, r = 0.67],  and wine 

stimuli [t(19) = 3.72, p = 0.003, r = 0.65] in the REACT + PE group (see Figure. 5.4). 

Spontaneous recovery of stimulus valuation was evidenced by differences in liking 

between stimuli in the REACT no PE and Control group.   
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Figure 5.4.  Reduction in liking of alcohol cues at day eight via counterconditioning 

after memory destabilisation. Bars represent mean ± SEM 

 

 

5.3.4. Attentional bias to CSs 

 

Two participants’ eye tracking data were discarded (one from the control group and one 

from the REACT + PE group) due to insufficient fixations on any images during the 

task. A 3 (Group) x 4 (Picture Type; Beer CS+s, novel beer, wine, neutral) mixed 

ANOVA was performed on attentional bias scores in the visual probe task. These were 

calculated as target image dwell time minus matched control image dwell time. A 

Group main effect [F(2, 54) = 4.768, p  = 0.012, ηp
2 = 0.15]  and Group x Picture Type 

interaction were found [F(6, 162) = 3.293, p  = 0.013, ηp
2 = 0.109], providing an 

oculomotor index of aversion to all alcohol pictures, [Beer CS+s t(35) = 3.19, p =  
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0.046,  r = 0.39] but not neutral CS- pictures [t(35) = 1.5, p =   0.422,  r = 0.25] in the 

REACT + PE group, relative to the control group (see Figure 5.5).  

Figure 5.5: Attentional bias (in msec) to alcohol cues reduced by counterconditioning 

following retrieval + PE. Bars represent mean ± SEM. 

 

To assess the convergence of the liking ratings and attentional bias data and craving, 

responses for each stimulus type were correlated across the measures. Highly significant 

correlations were found between Day 8 cue valuation and attentional bias to alcohol 

stimuli (but not neutral stimuli). These were also highly correlated with craving for 

alcohol. These correlations are given in Table 5.3.  
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Table 5.3 Correlations of liking ratings with attentional bias and alcohol craving.  

*Significant at p < 0.05, ** Significant at p < 0.01 *** Significant at p < 0.001. 

  ATTENTIONAL BIAS  

LIKING 

RATINGS 

 
BEER 

CS+s 

NOVEL 

BEER 
WINE 

NEUT 

CS- 
ACQ 

BEER CS+s .606*** .593*** .572*** -.391** .542*** 

NOVEL 

BEER 
.464*** .523*** .497** -.295* .515*** 

WINE .261 .32* .329* -.007 .244 

NEUT CS- .053 .027 .193 .123 -.056 

 ACQ .462** .496** .483** -.344* - 

 

 

5.3.5. Cue-induced disgust and craving 

 

There were no baseline differences in the DPSS-R, but the REACT+PE group rated 

themselves as more sensitive to disgust following the picture rating on Day 8 than at 

baseline [t(19) = 2.81, p = 0.007, r = 0.54], indicating stronger recall of the aversive 

reinforcement used during the counterconditioning task [ Day x DPSS-R subscale x 

Group interaction F(2,54) = 5.189, p = 0.009, ηp
2

 = .161].  

As the retrieval-counterconditioning was designed to update outcome expectation in 

response to beer cues, we conducted planned analysis on the expectancy subscale of the 

ACQ-NOW. This showed an effect of GROUP [F(2, 57) = 3.69, p = 0.031, η2= .13], 

driven by more negative expectancy of alcohol-related outcomes in the REACT +PE 

group than the Control Group [t(36) = 2.81, p = 0.008, r = 0.42]. Group differences on 

the other subscales were not observed.  
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5.3.6. Changes in Drinking 

 

All groups reduced their self-reported drinking pre-to-post intervention [F(1, 56) = 

5.167, p = 0.027,  ηp
2 = 0.089]. However, no main effect of Group [F(2, 53) = 1.924, p 

= 0.156,  ηp
2 = 0.068] or interaction [F(2, 53) = 0.098, p = 0.907,  ηp

2 = 0.004] was 

observed.  The overall reduction in drinking reduction could be due either to the 

intervention or to non-specific effects such as the Hawthorne effect, regression to the 

mean or increased drinking awareness. To assess the change in beer drinking 

attributable to the intervention, overall liking rating of beer cues (mean of Day 8 ratings 

for old beer CSs and novel cues) were correlated with changes in beer drinking from pre 

to post-intervention.  

The relationship between liking ratings and drinking was moderated by group, with 

change in drinking being highly related to stimulus liking in the REACT + PE group 

(r(20) = .623, p = 0.003) and not the Control [r(19) =0.078, p = 0.75] or NO PE group  

r(20) = -0.296, p = 0.205). Z tests on Fisher transformed correlation coefficients found 

that the difference in these associations was highly significant between the REACT no 

PE and REACT + PE groups [z = 3.02, p = 0.003] and borderline significant between 

REACT + PE and Control [z = 1.87, p = 0.06]. 

  



198 
 

5.4. Discussion 

 

The current study found that using guided expectancy violation to maximise prediction 

error during retrieval sufficiently destabilised strongly-trained, multivariate MMM 

networks to allow updating through subsequent counterconditioning, which produced 

broad-spectrum effects on cue value, motivational salience and alcohol craving. These 

findings demonstrate that robust alcohol MMMs do undergo reconsolidation and 

corroborate the proposed necessity of PE in this process, as evidence of destabilisation 

was not observed when cue-drinking MMMs were reactivated without PE. Importantly, 

destabilisation occurred in the absence of advanced knowledge of learning history, 

suggesting this may be a clinically practicable means for producing MMM 

destabilisation and potentially overcoming a major obstacle in the development of 

reconsolidation-based interventions for SUDs, where the training history and 

idiosyncratic nature of cues is inherently unknown. 

Surprisingly, the reconsolidation-dependent reduction in cue motivational salience as 

indexed by oculomotor approach and cue valuation (Huys et al. 2011a) generalised to 

novel alcohol cues. Reconsolidation-interference effects to date have generally been 

shown to be specific to discrete reactivated cues, with second-order associations 

unaffected (Debiec et al. 2002). This level of pattern-separation could make the 

reactivation and updating of discrete drug cues insufficient to have an appreciable 

impact on drug seeking and using.  Here, reactivation and counterconditioning was 

performed on four prototypical beer cues, thus the simplest rule to learn to predict cue 

outcome was ‘beer cue  disgusting outcome’.  If the reactivation + PE potentiated the 

retention of this rule learning by incorporating it into existing memory networks, this 

would explain the generalisation of effects to novel cues in the REACT + PE group at 

test. 
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This finding is also consistent with research showing that responding to multiple 

outcome-predictive cues can be reduced by blocking reconsolidation following 

reactivation of one of these cues but only if the cues are highly interconnected (Yang et 

al. 2011a), as was the case in the current task. That is, activation of memory networks 

by pattern completion from subsets of inputs (Rudy and O'Reilly 1999) may engender 

widespread destabilisation of pathological memory through activation of a more holistic 

neural representation of cue-outcome contingencies. The high degree of inter-

connectedness, possible hippocampal independence (the hippocampus has very high-

resolution pattern separation capabilities) and susceptibility to activation by individual 

nodes of MMMs in humans may therefore work in favour of reconsolidation-based 

interventions for SUDs. 

Some evidence for reduced motivational salience of alcohol cues was observed in the 

REACT no PE group, although this was not significantly different from the Control 

group. This raises the interesting possibility that the reactivation procedure used in this 

group partially destabilised cue-drinking MMM networks, raising the question of 

whether destabilisation is binary or may occur on a continuum. If the latter, it is possible 

that the level of destabilisation is determined by the size of prediction error at retrieval. 

Testing this hypothesis will require parametric variation of PE during retrieval and 

concomitant assessment of reconsolidation effects.  Maximising PE may therefore be 

the optimal approach to MMM destabilisation.  

We found disgust counterconditioning with pictures and Bitrex solution to be an 

effective way of targeting motivational and evaluative components of alcohol cues 

(Huys et al. 2011a). This may be a useful alternative or adjunctive treatment modality to 

extinction post-destabilisation. Xue and colleagues (2012) found retrieval-extinction to 

effectively reduce craving in abstinent heroin addicts, suggesting a purely associative 
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intervention in MMMs sufficiently targeted craving in this group. It is unclear whether 

the same effects would be observed in our sample. The differential legal status and 

methods of consumption of alcohol and heroin mean heroin cues tend to be few (needle, 

spoon, drug and tourniquet), trained in fewer environments and over fewer episodes 

compared to drinking cues. The reinforcement schedule between exposure to alcohol 

cues and drinking is also likely to be more variable than that between heroin cues and 

heroin use. 

Although currently speculative, it seems reasonable that corrective retraining of MMMs 

would benefit from being highly salient and aversive, providing a more emotional and 

memorable learning experience (Cahill et al. 1995). Engaging emotional responses is a 

key aspect of successful therapy and may work in concert with reconsolidation to 

provoke lasting change (Lane et al. 2014).  If one is aiming to redress aberrantly high 

motivational influences of Pavlovian drug cues, it may therefore be best to ‘fight fire 

with fire’, pairing these cues with a highly de-motivating outcome. In extinction 

learning, the ‘corrective’ outcome is simply lack of reinforcement. In the laboratory 

context (an unusual setting in which to drink) this is unlikely to be a highly salient, or 

memorable reinforcer if it does not engage affective mechanisms. In the abstinent 

heroin-addicted group of Xue et al (2012), the omission of heroin after exposure to 

heroin-related cues produced powerful craving and therefore created a highly salient 

learning experience.  However, pure reward omission may not sufficiently affect 

motivational and affective components of alcohol and other MMMs to produce 

therapeutic change.   

Given the effects observed here, disgust counterconditioning may provide a reliable 

‘probe’ for appetitive memory destabilisation. As mentioned previously, attributing null 

findings to failure of post-retrieval intervention or failure to destabilise memories in 
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MMM reconsolidation research is problematic. If disgust counterconditioning is a 

robust corrective learning modality, it may go some way towards addressing this issue, 

as it will allow attribution of null results to failure to destabilise MMMs. 

The oral consumption modality of alcohol may make alcohol MMMs particularly 

amenable to disgust-based counterconditioning. As disgust is a potent and universal 

anti-consumption mechanism that can be reliably elicited by bitter tastes and various 

images (Olatunji and Sawchuk 2005), further investigation into its use as an 

intervention to reduce the motivational impact of drug cues is encouraged.  The benefits 

of disgust counterconditioning over extinction for reducing drinking must be assessed in 

an experimental paradigm directly comparing the two. Recent evidence, examining 

pathological disgust in anxiety disorders, found that counterconditioning, but not 

extinction, was effective in reducing disgust responses, supporting counterconditioning 

as a more potent learning modality (Engelhard et al. 2014). 

