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8092, Zürich, CH
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Abstract. Digital breast tomosynthesis (DBT) has the potential to en-
hance breast cancer detection by reducing the confounding effect of su-
perimposed tissue associated with conventional mammography. In addi-
tion the increased volumetric information should enable temporal datasets
to be more accurately compared, a task that radiologists routinely apply
to conventional mammograms to detect the changes associated with ma-
lignancy. In this paper we address the problem of comparing DBT data
by combining reconstruction of a pair of temporal volumes with their reg-
istration. Using a simple test object, and DBT simulations from in vivo
breast compressions imaged using MRI, we demonstrate that this com-
bined reconstruction and registration approach produces improvements
in both the reconstructed volumes and the estimated transformation pa-
rameters when compared to performing the tasks sequentially.

1 Introduction

Digital breast tomosynthesis (DBT) is an X-ray modality in which a small num-
ber of low dose X-ray images (typically between 10 and 50) are acquired over a
limited angle and reconstructed into a 3D volume [1]. A key issue in the creation
of DBT images is the algorithm used to perform the reconstruction. This has
been a topic of substantial research with many algorithms being proposed in-
cluding traditional shift-and-add (SAA) [2], filtered back-projection (FBP) [3],
algebraic reconstruction technique (ART) [4], maximum-likelihood expectation
maximization (MLEM) [1], and matrix inversion tomosynthesis (MITS) [5]. In
addition surveys have been published comparing and contrasting the relative
merits of each approach [2] [4].

Reconstructed 3D DBT images have high in-plane resolution but low out-of-
plane resolution and exhibit reduced superposition of overlying tissue structures
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as compared to conventional X-ray mammography. Whilst the added depth in-
formation offered by DBT has the potential to enhance detection and diagnosis
of breast cancer [7]; the greater volume of data, relative to X-ray mammogra-
phy, increases the need for automated tools to aid the reading process. This is
of particular importance if DBT is to be adopted in the high workload screening
context.

In this paper we address the problem of comparing temporal DBT volumes
via registration. This is a challenging task due to the significant artefacts associ-
ated with DBT reconstructions. These are generated by the limited field of view
of the acquired images and the correspondingly large null-space in the frequency
domain. Rather than registering the images after reconstruction therefore, we in-
vestigate the benefits of combining both reconstruction and registration, and test
the hypothesis that the performance of each task will be enhanced as a result.
We propose an iterative method of least squares optimisation for our combined
reconstruction and registration scheme. This avoids the implicit assumption of
missing data being equal to zero in algorithms such as in FBP.

In recent relevant research on SPECT imaging [8] Schumacher et al. present
a method to combine reconstruction with motion correction using a rigid trans-
formation. We have developed an iterative algorithm which alternates between
optimising the reconstructed intensities at each time point and the affine trans-
formation parameters between time points.

2 Method

Two sets of limited angle X-ray acquisitions, y1 ∈ ℜN2 and y2 ∈ ℜN2 , obtained
at different times, can be expressed in terms of a 3D volume, x ∈ ℜN3 , in two
positions related by the transformation, R, with parameters, �p ∈ ℜ, and the
system matrix A : ℜN3 7→ ℜN2 via

y1 = Ax, (1)

and
y2 = Ax† = AR�px. (2)

We solve equations 1 and 2 with respect to estimates x1 and x2 of x and
the registration parameters �p, by alternating an incomplete optimisation (i.e.
n iterations) of the reconstructed volumes x1 and x2:

x∗1 = arg min
x1

(
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)
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x∗2 = arg min
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with the registration of the current estimates x∗1 and x∗2 with respect to the
registration parameters �p:

�p
∗ = arg min

�p

(
�Reg =

1

2

∥∥R�px∗2 − x∗1∥∥22 )
. (5)



After each registration iteration (Eq. 5), and prior to the next iteration of the re-
constructions (Eqs. 3 and 4), the reconstruction estimates are updated as follows
(Eqs. 6 and 7).

x1 = R�px
∗
2 (6)

x2 = x∗2. (7)

This “outer loop” of reconstruction followed by registration is repeated m times.
The last iteration outputs x1 = x∗1, x2 = x∗2 and R�px

∗
2.

