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Abstract

Mathematical modelling of civil violence can be accompéidhin different ways. In
this thesis, four modelling frameworks are investigatedheof which leads to differ-
ent insights into the spatio-temporal properties of civdlence. These frameworks
vary with respect to the extent in which empirical data isdusegenerating model as-
sumptions, and the extent in which simplifying assumptidissance the model from
the real world. An overarching objective is to compare tteghts and underlying as-
sumptions of each framework, and to consider how they mightdnsolidated to aid
policy decision-making.

Within each framework, novel contributions both to the neatlatical modelling of
social systems, and to the theoretical understanding dfviblence are made. First, a
novel data-driven approach for analysing local patterrgeofyraphic diffusion in event
data is presented, and applied to offences associatedhethl1 London riots. Sec-
ond, by considering the decision-making of individualgrédby taking an agent-based
perspective, and using existing theory to construct moslmptions, a parametric sta-
tistical model of discrete choice is derived that more dipsespects the targets chosen
by rioters, and how these choices might have changed over fitme application of this
model to the policy domain is explored by considering potieployment strategies.
Third, focusing on the interaction between two adversaaad employing stochastic
point process models, a series of multivariate and nonliHeavkes processes are pro-
posed and used to explore spatio-temporal dependencygdherNaxal insurgency in
India. Fourth, a novel spatially-explicit differential @afion-based model of conflict
escalation between two adversaries is derived. A bifuvoas identified that results
from the spatial disaggregation of the model. Implicatiorghe interpretation of the

model in the real world and potential applications are dised.
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Chapter 1

Introduction



1.1. MOTIVATION

1.1 Motivation

To motivate this thesis, a series of questions are first addce

Why model?

Modelling is widespread in a number of domains. The appbcabf models to soci-
ety has begun to deliver insights into, for instance, glgi@idemic spreading (Col-
izza et al., 2007), urban planning (Wilson, 2000; Batty, 2048d the functioning of
economies (Farmer and Foley, 2009). In particular, theiegpbn of models to society
is beginning to deliver policy-relevant insights that canused to better structure our
society and its response to different events (Ball, 2012).

The idea that models can provide policy recommendationsssine sense obvi-
ous: the construction of a model is one of the most common Wwayghich human be-
ings have come to make decisions. As Epstein (2008) descfidn@yone who ventures
a projection, or imagines how a social dynamic—an epidemar, or migration—
would unfold is runningsomemodel”. Effective decision-making requires projections
for a range of choices that might be made, and not just for dugstbn that is made.
Moreover, better projections should lead to better dexssio

As Epstein goes on to explain, explicit models—which can Ilodtem down in
a comprehensive (and ideally standardised) way—are pig&eover implicit models
— mental projections that cannot be reproduced and testaccordance with the sci-
entific method. The advantages of an explicit model over guliaih one is that the
model can be reduced to a set of statements or assumptidrded@ibe exactly how
the model behaves over the range of scenarios to be corsiddgeover, the model
should be entirely and exactly reproducible from this setsfumptions so that its im-
plications, and any policy decisions that are made on itsspaan be questioned and
challenged by others.

Besides providing a more scientific means by which the impigablicy interven-
tions might be envisaged, there are a number of other beas8txiated with the use
of explicit models. For instance, if it is possible to spgafmechanism by which a
particular phenomenon is thought to arise, then an exphodel can enable the evalu-
ation of whether that mechanism provides a plausible expiam, thereby providing a

test of associated theories from which that mechanism stems
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1.1. MOTIVATION

From an inductive perspective, models can help to distsigbetween statistical
noise and meaningful signals in empirical data, and mighsequently suggest new
theories and research by exposing or clarifying partiqoddterns or processes. Deduc-
tive modelling also requires sophisticated techniquesctmant for uncertainty or to
incorporate potential influences on the mechanisms ofasteihis has led to models
being objects of scientific enquiry in their own right.

This thesis is motivated by the use of models in a policy rsgttiln particular,
the extent to which different models afford policy insiglgsnvestigated. Conclusions
are sought that lead to an improved understanding as to heantland empirical data
combine to generate model-based policy insights. Thishgeaed by contrasting the
studies of four very different types of model, each appled particular problem re-

garding the spatio-temporal distribution of civil violenc

Why use different frameworks to build models?

There are different ways to build a model. Different mode&syramploy different an-
alytical techniques or have different underlying assuorsithat subtly influence the
range of insights that might be obtained. In this thesisteh@ “model framework” is
used to refer to a modelling method that uses a particuldyt@ee approach. There
is no widely agreed upon framework for developing modelsazia systems. Each
approach can appear to offer a range of advantages and aigages over other ap-
proaches. In addition, there are many different framewdhies might be used for
any given problem, and different frameworks may be favoutepending on a range
of criteria including, for example, the academic disciplinith which the modeller is
most familiar. There have been few attempts at consoligaimcontrasting different
modelling frameworks in the study of civil violence.

In this thesis, to distinguish between different framevepnkodels will be com-
pared with respect to two facets: the extent to which emgirifata is used in the
construction of model assumptions, and the extent to wiieke assumptions are rep-
resentative of the real-world phenomenon under considetatiodels that incorporate
a large amount of empirical data, and which have few basgnagsons are likely to
provide plausible accounts of the phenomenon of interesiveier, the extent to which

sophisticated insights might be obtained (for exampleh wegards to understanding
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1.1. MOTIVATION

potential mechanisms or predicting future events) is yikel be limited. In particu-
lar, prediction with data-driven approaches that are mfmxt by observations relies on
the sample data containing sufficient information to enatteapolation. In contrast,
mechanistic approaches, in which a proposed mechanisnajesenodel outputs that
are thought to be responsible for the empirical data, asdylito be further removed
from the real-world, but more likely to be able to accountdaalitative changes in the
underlying data generating process.

Figure 1.1 summarises the trade-off between potentiaylimsind plausibility for
a range of modelling frameworks that have been applied @ystivil violence. The
different modelling frameworks are placed along a spectroroadly defined by the
ratio given by the number of model assumptions that remogertbdel from the real
world, to the amount of data incorporated into the develagroéthose model assump-
tions. The two curves represent the extent to which insight@ausibility typically

change as this ratio varies, and as different modelling ésaonks are employed.

Why model civil violence?

Outbreaks of civil violence, whether stemming from civilnsainsurgencies, rioting,
or other forms of unrest, continues to dominate news re@odand the globe. The
onset and evolution of civil violence is traditionally dissed using anecdotal perspec-
tives, rather than by employing explicit models to seek atarlying mechanisms or
patterns that might be exploited from a policy perspectitewever, there has been a
recent dramatic increase in the quantity and quality ofiekphodels detailing vari-
ous aspects of civil violence. This is partly due to increladata availability, which is
crucial for modelling as it enables the development of mett are empirically con-
sistent, and partly due to an increased range of sophisticabdelling techniques. Our
understanding of civil violence can be improved though sucklels. This may in turn
improve the way in which interventions are planned. Somesleaxen suggested that
by using modern modelling techniques to investigate prablef crime, war and ter-
rorism, the number of fatalities associated with such eveah ultimately be reduced
(Helbing et al., 2015).

17



1.1. MOTIVATION

— Plausibility

- - Potential insight

Number of model assumptions
Amount of data incorporated

Figure 1.1:Potential insight and plausibility of different model fram eworks. The

frameworks considered in this thesis are placed along drsppedroadly defined by a
ratio given by the number of model assumptions that servenve each approach
from the real world, to the extent to which empirical datanfisrpart of the model

development.
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1.2. PROBLEM DEFINITION

Why model civil violence in space and time?

Civil violence tends not to occur uniformly in space and tiflany existing models,
however, do not explicitly account for spatially-varyingcetemporally-varying factors,
which have been shown to lead to dramatically improved nso@&eidmann and Ward,
2010).

Significant implications arise from using a model to desigtiqy that does not
account for appropriate spatial and temporal influences.ekample, a model might
predict the onset of civil violence in a particular counttyagparticular time but if it
does not account for the duration over which this violen@xsected to occur, or even
whether it is a significant change in what has occurred puslothen policy interven-
tions may be misguided. Additionally, for targeted intertrens, policy-makers might
be more concerned with determining the specific geograplkition of the predicted
violence, rather than the more aggregated spatial regidgheofountry in which it is
likely to occur.

Modelling the spatial and temporal influences of civil viote is also interest-
ing from a mathematical perspective. There are a number g§ whincorporating
spatio-temporal dependencies in exploratory, statisticd mechanistic models, many
of which are considered in this thesis. Different methodatorporate space and time
are likely to influence the model in different ways. The apmiotaken to handle space

and time in such models is itself an important research ehgé.

1.2 Problem definition

Existing literature on civil violence tends to distinguibbtween violence stemming
from civil wars and insurgencies, and violence that occureng times of peace, such
as civil unrest or rioting. Kalyvas (1999), for example, déses how “war structures
choices and selects actors in fundamentally different wiage peace — even violent
peace”. However, as Guichaoua (2010) argues, there is nfiea clear distinction
between these two types of violence as “in many situationstaive powers are am-
biguously distributed between state and non-state aatesslting in ‘neither war nor
peace’ forms of social order, conducive to sudden outbofstsllective violence”.
From a modelling perspective, very similar model framewdnave been applied

to civil war, insurgencies, civil violence, riots, and ewdifferent types of crime, and
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1.3. RESEARCH OBJECTIVES

have been shown to lead to important insights regardleseeqgddrticular phenomenon
studied. Although, that is not to say that theories regartie occurrence of a partic-
ular type of violence cannot be incorporated, but, instdzat,the underlying structure
of the models employed for these different phenomena aem oftry similar. Since
the overarching objective of this thesis is methodologieastrict definition of civil
violence is not enforced. The empirical problem to be cargd is the occurrence
of events associated with a more general concept of civierie, which incorporates
events that occur as a result of insurgent warfare, civiésiand rioting.

There have been a number of models applied to civil violesoeje of which
explicitly incorporate spatio-temporal influences an@idependence between events.
Such studies encompass a range of different model framewdikere have been few
attempts to consider the implications of adopting one fraark over another, particu-
larly with regards to the range of insights that might be @féal in a policy setting. In
particular, it has been previously argued that the choicaeadel framework too often
depends on a researcher’s familiarity and experience wamall range of analytical
techniques (Schrodt, 2014). This thesis sets out to adthessgap in the literature by
providing a comparative exposition of different model feamorks that are capable of
incorporating spatio-temporal influences and event ijgetidency in different ways.
In addition, this thesis considers whether existing modet¢sappropriate for exploring
spatio-temporal influences and event interdependencyglaivil violence, and, where

appropriate, introduces new models.

1.3 Research objectives

This thesis contributes to the mathematical modelling i giolence by developing
and analysing several spatio-temporal models that acdoumtvent interdependency
across the spectrum of modelling frameworks introducedgnre 1.1. The overarch-
ing objective is to contrast these modelling frameworks @gigrmine their suitability
for providing insights that might be utilised in a policy . After reviewing the
range of frameworks that have been used to study such phe@opreviously, four
frameworks are explored in greater detail, by construatiogel models and applying
them to case studies of civil violence. Specifically, forteatthese frameworks, it is

considered:
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1.4. CASE STUDIES

1. Whether the framework is appropriate for modelling civdlgnce in space and

time, and, if not, methods are provided for disaggregatxigti@g models;

2. What insights can be obtained concerning one of the twostadess investigated

in this thesis;

3. How these insights might be used within a policy setting.

The four frameworks that are explored can be summarised@sraiory data-driven
modelling; parametric statistical models of individualogde; stochastic models of

point processes; and deterministic differential equation

1.4 Case studies

Two case studies are employed in this thesis: the 2011 Londtsnand the Naxal
insurgency. These case studies are chosen because thexbitti interesting spatial
and temporal variation, yet do so over different scales. &othat are able to be used
over multiple scales are generally desirable since conguebal systems, such as those
studied in this thesis, can have different influences aaimgifferent scales, many of
which may be important to incorporate. In what follows, thwe tase studies are briefly

described.

1.4.1 The 2011 London riots

Between the 6th and 10th August 2011, riots occurred at nwmsdogations across the
UK. Violence initially broke out after a peaceful protestfaynily, friends, and mem-
bers of the community of Mark Duggan, who was shot and killgcblice officers
in Tottenham, North London on the 4th August. On the 6th Atigusts broke out
in neighbouring communities. For five nights, the riots aaned, initially throughout
the capital and subsequently throughout the country. Alftennitial disturbances, the
unrest on subsequent nights grew in intensity, before lamgebers of police were de-
ployed across the capital and in other cities, leading tst@ration of order. In London,
it is estimated that there was in excessf@h0 million of damage to public and private
property; over two hundred injuries to police; and two dedfRiots Communities and
Victims Panel, 2011). Over 4,000 arrests were made in Loradone (Metropolitan
Police Service, 2012), many of which were identified via CCTdtéme in the days

following the disorder.
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1.4. CASE STUDIES

Predominantly, the riots took place in the highly populateshs of London, Birm-
ingham and Manchester. However, even within these citresparticularly in London,
civil unrest occurred in some areas but not in others. Segemmgraphically distinct ar-
eas, such as Hackney, Brixton, and Croydon, experiencedsaale violence, looting,
and arson; whereas some of the areas in between—includintgaCeandon, Shep-
herd’s Bush, and Leyton—experienced comparatively fewtsven

The first locations to experience rioting were around théehtitam area in North
London. Over the next days, riots occurred South Londomrieedlso occurring in
other UK cities. This gave the impression that the riots vepreading geographically,
and many commented how the onset of rioting in one locatios ivtated by others
in different locations, implying some form of dependencyeen the events (Gross,
2011). This apparent dependency implies that standard limgpechniques assuming
event independence are likely to be inappropriate, anditieeactions between events
forms a subject of enquiry in its own right.

There are many policy questions directly relevant to thel20K riots. For ex-
ample, studies have sought to identify the underlying $ogioal causes of the rioting
(Solomos, 2011), and have examined whether the criminatgisesponse was appro-
priate (Bell et al., 2014). The policy question considereithisa thesis is concerned with
the spatial and temporal dependency of the riots, partigulath regards to event inter-
dependency. In addition, it is considered how and why targetre chosen in London
and, in particular, how police officers may have been optiralocated across the city
in order to have prevented damage to property, public spadeeople’s livelihoods

that occurred as a result of the riots.

1.4.2 The Naxal insurgency

The Naxal movement, whose name is taken from the small eltddgNaxalbari in West
Bengal, where a peasant revolt took place in 1967, are a laff-extremist group who
have engaged in numerous attacks against civilians andtdke ia recent decades.
Grievances of the Naxal movement initially stemmed fronmecoic inequality and ru-
ral agricultural workers’ inaccessibility to land owneirslfAhuja and Ganguly, 2007).
After being quashed by the Indian government in the 197Qsutiir the use of police

and paramilitary forces (Basu, 2011), several factions efMlaxal movement were
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formed, many of which had militant groups who engaged inngesncy against the
state. In the early 2000s, various Naxal groups merged to bwth militant (the Peo-
ple’s Liberation Guerrilla Army) and political groups (t@®mmunist Party of India).
Insurgent violence continues to present day, but, in regeaits, tends to be restricted
within localised regions in Eastern and North Eastern India

The states of Andhra Pradesh and Telangana, the latter chwias formed in
2014 when Andhra Pradesh bifurcated, experienced higlsle¥eiolence during the
2000s. Police periodically adopted various counter-igsncy measures in an attempt
to quell the insurgency, including the formation of an aggiee paramilitary group
called the Greyhounds. On numerous occasions, the police grawn into armed
conflict with the insurgents, resulting in both Naxal andigmlloss of life. Police
counter-insurgent measures in Andhra Pradesh have beemedldo be effective in
reducing levels of violence, despite limited quantitasuedies (Sahni, 2007).

Policy questions associated with the Naxal insurgencyyagglially here as they
do to many other outbreaks of insurgent violence around thedw As well as be-
ing interested in the underlying mechanisms causing iddafs to commit violence,
policy-makers might also be interested in understandiegsatial extent of the vi-
olence, whether there is any evidence for spreading of thiendce, and determining

what might be the best counterinsurgency strategy to adopt.

1.4.3 Similarities between rioting and insurgency

The two case studies share a number of similarities but alse rucial differences.
First, events associated with both rioting and insurgerasyelpreviously been shown
to exhibit striking spatial, temporal and even spatio-terapheterogeneity, suggesting
that important processes play out in both space and timeonSesuch patterning of
events is likely to be constrained by the decision-makiniefperpetrators and the en-
vironment in which they act. In the case of rioting, offerglesray choose certain times
to offend, and targets at which to commit their offences duyddr example, ongoing
rioting at that same location. Insurgents may be constdayetransport costs or their
desire to inflict damage on targets that are perceived to tieparly valuable. Third,
the occurrence of events associated with both rioting aswrgency is likely to depend

crucially on the interaction between, in the case of the tarmoters and police, and,
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in the case of the latter, insurgents and counterinsurgdts interaction, however,
may be different in each of these cases. In the case of riatifgnders who are mo-
tivated purely by the benefit associated with acquisitivener such as looting, might
seek to avoid interactions with police in order to minimike probability of arrest.
Insurgents, however, may be more likely to target counseingents as they represent a
direct link to the state with which they are in conflict. Thebaracterisations, however,
are not necessarily dichotomous: there may feasibly beasicsnduring which police
are purposefully targeted during rioting, for example whenrioters have a grievance
they want to make known to the state, and there may also benicess during which
insurgents target civilian areas that are unlikely to ciord@y counterinsurgent agents.
As a result of these similarities, the two case studies atie é&mlored using the
models presented in this thesis. The detail in the availdhta associated with each
case study enables the investigation of different prosstbsg might be at play in each
scenario and largely determines the type of model framewakcan be applied. For
the London riots, offence data is available at a fine spatiditamporal scale, enabling
the consideration of local environmental factors and legaht interdependency during
rioting. In the case of the Naxal insurgency, a distinctian be made between insur-
gent actions and counterinsurgent activity, which enatlesinteraction to be more

closely examined.

1.5 Advances to knowledge

There are several contributions in this thesis that advérestate of the art in spatio-
temporal modelling of civil violence. Perhaps the main cittion is the consolidated
presentation of a wide variety of model frameworks, all ofieff) it is argued, have
a role to play in contributing to real-world insights and sequent policy decision-
making. A comparative study of these frameworks contribiriea novel way to exist-
ing literature. Within each modelling method and applicafpresented, however, there
are more specific contributions that advance existing kadge. In what follows, these
contributions are summarised.

In Chapter 3, which investigates data-driven frameworks$tferanalysis of spatio-
temporal event data, a non-parametric Monte Carlo methodnf@stigating local

spatial-temporal patterns of diffusion is presented, Whio the knowledge of the au-
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thor, has not been previously employed in this fashion. teshod improves existing
approaches by overcoming limitations associated with sisermaption of uniform spa-
tial and temporal randomness in binary Monte-Carlo modeksveht data. It enables
improved understanding into event interdependency dyriv@gnomena that exhibit sig-
nificant spatial and temporal clustering, such as riotinlge Tethod is applied to the
2011 London riots to generate insights into event deperngand a discussion into the
possible mechanisms that might generate such patterresses\a theoretical contribu-
tion to the literature.

In Chapter 4, a discrete spatial choice model of rioter tacfpeice is used to
investigate the targets selected by individuals during2®&l London riots. To the
knowledge of the author, such an approach has not previbegly used in the context
of rioting. The formulation of the model enables assessroéiat number of extant
theories regarding the behaviour of individuals duringenéiing and instances of col-
lective violence. The model presented incorporates ief@eddency between events
by including a dynamic time-lagged variable tracking thenber of events that oc-
cur in each area. Spatial spillover effects are also aceduiarr by including a range
of spatially-lagged variables. A theoretical contributis the evaluation of proposed
theories, which have previously sought to explain offermraviour, by assessing the
ability for variables in the model associated with thosethes to account for variance
in the empirical data. The discrete spatial choice modehés tincorporated into a
novel microsimulation, which, it is argued, might be usedhw a policy setting to
determine effective police deployment strategies.

Point process models have been widely used to model evemtiégendency in
civil violence and other types of security and conflict ph@eoa. In Chapter 5, a range
of multivariate point process models of conflict between &duersaries are developed,
which enable quantification and estimation of spatial amdpt@ral dependencies in
event data. A contribution to the modelling literature is tterivation of a plurality of
multivariate models that are designed to test a series ajthgges concerning various
characteristics of the violence. Two of the proposed modedsalso nonlinear, lead-
ing to an adapted estimation procedure to account for ceaipdins that arise due to
nonlinearity, something that, to the knowledge of the aythas not been performed in

previous literature. Rigorous analysis of the resulting et®dncluding the estimation
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of confidence intervals for the parameter estimates, auakmhalysis, and a test of
one of the model’s out of sample predictive power is anotiggriicant contribution,
serving as a best practice guide for reporting the succefiguwe modelling efforts
(prior studies do not typically report on all three of thespects).

Finally, in Chapter 6, using the modelling framework of detenistic differential
equations, a novel spatial disaggregation of a widelydamedel of conflict is derived
and its use in obtaining insights into civil violence is dissed. A non-linear dynamical
systems analysis combined with computational approadresflysing the dynamics
of a high-dimensional version of the system leads to seveatihematical insights.

The models developed are discussed throughout with retyatigls specific policy-
relevant insights they afford. In Chapter 7, a more in-deghbussion of their compar-
ison is presented. This discussion may be of most interéghbte developing models

for the purposes of policy and contains various reflectidrie@author.

1.6 Thesis outline

This thesis proceeds as follows. Chapter 2 describes thereiif model frameworks
that have been used to model spatio-temporal influencesilnvlence. Previous
studies that employ each type of framework are reviewed. dideussion serves to
motivate the advances associated within each framewotlategresented throughout
the thesis.

In Chapter 3, the first of the case studies, the 2011 Londos, li®tinvestigated
with respect to a variety of space-time exploratory techegy After performing several
analyses with existing approaches, it is concluded th#étéuinsights can be obtained
with a novel method for analysing the local patterns of diifm in event data. This
method is described, before the results associated withfoah the London riots are
presented and discussed. It is argued that the dynamiamatéserved during the
riots were influenced by three principal mechanisms: a ¢pomeeffect enhanced by
both new and old media; the environment and urban form wittirch the riots took
place; and the interaction between rioters and police.

In Chapter 4, the decision-making of rioters is consideretth waspect to two of
these explanations: contagion, whereby the presencetefsiat a particular location

increases the likelihood of further rioting at that areaj #ire influence of the environ-
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ment, whereby particular features of a location, such adl intres, can influence the
likelihood of rioting occurring. Building on theoretical gpectives of crowds, crime
patterns and social disorganisation, a random utility rétecspatial choice model is
proposed that incorporates the role of co-offending, arapied to the riots in Lon-

don. The results are presented and the ability for theseidseto explain offender

behaviour during rioting is discussed. Considering nexinteraction between rioters
and police, Chapter 4 concludes by incorporating the disaeatial choice model into
a microsimulation of police deployment. The suitability tbe model to be used in a
policy-making environment is discussed.

Chapter 5 investigates the interaction between two advessar space and time
which, due to a lack of data on police activities, can not beégomed with the 2011
London riots. A series of multivariate point process moa@etsderived in the context
of insurgent violence between police and Naxals in the Imdtates of Andhra Pradesh
and Telangana. These models are calibrated on data assbeitth this conflict, and a
series of tests for model goodness of fit are presented,dimguan out of sample test
on the predictive power of one of the models.

Chapter 6 begins by providing an overview of the Richardsonahaoftconflict es-
calation, which comprises of a system of coupled ordinaffgidintial equations. The
model provides insights into the logical conclusions of e set of assumptions,
without the requirement for an extensive amount of emgimieda. It is argued that
this model is well-suited to a more general process of cdiféowveen two adversaries.
The chapter addresses one of the weaknesses of the Richarddeh—its lack of ex-
plicit dependence on space—by deriving a spatial modebusmentropy maximising
approach to disaggregating the effect of conflict escalaticspace. This subsequent
model is then analysed from a non-linear dynamical systesrspective, both analyti-
cally using low-dimensional systems, and computationalth high-dimensional sys-
tems. Insights into the spatial dependency of conflict esiced between adversaries
are obtained and discussed.

In the conclusion of Chapter 7, the range of modelling framé®/@resented in
this thesis is consolidated in a comparative expositiore fiicus here is on how the
modelling frameworks and their range of possible insighightnbe used to aid policy

decision-making. Extensions to the work presented in tiesis are considered before
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concluding remarks are made.
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Chapter 2

Modelling methodology



2.1. INTRODUCTION

2.1 Introduction

A wide range of frameworks have been used to model civil vioke The insights
afforded by these can be very diverse. The choice of framewoployed in many
studies is likely to depend on the questions that motivagesthhdy, data availability,
and the experiences of the modeller. In this chapter, pusvinodels used to obtain
insights into civil violence are discussed. This discuss#loosely based upon (and
progresses along) the spectrum of models introduced inr&ifjil of Chapter 1. A
range of exploratory data-driven, statistical and medtanmodelling frameworks are
described and models associated with each type of frameaverteviewed. This wide
range of literature serves to highlight the disparate aggves taken by many scholars
to model civil violence, and to emphasise the types of irtsighat each framework
affords. Additionally, the discussion serves to providekggound to the approaches

taken in the chapters that follow.

2.2 Exploratory space-time data-driven modelling

Exploratory techniques refer to a class of model framewthréisare used to illuminate
and analyse important features of a dataset. They requirenfadelling assumptions,
so that a researcher has few preconceptions as to what tlysiamaight reveal. Ex-
ploratory techniques may lead to significant insights imtkelves but may also suggest
further analyses, indicate hypotheses to be tested, amn@gtassumptions that might
reasonably form the basis of more sophisticated models.

Analysing event data in space and time is particularly suiteexploratory tech-
niques, since they can provide quantitative assessmeme ¢ével of spatial and spatio-
temporal dependency in the data. In what follows, a seriexploratory approaches
that have been used to analyse the spatio-temporal depsniteecivil violence event
data are discussed, together with the insights that eadloagp affords. These three
approaches consider, respectively, spatial autocowelatpatio-temporal interaction,

and more intricate techniques that aim to quantify changepatial data.

2.2.1 Spatial autocorrelation

Spatial autocorrelation refers to the tendency for eventxtur nearby to one another

in geographic space. The detection of spatial autocomelas often used as a first
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step in exploratory analysis of spatial data, and requives¢jection of a null model
in which events occur randomly in space. Spatial statistieemployed to capture the
geographic dependency of the empirical data, and are cath@ayainst statistics that
would be obtained under the null model. Null model statsstian either be obtained
analytically, by considering the probability distributi@f event occurrence under the
null model, or via Monte-Carlo simulation, in which a largenmoer of realisations of
the null model are generated using pseudo-random numberagers and an empirical
distribution of the spatial statistic is obtained (Besag Bigyle, 1977).

There are many spatial statistics that can be employed,uiteggity of which
can depend on the characteristics of the available empevent data. For event data
on civil violence, for instance, the data might be aggregjato spatial areas, and the
frequency of event occurrence in each of those areas repdrtehis case, area-level
statistics such as Morank (Moran, 1950) or Geary’s’ (Geary, 1954), the latter of
which is more sensitive to local variations, may be empldgedetect autocorrelation.
These two statistics are applied globally, incorporatimg éntire study region. If the
detection of local spatial autocorrelation is required,doample, for the detection of
hotspots of activity, then thé; and G statistics of Getis and Ord (1992) or local
variants of Moran’s/ or Geary’sC' (Anselin, 1995) might be employed. If, on the
other hand, the data is available in point form, with acaitatations specified for
each event, then a point pattern analysis may be used ta dptg@l autocorrelation.
The calculation of Ripley'ds function (described in Dixon (2002)) or the spatial scan
statistic of Kulldorff (1997) are two methods for the detentof spatial clustering in
point patterns.

Explanations of spatial autocorrelation in event data taleof two perspectives.
First, spatial autocorrelation may be a result of event oetice being dependent on a
confounding variable that varies in space and which is natiLead by simple null mod-
els of spatial randomness. For example, events associétediwl violence are likely
to vary with population density, which is highly heterogeuas in geographic space. As
a result of this dependency, events will occur more closelyeich other in space than
under a null model of complete spatial randomness, in whogufation density is not
controlled for, and spatial autocorrelation is subseduetiserved. There are many

examples of potential confounding variables including distance from government
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strongholds (Raleigh and Hegre, 2009); terrain (Do and B@10); road accessibility
(Zhukov, 2012); and communication links between areas ($1y2000). Identification
of spatial autocorrelation can serve to stimulate the sefmcpossible confounding
variables and corresponding explanations that might beeegb using more sophisti-
cated models.

The second perspective used to explain spatial autocborelsupposes that the
occurrence of an event can directly impact the likelihooa @dirther event occurring.
If this effect diminishes with geographic distance, so th&tture event, should it oc-
cur as a result of an initial event, is more likely to occurmigathe initial event than
farther away from it, then spatial autocorrelation will bleserved. There are many
scenarios for which it can be argued this mechanism aris@sgdeivil violence. In the
next section, spatio-temporal interaction of event datdeiscribed, which considers
temporal influences in addition to the analysis of spatighddn particular, tests for
spatio-temporal interaction are often employed to deteemihether spatial autocorre-
lation in a given dataset is a result of static confoundingatdes, or whether it also

has some dynamic properties, which may be brought aboutdayt @terdependency.

2.2.2 Tests for spatio-temporal interaction

Temporal autocorrelation refers to the tendency for eventcur nearby to one an-
other in time, and, similarly to spatial autocorrelatiom caise as a result of event
interdependency or by confounding variables that also watyme. Spatio-temporal
interaction is a stricter property of event data than bo#tiapand temporal autocorre-
lation and can be used to discount the influence of confogneaniables that vary in
space but not in time and confounding variables that varynie but not in space. It
refers to events that occur more closely to each other indmdhe and time than would
be expected given the spatial and temporal distributionthefdata. The presence
of spatio-temporal interaction suggests that spatiadigwmg dynamic mechanisms are
more likely to be responsible for the production of evengthktatic or spatially homo-
geneous explanations.

There are a variety of techniques for the detection of sgatigporal interaction in
event data. The Knox test, described in Knox (1964a), coesptine distances in both

space and time between pairs of events by allocating eachq@ai spatio-temporal
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window of pre-specified resolution. The resulting categgtion of pairs of events over
spatio-temporal windows of different resolutions can bempared against either the
analytical expectation of a particular process (such asissBo process) or a Monte
Carlo simulation, in which event times are randomly permuteelr the locations in

the empirical data. The Knox test was initially applied in gmidemiology setting

(Knox, 1964b) but has since been applied to a wide range dflgmes in crime and

security including burglary (Townsley et al., 2003; Johmand Bowers, 2004); other
types of urban crime (Grubesic and Mack, 2008); piracy (Memte and Johnson,
2013); and insurgency and counterinsurgency in Iraq (Teeynst al., 2008; Johnson
and Braithwaite, 2009; Braithwaite and Johnson, 2012).

The Mantel test (Mantel, 1967) provides a single measur@ @napirical dataset
without requiring the specification of space-time windowhkjch consequently allevi-
ates potential edge effects in the data. Johnson and Bow@®dd)(2vho use both the
Mantel and the Knox test to investigate residential bugglargue that the Knox test
can potentially be more insightful as a range of spatio-alpvindows may be cho-
sen and the clustering within each of them can be compardeer@sts for detecting
spatio-temporal interaction include extensions to a spatnporal setting of Ripley’s
K-function for point processes (Diggle et al., 1995) andkireearest neighbour test of
Jacquez (1996), used to detect the spatio-temporal siggsatd different crime types
in Grubesic and Mack (2008).

One of the main advantages of tests for spatio-temporalactien is that few
modelling assumptions are required to obtain relativelywerful insights into event
data. Specifically, since such tests provide a relativebigitforward way to control
for spatial and temporal variation, these effects can lgelgmeglected. The presence
or not of spatio-temporal interaction can discount a rang@echanisms thought to

have been responsible for the generation of event data.

2.2.3 Quantifying change in spatial event data

The timings and locations at which spatio-temporal inteoacof event data arises,
and its duration and geographic extent, have recently beerievest in a number of
studies. Many of the tools used in analysing such effectegpratory in nature, as

they again require few modelling assumptions, which areally informed by aggre-
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gating statistics from the empirical data. The insightsaoted by local perspectives
of spatio-temporal interaction can be much more beneficialpolicy setting than the
identification of global spatio-temporal interaction. Téerly identification of the lo-
cal spreading of a disease or violence, for example, cantteageted vaccination or
policing strategies that help to minimise its adverse imhpad possible spreading.
One example of a more local and dynamic spatio-temporabexiary technique
is Kulldorff’s space-time permutation scan statistic (idotff, 2001; Kulldorff et al.,
2005), which can be used to detect the emergence of hotsipatsiaty. This statistic
and its associated Monte-Carlo method for assessing &takisignificance has been
shown to be robust for different spatial resolutions (Joaed Kulldorff, 2012) and
under incomplete and inaccurate data (Malizia, 2013). Eptasof its use in relation
to civil violence event data can be found in O’Loughlin et(@D10a), O’Loughlin et al.
(2010b) and O’Loughlin and Witmer (2010). The method deplmoving cylindrical
space-time windows of varying spatial and temporal regmiutver the study area and
compares the counts of events with what would be expectedrumdull hypothesis
(e.g. of spatial and temporal homogeneity). The statistigiven by the maximum
over all deployed cylinders of the generalised likelihoatia, a function that compares
the counts of empirical events both inside and outside theesime window with the
counts that would be expected under a null hypothesis. Sheenethod is applied
locally in space and time, it can be used to detect the emeegarhotspots of activity.
A number of other studies have considered change in evelerpait a local level

by, for each spatial regiofy calculating the tuple

<Xj7 > leXl> : (2.1)
l

where the variableX; is a variable of interest, taken in previous studies to bea-st
dardised count of events, or a binary indicator of event oetice, in spatial region
J, andWj; is a row standardised matrix of spatial weights with zer@dral. For a
suitable definition of the spatial weights matriX, provides information about event
occurrence in spatial regiony andY; = >, W;,X; provides information about event
occurrence in those areas nearby to regioin Anselin (1995), using a standardised
count of events, a comparison &f andY; is used to detect statistically significant ar-

eas of local autocorrelation of African conflict. Furthemeahe quadrant in which the
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point (X, Y;) lies in the plane indicates whether higher than averaget ®@enrrence
IS near in geographic space to other higher than averagds;ouhether low counts
cluster near to other low counts, or whether there is negatintocorrelation and low
counts are near to high counts. The varialdjes specified, which can take one of four
values for each spatial regign If there is a high number of events in both the focal
region;j and its neighbouring regions, theéfy = HH. Conversely, if there are a low
number of events in botk and its neighbouring regions, theéfy = LL. If there is
negative spatial autocorrelation, and a high count of eventhe focal region is near
to low counts, ther¥/; = HL. Z; = LH is defined analogously. Thu&; provides a
simple indication of the local spatial autocorrelationmiespatial regiory.