As motivational sensitisation to drug cues is thought to be a key process in the 

pathogenesis of SUDs (Berridge and Robinson 1998; Robinson and Berridge 1993; 

2001) and relapse in abstinent addicts, effectively reducing this via memory updating is 

a promising approach to both prevent and treat SUDs. While the results described here 

represent an important advance in this approach, further research is needed. The current 

study found no overall difference in drinking change among groups. Aditionally, all 

groups considerably reduced their beer drinking over the course of the study, suggesting 

that counterconditioning itself may be an effective strategy for reducing drinking. 

However, only in the REACT + PE group was stimulus valuation related to greater 

drinking change, implying that a memory updating mechanism may have been 

responsible for, or at least contributed to drinking change in this group. Changes in self-

reported alcohol consumption as a result of assessment reactivity or the Hawthorne 
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effect are widely recognised in the alcohol literature and can be observed even after 

simply administering a single screening (McCambridge and Day 2008). It may therefore 

be that observing genuine treatment effects of REACT+PE dependent 

counterconditioning on drinking behaviour will rely on a sufficiently long follow-up or 

‘dose’ of counterconditioning to supersede non-specific effects over time. 

Alternatively, naturalistic experience of conditioned disgust responses when drinking in 

the time between Day 1 and Day 8 may have contributed to reduced motivational status 

of alcohol stimuli on Day 8. If memory destabilisation prior to counterconditioning 

updated existing memory traces, it would be expected that disgust conditioned 

responses were retrieved more when beer cues were encountered naturalistically, 

causing further experience-dependent changes in appraisal of those stimuli. This would 

explain both the correlation between reduced drinking and reduced cue valuation in the 

REACT + PE group and the increased self-reported disgust sensitivity in this group. 

Such an effect is in keeping with recent research employing Propranolol to disrupt the 

reconsolidation of fear responses to spiders in spider phobics. Although behaviourally, 

participants receiving Propranolol with reactivation displayed no fear in spider handling 

at initial test, there was a lag before self-reported spider phobia decreased to non-phobic 

levels (Merel Kindt, personal communication). This suggests that naturalistic 

experience with the ‘updated’ status of a stimulus (i.e. the phobics encountering spiders 

without fear or the drinkers encountering beer cues and feeling disgust) contributes to 

the long-term efficacy of reconsolidation interventions.  

Limitations 

A limitation of the current study was that these naturalistic interim responses were not 

measured. It would have been highly informative, for instance, to assess ‘intrusive’ 

disgust responses in the groups after Day 1 and collect self-report liking and wanting of 
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beer with momentary assessment. This would allow appraisal of the specific mechanism 

of the changes observed in the study following destabilisation and counterconditioning. 

A six week follow-up was attempted in the current study, however, despite the 

researchers’ best efforts, too few participants were contactable for analysis of follow-up 

data to be meaningfully performed. It therefore cannot be determined whether the 

current intervention fulfilled Criterion 2 of the appraisal criteria laid out in Chapter 1 

(long lasting efficacy). Further, although the participants in the current study were 

hazardous drinkers (and therefore an at-risk group for further alcohol use disorder), they 

were by no means a clinical group. It therefore remains to be tested whether the current 

results will extend to patients with AUDs.  

A criticism of the design of the current study may be the single time point post-

intervention assessment of attentional bias, meaning pre-existing group differences 

cannot be definitively ruled out. Such a pre-existing difference is highly unlikely, 

however, given the randomisation to groups and equivalent levels of drinking, AUDIT 

scores and initial ratings of CSs across groups. Using a three day design, it would have 

been possible to assess attentional bias to CSs prior to the intervention and test days 

reported here. However, this would necessarily include pre-exposure to CSs, potentially 

having a latent inhibiting effect on counterconditioning and would render the ‘novel’ 

CSs used on Day 8 familiar.  Nonetheless, such a design may be used in the future to 

rule out non-intervention-dependent effects.  

Lastly, although the counterconditioning used here was effective, it may not have been 

optimal. Much future research will be required to determine the optimum parameters of 

retrieval and counterconditioning (i.e. number of cues, number of trials, reinforcement 

schedules) for producing greatest therapeutic benefit. 
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In summary, counterconditioning after maximising PE during retrieval of alcohol 

MMMs appeared to cause destabilisation and updating of these memories in the current 

study, leading to a generalised reduction in the motivational status of alcohol cues 

which was associated with decreased drinking at least one week later. This preliminary 

finding is promising for the use of a reconsolidation based interventions in SUDs, as it 

suggests robust MMMs can be destabilised via relatively simple procedures without 

knowledge of learning history. The extent to which this is clinically applicable and the 

optimal parameters for post-destabilisation interventions remain to be assessed.  
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Chapter 6:  General Discussion 
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6.1. Introduction 

 

The work presented in this thesis comprises research conducted over three years 

spanning from autumn 2011 to 2014. When the work began, the exponential rise in 

publication rate of studies on the phenomenon of memory reconsolidation was in full 

swing. Some authors had suggested that this approach could be the ‘golden bullet’ for 

the pernicious problem of maladaptive memory processes that underlie relapse in 

addiction (Milton and Everitt 2012). However, at the time, virtually all publications on 

the phenomenon of appetitive memory reconsolidation were based on studies in rats. 

The treatment of the issue in humans was confined to narrative review articles, of which 

there were many.   

While the approach was not without its critics who identified limitations in extant 

studies and urged caution in empirical design and interpretation (Dudai and Eisenberg 

2004; Eisenberg and Dudai 2004; Tronel et al. 2005), it seemed when I started out in 

2011 that, on the basis of translational success in fear learning, a wave of human studies 

on appetitive memory reconsolidation was about to break, bringing with it answers to 

many of the questions concerning its translational potential for substance use disorders.  

Three years later the wave has, disappointingly, still not broken. The empirical work in 

this thesis began with an exhaustive literature search of animal and human appetitive 

memory reconsolidation studies. The preclinical focus of the meta-analysis presented in 

Chapter 2 was driven by necessity, as at the time no equivalent human research existed. 

Since then (to the 12th October 2014), two studies have been conducted examining 

reconsolidation interference as a therapeutic intervention in human drug users. The first 

of these (Xue et al. 2012) used a relatively novel (at the time) retrieval-extinction 

procedure, rather than building upon the wealth of preclinical pharmacological evidence 
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and found a lasting effect of craving reduction, albeit in an already abstinent, inpatient 

heroin-addicted sample, meaning objective assessment of abstinence and relapse rates 

was impossible. The second (Saladin et al. 2013) did use a pharmacological 

intervention, building upon rat research showing efficacy of Propranolol for 

reconsolidation blockade, but failed to show any improvement following the 

intervention in cocaine addicts. It is perhaps telling that, in a recent review of the area 

(the publication rate of which has remained high relative to primary research) there are 

section headers entitled ‘Reconsolidation of Human Fear Memory’ and 

‘Reconsolidation of Human Episodic Memory’ but sadly, no ‘Reconsolidation of Human 

Appetitive Memory’ (Schwabe et al. 2014).  

Thus the research presented in this thesis, to my knowledge, represents some of the first 

and only translational work examining reconsolidation of human drug memories with a 

view to improving treatments. Given this paucity of research in the area over the last 

few years, there is not a great deal of context in which to discuss the studies presented 

here, although I believe they have generated answers to some important questions, 

created perhaps more questions than they have answered and provided some directions 

for future research. This discussion will attempt to synthesise these findings by first 

recapping the major results, considering what we may learn from this research and what 

this means for the future of SUD treatments and finally speculating where the work may 

lead next.  
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6.2. Overview of findings 

 

This thesis aimed to take the first steps necessary to translate promising preclinical 

findings with appetitive memory reconsolidation blockade to human drug using 

populations. To this end, Chapter 2 reported the results of a meta-analysis of preclinical 

studies on NMDAR and β-AR antagonists with the aim of establishing which class of 

drugs (if either) was most effective at blocking appetitive memory reconsolidation and 

statistically addressing some of the methodological issues and controversies thrown up 

by this research. It was found that both β-AR and NMDAR antagonists robustly 

interfered with the restabilisation of appetitive memories, but that NMDAR antagonism 

did so to a much greater extent. The analysis also challenged the generally held view 

that instrumental memories were resistant to reconsolidation (Hernandez and Kelley 

2004; Tronson and Taylor 2007), as robust reconsolidation-interference effects were 

seen for both Pavlovian and instrumental memory tasks. The clinical utility of this 

distinction in SUDs will be revisited later.  Other issues, such as the timing of drug 

administration, also appeared to matter less than has been suggested in the interpretation 

of individual studies relying on the binary logic of null hypothesis significance testing 

(Milton et al. 2008a; Wu et al. 2012). However dose of the NMDAR antagonist MK-

801 showed an unexpected non-linear dose-response curve in reconsolidation blockade, 

indicating that low doses may be more effective than moderate doses.  

These results formed the basis of the study reported in Chapter 3, which examined the 

effect of 10mg of the NMDAR antagonist memantine alongside retrieval of smoking 

MMMs on relapse latency and measures of MMM strength in quitting smokers. This 

study found no therapeutic benefit of memantine and memory reactivation on relapse 

rates or any measure of addiction severity, suggesting either that memantine was 



209 
 

ineffective at blocking smoking MMM restabilisation or that the retrieval procedure did 

not successfully destabilise memories.  

To help disentangle these two alternative explanations for null results, Chapter 4 took a 

step back, using an in-lab conditioning paradigm with an ecologically valid reinforcer 

(beer) in a clinically relevant sample (hazardous drinkers). Building upon recent 

evidence demonstrating the necessity of prediction error for memory destabilisation and 

the known amnestic properties of the NMDAR antagonist of Nitrous Oxide, this study 

found that twenty minutes of inhaling 45% N2O following a brief reminder of 

conditioning reduced conditioned responding at initial test compared to a group that 

received air, as evidenced by pupil dilation dynamics and response accuracy. These 

findings showed promise firstly for the use of methods that induce prediction error for 

destabilising drug memories and secondly in identifying N2O as a potential promising 

therapeutic agent. However they did not assess whether these results would be achieved 

for naturalistically trained MMMs.  