The reconstruction is performed via a nonlinear conjugate gradient search
engine and the registration currently via a simple hill-climbing optimisation
method. The following analytical gradients are used for x1 and x2

	x1 = AT (Ax1 − y1) (8)

	x2 = AT (Ax2 − y2). (9)

The preceding combined reconstruction and registration method is summarised
by

Algorithm 1: Iteratively Combined Reconstruction and Registration

Input: y1, y2.
Output: x1, x2, R�px2.

begin
% Initialization of x1 and x2

x1
0,0 := 0; x2

0,0 := 0; �p
0 := 0;

% Outer loop for the registration
for (i = 0; i < m; i+ +) do

% Inner loop for the reconstruction
for (j = 0; j < n; j + +) do

% 	x is the analytical gradients of the x and CG solver
	x1

i,j := AT (Ax1
i,j − y1);

	x2
i,j := AT (Ax2

i,j − y2);
x1

i,j+1 := x1
i,j + (ATA)−1	x1

i,j ;
x2

i,j+1 := x2
i,j + (ATA)−1	x2

i,j ;

% Run a simple hill-climbing optimisation

�p
i+1 := arg min�pi

1
2

∥∥R�pixi,j+1
2 − xi,j+1

1

∥∥2
2
;

x1
i+1,j+1 := R�pi+1xi,j+1

2 ;

x2
i+1,j+1 := xi,j+1

2 ;

% Output x1, x2, and R�px2

x1 := xi,j+1
1 ;

x2 := x2
i+1,j+1;

R�px2 := x1
i+1,j+1 := R�pi+1xi,j+1

2 .

end



3 Results

In the following three experiments we compare the performance of (a) sequential
reconstruction and registration, in which n = 100 iterations of the reconstruction
of projection images, y1 and y2, are followed by a single registration of the
reconstructed volumes x1 and x2 (m = 1), and (b) our iterative method in
which n = 10 iterations of the reconstruction are followed by a registration, and
this is repeated m = 10 times. In both cases the total reconstruction iterations
are the same (m× n = 100); however, there are 10 registrations in our iterative
approach rather than the single registration used in the sequential method. For
each pair of test volumes, x and x†, 11 projections covering ±25 degrees are
created to simulate the pair of temporal DBT acquisitions y1 and y2.

In the first experiment a 3D toroidal phantom image was created and rigidly
transformed via parameters R�p using a translation of Tx,y,z = [10, 0,−20] mm
and a rotation about the y axis of −30 degree (Fig. 1). As seen in Fig. 1. (f)
and (h), the iterative results are more compact and accurate than the sequential
results Fig. 1. (b) and (d), and the out of plane blurring is reduced (coloured
squares). The sum of squared differences (SSD) ∥x1 − x∥22 is decreased by an
order of magnitude (1011 to 109); however, for the iterative method this value
of 4.32 × 109 is superior to the sequential result of 6.89 × 109. In the second
experiment the same transformation was applied to a 3D breast MR image that
obtained similar behaviour (iterative 1.25×108 vs sequential 1.42×108 decreased
from 1.71 × 1011) illustrated in Fig. 2. There is a black region with sharp edge
at the bottom of both Fig. 2 (h) and (d) due to the transformed image Fig. 2
(e) falling outside of the field of view. However, a better reconstruction for the
missing data in Fig. 2 (f) is obtained due to our incorporation of all the X-ray
acquisitions into the reconstruction of x1.

Fig. 1: (a) Original test volume x; (e) Transformed test volume x†; Sequential results
(b)-(d): (b) reconstruction x1, (c) reconstruction x2, and (d) transformed reconstruc-
tion R�px2; Iterative results (f)-(h): (f) reconstruction x1, (g) reconstruction x2, and
(h) transformed reconstruction R�px2.