Cohen and Tita (1999) extend the local indicators of spasisbeiation described
in Anselin (1995) to consider temporal effects. By choosingppropriate temporal

partition of the empirical data, the authors calculate

(Xj (th), Y WX, (tk)> , (2.2)

for some time step, where the variableX;(¢;) andY;(t;) = >, W;; X;(t;) are as in
equation 2.1 but specific to the time interval By determining the quadrant within
which this tuple lies on the plane for different argaand timeg,, the local character-
istics of spatial autocorrelation in the event data at egwé interval can be visualised
and, moreover, categorised.

Defining Z;(t;) analogously, and considering the change’ji¢;,) over different
time intervals leads to insights into to how the local spatependency in the event
data changes. The transitidf)(¢;) — Z;(tx+1), which can take one of 16 possible
values (e.g.HH — HH, HL — LH, etc.), can be interpreted as different dynamic
processes in the event data. The transifibh — L H, for example, corresponds to the
relocation of events in the focal region to neighbouringoeg. Similarly, HL — HH
corresponds to escalation of event occurrence from a fegam to neighbouring re-
gions. The identification of these patterns in event datdezshto a better appreciation
of the range of mechanisms that might be at play. In many ¢césesounts of each
type of diffusion are compared against the counts that wbaldxpected under a null
hypothesis of event independence, which can be computad asvlonte Carlo simu-

lation.
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Using this framework, Cohen and Tita (1999) identify the pres of the geo-
graphic diffusion of homicide occurrence in Chicago; Hsueale(2012) explore the
different types of geographic diffusion in cases of Dengawef in Taiwan; and LaFree
et al. (2012) consider whether a change in strategy of theiSipgerrorism organisation
ETA coincided with a change in the nature of the spatial ditin of event occurrence.

Two further studies—Rey et al. (2011), who investigate amgkevents in Ari-
zona, and Schutte and Weidmann (2011), who investigateicoeflents during the
civil wars in Bosnia, Kosovo, Burundi and Rwanda—employ binrasasures of event
occurrence in each spatial region, known as join countserahan using standardised
counts as described in Anselin (1995). That is, the varsahlgt,) andY;(¢;) deter-
mine whether at least one event occurred in, respectivpitia region; or nearby
regions at timet;. Then, the transitions of the variablg (t,) = (X;(tx), Y;(tr))
are considered. This approach is particularly well-suttedelatively rare events in
space and time and it alleviates the need for modificatioheévent data, for example
by normalising. In this case, no choice is required rega diow to normalise event
counts, a choice which may have a significant influence ondkelting analysis. To
explain, if event counts are normalised at each time step, &m area with an apparent
high level of events at one time step may appear to becomesanaath low intensity
due to the onset of events elsewhere and not due to any chanige original area.
Conversely, if the count of events are normalised acrossva intervals considered in
the analysis, then the identification of high intensity kmas is sensitive to variation
in the overall intensity of events.

Importantly, the frameworks described in this section #irexgloratory. The null
models against which some of the statistics described anpared against can often
be easily specified using Monte Carlo modelling. These maalelsonstructed with
minimal assumptions regarding the underlying mechanisntie generation of the
event data. One example of a Monte-Carlo model that can bea@edeas complete
spatio-temporal randomness, in which events are equaiyylito occur within any
spatial region and at any point in time over the entire stuép.aSimulations are used
to generate the same number of events as in the empiricaldd# this assumption.
Often a more appropriate model when considering spatigéeah interaction is given

by a Monte Carlo simulation that preserves both the spatiitamporal distribution
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of the event data but loses any spatio-temporal dependgnemtiomly permuting the
times associated with each event. This model enables a cmopaf the data against
a scenario with no spatio-temporal interaction and is ugeficonsidering the effects

of event interdependency.

2.3 Spatio-temporal statistical modelling

A statistical model specifies how a dependent variable édedlto one or more explana-
tory variables. In contrast to exploratory approachedjssitzal modelling requires
assumptions as to how the system behaves and how some saatglis denerated.
Observations from a dataset are assumed to be generated dlyaditity distribution,
the form of which is defined by the model. For parametric miiatgl the model is
specified up to a vector of parameters, denote@byThe task is then to select the
value 3 = 3 so that the model is the one that would have most likely ge¢edrtne
sample data observed. Hypothesis testing can then be uskdeionine whether the
relationship between dependent and explanatory variapesified by the model is
appropriate, or whether another relationship should beidered.

Importantly, statistical modelling of civil violence evietiata can be used to test
whether a proposed variable helps to explain the occurrehewents. The causal
effect from an explanatory variable is justified by usingaityeto argue that a particular
mechanism is responsible for the observation. Moreovatistital modelling often
forms the backbone of arguments that a particular mechasisrdeed responsible for
the occurrence of events.

In classical statistical modelling, such as linear regogsghe observation data is
required to be independent. When the dependent variable imtdel is the count or
occurrence of events that are themselves suspected todbdapendent, this assump-
tion is violated. Spatio-temporal approaches to statistivodelling have been devel-
oped in which independence across observations is notregtjusuch approaches are
well-suited to event data occurring on relatively fine sgdaind temporal scales.

In what follows, previous literature employing statisticedels to obtain insights
into civil violence event data from a spatio-temporal petdjpye is reviewed. This
review is split into three sections. The first considersistuthat employ data detailing

the characteristics of the locations at which conflict isa@péted to occur, in order to
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determine whether some of those variables covary with a@rdtcurrence, and may
plausibly be incorporated into a explanation of the medrariyy which that conflict
arises. The second section takes an individual perspeetigereviews literature that
has employed statistical models at an individual level t@stigate the choices made
by those who engage in civil violence. Finally, statisticaddels that have been used
to make predictions of event occurrence are consideredihamdsuccess in doing so

is discussed.

2.3.1 Covariates of civil violence

The use of regression models in studies of civil violence ali as other types of
conflict is widespread. Regression models can be employedghdidht statistical
relationships between a number of variables. Taking thewmidgnt variable of interest
to be the onset or occurrence of civil violence within somacsptime window, and
taking the resolution of that space-time window, the unfitsralysis, to be the country-
year, many studies have used regression models to highimlitthe likelihood of
conflict occurring in a country is related to structural shies such as GDP per capita,
the presence of natural resources, and the type of govetimpgower.

Two of the most widely-cited recent studies of civil confli€earon and Laitin
(2003) and Collier and Hoeffler (2004), use country-yeardtigiregression models
populated with a range of explanatory variables. They athag in contrast to more
traditional explanations of civil conflict such as relatdeprivation (Gurr, 1970), vari-
ables that capture favourable conditions for a successfurgency, such as state weak-
ness, large populations and political instability, areofbetter at explaining civil con-
flict than variables designed at capturing grievances wipopulation, such as ethnic
and religious fractionalisation, and economic inequalilly particular, variables de-
signed at capturing grievances within a population are shiovadd little explanatory
power over the variables that capture the opportunity feuigency. Although both
models incorporate a temporal lag within each countrynidéel to capture some of the
unobserved heterogeneity and to alleviate omitted vaxiblas, neither of the models
incorporate spatial variables to account for spatial ddpeay.

Although stimulating a large number of subsequent modelsidhconflict, the

models of Fearon and Laitin (2003) and Collier and HoeffleO@ave often been
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critiqued with respect to two key limitations: the lack ofpdigit spatial dependency,
and the inappropriate use of country-years as the unitsaysis.

Considering first the issue of spatial dependency, it has en argued that,
due to the presence of spatio-temporal clustering of caratithe country-year level,
the geographic context of a country appears have a significtumence on its internal
functioning (Richardson, 1960b; Most and Starr, 1980; Sdaad Most, 1983). As a
consequence, a range of regression models that explicitiguent for spatial depen-
dency have been proposed. Two frameworks are the spat@eguessive model and
the spatially lagged error model. When an active spatialge®és presumed to be
present, such as the geographic contagion of conflict, tahgas@utoregressive model
is preferred (Beck et al., 2006); however, this model oftequines sophisticated esti-
mation techniques (Ward and Gleditsch, 2002).

Spatial regression models have been proposed that teseaavige of hypotheses
concerning the types of spatial processes at play duringwdlence. For example,
exploring mechanisms responsible for the observed ciagtef conflict, Salehyan
and Gleditsch (2006) provide evidence for the associatidhis effect with the flow
of refugees between countries; Buhaug and Gleditsch (20@8y that, by controlling
for a wide range of dyadic variables, the importance of pruotyi to conflict is reduced,
but neighbourhood contexts of conflict are still importaamgd that ethnic ties are a
significant determinant in conflict clustering; and Braitlit@g2010) explores how a
state’s capacity to counter potential threats from civilftiot influences the likelihood
of conflict spreading between neighbours. The latter ofgleesploys a spatio-temporal
lagged dependent variable predictor, rather than a put@&biag, so that the dependent
variables at each point in time can be treated as indeperidentthe explanatory
variables.

Using country-years as a unit of analysis for many conflicid, andeed, other
types of civil violence is, in many cases, considered to lagpmopriate. The spatial
and temporal distribution of factors that influence the ommce and onset of civil
violence are likely to be highly heterogeneous. The viokentay also only affect
a small area of the country. In recent years, data on conflidtawil violence, as
well as potential structural variables, have become availat much finer spatial and

temporal resolutions. As a consequence, a number of retahés have explored the
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local factors that appear to influence the onset of civilemagle and conflict around the
world.

The study of rioting in US cities during the urban race ridtghe 1960s is an early
example of regression models being employed for the arsabfssubnational factors
associated with the onset of civil violence. In a series atligs, Spilerman (1970,
1971, 1976) argues that the occurrence of rioting was mastiypely associated with
the proportion of non-white population in a given city. lrefathis variable was shown
to absorb the effect of many of the other variables tested¢hwivere chosen in ac-
cordance with sociological theory. More recently, Myer891) repeats the analysis
by Spilerman, using modern event history techniques, toahthek time until event
occurrence, accounting for censored observations (i.eousting for events that do
not occur in the dataset, rather than just ignoring them).l&&onfirming the impor-
tance of non-white population size in US cities, measurestlohic competition and
geographic diffusion of riots were also shown to providexdigant explanatory power.
Myers (2000, 2010) more closely considers the role of geaygcadiffusion of rioting
and shows that the effect of rioting did indeed spread spatiaut these effects were
relatively short-lived. Furthermore, the spreading ofing was found to be heteroge-
neous, with locations better served by mass media netwooks lkely to experience
future violence.

With recent availability of worldwide data on subnation®&iloviolence, the anal-
yses of Fearon and Laitin (2003) and Collier and Hoeffler (20@4e been repeated
at various levels of spatial and temporal resolution, andgome cases, have been re-
futed. Using a fine spatial grid, Cederman et al. (2011) shaivghevances stemming
from inequalities and fractionalisation across differettinic and social groups can
indeed have a significant influence on the onset of violencecal.economic mea-
sures have also been shown to lead to an improved undensgeoictonflict onset over
country-level indicators (Dstby et al., 2009; Hegre et 2009; Buhaug et al., 2011;
Vadlamannati, 2011).

Employing finer units of analysis than country-years mehasthe observed data
and dependent variable is more susceptible to errors bt@igiut by spatial depen-
dency. As a consequence, these analyses typically coontrepftial spillover effects,

whereby the risk of conflict is potentially influenced by omgpconflict in neighbour-
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ing regions, using a spatial lag in either the dependentglaeatory variable(s). In ad-
dition, many studies also control for unobserved hetereigmithin each spatial unit
via a temporal lag term. Some disaggregated studies ofwoliénce, however, have
more explicitly considered spatial and temporal depenéerity making the spatially
and temporally explicit terms the principal variables denmest. Weidmann and Ward
(2010), for example, demonstrate how the inclusion of spatid temporal terms in a
logistic regression model of conflict occurrence duringdivil war in Bosnia greatly
improves the predictive ability of the model.

Focusing on other geographic aspects of conflict, Buhaug atedsG2002) use
the geographic area of a conflict and the distance of thaticbftim the capital as the
dependent variable in their regression model and show disatvell as being closely
related, the land area, adjacency of international bordedsthe presence of natural
resources can influence the size of the area affected by tikctowhilst the distance
from the capital is additionally dependent on the naturehefrebellion. Buhaug and
Rad (2006) extend this analysis by showing how separatislicisrin Africa are more
likely to occur near to international borders and in remate disadvantaged regions,
whilst governmental conflicts are more likely to occur inamtareas and close to dia-
mond fields.

A number of studies in civil conflict have also used eventdmisiapproaches to
determine the most likely areas to experience conflict basetthe attributes of each
location. Raleigh and Hegre (2009), for example, use a Coxdptiopal Hazards
model (Cox, 1972) to show that conflict is more likely to ocaudacations with lo-
cally clustered populations far from capital cities andrrteanternational borders. In
addition, Buhuag et al. (2009) show that such separatistictsfivhich are located far
from capital cities, can last substantially longer, but tine relative strength of rebel
groups can drastically shorten conflicts. Holtermann (2@bBploys an event history
analysis of insurgent conflict in Nepal and shows how conflegendency on covari-
ates can change throughout the duration of the conflict aat] &% a consequence,
regression models with time-varying parameters, whictpassible to construct using
event history approaches, can lead to improved models.

Finally, a number of studies have pointed out that spatiddipendent terms in

regression models can have a number of different inteffiwea Instead of purely
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geographical distances, they may capture some form of gksext cost associated
with a particular mechanism by which conflict is thought toes. To explain, Beck
et al. (2006), for example, use a measure of trade betwe@nsatather than purely
geographic distance, in a model of the spread of democradfid way, they attempt
to capture the underlying mechanism for the observed d$pkaendency, rather than
just relying on a geographic proxy. Similarly, Zhukov (20&Pgues that the operations
of insurgent and government forces during civil violenckkisly to be constrained by
infrastructure networks, and shows that by incorporatoagimetworks into a distance

metric via the spatially dependent variables, regressiodais can be vastly improved.

2.3.2 Individual decision-making during civil violence

Disaggregating from the country level, studies of violedoeing civil conflicts have
often considered the perspective of groups that are boubgeither their proximity
to one another or by their ethnic or socio-economic tiesl{Zls2008; Cederman et al.,
2011). Additionally, various studies concerned with tesm and insurgencies have
considered the perspective of the terrorist or insurgeotigrcommitting attacks by
incorporating independent variables such as terrorisigsize, level of training and
the age of the group in regression models (Clauset and Gladi#®12; Asal et al.,
2015; Holtermann, 2015). Despite these advances, theeeldeen calls for the study
of civil violence to be applied at yet lower levels of disaggation, and to consider the
decision-making of individuals, and how their decisionking results in the spatio-
temporal signatures observed (Wilkinson, 2009).

In existing literature on civil violence, although an indiual perspective is often
formulated and discussed, empirical tests tend to rely oa @ggregated at a higher
level than the individual, particularly with regards to thgatio-temporal patterns of
events. As an example, Kocher et al. (2011) and Lyall (206&uss the range of
strategies available to civilians in the face indiscrinn&iolence by counterinsur-
gents. They test the theory that civilians are more likelgupport the insurgents if
they observe higher levels of indiscriminate violence.ngsipatial techniques to test
this theory at the village level, rather than at individwealdls, they reach opposite con-
clusions using two distinct case studies of violence — hboebardment during the

Vietnam War, and Russian artillery fire in Chechnya.
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A small number of studies concerning collective violencd @aoting have con-
sidered individual decision-making, largely with regara$he choice of target (Abudu
etal., 1972; Berk and Aldrich, 1972; Rosenfeld, 1997; Auyerd Kloran, 2007; Mar-
tin et al., 2009). The spatio-temporal influences duringnghave, however, not been
adequately accounted for in statistical models of indigidiecision-making.

In contrast, the literature on criminology has long beenceoned with how of-
fender behaviour, and possible influences on that behawbapes the resulting spatio-
temporal distribution of event data. This is partly becaunshividual level data on
offenders and the crimes they commit is readily availabteufe in statistical models.
There have been a large number of statistical models apgithe individual level with
mechanisms inspired by a range of criminological theoryn&of the most prominent
theories with regards to the spatio-temporal distributborime come from Environ-
mental Criminology (Brantingham and Brantingham, 1981), wiexplicitly considers
how individuals make decisions to offend based on the simstand surroundings in
which they find themselves. One of Environmental Criminolsgyost prominent
contributions, the routine activity approach (Cohen angdéiel 1979), supposes that
crime occurs at the convergence in space and time of a madiatender, a suitable
target, and in the absence of a capable guardian. Crime mpétieory (Brantingham
and Brantingham, 1993) then considers how the implicatidrthie routine activity
approach leads to the emergence of spatio-temporal caatiens of crime. As a re-
sult, using these theoretical perspectives, many studies mvestigated the factors
that influence the decision-making of individuals who comafiences (see Wortley
and Mazerolle (2008) for an overview).

A recent common method for doing so is by employing spatistmite choice
models, which are suitable for situations in which an actdiaced with a choice in
which each option has associated with it characteristiasahe quantitatively distin-
guishable. The choice of location at which to commit a crisiene example where
discrete choice models may be employed, although carefigideration of spatial and
temporal influences is required. In this case, estimatiotisifrete choice models us-
ing empirical data can highlight the relative importancéhef characteristics of an area
in influencing the choice that is made. This approach has beehed to offender

target choice for residential burglary (Bernasco and Niezavta, 2005; Clare et al.,
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2009), street robbery (Bernasco and Block, 2009; Bernasc@2@®ernasco et al.,
2013), theft from motor vehicle (Johnson and Summers, 2Gik%) comparisons have
been made over different types of crime (Bernasco, 2010apeerddifferent locations

(Townsley et al., 2015).

2.3.3 Predictive models

Statistical models with a large number of independent fséagacan be criticised for
placing too much emphasis on the outcomes of regressiogsasathat highlight co-
variates, and not enough emphasis on the causal mechamspmsible for the gen-
eration of the empirical data (Schrodt, 2014). Some authave argued that the focus
of such studies should shift from identifying variablesttbavary, and which therefore
might relate to a plausible mechanism that generates tlae waidentifying the prin-
cipal variables that improve our ability to predict unobset or out of sample events.
For example, Ward et al. (2010) show that the majority ofatalgs included in the
studies of Fearon and Laitin (2003) and Collier and Hoeffl@0@ amount to little
improvement in the ability for the models to predict the drideevents, beyond what is
included in just two predictors: the population of a counsnyd its GDP. Furthermore,
they show that models containing a large number of stadi$fisignificant variables
(with respect to the regression analysis) can even perfasrsevthan simple baseline
models containing just one of either population or GDP.

A number of predictive frameworks have been developed titetgt to identify
variables that enable some form of prediction of civil canflin some cases, a wide
range of independent covariates are incorporated anddteslictive capability directly
assessed (Hegre et al., 2013). However, as Ward et al. (2040¢, the identification
of a relatively small number of variables that have the mostligtive power can also
provide valuable insights and useful predictions (Ward @Gietlitsch, 2002; Goldstone
et al., 2010; Weidmann and Ward, 2010).

Another predictive modelling framework that has been erygaioto investigate
civil violence stems from the theory of point processes.nPprocess models can be
used to predict the timings and locations of different typesvents. Although a wide
range of structural variables can be incorporated into tbéah) many recent examples

have included just the information on events that have hagben the past as predictor
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variables. This approach can be particularly successfusing the temporal cluster-
ing present in much event data to model the increased li@tifof observing further
events after the occurrence of a prior event. For examplEldtiq1986) uses so-called
Hawkes processes, which account for such excitation indteeat which events occur,
to determine whether a contagion effect can be observee ifiequency of aircraft hi-
jackings in the US between 1968 and 1972. More recently, ldaywkocesses have also
been employed to model the timings of events associatedgaitly rivalries (Egesdal
et al., 2010) and civilian deaths during the Iraq war (Lewtisle 2011). Extensions
of this same model have also been used to consider the tinoingsrorist attacks
in Southeast Asia (Porter and White, 2012; White et al., 20B3)ort et al. (2014)
propose a multivariate point process model to account fesipte interaction effects
arising from the behaviours of different gangs. Spatiogeral models of point pro-
cesses, in which the locations as well as the timings of éutwents are modelled have
been used to model burglary (Mohler et al., 2011; Mohler 2@hd insurgent warfare
(Zammit-Mangion et al., 2012). In addition, these final stgdlemonstrate how point
process models can be successfully used to improve pr@diotievent occurrence in

space and time.

2.4 Spatially-explicit mechanistic modelling

Mechanistic modelling is distinct from the range of exptors techniques and sta-
tistical approaches discussed so far. The principal refsothis is that mechanis-
tic models do not necessarily require extensive amountsnpirecal data in order to
obtain insights. Instead, models are proposed by spegiffheorised relationships
between variables, which are directly incorporated intoaeh from which outputs
can be obtained. The outputs of the model can then be asdessbdir plausibility,

and compared against what may have been empirically olikeliviie outputs of the
model are in agreement with observation, then there is stggathe hypothesis that
the proposed mechanism is indeed the process that is relsigdios generating the em-
pirical data. However, agreement between model outputsargrical data does not
mean that the proposed mechanism is actually responsatkery that it must merely
be retained as a candidate explanation until either refatetldiscounted, or further

supported through the collection of data and subsequehtsasa
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One of the main advantages of mechanistic models is thattmepe used to con-
sider what the impact might be on changes to the system oasgodreing modelled.
These changes may reflect sudden structural changes to dieelying mechanisms
of the model, or may simply reflect a gradual change brougbtiaby varying a pa-
rameter. The ability for mechanistic models to account tarhschanges makes them
particularly useful in policy environments, where the poi& impact of a policy deci-
sion and an understanding of its knock-on effects are ofteglst by decision-makers.

In what follows, two types of mechanistic model frameworks discussed with
respect to civil violence. The first, agent-based modellis@ computational simula-
tion technique that models each component in a system amdetactions with other
components as a distinct and autonomous process. Nextséhefwifferential equa-
tions, which typically take a more aggregate perspectias thgent-based models is

considered.

2.4.1 Agent-based models

Agent-based models (ABMs) are simulations that represanft eatity in a system as
an independent and autonomous agent (Epstein and Axt&g; 1Gilbert, 2007). An
ABM consists of a set of rules that describe how the entitiésbe and, crucially, how
they interact with other entities. Agent-based modellis@iframework well-suited
to model complex systems: systems in which interactionadxen entities, for exam-
ple between individuals, can produce emergent, or unegdgtenomena (Newman,
2011). Regularities in the spatio-temporal patterns aasatiwith civil violence is an
example of one such emergent phenomenon and ABMs can bewtdesithat attempt
to replicate such patterns. Overcoming limitations asgedi with a lack of data at
appropriate resolutions, ABMs have been employed as a méamslerstanding how
different forms of individual behaviour might aggregatesistem-wide outputs that
may be empirically observed.

In many early applications of agent-based modelling, thebi®urs proposed for
the agents were somewhat simple, and the models were uggdylé&m demonstrate
that unanticipated emergent phenomena can be the resnttieidual autonomous ad-
herence to simple rules. For example, in the model of neighimod segregation by

Schelling (1971), agents’ slight preference for similarghours can result in com-
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plete neighbourhood segregation. The emphasis of this Imadenot to successfully
replicate real-world individual behaviours, but to dentoae that simple rules, when
combined into a system with many interacting components,praduce unexpected
results. The translation of this finding into the real-wgtdvides support for the argu-
ment that observed segregation in urban areas is the rémhieoent system properties,
rather than any systematic prejudices in the population.

In another early example, Granovetter (1978) formulatesodehof riot partic-
ipation in which individuals can either choose to join a riot choose not to join,
depending on the size of the riot and their perceived prdibabf being arrested. Each
individual has associated to them a threshold that indidiie likelihood that they will
join the riot given the number of rioters already engagedédisorder. Thus, a safety
in numbers effect is emphasised, with rioters who are mekearterse requiring a larger
riot before they participate themselves. This model dernnates how even with a range
of risk averse people, it is possible for a cascading effecesult in widespread riot-
ing. Furthermore, the model demonstrates sensitive dgpeedon initial conditions.
Widespread rioting or a peaceful system state can deperftegmrésence of so-called
‘instigators’ to start the rioting, those with little to nsk aversion. Instigators enable
others who are slightly risk averse to join who, in turn, daaven more risk averse
individuals to participate.

Epstein (2002) presents an ABM of civil violence, which agaitorporates rel-
atively simplistic individual behaviours in order to capunteresting or unexpected
dynamics at the overall system level. In this model, ageat® lheterogeneous lev-
els of grievance and risk aversion, both of which influenedittelihood that any given
agent engages in violence and becomes ‘active’ via a thiceeimadel similar to the one
employed in Granovetter (1978). The model also containE@ealgents which arrest
active agents, who are then jailed before returning to tk&esy in a passive state. The
agents are free to move randomly on a simplified lattice aadgé their state based on
their local environment. The model is explored in a varidtgaenarios, including the
occurrence of decentralised rebellion and ethnic violeand results are interpreted in
the context of the real-world. Given the wide range of encpirstudies that investigate
the causes of civil violence, Epstein’s model of individoahaviour is certainly overly

simplistic; however, Epstein argues that since the modeibé&s outbursts and conta-
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gion reminiscent of real-world rebellions, the model carvakiable in understanding
how simple local behaviours can aggregate to global outsome

As the use of agent-based modelling has become more wigespre range of
behaviours available to agents have become increasinghplea, and more in line
with extant theories of individual behaviour. There are abar of ABMs that, for
example, employ criminological theory and robust empirmaservations—such as
the phenomenon of repeat victimisation in residential lauygin which houses who
have recently been burgled are most likely to experiendbduburglary—to model a
system containing offenders, opportunities to offend, oltte response (Short et al.,
2008; Johnson, 2008; Malleson et al., 2010; Bosse and Gayig010; Birks et al.,
2012) (see also Johnson and Groff (2014)).

In the case of civil violence, there have been several stutieg extend the model
of Epstein (2002), attempting to incorporate more realigtiechanisms into each
agent’s individual decision-making, their interactioasd the environment in which
the model is simulated. For example, Fonoberova et al. (P&ddore a range of agent
risk propensity functions that extend on Epstein’s impliciear relationship between
the likelihood of engaging in violence and the ratio of pelto rioters. The authors
explore the effect of lattice size on the modelled police emthe numbers in compar-
ison to empirical data. Torrens and McDaniel (2013) alsemdtthe Epstein model
by incorporating more realistic spatial information anctiaigdecision-making when
studying the onset of rioting.

Taking the perspective that insights can be obtained fronplei models, Bennett
(2008) proposes an ABM of an insurgency in which civilians canose to commit
attacks if their level of anger at the state or counterinsuatgexceeds their level of fear.
Bennett uses this model to explore the tradeoff between tefeess and accuracy
of counterinsurgent forces. Although emphasising thatrtioelel is simplistic and
therefore cannot capture a wide range of behaviours tha haen observed in the
literature, the model generates policy-level consideratifor counterinsurgent forces,
such as the comparative advantages of being highly accuittiecounterinsurgent
measures during the early stages of an insurgency.

As well as incorporating theories regarding individual &&bur, there is an in-

creasing trend for ABMs of social systems to explicitly colesihow the environment
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in which the agents move impacts their decision-making &ed interactions (Tor-
rens and McDaniel, 2013; Heppenstall et al., 2012). A nurobsophisticated ABMs
with empirically driven modelling and validation procedarhave explored the role of
individual migration and the resulting spatial distrilmurts of ethnic groups in the oc-
currence of violent events (Lim et al., 2007; Bhavnani and C2@12; Weidmann and
Salehyan, 2013; Bhavnani et al., 2014; Rutherford et al., 2@y constructing mod-
els of specific examples of civil violence, and by calibrgtoutputs so that they are
empirical consistent, as these studies do, the policy aalss of such models becomes
immediately apparent. Bhavnani et al. (2014), for exame,tbeir model of segrega-
tion and violence in Jerusalem to explore a number of cofattrals that result from
different policy decisions.

While agent-based modelling began as a conceptual tool mdememergence in
hypothetical and largely simplified systems, another satioh technique, microsimu-
lation, began with the explicit aim of being data-driven anapirical. Microsimulation
aims to overcome the ecological fallacy—which refers tdopgms brought about by
assuming that characteristics of individuals within a gip@pulation can be assumed
to be equal to the averaged statistics of that population#bgelling individuals us-
ing data from a population that includes those individuadlsis requires a model that
describes the variance within a population, and which foesedisaggregates the pop-
ulation statistics over each individual. Many of these nt®dee typically based on
the calculation of conditional probabilities for the unigiarg population, and are often
explicitly spatial (Ballas et al., 2005). Such models sinrilarobabilities for the un-
known attributes of an individual based on what is known alieem (e.g. where they
live, and what are the overall characteristics of the lacath which they live). The
aim is to construct realistic representation of the poputathat matches the overall
statistics for a particular area.

The two model frameworks referred to as agent-based modedind microsim-
ulation are becoming indistinguishable: data-driven axglieitly spatial ABMs have
begun to incorporate statistics of underlying populatimnisivestigate the interactions
of individuals (Heppenstall et al., 2012), whilst dynamiccrosimulation models are
becoming versatile enough to incorporate the changinguweina of individuals and

are therefore capable of exploring the emergent behavibpopulations (Birkin and
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Wu, 2012).

With regards to such simulations of civil violence, on the ¢rand, some ABMs
can be criticised for being overly simplistic and not incangting extant theories re-
garding human behaviour; however, on the other, some moustsaappear to be overly
complicated, with modelling decisions taken without prgpstification. As a research
tool, agent-based models have also been criticised as émelyecdifficult to reproduce
and write code in a standardised way. More recently, engiagent-based modelling,
in which model outputs are compared against real-world, dets been demonstrated
as a valuable tool in studying individual behaviours, ang btese behaviours result in
aggregate observed outcomes during civil violence. Theldpment of agent-based
models is becoming more established as a research tool ifGetnal., 2010), and it is

a method that looks set to play an increasing role in futuseaech.

2.4.2 Differential equations

Models composed of differential equations (DEs) have atgsmlwidely used to obtain
insights into social systems. In contrast to ABMs, in whick thterest is often on
individuals, the dependent variable in a DE-based model sdcal system is often
taken to be some attribute associated with a group of indal&l DE-based models are
therefore typically used for more aggregated scenariosAMs (although, there are
exceptions: DE-based models are employed with individaedectives in Liebovitch
et al. (2008) and Curtis and Smith (2008) and agent-basedImarckeemployed with
aggregated perspectives in Cederman (2003)).

There are many examples of DE-based models being appligddy sivil vio-
lence in a modern setting. Classical models, however, aiealyp concerned with
the actions of two or more adversaries during more convealtiforms of conflict or
warfare. More recently, some of these have been adaptechsides modern conflicts,
including civil violence and insurgencies. For this regsattention is initially given
to models of conventional conflict that have more recentgrbadapted and applied to
civil violence.

In many cases, the dependent variable of a DE conflict modaken to be the
number of individuals on each side of a conflict. In an earregle, Lanchester (1916)

uses DEs to model different types of attritional warfarensstn two adversaries. He
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considers how new technologies, such as the introducticairofaft, might change
military strategy. He does this by proposing two models: onwhich the rate of
loss of each adversary is proportional to the size of thgwooent, representing aimed
firepower, and one in which the loss of each adversary is ptiopal to the product
of the size of their opponent and the size of themselvesgspanding to unaimed
fire. In the case of aimed fire, the model suggests that a lsit@mtage comes from
having a larger army, rather than training the army to be neffective. For unaimed
fire, the benefit associated with being more effective isvadent to a benefit brought
about by a numerical advantage, suggesting that effectugng is likely to be just as
successful as recruitment during warfare.

There have been a number of studies that follow Lanchestenadelling the
change in the size of adversaries with DEs. Deitchman (1962gxample, proposes
a Lanchester-type model of Guerrilla warfare. This modélither developed in In-
triligator and Brito (1988), who incorporate a predatonpimework to examine the
impact of civilians, and in Kress and MacKay (2014), who gahise the model to ac-
count for military intelligence as well as diminishing nuerb of insurgents. Atkinson
et al. (2011) also use Lanchester-type models to investigatirgent warfare, in which
they compare a DE model to a number of modern conflicts.