To address these questions, the study reported in Chapter 5 extended the logic of using 

prediction error to destabilise memories by setting up an explicit expectancy of beer 

consumption, but violating this expectancy last-minute. Using an exploratory form of 

corrective learning, disgust-based counterconditioning, following this retrieval 

procedure, it was found that liking and motivational salience of alcohol cues could be 

reduced for at least one week. Correlated decreases in drinking (but not different overall 

to control groups) were observed, along with increases in self-rated disgust sensitivity at 

test, following re-exposure to counterconditioned cues.    
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6.2. Lessons from reconsolidation research  

  

The null findings in the first experimental study in this thesis highlighted what has 

become the central issue in this field of research; the problem of memory 

destabilisation. We do not currently possess the tools to independently determine 

whether reconsolidation is occurring at a given time and as such it remains an 

essentially ‘silent’ process. An inference that reconsolidation has occurred is currently 

made on the basis of the effects of post-retrieval manipulations (with the appropriate no-

reactivation and no-manipulation controls precluding confounding explanations) and 

there is currently no algorithm for designing retrieval sessions to maximise the 

probability of destabilisation.  

Going beyond MMMs, there is evidence that the parameters of retrieval necessary to 

destabilise memories may vary depending upon the type and strength of memory being 

destabilised. In word-pair list learning for example, subtle reminders, such as brief re-

exposure to the training context or a single ‘cue’ word, successfully destabilise word 

pair memories, allowing interference by new word list learning (Forcato et al. 2007). 

However, destabilisation does not occur if participants correctly retrieve the response 

word associated with the cue word during retrieval (Forcato et al. 2009; Forcato et al. 

2010). Note that these findings are not inconsistent with the necessity of PE for memory 

destabilisation as brief exposure to the learning-associated context or a single cue, 

without the opportunity to respond (as per Forcato and colleagues; 2009, 2010) is 

equivalent to a negative prediction error generated by omission of outcome. In this case, 

because the ‘outcome’ (i.e. the response word) is internally generated and can be 

retrieved relatively quickly, more subtle reminders are required to prevent successful 

retrieval and preclude destabilisation.  
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In support of this, due to the retention-enhancing practice effect of successful retrieval 

(Karpicke and Roediger 2008; Karpicke and Roediger, 2007), full retrieval (without PE) 

can counteract the interference effect of new list learning on originally learned word 

pairs where more subtle reminders, such as exposure to the learning environment, 

display a retrieval-induced interference effect (Potts and Shanks 2012).  Such subtle 

reminders are certainly not sufficient to destabilise MMMs, but this discrepancy in 

destabilisation requirements between relatively brief verbal learning and extensive 

appetitive conditioning highlights the fact that retrieval procedures must be scaled to 

memory type and learning history (Frankland et al. 2006; Suzuki et al. 2004) to achieve 

memory destabilisation. If retrieval is incorrectly tailored to memory type, it cannot be 

said with certainty that the nominal ‘no reactivation’ group in an experiment did not 

destabilise a target memory or that the nominal ‘reactivation’ group did.  

The procedures developed in the current work (Chapter 5) may therefore be effective 

for destabilising well-learned motivational memories, but could be entirely 

inappropriate for destabilising verbal or procedural memory. Further, they may be 

sufficient to destabilise cue-drinking MMMs, but still ineffective in an addiction like 

smoking, where training history is even greater. Related to this, there is a further 

problem of engaging reconsolidation vs. extinction, as both rely on prediction error-

driven plasticity, with reconsolidation requiring hitting a ‘sweet spot’ between too little 

prediction error at retrieval to destabilise memory and too much (or more accurately, too 

many), which causes new learning in the form of extinction (Osan et al. 2011)  

Development of tools that can reliably measure memory destabilisation will be 

paramount to the progression of this field. Only then can the epistemic issue of null 

effect attribution be solved and the development of effective post-retrieval 

manipulations begin in earnest. Has the current research illuminated mechanisms by 
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which this might be achieved? Certainly, it has highlighted how a relatively simple 

‘reactivation’ procedure for a rat pressing a lever in a cage becomes exponentially more 

nuanced and complex when applied to human drug users with all their idiosyncrasies 

and heterogeneity. However, it has also provided strong support for the importance of 

prediction error in destabilising MMMs. In Chapter 5, explicitly guided prediction error 

was found to be sufficient for destabilisation of robust, multivariate MMMs in 

hazardous drinkers. It remains to be determined whether PE is universally sufficient for 

memory destabilisation. The previously discussed word-pair learning experiments and 

accounts of reconsolidation as an updating mechanism (Lee 2009) suggest that this may 

be so. If this is the case, the search for procedures that destabilise MMMs will parallel 

the search for means of producing and measuring robust PE upon the retrieval. This is 

perhaps a more tractable goal, as biobehavioural metrics for measuring PE are 

beginning to be elucidated. Of these, electroencephalographic (EEG) measures hold 

particular promise. Certain event-related potentials (ERPs) such as error-related 

negativity (Holroyd et al. 2003), medial frontal negativity and P2a signals (Potts et al. 

2006) have been identified that track errors in reward processing, although reliable 

assessment of these signals requires averaging over hundreds of trials whereas 

destabilisation of MMMs is really a ‘one-shot’ process. Shifts in theta-frequency 

oscillations over the medial frontal cortex may allow real-time measurements of 

memory destabilisation as these are consistently implicated in PE processing and 

subsequent behavioural updating (Cavanagh et al. 2009; Cavanagh et al. 2011; 

Cavanagh et al. 2010; Cohen 2011). Ongoing assessment of oscillations does not 

require the same level of trial averaging as individual ERP analysis, however it remains 

to be seen whether this will be sensitive enough to predict memory destabilisation 

following single retrieval procedures. Collection of EEG before, during and after 

memory retrieval sessions in combination with other proposed indices of prediction 
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error, such as pupillary responses, discrepancies in outcome expectancy ratings and the 

retrieval manipulation described in Chapter 5 may allow identification of potential 

neurobehavioural signatures of memory destabilisation (these will be the subject of 

ongoing work within my team).  

Although highly exploratory at this stage, by modelling behavioural change observed at 

test as a function of candidate EEG, explicit ratings and psychophysiological signals, it 

may be possible to eventually derive independent metrics of memory destabilisation. 

Understanding when and how memories become unstable would have profound 

implications for our understanding of neuroplasticity in addiction, but also for 

psychiatry more generally. As mentioned in Chapter 1, many psychiatric conditions can 

be conceptualised as maladaptive engagement of neural plasticity. An ability to assess 

when memories destabilise (and are therefore plastic) will greatly enhance the efficacy 

of existing treatments such as behavioural, cognitive-behavioural and emotion-focussed 

therapy (Lane et al. 2014).  Thus while measuring memory destabilisation 

independently is an ambitious goal, I believe it is highly worthwhile.  

However, measuring destabilisation is only useful in SUDs if it can be reliably achieved 

for well-learned MMMs. In Chapter 5 I reported the evidence I found for MMM 

destabilisation following guided expectancy violation, but this was in a relatively small 

sample of hazardous drinkers, and not clinical, alcohol-dependent patients. In the latter 

group, the history of cue-drinking episodes is likely to be greater and over a greater 

variety of contexts, which may confer resistance of these memory traces to 

destabilisation. The retrieval –counterconditioning procedure must therefore be further 

validated not only in a larger sample of hazardous drinkers but also in a fully-powered 

study of alcohol-dependent individuals. Both approaches are clinically valid as 
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hazardous drinkers can be conceptualised as being in a prodromal state, where effective 

treatment may prevent their conversion to full dependence. 

It is revealing to note that, of the three studies reported here, the one that found least 

evidence of reconsolidation effects was the one conducted in a dependent sample of 

smokers. This may be taken as evidence suggesting differential susceptibility of 

different cue-drug memories to destabilisation, or suggesting that when MMMs reach 

habit-level, they become highly destabilisation-resistant. This is in keeping with the 

known inflexibility of habitual memory traces (Everitt and Robbins 2005). However, 

the retrieval procedure in that study was designed prior to the demonstration that 

maximising PE was important in MMM destabilisation. An important way to build on 

the collective work in this thesis would be to test the effects of memantine in smokers 

using a maximal PE reactivation procedure as per Chapter 5. Thus before memantine is 

abandoned as a potential reconsolidation-blocker, it must be shown that habitual 

memories are destabilised in reconsolidation interference trials in the first place.  It is 

possible, however, that even retrieval with maximum PE through guided expectancy 

violation may not be sufficient for MMM destabilisation in addicted groups, leading us 

to a potential ‘dead end’ in the field, reminiscent of DCS enhanced cue exposure 

discussed in Chapter 1.  Additionally, as discussed in Chapter 2, meta-analysis revealed 

that reinforcer type moderates effect sizes for the reconsolidation of reward memory in 

animals. This may be a phenomenon that is limited to preclinical research. 

Alternatively, it may be the case that reconsolidation is simply not effective in nicotine 

using populations. The results presented in this thesis (Chapters 4 and 5) do, however, 

indicate that these approaches may be efficacious in alcohol using populations. 

6.3 If all else fails? 
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How are we to proceed if our best attempts to create PE during MMM retrieval in drug-

dependent patients fail to destabilise these memories? Recent research suggests that 

there may be pharmacological means of increasing the destabilisation propensity of 

well-learned memories by priming the epigenetic pathways involved. As outlined in 

Chapter 1, reconsolidation is dependent upon the transcription of DNA and de novo 

protein synthesis. In its ‘inactive’ state, DNA is tightly packaged via proteins into 

spatially compact chromatin structures (Mirsky 1971). Relaxation of this chromatin 

packaging is necessary to allow transcription factors and enzymes access to nuclear 

DNA and produce mRNA. Thus chromatin remodelling is a primary mechanism for 

epigenetic regulation of genes (Hewish and Burgoyne 1973). The majority of the 

structural proteins in  chromatin that directly interact with DNA (the ‘joints’ holding the 

complex together) are histone proteins (Smith 1991). As with many proteins, the 

ongoing function of histones is regulated by the addition and removal of acetyl groups 

(acetylation/deacetylation) and methyl groups (methylation/ demethylation), which 

modifies the bond between histones and DNA, with acetylation of histones ‘freeing’ the 

DNA so that it can be accessed for transcription and deacetylation ‘repackaging’ DNA 

to its inactive state (Grunstein 1997). These acetylation and methylation reactions are 

catalysed by acetylase/deacetylase and methylase/demethylase enzymes. Histone 

deacetylase is thus the enzyme responsible for regulation the ‘switching on and off’ of 

genes through regulating access to DNA (Richon et al. 2000).  

Recent evidence has shown that by inhibiting histone deacetylase (causing histones to 

remain acetylated and DNA to remain available for transcription), via the same retrieval 

procedures that failed to destabilise these memories without drug, remote, strongly 

trained memories can be destabilised and undergo reconsolidation (Gräff et al., 2013). 

Given the molecular pathways involved in reconsolidation described in Chapter 1, it is 

clear to see why this should be the case. Histone deacetylase inhibitors (HDACis) are 
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already used therapeutically, with Valproic acid prescribed for epilepsy and mood 

disorders (Phiel et al. 2001) and Vorinostat, used in lymphoma treatment (Grant et al. 