Fig. 2: As Fig. 1 but for a 3D uncompressed breast MR image.

Fig. 3: As Fig. 1 but applied to in vivo MRI acquisition of a breast before and after plate
compression (Images have been segmented and mapped to effective X-ray attenuation).

In a third experiment we tested the methods using two MRI acquisitions obtained
before and after application of a lateral-to-medial plate compression of the breast
(Fig. 3). The SSD between reconstruction, x1, and the original volume, x, indi-
cates that the iterative method produces a more accurate reconstruction of the
data (iterative 5.9× 109 vs sequential 7.6× 109 decreased from 6.91× 1011). In
addition, the affine transformation model is insufficient for the compression de-
formation which may degrade the reconstructed results; however, measurement
of the target registration error for a set of 12 user defined landmarks, indi-
cates that the iterative method also produces a more accurate registration result
(4.6mm vs 8.6mm, given an initial misregistration of 23.6mm). All the numerical
results of the three experiments above are shown in the Table 1 below,



Initial Combined
Method

Sequential
Method

Toroid SSD 4.51× 1011 4.32× 109 6.89× 109

Uncompressed
MRI SSD

1.71× 1011 1.25× 108 1.42× 108

Compressed
MRI SSD

6.91× 1011 5.90× 109 7.60× 109

Misregistration
(mm)

23.6 4.6 8.6

Table 1: Numerical results of the three experiments. (SSD = ∥x1 − x∥22)

Plots of the cost function �Rec1 = ∥Ax1−y1∥22 represented in equation 3 for
both sequential and combined methods are shown in Figures 4, 5, and 6.
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Fig. 4: Plot of the cost function �Rec1 = ∥Ax1 − y1∥22 for the 3D toroid experiment.

4 Discussion

Our iterative method was found to produce superior results in optimised cost
function value, registration accuracy and reconstructed image appearance. This
is illustrated in Fig. 7. We attribute this to the fact that the iterative approach
uses all the X-ray acquisition data (both y1 and y2) to reconstruct volume x1.
This leads to an improvement in the reconstruction of x1 which in turn enables
a more accurate registration to reconstructed volume x2 to be achieved.

An implicit assumption in this approach is that there is no change in the
breast (such as the growth of a tumour or due to the differences in image acqui-
sition parameters) between the two time-points being reconstructed and regis-
tered, justifying the use of SSD as the registration similarity metric. Given this



approach, we could envisage a subsequent step where we compare reconstruction
volume x1 with the original acquisitions, y1 and y2, to detect change.

The iterative method updates x1 with the transformation of x2, R�px
∗
2, after

10 iterations of the reconstruction and a single registration. This results in the
10 peaks in the cost function plot for the iterative method when compared to
the smooth plot for the sequential method, Figs. 4, 5 and 6. In Fig. 5, the final
cost function value of the sequential method is less than our iterative method
because the MR volume has been transformed beyond the field of view (x† in
Fig. 2). This region is visible in the simulated projection images, y1, however,
because the 3D transformation is applied in the world coordinate frame. The
result is that the sequential method produces a lower value of the cost function,
�Rec1 = ∥Ax1 − y1∥22, due to greater image overlap despite the reconstruction
(and registration) being less successful.
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Fig. 5: As Fig. 4 but for the 3D uncompressed breast MR image.
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Fig. 6: As Fig. 4 but for the in vivo compressed MR experiment.

5 Conclusion

We have presented a method to iteratively reconstruct and register temporal
DBT data sets. We have compared this approach with performing the two tasks



sequentially and demonstrated that the former improves both the registration
accuracy and the quality of the reconstructed datasets. In future work we will
investigate alternative non-rigid transformations and address the issue of change
in the breast tissue which may occur between time points.
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Fig. 7: Magnified results of the three tests above. (a), (b) and (f) of figures 1, 2 and 3.
Left to right: Original fixed image x; Results of the sequential method x1; Results of the
iterative method x1. Only one of the out-of-plane slices has been shown accordingly.