Another class of DE-based models stems from the work of Raswar (1960a) on
the actions of nations during the lead up to war. In this ceedependent variable is
not the size of each adversary but the level of military spendThe key assumption
in Richardson’s model is that the extent of a nation’s myitdefences, denoted by
p, reacts to the military defences of their adversary, giwen,lat a rate proportional
to ¢. The adversary behaves similarly and reacts to the defencghis reciprocal
action-reaction process can result in an escalating aroeshratween two adversaries.
A nation may react to the military defences of its rival bothaadefensive measure,
in order to provide protection from the threat posed by tpiponent, as well as an
aggressive measure, to exert threat over their opponent.

Richardson believed this process on its own was not enouglotiehiow arms
races might evolve and so included two more factors whicluémited the military
defences of a nation: its own level of expenditure, which Wwgsothesised would

diminish the change in defences as measured by the moded)smexogenous effects,
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which were termed ‘grievances’. The model was first preskagea two-dimensional

linear system of ordinary differential equations given by

dp .

I =p=-—01p+pq+e (2.3)
dg . N

dt =(q = pP2p — 029 T €2,

whereo; ando, are parameters that specify the strength of inhibition fearch nation’s
own expenditure on the model; and p, are parameters that specify the strength of
interaction between adversaries, an@dnde, are parameters that specify the external
grievances of each adversary.

Measuring the ‘defence’ of a nation—the dependent variablesidered in this
model—is difficult to achieve empirically. Richardson ialty operationalised the
dependent variablegs and ¢ by considering military expenditures of two adversaries.
However, there are complications encountered by definiag/éniable in this way, as
some have pointed out (Brauer, 2002). Richardson’s primggctie was to demon-
strate how modelling simple interactions can shed lightlenresolution of conflict,
and was not necessarily on the quantification of militaryedeés. As a result, he also
allowed the possibility for negative valuespéndg. Although difficult to comprehend
in terms of military expenditure, it was argued that negatlues might correspond
to some measure of cooperation between the two nationshvmhiight, for example,
be measured via trade.

In the first application of the model in equation 2.3, Richard§1960a) shows
how the increase in military expenditure of four nations—faisGermany, France
and Austria-Hungary—on two sides of a conflict in the yearsrpo the First World
War very closely follows a pattern that would have been mtedi by the model. A
figure from Richardson (1960a) is reproduced in Figure 2.t.ghaws the straight line
expected from the model, against the data Richardson gdihretee years shown.
The equation for the straight line is obtained by summingweeequations in 2.3 and
assuming that both sides of the conflict react to their owemeds and the defences of
their opponent at the same rate, so that 0, andp; = p,.

Perhaps as a consequence of the very close fit between theé amabthe small
dataset in Figure 2.1, Richardson’s arms race model has ppéadhto various scenar-

ios around the world which have been considered to exhibmsaace’-type behaviour.
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Figure 2.1:The change in the sum of defence budgets against the sum of dete
budgets for four nations during the four years prior to the First World War. The
four nations are Russia, Germany, France and Austria-Hyregat the values plotted
represent the sum of defence budgets over these natiorsnd@eéxpenditure data was
gathered from various sources by Richardson, and the limesepts the best fit of
what would be expected from the model in equation 6.1, assyithiato; = 05 = o
andp; = ps = p. This figure is reproduced from Richardson (1960a). The grads
given byp — o and is estimated by Richardson to b&3. An ordinary least squares

regression produces the same output.
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In many of these cases, however, when using modern estmtatbniques with large
datasets, the model has been unable to reproduce the eshgate to such a close ex-
tent. In fact, much of the time, the model prediction is foamtde a poor fit to the data.
Dunne and Smith (2007) give an overview of some of the ecotracrepplications of
Richardson’s arms race model. They discuss the mixed resh#s the model is ap-
plied to the India-Pakistan arms race from 1960. In paricuising purely temporal
vector autoregression methods, they apply the Richardsaleinio arms expenditure
data for India and Pakistan for the period between 1960 af8.20hey find that, for
some time periods, action-reaction type dynamics presdhei Richardson model can
be observed in empirical data; however, for other time gE;imo such consistencies
can be found.

Brauer (2002) reviews applications of the model to the Graaddsh arms race,
and points out several issues associated with fitting suafletedo arms race data.
Some of the issues Brauer points out are relevant to manycagiphs of differential
equation-based models to social systems. For exampldepnelare often encountered
with data availability, leading to complications in defigiappropriate dependent vari-
ables from the data, which are required in order to validagenhodel. In the case of
arms expenditure, for example, decisions regarding whathtake the dependent vari-
able as the absolute expenditure on defence for each natidime relative amount of
expenditure on defence as a proportion of that nation’s @BxJead to varying levels
of success of the fit of the model.

Parameter estimation can also be compromised as, in sgstahss in particular,
parameter values can change very quickly. As Saperste@iv{3iints out, the param-
eters of the original Richardson model in equation 2.3 arerasd to remain constant
for timescales over which the dependent variables chanigee Slecisions regarding
military expenditure can be made by reacting to a single tetvet can occur on very
short timescales, there may be many scenarios in which $isisnaption is not valid.
Saperstein (2007) goes on to define nonlinear extensionseofmbdel in which the
parameters of the system change according to the straieggam@each nation.

Studies reporting difficulties in matching the model to enaai data sometimes
overlook the principal reason for such discrepancies: tloeehis very simplistic.

There are mechanisms not present in the model which may Wil an important
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role. Richardson’s model is a useful descriptive tool to ust@dad the possible states
of an international system, and how the system might tramsiietween these states.
It was not intended to be used as a predictive tool to foretefeince budgets (Zinnes
and Muncaster, 1984). Indeed, proponents of Richardsondehwaill argue that the
simplicity of the model is a virtue: it can be easily analysauderstood, and be used to
explain the outcomes of different scenarios, and how ttians might occur between
them.

Similarly to Lanchester's model of combat, Richardson’s gldhs been extended
in a number of ways to consider the dynamics of different sypkconflict. In one
example, asymmetrical conflict is investigated by consmewhat might occur if a
smaller adversary is unlikely to directly compete with y&rone, instead choosing to
change its tactics by, for example, submitting to the larggtion’s threats or attempting
to undermine the larger nation by employing different sméts rather than directly
competing by increasing the size of their own defences. Ihd&dson (1951) and
Richardson (1960a), the model in equation 2.3 is extendedrisider the possibility
of submission of a nation in an arms race if the lead becamé&tge. This model is

given by:

p=—-0p+pg(l—vi(g—p))+e (2.4)

= —02q+ pap (1 —v2(p —q)) + €2,

wherevy, v, > 0 are additional parameters that Richardson termed ‘subrarssss’,
whilst all other parameters have the same interpretatiam @guation 2.3. The param-
etersv; andv, determine the extent to which the reaction terms are dimmaupro-
portional to the opponent’s lead in defences. Their indusias the effect of enabling
scenarios in which, once a sufficient lead develops for otiemaheir opponent will
slowly begin to react less and eventually begin to redude de¢ences, as they concede
their position in the arms race.

Asymmetric dynamics can also occur during insurgent waréenrd other types of
civil violence (Ryan, 2006). In this case, whilst it is difficto measure the dependent
variable in terms of military expenditure, there may be otheasures that determine
the level of threat or cooperation between opponents, sadheaamount of public

support for either side, or the likelihood of one side irtitig conflict against the other.
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Karmeshu et al. (1990) consider an extension of the Richardsadel that can be
applied to domestic political conflict in order to investiggahe interactions between a
ruling and a challenger group. Similarly, models proposgddckson et al. (1978),
Intriligator and Brito (1988) and Blank et al. (2008) are athiaiscent of Richardson’s
model since they incorporate dynamical processes of @égmaknd inhibition, as well
as various extensions that might be relevant in civil viokeacenarios.

The ability for models of escalation processes to be appliedrange of different
types of conflict, from arms races to insurgencies, suggleatshey can be interpreted
as models of general conflict between two adversaries. thdeeently, a number of
authors have taken this perspective, and proposed modgé&nefal conflict processes
that build upon theories of conflict developed in psycholog@ire authors argue that
such models can be applied to nations, groups or individuhtsinteract in a conflict
with an opponent. No constraints are placed upon the rangguattions to which the
model may be applied. For example, Liebovitch et al. (2008sent the dynamical

properties of the model given by:

p=—o1p+pirtanhqg + ¢ (2.5)

G = —02q + patanh p + €.

The relationship between this model and Richardson’s modetjuation 2.3 is clear:
the interaction terms have become nonlinear functions dedrin (—p;,p;) and
(—pa, p2), respectively. Further extensions have recently beeroesglin Qubbaj and
Muneepeerakul (2012) and Rojas-Pacheco et al. (2013) bypgdidie delays to these
reaction terms.

Perhaps surprisingly, given how important the considenatif space is in various
conflict processes, there have been few spatial extensifodbE-tased conflict mod-
els. Borrowing techniques from ecology (see, for examplelchav et al. (2008)),
some spatially-explicit models have been proposed usiacfion-diffusion equations
to specify how a dependent variable of interest varies itaspd&or example, Keane
(2011a) presents a spatially extended version of the Latehequations and demon-
strates how strategic manoeuvring of combat units can lwepocated into a spatially
continuous model. Spatial Lanchester models are explamgbefr in Gonalez and

Villena (2011), in which they are derived from first prin@glbased on assumptions
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of the movement dynamics of troops. Another example is Bnghthm et al. (2012)
who present a spatially extended version of the Lotka-¥a@tequations to model the
geographic evolution of gang boundaries in Los Angeles. yTdteserve consisten-
cies between the model and the real world system, demanstridtat events cluster
in space in a way predicted by the model. Reaction-diffusiad@s have also been
used extensively in models of urban crime (Short et al., a(4;0Pitcher, 2010; Ro-
driguez and Bertozzi, 2010; Berestycki and Nadal, 2010). Sweme argued however,
that reaction-diffusion models may not be the most appab@nnethod of accounting
for spatial dependency since such models can lack a clearetieal argument for the
continuous diffusion of the dependent variable in spacen@@ez and Villena, 2011;
llachinski, 2004).

Another approach to modelling spatial dependencies with BEhrough the use
of spatial interaction models. Spatial interaction modgiscify how the value of a
dependent variable at one location interacts with the dég@nvariable at another.
They can be readily employed within differential equatiombich typically specify the
change in that variable over time, taking into account aratigpinteraction. Davies
et al. (2013), for example, present a DE-based model of timeltwo riots that employs
a spatial interaction model to account for spatial depecglém contagion processes
associated with rioting. The authors use their model tostigate policing strategies—
in particular concerning police deployment strategies-anreffort to understand how

these might affect outcomes during such extreme events.

2.5 Discussion

A range of modelling frameworks, each of which have been tmdatie development of
spatio-temporal models of civil violence, have been inticet, and various examples
considered. The amount of empirical data required to foateuthe models, and the
extent to which assumptions remove the model from the realdwaries over the
different modelling frameworks. Furthermore, this changeth the plausibility of the
model, as well as the range of potential insights, as argu€thapter 1 (see also Figure
1.1).

Exploratory approaches can be used to construct null madedse structure is

directly informed by the empirical data (e.g. through th&tmumber of events or
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the number of expected events in a given spatio-temporadawh Differences be-
tween null models and empirical data can be used to infeaicecharacteristics of the
data, and possible mechanisms for these characteristidseceonsidered. It has been
demonstrated how exploratory approaches are particuaallysuited to analysing the
spatio-temporal properties of civil violence event datamitations of exploratory ap-
proaches arise from their inability to explore theorisedhamisms in detail, and their
reliance on accurately recorded spatio-temporal dataafR=dion past data means that
exploratory approaches can not be extensively used in acpvedsetting, since any
predictions would rely heavily on extrapolation.

Statistical models require the specification of some hygsitied relationship be-
tween variables. Calibration of the model with empiricaladabgether with appropri-
ate controls, can lead to an assessment of the extent to wai@bles that proxy for
the proposed mechanisms covary with a dependent variatdeharefore can provide
evidence that those mechanisms do indeed play a role in taegdaerating process.
Statistical models in which structural covariates are @ygd as a proxy for a partic-
ular mechanism are widely used to assess the occurrencéloficience and conflict
events in space and time. Despite recent models being dilieer spatial and tem-
poral resolutions than have typically been used in the past) models may still suffer
from sources of error brought about by aggregation. Siedistodels of individual
choice may offer an alternative formulation for employingtistical models to study
the spatial context of civil violence.

A significant literature in the statistical modelling of tiviolence and conflict
has shifted the focus from standard goodness of fit measssesiated with regression
models to their ability to predict the onset and occurrericevents. Even relatively
parsimonious models have been shown to have some prediative. Point processes
provide a statistical modelling framework that are welitestl to predictive modelling.
In particular, there are a number of point process modelshiénee been applied to a
range of problems in crime and security. Some of these hase @@monstrated their
ability to predict events in space and time more succegdfudin traditional models.

Mechanistic frameworks, such as agent-based modellingiffiedential equation-
based modelling, enable the investigation of the logicalseguences of a proposed

mechanism at various levels of aggregation. If the modetigpeces outputs in agree-
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ment with empirical observation then that mechanism may @larominent role in the
real-world system. Mechanistic models can also be usedtsider different scenarios
on which there is little historical precedent and scarceigogb data. In this sense,
mechanistic models can be extremely useful in a policyregtts policy-makers might
be interested in what might occur in the future under a ramgédferent policy options.
The appropriate level of complexity in a mechanistic mode@lften difficult to achieve.
Simple models are often preferable due to their ability t@balytically interrogated,
but can be criticised for not incorporating potentially ionfant processes. More com-
plex models can be also be defined, however, models that@o®toplex can preclude
validation procedures and therefore useful insights.

The choice to construct a mechanistic model using an agesgebor equation-
based framework is an important one. Although ABMs can paiyibetter capture
the idiosyncrasies of individual behaviour, they ofterutem a higher level of model
complexity, which is sometimes undesirable. Additionatlye wide number of an-
alytical approaches developed to study differential éqnatsometimes means that
DE-based models can lead to more sophisticated insightand&@011b), for exam-
ple, compares a spatially-explicit equation-based motlebmbat with an equivalent
agent-based model (described in llachinski (2004)) and/shioat many behaviours of
agent-based models can be reproduced using equation-dyasexaches. If the results
of a DE-based model can be shown to produce complex dynammitsas those in an
ABM, then the analytical power given by the DE model would beferable so that a
researcher can, in theory, evaluate different regimesladvieur; a technique which is
difficult to achieve with any certainty in a simulation. Shet al. (2010b) provide an
example where the analytical tractability of an equatiasdal model generated from
an agent-based model leads to greater insights than thelagsed model alone. Some
studies have combined the two approaches in an attempt &fibEom both of their
advantages (Geller and Alam, 2010).

Finally, although there are some other modelling framewaniat may have been
included in this thesis to investigate the spatio-tempse#ing of civil violence, such
as spatial game theory, bayesian networks and machinerigaigorithms, the scope
of the thesis has been bounded to incorporate just thoseagps presented above,

which were found to be the most prominent spatio-temporpt@xrhes to modelling
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civil violence in the current literature.
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Chapter 3

Exploring spatio-temporal patterns of

rioting with data-driven models



3.1. INTRODUCTION

3.1 Introduction

The availability of extensive datasets detailing variospegts of human activity has
transformed our ability to examine social systems from antjtaive perspective. Civil
violence is an area of human activity to which this partidylapplies. Police forces
and government agencies are collecting considerable itjeardf data on the locations
and times at which offences associated with violence odte.purpose of this chapter
is to examine whether modelling the spatio-temporal prafflevent data using an
exploratory data-driven approach can lead to insights timomechanisms by which
civil violence occurs. It is then considered how these tygferodels might be used to
aid the operational decision-making of police organisetio

Exploratory data-driven approaches typically comparefcdly constructed null
models to the empirical data, in order to make inferencestahat data. It is common
for null models to be built from initial simple—indeed, alstdrivial—assumptions.
Further assumptions are then subsequently incorporaaebelyin to increase the com-
plexity of the model. As will be demonstrated in this chaptbee inclusion of more
restrictive assumptions can lead to sophisticated insigitb the range of plausible
data generating processes.

To demonstrate this model framework, spatial and spatigteal patterns in the
2011 London riots are investigated. The aim is to construnbeel for the generation
of times and locations at which offences occurred duringrits, with the objective
of understanding how and why the riots spread as they did. deins first presented
in which riot data is generated under the assumption of ceta@patial randomness.
Comparing this modelled data with the event data, it is cateduthat there was sig-
nificant spatial heterogeneity and autocorrelation dutivegLondon riots. The spatio-
temporal profile of the rioting is then explored, first by detaing whether there was
significant spatio-temporal interaction between everds Was above and beyond the
effect of the spatial and temporal dependency of the evematalad second by exam-
ining how spatio-temporal interaction influenced the Iggalterns generated by the
times and locations at which offences occurred. The restittsis study are discussed
with reference to possible mechanisms for the observedmpattand evidence for the
presence of these mechanisms is evaluated. The utilityesketimsights is discussed

both from a theoretical and a policy perspective, and thegeity of the modelling
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approach is considered. Finally, it is argued that the hisigbtained can be used in

the development of more sophisticated models.

3.2 Data aggregation

To introduce notation, which is defined without loss of gatigr in order to enable
applicability of the methods presented across differeahados, suppose that events
occur at(s;, t;) € D x T fori = 1,.., N, whereD C R? is a bounded spatial domain,
and7 C R is a bounded temporal domain. Suppose also that the eients are
ordered so that; < ¢;,; fori = 1,..., N — 1, and therefore it is often convenient to
take7 = [t1,tn].

Event data is often aggregated into a spatio-temporaltipartof the domairD x
T. There are many reasons why event data might be aggregat&ob civil violence
is highly likely to be of a sensitive nature. At its finest legéspatial resolution, it may
contain identifiers such as home addresses of suspectsasrpsitsonal information.
The data can also suffer from observation biases. For exartipre are difficulties
in obtaining accurate event times when investigating cbffié types of crime since the
occurrence of the crime is rarely directly observed (Rd&I2000). Consequently, the
interval in which the crime is known to have occurred is oftecorded, rather than the
actual time.

To introduce notation, for subsef®; € D for j = 1,2,...,J and7, € T for

k=1,2, .., K, suppose that

K
p=Jp;, T=UT (3.1)
k=1

.....

-----

partition of the domairy .

Due to constraints in the way event data is collected andrteghathe spatial par-
tition of D is often defined by administrative regions that are geowsdtyi irregular.
Consequently, the subséds can vary substantially in size for differeptin the case of
the 2011 London riots, in which offence data was particylaénsitive given the polit-

ical salience of the riots, the available data reporteddbatlon of offences aggregated
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into census output areas within Greater London. Census oatpas are a geographic
partition of the UK designed for the reporting of demograpdata obtained from the
UK census. Each output area is designed to contain appréediyrgd0 residents and,
therefore, can vary in size according to the population itep$the underlying geog-
raphy.

The effects that aggregation has on analysis of spatial ftegebeen well docu-
mented (see, for example, Weisburd et al. (2009)). One sifiett és the modifiable
areal unit problem which is demonstrated in detail in Opans{1984). It states that the
choice of spatial partition of the geographic area of irdeoan have a large influence
on the outcome of any analysis. The results obtained may e ofa consequence
of the particular aggregation chosen and not a propertyefttiderlying process. A
solution is to run multiple analyses for different geograpmggregations of the data,
in order to test whether results are consistent when theiglaiggregated in different
ways. One way of achieving this, and the method that is engplay this chapter, is to
overlay a square spatial grid on the geographic area ofestteA square spatial grid
easily enables the researcher to consider different agtioeg of the available data by
varying the spatial resolution of the grid, denoteddsy In laying a regular spatial
grid over an irregular administrative partition, care mhsttaken to ensure that the
spatial grid is of a large enough resolution so that eventsiming within a particular
administrative area are mapped to the spatial grid unit iichvtihey occurred.

The modifiable unit problem also holds for temporal aggriegat in which events
are aggregated into time intervalg. Similarly to the spatial case, a solution is to
aggregate the data into a regular temporal partition ofithe tlomain of interes?
with resolutiondt. Supposing thal” = [t1, tx], thenT;, is defined fork = 1, ..., K so

that
K

K
T=UT=Ut+ (k—1)st,t + kot), (3.2)

k=1 k=1
where K is chosen so thaty — t; < Kdt. The resolutiondt can then be varied

to test whether any conclusions are consistent acrosseattféemporal aggregations.
For spatio-temporal analysis, the modifiable unit problesraddressed by performing
analyses over different values of bathanddt. In varyingds anddt, it is also possible

to examine if, and how, conclusions resulting from the asialyary over different
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temporal and spatial scales.

3.3 Spatial randomness and autocorrelation

In order to motivate investigation into the spatial autoetation of riot events, the ad-
vances made in considering the spatial dependencies efetitftypes of crime are first
considered. Indeed, a large body of research has demauksttett, for certain types
of crime, there is significant evidence for spatial autoelation: the phenomenon by
which the occurrence of events is more likely to be near tem#évents. This find-
ing has led to subsequent studies investigating possilplaeations for the presence
of autocorrelation. Johnson (2008), for instance, congpawre possible explanations
for the presence of autocorrelation in studies of residébtirglary. The first of these
states that it is the occurrence of events at a particulatilme that increases an area’s
attractiveness, leading to the occurrence of further eventis is known as the boost
hypothesis. The second explanation is that it is the presehsuitable time-stable en-
vironmental conditions at that particular location thatken& particularly vulnerable,
the so-called flag hypothesis. This particular example aetnates the utility in using
data-driven modelling approaches as a first approximaborafmodel of a complex
process. The identification of spatial autocorrelationtiedurther studies that con-
sidered explanations of the phenomenon. Models based uppfesassumptions can
often inform further studies by suggesting research qoiestilt is in this vein that this
section proceeds.

In this section, a spatial analysis for the 2011 London ri®fsresented in order
to determine whether or not it was the case that riot offectestered in space. The
aim is to determine whether further investigation into tpat&l patterns of the riots
might lead to more intricate insights, which might ultimgitee useful from a policing
perspective. A model of complete spatial randomness (liertbebbreviated as CSR)
for the event data is first considered. Rejection of CSR is aftersidered a “minimal
prerequisite to any serious attempt to model an observedrpa{Diggle, 2013). In-
deed, if a dataset is indistinguishable from CSR then theme spatial dependency in
the data, and efforts at spatial modelling are unlikely toagate useful insights.

A series of eventsgs,, ¢;) for i = 1,..., N is completely spatially randorwhen

the locations of the eventgs;},_,  are indistinguishable from a Poisson process.

-----
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A Poisson proceseccurs when counts of events in non-overlapping suliSetsf D
follow a Poisson distribution. Denoting the number of egethiat occur in the subset
D; by the random variablé(; and assuming that the subs&tshave equal area for all

7, this implies that

_-Axe—A
!
for somez € Z andintensityA € Rforj =1,2,.... J.

, (3.3)

Denoting the realisation of; in the empirical data by ;, then, in order to reject
tions of X; that would be expected under a null hypothesis of CSR. A mod€lSR
is therefore the first model of the empirical data proposéds odel is employed in
order to detect spatial heterogeneity, which can then beeeg with more complex
approaches. As well as determining whether the empiridal differs from CSR, the
level of autocorrelation in the data is quantified through tise of spatial statistics,

which are first introduced.

3.3.1 A measure of dispersion

The comparison between the model and the empirical datpitsatify made through the
use of a test statistic. A test statisiice R is designed to be a single-valued summary
of the dataset that can detect differences between ditfedega samples (e.g. from the
empirical data or the model). A test statistic that is ofteediwhen considering CSR

is the index of dispersion. This is defined as

_ Var[Xj]
- E[X;]
where the variance and expectation of the counts are ctdcudaer the different spatial

Sa (3.4)

regionsD;, which are assumed to have equal area.
For idealised distributions, such as that of CSR, the indexisgedsion can be
computed analytically. For a Poisson process in which thdom variableX; has the

distribution given by equation 3.3, the expected count is:
oo oo 1 .
E[X;] =) aPr(X;=1) = Z%A e (3.5)
=1 =1

from which, by removing a common factor from the sum, and gigime identity
S i/ (k — 1)! = e¥, it can be shown that

E[X,] = A. (3.6)
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The variance of the same process is given by
= 1 T, —A
Var[X;] = E[X}] — (E[X])? = ;ﬁa)\ e =\, (3.7)

from which, by removing a common factor from the sum, sejiagahe sum into two
components, one with denominatar — 1)! and one with denominatdr: — 2)!, rela-
belling indices and using the exponential identity usedhenexpectation calculation, it
can be shown that

Var[X;] = \. (3.8)

The index of dispersion for a Poisson process is therefore

_ Var[X]

5= Ex)]

~ 1. (3.9)

The index of dispersion measures the extent to which eventtsare distributed
over different spatial unitsS, is equal to zero when the counts are equal over areas
and are therefore completely uniformly distributed. Thisglmh occur if events form
a regular point lattice. As shown in equation 38,is equal to one under CSR. A
valueS,; € (0,1) indicates under-dispersion. In this case, the distriloutib events
is somewhere between complete uniformity and CSR, and eventiisdaributed more
evenly than would be expected under CSR. ValueS,of 1 indicate over-dispersion:
there is more clustering of values than would be expecte@nu@&R, and events are

distributed unevenly across relatively few spatial units.

3.3.2 A measure of autocorrelation

Whilst the index of dispersion considers how events areibliged within areas, an-
other test statistic is employed to consider how counts aflmeareas relate to one
another. Moran’d (Moran, 1950) is an index of spatial autocorrelation thaasuges
the extent to which areas with similar counts are proximagsch other, or, conversely,
in the case of a negative value, the extent to which lower tsiemd to be nearby areas
with high counts. It can be used to investigate whether etusgj is due to localised ef-
fects within areas—for example due to the presence of acpéatitarget—or whether
clustering is a result of more widespread regional effd@s includes the surrounding
spatial units. If high event counts occur near to areas withdvent counts, then there

IS negative spatial autocorrelation. If areas with highntsiare close to other areas
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with high counts, and areas with low counts are near to otteasawith low counts,

then there is positive spatial autocorrelation. Mordn's defined as:

J S i wi (X — X) (X - X)
Z;']:1 25:1 Wit Ej (Xj - X)2

whereJ is the number of spatial unitsy; is the variable of interest{ is the mean of

S; = , (3.10)

X; across the different spatial units, amg is a matrix of spatial weights that specifies
the proximity of spatial unit®; andD;.

Sy is bounded between1 and1. A value equal tal corresponds to perfect pos-
itive autocorrelation, whilst a value equal ol corresponds to perfect negative auto-
correlation. This statistic has been widely employed taattzrise the level of spatial
autocorrelation in levels of war and democracy (Gleditsath Ward, 2000), criminal
activity (Anselin et al., 2000), gang rivalry (Tita and Radi011) and maritime piracy
(Marchione and Johnson, 2013), amongst others.

For an idealised Poisson process, similarly to the indexsgeadsion, Moran'd
can be calculated analytically. In particular, for spatiaits of equal area, the expected

value ofS;is —1/(J — 1), whereJ is the number of spatial units.

3.3.3 Simulating a random process

Under CSR, the test statisti€s andS; are both analytically tractable. In this chapter,
however, more general models than CSR will be consideredsuair models, the cal-
culation of test statistics is not as simple. Realisationwofe complex models can be
generated through the use of simulation. These realisatan then be directly com-
pared with empirical data. Comparison between test staistitained from empirical
data and a simulated realisation of data generated fromlanadel can then either
support or reject the hypothesis that the data are comyplspatially random. In this
section, it is shown how simulation can be used to generatg@proximate realisation
of a Poisson process over the same spatial partition as #ilalsle data, leading to area

counts{:é”} . The superscript is introduced to distinguish betweeriga@bns
j=1,...,J

of the random variable; that are obtained from simulation and realisations that are
obtained from empirical data (for which there is no supepscr
An approximate simulated Poisson process can be condrast®llows: for each

of the N events, assuming that the spatial uitshave equal area, one spatial ubit
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is chosen at random with uniform probability from the set patgal units (i.e. with
probability 1/.J) with replacement, since it is possible that more than oremtegan
occur within a given spatial unit. Therefore, for eaghX; is the number of times
the spatial unitD; was chosen inV selections. The probability thaf;, = z for z =
1,2,3,... is then given by the Binomial distribution. This is becauseX¢ = x to hold
after V selections have been made, it is necessaryjthaist be chosen times whilst

not choser{ NV — x) times, leading to:

P M (V)T e

It can be shown, however, that for largé the binomial distribution approximates a

Poisson process. Indeed, setting- N/.J, leads to

Pt Y (0T e

Next, considering the limit a& — oo,

y N
Nee N2(N — )

iy NNV =DV = 2) (N = RN —k—1)..(2)(1)

N N*(N —2)(N —z — 1)..(2)(1)
o NN-D(N-2) N-a+1
TN N N N TN

=1,

and

, A\ A\ 7
]&Enoo(l—ﬁ) <1_N)

where the identityim,,_, <1 + %/)y = eis used. Thus, fo’v — oo, equation 3.3
is obtained and it has been shown that simulating a randogepsan this way for a
large number of eventd is approximately equivalent to simulating a Poisson preces
Moreover, this simulation enables the preservation of tmalver of events, given by
N, in the simulated distribution, leading to more meaningfuinparisons between the

empirical data and the random process.
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The next step is to compare this simulated realisation otlgan variables

{:1:5.1)} against the empirical coun{scj}j:1 , through the use of a test statistic
j=1,...J T T

S. Doin_gpfr’]is for just one realisation of the simulated disition is not particularly
instructive: one realisation does not indicate how muchetingirical distribution dif-
fers from the theoretical one. However a full permutatioralbfpossible realisations
of the dataset under a binomial distribution is computailyrvery intensive for large
values of N and.J. Therefore, a sample @f realisations from the set of all possible

realisations is taken, leading to simulated realisati%m%)}
j=L,...,

-----

this sample. If the test statistic for the empirical digitibn, S € R, sufficiently differs
from the statistics generated from the simulated distidinst S € R, for iterations
g=1,2,...,G, then we conclude that there is evidence to distinguishri@recal data
from what would be expected under CSR.

The significance of the empirical test statistic can be dated by considering the
rank r of the empirical test statistic with respect to the simudadata, so that, for a

one-tailed test,

G
r=> 189 >s), (3.13)
g=1

where the indicator functiof(.) is equal to one if the condition in the bracket holds,
and equal to zero otherwise. Then, following North et al.O@2Q if S is a random
variable defined by the test statistic, so t5&% are realisations of, then the so-called

p-value is defined as
r+1
G+1

A small p-value indicates that it would have been unlikely for theadaimmarised by

Pr(S>S8)=

(3.14)

the test statistisS to have been observed if the data was indeed generated bgespro
of CSR.

3.3.4 Testing for CSR in the 2011 London riots

Data obtained from London’s Metropolitan Police Servicetiom 2011 London riots
consists of details a3, 914 offences that occurred during the five days of unrest from
the 6th-10th August. Of thesg, 868 contained details of where the offence occurred,
aggregated to the geographic level of UK census output aveisin Greater London,

within which all offences occurred, there & 140 census output areas defined by the
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2001 UK census. These areas have varying size, and are éégsmoontain approx-
imately 300 residents. In Figure 3.1, the spatial distribution of thergs is shown by
plotting the centroid of the output area in which an offencewred. The shading of
each point corresponds to the number of events that occwithah that output area
throughout the duration of rioting. In Figure 3.2, the cuative frequency of the num-
ber of offences occurring within each output area is showmer& are many areas in
which no offences occur, but, as Figure 3.2 demonstratesg tire a few areas in which
many events occur. This would suggest that the data is likelbe clustered, however,
in order to formally determine this, it is necessary to ugdehe simulation procedure

described below.
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Figure 3.1: A map of the 2011 London riots. The centroids of the output areas in
which events occurred are plotted, with the counts refgriinthe number of offences

within each output area over the duration of the disorder.

A spatial grid with spatial resolutions is overlaid on the geographic area of
interest—the census output area geography of Greater lbentle resolution of
which can be varied in order to address the modifiable araapuwblem. Riot events

are then mapped to the corresponding grid unit that ovetlay®utput area in which
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Figure 3.2:The empirical cumulative distribution of counts of offencesacross out-
put areas that contained at least one offencel he graph shows the probability that a
randomly selected output area containing at least one adfead an offence count at
least as large as the value on thaxis. The largest number of offences within a single

output area is 131, however this value is omitted from thelgiar clarity.
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the event is recorded. In Figure 3.3, a comparison betweenutput area geography
and a regular spatial grid of two different resolution80n and650m) is shown. The
mean area of an output area in which riot offences occurréd i&m?. Accordingly,
values ofy s are chosen so as to not exceed the precision of the data. Hilestspatial
resolution of the overlaid grid consideredyis= 400m, so that the area of each spatial
unit in the grid,0.16km?, exceeds the average area of the output areas within which of
fences occurred. On average, each event is consequentpech&mthe corresponding

spatial unit of the overlaid grid within which the event oo@d.

— 650n]

Figure 3.3:Two regular spatial grids over the same portion of London’s Ouput
Area geography. The resolution of the grids ar®0m on the left ands50m on the
right.

Following the description of testing for CSR in the previoest®on, G = 499
simulated realisations of the data under the null hypotheSICSR are generated by
randomly allocating each of th& 868 offences to one of the spatial grid units. Since
each unit of the spatial grid has equal area, each unit isechwith equal probability.
The numberd99 is chosen in accordance with previous literature employante
Carlo simulations. By considering equation 3.14, it can be seat for each simulated
statisticS¥) that is greater than the empirical value®f the p-value increases by a
value 0f0.002, suggesting a potential high level of confidence in the tesul

The index of dispersion and Morar/sare used as test statistics to distinguish the
empirical data from the modelled data for a range of gridssi2€hen calculating the

Moran’s/ statistic, the matrix of spatial weights, with entrieg, is defined with queen
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contiguity, named after the range of moves available to theeeq piece in chess. That
is, w;; = 1 if spatial unitsj and!/ in the spatial grid share either an edge or a vertex,
otherwisew;; = 0. Thus, the neighbourhood of spatial untonsists of those units that
surround the focal unit, as shown in Figure 3.4. For each spatial yniinits outside

of this neighbourhood are not considered in determiningthdrecounts are correlated.