2007).  Further, HDACis are the focus of ongoing drug discovery due to their promise 

as cancer drugs, so it is likely that more selective and potent HDACis will become 

available over the next decade, opening up a potential pharmacopeia of plasticity-

enhancing compounds for psychiatric use.  

A combination of epigenetic priming and maximising prediction error could potentially 

destabilise the strongest, most habitual of memories. The next decade will see the 

blossoming of ‘epigenetic psychiatry’, examining the interplay between genes and the 

environment and the role of these interactions in neural states of health and disease. 

Aberrant neural plasticity, at some level, is implicated in virtually all psychiatric 

conditions, so understanding the pathways underpinning plasticity from gene to protein 

to cell to neural network, and aberrations in these pathways in relation to phenotypes, 

should shed light on why psychiatric conditions occur in the first place and how they 

can be best treated. Variation in the genes encoding enzymes responsible for regulating 

epigenetic processes like methylation and acetylation may provide further insight into 

the aetiology of deficits in neural plasticity and inform how best to tailor treatments to 

disorders in specific populations.  

Until then, there are other potential means of increasing the susceptibility of memory 

traces to destabilisation. Coming ironically full-circle (Das and Kamboj 2012), pro-

glutamatergic compounds such as D-serine, glycine and D-cycloserine may be usefully 

employed in priming the NMDAergic activation necessary for memory destabilisation 

(Mamou et al. 2006). Although timing of administration and reactivation would have to 

be carefully considered, as there is the possibility of DCS enhancing reconsolidation 

(Lee 2009), it would be theoretically possible to give a dose of DCS prior to 
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reactivation, reactivate memories then rapidly antagonise NMDARs, either with 

intravenous ketamine or inhaled Nitrous Oxide. This may potentiate destabilisation and 

interfere with reconsolidation, allowing further reduction in strength of MMMs. 

Importantly, a double dissociation of the roles of GluN2a and GluN2b receptor subunits 

has recently been found in different stages of reconsolidation, with GluN2b critically 

involved in destabilisation and not restabilisation and GluN2a involved in 

restabilisation, but not destabilisation. Currently we do not possess drugs with sufficient 

specificity for these subunit receptor sites (with the exception of Ifenprodil, a selective 

GluN2b antagonist) to be able to manipulate the NMDAR with such precision in 

humans. However, drug development may identify novel NMDAergic compounds. This 

would essentially overcome the administration timing problem with NMDA antagonists 

(whereby antagonising GluN2b prior to reactivation prevents destabilisation), as 

GluN2a antagonists could be employed that selectively impair restabilisation.  

Of course, if memory updating using behavioural procedures, rather than 

reconsolidation blockade is the aim following MMM destabilisation, such 

pharmacological precision will not be necessary, as pro-glutamatergic compounds such 

as DCS may enhance destabilisation and restabilisation and would not result in 

undesirable effects by potentiating both processes. This begs the question of whether 

there is any benefit of a pharmacological ‘reconsolidation blockade’ approach over a 

behavioural ‘memory updating’ approach at all.   

6.4 A farewell to pharms? 

 

The most striking findings reported in this thesis occurred as a result of a purely 

behavioural procedure. In this study, there were no concerns around inadvertent 

pharmacological interference with destabilisation, as was the case in the study with 

memantine. Importantly, effects were shown for memories trained naturalistically with 
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alcohol reinforcement, for which there was the weakest evidence of disruption from 

meta-analysis of preclinical studies in Chapter 2, indicating that these memories can be 

robustly disrupted in humans.  Moreover, the entire retrieval-counterconditioning 

procedure took around thirty minutes, compared to around 4.5 hours for the memantine 

intervention. The retrieval-updating approach could easily be implemented by clinical 

psychologists as there is no need to prescribe any drug and there are no concerns 

regarding drug side-effects or contraindications. However, the counterconditioning 

procedure is inherently aversive. As discussed in Chapter 5, the Bitrex-containing 

drinks and pictures used produced strong disgust reactions in all participants. This 

salient aversive experience, operating on disgust mechanisms, may have been critical to 

the success of the intervention. From my personal experience in conducting exposure-

based interventions in cigarette smokers (Kamboj et al. 2012) and hazardous drinkers 

(Kamboj et al. 2011), the participant’s engagement in the corrective learning procedure 

can be variable and hard to quantify. In MMM extinction, there is by definition no 

presentation of a primary reinforcer, therefore withholding alcohol or cigarettes 

produces a salient emotional response only in proportion to participants’ strength of 

desire to consume the drug. In the laboratory setting and in the presence of an 

experimenter, this desire is markedly weaker than in a naturalistic environment. This is 

in stark contrast to the effects produced by counterconditioning, where disgusting UCSs 

produced evident and universal disgust responses.   

Adherence to an aversive intervention like counterconditioning may be lower than for 

extinction-based therapies in a clinical setting and patients may be understandably 

resistant to participating in the intervention. The use of the procedure as a treatment thus 

warrants careful ethical consideration. It is possible that its greater efficacy warrants the 

brief aversive experience, or it may be shown that in clinical samples, it does not 

convey sufficient benefit to warrant use. However until the approach is validated in 
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clinical samples we will not know whether it is a viable treatment. Few direct 

comparisons of different forms of corrective behavioural learning (different forms of 

extinction, conditioned avoidance, and counterconditioning) in SUDs have been made 

in the context of SUD intervention, and this should be a priority for future research so 

that informed decisions can be made when weighing the efficacy of each against its 

practicability.  

Pharmacological means of disrupting memory reconsolidation should potentially suffer 

less from this variability in engagement with therapy, as the pharmacological 

mechanism of action of a drug is expected to be more consistent across patients, or at 

least less susceptible to variations in implementation than behavioural therapies. 

Further, although not directly related to treatment efficacy itself, there is generally 

greater financial incentive and research funding for developing pharmacological 

treatments than behavioural treatments. Unfortunately, a ‘drug to prevent relapse’ is 

likely to garner far greater commercial financial backing for clinical trials than a novel 

behavioural procedure.  

However, the limitation of the reconsolidation blocking pharmacopoeia has been 

highlighted consistently throughout this thesis. At present, there are only three 

NMDAergic drugs with potential in this arena; memantine, ketamine and Nitrous 

Oxide. Chapter 2 found null effects of memantine in quitting smokers and its long peak 

latency means it must be dosed orally prior to reactivation, introducing problems with 

destabilisation. As mentioned above its use in the context of adequate destabilisation 

procedures remains to be tested and it should therefore not be abandoned as an agent for 

MMM weakening. As discussed in the relevant section of Chapter 4, N2O, due to its 

rapid onset and offset, could be extremely useful in ‘bridging the gap’ between 

administration and peak effects of oral preparations of drugs administered after 
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reactivation. The discovery of N2O as a potential reconsolidation blocker in its own 

right is exciting for this field as it possesses many of the characteristics of an ideal drug 

for this purpose. Further research will be required to determine the efficacy of N2O 

following the reactivation of naturalistically trained MMMs, but if it is found to be fit 

for this purpose, it will hopefully spur an increase in human MMM reconsolidation 

research.  

It was beyond the scope of the current thesis to examine post-retrieval ketamine, as it 

must be administered intravenously by a qualified anaesthetist. However, this would be 

the next logical step in assessing the ‘pharmacological approach’ to reconsolidation 

blockade. Ketamine has been assessed as an adjunct to cognitive behavioural therapy in 

treating alcohol (Krupitsky and Grinenko 1997) and heroin (Krupitsky et al. 2002) 

addiction, where its side effect profile was not found to hinder its utility. Its utility 

might be maximised through combination with memory destabilisation procedures in 

these groups. No other, more potent NMDA antagonist is available for use in humans, 

so if post-reactivation ketamine is not found to impact clinically relevant variables in a  

meaningful way, it may be time to search for new drug targets in MMM 

reconsolidation. 

Although this thesis focussed on NMDAR modulators, metabotropic glutamate 

receptors, particularly mGluR5may be a key target for reconsolidation interference 

(Salinska 2006). These receptors are heavily implicated in learning and memory 

(Rodrigues et al. 2002) and mGluR5 antagonists have been shown to have anti-addictive 

properties, reducing cocaine self-administration in rats (McGeehan and Olive 2003), 

with knockout rats lacking mGluR5s failing to self-administer cocaine at all 

(Chiamulera et al. 2001). Antagonists at mGluR5 are well tolerated and currently used 

in humans (Berry-Kravis et al. 2009) and they are an exciting potential drug target for 
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reconsolidation-based therapy in addiction, although, as with NMDAR antagonists, 

there is a current lack of human research examining them for this purpose. 

There is thus scope for both employing pharmacological and behavioural interventions 

in MMM reconsolidation and, along with development of independent metrics of 

memory destabilisation, research designed to allow a direct comparison of the two 

approaches will be critical to developing effective behavioural or pharmacobehavioural 

therapies that are ready for clinical use.   

6.5 Lost in Translation: Conceptual Issues in Memory and Reconsolidation 

 

Behavioural modelling in animals is absolutely essential to understanding and bridging 

the ‘chasm’ between neuropharmacology and behaviour (Rang et al. 2003). Indeed, 

apart from the current work, the field of appetitive memory reconsolidation exists 

almost exclusively within these models, hence their dominance seen in Chapter 1. Such 

studies aim to inform our understanding of how basic molecular mechanisms can create 

normal and maladaptive behaviour.  Broaching this chasm is no simple task and fraught 

with conceptual and methodological obstacles. Consider the complexity of the pathways 

identified in Figure 1.5, Chapter 1. This represents a highly simplified schematic of a 

small subset of relevant signal transduction pathways within a single cell.  This 

complexity increases exponentially when cell-to-cell interactions are taken into account 

and further still with the organisation of neurons into heterogeneous functional 

networks. Complex behaviour arises as a result of this emergent complexity (Bar-Yam 

1997; Hopfield 1982). As neural networks in psychiatry are not simple linear systems 

(Chialvo 2010), highly variable pathologies at the cellular level can manifest in the 

same cognitive-behavioural deficits, while the same cellular aberrations can create 

divergent cognitive-behavioural effects (Huys et al. 2011b).  When we administer a 

drug systemically, we are targeting low-level molecular processes and the drugs can 
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produce measurable behavioural effects, but the nature of the intermediate mechanisms 

in humans is unknown. Certain pharmacological systems may be implicated to a greater 

extent (and therefore more important to target) for psychiatric symptoms in some 

individuals than others and development of treatment ‘menus’ that allow variable 

approaches to pathology based on individual differences will be important (Krystal and 

State 2014).  

There is a further ‘chasm’ between animal behavioural models and human clinical 

manifestations of the putatively modelled behaviour. SUDs are perhaps some of the 

most tractable of human psychiatric problems for animal modelling, as predictive 

computational models of behaviour based on reinforcement learning theory and 

dopaminergic modulation of motivation are emerging that can convincingly describe 

key features of addictive behaviours (Dayan and Berridge 2014; Huys et al. 2014; 

Montague et al. 2012). Despite this, there are key differences between rodent and 

human behavioural process. Some of these may be due to environmental rather than 

interspecies differences per se. Operant conditioning of amphetamine self-

administration is much harder to demonstrate if rats are exposed to enriched (i.e. more 

like human) environments (Bardo et al. 2001).  Other behavioural distinctions are the 

focus of much animal modelling for which it is difficult to see the human clinical 

relevance. Some of these will be briefly discussed in the light of the current work.  

As discussed in Chapter 1, in the reconsolidation literature, rodent research has 

identified several putative moderators of memory reconsolidation. It is frequently 

proposed that certain types of associative memory are more or less susceptible to 

reconsolidation than others. This is non-intuitive from a neuropharmacological 

perspective, as all associative memory types commonly tested in lab paradigms 

putatively involve NMDAR activation with subsequent transcriptional cascades and 
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AMPA trafficking for expression and maintenance (Shimizu et al. 2000; Tsien et al. 

1996; Wang et al. 2011). One of the main distinctions between memory types is that 

between Pavlovian and instrumental learning. Researchers often state that instrumental 

memories do not undergo reconsolidation e.g. (Tronson and Taylor 2007), however this 

is based on a single (but highly cited) null finding (Hernandez and Kelley 2004), while 

positive findings have been ignored (Diergaarde et al. 2006; Przybyslawski and Sara 

1997). The current work challenges this distinction in reconsolidation susceptibility.  

Logic would suggest that instrumental memories should undergo reconsolidation to 

allow efficient updating of appropriate action-outcome contingencies (which are known 

to be highly flexible) (Dayan and Balleine 2002) and the current work suggests that this 

is indeed the case. In Chapter 2, meta-analysis found robust evidence for both 

Pavlovian and instrumental appetitive memory reconsolidation blockade. Further, in 

Chapter 4 I found that reconsolidation-blocking effects of post-retrieval Nitrous Oxide 

that appeared to operate largely on instrumental responding. This is not to say Pavlovian 

memories were not affected, as only pupil data were available as a continuous measure 

of responding to Pavlovian conditioned stimuli and pupillary responses to these were 

generally small. Regardless, these findings demonstrate that in terms of reconsolidation 

susceptibility, the putative Pavlovian –instrumental dichotomy may be false, a 

conclusion which is further supported by recent evidence (Exton-McGuinness et al. 

2014; Tedesco et al. 2014) showing instrumental memory reconsolidation.  

More generally, beyond the operationalized definition of Pavlovian outcomes as 

independent of action and instrumental outcomes as action-dependent, the clinical 

relevance of the distinction is somewhat unclear. All contemporary computational 

accounts of reinforcement learning differentiate Pavlovian learning, based on the values 

(V) of states (s) and instrumental learning, based on the values (Q) of actions in given 
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states (s) (O'Doherty et al. 2003). However, these distinctions are largely based upon rat 

experiments and there is a large discrepancy in the action and cognitive representational 

repertoire of rodents and humans. It is possible, therefore, that some of the observed 

phenomena are species-specific.  

Approach behaviour in rats, for example, is generally classed as a Pavlovian response 

behaviour (Parkinson et al. 1999), even though approach clearly influences reward 

outcome, as a reward cannot be consumed if the animal cannot reach it. ‘Oculomotor 

approach’ can be reliably observed in humans (Mogg et al. 2003; Mogg et al. 2005) and 

is sensitive to manipulations of relevant neurotransmitter systems, i.e. dopamine 

(Freeman et al. 2014) but automatic approach of the entire organism to reward locations 

has never been shown. When humans do move towards rewards in naturalistic settings, 

it is undoubtedly with the goal of interacting with the reward in the appropriate way. 

This ‘appropriateness’ of responding highlights another dissociation between human 

and rodent approach behaviours.  

Following repeated pairing of a cue with a reward (a light with food, for example), 

some rats, known as ‘sign trackers’ (Hearst and Jenkins 1974) will begin to approach 

the light, interact with it and attempting to consume it. Others, known as ‘goal trackers’ 

will go straight to the location of reward delivery and make preparatory consummatory 

responses. These two behavioural response characteristics are also dissociable in terms 

of the recruitment in dopamine, with greater phasic firing shifts to cue presentation in 

sign-trackers (Flagel et al. 2011). However, human examples of sign tracking are again 

lacking. Humans are rarely observed attempting to smoke tobacconists, inject heroin 

dealers or copulate with condom packets. The single example that is repeatedly used to 

suggest that sign tracking does occur in humans is the anecdotal report of crack cocaine 

users ‘chasing ghosts’, looking for crack rocks on the floor (Berridge et al. 2009; Tomie 
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et al. 2008) and occasionally smoking sugar or salt granules found in this manner. 

However, it is more likely that this represents superstitious or delusional beliefs about 

dropped crack than true sign-tracking, particularly given the fact that psychomotor 

stimulants increases delusion-like beliefs (Bartlett et al. 1997). Indeed, translational 

attempts to identify human sign-tracking behaviour and link it to dopaminergic activity 

have been abandoned due to difficulty demonstrating human sign-tracking in 

experimental settings (R. Koster, personal communication). If sign tracking were an 

important component of addiction, it seems it should be easier to demonstrate robust 

examples in humans.  

That these effects are easily demonstrated in rats but not in humans hints at 

evolutionarily prepared and ethologically specific responses in the former species, likely 

as a result of the aforementioned difference in cognitive-behavioural repertoire and 

capacity for model-based goal representation between the two. In Chapter 4 in this 

thesis, I demonstrated that humans readily learned to make an avoidance response to a 

reward-predictive CS to obtain a reward (although this was admittedly slower than the 

learning of an approach-to-win response). Chicks are incapable of such learning and 

will continue to approach a food bowl even if this causes it to recede at twice the pace 

of approach (Hershberger 1986). It is perhaps unsurprising then, that glutamatergic 

modulators (like memantine) have different effects on reconsolidation in day-old chicks 

(Samartgis et al. 2012) compared to rats (Popik et al. 2005) and humans (Chapter 3).  

These differences between species are extremely important, considering that so many of 

our current models of reward learning (Sutton and Barto 1981; Sutton and Barto 1998), 

incentive salience (Berridge 2009; Berridge and Robinson 1998; Robinson and Berridge 

1993) and addiction are based on experiments with rodents. What are believed to be 

important distinctions in behavioural processes in animals may be far less so in humans. 
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As highlighted in Chapter 2, there is virtually never an instance in human drug use 

where drug delivery occurs in a purely instrumental or Pavlovian fashion. Quite the 

opposite, a great deal of time and effort can be spent procuring drugs (indeed this is one 

of the hallmarks of addiction), requiring action and associative chains far more complex 

than lever pressing or simple approach. This is not to say that the distinction between 

Pavlovian and instrumental memory lacks utility per se, but that the insightful questions 

for human SUDs regard how Pavlovian and instrumental mechanisms interact to 

support such ongoing motivated behaviour.  

 

In future, it will be necessary to directly and objectively appraise behavioural 

homologues between animal models of SUDs and clinical or preclinical substance-using 

human populations. More research in back-translation of human findings to animal 

models will expedite this process by highlighting where the latter are and are not 

sufficient to capture behavioural disorder in humans. One area where this would not be 

possible however is in demonstrating reconsolidation of explicit memories. It has been 

shown in human fear memory reconsolidation paradigms and Chapter 4 that 

reconsolidation interference with Propranolol or Nitrous Oxide targets autonomic (that 

is, low level motivation or sympathetic nervous) aspects of conditioned responding 

(Kindt et al. 2009; Soeter and Kindt 2010; 2011), but leaves explicit knowledge of 

contingencies between stimuli and outcomes intact. Clearly there is no way to gauge 

expectancy in rats so this cannot be tested in animal models. However, further research 

into the levels of human amnesia that can be produced by reconsolidation blockade is 

warranted. 

 

6.5. Aberrant memories & Hindsight: Regrets and Limitations  
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The research presented throughout this thesis paralleled my evolving (and still limited) 

understanding of the mechanisms involved in MMM reconsolidation. If it were possible 

to repeat the experiments presented herein, armed with the knowledge gained from 

having performed them in the first place, there are many changes I would make. Firstly, 

by careful inspection of the methods sections of primary research, it may be possible to 

determine what level of prediction error was present during reactivation sessions. By 

comparing the length, number and reinforcement schedules of conditioning trials to the 

length, available stimuli and reinforcement during reactivation, a metric of mismatch 

could be derived. Regressing effect sizes on such a ‘prediction error’ score would allow 

assessment of PE in memory destabilisation in these paradigms. If it were found that 

those trials with the smallest effects were those in which PE was likely to be weaker, 

this would alter the interpretation of drug efficacy on appetitive memory reconsolidation 

and potentially change the outcomes of the meta-analysis in Chapter 2.   

Despite having negative results, Study 2 with memantine in quitting smokers was by far 

the greatest investment of this work, with the entire study taking almost two years to 

complete. For the reader’s amusement, a CONSORT diagram representing the 

recruitment difficulties in this study is presented in the appendix. The recruitment and 

follow-up for this study highlighted some nuances surrounding the survey figures 

suggesting that 50-70% express a desire to quit annually (West 2006). The expression 

of a desire to quit highlights a certain (not particularly great) level of motivation to stop 

smoking. Of those smokers expressing this desire, fewer take any kind of action to 

actually stop, fewer still approach cessation with a concerted plan, including a quit date, 

pharmacological and behavioural support, and only a subset of these achieve abstinence 

for longer than a week.  
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The sample included in Study 2 represented a group towards the top of this ‘motivation 

continuum’ and are therefore likely not representative of all the smokers ‘expressing a 

desire to quit’. Although a relatively small sample, assuming those who responded to 

the advertisements for the study represented this latter group, only 7% followed through 

and completed the study. This suggests that the vast majority of smokers are unlikely to 

engage in a quit attempt with the level of motivation or organisation (e.g. discarding 

leftover cigarettes, lighters and tobacco, acquiring nicotine gum) required for any kind 

of success. Therefore those that might engage in a novel reconsolidation-based 

treatment for cessation, even if it is highly effective (which this was not), will represent 

a small minority of smokers. The major part of reducing the health costs associated with 

smoking will therefore require increasing smokers’ motivation to engage with treatment 

in the first place.  