Figure 3.4:The neighbourhood of a focal spatial unit under queen contigity. The

grey squares are considered to be the neighbours of the sdacke.

Figure 3.5 shows the values of the index of dispersiSp, and the value of
Moran’s I, Sy, for a range of spatial grid resolutions. The figure also shows the
values of the same statistics under the assumption of CSR.lIFcasas considered,
the statistics of the model are less than the statisticsrautdrom the empirical data,
leading to ap-value of(0.002 for both the index of dispersion and Morar’s There-
fore, the chance of observing the data given that the nullehodCSR is true is less
than0.002, and it can be concluded that there is highly likely to be sicgnt spatial
clustering in the empirical data. This implies that the gpalistribution of the rioting
warrants investigation through the use of more complex risode

The values ofS; are much greater thah indicating substantial over-dispersion.

This implies that within grid units there is strong clusteyiof events and arises since
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the majority of the events occur within a relatively smalhwer of grid units. The
values ofS; are also positive, indicating the presence of positiveiglatitocorrelation.
That is, the counts of events occurring in each unit are pefitassociated with the
counts occurring in neighbouring units. Although beingipes, the values ofS; are
close to zero. Taking these values on their own, it might lffecdit to conclude that
there is positive autocorrelation since the valuesoare much closer to zero than to
one — the value indicating perfect spatial autocorrelatibinis example demonstrates
the necessity of comparing the statistic against a null thgmis: the values &; from
the empirical data are, in fact, much greater than would pe&ed when compared to
the same number of events under CSR. Therefore, despite beinglkabsolute value,
there is certainly evidence for positive autocorrelatiaith the small absolute value
of the statistic being a consequence of the sparseness d&ta@ver the entire spatial

region of interest.

3.4 Spatio-temporal interaction

When event occurrence varies in both space and time, it cahdreat importance to
determine whether there is also spatio-temporal depegdé&asts for spatio-temporal
interaction are distinct from tests that identify the precseof purely spatial or temporal
dependency (or, indeed, both): they focus on the likelihaicalfurther event occurring
in a particular location, given the time and location at viaregprior event has occurred.
This information can be useful in policy-making. During orgaks of rioting in a city,
for instance, police leaders face decisions concerningltbeation of limited resources
of police officers in real time. Insights into the spatio-fgoral behaviour of rioting
can help to answer questions such as whether police resosincelld remain at sites
recently rioted or whether these resources would be betfgloged elsewhere in the
city, for example at perceived attractive targets that heteyet experienced rioting.

In this section, in order to investigate such questions|dhel of spatio-temporal
dependency in the 2011 London riots is determined throughude of a grid-based
Knox statistic. Similarly to the test for spatial autocdaten in Section 3.3, a model
of the riots is constructed under the assumption that tiseme spatio-temporal depen-
dency. This enables the comparison between the empiritakaa the data generated

using a null model. Differences between the two can then bkiated in order to de-
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30} . * ° ]
o ° [ ]
a) S, e e Empirical data
15 o o Simulation .
0 e el Q ° o) o
400 450 500 550 600 650
o
01* o [ ] ° [ ] |
o
b) S,
0.0} é g l
g
400 500

Figure 3.5:Results of the test for CSR.a) The values o8, (in black) andSég) (in
white) are shown for each iteratign= 1, 2, ..., 499 for different grid sizes. In this case,
the points in white are so close together that the differemaiions are indistinguish-
able. This demonstrates further how strong the spatiategiung is in the empirical
data. b) The values a$; (in black) andS}g) (in white) are shown for each iteration
g = 1,2,...,499 for different grid sizes. In this case, the different iteyas of the

model are more distinguishable.
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termine whether the null model provides a reasonable atarfithe data generating
process, or whether further analyses might be required.

It was demonstrated in Section 3.3 that the distributiomeflocations of offences
is highly likely to be spatially clustered. As discussedna beginning of that section,
there are two prominent explanations for the spatial ctusjeof event data that have
been investigated in the literature for different typesme: the flag hypothesis and
the boost hypothesis. These two explanations can be distimgd between by deter-
mining the level of spatio-temporal interaction betweerrgs. To explain, the flag
hypothesis supposes that variations in the risk levelsftérént areas are due to static
time-stable influences that can encourage crime. For exanmghe case of residential
burglary, it may be that houses with fewer visible securggtlires are more likely to
be targeted (since the burglar will perceive they are méedhylito succeed) and there-
fore experience a higher risk of burglary. This risk will legatively constant over time
(provided that the homeowners do not improve the level ofisgcduring this time),
and so, such properties will likely experience a larger neinab burglaries in any given
time period, when compared to another house that has maiWevsecurity features.
On the other hand, the boost hypothesis supposes that pespare more at risk as a
direct result of it being targeted for a relatively shortipdrof time after an offence
has occurred. If the boost hypothesis was at play, a largabeu of events would be
expected in the locality of a prior event, above and beyordsitatial and temporal
distribution of events within the wider region of study. Tiheost hypothesis implies
spatio-temporal interaction; whereas the flag hypothesibates apparent space-time
clusters to a heterogeneous distribution of risk in spaogaeed with natural variation
in crime trends. Understanding the extent to which both eséhmechanisms play a
role can lead to policy recommendations. For instance gifibost hypothesis is sig-
nificant in influencing future levels of risk, then, after adpary, efforts could be made
to reduce the underlying risk levels, ensuring that the oiskurglary does not get too
large.

In the case of rioting, the analogue of the flag hypothesigeasig that time-stable
features of different areas might also influence the riskooiirg at a given location. For
example, if offenders participate in rioting due to the oppyity for them to loot high-

value goods, then targets containing high-value goodsikely to be more at risk of
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experiencing a riot than other targets, as potential isqperceive the greater benefit of
selecting that target over others. This rational choicepestive on the part of rioters—
that they select targets based on the ability for those tstg€ulfil their objectives—
has been explored elsewhere (e.g. Martin et al. (2009)) lagek thave been several
efforts to understand the features of targets that make fheaticularly attractive to
rioters (Berk and Aldrich, 1972; Rosenfeld, 1997). In Chaptethé environmental
features of different targets, and their role in attractingers will be explored further.
It is noted for now that environmental features of regions certainly play a role in
the spatial clustering of riots; however, if the environitaifieatures of these regions
are static and time-stable, then the times at which evewris @t these locations can be
taken to be independent random events with times drawn fnerteinporal distribution
of offences over the entire geographic region of intereste full model for tests of
spatio-temporal interaction supposes that this is indBedcase and, therefore, that
events occurring at a given location do not influence thdiliked of future events
proximate to that location, beyond the spatial and tempmbsalibutions of the observed
data.

The riots are modelled under the null hypothesis of sp&tgoral independence
by randomly permuting the event times. Considering evénts;) fori = 1,..., N,
the set of times at which events occur, given{by, ¢, ..., ty }, is permuted as follows:
choose a uniform psuedo-random integé]r),, betweenl and N. Then swap the posi-
tion of ¢; with tkgl). Next, choose a uniform psuedo-random integﬁ?, betweer? and
N. Then swap the position of with tkg”- Continue for eachh = 3, .., N — 1 by choos-
ing a psuedo-random integ@f,l), between and N and then swapping the positionef
with tki_l). This results in the random permutation of event tin{eém,tkgl), e tkgvl) }
The modelled riot data under the null hypothesis of sparoporal independence is
then given by(si,tkf_l)) fori = 1,..., N. The modelled riot data has the same spatial
distribution, given by the locations, ss, ..., s, and the same temporal distribution,
given by the times,, t, ..., t iy, as the original data; however, the association between
them is randomised and any interdependency beyond puratiaspnd temporal fac-
tors is removed.

As was the case with the CSR model in Section 3.3, comparisgihgle realisa-

tion of the dataset under a null hypothesis with the emgidasaset is not particularly
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instructive: the significance of any differences betweenttio datasets is impossible
to determine. However, on the other hand, taking a full peéatn of the event data is
computationally intensive for large values/@f(there areV! different possible permu-
tations). Therefore, a sample Gf= 499 from the possibleV! random permutations is
taken, leading to temporal permutatio{@ig),tkég), ey tkgg>} forg =1, ...,499, which
are then compared against the empirical data.

In order to compare the empirical data with the modelled ,datst statistic is
required. A common statistic for identifying spatio-temglanteraction is the Knox
statistic,Sk (discussed from a methodological perspective in Knox (89&hd first
employed as a test of spatio-temporal interaction in Kn®64b)). Sy is defined as
the number of pairs of events that occur within a given sgawe-window of each
other. If the space-time window selected for the calcutatd the Knox statistic is
large enough, then the Knox statistic will be given by its imaxm value, N (N —1)/2,
since all possible pairs will be included. Employing the saspatio-temporal grid as
in Section 3.3, a grid-based Knox statistic is defined byngkhe spatial window for
significant pairs as all events occurring within first-ordeeen contiguity distance of
the original event, as in Figure 3.4. The temporal windowsignificant pairs is taken
to be one hour. This value is chosen so as not to exceed thaties®f the reported
data, in which many of the offences are recorded as occutarthe nearest hour.
Temporal resolutions df, 3, 4, 5 and6 hours were also tested in order to alleviate the
implications of the modifiable unit problem from a temporatgpective. These results
were consistent with those farhour and for reasons of clarity are not presented here.

Of the 3,914 offences associated with the London riots that were obdaiream
the Metropolitan Police Service, 592 contained details of both the location at which
the offence took place as well as the time at which the evenuiroed. These were the
events used in the analysis. Figure 3.6 shows the Knoxtstatfer the empirical data
and for the simulated data for different spatial grid resohs. The values of the Knox
statistic associated with the empirical data are much taigan the values associated
with the simulated data for all spatial grid sizes testedfati, the effect is extremely
strong, with the values of the empirical Knox statisticsnigearound four times the
value when there is no spatio-temporal dependency. Sinsemdated Knox statistic

is larger than the empirical Knox 99 simulations, thep-value is calculated to be
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0.002, however, given the distance of the empirical result to theukated result, it is

likely that a much smallep-value could be found through the use of further iterations.
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Figure 3.6:Results of the Knox test.The empirical Knox statistic plotted agains

realisations of the simulated Knox statistic for a rangepaital grids.

It can be concluded that during the riots in London, there sigsificant spatio-
temporal dependency in the event data. This finding imphes it was not just the
suitability of certain locations in space, combined witle guitability of a particular
time that led to riots, but that there was also strong eviddacevent dependency: the
occurrence of an event at a particular point in space anditioreased the likelihood
of observing a further event in proximity to the original ateln the remainder of this
chapter, the precise nature of the interaction betweenipaig events is explored by

considering the geographic patterns made by the riots.

3.5 Analysing local patterns of geographic diffusion

Two models have been presented so far in this chapter. Theffifsese assumed that

riot data was generated with complete spatial randomnedsyas shown to be a poor
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fit to the empirical data. The second model assumed that fiehces were spatio-
temporally independent, and again was rejected as a plausidel for the London
riots. This is not to say, however, that proposing these hsofde the London riots
did not produce any insights. In both of these examples,gkeification of the model
enabled the testing of a hypothesis regarding the natuteecatio-temporal distribu-
tion of the riots. Moreover, it has been shown that subseiguexdels of rioting must
account for the spatial dependency and for the spatio-teshgdependency present in
the data.

In this section, more sophisticated insights into the Landots are sought by
pursuing an exploratory data-driven approach. Localisgtems of offences in space
and time during the riots are investigated using a novel id&drlo simulation, which
builds upon those presented in the previous two sections. aitgued that the inves-
tigation into the prevalence of specific patterns can aicetstdnding into the way in
which the riots spread. The analysis presented here endlgle®nsideration of more
intricate mechanisms as explanations for the observedrpatand these are discussed.

A binary approach to the analysis of event data in a spatigteal grid is used.
The dependent variable of interest is given by a binary tugle’”) ; ») for each space-
time unit, indexed by the tuplé;j, k). The index; denotes the spatial grid unit of
interest, whilst the indeX denotes the temporal window under consideration. For
each(j,k), X € {0,1} indicates whether at least one offence occurred in the focal
space-time window of interest, and € {0, 1} indicates whether at least one offence
occurred within any of the focal area’s neighbouring unmithich are defined with
gueen contiguity, as shown in Figure 3.4. Since the varsati@terest are binary, they
do not distinguish between the number of events occurrimgain space-time window:
the occurrence of a single event is recorded as being equivad the occurrence of
many events. This restriction brings with it some limitagoto the analysis, which
will be discussed below; however, it also allows the primsupject of analysis to be
the geographic scope of each outburst of rioting, ratham tha relative intensity of
each riot. The geographic scope of a riot is of significargriest to decision-makers
since one objective for law enforcement officers duringqusiof civil disorder is to
minimise the extent of the area at risk.

The same variables are used in Schutte and Weidmann (20hd)use a grid-
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based analysis to model conflict events across four difteceil wars, and in Rey
et al. (2011), who also used a binary approach but do so aeguilarly shaped spatial
areas. The method proposed here advances these two stydiesposing a novel
Monte Carlo simulation as a null model. The proposed modehisqularly suited to
scenarios involving high levels of spatio-temporal clusig such as the present case
of rioting.

The prevalence of four local patterns of riot events in sgaagtime are investi-
gated. These are first introduced before proposed mechsugismesponding to each
of these patterns are explored. The first type of patternrisedcontainment This
occurs when areas already affected by disorder in one timedpare also affected in
the next, but when the disorder does not spread to neighizpareas. Secondglo-
cationis when the disorder moves from one locality to another, evittpersisting in
the original location. Third, processesescalationoccur when rioting continues for a
prolonged period in a certain area, and also spreads togemnis areas. Finallflash-
pointsare outbursts of co-occurring offences located in aredsatteageographically
distinct from areas that had recently experienced offenicesther words, they occur
when areas and their neighbouring areas suddenly expendespread disorder.

These diffusion patterns are defined by considering the ggharh the variable
(X,Y)x for each space-time un(t, k), over sequential time intervals. An instance
of containment at spatial unjt and timek occurs when this variable transitions as

follows:
(1,0)Giky = (1,0) k1) (3.15)

Thus, containment occurs when offences take place in a tetlatepeatedly without
occurring in any neighbouring cells. Similarly, an instaraf relocation afj, k) is

defined as
(1, 0)(J‘J<) — (0, 1)(j,k+1)a (3.16)

so the rioting moves from one cell to at least one neighbgu#il, without persisting
in the original cell. Escalation occurs when offences geisithe original cell but also

spread to at least one neighbouring cells that were prelyiousffected, given by
(L,0) ey = (1, ) ga+1)- (3.17)
Flashpoints are identified if offences occur within a wideraathat had not experienced
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any events in the previous time step, and is therefore giyen b
(0,0)Giky = (1, 1) k1) (3.18)

The simplest examples of these diffusion patterns aretiited in Figure 3.7.

Containment Relocation
ji —iiﬁ ji — | N
Escalation Flashpoint

N e

Figure 3.7:Geographic patterns of diffusion. An illustration of the simplest examples

of each of the diffusion patterns of interest occurring ipat®-temporal grid.

3.5.1 Proposed mechanisms for riot diffusion patterns

In order to generate more complex models of rioting and digibrder, assumptions are
required that specify how the models behave. Inspired bytaxdidven approach, the
models presented in this chapter are specified with relgtsimple assumptions, such
as spatial randomness or spatio-temporal independendhisisection, it is demon-
strated how a data-driven approach can be used to suggebanmigms for the be-
haviour of the system, which may then be employed to conistnace intricate as-
sumptions for future models. Mechanisms for the evolutibthe 2011 London riots
are discussed, before the prevalence of each of the loeladfpatterns in space and

time are used to evaluate these mechanisms as possibles datise observed data.
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Riots involve groups of people at a given location engagingyithreatening acts
of violence often for a common purpose. As was the case f&Q@hé UK riots—during
which, offences in London comprised just a part of the totethber of offences across
the UK—an outbreak of rioting may be followed by other rigi@ssibly in distinct
geographical areas, and they can persist over a long pefitbtie@ Riots can cluster
in space and time as a result of a number of processes. A keygiishing feature
of rioting from other types of urban crime is that the mutuetinaty of previously
unacquainted offenders can potentially affect the actafnsthers. These influences
can occur and change over very short time scales, partiguw&ien compared to other
types of urban crime, for which influences on the decisionrigage in an offence
might be more static and depend more on the environment iohadm individual finds
themselves.

Although not entirely separable, it is useful to introduwe different perspectives
for considering riot processes. The first considers thedefgendency between events,
and supposes that the presence of rioting at a particulatitocdirectly influences the
likelihood of more rioting for a certain time period aftemda. The second treats the
spatio-temporal clustering of event data as a result of tinffwence in space and time
of conditions suitable for rioting. This distinction, attligh similar, is different to the
distinction made between the flag and boost hypothesessdisdun Section 3.4. This
IS because, in this case, the environmental conditionsniizkie an area suitable for
rioting at a particular point in space can vary quite quidkltime, for example, due
to the presence and actions of law enforcement officers. i$himscontrast to the flag
hypothesis, which relied on static environmental condgito generate clustering of
events.

In the case of the first perspective, an outbreak of riotinghtnbe explained by
a single person committing an offence, for example by commgiturglary, followed
by others taking the opportunity to begin looting at the séwoation, as they perceive
the risk of being caught to be lower than it otherwise wouldExplanations using the
second perspective might state that rioting was more ligehat location and at that
time due to the presence of high-value goods that may havelbeted, together with
the lack of law enforcement officers present, and might enelude factors such as the

weather (in interviews conducted after the riots it wasrokd that the rain helped to
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put a stop to the rioting (Morrell et al., 2011)).

These two related explanations have been explored thrdwggbhge of statistical
models for a variety of crime and security data in Mohler @01In his paper, two
models are compared for the clustering of event data in spaddime. The first, a
Hawkes process, directly models the increased likelihdoither events based on
the occurrence of existing events. The second, a log GauSsia process, models the
clustering as a result of a random process, in which the oecoe of events do not
necessarily increase the likelihood of further events.

These two perspectives are subtly different and can be wliffic distinguish be-
tween in many studies of event data (although the algorittupgsed by Mohler (2013)
Is a promising attempt to do so). They do, however, proviégegpportunity to sepa-
rate possible mechanisms that may be at play during rio#ind,to consider how each
perspective might be reflected in the space-time pattetnsdmced above. In what
follows, the idea of contagion of rioting, and the argumédrattoffences directly in-
fluence further offences is first discussed. Next, otheofadhat might influence the
geographic diffusion of rioting, including the presencepofice officers and the envi-

ronment in which the riots occur are considered.

Mechanisms for Event Interdependency: Social and Geographic

Contagion

Large-scale outbreaks of disorder can be consequencesdeflying tensions and
grievances within a widely distributed population. If neafsan initial riot at a given

location spreads, then others who share similar grievamegardless of where they
are, may be inspired to behave similarly in an effort to adsltleir grievances. Con-
sidering the London riots of 2011, some have suggested tpaba@ess of contagion
resulting from such grievances was at least partly resptenfr the severe escalation
and perseverance of observed patterns (Gross, 2011). &gwad social contagion,
possibly facilitated by social networks or conventionaldmeeports, could lead to the
mobilisation of more motivated offenders, and the subsetuiler engagement in dis-
order at particular locations and at particular times. Msbd and motivated offenders
may be attracted to particular areas, regardless of hovinégrwould need to travel to

reach them.
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Social contagion refers to the mobilisation of motivateféodlers, regardless of
their location. Contagion may also increase the number eénsovia a more local
process. Geographic contagion refers to the way an offendecision to engage in
disorder is influenced by situational precipitators, altmegardless of the decision-
maker’s underlying grievances. Wortley (2008) argues $itaiational precipitators,
such as environmental cues, events or influences can prpmagsure, permit or pro-
voke criminal behaviour. It is possible that visible sigrigioting act as precipitators
that encourage potential offenders to engage in the disolfdnose who live near to
or happen to pass by ongoing riots are more likely to engagleeirdisorder more so
than they otherwise would, then a process of geographicagant is present. This
mechanism assumes that witnessing disorder serves to pnoragsure, permit or pro-
voke engagement with the disorder at a particular locat®ystanders perceive that
engaging in the disorder at that location is acceptablergilie circumstances. If it is
perceived that the risks of apprehension are lower than dkiegrwise would be, by-
standers may be encouraged to engage in the disorder thvesiskielading to further
offences nearby. The mechanism by which potential riotexsveore likely to engage
in rioting if offences are currently taking place in closeximity is perhaps due to the
perception of safety in numbers: the perceived risk of atiseBkely to be lower in
those areas where rioters substantially outnumber lawegritent agents. This mech-
anism has been explored in a range of other studies, two ahtis widely cited of
which are Epstein (2002) and Granovetter (1978).

While processes of contagion of both a geographic and nogrgpbic nature
have been discussed in the literature, only a limited nurmbempirical studies have
examined space-time patterns of offending during outlweékioting. In a study of the
US race riots in the 1960s, Spilerman (1970) tested for thegurce of geographic con-
tagion by examining the extent to which cities were more ss ligkely to experience
riots if those nearby had recently experienced them. Fadm significant effect, he
argued that widespread riots might have been stimulatetidogharing of grievances
facilitated by national news coverage of injustices onvislen. Subsequent studies
using more precise methods and data have, however, shownditective violence
may diffuse geographically at the spatial scale of citied @am the time scale of days,

but have also provided evidence to suggest that contagiaoris likely in cities where
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news outlets such as television provide coverage of dispaturring elsewhere (Mid-
larsky, 1978; Myers, 1997, 2000, 2010).

While it can be difficult to disentangle contagion effects afegraphic or non-
geographic nature, itis possible to identify particulaaisg@time patterns of events that
would be anticipated if either or both mechanisms had a papldy. For example,
considering patterns of riots within a city, Abudu Stark le{&974) provide one of the
few empirical studies of the space-time dynamics of riotsfate spatial scale, and find
evidence to suggest that rioting spread both between emiggand non-contiguous ar-
eas. The former would be expected in the case that the ris&tofg diffuses spatially,
the latter where the process is not dependent upon geogrdapimer fine-scale em-
pirical studies have investigated the characteristicauafets during rioting (Berk and
Aldrich, 1972; Rosenfeld, 1997); however, few have direethgmined localised dif-
fusion and, consequently, the space-time dynamics of disdrders are not currently
well understood.

Considering contagion in the context of the space-time pattatroduced above
and depicted in Figure 3.7, incidents of containment woeldéxpected if the contagion
effect was strongly localised. That is, if the occurrencerté offence led to the occur-
rence of further events at the same location. In this case;dhtagion effect might be
strongly influenced by local environmental factors, sucthagpresence of a particular
retail centre that was attractive to rioters.

On the other hand, the prevalence of relocation and esmalptitterns would be
expected if the geographic contagion was not localised byr@ammental features in
this way, and nearby areas offered suitable opportunitieghach to offend. In these
cases, rioters may be attracted to the wider area in whidrdbs occurs, but do not
necessarily commit offences at exactly the same locatimstead offending nearby:
the disorder is more dynamic and moves or expands in geogregient. Another rea-
son for dynamic patterns could be that an initial locationcllexperienced extensive
disorder may reach some kind of capacity (for example, byingiout of goods to
be looted), leading to rioters that may have been attractéldat area by the ongoing
rioting searching for other nearby locations in which to&ggin the disorder.

Finally, the prevalence of flashpoints might indicate ooenices of social conta-

gion in which groups of motivated individuals select areasarget by coordinating
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the collective activity of at least some rioters. The orgation of sudden widespread
outbreaks of disruption might be achieved through the usecfl media. Blackberry
Messenger—a private and instant messaging service foe thitls Blackberry mobile
phones—was cited by the Metropolitan Police Service as drieeoways by which
rioters communicated and were able to organise themselvesranging times and

locations at which to meet (Metropolitan Police Servicel 20

Dynamic environment effects: Interaction with police

There are a variety of possible explanations for clustennthe event data. Spatial
clustering may occur at a particular location because ttion provides a suitable
opportunity for rioters to loot high-value goods, and offes may be clustered in time
due to a majority of rioters having more free time during thereng, rather than during
the day.

In a similar way, there are environmental influences that beysed to explain
spatio-temporal clustering of offences beyond the effettsoth spatial and temporal
clustering. These influences do not have to depend solelii@presence of ongoing
rioting. For example, if the environmental features of paand those that surround
them vary substantially in terms of their attractivenessftenders, observed instances
of containment may be highly likely, as rioting is more likébd continue at particular
(attractive) locations, and not to diffuse to nearby (bssahilar) areas. On the other
hand, if rioters’ spatial decision-making was less detaadiby such factors, instances
of relocation would be more likely. These types of effectswaver, are dependent
on the continued occurrence of rioting and so are closebtadlto the effect brought
about by contagion.

Perhaps the largest influence on the space-time patterizgingrthat does not ex-
plicitly depend on processes of contagion, comes from ttegantions between rioters
and police officers. These interactions can provide anattemhanism through which
disorder may spread or be suppressed. Wilkinson (2009)estgthat this is an area
not sufficiently investigated in the previous literatureripaps largely due to a lack of
sufficiently detailed data on law enforcement activitiesthéugh the study presented
here suffers from a lack of data on where the police were, fibssible to comment

upon the types of patterns that may be more or less prevasetlon the tactics used
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by the police.

During the riots in London, the actions of the police camearrgieat scrutiny. In
particular, the public and media questioned the coursetairataken by police when
faced with the disorder (Riots Communities and Victims Pa2(@1,1). It was perceived
that, in an effort to limit the spread of events, the policeastanding by and containing
offenders, without being drawn into the disorder to makests, thereby failing to
protect some locations from being looted. The use of thede&saby police officers
would lead to more instances of containment, as opposedytofahe other patterns
described above.

The Metropolitan Police Service have stated that contaimmagetics were initially
used to counter the riots (Metropolitan Police Service, 201t was claimed that this
was due a combination of the severe and unprecedented $¢la¢ermts together with
a lack of resources (in terms of the number of police officavsjlable to react to the

disorder. Specifically, they were apparently concernet] tha

“should they send officers forward into a dangerous sitnabdry to make
an arrest, they would then no longer be able to maintain a@aordon
which was critical to holding a junction or protecting a lboa to prevent

the spread of disorder or to protect life.”

Such reports suggests the presence of uncertainty withdegathe most appro-
priate public order tactics: should police officers attetoptontain the disorder within
defined boundaries or to attempt to proactively arrestnsotd he first tactic would
lead to a concentration of incidents in one area, and heng®te counts of contain-
ment patterns, whilst the second might cause the riotecsiterefore their disorder,
to spread to new locations, albeit whilst some of the ricéeesarrested. In the case of
the latter, the number of occurrences of relocation woufaeeted to be higher as the
disorder spreads.

Since the police resource scarcity was largely viewed asgbeisponsible for
this uncertainty, extra officers were brought in from othelige forces in the UK as
the riots intensified (see Figure 3.8). It is widely claimdittthis was the key factor in
bringing an end to the prolonged period of disorder. Indétsal,Majesty’s Inspectorate
of Constabulary (HMIC, 2011) stated,
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“While the immediate response to the public disorder in Atiguas hesi-
tant, this transformed into a decisive and effective respon which large

number of assets were mobilised to regain control of thetdre

Although some have questioned whether the number of offaetke final night
of the unrest was, in fact, suboptimal (Davies et al., 20t increase in police num-
bers would have enabled the police officers present durirauthreak of rioting to be
more proactive in stopping on-going disorder: they may Hasen able to make ar-
rests without the risk of other offenders present dispgredimearby areas, and thereby
spreading the disorder.

The relatively abrupt change in police manpower, and theemgbent arguments
that this was the principal reason for the quelling of digoygrovides conditions com-
parable to a natural experiment, and enables the invastigiaito how patterns of of-
fending changed with the police’s ability to employ moresetive public order tactics.
As a consequence, the offence data considered in this sast&plit in two, to see
whether this apparent change led to a change in the pattéofiences. During the
first half of the riots, when police tactics were more corisd, if the on-going rioting
provoked or prompted others to engage in the disorder, trestiwould be expected to
spread in one of the four ways discussed above and depickagure 3.7. As the range
of public order tactics available to the police increasd@inges in the diffusion pat-
terns of riot events would be expected as the space-timendepey of offences would
likely have been disrupted. While some places would still Xygeeted to experience
hotspots of activity, less evidence of the spreading of teerder as time progresses is
expected. Indeed, the occurrence of escalation and flagspeould suggest that the

police are not in control of the disorder as it spreads to mations.

3.5.2 Simulating spatio-temporal independence with binary event

data

The number of observed instances of containment, relotaéiscalation and flash-
points are counted by considering the valueg¥fY'); ) and (X,Y) x5 for all
values ofj and k. After enumerating the observed patterns of interest, ieises-
sary to determine the statistical significance of the coaheach pattern. Similarly to

Sections 3.3 and 3.4, this is achieved by constructing amadlel against which test

90



3.5. ANALYSING LOCAL PATTERNS OF GEOGRAPHIC DIFFUSION

4200

4100

Number of offences

M

6th 7th 8th 9th 10th
Date

Figure 3.8:Police officers and offencesBar chart of the number of police officers on
the streets of London for each night throughout the duratiotne disorder, and the
number of recorded offences. The dashed vertical line sete the mid-point of the

offence data.
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statistics—in this case, the count of each type of diffugatiern—can be compared.

A null model is sought that removes spatio-temporal depecyé the offence
patterns but preserves the underlying spatial and templstibutions of the data.
Since the test statistics of this section are based upomybinterpretations of the
spatio-temporal distribution of the data, the random pé¢atien to generate the null
model that was described in Section 3.4 cannot be used hére.rebson for this is
due to the high levels of spatio-temporal clustering in then¢ data. There are many
space-time windows in which more than one event occurs amgvarf which many
events occur. Consequently, a random permutation of thestahe/hich events occur
spreads out these offences across different space-tingowsthat previously con-
tained no events. Since many more space-time windows notaicogvents, a binary
measure obtained from this permuted dataset is not compakéh a binary measure
of the original dataset. In order to preserve the binaryiapdistribution and the bi-
nary temporal distribution, but to randomise the spatiogeral interaction, a different
approach is required.

The simulation of the data under the null hypothesis of sp&imporal indepen-
dence requires consideration of the binary ma@ixknown as the space-time contin-
gency table. The matri® is constructed as follows: g8 be aJ x K binary matrix,
where.J is the number of spatial units in the spatial-temporal gnd & is the number
of temporal units. Defings;;, = 1 if, and only if, the number of offences in spatial
unit D; within temporal unit7, exceeds zero. The contingency matthdescribes the
distribution of events across the study region, and, fosfiaio-temporal grid defined

in section 3.2 with a spatial resolution = 20km anddt = 24 hours, is given by:

011
1 11

—_ =
- = O O O

— = O
— = O

, (3.19)
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92



3.5. ANALYSING LOCAL PATTERNS OF GEOGRAPHIC DIFFUSION

where the columns correspond to each temporal unit in theesyae grid (which, in
this case, correspond to each of the five days of the riotindXfae rows correspond to
each spatial unit.

The generation of the data under the null hypothesis ingdive random sampling
of binary contingency tables subject to the constraintsidpnd about by preserving the
row and column sums - the spatial and temporal distributic@spectively. To generate
the expected distribution, assuming the null hypothesik@gpace-time independence
of events, a bipartite graph denoteddy- (V1, V5, F) is constructed, in which the sets
of verticesV; andV; are partitioned so that every edgehhconnects one vertex i
with one vertex inV,. DefiningV; as the set of spatial units, indexed fgyandV; as
the set of temporal units, indexed byan edg€ j, k) betweery andk is added if, and
only if, By, = 1.

Figure 3.9 shows this bipartite network f@r592 offences associated with the
2011 London riots. These offences are the ones includeiarthlysis and correspond
to the offences in the original dataset (for whish= 3,914) that contain data on the

location and time at which the offence occurred.

Temporal units (resolution 24 hours)

(] (] () [ [ [ [ [ [
Spatial units (resolution 20km)

Figure 3.9:Network visualisation of the London riot data. The bipartite network
for the London riot data witlht = 24 hours ands = 20km, visualising the matrix in

equation 3.19.

Using a uniform pseudo-random number generator, two edgesetected. De-
noting the chosen edges by, k1) and (s, k2), itis first determined whether or not the
edges defined by, k2) and(j., k1) already exist. If they do not, which, for the sparse
dataset associated small spatial areas during the 2011ohomaks is highly likely,
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then the edge§j,, k1) and(js, k) are removed, and the edg@s, k2) and(js, k) are
created.

Of course, the resulting bipartite network produced from grocedure will ap-
pear almost identical to the original network, obtainedrfrthe real data: a maxi-
mum of two edges have been removed and replaced with new .edyes, in order
to generate a permuted dataset against which hypothesesrnorg spatio-temporal
dependency can be tested, the process by which two edgestemppral nodes in
the bipartite graphs is repeated many times. After sufftacrermber of iterations, a
distinct network is constructed that becomes quite unneisale to the original net-
work, although the degree of each vertex (defined as the nuailexiges connected
to it) is equal to the degree of that same vertex in the origieéwork. It remains to
define a suitable number of iterations for this proceduré shéficiently removes the
spatio-temporal dependencies from the original network.