The design of studies during this thesis has reflected an evolving state-of-knowledge of 

the boundary conditions on reconsolidation. Throughout the research, various factors 

have been changed which complicates the comparison of different studies. The 

experimental sample changed from cigarette smokers in Chapter 2 to hazardous 

drinkers subsequently and therefore from an addicted to a non-addicted (but high risk) 

population. The findings from these studies are therefore not directly comparable. The 

post-retrieval intervention was further changed in each study, from memantine to 

Nitrous Oxide to counterconditioning, again meaning it is not possible to tell whether 

variable results were due to changes in the efficacy of the intervention or due to 

parameters of destabilisation (which also varied from study to study). Had there been 

more time and resources available, this thesis would have been greatly improved by 

assessing memantine and Nitrous Oxide following the reactivation with PE procedure 

developed for Chapter 5 in hazardous drinkers. The desire to maintain clinical 

applicability in the research was consistently weighed against the desire for sensitive 
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and well-controlled experimental protocols (and constrained by the time and resource 

limitations of doctoral research), but Chapter 2’s study with memantine would have 

benefitted from more controlled experimental work into destabilisation procedures prior 

to its completion. Trialling multiple doses would also have been an efficient use of 

resources. One drawback of reconsolidation research is the necessity for at least three 

groups to ensure effects are drug + reactivation dependent. Total Ns in these studies 

therefore rapidly increase and adding a single extra dose group is easier in the long-term 

than completing an entirely new study with new control groups.  

As discussed in Chapter 1, addiction is a complex and multivariate problem that arises 

as a result of a variety of genetic, epigenetic and environmental insults. Given the 

current state of knowledge concerning the lifespan of memory traces, the process of 

reconsolidation offers the best therapeutic target we know of for targeting MMMs and 

preventing relapse. However, this is not to say that it will work in a meaningful way as a 

stand-alone treatment for substance use disorders. There is a minimum amount of 

motivation required to achieve success in long-term drug abstinence, regardless of how 

effective an anti-relapse intervention is. Reconsolidation interference may help those 

motivated to quit to achieve permanent abstinence and even offer some protection 

against relapse, given observed effects of protection against reacquisition (Chapter 4 

and (Monfils et al. 2009). However it will not prevent abstinent individuals who choose 

to begin using drugs again from doing so. Further, the reasons for drug use vary and co-

morbidity of SUDs with other psychiatric conditions is highly prevalent (Volkow 2004). 

Many patients use drugs to self-medicate existing psychological conditions and in these 

groups, cessation of drug use can result in increased negative affect (Baker et al. 2004). 

It can be difficult to infer causality in these circumstances. Does a patient drink because 

he is depressed or is he depressed because he drinks? Or are both epiphenomenal to a 

distal causative factor such as childhood trauma? When considering treatment options it 
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must therefore be considered that SUDs may be secondary pathologies and treating co-

morbid disorders in tandem may be the only approach that effects improvement in these 

populations. 

The reader might criticise the research conducted here and conclusions derived of being 

overly behaviourist in their representation of SUDs. Given the emergent complexity of 

cognitive systems and lack of linear mapping from molecule to neural network to rat 

behaviour to human behaviour, the approach taken throughout this thesis (of looking at 

identified basic molecular mechanisms of memory reconsolidation and attempting to 

exploit them for clinical benefit in humans with a single drug) may seem reductionist 

and simplistic.  Clinical psychopharmacologists have tended to operate with relatively 

simple (some might say associationist) models of learning, partly because these are 

what can be readily tested in laboratory animals with drug interventions. There is a 

long-standing and fierce debate between ‘cognitive’ and ‘associative’ accounts of 

learning amongst human experimental psychologists, with some going to far as to 

completely abandon associative accounts of learning (Brewer 1974).  I am sure that 

psychologists with a cognitive bent would suggest that, given the human capacity for 

propositional thinking and cognitive modulation of learning (that far outstrip that of any 

laboratory animal), the simplistic animal-based models used in this thesis are an 

incomplete description of human behaviour.  

 

While this is true and there are undoubtedly important higher cognitive aspects of both 

memory and SUDs that are neglected by the current research (Kavanagh et al. 2005). I 

believe it is unhelpful and ultimately incorrect to unilaterally label learning as purely 

‘associative’ or ‘cognitive’. Both putatively arise as a result of the same basic 

neuropharmacological processes (discussed throughout this thesis), and likely represent 
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different levels of the same increasingly networked hierarchical neuronal systems. One 

of the strengths of neuropsychopharmacology is its requirement for researchers to 

critically appraise how proposed models of learning and cognition might be instantiated 

in the molecular and electrical currency of synapses and neurons. It is in understanding 

where best to intervene when processing goes awry in these hierarchical structures that 

will hold the key for the development of effective clinical interventions. For example, it 

is possible that the cognitive experience of constructs such as craving arise as a result of 

the maladaptive reward learning processes that have been the focus of this thesis 

(Tiffany 1990). If this is the case, addressing these processes may reduce the negative 

cognitive-affective experiences associated with addiction, but this remains to be 

demonstrated. Alternatively, therapies that concurrently target cognitive and mnemonic 

aspects of SUDs (e.g. a combined MMM reconsolidation blockade and CBT therapy) 

may be required for optimal clinical improvement.  

The positive effects identified in this thesis demonstrate that targeting basic 

pharmacological and learning mechanisms may be sufficient to effect meaningful 

clinical change, even if the precise intermediate mechanisms of change are currently 

poorly understood. However, much could be gained from incorporating findings and 

approaches from cognitive psychology with more basic associative interventions. In 

Chapter 5, a large part of the efficacy of the approach was undoubtedly due to the 

propositional representation of stimulus contingencies.  Taking the approach used in 

this study forward, it would be desirable to design post-retrieval interventions to 

maximise the generalisation of corrective learning. Various factors, including stimulus 

properties and instructions to participants, have been identified that can shift learning 

from single elements (Rescorla and Wagner 1972) to more configural representations 

(Pearce 1987) of stimulus arrays (Melchers et al. 2008). Taking account of these factors 

would allow optimisation of behavioural reconsolidation interventions for SUDs. In the 
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form of an eventual therapy, such interventions would be conducted under the 

supervision of a therapist, so optimising both the parameters of counterconditioning and 

instructions from therapist to patient will be key in getting the greatest benefit from the 

approach. Despite the myriad unanswered questions and difficulties in translating 

research from pharmacology to clinical psychopharmacology, I believe clinically 

relevant interventions based on reconsolidation can be designed and implemented by 

applying this translational approach in humans. 

 

Lastly, one could speculate whether and if so when reconsolidation-based therapies for 

SUDs (and potentially other psychiatric disorders) will be seen in clinics. There are 

barriers beyond the psychopharmacological and methodological ones discussed here. 

Reconsolidation research is an ethical minefield, with concerns being raised about 

‘brainwashing’ and memory erasure (Kass 2003) and the over-medicalisation of normal 

aversive memories (Henry et al. 2007). It is possible that those raising concerns against 

this research on ethical grounds are unaware of the fact that research demonstrating 

‘erasure’ by a drug in humans does not exist (although a small molecule, zeta inhibitory 

peptide, conforms to this profile when tested in rats; Shema et al. 2007) or that episodic 

memories are consistently re-structured and modified from actual events (Loftus 1996; 

Loftus and Palmer 1974). However, these concerns are likely to be widely echoed. 

Certainly, the potential benefits of any reconsolidation-based intervention must be 

weighed against the ethical costs, but in the case of SUDs and PTSD, the balance is 

overwhelmingly in favour of intervention. Despite its currently fictional nature, the idea 

of pharmacological episodic memory erasure strikes a personal chord that will 

inevitably provoke strong opinions on the use of such therapies (however 

misrepresented) in psychiatric disorders. Reconsolidation interference also provokes 

unfortunate reminiscences of Anthony Burgess’ ‘A Clockwork Orange’ and its journey 
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from the lab to the clinic is likely to garner controversy. However, it is hoped that if 

sufficiently efficacious interventions for debilitating disorders like SUDs are developed, 

that this will overcome the resistance to the adoption of such treatments.  
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6.6. Concluding Remarks 

 

The work presented in this thesis is the first, to the author’s knowledge, to examine the 

role of NMDAR blockade and disgust counterconditioning in MMM interference in 

humans. The major contributions of this work include:  

1) The identification of NMDAR antagonists as more robustly interfering with 

appetitive memory reconsolidation than β-Blockers 

2) The potential of Nitrous Oxide as a novel, well tolerated reconsolidation-

blocking agent  

3) The use of guided expectancy violation to generate maximal prediction error 

during MMM retrieval  

4) The use of a disgust-based counterconditioning procedure to reduce the 

evaluative and motivational status of alcohol cues.  

Given the dearth of available human research in this field, these findings represent a 

significant advance in our understanding of human MMM reconsolidation mechanisms 

and a platform for the large volume of further research that is required in this field. The 

research presented here is promising and suggests that memory reconsolidation may 

offer a unique opportunity for lasting therapeutic improvement in SUDs. 
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Appendix 1 

Chapter 2 Study Quality Assessment Instrument 

1. Is the study design (or paradigm) described? ( 1  = yes, 0= no) 

2. Is the paradigm used a valid measure of reward responding? 

(1 = yes, 0 = no) 

3. Is the design appropriate to assess drug effects on reward 

reconsolidation? (1 = yes, 0 = no) 

4. Are there clear inclusion and exclusion criteria? ( 1 =  criteria 

given,  1  = no exclusions and no need for criteria, 0 = exclusions 

without criteria definition) 

5. Are the procedures for randomization (if appropriate) 

described? (1 = described, 1 = randomisation not appropriate & 

not described, 0= should have randomised and haven't described) 

6. Are the procedures for blinding (if appropriate, i.e. if outcome is 

experimenter rated) described? (1  = appropriate & described, 1 = 

not appropriate (automated) , 0 = appropriate and not described) 

7. Are the outcome measures clearly defined, including methods 

of measurement? (1 = yes, 0 = no) 

8. Are the outcome measures appropriate to assess the 

pharmacological intervetntion in reconsolidation? ( lever 

presses, nose pokes, time on drug-paired floor, acquistion of new 

instrumental response etc. 1 = yes, 0 = no) 

 

9. Did the subjects meet the inclusion/exclusion criteria (where 

these were present?) (1 = exclusions explained in terms of 

criteria, 1 = no exclusions, 0 = exclusions made without reference 

to criteria) 

Are demographics (i.e. species/weight) for all subjects 

included? (1 = yes, 0 = no) 

Is there sufficient control  i.e. a drug/no reactivation group 

and a placebo/reactivation group? (1 = yes, 0 = no) 

In a multi-group study, were the groups comparable at 

baseline? (just pre-experiment variables e.g. species, weight, 

home conditions, (1 = yes, 0 = no) 

Where outcome measure was experimenter rated, was inter-

rater reliability achieved and evaluated? (1 =  automated, 1 = 

experimenter inter-rated and reliability assessed, 0 = experimenter 

rated but not inter-rating or reliability testing) 
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Were the laboratory methods known to be accurate and are 

they still considered valid? (Any standard measure of reward 

conditioning such as CPP, nose poke, self-administration = 1. If 

non validated test = 0) 

 

 

Is length of reactivation trial given? (1 = yes, 0 = no) 

 

Was drug given before reactivation or after? (0 for before, 1 

for before & after, 1 for simultaneously and 1 for after.) 