Suppose that this process is repeatddimes. ThenM is the number of times
that two edges are selected at random and rewired so thati¢fes swap end nodes,
provided that the new edges created do not already eXstis calculated by con-
sidering the total number of selections required to enshaie @évery edge is selected
at least once. Since edges are selected uniformly randoecly #me, and therefore
some edges will almost always be selected more than onseyuhmber will vary over
different attempts at this procedure.

It is therefore supposed that this number is given by theoandariabley. M
is chosen to be equal to the value in the distributiony dhat is greater thaf5% of
all the possible values that can take. By defining\ in this way, it is ensured with
95% confidence that the rewiring procedure outlined above sekeery edge, and,
therefore, ensures that the distribution given by the nytidthesis (that there is no
spatio-temporal interaction) is sufficiently random, sabjto the constraints brought
about by preserving the spatial and temporal distributafredfences.

The95% confidence interval on the random variaRles calculated by first letting
X be the random variable given by the number of selectionsmed)in order to select

the m-th new edge, aftem — 1 distinct edges have already been selected. Then one
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realisation ofy is given by
M
X=> Xm (3.20)
m=1

whereM is the total number of edges. The probability of selectinga edge in the

next selection aftem — 1 distinct edges have been selected is given by

m—1
P,=1——-. 21
n = (3.21)

Thus, for the variablg,, to be equal to some value, skythere must bé —1 selections
in which an already selected edge is chosen, followet $lection in which a distinct
edge is chosen. The expected value of the varighlés then

E[Xm| =Y h(1—PFp)"" P, (3.22)
h=1

The right hand side of equation 3.22 contains the negatiaepdlynomial derivative
of (1 - P,,), and, thus

Swapping the derivative and summation and using the forriaulghe sum of a geo-

metric series, the following is obtained:

d 1-PF, 1
E [Xm] = —Pde P =P (3.24)

The variance of,,, can be calculated similarly. The expected valug%fis given by
Ex.] =Y h(1— PPy (3.25)
h=1

which, using the identity
d2

@(1 — P, =h2(1 - P,) "+ (1 - P, (3.26)
can be written as
[o@) d2 o
EN:1=P,Y —(1-P)""'+P,y —h(1-P,)"" 3.27

Noting that the final term in equation 3.27 contains a polyiaderivative of(1— P,,),
and then swapping the derivatives and summations, leads to

& (1— P,) d 1-P 2 1
EL2]— P m) o p m_ < - 2
by miPz B, ' ™dB, P P2 B, (3.28)
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after differentiating. Thus the variance pf, is then

1-P,
P2

Since the expected sum 6f random variables is the sum of those expected ran-

Var [Xm] = E [x2,] — (E [xm))® =

(3.29)

dom variables, the expected valuexotan be calculated as

M M 1 M 1
:;E[Xm]:;P_mZM;M_—M, (3.30)

which can be simplified by setting’ = M — m + 1 and removing primes for conve-

nience to obtain
Y
=M —. 3.31
g;m (3:31)
Similarly, since the random variablgs, are independent for all values of, the vari-

ance ofy is given by

M M m—1
Var [y ZVar Xm] = zjl P2 Z _]\7{1 ) 5 (3.32)

which, by multiplying both sides of the fraction b3, and setting the index)’ =
M — (m — 1) and removing primes, becomes
/1 1 S|
Var [x] = M2mz_1 (ﬁ — m) < M2mz_1 —5 < 2M?, (3.33)
since}_ > 1/m? = ?/6.

In order to find thed5% confidence interval of, and therefore to find the value
of M, Chebyshev’s inequality is used. Chebyshev's inequalitgsténat for unknown
distributions with known mean and known variance, the migjof values can be spec-
ified to be within a certain number of standard deviationsnfithe mean. Formally,
Chebyshev’s inequality is given as
1

2

Pr(Ix—E[N| = ev/Vari) < ,

(3.34)

for all positive real constants Thus,

M
1 1
= > Pr||x— Mmél E‘ > ¢4/ Var [X]) (3.35)

M
1
>Pr|ix-M) ~|> C\/2M2> (3.36)
m=1

M
>Pr|lx—-M)_ % > C\/2M2> , (3.37)
m=1
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where the first inequality arises from Chebyshev’s inegualiequation 3.34, the sec-
ond inequality arises from equation 3.33 and the third ilmdijuarises sincéx| > «

for all values ofr. Consequently,

K
1 1
> — < —. .
Pr (X_M;(er\/icM)) <5 (3.38)
Finally, settingec = /20 obtains
Mo
Pr (x > M) (E + \/4_0M)> < 0.05, (3.39)
m=1
and, thus for
M
M>M <Z(1/m + \/4_0M)> : (3.40)
m=1

the realisation of the random variabjeis less than the value o1 with 95% confi-
dence. Therefore, with1 = M(Zf‘fil(l/m + v/40M)), the re-wiring procedure on
the bipartite networlg selects every edge withb% confidence.

In what follows, using this value ofM, the results of this rewiring procedure
as applied to spatio-temporal grids of varying sizes and2®&lL London riot data
are presented. As the results will demonstrate, this rexiprocedure, despite not
being perfectly random for some realisations of the dateeutide null hypothesis,
is sufficiently random in order to detect differences in thevplence of the different
patterns of diffusion described above. This approach talsition therefore usefully
enables the comparison of binary test statistics againatgimulated under the null
hypothesis of spatio-temporal independence, but with thar spatial and temporal

distributions of the simulated data identical to the engpirdata.

3.5.3 Results

In order to determine the effect of increasing police nurapevo separate analyses of
the data are performed, one for each half of the data. Forrténdlf, it is argued that
the police were under resourced and unsure of the corretitprtler tactics to adopt.
For the second half, the police numbers were much higheritastherefore expected
that the police were able select the best approach from arwaage of public order
strategies. The two time periods are split at the median tonall offences used in
the analysis, to ensure that there are the same number oteffavithin each analy-
sis. The median time is 20:30 on the 8th August 2011. In FgGBr&0 and 3.11, the
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prevalence of each pattern of interest agaifStrealisations of the data under the null
hypothesis, for each spatio-temporal grid resolution, faneach half of the data, re-
spectively, are presented. Using heat maps to represeptdtialence of each pattern,
the colours in these figures show the values ofdZhkscores, calculated as the observed
count of each diffusion pattern minus the mean of the counésch diffusion pattern

in the simulated data, divided by the standard deviatiorhefdounts over the simu-
lated distribution. Specifically, lettin§ be the count of either containment, relocation,

escalation or flashpoints in the observed data Akscore is defined as
G
Z — 8 - é Zg:l S(g)
27
\/ Lye, (5@) e 5@)

(3.41)

whereS is the value of the count of the pattern in t¢h iteration of the simulated
data. The results were also tested using the empirical ppeaiace of the Monte-Carlo
simulation, using the expression in equation 3.14. Theididgions of the test statis-
tics were sufficiently normal that these were results wersistent with theZ-scores
defined here.Z-scores are used as an easily interpreted measure for ta@ahksof
a particular value from the mean. In particular, the valu¢ghefZ-score specifies the
number of standard deviations from the mean of the stairstjoestion. The more pos-
itive the value of eacl£-score in Figures 3.10 and 3.11, the further the distanga fro
the statistic to the mean in the positive direction, andrefwee, the more prevalent
each pattern is in the empirical data when compared to spgatiporal independent
data. On the other hand, if th&-score is negative, then the expected pattern is less
prevalent than when compared to the spatio-temporal imdbpe data. For the pur-
poses of clarity, the plots in Figures 3.10 and 3.11 are ¢immail upon the significance
of each result. This means that the cells are coloured onheibbserved differences
are statistically significant (based on a two-sidé&é: confidence interval). If the re-
sults do not reach significance for a particular space-tinmelow, then that window is
shaded white.

According to the results shown in Figures 3.10 and 3.11,evident that during
the first half of the riots, observed counts of escalatioraweuch more prevalent than
would be expected, assuming that the timing and locatioverfits were independent.

This finding is relatively insensitive to the space-timeotagons for the grids that were
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Figure 3.10: Results for the first half of the data. Z-scores for each observed
count outside a 95% two-sided confidence interval of theltiegudistribution from
the Monte Carlo simulation, for each diffusion pattern foe first half of the data.

Spatial-temporal resolutions that do not reach statissigaificance are shaded white.
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Figure 3.11:Results for the second half of the data.Z-scores for each observed
count outside a 95% two-sided confidence interval of theltiegudistribution from
the Monte Carlo simulation, for each diffusion pattern fag #econd half of the data.

Spatial-temporal resolutions that do not reach statissigaificance are shaded white.
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tested. There is evidence to suggest that containment ise prewvalent than would
expected in the first half of the rioting, although this appda be far more sensitive to
the time window used, with the most prevalence for this tyjpgattern being apparent
for three-hour intervals. Flashpoints were also obserigrdfgcantly more than would
be expected, particularly for smaller spatial units. Intcast, instances of relocation
were observed significantly less frequently than would ljeeeted across most of the
grid resolutions tested.

The results for the second half of the data vary from the tedat the first half
quite significantly. In fact, although for the resolutiotmat are significant, they are
significant in the same direction as in the first half of thead#tere is a distinct lack of
evidence that these results are consistent across diffgndresolutions tested. Given
that there ar&6 significance tests for each pattern, corresponding to gaatestime
window tested, and that tests are performed ag#i€e significance level36 x 0.05 = 2
false positive findings would be expected for each pattehusTfor the second half of
the disorder, it is evident that the prevalence of the Isealipatterns of offences did

not differ from the null hypothesis in which spatio-temporgeraction is removed.

3.5.4 Conclusions

Interpreting these results, the first conclusion that cam&eée is that the local patterns
in space and time made by the offences in the 2011 Londonatiaisged significantly
between the first and second halves of the disorder. Morgiagspears that spatio-
temporal dependency between offences did not influencepiieading of the riots in
the second half of the disorder. It was argued in Sectiorl 3that this may be due
to the increased police presence during the second halkeaidting, enabling police
officers to adopt more effective public order tactics, esatiy bringing a stop to the
contagious nature of the riots. This suggests that the @a@lat only supressed the
overall level of the disorder, as has been argued by vargusrts since the riots (e.g.
House of Commons (2011)), but also suppressed the role chgiomt processes (e.g.
escalation and flashpoints) which were a feature during teehfalf of the disorder.
During the first half of the riots, disorder appears to havesisted at locations
already experiencing riots, sometimes without moving thesurrounding areas (con-

tainment) and sometimes spreading to those nearby (ascaglathis provides support
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for the idea that there were localised effects whereby ngoteere attracted to sites
where there was on-going disorder. The results cannot d#teceffects that may
be due to social contagion, in which offenders were molllisere systematically
through social media or other means, or to geographic camtam which those who
encountered activity through their proximity to ongoingatder were encouraged to
participate; however, there is sufficient evidence thaeasi some form of contagion
and dependency between offences took place. Distinctitwees these two effects is
considered further in Chapter 4.

Evidence of flashpoints during the first half of rioting sugigethat there were in-
stances in which unaffected areas suddenly found thensseligect to disorder. This
is consistent with the arguments put forward that groupsotérs were able to organ-
ise times and places at which to offend. The occurrence digtaiats from a policy
perspective represents an intriguing problem for the atioa of police officers. In
particular, flashpoints are difficult to predict becausdikeninstances of containment
or escalation, which stem from locations in which riotingmyoing, flashpoints origi-
nate in locations with no rioting nearby, which occurs mames for the sparse dataset
of the London riots.

The prevalence of relocation was significantly less thareetqd during the first
half of the disorder across a range of different grid resohst This is consistent with
the argument that environmental features localised théagmn effect and therefore
tied disorder to certain areas. The disorder was not so digntnat it easily moved
from location to location. Considering the actions of pola&d their influence on
possible relocation, it appears that during the first halias they did not encourage
the dispersion of rioters to other regions. Given that thmioence of containment was
significant, it appears that the policing strategy of cantent was indeed effective. A
common concern associated with geographically focusedepattivity is that it will
merely displace offending to different areas (Bowers e28l11). Of course, different
riots may have different dynamics, but in the current cdsmrgtwas no evidence of this,

which suggests that police action did not simply move rgptim neighbouring areas.
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3.6 Discussion

Exploratory data-driven approaches, in which model assiomgpare derived from em-
pirical data, can lead to various insights. Moreover, bysodering possible mecha-
nisms for how such data may have been generated, it is pedsiliest hypotheses
concerning these mechanisms, thereby evaluating how keslktexplanations are sup-
ported by the observed data. Of course, the success of alteg®test does not neces-
sarily mean that the explanation proposed is the mechakhigtneasults in the observed
data, but it may help to discount certain processes. For pbeanrhen considering local
patterns in space and time made by the occurrence of riotadtein this chapter, it was
shown that the pattern of relocation occurred much less dfften would be expected,
assuming that the offences were independent. This findileg ut mechanisms for
riots that result in dynamic ‘hotspots’ for the short timales that were considered. In-
stead, as shown by the greater than expected prevalencetafrobent and escalation,
at least for the first half of rioting, the outbursts were mstagic in space, perhaps as a
result of the attraction of the underlying areas.

Another reason for employing data-driven approaches toetfing, particularly
when first faced with an empirical dataset, is that it canrofieggest assumptions that
might be used to construct more descriptive or complex nsodehas been argued in
this chapter that important considerations when investigaiots and civil disorder are
the impact of interdependency between events, the resdtipfetween the locations of
the riots and the underlying geography, and the interadieween rioters and police.
In Chapter 4, two of these—interdependency between evardgha relationship with
the underlying geography—uwiill be incorporated into a bétaral model of rioter tar-
get choice. The third consideration, the interaction betweoters and police, is more
difficult to incorporate due a lack of data on law enforcenamtivities. In Chapter 5,
a case study of conflict between Naxal insurgents and politég modelled using
more descriptive models than have been presented here.

This chapter has made novel contributions to the theotetiwderstanding of ri-
oting and civil disorder. In contrast to much previous resean the spatio-temporal
analysis of riot patterns, the analysis presented hereraekdively fine spatial and tem-
poral scales to examine the spatio-temporal patterns . rieurthermore, it has been

shown that the spatio-temporal patterns of the London viet® consistent with theo-
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ries of contagion, in which the occurrence of an offence at@gocation increases the
likelihood that another offence will occur nearby in spand ime. This effect may be
brought about by situational precipitators, in which thesance of rioting encourages
individuals who are nearby to participate in the riotingadang to geographic conta-
gion. Alternatively, the contagion process could be a tesuimobilising those who
share similar grievances, regardless of where they areddceSocial contagion can
spread through a range of various media channels. Thesestwpgxtives will be con-
sidered further in Chapter 4 by investigating the distanaeribters typically travelled
in order to offend. These two mechanistic explanationsHerdpreading of riots are
consistent with the analysis presented here, suggestihgabe plausible mechanisms
for the spreading of rioting. They are difficult to distinghibetween, and it is likely
that both have a role to play.

Policy questions have also arisen through this modellipgy@gch. The onset of
rioting and civil disorder forces policy-makers to immedig decide how best to al-
locate scarce resources. It has been shown that the presiemoee police coincided
with the reduction of the local spreading of disorder in gpakhe prevalence of flash-
points during the first half of the riots, in which widespre#islorder occurs at a given
location quite spontaneously, is a phenomenon which woane bheen difficult to pre-
dict and it is therefore unlikely that police officers couldve been present at such
locations antecedently. The occurrence of flashpointsréuerently difficult to police.
On the other hand, the analysis in this chapter has showimttahces of containment
and escalation were more prevalent than would have beerctexh@ssuming that the
events were independent. These patterns provide more tapggrfor policing. A
general finding is that the rioting appeared to be fairlyistas a result of the spatio-
temporal interdependency, and rooted in the underlyingggahy for timescales over
which police may be deployed. The adoption of reactive atrias by police officers,
by which officers are quickly deployed to locations wherdimig is ongoing, as op-
posed to proactive strategies, by which officers are deplty&cations which are not
experiencing disorder but at which disorder may be antieghas perhaps a good strat-
egy to adopt. The prevalence of flashpoints, however, sigj¢jest police allocation
should also be dynamic, and that there is a balance that treedsstruck.

In Chapter 1, it was argued that policy-makers are more tarstwy of approaches
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that rely more upon the empirical data and less upon exteassumptions that remove
the model from the real world. Whilst the findings of this cleagtave been shown to
be robust to a variety of different grid sizes, and may beuwlsafinforming policy-
makers of the need to incorporate underlying geographyaihbcation problems, they
are unable to offer more extensive insights into, for exangle locations which are
more vulnerable than others of experiencing flashpointse dim of the proceeding
chapters is to consider more descriptive, and, in turn,iptied models.

A number of caveats to the conclusions of this chapter ar¢hwaf discussion.
First, as is the case with any study that employs police cdata, not all incidents of
disorder would have been recorded by the police, and it ilrantiow much disorder
went unreported. In the analysis of local patterns of diffnsit was the geographic
scope of the rioting, rather than its relative intensitieglifferent locations that was
examined. Because of this binary approach to analysis, ibpedth that the effects of
underreporting have been minimised: it is reasonable tgestghat the largest source
of underreporting would have occurred at the sites of thgelstroutbursts of disorder.
Second, analyses of the kind reported here are only as gabé psecision of the data
available for analysis and the data utilised were not pdyf@cecise in terms of when
and where events occurred. To mitigate this issue, a satysdhalysis was performed
by varying the spatial and temporal resolutions at whickgpas were explored. Again,
such issues are true of most studies of crime and disordeshbuld be borne in mind.

As a tool for the analysis of event data in space and time, tbiods utilised
in this section can be extremely valuable to gain insightts angiven dataset. These
methods involve the use of Monte-Carlo simulations to comganpirical data against
null models. The simulations increased in complexity - fibgt assuming the number
of events remains consistent with the empirical datasetthau they occur in random
locations; second, by assuming the spatial and temporaibdison of events are pre-
served, but spatio-temporal dependency between them ssmawd third, by suppos-
ing that the binary spatial and temporal distributions aeserved by the null model.
The latter of these is a novel contribution to the literatarnel focuses more on the

geographic scope and its local diffusion patterns than divithual offences.
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Chapter 4

Modelling individual target choice

during rioting



4.1. INTRODUCTION

4.1 Introduction

The literature on criminality and collective behaviour tains a number of theories
regarding the nature by which individuals make decisionsnduoutbreaks of civil
violence such as rioting. These theories, combined witHittigngs of the preceding
Chapter, which argued that both contagion and environmégatires of targets played
a significant role in the spatio-temporal distribution aftimg, are employed in this
chapter to investigate the 2011 London riots from a riotpesspective. A parametric
statistical model is presented that evaluates the extevititth extant theory of offender
behaviour offers explanations for the distinctive spagestpatterns of the riots. The
individual behaviour that is modelled is the choice of tarnge each offender, a key
driver in the emergent spatio-temporal profile of the system

Parametric statistical modelling requires the selectiba family of models, de-
pendent on a vector of parametgrs= (5, 0, ..., 5.), from which, a particular model
may be constructed by specifying a value fr In many cases, these values are es-
timated through inference procedures that incorporateavadable data and find the
value of 3 that provides the closest fit (in some sense) between thelrandé¢he data.
A key distinction between the parametric approach to mougih this chapter, and the
nonparametric approach in Chapter 3, is that the specificati@ parametric family
of models requires theoretical assumptions in order to eeélationships between the
variables. In the nonparametric case in Chapter 3, modeihgsguns were either very
simple (e.g. complete spatial randomness) or derived flarempirical data (e.g. by
specifying the spatial and temporal distributions of tHewées). The difference in this
chapter is that theoretical arguments are introduced iardadconstruct more complex
assumptions. The parameterisation of the model can thesduto test hypotheses
related to these assumptions.

In what follows, a family of probabilistic models for the dhes made by rioters
concerning where to offend is derived. The model is a versiba random utility
discrete choice model, popularised for analysing choioblpms following McFadden
(1974). This model distinguishes itself from traditionagression modelling since
it can be derived theoretically from relatively simple asgtions concerning choice
behaviour. An extension to the standard model presentddsnhesis is that dynamic

variables are incorporated to account for the effect of agioh influencing the target
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choice of each rioter. The model is derived by consideringraety of explanations for
how the characteristics of a particular area influence Katitiood that it is chosen as a
location in which to riot. An inference procedure that exgsithe multinomial logistic
form of the model is used to estimate the parameters in thewvgc Conclusions
resulting from these estimates in the context of theoriesdter target choice are then
presented.

The ability of the model to explain the spatio-temporal peofif the riots is as-
sessed. By considering the observed riots as just one EatisE the probabilistic
model, a simulation is constructed in an attempt to recréaespatio-temporal pro-
file of the riots. Since each rioter is modelled as an auton@mmtity acting proba-
bilistically, this simulation can be considered as a ststhagent-based model or a
microsimulation model. As discussed in Chapter 2, such nsdukle previously been
shown to be effective tools for policy development and denisnaking. The simula-
tion is therefore considered from the perspective of itsids application in the policy
domain, with the findings of the model used to calculate ogltipolice deployment

strategies for a range of riot scenarios.

4.2 A model of target choice in the 2011 London riots

The desires and objectives of individuals requires at@nivhen developing models
of social systems. In this section, a model of target ch@aerived that is based on
choice models more commonly found in the field of economidse farget choice of
each rioter is modelled because it provides an objectivesareaf individual behaviour
that can be related to other measures used to capture adréstcs of each target and
it directly impacts the spatio-temporal profile of the rietean emergent behaviour of
the system studied in Chapter 3.

Choice models suppose that a decision-maker (or an agemjisred to select
one option out of a set of alternatives. In the case of ripeash rioter must undergo a
decision process that results in them first deciding to eegathe disorder, and, sec-
ond, choosing the timing and location at which they engagdk thie disorder. Thus,
at some stage during this process, they choose between asetsible locations at
which to riot. This set of locations represents the set @ratitives available to each

rioter. Choice models enable us to model the possible dramaisnfluences behind the
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choices that are made. The aim of this study is to determmégyhes of areas, as mea-
sured using a variety of data sources, that are particusanit@ble for rioting, thereby
understanding which areas might be more at risk if a similgibi@ak of disorder were
to occur in the future.

In order to differentiate between the different choicessiassumed that each
choice that could be made has associated to it some intwasie, or utility, to the
decision-maker. If the decision-maker were to choose acpdat option, they would
then obtain that level of utility. Utility is often thought @s the difference between
benefits and costs of selecting a particular option and, #saéangible constituents,
such as financial gain, can also incorporate abstract cs)@h as well-being or po-
tential happiness of the decision-maker. As will be denmanesd in the case of rioting,
utility can consist of a number of factors, including theeea$ accessing a particular
target, or the value of potential goods that may be lootech fadarget.

Modelling the choices made by decision-makers when faceld avichoice set
involves assigning numeric values for the utility of eacloick. The utility is often
modelled from the perspective of the decision-maker, amdtbarefore incorporate
variation across decision-makers. A rule is then presdribat determines how the
decision-maker chooses a single alternative out of thecehset, based on the utility
values for each possible choice. The most widely used ruletoosing amongst
alternatives states that the decision-maker choosesttraative that offers them the
most utility. The model then reduces to finding the altexsathat offers the highest
utility from the perspective of the decision-maker. In ttése, it is the relative values of
the utility that determine the preferences of the decisi@ker, rather than the absolute
value of utility, which may not have standardised units oneinsions.

Utility maximising models have been extensively developethe field of eco-
nomics and, throughout their history, have come undercsiti arguing that they are
incapable of modelling the behaviour of individuals (Beioker, 2007). Such criticism
often stems from two major arguments: first, the rule that @siten-maker always
chooses the option that provides them with the most ut#ityawed; and, second, that
utilities are so subjective as to be meaningless: a modedlienot understand the de-
sires and objectives of an individual, even if that indiatlwere acting to maximise

their utility. In this chapter a model is developed with thesiticisms in mind. Namely,
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it is acknowledged that it is impossible to incorporate thgiad of different factors
and influences that may play a role in the decision-makinggs®. It is assumed in
what follows that the decision-maker will indeed select dipgion that provides them
with the most utility, but that it is impossible to model thility of different options
in such a way that incorporates the limitations, prejudieesl idiosyncrasies of in-
dividuals, their environment, and their understandinghef thoices available, whilst
also keeping track of how these perceived utilities miglarnge over time. The idea
that an individual has limited access to available infororgtand may be unknowingly
not acting in their best interest due to this limited infotioa, has been referred to as
bounded rationality, a concept discussed in Simon (1955).

One might conclude that, since it is impossible to deterntieepreferences of
an individual, any attempts to model choices by assignifgies to each alternative
might be in vain. In fact, many authors in a variety of differ&elds have shown that
by modelling the choices of individuals, significant indighan often be obtained, both
into the behaviour of those individuals, as well as into tharacteristics of choices that
make them particularly attractive to decision-makers. é&@mple, proposing a vari-
ant of bounded rationality, which the authors term ratiarradice theory, Cornish and
Clarke (1986) argue that the deviant behaviour of a crimiméigely driven by their
desire to maximise some form of utility, subject to their arslanding of the choices
that are available (see also Cornish and Clarke (2008)). Tdmsppctive has been
attributed to a changing focus within the field of criminojograditionally, the occur-
rence of criminality was considered a consequence of thenghg and psychology
of the offender. An individual was thought be a motivatecgotfer as a direct result of
these factors. The use of bounded rationality in models iafinality—in which the
offender is merely concerned with maximising the benefiisedtby the costs of taking
up a particular action—has led to much modern research demsg the environment
and the possible circumstances that might lead to an acirécallowing the concept
of a motivated offender to be applicable to any individuabviinds themselves in a par-
ticular set of circumstances, and not just to those who @<jarticular psychological
makeup.

Supposing that the actions and choices of offenders rely o element of

bounded rationality, models of individual decision-makimave been developed that
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account for at least some level of uncertainty, and whicHie@ty incorporate an of-
fender’s bounded access to information, as well as a rdse@dnability to capture
this information. In what follows, a random utility model discrete choice is derived
in which offenders are assumed to be idiosyncratic. Thegbiibes of an individual
making a particular choice are modelled, rather than theshchoice, in order to ac-
count for unobserved variance amongst choices that mayalgengla role in the utility
maximising behaviour of each individual. The operatiosetion of this model is con-
sidered by identifying some of the features of the choice-gleé set of targets available
to offenders during the London riots—that enable the egtonaf the model. The es-
timation of the parameters in the model is outlined, befoes@nting the results. This
section concludes by discussing the findings from the petisgeeof criminological and
social science theories that speak to the explanationgétahoice during rioting, and
highlights the contributions that mathematical modellogayn make to the theoretical

understanding of criminality.

4.2.1 Arandom utility model of discrete choice

For decision-maker, suppose that alternatiyehas utility U;; € R associated with it,
for alternativeg = 1, ..., J, and for decision-makets= 1,2, ..., N. In other words(J;;
is the utility decision-maker obtains by selecting alternatiye The set of alternatives
is assumed to be mutually exclusive, exhaustive, and fimités implies, respectively,
that: choosing a particular alternatiyenecessarily means that choices not chosen
for all [ # j; that exactly one alternative must be chosen; and that co. The
principal assumption is that a decision-maker will seléet alternative that offers the
maximum utility across all possible alternatives. Thadscision-makei will select
the alternativeg with U;; > U;; for all [ # j.

A random utility model estimates;; for all : andj by supposing the perception

of the utility to decision-makeris composed of two components given by
Uij = Vij + €ij. (4.1)

The first component, denoted By;, is the observable component of the utility;.
That is,V;; is the utility of alternativej according to decision makethat is percepti-
ble to an observer of that decision-maker. This is the pomicutility that a researcher

can attempt to model. The second component, denoteg bgorresponds to the un-
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observed utility. This corresponds to the desires and tilagecof the decision-maker
that are unknown to an observer, and can be used to incogpdiasyncratic prefer-
ences across individual decision-makers. The unobsemgpanent of utility cannot
be accurately obtained, and thus is treated as a randomtemmaor

The inclusion of the random error term in the utility of eadiemnative explicitly
accounts for uncertainty in the model. Moreover, the eeontis assumed to incorpo-
rate the variation in choices for each decision-maker, dsagehe limitations of the
model to account for such idiosyncrasies.

Assuming that the utility/;; is equal toV;; and therefore that the error term is
equal to zero would be one way of defining the model; howekiesrvtould not account
for uncertainty. Instead a random varialdeis introduced, defined as the choice that
is made by decision-maker In what follows, a model is derived for the probability
distribution Pr(Z; = j) for each choicg = 1,2,...,J and for each decision-maker
i=1,2,.. N.

Assuming that each decision-maker will select the altéredhat provides them
with the most utility, the probability thaZ; = j is equal to the probability that the
utility U;;, is greater than the utility of all other alternativiel®r [ # j. Thus,

Substituting equation 4.1 into equation 4.2 leads to

Pr(Z;=j)=Pr(Vij+e; >Vitea VI#])

= PT(GL'Z — €5 < ‘/ij — Vi Vi 7’é j) (43)

Thus,Pr(Z; = j) is equal to the value of the cumulative probability disttibn of the
random variable; — ¢;;, which is unknown, at the valug; — V;;, which is assumed to
be observable and therefore known. Definéag= (e;1, €0, ..., €;7) to be a multivariate

random variable with joint probability distribution givéday f., (e;), then

Pr(Z;=j) = fe.(€i)de;

/{eieRﬂ(eﬂezj <Vi;j—=Vi) ¥ I#5}
= / 1i((eq — €5 < Vij = Vi) VI # j) fe.(€)de, (4.4)

wherel; is the indicator function which is equal toif the evaluated condition inside

the bracket is true, and equalG@therwise.
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The specification of the discrete choice model is therefedriced to specifying
a functional form for the joint probability distributiofi, (¢;), and then calculating the
integral in equation 4.4. Due to the multi-dimensional natof this integral, the vast
majority of models for the distribution af; do not have analytical solutions, and are
therefore solved numerically. For example, the multindimiabit model is constructed
by assuming thaf..(e;) is given by the multivariate joint normal distribution with
specified mean and variance. This model does not have a cdosdgtical form, and
requires numerical calculation of the integral in equatiah(although by assuming the
e;; for j = 1,..,J, are independent and identically distributed, it can beiced to a
single dimensional integral).

The model that is specified here is the multinomial logit mpded is derived by
assuming that the erroeg for j = 1, .., J are independent and identically distributed
according to an extreme value type | distribution (whichlso&nown as a Gumbel

distribution). For each;;, this distribution is given by
fei (i) = exp (—eyy — V), (4.5)
and the cumulative distribution is given by
F; (i) = exp (—e™ ) . (4.6)

Following Train (2003), and assuming that, initialty; is assumed to be known

but ¢; unknown, then
P?“(Zi:jIEij):PT(Gil<V;‘j—‘/il+6ile%j>, (47)

which, sincee;; are independent, is equal to the product dvet j for all possible
values ofl. Thus,
Pr(Z; = jley) = [ Pr(ea < Vij = Va+eij) - (4.8)
I#j
The right hand side of equation 4.8 is a product over evalnatof the cumulative
distribution functionf.,, so that

Pr(Z; = jlej) = HF%(VU- —Vi+ey) = Hexp (e’(%j"/““”)) : 4.9)
1] 1]
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By applying Bayes’ theorem for a conditioned probability, @wdluating the like-
lihood of¢;; occurring for all possible realisations of,
PT‘(ZZ = j) = / PT’(Zl = j’eij)feij(eij)deija (410)

which, by substituting in equations 4.9 and 4.5, becomes

Pr(Z;,=j)= / H exp (e_(Vij_V“J“E”)) exp (—€;; — e~) dej;. (4.11)
i 1£]

The integral in equation 4.11 can be evaluated analytidhiéyexplicit calculation
of which is shown in Train (2003, pg. 85). The solution to theegral provides the

functional form of the multinomial logit model, describeddlosed form as
(4.12)

The probability of each decision-makeselecting alternative is therefore given
by an expression that is dependent on only the observed awmpof utility for each
choice, and does not depend on the unknown efroGiven the observed component
of utility for each alternative and for each decision-mak@s probability can be found
by calculating the ratio of the exponential of the observality) compared against
the sum of the exponentials for all alternatives. The modgbleasises the compara-
tive nature of the discrete choice model: the decision-méakenore likely to select
those alternatives which offer comparatively greater oleskutility. An account of the
history of this model and the range of different uses is gimeMcFadden (2001).

There are notable consequences from the derivation of thaehthat are not im-
mediately obvious. By assuming that the error teemsire independent, the resulting
model leads to what is known as independence of irrelevaéernatives. That is, the
ratio of choice probabilities between any two alternatigasnaffected by the presence

of other alternatives, which arises due the following ermat

Pr Zz

i) _ e

for two different alternativeg andi. Since the right hand side of equation 4.13 does
not depend on any of the other alternatives, the ratio of tedability of choosing
alternativej and! is constant regardless of which other options might be alksl

There are many thought experiments that can highlight wiyirlclusion of a new
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option might cause the value of equation 4.13 to change. ispamce, if an option’

is introduced to the alternatives, which is almost idettic@ption j but which is very
different to optionl, then it might be expected that the value in equation 4.13ldvou
decrease: decision-makers who might have chosen optwould be more likely to
switch to j/ whilst decision-makers who might have chosen optiomould be less
likely to switch toj’.

Independence of irrelevant alternatives arises as a restlie assumption of in-
dependence over the error terms In many scenarios, particularly those related to
spatial choice problems, this assumption is likely to bdatex. In particular, it im-
plies that a particular area is chosen as a result of justaatufes of that area, and
not as a result of the features of areas nearby. Since it iseo@ble that a rioter may
offend in a particular area due to the characteristics ofightiuring area, the errors
are likely to be correlated between nearby targets. Thisham@sm would manifest
as a spillover effect. The presence of spillover effectsissestent with the analysis
of Chapter 3, which demonstrated the prominence of escaldiftusion during the
riots. To account for this limitation of the model, and thetfthat there may well be
correlated error terms over different alternatives, theaee been a number of more
complex models proposed in which the integral in equatidncén not be calculated
analytically (Train, 2003). However, as Bernasco et al. @0xplains, whilst such
models allow for spatial dependence, they do not direcdgttit as an active process,
instead accounting for it indirectly as part of the erromterAccounting for spatial
effects in the observed part of the model enables invegiigatto the spatial processes
that might be at play (see also Beck et al. (2006)). This is gpraach taken in this
study and spillover effects are incorporated into the oleskpart of the model. This is
discussed further in the proceeding sections.

Another consequence of the model derivation is that it canchdily extended
to include time-dependent utility functions. This can daghe model to account for
preferences of decision-makers or characteristics afretees that might change over
time, resulting in a dynamic utility function. Supposingtithe time period of interest
can be partitioned into discrete time intervalst,, ..., tx, the utility function is given
by

Uijr = Vijk + €iji, (4.14)
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where the observed utility;;;; is known for each decision-make(for : = 1,2, ..., N),
for each alternativej (for j = 1,2,...,J) and for each time period (for k£ =
1,2,..., K). Defining the random variabl&;, to be the choice of decision-maker
at timefk, an analogous derivation results in
eVisk

The important assumption in deriving this model is that thalagous error terms;,

Pr(Zy, = j) (4.15)

are not only independent and identically distributed ovathls and j but also over
k. That is, the error terms are required to be uncorrelated towe across decision-
makers. This can be viewed as quite a restrictive assumasitime choices of decision-
makers tend to be consistent over time due to time-stabfenereces of individuals. In
what follows, a temporally dependent model will be derived the observed utility
function V;; for each rioteri and potential targej. The observed utilities/;; will
not be explicitly dependent on time, however, and so thetdition described here
does not arise. Instead, the temporal dependence will loegacated into the utilities’

dependence on each decision-maker.

4.2.2 Modelling the observed utility for rioter target choice

In order to apply the discrete choice model in equation 4olthé¢ 2011 London riots,
itis first necessary to define the choice set. Since it is tlgetahoice of each offender
that is of interest, as measured by the random varigbler each rioter, the choice
setis required to consist of all possible locations at wieath rioter could have chosen
to commit an offence. Considering all possible locationshasset of points within a
particular spatial region would result in an infinite chossd, contradicting the model
assumptions. Consequently, a finite partition of the geddcagrea within which rioter
targets could have been selected is required.

Given that all offences in the dataset were observed to ogithin Greater Lon-
don, itis assumed that all choices that could have been meealso contained within
Greater London. A partition of Greater London is therefaguired which enables the
characteristics of each area to be evaluated for each deaisaker, in order to con-
struct a utility function. For reasons of data compatipilivhich will become clear
as the utility function is specified, this set is taken to be bt of 4,765 Lower Super
Output Areas (henceforth abbreviated as LSOAS) in Greavexdon. LSOAs are a
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geographic partition of the United Kingdom for the purposkeseporting census data.
Each LSOA is designed to contain around 1,500 residents,amsequently, the set
of LSOAs vary in size according to the underlying populatii@msity.

The choice to perform the analysis at this level of aggregatvas made, on the
one hand, to perform a novel spatial analysis of rioting at@dicale of resolution, but,
on the other, not to make the spatial resolution so fine thailpms are encountered
in the inference of parameters. Indeed, the LSOA geographgists of areas that are
typically smaller than the units of analysis used in presiparametric approaches to
the study of rioting, which have often considered the spa@dterns of rioting at a
national level (Myers, 1997, 2000, 2010; Olzak and Shanal@6; Spilerman, 1970,
1971, 1976). Moreover, the level of resolution offered by HISOA geography is also
smaller than many previous applications of similar discotoice models to other types
of crime (Bernasco and Nieuwbeerta, 2005; Clare et al., 2@0@)pugh newer studies
have applied the model to yet smaller geographical areanéBeo, 2010b; Bernasco
et al., 2013). The advantage of smaller sized units of arsalgshe discrete choice
approach is that the explanatory variables used to conskriatility function are more
representative of the population and characteristics o @mea. However, potential
issues with using smaller areas arise with increased difficuaccounting for spillover
effects, as well as in finding structural data at an approptevel of resolution.

The data that will be used to calibrate the model of targetcehwas obtained
from the Metropolitan Police Service and consists of aline$ associated with the
2011 London riots. For each offence, the data included ifierstfor: the LSOA within
which the offence took place; the LSOA in which the offendaswecorded as living;
the date and time on which the offence was estimated to hawered; and the age of
the offender; all for 2,299 offences (of the total availaBl@14 records). Only these
records were used in the analysis and no offender appedrs data more than once.

Table 4.1 details the types of offences committed for th@2y2cords used in the
analysis. The majority of crimes were incidents of burglantheft, which supports
the common view that looting was prevalent during the riatg] therefore may have
influenced the target choice of offenders. Indeed, the ntgjof crime types are those
that would commonly be associated with rioting behaviodr (8budu Stark et al.

(1974)). Since the primary interest lies in identifying thetors that most consistently
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influenced offender spatial decision-making during thesriall of the data is analysed.

Offence Type Percentage of offences
Burglary 59.1%
Theft 11.4%
Criminal damage 6.4%
Violence against the persan 4.5%
Robbery 1.7%
Other 16.8%

Table 4.1: The distribution of different crime types over the five days ofrioting
(N=2,299).

The observed component of utility;; for offender: and targetj can be mod-
elled by considering the characteristics of the tapgets relationship to the offender
7, and how this might change based on the time at which the adfechooses to en-
gage in the disorder. It is modelled as a linear combinatiom \ariables, denoted by
Whij, Waij, ..., Whj, SO that

‘/z‘j = 51W1ij + /82W2ij + ...+ /Banijy (416)

for parameters, g, ..., B,.

The construction of the model requires the specificatioracheof these variables
for all values ofi andj, and, in what follows, this is described for eddfy;;, for g =
1,2,...,n. These variables are chosen in accordance with three @iogjical theories
that have previously been used to explain the target chdiceroe and rioting. These
are: the theory of crowds, crime pattern theory, and therthefcsocial disorganisation.
These theories, each of which is discussed in more detaihat ¥ollows, describe,
respectively, how: the behaviour of a crowd, and therefbeepresence of rioting at
a particular location, influences the likelihood of selegtthat area in which to riot;
how decisions made with respect to rioting are influencedheyroutine activities of
rioters combined with the environment and urban form of tb&eptial locations; and

how rioting is more likely to occur in areas with weak sociat
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Crowd Theory

In Chapter 3, it was argued that contagion would have playeigrafisant role in
generating the spatio-temporal patterns of the riots. hiqudar, evidence was found
to suggest that the occurrence of offences at a particutatitm in space and time
increased the likelihood of subsequent events occurriagbye The effect of crowds
on the dynamics of target choice is therefore the first camaitbn in this model.

The effect of contagion arises as a result of both planneaffemding amongst ri-
oters, and as a precipitating influence between previousdgquainted offenders. Co-
offending of burglary, in which collaborators jointly contnerimes, has been shown
to typically target similar areas to those targeted by séfienders (Bernasco, 2006).
Target choice among previously unacquainted offenderseher, has rarely been con-
sidered from a modelling perspective, particularly at atregly fine spatial scale, such
as that proposed here.

In Chapter 3, two possible explanations for contagion duduatpreaks of riot-
ing were discussed. The first stated that contagion was tudt i&f shared grievances
across a widely distributed population and had little to dthwhe initial location of
the rioter. The second argued that contagion during riottag a result of situational
precipitators, in which proximity to rioting in space anché served to prompt, permit,
pressure and provoke others to partake in criminal actiWgrtley, 2008). These two
perspectives imply a rational choice approach when coriegléhe decision to engage
in the disorder: potential offenders weigh up the potemgadefits (e.g. the opportunity
to address grievances or for criminal acquisition) agdmspotential costs (cost of ar-
rest or political prosecution). Perhaps surprisingly, mearly research into rioting did
not take a similar view. In fact, early theories concernimg behaviour of crowds dur-
ing rioting, such as those posited by Le Bon (1896; 1960) arddr(1921), suggested
that crowds were irrational, ‘animal-like’, and that thehbeiour of the crowd could
only be considered from the perspective of an irrationalective mind, with targets
more or less selected at random. Within such crowds, indalglwere supposed to be
unable to control their own behaviours, were ‘swept up’, addpted the incentives of
this collective mind. From the perspective of complex systethis interpretation of
the aggregation of behaviour implies that it is the intatas between individuals that

IS most prominent in determining the macro-level outcomater than the internal
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incentives and choices of the individuals.

Since this early work, however, researchers have arguéthiagrocess of rioting
is, in fact, driven by a more rational process (Berk and Alirit972; Berk, 1974; Ma-
son, 1984; McPhail, 1991). According to such accountsyiddals decide whether to
engage in the rioting based on the available informationsamade internal cost-benefit
calculation. Even after individuals have decided to engdgey have more control
over their actions than is suggested by early accounts tdative violence. For in-
stance, there is evidence that targets can be chosen selebly rioters (Auyero and
Moran, 2007; Berk and Aldrich, 1972; Rosenfeld, 1997), andeead, that, by con-
sidering those targets, more can be learnt about the merharat play during riots
(Martin et al., 2009). In this interpretation of crowds, mntrast to earlier theories, the
incentives and choices of the individual play a more promimele in the aggregation
of crowd behaviour. Moreover, this viewpoint supports thpraach taken in this sec-
tion, suggesting that, consistent with rational choicetitean element of rationality is
present in the decision-making of individuals.

Recent treatments of crowds have often incorporated ing@ichcentives with
some degree of rationality, but also allow individuals tarifeienced by the actions of
those around them. For example, Gordon et al. (2009) exteratlgional economic
model that estimates an individual’s ‘willingness to pay’ & certain good, in order to
incorporate the impact of interaction between individudltis perspective of crowd
behaviour, in which individuals, or agents, influence thbeaw&our of others, each of
whom has their own set of behaviours, attributes, or ohjestiand which might vary
widely over the population, has also previously been careid in models of rioting
and civil disorder (Granovetter, 1978; Midlarsky, 1978; &y, 2000; Epstein, 2002).

As emphasised in Myers (2000), care must be taken in intengréhe influence
of crowds, in order to avoid confusion between irrationabes having no choice in
getting swept up in rioting—as would be the case in contagimndisease, and tradi-
tional theories of crowd behaviour—and actors that areggesimore willing to engage
in disorder due to the precipitating influence of crowd bebtavafter weighing up the
costs and benefits of doing so. Using the perspective of lmirationality, the latter
view is the one that is taken here. It is important to be claat such an argument

does not assume that offenders cease to act like rationalsadpeit that the decision to
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engage in a criminal event can be rather dynamic and may hemdéd by more than
an individuals internal desires or motivations.

In order to incorporate riot precipitators into the modetarfyet choice, it is as-
sumed that the utility of each target depends on the numbeobfelated offences
that have recently occurred at that target. It is hypotleelsigat, all other things being
equal, areas in which riots have recently occurred will beeni&ely to be selected by
rioters in which to offend.

To measure the effect that prior offences at a location havb@spatial decision-
making of a new potential rioter, for each rioter decisidre humber of detected of-
fences that occurred for a certain time period before thesabercis made to offend are
counted. The sum of this calculation is denoted/B§/,, where the subscript corre-
sponds to the target area, the subscarigtfers to the decision-maker, which implicitly
determines the time at which the decision to offend is maoie tlae superscript de-
notes the time period before the decision is made over whfehaes contribute to the
count. For example, faft = 12, the sum of prior offences in a given area is taken to be
the number of offences that occurred in the previtisiours from the time at which
the decision to offend is made.

The variabIveig is taken to depend on the time at which offendeommits
their offence. Although implicitly dependent on time, theael is not the same as the
temporal version of the discrete choice model in equati@b,das decision-makers do
not make a decision at every discrete time interval. Instealy one decision for each
offender is made. It is assumed that the time at which eaemoé occurs is given, and
that an offender becomes motivated to commit their offeti¢kis particular time due
to processes that are not under direct consideration herehis reason, the variable is
indexed by the decision-makgmwhich is assumed to incorporate information on when
the decision is made, rather than any explicit temporal depecy as in equation 4.15.

A question that was not addressed in Chapter 3 was the lendimefthat any
increased level of attractiveness due to ongoing riotistslat a particular area. That
is, for how long does the precipitating influence of priormgeat a given location last?
Turning again to the literature on criminology, this infleerhas been widely studied
in the case of the increased attractiveness of targetsiderggal burglary (Bowers and

Johnson, 2005; Johnson and Bowers, 2004), in which the eff@otreased risk due to
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a recent burglary has been observed to last for up to two mo@lven the highly dy-
namic nature of the riots, its short time-scale, and thetfetteach offender is included
in the dataset only once (which is in contrast to the litelatan burglary in which at
least part of the increased attractiveness at a partictéaisoften attributed to offend-
ers returning to where they have successfully burgled pusly), it is anticipated that
the time scales over which increased risk may be observethacé shorter. To test
this, models are run witht = 6, 12, and24 hours, and the relative success of each of
these models is evaluated.

In selecting these variables, models were also run witk: 6; however, singu-
larities were encountered in the calibration procedure tdutaere being insufficient
variance in the varialef%. 0t = 6 was the minimum value for which the model was

successfully calibrated and is therefore used as the mmiralue in this study.

Crime Pattern Theory

There have been many attempts at explanations of the spatiaémporal clustering of
crime. Environmental criminology is specifically concedrveith explaining how envi-
ronmental effects—which can incorporate a range of spatidltemporal processes—
influence the prevalence of different types of crime (Bragiiean and Brantingham,
1981). Much of this theory builds upon the routine activigpeoach, which asserts
that the necessary conditions for crime to occur are theargewice in space and time
of: a motivated offender; a suitable target; and the absehaeapable guardian (Co-
hen and Felson, 1979). According to this approach, routitigity patterns—defined
as the locations and times at which individuals are moreylitebe found as a direct
result of their everyday behaviour, for example on the rdatevork before the start
of the working day or at recreational areas in the eveningapstihe opportunities for
this convergence. From this perspective, crime is seen paramistic: offenders are
largely believed to come across opportunities to commihes as a result of their ev-
eryday routines, rather than purposefully going out ofrtiaaly to commit a particular
offence. The routine activity approach stimulated gretrast in understanding crime
as a (bounded) rational process that focused on the envatacircumstances in
which crime occurs, rather than the underlying psychokalgitakeup of offenders.

Resulting from this interest, crime pattern theory argues tifie patterns brought
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about by the occurrence of crime in space and time are a deesatt of those areas
being more likely to coincide with the routine activity patts of potential offenders
(Brantingham and Brantingham, 1993). Moreover, crime pattezory considers how
routine activity patterns shape awareness of criminal dppgies, and how this may
lead to the emergence of spatial concentrations of crimeo/ling to crime pattern

theory, people create mental maps of their routine actpésterns, which typically

consist of routine activity nodes (locations at which indials frequently visit, or at

which they spend much of their time), and the routes thatril&vidual takes to travel

between these nodes. It is asserted that it is at thesedosdtiat crimes are more
likely to be committed by an individual.

Prominent features of the urban environment are expecteelwothin the aware-
ness spaces of a range of different people, including matgngal offenders. In par-
ticular, much of the population of London and other urbarasm@ound the world, are
highly likely to retain local landmarks—including retaiétres, transport hubs such
as train stations and schools—uwithin their awareness sp@geoutine activity nodes,
which makes these areas more likely to experience crime.aBemand Block (2009)
provide evidence that this is indeed the case with these ghesnn a study of robbery
in Chicago.

Consequently, on the basis of crime pattern theory, it is thgssed that dur-
ing rioting, with all other things being equal, offenderdlvie more likely to choose
locations to offend that are nearby schools, public trarispabs, retail centres and
locations that are proximate to the city centre, as theseesept locations which are
likely to be prominent within the mental maps of a wide rangjeaters.

In order to incorporate these effects into the modeVpf Wy is taken to be the
number of key stage 4 schools (roughly equivalent to seagrstdnools for those aged
11-16) in each LSOA and is counted using data from the UK Diepant of Education.

W3, is taken to be a binary indicator of whether or not an undengostation
is located within the LSOAj. The locations of underground stations are obtained
from Open Street Map (www.openstreetmap.org). Crime pattexory does not only
assume that transport hubs are areas that much of the populatuld be familiar
with, and therefore more likely to be located in the mentapsaf offenders, but also

that transport hubs are likely to be areas travelled thraasyipotential rioters move
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between prominent locations in their awareness spaces.

Wy, is taken to be a measure of retail floorspace within each ttages j,
obtained from the Valuation Office Agency floorspace datatlfer year 2004 (see
www.planningstatistics.org.uk). Specifically, it is takeo be the number of50m?
portions of retail floor space within each argavhere the units are chosen to aid in-
terpretation of the resulting parameter estimates. In déise of rioting, retail centres in
particular may be targeted simply because they containrtyopites for looting, rather
than as a direct result of that location being present indhéme activity nodes of of-
fenders. Nevertheless, it is expected that retail centikset as crime attractors, and
that, where they are targeted, the retail centres choséhewihose that are likely to be
within an offender’s awareness space.

Finally, W5, is taken to be the distance between the centroid of the thB@A j
and the centre of London (measured as a point just south tlges Square: longitude
—0.1277, latitude51.5073) in kilometres.

In the framework of the discrete choice model outlined int®ect.2.1, it is pos-
sible to incorporate variables into the observed utilitythat not only depend on the
target locatiory but which also depend on the offendaxho is making the choice of
where to offend. This enables further variables inspiredtdoye pattern theory to be
incorporated. In particular, although overlapping memapps provide the opportunity
to capture routine activity nodes for a wide range of the etpn, the best indicators
for routine activity nodes are likely to more specific to eaatividual.

For the 2011 London riots, given that the offender data tetait only where the
crime occurred but also where the offender resided, it isiptesto incorporate into
v

5, for each offendet, the distance between the area in which the offender resided
and the area in which that offender could have chosen to engage in thedksoThis
contributes to the utility of each area a measure of how fatdiget is from where the
rioter is most likely to have been based and the locations witich the rioter is likely

to be most familiar. Supposing that the awareness space affemder is more likely

to contain areas near to where that offender resides, itdMogllexpected that targets
closer to the residential area of each rioter are more lit@eBxperience rioting.

In fact, there has been much prior research into the soecgilerney to crime:

the distance between an offenders residential locationttamdbcation at which they
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commit their crime. Supporting the principle proposed byf4i949), that individuals
are most likely to take up the option that provides the mosard for the least effort,
studies of the journey to crime indicate that, despite theynaad varied opportunities
available to them, most offenders commit crime close tortheme location (for a
recent review of this literature, see Townsley and Sidebo{2010)).

To operationalise a measure of journey to crime, the Eughid#istance between
the LSOA centroid within which each offender was recordetivirsg, and the LSOA
centroid of each target area was calculated, and incogubest one of the variables in
the model for the observed utility, denoted By, ;.

In the case that an offender committed an offense within tB®A within which
they reside, the distance between the more precise losatibrwhich they were
recorded as living and at which they committed their offem@s computed. These
more precise locations are given by the centroids of theuseastput area, the finest
level of aggregation at which the data are available.

Figure 4.1 shows the distribution of these journey to crinstathices. Consistent
with previous studies, and in line with the expectationsrohe pattern theory, a clear
pattern of distance decay can be observed. Moreover, the a@od central tendency
of the distribution of distances travelled is very similaithat for other types of crime
(Rossmo, 2000).

Offender awareness of a location is expected to be inversklied to the distance
between that location and their routine activity nodes. $tadies into the journey to
crime, distance is considered to be a measure of impedaataftacts the likelihood
of an individual becoming familiar with a particular areaowkver, factors other than
distance can influence awareness in this way. For examglayrés of the urban en-
vironment, such as natural barriers (e.g. rivers) or trartdmks (e.g. train stations),
may impede or facilitate the ease with which people can ttayveand hence become
familiar with, a particular location. In their study, Clareat. (2009) examined the ex-
tent to which features of the physical environment, such a@nhighways and rivers,
act as barriers to an offender’s choice of burglary locatidhey found that the pres-
ence of either feature between an offender’s home locatidnagpotential target area
decreases the likelihood that the latter will be selectadtthiermore, studies of gang

activity in Los Angeles have found that such environmentalrzaries appear to sig-
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Figure 4.1: Histogram of the distance between residential location anaffence
location. The distances are calculated as the Euclidean distancedetive centroids

of the LSOASs recorded as the residential area and the crieseadreach offender.
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nificantly influence the spatial patterns of gang rivalrieisa( et al., 2003; Radil et al.,
2010).

In the case of London, it is likely that the greatest suchibaand, thus, influ-
ence of this kind on the spatial decision-making of offesderthe River Thames. The
Thames divides London into distinct northern and southezas and, while there are
bridges that connect North and South London, the presernbe gGihames can substan-
tially impede movement between the two. Given the size ofitle and the scope for
natural barriers to shape offender awareness spaces xpested that offenders will
be less likely to cross the river in order to offend. In ordeinicorporate this effect into
the model, each LSOA is coded as being located either nogbuih of the Thames so
that, for any LSOA pair, it is possible to indicate whethes thvo areas are located on
the same side of the river. The variablé,; is then defined to be an indicator variable
that determines whether or not the residential area of déenand the target area
are located on the same side of the River Thames.

Finally, since the model foV;; is a linear combination of the variablég,;;, for
g = 1,2,...,n, it is possible to disaggregate them by considering diffetgpes of
offender. To explain why this might be desirable, it is firshsidered how the aware-
ness spaces of individuals might vary over different ofeasd Previous research has
suggested that the awareness space of offenders is unitkeiynmain static through-
out an individual’s lifetime (Bernasco, 2010a). As peoplevmbouses, jobs, and take
up new activities, they are likely to encounter areas thexe mot encountered before.
These experiences will all contribute in some way to the alentip of an individual.
Moreover, it is hypothesised that the mental map of minotsss¢ under the age of
18—will have a more restricted mental map, than compareato their own mental
map when they are older, but also to the mental maps of oldividuals. Because
of this, it might be the case that older offenders have a widage of locations in
which they can choose to offend. They might also have moreneeatravel there, as
older offenders can be expected to have more disposablenatwo travel via public
or private transport. It is therefore hypothesised thatltasftenders are more likely
to travel further than their younger counterparts (suchirigs have been reported for
other types of crime in Snook et al. (2005); Townsley and Sittm (2010)).

Figure 4.2 shows the age distribution of offenders. A larggprtion of the of-
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fenders were under the age of twenty, however, offendessathe age spectrum are
represented, creating the skewed distribution observdistiabution that is very simi-
lar to the typical age-crime curve (Stolzenberg and D’Al@s2008). In particular, this
figure demonstrates that there were a significant numberfefidérs under the age of

18, and so, the journey to crime varialg;; is separated by an indicator function into:
BeWeij + B 1o (1) Weij, (4.17)

wherel,(i) is equal to one if offender is over the age of 18, and equal to zero oth-
erwise. 3¢ therefore measures the effect that distance has on thiy ofileach area to

juveniles, whilst3s + 3¢ measures the same effect but for adults.
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Figure 4.2:Age distribution of offenders. Of the total available 3,914 offences con-

tained in the data, 3,906 contained the age of the offender.

To further distinguish between the offending behaviour afiors and adults, it
is noted that some nodes of activity, such as schools, warktilns and retail cen-
tres, might feature more prominently in the awareness spafoggarticular age groups.

Young offenders might be more likely to target areas thataiammoutine activity nodes
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that are particularly relevant to them, such as schoolsrefbee, in a similar way to
the journey to crime variable, the variable used to denaectiunt of schools in each

area is also disaggregated as follows:
BoWaj + B3 14 (1) Wy, (4.18)
with analogous interpretations f6s and 5.

Social Disorganisation

The theory of social disorganisation largely stems fromitifkeential work of Shaw
and McKay (1969), who investigated the relationship betwasighbourhood charac-
teristics and the spatial distribution of crime and deli@aey in the US city of Chicago.
They concluded, amongst other things, that the areas withinago containing resi-
dents who were economically disadvantaged, ethnicallgrdezand who were residen-
tially mobile, were more likely to have higher rates of criared delinquency.

Social disorganisation theory was used as an explanatitimsoéffect, and asserts
that the inability of a community to jointly identify commaocial values, and to sub-
sequently exert effective informal social controls, sahstlly increases the crime and
delinquency within an area. That s, for neighbourhoodshictvthere is a strong sense
of community and mutual cooperation, residents are moedyito intervene to prevent
crime. Reviews of the development of social disorganisatt@ory can be found in
Bursik (1988) and Kubrin and Weitzer (2003).

Tests for social disorganisation theory typically identbnditions that might lead
to a lack of social cohesion, which can be affected by a nurobdifferent neighbour-
hood characteristics. For neighbourhoods with a trangepulation, for example,
brought about by a large flux of inward and outward migratibis, asserted that there
will be relatively fewer opportunities for the formation stiable social ties, leading to
the lack of social cohesion which fosters inability to jdynact to prevent and miti-
gate crime. Other conditions identified as having an impadhe resulting crime and
delinquency rates include ethnic heterogeneity (it is edgilnat diversity amongst in-
dividuals can act as a barrier to social cohesion as difteasemmunities can fail to
share consensus), family disruption (close family is ofteenved as a first opportunity
to exert such informal social control), and deprivatiorit{es than having a direct result

on levels of crime, it is argued that within disadvantagedmgourhoods, communities
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may lack the resources and organisational base of their affluent counterparts, and
so are less likely to exert formal control) (Sampson and €sp%¥989; Sampson et al.,
1997; Bernasco, 2006).

In the case of rioting, in accordance with previous studtes|evel of social disor-
ganisation of an area can influence the likelihood of disoodeurring there in slightly
different ways. First, cohesive neighbourhoods may examtrol over their own resi-
dents to reduce the likelihood that they will engage in disoor form a rioting crowd.
Since most of the rioting occurred nearby the residentedsiof the rioters (see Figure
4.1), it is likely that if this explanation has a role to pldlgere would be a reduced
risk of rioting in areas with greater social cohesion. Selc@igns of cohesion within
a neighbourhood might affect whether offenders, regasddésvhere they live, choose
to engage in disorder within that neighbourhood. In thigcascial cohesion might be
seen as acting as a social barrier to deter rioters fromttagger coalescing in a given
neighbourhood (Bernasco (2006) argues this from the pergpeaxf target choice for
residential burglary).

It is therefore reasonable to hypothesise that there is ereased likelihood of
areas being selected as targets for rioting if those areas dgr@ater levels of social
disorganisation. In order to incorporate the impact of alodisorganisation into the
measure of observed utility for each rioter, three measofreach target area are cal-
culated. It should be noted that in this study the levels aiadalisorganisation are
measured indirectly (as in Shaw and McKay (1969)), rathan tthrough the use of
survey samples that attempt to more directly measure locahlsprocesses (Sampson
and Groves, 1989; Sampson et al., 1997).

The first variable estimates the extent to which the popardati a given ared is
transient by considering the inward and outward migratidgthivwv each area. This is
done using a measure of population churn, as outlined in &éand Stillwell (2008),
which quantifies the residential migration of individua&pecifically, this measure is

given by

ng = < J +OP]+ J) X 10, (419)

J
whereD; is the in-migration to areg over a particular period of time); is the out-

migration from the area antl/; is the total migrants that relocate from one residence to

another whilst remaining within the same afeaver that time periodP; is the popu-
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lation of aregj. Using the best data available for this purpose, the valtiés 00; and
M; were obtained for each LSOA in Greater London from the 2001Q#iKsus. This
data was obtained by asking census participants for theal asldress one year earlier.
The multiplicative factor of 10 was chosen as a scaling fataid interpretation of
the resulting estimates, which otherwise has no bearing®nesults.

The second variable to incorporate into the estimate ofrebseutility for each
target measures the ethnic heterogeneity of each target @lee index of qualitative

variation (Agresti and Agresti, 1978; Wilcox, 1973) is usadd defined as

E
Wo, = <1 — Zezj) x 10, (4.20)

k=1

whereE is the total number of distinct ethnic groups angl is the proportion of in-
dividuals belonging to ethnic group that reside in area. Wy, is interpreted to be a
measure of the probability that two individuals selectechatiom from the population
of zone; will be of different ethnicity. The data is again obtainedrfr the 2001 UK
Census, which specifies the number of residents of diffethmiaties in each LSOA
in Greater London. The different ethnic groups specified iactlded in the model
are: White British, White Irish, Other White, White and Black Casbh, White and
Black African, Other Mixed, Indian, Pakistani, Bangladebiher Asian, Caribbean,
African, Other Black, Chinese, Other Ethnic Group. Again, sbaling factor of 10
was chosen to aid parameter interpretation.

A potential source of error with the findings associated wh#tse variables is that
the data used to estimate neighbourhood levels of ethnecsity and population churn
are based on data from the 2001 UK census. These data werasufey are the most
recent that are available, and, in using them, it is assuimegdite demographics (and
changes in them) of an area are relatively stable on the dirake of a decade.

Finally, a measure of deprivation is incorporated into theesved utility of each
target choice. Denoted biy,;, this is given by the Index of Multiple Deprivation,
a measure used extensively in the UK to determine disadyadtareas (McLennan
et al., 2011). The estimates from 2010 are used as they aradberecent available,

and just one year away from the time at which the riots occlurre
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Spillover effects and controls

Several variables have been defined and have been argudg tapture the observed
component of utility of each target area for each offender, anthe case of contagion,
over different periods of time. In addition to the variabtkscussed above, a measure
of population density of each target area is also includékérmodel, denoted by ;.
This is included to control for its potential effects and ained using the Mid-2010
Population Estimates for LSOAs by the UK Office for Nationtdttics.

It was discussed in Section 4.2.1 that the inclusion of afpgtiagged variables
in the specification of the observed utility can mitigate saohthe unintended effects
that arise due to independence of irrelevant alternatSpatial spillover occurs when
a rioter is attracted to a particular area not due to thebates of that area, but to the
attributes of a neighbouring area. If this were to occurnttiee errors in the utility
of each target area would no longer be independent, vigldkia assumptions of the
model. In the case of the London riots, for example, it mayhag¢ &n offender chose
to go to an area that contained an underground station. Hegyrhight have walked
from the underground station to a neighbouring area anddf@usuitable opportunity
to offend in that neighbouring area. In this situation, tffea of having an under-
ground station in a neighbouring area influences the aitteaness of the area that the
rioter chose, and so the unobserved portion of utility otesé choices is no longer
independent, as assumed by the model. To account for thigttfibutes of neighbour-
ing areas can be incorporated into the utility of each areaniattempt to capture the
correlation across the unobserved utility within the ofeedrutility, thereby ensuring
that the errors remain independent and the model assursg@iemot violated. To do
this, a similar approach to Bernasco et al. (2013) is used hit ¥ollows, the spillover
effects accounted for in the model are described.

In Chapter 3, it was shown how the occurrence of offences intecpkar location
can increase the likelihood of offences occurring in neahing locations. Since the
number of prior offences is incorporated within the modettia variablelV},, it is
natural to also include a spatially lagged version of thisalde. It is therefore hy-
pothesised that areas will be more likely to be selecteddigns if neighbouring areas
have recently experienced rioting. The number of offenbhasaccur in neighbouring

areas to the target argavithin 6t hours preceding the time at which riotedlecides to
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engage in the disorder is denotedwgij.

In order to test for further spatial spillover effects, #meighbourhood variables
are also incorporated into the model of observed utilityeSehare: the average number
of schools in neighbouring areas, denoted/By;;; an indicator variable to determine
whether the neighbouring area contained an undergroutidrsteenoted byl 4;; and
the average retail floor space in neighbouring areas, debgtd’;;;. All neighbouring
areas are defined with queen contiguity: areas need to jast¢ ghsingle point of a
boundary in order to be classed as neighbours.

Extending equation 4.16 to incorporate the variables dised, leads to the final

model for the observed utility of each target ajeéor each offendet:

VI =BYWIL + BaWa; + B3 L4 (1) Wa; + BsWaj + BaWay + B W, (4.21)
+ BsWeij + B¢ Lo (1) Weij + B Wrij + BsWsj + BoWo; + BroWho;
+ Wi + 5%W{S§U + B13Wis; + B1aWhaj + P15 Wis;,

where the vector of parametets= (31, 52, ...015) iS to be estimated from the data.

For ease of notation in what follows, equation 4.21 is wnifte vector notation as

ot ot
Vz’j - IBW

R

(4.22)

whereW?!

is the vector of variables associated with offend&nd targey and includes
the indicator function/,(:). Each of the distinct variables included in this model is
outlined in Table 4.2, together with the theoretical pecsipe from which the argument

for including each variable stems.