 

Were all assays done in the same laboratory using the same 

methods? If not, what steps were taken to assure inter-assay 

reliability? (1 = all same methods and lab, 1  = different labs, 

same methods and reliability procedures described, 0 = different 

labs/methods, reliability not described) 

 

Is administration route of drug given? (1 = yes, 0 = no) 

 

Is drug dose given? (1 = yes, 0 = no) 

 

Where drugs are given intracerebrally, are the implantation 

procedure and site clearly described? (1 = IC and procedures 

fully described, 1 = systemic or intraperitoneal, 0 = IC and poor 

description) 

 

Are all relevant treatment schedules clearly described? (no. 

trials, no. reinforcers, timing relative to CSs: 1 = yes, 0 = no) 

 

Is timing of drug administration relative to reconsolidation 

clearly described? (1 = yes, 0 = no) 

Are the analytic methods clearly described and appropriate 

for the data and study design? ( 1 = given and appropriate, 0 = 

given and inappropriate, 0 = not given) 
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Participant Information sheet for Chapter 3  

Who are we recruiting? 

We would like to recruit smokers (> 10 cigarettes per day and meeting screening 

eligibility criteria) aged 18-45 to participate in this research project. You must be 

seriously looking to quit smoking in the near future, and agree to attempt to quit 

as part of the study. 

Details of Study: 

You should only participate if you want to; choosing not to take part will not 

disadvantage you in any way. Before you decide whether you want to take part, it is 

important for you to read the following information carefully and discuss it with 

others if you wish. Ask us if there is anything that is not clear or you would like more 

information. This study is being conducted by researchers from the UCL Clinical 

Psychopharmacology Unit (CPU). 

Why are we doing this study? 

Heavy smoking is associated with a variety of psychological and physical health 

issues. Many people find it difficult to cut down their smoking despite repeated 

attempts to do so. While some treatments exist to help quitting, none of them are 

very effective at helping people quit in the long-term. Previous research suggests 

that a certain brain chemical involved in memory is important in causing relapse after 

quitting smoking. This study aims to test a specific theory about how this chemical 

affects processes related to smoking and affects relapse after quitting. We hope 

that this study will inform new and more effective therapies to help people stay quit. 

Volunteers will be given a single dose of a medication (memantine) which blocks this 

chemical, or an inactive placebo (sugar pill). By taking part in this study you will 

contribute to the scientific knowledge of tobacco addiction and help with the 

development of better future treatments. If you would like to receive an overview of 

the study’s results once it has been completed, please ask the investigator and this 

will be arranged. Please note, while this study aims to inform a cutting-edge smoking 

cessation treatment, it is not a validated smoking cessation treatment in its own 

right. Therefore, while your smoking habits may change over the course of the 

study, this is not guaranteed. Be aware that, should you choose to take part, you will 

be randomised to a group and neither you nor the experimenter will know whether 

you have received drug or placebo. 

What will I have to do? 
If you agree to participate in this study you must email CPUexperiments@gmail.com 

mailto:CPUexperiments@gmail.com
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with a contact telephone number and a convenient time to call. You will then 
receive a call from us and we will ask you a series of questions about your smoking, 
physical and mental health history. This should take around 15 minutes. Please note 
that, based on you answers to these questions; you may not be eligible to take part in 
the study, in which case we will stop the screening. If you are eligible to take part, 
you will be sent some questionnaires to fill out at home and be required to 
complete an online daily smoking diary for a week before coming to the Clinical 
Psychopharmacology Unit at UCL, at a time convenient for you. Please note that if 
you do not fill out the questionnaires and return them, or do not fill out the diary 
every day (it should only take 2-3 minutes a day), your testing sessions will be 
cancelled. 

In total, you will have to come in on two occasions about 7-10 days apart. You will be 

required to abstain from drinking alcohol or using any illicit drugs for the 24 hours 

before testing. You must also not eat or drink any caffeinated drink in the 3 hours 

before the first session. 

A central part of this study is that you attempt to abstain from smoking after the 

end of the first session for as long as possible. You should view the end of the first 

session as a target ‘quit’ day, from which point on you will not smoke. While we 

appreciate that it may not be possible to stop smoking completely, you should only 

take part if you want to quit smoking in the near future and are willing to seriously 

attempt to do so as part of the study. 

We will measure breath alcohol and carbon monoxide levels with a smokerlyzer test 

at the beginning of every testing session. If the breathalyser test shows that you have 

a high blood alcohol concentration, testing will have to be cancelled and you will not 

be paid. We will also assess your recent smoking with a salivary sample that 

measures cotinine, a metabolite of nicotine. 

Day 1 

You will first receive 10mg memantine or a placebo. In order for the experiment to 

be ‘blind’, you will not know which drug you have taken, nor will the experimenter, 

as all the pills are identical. If you wish to find out which drug you took, this 

information can be sent to you by a third party after full completion of the study. 

You will then go through some questionnaires that measure general mood and some 

personality factors and complete come computer-based tasks. These will involve 

measuring your reaction times and eye movements to various pictures. There will 

be a rest period of between 30 and 50 minutes after this until 2.5 hours has passed 

since taking the pill. Finally you will complete some brief computer and questionnaire 

tasks. Depending on what group you are assigned to, you may be exposed to some 

items that remind you of smoking. One task will involve you watching a video while 

we measure your heart rate, blood pressure and skin conductance. This will involve 

fitting an electrode belt 
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against your skin (i.e. under your top). You will be shown how to fit the belt and 

then allowed to put the belt on in private. All of these procedures are completely 

safe and non-painful and the belt should be very comfortable when you are 

wearing it. If you are not comfortable wearing the belt against your skin, you should 

not take part in this study. After this, you may or may not be required to smoke a 

cigarette. In total, day 1 will take around 3 hours After day 1, you must not smoke or 

drink for the rest of the day after the end of testing, and you should attempt to 

abstain from smoking (stay quit) for as long as you possibly can. 

Between the first and second testing sessions, you must continue filling out the 

online diary at the end of every day. It is vital that you fill this out daily. If you do not 

fill out the diary, your second session will be cancelled and you will not receive 

payment. 

Day 2 

On day 2, one week later, you will repeat the tasks from day 1, but you will not be 

required to take any pills. This session should last around 1 hour in total. 

Follow Up 

After day 2, you will not have to come to UCL again, but must continue filling in the 

electronic smoking diary every day for 3 weeks. Continuing to fill out the diary critical 

to study, as it will allow us to assess whether the treatment affects your ability to 

stay quit in the long-term. As such, you will not receive full payment unless you 

continue to fill out the diary every day for 3 weeks after the study. After this, we ask 

you to fill out the diary only once a week for 4 weeks. You will be sent reminders 

about when to do this. We will contact you once at 3 months, 6 months, 9 months 

and 1 year to ask you some quick follow-up questions and to check in on how your 

smoking has changed. 

How will I be paid? 

You will be reimbursed for time spent in UCL at the standard rate of £7.50 per hour. 

In total, testing time should be around 4 hours, so you will receive ~£30 payment 

(there is the opportunity to win slightly more money in some of the tasks). Full payment 

is contingent upon completing both the testing days and diary. Therefore. You will 

receive half of the payment (£15) upon completion of Day 2 (as long as the diary has 

been completed up to that point). The rest of the payment (£15-20) will be paid 

directly into your account or by cheque after completion of the diary for 3 weeks 

following day 2. 

What are these drugs and what are the possible risks? 

Memantine is used in the treatment of moderate to severe Alzheimer’s disease, as it 

protects against some of the loss of cognitive function associated with the disease. 
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Memantine is generally very well tolerated, especially at the low doses that will be 

used in this study. It is unlikely that you will notice any subjective effects of the 

drug if you receive it. In a small minority (~1%) people, the drug can cause dizziness, 

agitation or confusion; however, this is highly unlikely at the doses used in this study. 

As memantine is metabolised by the kidneys, if you have any history of, or current 

kidney dysfunction, you will not be able to take part in the study. 

As memantine can cause mild drowsiness, you must not operate any heavy machinery, 

drink or drive after taking the drug. 

What are the benefits of taking part? 

By taking part in the study, you are contributing to the developments of better 

treatments for quitting smoking. In answering the questions and tracking your 

smoking behaviour over the course of the study you may gain new insight into the 

drivers and triggers for your smoking. As quitting smoking is part of the study, you will 

experience all the health benefits of quitting (reduced risk of all cancers, improved 

cardiovascular function and respiration reduced risk of heart disease, increased life 

expectancy, significant monetary savings, more free time etc.) for as long as you stay 

quit. The treatment itself may help you stay quitted longer or reduce your cravings for 

cigarettes while you are abstinent, however we cannot guarantee that this will be 

the case. Everyone involved in the study will be directed to NHS support material for 

quitting and is encouraged to use nicotine replacement therapy (NRT), both of which 

can help manage cravings during the first week of quitting. 

How will my data be stored? 

All information which is collected about you during the course of the research will 

be kept strictly confidential and will be securely stored electronically, using a 

numbered code so that you cannot be identified. Only researchers directly involved in 

the study will have access to the data. All data will be stored in accordance with the 

Data Protection Act 1998. The data will be used only for informing the research 

question in this study and the results of the research will be disseminated in peer-

reviewed scientific journals, but you will in no way be identifiable from such 

publications. 

Note – if you have any further questions regarding this study please do not hesitate 
to contact any of the researchers above by emailing CPUexperiments@gmail.com. 

This study has been approved by the UCL ethics committee 

Please discuss the information above with others if you wish or ask us if there is anything 

that is not clear or if you would like more information. 

It is up to you to decide whether or not to take part. If you choose not to participate it will 

involve no penalty or loss of benefits to which you are otherwise entitled. If you decide to 

mailto:emailing_CPUexperiments@gmail.com
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take part you will be given this information sheet to keep and be asked to sign a consent 

form. If you decide to take part you are still free to withdraw at any time and without giving 

a reason. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



277 
 

 

 

 



278 
 

Information Sheet Chapter 4 

  

Who are we recruiting? 