4.2.3 Parameter estimation

Without specifying a particular value for the vector of pasiers3, the discrete choice
model determines a family of models. Equation 4.12 spedifiedorm by which the
observed components of utility influence the probabilitgtth given alternative is se-
lected, whilst equation 4.21 determines the way in whicleole=d utilities are derived
from data associated with each alternative. Moreover, akeeaf equation 4.21 is to
proxy the effect of the theoretical perspectives discugs&ection 4.2.2 into the utility
of each target. In this section, the vector of paramefdassestimated using the offence
data from the 2011 London riots. In doing so, the model besoimiéy specified, en-

abling the estimation of the probability that riotewould have selected targgt for
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Variable | Parameter Description Expected effect of higher Theoretical
values on attractiveness | perspective
Wik st | Previous offence count Increase CT
Wa, B2, 85 | Number of schools Increase, particularly to CPT
juveniles
Ws; B3 | Underground station Increase CPT
indicator
Wy B4 | Retail floorspace Increase CPT
W Bs | Distance to city centre Decrease CPT
Weij Be, B¢ | Distance between res|-Decrease, particularly to CPT
dence and target juveniles
Wi B7 | Thames between resi-Decrease CPT
dence and target
Wy, Bs | Churn rate Increase SDT
Wy B9 | Ethnic diversity Increase SDT
Wioj B0 | Deprivation Increase SDT
Wiy 511 | Population density None Control
ngij Bi2 | Previous offence count Increase Spillover
in neighbouring areas
Wiz 513 | Number of schools in Increase Spillover
neighbouring areas
W4 B1a | Number of underq Increase Spillover
ground stations in
neighbouring areas
Wis; b5 | Average retail| Increase Spillover
floorspace in neight
bouring areas

Table 4.2:The variables used to estimate the observed utility of each tget. The

theoretical perspective from which each variable stemésis shown and the follow-

ing abbreviations are used: Crowd theory = CT,; Crime patterarthe CPT; Social

disorganisation theory = SDT.
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everyi andj, given the offences that have occurred up until the poininie tat which
rioter; engages with the disorder.

Furthermore, by selecting the value @fthat results in the best fit between the
model and the offence data, it is possible to observe theeinéle of each of the vari-
ables in equation 4.21 on the observed utility, and the tiegybrobability distribution.

If, for someyg, 3, is estimated to be equal to zero, then that variable is asbtatplay
little role in the attractiveness of targets to rioters,ading to the data used in the cal-
ibration procedure. Alternatively, if, is estimated to be positive with a high level of
confidence, then the associated variable is positivelyciestsal with the attractiveness
of each target: higher values of that particular variable &drget are thought to in-
crease its attractiveness. Conversely ifs estimated to be negative with a high level
of confidence, then higher values of the associated varagehought to decrease

attractiveness.

The log-likelihood function

The form of the discrete choice model is particularly suggbr maximum-likelihood
estimation, in which the parameter vector is selected treatirmises the likelihood of
observing the data over all possible valuegoSpecifically, the likelihood function is

defined as

L(B|ZN = 2N, ZN-1=2ZN-1,-, 21 = 21)
= Pr(Zn =zn,ZN-1 = 2ZN-1,--, Z1 = z1|3), (4.23)
where a lower case variablgdenotes the realisation of the random varialileEqua-
tion 4.23 states that the value of the likelihood functiothis probability of observing
the empirical data, given the modelled joint probabilitgtdbution together with a par-
ticular value for3. Applying Bayes rule to the joint distribution, and conditing so
that conditional dependencies are applied to the eventwanological order, it can be

shown that
L(B|Zn =28, Zn-1 = 2N-1, L1 = 21) =
PT(ZN = ZN|ZN—1 = AN-1,4N-2 = ZN-2, o0y L1 = 21)
X Pr(Zy-1=z2N-1|ZN-2=2N-2, ZN-3 = ZN—3, s L1 = 21)

X ..o X P’T’(Zl = Zl)- (424)
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Using the model for the probability distribution in equatié.12, the conditional
probability for a random variablg; is assumed to be given by
vﬁf

Zl ) evét )

WhereVi‘;t is given as in equation 4.21. The probabilities can be takdretequivalent

PT(Zz' = Zi|Zi—1 = 2i1,Li—2 = Zi—2, ..., L1 = 21) (4-25)

to conditional probabilities because the model for the phility distribution depends
on the history of the system, and specifically on the reatisatof random variables
Zy for ¢ < i. In other words, each decision-maker selects the altem#iat offers

them the most utility using the information on where riotease previously offended.

Consequently, the likelihood function is given by

N J V6t 1(zi=j)
ﬁ(/B|ZN7ZN—17"'7 HH <Z evét) ) (426)
=1

i=1j=1
wherel(z; = j) is an indicator function, equal to oneif = j, and equal to zero
otherwise.

In order to maximise the likelihood function, it is often cpuatationally more effi-
cient to maximise the logarithm of the likelihood functi@md this case is no exception.
This is possible since the logarithm is a monotonicallyéasing function, and thus the
maximum of the logarithm of a function occurs at the sametlonaas the maximum of
the function. Taking the natural logarithm, and substitgiiin equation 4.22, equation

4.26 becomes
InL(Blzn, 2N—1, -y 21) =

S 1= HEWE -3 S 1(e— ) m(

i=1 j=1 i=1 j=1

M‘

exp(B. W) ) . (4.27)

=1

The maximum likelihood estimator fg# occurs when

<81n£ Oln L Oln L
0By 7 9By 7 OB

Differentiating the terms in equation 4.27, it can be showat,tforg = 1,2, ..., n,

) N J N J
A DY 1z = =3 ) 1z =5HW, (4.29)
7j=1

9 =1 j=1 i=1

) = (0,0,...,0). (4.28)
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and that

8i Z Z j)In (Z exp(ﬂ.Wff))

N J
Zl’ zl’ exp(B. Ww)

— 1(z

;; Zl—l exp(B.-Wy/)

N J
DO REEN HETIERE

=1 j5=1

N

Mk

Woin Pr(Zi = §'), (4.30)

D

=1

!

N
Il
—

where the final equality arises due to the fact tﬁ}}izl 1(z; = j) = 1 (i.e. that each
rioter makes exactly one choice). Consequently, the derévaft the log-likelihood in

equation 4.27 is:

%1115(@»@721\/—1, 1) =
N J N J
=D D UWa=HWi =D > WiPr(Z =) (4.31)
i=1 j=l1 i=1 j=1
N J
=> ) (1 — Pr(Z; = j)) Wi (4.32)

i=1 j=1
Thus, the value off that maximises the log-likelihood satisfies

N J

> — Pr(Z; = j) Wil =0. (4.33)

i=1 j=1
In McFadden (1974), it is shown that the functibnl(3) is strictly concave, and,
therefore, that if a valu@ satisfies equation 4.33, and is a local maximum, then it is
also the global maximum. This result, together with the texise criteria detailed in
McFadden (1974), ensures that robust and efficient esbmatiocedures are available
to calibrate the model. Moreover, these properties haveddde model in equation
4.12, with linear-in-parameter observed utility functdr); being used widely for the

analysis of choice problems.
Optimisation
Using the offence data from the 2011 London riots, 2,299ahevents are used to cal-

culate the likelihood function, together with the data detg attributes of each alter-

native, as described in section 4.2.2. The valug tihat maximises the log-likelihood

137



4.2. AMODEL OF TARGET CHOICE IN THE2011 LONDON RIOTS

is found using the Survival package in the statistical safeAR (Therneau, 2014). This
particular package has been widely used in the estimationutinomial logistic re-
gression models and is employed here due to its convergpered svith a large number
of observations in the calculation of the likelihood fucti The optimisation proce-
dure that this software performs is based upon the algorghesented in Gail et al.
(1981).

Since the calculation of the maximum likelihood estimatguires the compar-
ison of each of the 2,299 offenders with each of the 4,765cefs0available to that
offender (corresponding to the LSOA geography in Greatardom), the amount of
computation required is very large, and, in this case, thepctational power available
to run the optimisation (64-bit version of R running on 3.23Htel Core i3 with 4GB
RAM) is quickly exceeded.

One way of circumnavigating the need to include all of theuresl data, and
to consequently reduce the computational requirements, use sampling methods.
These approaches estimate the likelihood function by, d&heoffender, selecting a
random sample of alternatives that were not chosen, in dcdeompare against the
location that was chosen. Such approaches have been shqwodioce consistent
estimates for the parameter values (Bernasco et al., 2013).

For this study, however, sampling methods are not used atdad the entire
dataset is incorporated by splitting up the analysis andingnseparate optimisation
procedures for each day of rioting. Running a separate ogdiion for each day is
possible using the available computational power, andhésmore, enables the ex-
amination of if and how the parameter estimates varied oh dag of rioting. If the
parameter estimates are consistent over the differenttdaged, it would provide evi-
dence that the conclusions that may be drawn from them atsstoinder the data for
the different days (which involves different offenderscareach offender appears in
the dataset only once).

The number of offences that occur for each day of rioting, thedefore the num-
ber of offences included in each optimisation procedurgettoer with the number of
LSOAs which contain offences during each day, is shown ineTals.

For purposes of clarity, and to avoid making conclusionsnfran insufficient

amount of data, the results for the first and last day of rgptithe 6th and 10th
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Dates Number of Arrest Records | Number of LSOAs Affected
6th August 2011 54 20
7th August 2011 232 42
8th August 2011 1,477 247
9th August 2011 446 162
10th August 2011 90 55
Total 2,299 436

Table 4.3:The number of offences and the number of LSOAs affected by day of
rioting. The total number number of LSOAs affected is the total nunahdrSOAS

that experienced rioting over the 5 days.

August—are excluded from the presentation in what followkerefore, only results
for the 7th, 8th and 9th of August are reported, which inctléld.7% (2,155) of avail-

able records.

Overall model fit and selection ofdt

The first task is to determine the most appropriate valuét ofThe value ofét cor-
responds to the time interval prior to each offence over e count of previous
offences at each area, and within each neighbouring aremlaslated. Maximum
likelihood estimators are found for each day of unresbfor 6, 4t = 12 anddit = 24.
The overall fit of each model is assessed, and described Jeholthe most appropriate
value fordt is used in the presentation of results that follows.

As well as different optimisation procedures employed fiffecent values oft,
two different optimisation procedures are run in order tareie the spillover effects.
The first model assumes thﬁfg = (13 = P = P15 = 0, so that the effects of
neighbouring areas do not influence the probability thatgetas selected. The second
model assumes that these same parameters are not fixed aadilanaged in the same
way as the others.

The models with and without the spillover effects are separdue to the antici-
pated high levels of collinearity between the spatiallygkead variables and the variables
associated with each target area, which can lead to probieting interpretation of pa-

rameter estimates. A model without neighbourhood effedslavbe preferred from
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the perspective of minimising collinearity in the explaorgt variables, but a model
with these effects would be preferred from the perspectiveitigating the impact
from independence of irrelevant alternatives. If the is@a of spatial spillover ef-
fects has little effect on the estimation of the other patansethen there will be more
confidence in the robustness of the parameter estimates.

In order to consider the effectiveness of the model as a whalé to measure the
extent to which it is able to reproduce the observed datagadusr-squared statistic is
calculated for each model run. Denoting the maximum likedith estimator by3, this
statistic compares the value of the log-likelihood funetio £(3) with 3 = 3 and the

value of the same function with = 0. Specifically,?? is defined as

L)
In £(0)

R* = . (4.34)

Wheng3 = 0, the observed component of the utility of each choice is ketyua
0, and there is an equal probability that each site is chosethis$ case, there are no
distinguishable features accounted for across the pessiitdices. Given that the log-
likelihoodIn £(3) is a measure of the probability that the model with param@tell
result in the observed data, the valueft indicates the extent to which the model
estimated with the parametgrincreases this probability against a null model in which
targets are selected uniformly randomly. It can be inteégolas the extent to which the
model with the parameted explains the variance observed in the model.

The values of?? for each of the models calibrated—for each day under coreside
tion, for each value aft, and for both inclusion and exclusion of spillover effectsre-
shown in Figure 4.3. Considering first the variation with eliéint values obt, it is
not immediately clear which value provides the best modek. ikstance, the model
with §t = 12 appears to have a high&? value on the 7th August but the model with
ot = 24 has a slightly higher value on both the 8th August and the @ithust. This is
consistent across models both with spillover effects aridowit. In order to determine
the value ofdt that provides the best fit to the data, a weighted averages calcu-
lated given by the weighted medit over each day, weighted according to the number
of offences occurring on each day, given in Table 4.3. TheseagedR?? values are
shown in Table 4.4. This table shows that the valuétafesulting in the model with

the overall best fit i9t = 24. In what follows, this is the value 0¥ that is employed.

140



4.2. AMODEL OF TARGET CHOICE IN THE2011 LONDON RIOTS

No lag With lag
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Figure 4.3:R2? values for each of the different models testedThe darker the shading,
the higher the value a®?, and the better the fit to the data. The model without spillove
effects is shown on the left, and the model with spilloveeet$ is shown on the right.

The time interval used corresponds to the valuétof

Model Weighted R-squared
6hr without spillover 0.3352
12hr without spillover 0.3374
24hr without spillover 0.3405
6hr with spillover 0.3544
12hr with spillover 0.3561
24hr with spillover 0.3581

Table 4.4:Weighted R? values. These are calculated by taking the average of each
R-squared value over each day of rioting, weighted lineattyoeding to how many

offences occur on each day of unrest.
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Considering overall model fit, the averag® across all days of rioting for the
case withit = 24 is 0.3405 without spillover effects and.3581 with spillover effects.
The first observation that can be made is that the model pasfovell in explaining
the variation of target choice in the data: the likelihooddtion increases by around
35% when explanatory variables are included. In particularFitiden (1979) states
that values betweelh?2 and0.4 represent an excellent fit to the data. It should be noted
that theR? values are typically much lower for maximum likelihood esdition than
R-squared values that can be calculated in ordinary leastreg regression. This is
because the model uses probabilities to estimate a binargecfwhether each area is
chosen). Consequently, tii# can only be equal to one if the choices that are made are
estimated with probability equal to one, and the choicesatenot made are estimated
with probability zero. Uncertainty in the model necesgadiécreases the value of the
R? in a way that does not occur with ordinary least squares ss@®, and thus the

values are typically lower.

Testing for unobserved heterogeneity in the dynamic variable

Before the results are presented for the parameter estimatéeal complication
brought about by the inclusion of dynamic variables in thelattes of each area is
addressed. The variable used to estimate the role of reffenices on rioter target
choice, denoted b ffj may in fact not be capturing the desired effect: that the in-
creased likelihood of areabeing selected is a direct consequence of previous offences
in that area. This is because it may instead be capturingsemedd heterogeneity that
is not otherwise incorporated in the model.

Unobserved heterogeneity arises when factors that arelyamgsponsible for in-
fluencing the choices of individuals are not included in thedel. Whilst it is hoped
that, in the derivation of the model, the large majority o€lsdactors have been in-
corporated in some way, it may be that some have been misseeitiher to a lack of
theoretical understanding of target choice during riobnglue to the lack of available
data.

Similarly to the variables already present in the obseruéiyufunction, unob-

served heterogeneity can be either time stable or dynamicexample of dynamic

unobserved heterogeneity may arise from the behaviour lafepavhich is likely to
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influence the choice of target, but which has not been incdudehe model due to a
lack of data on law enforcement activities. Static unobserveterogeneity may arise
due to the presence of particular retail stores at certaiations or the locations of
police stations, the inclusion of which in the model may hamaecessarily increased
its complexity.

Since the variabléV{}; counts the number of rioters who choose ajém the it
hours prior to each offence, it may be that it is actually aepg either dynamic or
static unobserved heterogeneity: areas with high valué@l‘@fmay have high values
because those areas attracted more rioters due to its tdréstes that are not captured
by the model.

The extent to which this variable measures static unobdeme¢erogeneity can
be directly tested. To do this, the model is calibrated usiregsame optimisation
procedure for each of the three days under consideratidnjust three variables: the
distance between the residential area of each rioter amdpibiential target, denoted
by Wsi;; the number of rioters who had engaged in the disorder atgatemtial target
in the previous 24 hours; and the number of rioters who hadgedyin the disorder
at each potential target throughout the remainder of thataur of the disorder (that
is, the total number of rioters at each location, minus thealmer who had offended
within the previous 24 hours), denoted By;,;. The distance between a residential
area and target area is included in this version of the madgiv@as considered to be
the variable that accounts for most of the variation in tlgegtchoice of rioters.

The parameter estimates and their 95% confidence intergasteown in Table
4.5. The parameters associated with counts of an area, dotihef previous 24 hours,
as well as for all other times, are significant, and greatan thne, indicating that the
presence of offences in a particular area does indeed seri@ likelihood that it
is selected for rioting. Since both estimates are significarcan be concluded that
offences in the previous 24 hours, as measured by the vam’aﬁg, includes effects
above and beyond what would be anticipated from static werobd heterogeneity,
since otherwise the static unobserved heterogeneity warilchptured by the variable
Wi~ Results are next presented that include the variifle under the assumption
thatitis indeed capturing some form of contagion processvéver, it should be borne

in mind that there is some level of unobserved heterogemeityaccounted for in the
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Date Parameter | Exponentiated parame-| 95% confidence interval
ter estimate of estimate
7th Aug ot 1.173 [1.156,1.191]
7th Aug Be 0.628 [0.598,0.659]
7th Aug Bet 1.060 [1.055,1.065]
8th Aug ot 1.049 [1.046,1.053]
8th Aug B 0.588 [0.576,0.601]
8th Aug Bet 1.079 [1.076,1.081]
9th Aug ot 1.040 [1.030,1.042]
9th Aug gt 0.560 [0.537, 0.584]
9th Aug 3ot 1.120 [1.106, 1.126]

Table 4.5: Parameter estimates and their associated confidence intaals for the

test of unobserved heterogeneity.

model, which may well arise from processes such as poli¢erach which there is no

available data.

Results

In Figure 4.4, the results of the optimisation procedurepaesented fodt = 24 with-

out spillover effects. In Figure 4.5, spillover effects areluded. For each component
of the parameter vectg, exponentiated point estimates are shown that maximise the
log-likelihood function, subject to the conditions in etjoa 4.33. A95% normal
confidence interval is also shown for each parameter. Thereqgiated value of the
parametep, is the multiplicative effect of a one-unit increase in dfite 1V,;; on the
odds that decision-makeselects target. The odds are defined as the probability that
i selectsj, divided by the probability that does not select. If e’ = 1 then there is
no association between that variable and offender spag@siwn-making during the
London riots. Values above one suggest that the likelihdogihcarea being chosen
is positively associated with the variable considered, ldes below one suggest a
negative association. The value of each exponentiatednesea in Figures 4.4 and 4.5

can therefore enable the interpretation of each attrilbutea model.
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Without spillover effects
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Figure 4.4: Exponentiated parameter estimates of the discrete choice rdel for
ot = 24. This model excludes spillover effects. For each param#isze point esti-
mates are shown as crosses, one for each day under consileExch estimate also
has a corresponding 95% confidence interval, shown as anb&aroThe error bar is
shaded grey if it crosses zero, otherwise it is shaded blé#cit.is shaded black, it
implies that the associated parameter is significant at.l8vel. The description of

each parameter is given in the supporting text.
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With spillover effects
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Figure 4.5: Exponentiated parameter estimates of the discrete choice rdel for
dt = 24. This model includes spillover effects. For each parametédrraodel run,
three point estimates are shown as crosses, one for eacimderaonsideration. Each
estimate also has a corresponding 95% confidence intehaalirsas an error bar. The
error bar is shaded grey if it crosses zero, otherwise itaglst black. If it is shaded
black, it implies that the associated parameter is sigmificd the 0.05 level. The

description of each parameter is given in the supporting tex
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Interpretation of estimates

In this section, each parameter estimate from the resudtsepted in Figures 4.4 and
4.5 is considered in turn, and each associated hypothéaieddo the theoretical per-
spectives introduced in section 4.2.2 is discussed in theegbof these findings. The
results with the spillover variables omitted are first imigested, corresponding to Fig-
ure 4.4.

Taking the first parametef?*, which measures the effect that offences occurring
in the previous 24 hours at each location has on the atteanetss of that target, the
estimates are consistently positive and significant. Algiothe magnitude of the ex-
ponentiated variable is only slightly greater than one,rthatively small confidence
intervals for the parameter estimate suggest that this igldyhsignificant finding.
This finding supports the analysis of Chapter 3: ongoingrigptian act as a situational
precipitator, in which rioters are encouraged to engagéeéndisorder more so than
they otherwise would. To illustrate, on the 7th September,ddds of an area being
targeted by an offender increased by a factot @3 for every additional (detected)
offence that occurred in that area in the previous 24 hours.

Similar statements can be made for each day of unrest; hoywekien consider-
ing how this variable changes over the three days of riotifrgm 1.143 on the 7th, to
1.064 on the 8th, tal.039 on the 9th—the temporal distribution of offences throughou
the duration of rioting requires consideration. This isdiese the number of offences
that occur within any 24 hour period prior to an offence cleagjgnificantly over time,
and such a change may well affect the parameter estimatte=ednsince the parameter
estimates measure the increased attractiveness of eaotheréo a single extra offence
with all other things equal, one might expect to experienog@rdshing returns on the
extent to which attractiveness can increase as the numbmtefs increases. That is,
the increased attractiveness per rioter is likely to desg@dth more rioters: it has been
hypothesised elsewhere that the first rioter can be the mpstriant in influencing the
chance of a full scale outburst (Granovetter, 1978). Sihegoarameter estimates con-
sidered here decrease with each passing day, and sincertiteenaf rioters increased
from the 6th August to the 8th August (see Table 4.3), theoplesf time prior to events
on the 9th August would, in all likelihood, include the gresttnumber of rioters. Thus,

if there was a diminishing effect on the increased attracess as the number of rioters
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at each site increases, then the estimates of the pararfaténgs variable would be
expected to decrease over time, which is indeed what is wéder

The parameter estimates 6§, corresponding to the presence of schools in the
target area, are all positively associated and signifidgthed).05 level with the choices
made. Thus, rioters were more likely to offend in areas aoimtg schools. It was
argued in Section 4.2.2 that this is likely to occur due to rible of schools in the
collective routine activity nodes of offenders. Considgrall offenders, the odds of a
rioter selecting an area for each additional school coathimithin that area increases
by a factor of between.692 and2.101 for each of the days under consideration.

In order to further test the hypothesis that the role of sthioothe target choice
of offenders was a result of those schools being prominethigmoutine activity nodes
of offenders, an interaction parameter was also estimatdétermine the extra effect
brought about by the offender being over the age of 18. Alghoonly significant at
the0.05 level for the 8th August, there is some indication that thieatfof schools on
the decision making of adults is less prominent than it isjd@enile offenders. For
instance, on the 8th August, the point estimate‘®fis 0.769, meaning that the total
impact of schools will be aroun#3% less for adult offenders. This provides some
support for the theory that routine activity nodes are {ikel change and diminish for
individuals as they get older.

The effect from the connectivity of an area, proxied by andatbr of the presence
of an underground train station given By, was, for the 7th and 9th August, positively
associated with the chance that the area was selectedt,|nrfidbose days, the odds of
an area being targeted by an offender more than doubledahiamed a station. This
provides further support that those areas in the routineigabodes of offenders were
more likely to be targeted. On the 8th August, the estimate mad significant, and,
curiously, was in the opposite direction to the other twosdahis might be explained
by the fact that, on the 8th August, the rioting was much mdcespread than on the
other days and so the ease of accessibility might have beswia concern for rioters
on this particular day.

The effect of retail centres, as measuredihywas positively associated and sig-
nificant with the likelihood of an area being selected foidalys considered. For every

additional250m? of retail floorspace in an area, the odds that it was selectedla-
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cation in which to riot increased by a value of betwéel? and1.32, all other things
being equal. Whilst this finding might be interpreted as evagefor the targeting of
routine activity nodes, which may include retail centremay also be a result of many
of the offences during the riots being associated with faptf high-value goods.

The effect on target attractiveness from its distance taitlyecentre, as measured
by 55, did not appear to play a consistent role, as the estimatenlgsignificant for
one of the days tested. On the 7th August, the exponentiatdtiaient was statistically
significant and positively associated with the choice ofjéarsuggesting that rioters
were more likely to offend further away from the city centridowever, on the 8th
August and 9th August, the effect was indistinguishablee @ason for the apparent
absence of the influence of this variable may be that, foryalikk London, the city
centre may be too crude to represent a routine activity nodalff offenders.

The point estimates fo#s are significantly negatively associated with the choices
made by rioters for each day of unrest. Singemeasures the effect of Euclidean
distance between the offender’s residence and their @ation, this suggests that areas
further away from a rioter’s residence were less likely tsbkected, which is entirely
consistent both with the theory of crime patterns and stugheestigating the journey
to crime. Indeed, given the distance decay shown in FiguketHis finding is to be
expected. For interpretation, the odds of an offender 8etpan area reduces by a
factor of betweer).482 and0.608 for each additional kilometre of distance between
their residence and that target area, all other things texiongl.

Two of the three estimates of are statistically significant at the05 level, sug-
gesting that the magnitude of the exponentiated paramstienae for the journey to
crime variable is closer to one for adults than it is for julesn This indicates that,
as hypothesised in Section 4.2.2, the effect of distancé®target choice of rioters is
more pronounced for juvenile offenders, and adult offeadédt indeed appear to travel
further to commit their crimes. This could be a result of tkieeaded awareness spaces
of adults perhaps combined with their increased means\eltfarther.

The influence of the River Thames, as measureg,bwas significantly positively
associated with rioter target choice, and consistent acatislays. The odds of an
offender selecting an area were up to five times higher ifdhed was on the same side

of the river as the area in which they lived, all other thingglg equal. This supports
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the hypothesis derived from crime pattern theory, whickestéhat the river acts as a
natural barrier to the awareness spaces of offenders.

With respect to social disorganisation, as measured bylatpa churn, ethnic
diversity and deprivation, whose effect is measuredhys, andj3;, respectively, the
parameter estimates were, in general, positively assatwaith target choice, although
some results were not statistically significant at@tig level. In particular, areas with
a higher level of deprivation were more likely to be seleataceach day of the riots.
The odds of an area selected increased by a factor betiveghand1.632 for each
unit increase in the measure of deprivation. The likelihobdn area being selected
increased by a factor of betweér2 and 1.3 for each unit increase in the measure of
churn of that area, although the effect was not statisyicainificant on the 7th August.
The effect of attractiveness on target choice increased ssngar amount for ethnic
diversity on the 7th and 8th August but was not significant loe 9th. Thus, areas
with higher levels of churn, ethnic diversity and deprigatiwvere more likely to be
targeted, thereby supporting theories of social disoggitin, which state that in areas
with higher values of such variables, the residents arelilesy to have the ability to
collectively prevent such crimes from occurring.

As discussed in Section 4.2.2, there are two mechanisms hwihis effect is
likely to come about. Cohesive neighbourhoods might exertrobover their residents
to reduce the likelihood that they would engage in the disord\lternatively, signs
of social cohesion, or collective action, might act as aibato deter rioters from
targeting a neighbourhood. Such action was reported aselp stop some of the
rioting that took place in the United States during the sumon&967 (Corman, 1967),
and, while not systematic, anecdotal evidence from mediarage of the London 2011
riots suggested that in some areas residents acted ocadlgcto prevent rioters from
targeting their neighbourhoods.

With respect to population density, and the parameter estirfor 3,1, it would
appear that, while the strength of the effect decayed owecdlirse of the three days,
with it being statistically insignificant at thie05 level on the final day, offenders tended
to select areas with lower population density. In this mpgdepulation density is in-
cluded as a control and is not discussed with respect to apart hypothesis. This

finding does, however, demonstrate the value of includimg\tariable in the model
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specification.

In Figure 4.5, in which estimates of the exponentiated odefits for the spillover
variables are also presented, it can be seen that the reseltonsistent with those
discussed so far, both with respect to the direction in whieheffect acts, as well
as to the significance of each variable. Thus, it can be cdedithat the inclusion of
spillover effects does not drastically alter the paramesémates of the other variables.
This demonstrates that the findings are robust, and imiaghe substitution patterns
captured by the spillover variables do not unduly impactatiner estimates.

The spillover effect from prior offences, as measuredsy; is significant and
positive for all days under consideration. The occurrerfagffences in neighbouring
areas therefore appears to increase the attractivenessasfta rioters. These results
are consistent with the findings of Chapter 3 in which evideioceghe spreading of
offences in space and time was demonstrated. Considerirgpillever effects for the
presence of schools, underground train stations and eetgals, as measured Bys,
(14 and s, respectively, the results are more mixed, with signifiedfects at thé).05
level detected for schools on the 7th and 8th August, for tgrdend stations on the
8th August and for retail areas on the 7th and 8th August.

The interpretation of the individual spillover parametsrsomplicated due to high
levels of collinearity with non-spillover variables thaise due to spatial autocorrela-
tion of those variables. The importance of including théleper effects is largely to
determine whether the non-spillover parameters are densihen the spillover ef-
fects are included. Since this appears to be the case, thnvidps evidence for the
robustness of the parameter estimates and the model itisgdarticular, variables as-
sociated with crowd theory, crime pattern theory and satisarganisation theory have
been shown to provide robust estimates for influences oerriatget choice. Consis-
tency of many of these estimates over the different dayedastplies consistency in
the decision-making of rioters, providing some evidengdlie presence of (bounded)

rationality in rioter target choice.
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4.3 Simulating the 2011 London riots: Towards a policy

tool

Mechanistic models of rioting, in which model assumptigoescsfy how system entities
behave, can be used to generate different scenarios whieypbyhetical outbreaks of
rioting are simulated. These hypothetical scenarios carobgared against empirical
observation and the mechanisms that are used to consteuctdtiel can be evaluated.
In this section, a novel microsimulation model of rioteigetrchoice is proposed, based
upon the statistical model of target choice presented iti&ed.2. First, the model is
described and evaluated as a mechanistic model for riotgettahoice. The model
is novel due to the way it incorporates theoretical perspestvia the target choice
model described in Section 4.2. The extent to which it impsoupon prior models
of rioter behaviour is discussed. Second, the potentiatfermodel to be used in a
policy-making context is explored by using it to proposeusiohs for police resource

allocation during rioting.

4.3.1 Microsimulation of target choice

Microsimulations and agent-based models are, in many caskstinguishable. They
both model the behaviour of individuals and are concerned low local behaviour
aggregates to global outcomes (both techniques are irdeadn more detail in Chapter
2). Efforts at separating the two approaches typically icimrsthe extent to which
empirical data forms model assumptions; or whether thectibgefor constructing the
model is for the quantitative prediction of a real-world pbeenon, as is the case
for microsimulation models, rather than for the explanatd how that phenomenon
emerges through the behaviour of system entities, whiclitéshdhe case for agent-
based models (Birkin and Wu, 2012). The model presented Ise®the model from
Section 4.2, which is based on empirical data, to form itsiaggions. Furthermore,
its potential as a component model for the quantitative iptieeh of riot locations is
considered. For these reasons, the term ‘microsimulaisgoreferred.

The objective of a microsimulation model is to generateisatibns of individu-
als, based on aggregated empirical data, which might haeabpility within a policy
setting (Ballas et al., 2005). Microsimulation models twytlig consist of an empirical

dataset of a particular population, which is used to spetigyinitial conditions, to-
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gether with a series of probability distributions that maydonditional upon a range
of factors. Pseudo-random number generators combinedthigie probability distri-

butions are then used simulate certain characteristicg@a$sd with each individual in

the population, such as the decisions that they make ovei@ps time.

The successful estimation of parameters in the statistioalel of discrete choice
in Section 4.2 suggests that an appropriate decision tontndatied is the target choice
of rioters during the 2011 London riots. The probabilitytdisution defined by the
model in Section 4.2 is conditional upon the initial locatiof each rioter, the age of
the rioter, the time at which the rioter decides to engagé wie disorder, and the
characteristics of the riot scenario up until that time. §hihis model is well suited to
being applied within a microsimulation framework.

The model is described as follows: suppose that each offemikexed by: for
i = 1,2,...,N, resides within an LSOA in Greater London, denoteds[;ﬁ/, and is
deemed to commit their offence at timg corresponding to the hourly interval within
which the offence occurred. Lét(:) indicate whether offenderis an adult or under
the age of 18, and Ieéd) denote the LSOA that was chosen according to the empirical
data. Suppose also that the offences are ordered s that,, fori =1,2,..., N — 1.
Since the discrete choice model presented in Section 4 &ndispon the riot scenario
up until each rioter makes their decision as to where to emgath the disorder, the

history of the system at timé denoted by (¢), is defined by the set
H(t) = {(ti,sgd))\ti < t}. (4.35)

The variable to be simulated is the target choice of eacmdéie Since there is
uncertainty surrounding the choice that each offender syakeandom variable; is
modelled. Realisations df; are required to correspond to the LSOA which offender
selects as a target within the simulation; thus, the set s§ipte values fov; is given
by the setD = {1, 2,3, ...,4765}, where each member &f corresponds to an LSOA.

The probability mass function of; prescribes the probability with which each
member of the seD becomes a realisation ¢f;, and therefore determines the prob-
ability with which each LSOA is chosen by offendem the model. In Section 4.2,
the model estimated was for the probability mass functio#;ptonditional upon the

origin of the offender, their age, the time at which the offeoccurred, and the history
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of the system at that time. Denoting this function fy, then
eV )

ol 1i), H(8)) = Pr(Zi=los” 1o, H(t) = =y (4:39)
whereV;?!(j) is the observed component of utility gained by offendiéthey were to
select optiory € D.

A candidate for the functiom/ft(j|s§°), I,(3),H(t;)) was constructed in Section
4.2 where it was writtert’; however, not all of the components of the model were
deemed to be significant predictors for the behaviour oérgtAs a consequence, the
model taken in this section is chosen to only include thealdeis which provided the
most predictive power, assessed by the corresponding eowfdinterval associated

with each variable. Thus, the following function is defined:

V() =B WG + BoWas + By La(i)Wa; + BsWs;
+ BaWaj + BsWeij + B 1a(0)Wej + B:Waii + BroWhoy, (4.37)

where the terms are denoted as in Section 4.2 and measupectiegsly, the effect
from: offences occurring in target argaduring the previoust hours tot;; schools

in target areg; underground train stations in target areaetail floorspace in target
areaj; the distance between the offender’s residence and targej ;avhether or not
target areg is on the same side of the river Thames as the offender'semese] and
deprivation in target area As well as explaining a large amount of the variance in
the data, these variables also capture the three thedneticsppectives—crowd theory,
crime pattern theory, and social disorganisation theorigetssed in the derivation of
the model. The measure for the number of rioters in the pusvio hours,W7%, is
taken withdt = 24, in accordance with Section 4.2.