We would like to invite heavy beer drinkers, defined as people who drink twice (or more 

than twice) the governmental daily recommendation of alcohol at least 3 days out of 

every 7. The governmental daily guidelines are 2-3 units per day for women and 3-4 

units for men.  

Details of Study:  

We would like to invite you to participate in this research project. You should only 

participate if you want to; choosing not to take part will not disadvantage you in any 

way. Before you decide whether you want to take part, it is important for you to read 

the following information carefully and discuss it with others if you wish. Ask us if there 

is anything that is not clear or you would like more information. This study is being 

conducted by researchers from the Clinical Psychopharmacology Unit at UCL. 

Why are we doing this study? 

The way people learn about contingencies is thought to be important in psychiatric 

illnesses such as drug addiction and Post-Traumatic Stress Disorder (PTSD). Certain 

brain chemicals are thought to be important in the way learned associations are stored, 

recalled and control behaviour. We are interested in the role of a specific brain receptor 

in the recall of learned information. This receptor is blocked by Nitrous Oxide. 

Participants will therefore be required to breathe Nitrous Oxide (N2O) gas or normal air 

when recalling previously learned information. By taking part in this study you will 

contribute to the scientific knowledge of the brain basis of memory and recall and 

inform potential future treatments for psychiatric disorders like addiction and PTSD. If 

you would like to receive an overview of the study’s results once it has been 

completed, please ask the investigator and this will be arranged. 

What are these drugs and are they safe? 

Nitrous Oxide, also known as ‘laughing gas’ is an inhalable gas that has analgesic 

(pain-killing) properties. It is a very safe drug that is widely used in dentists and in 

hospitals during birth as a painkiller. The effects of N2O are quite similar to being drunk, 

in that it can make people quite giggly, uncoordinated or dissociated. There will be a 

standard dose of N2O used in the study that will be inhaled through a mask that covers 

your nose and mouth. After you take off the mask, the effects of the N2O very quickly 

disappear and you will feel normal again within a few minutes. You will be randomly 

assigned to breathe N2O or a placebo (normal air) and will not be told which you 

receive. 

What will I have to do? 

If you agree to participate in this study you must contact the experimenter by email with 

contact information and a convenient time to call. You will then receive a call from us 

and we will ask you a short series of questions to check your eligibility for the study. 

Please note that, based on your answers to these questions; you may not be eligible to 
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take part in the study. If you are eligible to take part, you will be asked to come to the 

Clinical Psychopharmacology Unit (CPU) at UCL at a time convenient for you on 3 

occasions, around 48 hours apart.  You will be required to abstain from drinking alcohol 

or using any psychoactive drugs (aside from caffeine) for the 12 hours before each 

testing session.  If you take part in the study, we will assess your recent drinking with 

an alcohol breathalyser test at the beginning of each session. This measures the 

concentration of alcohol in your blood. If your blood alcohol concentration is above the 

cut-off point for the study, testing will have to be re-arranged or you will be excluded 

from the study.  

Day 1: After going through some short questionnaires that measure general mood and 

attitudes you will complete two computer tasks that will involve learning about the 

relationships between different stimuli, either pictures or words.   In one of these tasks, 

you will be playing to win points for beer that you consume at the end of the session. 

As such, you should organise this session at a time when you would want to 

drink beer and feel motivated to win beer during the task. In the other task, you will 

be paid for the number of word pairs you can remember and can earn up to an extra 

£7.20 in this task over the course of the 3 days. In total, this session will last around 1.5 

hours.  

Day 2(Day 1 + 2 -3 days): You will come into the UCL again to the Department of 

Pharmacology (Cruciform building), where you will inhale either Nitrous Oxide gas 

(N2O) or normal air and repeat the tasks from Day 1, playing to win beer or money. 

Whether you receive N2O or normal air will depend on random allocation to an 

experimental group and will be ‘blind’. That is, you will not be told which group you are 

in. Note that the concentration of N2O may make you feel quite ‘drunk’ while you are 

breathing it and you should not take part if you would not be comfortable feeling this 

way for several minutes. In total, this day will last 30-40 minutes. Again, this should be 

organised at a time when you would want to drink beer and feel motivated to win 

beer during the task 

Day 3 (Day 2 + 2 – 3 days): You will again come to the CPU to repeat some computer 

tasks measuring you mood, attitudes and repeat the learning tasks from day 1 and day 

2 to win beer or money, so this session must also be when you would want to drink 

beer and feel motivated to win beer during the task.  At the end of this day, you will 

not have to come into UCL again but you may be contacted by the experimenters to 

ask some follow-up questions about the study. This session will last around 45 minutes 

to 1 hour. 

How will I be paid? 

You will receive payment of £7.50 per hour for your participation upon completion of all 

three days of the study. In total, the basic testing should last ~2.5 - 3 hours, so you can 

expect to earn around £15 to £22 basic pay. You can also win up to £7.20 depending 

on your performance on one of the memory tasks. 

How will my data be stored? 

All information which is collected about you during the course of the research will be 

kept strictly confidential and will be securely stored electronically, using a numbered 

code so that you cannot be identified. Only researchers directly involved in the study 
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will have access to the data. All data will be stored in accordance with the Data 

Protection Act 1998. The data will be used only for informing the research question in 

this study and the results of the research will be disseminated in peer-reviewed 

scientific journals, but you will in no way be identifiable from such publications. 

 

Note – if you have any further questions regarding this study please do not 

hesitate to contact any of the researchers below. 

This study has been approved by the UCL ethics committee 

It is up to you to decide whether or not to take part. If you choose not to participate it 

will involve no penalty or loss of benefits to which you are otherwise entitled. If you 

decide to take part you will be given this information sheet to keep and be asked to 

sign a consent form. If you decide to take part you are still free to withdraw at any time 

and without giving a reason.  

Please discuss the information above with others if you wish or ask us if there is 

anything that is not clear or if you would like more information.  

 

Study Registration Details: 

All data will be collected and stored in accordance with the Data Protection Act 1998. 

This study has been registered with UCL data Protection; Number 

Z6364106/2013/05/27 

This study has been approved by the UCL Research Ethics Committee (Project ID 

Number): 3901/001 

 

If you have any questions regarding the study please contact the experimenters: 

 

Project coordinator: Ravi Das 

Clinical Psychopharmacology Unit, UCL, 1-19 Torrington Place, London WC1E 7HB. 

Email: CPUexperiments@gmail.com 

Telephone: 02076798225 

__________________________________________________________________ 
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Participant Information Sheet Chapter 5 

Who are we recruiting? 

We would like to invite heavy drinkers, defined as people who often drink twice (or more 

than twice) the governmental daily recommendation of alcohol. The governmental daily 

guidelines are 2-3 units per day for women and 3-4 units for men. 

Details of Study: 

We would like to invite you to participate in this research project. You should only 

participate if you want to; choosing not to take part will not disadvantage you in any way. 

Before you decide whether you want to take part, it is important for you to read the 

following information carefully and discuss it with others if you wish. Ask us if there is 

anything that is not clear or you would like more information. This study is being 

conducted by researchers from the Clinical Psychopharmacology Unit at UCL. 

Why are we doing this study? 

Advertisers are interested in the factors that determine how much people enjoy their 

products, particularly how people learn to like or dislike the taste of certain products and 

how these tastes can be changed. This study aims to test a specific theory about taste 

perception in heavy drinkers and how this can be changed. To test this, you will be asked 

to consume different drinks and rate how much you like the taste of them after viewing 

certain pictures. You will also complete some questionnaires and simple psychological 

tests. By taking part in this study you will contribute to the scientific knowledge of how 

tastes and valuation are affected by heavy drinking. If you would like to receive an 

overview of the study’s results once it has been completed, please ask the investigator 

and this will be arranged. 

What will I have to do? 

If you agree to participate in this study you must contact the experimenter by email 

with contact information and a convenient time to call. You will then receive a call from 

us and we will ask you a series of questions about your use alcohol, physical and 

mental health history. Please note that, based on you answers to these questions; you 

may not be eligible to take part in the study. If you are eligible to take part, you will be 
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asked to come to the Clinical Psychopharmacology Unit (CPU) at UCL on two occasions 

several days apart, at times convenient for you. You will be required to abstain from 

drinking alcohol or using any psychoactive drugs (aside from caffeine) for the 24 hours 

before each testing session.  

Day 1: 

On the first day, after going through some questionnaires that measure general mood 

and personality factors, you will take part in a ‘taste test’ of some drinks. The drinks you 

receive will depend on the group to which you are randomly allocated. You will rate the 

drinks for how much you like them and also rate some pictures for how they affect your 

perception of the drink’s taste. 

You will then complete a computer tasks that will involve making some ratings, 

measuring your reaction times and eye movements in response to some pictures. In this 

task, you may see some pictures that are unpleasant and designed to evoke an 

emotional reaction. You will be required to consume drinks at certain points during this 

task. These drinks will vary in how pleasant people generally think they are. Some will be 

pleasant, but some may be very bitter. You will be required to drink all the drinks 

samples you are given. 

Day 2: 

A few days alter later, you will come into the CPU again for a follow-up test where we 

will again measure your response to various pictures and complete some 

questionnaires and your taste ratings of different drinks. After the end of this day, you 

will not need to come in again, but we will contact you to ask some quick follow-up 

questions after the study. 

How will I be paid? 

You will receive payment for your participation upon completion of the second day. 

You will be reimbursed at the rate of £7.50 per hour. Unfortunately we cannot 

reimburse extra travel expenses. 

How will my data be stored? 

All information which is collected about you during the course of the research will be kept 

strictly confidential and will be securely stored electronically, using a numbered code so that 
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you cannot be identified. Only researchers directly involved in the study will have access to 

the data.  

It is up to you to decide whether or not to take part. If you choose not to participate it will 

involve no penalty or loss of benefits to which you are otherwise entitled. If you decide to 

take part you will be given this information sheet to keep and be asked to sign a consent 

form. If you decide to take part you are still free to withdraw at any time and without giving 

a reason. 

The data will be used only for informing the research question in this study and the results 

of the research will be disseminated in peer-reviewed scientific journals, but you will in no 

way be identifiable from such publications. 

All data will be stored in accordance with the Data Protection Act 1998.  

This study has been registered with UCL data Protection Number Z6364106/2013/05/27 

This study has been approved by the UCL Research Ethics Committee (Project ID Number): 

3901/001 

If you have any questions regarding the study please contact the experimenter:  

Name Ravi Das 

Work Address Clinical Psychopharmacology Unit, UCL, 1-19 Torrington Place, London WC1E 7HB. 

Contact Details Email: CPUTrackerLab@gmail.com  
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