The values of the vectgB = (35, Bs, 3%, Bs, Ba, Bs, Br, B¢, B10) are selected in
accordance with the estimation of these parameters indeét?2. For offendef, the
corresponding parametgris found by sampling independently from the joint normal
distribution with mean given by the point estimatesddfom Section 4.2 and standard
deviation given by the corresponding standard errors. Réwlthree sets of param-
eters were estimated: one for each day of rioting under deraiion. The choice of
distribution for each parameter therefore also depends tipwday on which the of-

fence occurred.
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Random sampling of the parameter values is employed to yeftect the uncer-
tainty associated with each parameter over the differecisabg-makers. The resulting
model is related to a mixed logit specification, in which tlaegmeters themselves are
random variables described by a corresponding distributioction (see, for exam-
ple Train (2003)). The simulation itself might be thoughtasfa mixed logit model
with independent normally distributed parameters, wittanseand variances given by
the conditional logistic regression estimated in the presisection. Although the pa-
rameters might, in reality, be likely to covary with decisimakers, the assumption
of independence is used as an approximation, and merely asasnof incorporating
variation across decision-makers.

The simulation proceeds as follows:
1. Set; = 1.

2. Attimet;, offenderi commits their offence at some location. Calculate the value

of f7,(jls{”, L(i), M(t;)) for eachj € D.
3. For eacly, find the value of the function

F,(ilsi” 1(0), H(t) = Pr(Z < jls” 1(0), (1))
=Y f2 s LG). ML), (4.38)
=1

which forms an increasing function on the g2t taking values in the interval

[0, 1].
4. Generate a pseudo-random number betvidesamd 1, denoted byR.
5. Find a realisation of;, given byz; = F,;'(R).
6. Ifi < N, seti — i + 1 and return to step 2, otherwise stop.

This simulation produces a set of chosen target argass, ..., zy, Where the
lower case notation is used to correspond to the realisafitime random variable;
fori = 1,2,..., N. The outputs of this simulation represent a riot scenariohich
the rioters behave according to the discrete choice modmiedein Section 4.2. If the

model is able to recreate the observed riot data, then iiges\evidence to suggest that
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the theoretical perspectives discussed in Section 4.2uinenlecessary and sufficient to
explain rioter target choice. Furthermore, if the modelgaovide accurate realisations
of riots, then it may be possible for the model to be employed aredictive tool. In
what follows, a comparison between the model outputs aneti@rical data is first

made, before considering a potential policy application.

4.3.2 Comparison of the model with empirical data

A full out of sample validation of the model is not possiblecg it has been estimated
using all of the available empirical data for each day. Théswlone in order to gain
the best possible understanding into the range of mechanishmight underlie rioter
target choice. Nevertheless, an assessment of the modbkedarade by determining
the extent to which the incorporated mechanisms are abletto duantitatively and
qualitatively predict the distribution of rioting in thersgle data.

In order to assess the model, it is noted that each realsaithe result of a
number of stochastic elements, and, thus, to get a more edpenyhderstanding of the
model outputs, a sample @00 realisations is made, resulting in chosen target areas
zﬁg),zég), ceey z](\?) forg = 1,2,...,100. To determine whether the model is capable of
producing similar output to the observed phenomenon, teeage number of rioters
that targeted LSOA over thel00 simulations of the model, given by

100 N

1
Cj=1o5 221" = (4.39)

g=1 =1

wherel(.) is an indicator function equal to one if the condition instte bracket is
satisfied, and equal to zero otherwise, is compared aga@stdtual counts of events
that occurred in LSOA for j = 1,2, ..., J.

Figure 4.6 is a bar chart in which theaxis represents the 30 LSOAs that were
most targeted by the rioters according to the empirical.datee bars in the positive
direction correspond to the empirical count of offencesanheLSOA and the bars in
the negative direction correspond to the value€pthat are obtained from the 100
iterations of the simulation for the corresponding LSQA#Ithough a significant dis-
crepancy between the model and the data is observed, th@mesindication that the
most targeted LSOAs were also those that were most targeteddang to the simula-

tion. This implies that the model might indeed be able to Gbute to the prediction of
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riot locations; however, it doesn’t necessarily captuteftithe underlying behaviour
of the rioters. In particular, the values of the counts in ¢nepirical data are much
larger than the counts resulting from the simulation, sstgg that there was greater

clustering in some areas observed than is accounted foe imtdel.
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Figure 4.6:Rioter counts for the 30 most targeted LSOAs according to thempiri-
cal data. The positive bar chart shows the empirical counts, and tgative bar chart

shows the averaged simulated counts.

If the model is to be used as a forecasting tool in a policyirggtbne must also
be wary of the false positive rate of the simulation, whiclgimioccur when the model
erroneously predicts that an particular location will bgyéded. Figure 4.7 shows a bar
chart in which ther-axis represents the 30 LSOAs that were most targeted angord
to the averaged simulation counts, given(yfor j = 1,2, ..., J. The majority of loca-
tions most selected by rioters in the simulation were alsedtareas selected according
to the empirical data. There are, however, two notableerstlhat deserve attention.

The largest outlier, the second most selected as a targetdaag to the simula-
tion, experienced no offences according to the empirici.d@his particular LSOA

represents a region in North London containing five schdgitsce the count of schools
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was used as an attractiveness factor in the model of targetestwhich, for this LSOA
would have been five times as strong, many simulated riogdested it as a suitable lo-
cation at which to commit their offence. Possible explaoragifor why this area was not
selected by rioters according to the empirical data may digtie effect from schools is
not additive, and that a school indicator function, takiatues0) or 1, would have been
a more appropriate measure of the effect from schools, rétthe the count. Another
explanation may be that the effect from the presence of $sho@ach LSOA is, in
reality, dependent upon a range of other area-level ate#such as retail floorspace.
Nonlinear utility functions can be used to model such depanis.

Another outlier, representing the fifth most selected LS©#éoading to the simu-
lation, contains part of London’s largest retail centreha area around Oxford Street.
According to the empirical data, this LSOA experienced o6 offences. Since retail
floorspace is an attractiveness factor within the simutatibe large retail floorspace
of this particular LSOA in comparison to all other areas kgly to have attracted a
greater proportion of rioters. Possible explanations foy woters perceived the very
centre of London’s retail district as a poor target accaydmthe empirical data may
be the perception that, within the centre of London, therg bemore law enforce-
ment officers available to counter any riots, which may iaseethe chances that each
rioter will be arrested. Furthermore, larger retail centrey also have higher levels of
security, meaning that looting and other riot related afésshare difficult to commit.

Although each simulation of the riots has the same numbeffehces as in the
empirical data by construction, the average of the variamfi@®unts across each sim-
ulation is3.29, compared td 1.90 for the empirical data. The offences are therefore
more spread out over the LSOAs in the simulation of the rimas iis actually observed.
This suggests that, although the model goes someway toirixgjahe target choice
of rioters, it does not incorporate all possible explanatias to why rioters selected
certain locations over others. Nevertheless, althougtethee discrepancies between
the model and the empirical data with respect to the countdfefces that occurred
within each LSOA, the present model may still be of use in &cgdetting if it is able
to broadly reproduce the spatial patterning of the riotsdd@rmine this, it is next con-
sidered whether, with as few outliers as possible, the sitimrl broadly consistently

highlights those areas that were most vulnerable to expenig riots. For this purpose,
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Figure 4.7:Rioter counts for the 30 most targeted LSOASs according to theeerage
of the simulations. The positive bar chart shows the empirical counts, and thative

bar chart shows the averaged simulated counts.
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another metric is employed: the ratio of the count of the LSOAs rank, where the
LSOAs are ranked according to the number of offences thatragithin it. The inclu-
sion of the rank of each LSOA is to reduce the dependency ofdll@ving tests on
just the counts of offences, which have been shown to inahadigble discrepancies. If
the model is able to broadly highlight the areas most at tign it may be of use for
the prediction of the location of riots.

Figure 4.8 plots the ratio of the count of offences to its rlorkeach LSOA, com-
paring the empirical data to the averaged simulated datiae ihodel is a good fit to the
data, a positive correlation would be expected. Althouginghs a significant amount
of variation between the model and the simulated data, diy®siorrelation is also
observed. The Pearson’s product moment correlation ciefics 0.906, confirming
a strong positive correlation and suggesting that the sitrmn is indeed capable of

reproducing some of the more general patterns observee iertipirical data.
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Figure 4.8:Ratio of count to rank for each LSOA for both the empirical data and
the simulation. The ranks are obtained by sorting the LSOAS according to doeint.

The plot is shown on a log-scale for clarity.
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4.3.3 The model as a component in a policy tool

In this section, it is demonstrated how the microsimulaticodel presented in section
4.3.1 might be used within a policy context. The strateglagment of police during
a city-wide outbreak of rioting, as observed in London, israportant policy issue.
Police allocations can be made in anticipation of riotimg] are dynamic, meaning that
law enforcement officers can move towards nearby sites athwioting occurs. The
objective for police commanders, therefore, is to optignallocate law enforcement
officers over different areas in the city so that the maximwmber of police officers
are within a short travel distance of anticipated riot lamas, enabling police to arrive
quickly once rioting occurs.

In order to understand which locations might be best for agpknt, the mi-
crosimulation model described in Section 4.3.1 is used tegde realisations of riot
scenarios. In what follows, a dynamic allocation algorittsnproposed that uses the
outputs of such realisations to produce potential deploymistributions in London.

Suppose thaf; riot realisations are given bz;{g), zég), . z]({,’) forg =1,2,...,G,
as in Section 4.3.1. Let the count of offences that occur IOAS (for j = 1,2, ..., .J)
in the g-th realisation be denoted toj/](g) and suppose that the number of police officers
available to be deployed prior to a potential riot outbresaggiven byL. For scenarios
in which the police are unable to be present over the entg®men which riots are
anticipated, as was the case during the riots in Londonnibesexpected that < J.

When considering potential deployments, the police willsidar the number of
police officers that may be required for any given numberatens at each location. In
this section, the number of police officers required to @e/the threats posed by one
rioter (in terms of the damage they may incur on property aaydr to civilians) is
assumed to be given by the parameteilo explain, a riot ob0 rioters would require
a deployment of0v police officers to be quelled.

The anticipated riot intensity at LSOAIs defined to be

1+CY
In (W , (4.40)
1+v

j
whereL!” is the number of police officers deployed to ajéa iterationg. This par-
ticular form is chosen partly because it increases logaiithlly with increasing rioter

count, meaning that whilst the intensity will be signifidgnhcreased when a single
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rioter decides to engage with a small disorder—indicativeg the disorder is showing
significant signs of growth—a rioter joining an already kdjsorder will increase the
intensity by a smaller amount since it is of relatively lesgortance in comparison
to the already large disorder. In addition, the measureats=selogarithmically with
increasing/L), suggesting that a small number of police can drasticatiyce the
threats posed by a small disorder but that the allocatiordditianal police to larger
disorders, at which there is already a significant policegmee, does not have a similar
reduction. The addition of to both the numerator and denominator avoids the measure
being undefined for all non-negative values(j(jf) andLg.g).

The allocation of police should also incorporate the time&kes for police to
travel between expected rioter sites, since once riotingrges in certain locations,
police officers may wish to arrive quickly to alleviate itspact and to prevent the riot

from growing. The proximity between two LSOAsndj is defined to be
exp(—vdy;), (4.41)

whered; is taken here to be the Euclidean distance between the @s1agbLSOA j
and LSOA! in kilometres and is a positive parameter. Other implementations might
consider alternative distance metrics, such as road ttawmel between two LSOAs.
The form of this function is useful since it obtains a maximuatue of1 only for the
LSOA in which police are already located, and decreasexkiyuior nearby LSOAs.
Therefore, greater emphasis is placed on police being metmed to remain where
they are, rather than travelling too far, and, arriving ai@tion at which the presence
of police is no longer required. The parametazontrols the extent to which emphasis
is placed upon nearby locations, rather than locationedadway.

Using the two components of riot intensity and proximity, aasure of deploy-
ment utility is next defined. The idea behind this measure determine the benefit
of allocating a single police officer to a particular LSOA, ilshaccounting for their
ability to travel to nearby potential riot sites and, simuakously, accounting for the
police that might already be located nearby. Denoting depént utility for LSOA
and iteratiory by y}g), the measure is defined as

J (9)

1+C;

VO =3 [ ——L | e (4.42)
o 1+vLy
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In order to produce a full allocation of theavailable police, a dynamic allocation
is required. To explain, after each police officer has bektated to the LSOA with
the maximum value jSl(g), the value oD}l(g) requires recalculation, taking into account
the effect of the previous deployment. Thus, a suitablerdtga for the allocation of

police according to the microsimulation model is given bg tbllowing procedure:
1. SetL!” =0fori=1,2,...,4765.
2. Calculateyl(g) as in equation 4.42 for each LSGA

3. Find the maximum value @8’ over all LSOAs and allocate one police unit to

that location. Update the valuesbj”) to reflect this deployment.
4. If there are still more police to allocate, return to steptRerwise stop.

The average value of the deployment utility o¢ér= 100 iterations withLég) =0
for each LSOAj and iteratiory and withry = v = 1, is shown in Figure 4.9 as a heat
map. LSOAs that are shaded darker have a higher initial glep@at utility associated
with them, and are therefore areas where rioting is prediitieoccur. According to
the simulation, there are two prominent areas that have ititeest level of deploy-
ment utility: one above the river Thames and one below thex fihames (the river is
indicated by the white line through the centre of Greaterdan). The value of the
deployment utility of an LSOAy, in comparison to the other LSOAs, can be thought
of as the relative importance of allocating police officerthat particular area and this
figure shows the spatial distribution of this measure.

As a final comparison between the microsimulation model mlgsd in Section
4.3.1, the equivalent value of the deployment utility cédoed with the empirical
counts of offences, rather than the simulated comjf’%, is shown in Figure 4.10.
Again, the darker the shading of the LSOA, the higher theagpént utility and more
value is assigned to that particular area. In this case, dhieed areas of the map are
more localised, with three or four prominent areas at whighdeployment utility is
highest.

Although there is some discrepancy between the model aigmd the empirical

data, there is agreement in terms of the broad pattern. ticplar, the model appears
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Figure 4.9:The simulated deployment utility for each LSOA in Greater London.
The average value 017](9) overg = 1,2,...,100 iterations is calculated assuming that
no police officers have been deployed. This value corresptmthe shading of each
LSOA j. Darker shades indicate higher levels of deployment ytilihe rioter counts
for each LSOA are those estimated from the microsimulatiodehin Section 4.3.1.

The river Thames is indicated by the white line through th&reeof London.
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Figure 4.10:The empirical deployment utility for each LSOA in Greater London.
The value of) is calculated assuming that no police officers have beermyeg! This
value corresponds to the shading of each LSOBRarker shades indicate higher levels
of deployment utility. The rioter counts for each LSOA ar¢aoed from the data. The

river Thames is indicated by the white line through the eenfrLondon.
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to generate a number of peaks of deployment utility in brpadhilar areas to the de-
ployment utility calculated with the empirical data. Thetdbution of the deployment
utility with the actual data appears to be strongly clustenecertain locations in com-
parison to the model, where the clusters are much largeenBak explanations for
this effect include the fact that the deployment utility tbe model is calculated using
the average of a number of simulations, and thus may become snmoth. Another
explanation may be due to the fact that the variance of thatsaf offences is much
greater for the empirical data than was observed in the atmonl. The simulation
led to the occurrence of offences that were more spread apane, and the results
presented here reflect this.

As a policy tool, the model presented here is, as yet, incetaplit cannot be
used on its own to predict the locations of future riots duéstoonditional dependence
upon certain features of the empirical data. Each of thefaatpon which the model
is conditional requires the development and implemenadioseparate sub-models.
The model is conditional on the age and residential locatajreach offender, the time
at which each offender chooses to commit their offence, hadistory of the riot up
until one hour prior to the point at which the model is used.déls for rioter age and
residential location might be developed by exploring fartthe characteristics of the
rioters who have previously engaged in rioting combinedhwigmographic statistics
from London. Models for the timing of rioter offences migla bsed to explore further
mechanisms of contagion. In particular, such models wiltdzgiired to specify pre-
cisely how a rioter chooses to engage in the disorder, angisioivhere they choose to
do so. The history of the system can be provided by real-tioliegrecording during
a riot. Such models are not explored further in this thesiassto not detract from its
principle objective: understanding how different modelghm be used to gain insight
into the spatio-temporal characteristics of civil violendénstead, the presentation of a
policy model of target choice in this section has providedapof concept that statis-
tical models of this type might be usefully incorporateaiptedictive policy models.

Another limitation of this model is that it does not accouat the effect that
the deployment of police officers may have on the target @hoicrioters. Further
development of the model might incorporate such effeckealjh this was not possible

in the present study due to a lack of available data on lawreafoent activity. Game
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theory might usefully contribute to the models developerksince both rioters and
police might aim to strategically position themselves inadtempt to maximise their
utility (see, for example, @ron Evans and Bishop (2013)).

Finally, rioting is a dynamic phenomenon that occurs ovéatineely short time
periods (the London riots occurred over five days in totahe Bptimal allocation of
policing is therefore likely to vary on shorter timescaleart is accounted for here, and

further work might account for this.

4.4 Discussion

Difficulties in the mathematical modelling of social systemrise because the be-
haviours of individuals and their interactions with othars complicated and uncertain.
Individuals can behave with inconsistency under seemisgiylar situations. Policy-
makers, however, can benefit greatly from the generationaafetted scenarios. Such
scenarios can, for instance, enable training of decisiakers, or can enable the test-
ing of crowd control measures, which are almost impossibtest during outbreaks of
rioting due to the challenge of making key decisions in teak.

Previous models of rioting have typically taken the persigec¢hat simplicity is a
virtue. In this section, almost as an alternative to thispective, insights have been
obtained from theories in the social sciences, which hawn lriilt up over many
decades of qualitative and quantitative studies into theweur of both individuals
and crowds. By incorporating well-developed theories intm@del of rioter target
choice, and having calibrated this model against the Londirdata to estimate the
parameters and assess the goodness of fit of the model, asonuias been proposed
that produces realisations of riot scenarios. It has beerodstrated how this model
might be used in a policy-making context, through the ogation of the allocation of
police officers based on model outputs.

There are many new contributions presented in this chapiernovel application
of a discrete spatial choice model to rioter target choicegravided further evidence
that, across the three days of rioting considered, thereid®®ece to suggest that of-
fenders selectively chose targets. This supports prevesesarch on target selection of
rioting. Furthermore, the estimation of model parametaggest that it is largely the

factors that have been used to influence offender spatiadideemaking for a range of
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different crime types that can be used to explain targetsetein rioting. Considering
the different theories examined, factors associated withecpattern theory—namely,
the distance an offender travels between their residendereir offending location,
whether or not the Thames is to be crossed, and the preseschailils, retail centres
and transport hubs—all appear to contribute to the spagielktbn-making of rioters.
The consistency of the findings, both in terms of their aligninwith the hypotheses
articulated in Section 4.2.2, and the patterns observaxsathe days for which results
were presented, provide further support for crime patteeoity as a model of offender
spatial decision-making. These findings emphasise the\dlarime pattern theory as
a means of explaining offender target selection in extreincaimstances such as those
associated with riots, for which some scholars have preWoargued that rational
decision-making is abandoned.

The findings provide further support that the riots were higlontagious, as the
occurrence of ongoing rioting at a particular location gigantly increased the likeli-
hood that that area was to be selected. There was also sdipptie idea that social
disorganisation theory had a part to play, and areas whidhfdvaer means of exert-
ing social control of a particular area were more likely tednaxperienced riots. The
extent to which the model explains the variance in the ergimata is fairly high,
improving upon a model based on uniform random choice ottaageas by rioters by
around 35%.

A simulation model that is based on this discrete choice roaealso been out-
lined, in order to consider how such statistical modellinigmh be employed within
a policy setting. Models of rioting can have a direct and irdrate impact on policy
decision-making, as the presence of crowds and riots oéguires decisions to be
made with regards to how they are managed in real-time. Te®usodels to gener-
ate crowd and rioting scenarios can be used to understandavguend set of strategies
or actions might be in order to increase safety or alleviagenegative effects of riot-
ing, such as looting or property damage. Models of crowde lpagviously been used
when designing the fastest evacuation routes from buigd{@grboutis and Marmaras,
2004), to decide on optimal street layouts (Batty et al., 2088d to design crowd
control strategies at mass gatherings (Helbing et al., 2007

Some have argued that many of these agent-based models slaffiméently cap-
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ture the range of realistic behaviours that might be expeofeindividuals in such
scenarios (Aguirre et al., 2011; Drury and Stott, 2011). drtipular, there is concern
that recent simulation and agent-based models of riotieg@w simplistic, and that
they are based more upon early theories of ‘panic’ and amatity, such as those artic-
ulated by Le Bon (1896; 1960) and Freud (1921), rather thaedbas the more recent
theoretical research which argues that individuals intfad to exhibit more rationality
in their behaviour. Models that incorporate the behaviadieyents according to these
more recent theoretical developments are beginning to dstrade greater utility by
generating more realistic scenarios (a recent exampleiadbnt-based model of Tor-
rens and McDaniel (2013) who incorporate the interactiomag@®ur between rioters
and the more immediate urban environment in which the rk@galace). The simula-
tion model presented in this chapter directly incorporatesmplex decision-making
process on the part of each rioter, based on theories tlemh@ittto explain offender
behaviour. In this sense, the model represents a signiftcantitibution to modelling of
riots.

There are limitations to the model presented in this chaptgrequire discussion.
The applicability of statistical models in the policy domdias been previously ques-
tioned (Ward et al., 2010) since statistical models thaehasen thought to explain
empirical data rather well have been shown to be largelypgragiate when testing
predictions or forecasts. This is largely due to the proBlessociated with overfit-
ting the model on the available data. In this chapter, theehisdcalibrated with data
from the 2011 London riots, which is just one example of a pi@icess. It has been
shown that the model explains variance in the empirical dattzer well; however, it
may be that it will not be of any use in predicting new or out afrple riot scenarios,
such as those occurring at different times, and those doguat different locations.
This effect is hoped to have been mitigated by basing the hassimptions on ex-
isting criminological theory. Another question that midpet considered is whether the
model can be applied to scenarios outside of London. Cultsoaial and geographic
effects may well play a role in determining the attractiven&evels associated with
the variables tested elsewhere. Indeed it may be that aettfeity with a different
transport network, and with different convergence of moaitactivity spaces, leads to

different parameter estimates and different conclusien®dhe important factors of
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rioter target choice.

There are a variety of choice models that could have beereahimsmodel the
decision-making of rioters. The conditional logit diserehoice model was chosen due
to its attractive properties: the likelihood function i®lgally concave with linear utility
functions, ensuring a maximum likelihood estimator is weigand thus the model is
very computationally efficient. In addition, the model caadily incorporate spatial
spillover effects, mitigating the impact from independen€irrelevant alternatives and
correlated error terms. The choice of model can be justifjecbimsidering its potential
use in the policy domain. In particular, if the model were ® dmployed in real-
time, updating parameters based on where and when offerees@urring, then such
computational efficiency would be highly desirable.

If the simulation described in Section 4.3.1 is to be ultiehatiseful from a policy
perspective, then it cannot rely upon the data used in thelatian to determine the
locations of where rioters originate, and the time at whioéytchoose to offend. A
method for identifying the likely locations of rioter’'s gins and the times at which
they decide to engage in the disorder is therefore required.

It has been shown that the likely origin of a rioter is a siguwifit predictor for
the target of each offender. An advantage of the modellioggniure presented in this
chapter is that it is able to distinguish between the aitracess of two otherwise iden-
tical areas based purely on their relationship to the looatat which rioters may be
located, and the time at which the offence occurs. Modetdihaot account for where
rioters come from, and which merely examine the associ&tiween where offences
occur and the characteristics of those areas, may be mane ppdighlighting appar-
ently vulnerable areas that are not at risk since they areewtiat isolated from the
rioter population. Similarly, areas that would otherwis# be particularly vulnerable
may be so if there is a high density of potential offenderm¢jwvnear to them. Thus,
it is important to explicitly consider the initial distribion of rioters when the vulnera-
bility of targets depend on characteristics such as disténoen the rioting population.
Some models for the initial distribution of rioters and theecision to become moti-
vated to engage in the disorder have been considered elseinlibe literature (Davies
et al., 2013; Torrens and McDaniel, 2013), and an extensidhg work presented in

this chapter would be to integrate these models within acpdiamework, in which
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parameters might be updated in real-time.

One important process that has been missing from this chapie which, for the
riots in London in particular, would have played a significesie, is the behaviour of
the police, and the reaction of rioters to that behaviouris Thlargely due to a lack
of data on where the police were at different periods of tiare] the range of tactics
that were employed to counter the riots. In the followingptleas, competition between
different actors during civil violence in space and timeassidered in more detail, first
by employing spatio-temporal point processes, and themipl@/ing a deterministic

differential equation based model.
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Point process modelling of two

adversaries in space and time



5.1. INTRODUCTION

5.1 Introduction

Acts of hostility between two adversaries are often the featation of ongoing and
intractable violence. In many cases, our understandingoaftcular outbreak of civil
violence can be improved by analysing these events. Magpmdpcations and fre-
quencies of hostile events can be useful from a policy-ntakierspective to indicate
the intensity and geographic extent of the violence, as aglts evolution over time
(O’Loughlin et al., 2010a). However, as has been shown disesvin this thesis, the
development of more sophisticated models that incorpafatie, combined with some
assumptions as to how the conflict might be evolving, can bd tsbetter understand
the underlying mechanisms, and can sometimes be used taébigow civil violence
might evolve in the future.

In this chapter, the spatio-temporal dependency of hostigats between two ad-
versaries is modelled with a stochastic model. Direct adgon between adversaries is
a mechanism that has not yet been explicitly modelled inttigsis, but it has formed
the basis of many previous models of conflict (for examplengetition type mech-
anisms are used as the basis for the differential equatiatelmof both Lanchester
(1916) and Richardson (1960a)). Many models that consideraations between ad-
versaries, particularly those at fine spatio-temporales;alre abstract models used to
articulate hypothesised interactions. This is in conttasthat follows, in which, a
novel dataset is employed to parameterise a model of insuegel counterinsurgent
activity. Datasets containing detailed information on #wtions of different adver-
saries at a local level are only more recently becoming vpicezsd in the study of
civil violence (for examples, see Braithwaite and Johns@122; Kocher et al. (2011);
O’Loughlin et al. (2010a); Lyall (2009), amongst others).

A stochastic model is employed in order to account for nawaaation from the
proposed mechanisms in the empirical data. This approachesiables access to a
range of tools developed to perform hypothesis testing alehassumptions. Specific
hypotheses concerning how the occurrence of events dementse history of the
conflict will be articulated and tested. Empirical data isdrporated in the modelling
process to test specific assumptions, as well as to asceviaiall model fit.

In what follows, a range of stochastic multivariate, andoms cases nonlinear,

point process models are constructed. This type of moddiasen for two principal
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reasons: first, it is flexible enough to enable the examinaiica series of hypotheses
concerning causal mechanisms as to how civil violence magbtve, and, second,
similar models have been applied to crime and security svelsewhere and have
been shown to successfully forecast the timing and locaifditure conflict events
(see, for example, Zammit-Mangion et al. (2012)). Morepsgnilar models can also
provide insights regarding resource allocation for lawoecément agencies, and can
be applied in a policy setting to reduce levels of crime aralevice (Mohler, 2014).
This particular modelling approach is chosen over othermdaer to contribute to this
burgeoning research area by building a novel spatio-teatpoodel that is capable
of incorporating competition type dynamics prevalent iraage of different conflict
models.

This chapter fits into the thesis by exploring a well-studieelchanism incorpo-
rated into previous conflict models within a novel spatioy®ral point process frame-
work. Furthermore, it progresses the thesis further alblegspectrum of models in-
troduced and discussed in Chapter 1. Models such as thosesaehm this chapter
can provide insight through the better understanding op@sed mechanisms, and, if
a model is successful, through forecasting the evolutioaiwf violence. The mod-
els presented in this chapter also incorporate empiridal aad uncertainty, enabling
better forecasts than might be obtained from determinggigroaches. The broader
question that this chapter sets out to address is whethérmodelling approaches
that combine causal mechanisms with empirical data can e osefully employed
in policy-making than other modelling frameworks.

In what follows, the case study used in this chapter is firscdbed then pro-
posed mechanisms for the conflict are discussed in the formsefies of hypotheses.
A series of multivariate stochastic point process modedsdarived that incorporate
these mechanisms. Parameters are estimated using a makkelihood approach,
and their confidence obtained using parametric bootstrapods. The models are
then evaluated first with respect to the articulated hymsbeand then by considering
the extent to which the model explains variation in the erogirdata. The extent to
which the models can usefully inform policy-making conagegnthe case studied is
considered with an out-of-sample test, and the comparativantages of this mod-

elling approach over others is discussed.
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5.2 The Naxal insurgency and police response in

Andhra Pradesh

For a number of decades, the Naxal movement (introducedctiosel.4.2) engaged
in attacks against both civilians and the state. This htystilas the result of a long-
standing commitment by the Naxals to armed struggle ag#messtate in order to
address wide-ranging grievances. Andhra Pradesh was dhe pfost affected Indian
states during this time, and its government came undecisnti for their apparent
ambivalence towards the violence, failing to devise a Iterga strategy that improved
the security situation (Basu, 2011). At the height of hdg#i in 2006, the Indian
Prime Minister Manmohan Singh stated that the Naxals repted the “single largest
internal security threat to India” (Basu, 2011). In recerdrgethe level of violence has
substantially reduced; however, for much of the previousde, violence and hostility
increased periodically, often to unprecedented levels.

Data was obtained from police forces in India that detailestife events associ-
ated with the Naxal insurgency for ten years between 200028140 in the state of
Andhra Pradesh. The data consisted of official police recofdNaxal-related violence
or threat recorded in the 1,642 police stations within tiagest

Over the course of the duration of this dataset, there iscede to suggest that
the police adopted various counterinsurgency strategiesinstance, during a period
in 2004, in which various splinter groups of the Naxal movatreombined to form a

unified and potentially diplomatic group, counterinsurgeactions were ceased com

pletely in the hope that a diplomatic solution to the conftiotild be found. During

other periods, the police took up strict counterinsurgesayon. Activities resulting

from such police action were not detailed in the data; howeggressive counterin-
surgency activity, which involved the killing of Naxals dlug shootouts, were known
to have been adopted as a result of fieldwork described in B2010). As a result, it

is assumed that events described in the dataset as an “gecbbfire” between Naxal

and police, and which resulted in at least one Naxal fatalire largely caused by
strategic counterinsurgency activities. It has been dditihat using this description
for Naxal fatalities is a way of legally justifying extrajiagal killings (Belur, 2010).

Using the assumption that incidents describing an “excearidire” and during
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which at least one Naxal was killed corresponds to a courgergency event under-
taken by the police, it is possible to partition the datastt events initiated by Naxals
and counterinsurgency events initiated by the police. Asresequence, the dataset
employed in this chapter is distinct from the data on the laanmdots investigated in
previous chapters. During the London riots, the behavidtin® police was unknown
and could not be empirically tested within the models presgknin this case, data on
the activities of both adversaries in the conflict can be tisedplicitly consider the ef-
fect of actions of one side on the actions of the other. Moggdhe scarce availability
of such datasets elsewhere implies that the model presentbi$ chapter provides a
significant contribution to existing literature concempithe spatio-temporal modelling
of sub-national conflict between two adversaries.

In total, there are 4,820 incidents in the dataset, whiclethe entire state of
Andhra Pradesh. For each evéna three-dimensional tuple is constructed, given by
(t;,s;,m;), Wheret; € T denotes when eventtook places; € D denotes where the
event took place, anth; € {0,1} is a mark that indicates whether incidenwas ini-
tiated by Naxals:; = 1) or was initiated by police as part of their counterinsugyen
campaign{u; = 2). The setsD and7 represent the spatial and temporal domains of
the model, which are next described.

The models developed in this chapter will be continuousnmeti however, the
data on the Naxal conflict is discrete in time, with a daily pemal resolution. The first
day included in the dataset is the 1st January 2000 and tHeléipas 7th August 2010
(3,872 days in total). Taking™ = [0, 3872], the date of each event is translated into
continuous time by initially setting to be equal to midnight on the day on which the
event occurred. In section 5.5, concurrent events arendigshed by a randomisation
procedure, which is explained in the relevant part of thé tex

The domairD represents the geographic area of interest and, due toghleitien
at which the data is available, is taken to be composed ofrif@wf non-overlapping

districts, as
J
D=|Jp; (5.1)
j=1
where eactD; corresponds to a district in Andhra Pradesh. According é02011

Indian census, there are 23 districts in the state of Andhadd3h. In one of these
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districts, Hyderabad, just two events were recorded. Sihisedistrict comprises of
the city of Hyderabad, and therefore is small in its geogi@phtent, and does not
experience a large amount of violence, this district andwlweevents that occur within
it are omitted from the analysis.

In 2014, the state of Andhra Pradesh was bifurcated, andtéite af Telangana
was formed consisting of nine districts that were previgysrt of Andhra Pradesh.
Andhra Pradesh itself remained but now consisted of justidiBicts. The state bifur-
cated to more closely align language, ethnicity and oldigalities. 3,387 of the 4,820
incidents in the dataset (70%) occurred within the digrtbiat formed the new state
Telangana. For reasons of computational tractabilitydthmainD is initially chosen to
consist of the 9 districts in Telangana, and the analysissicted to just these events.
In particular, the models outlined below are calibratedig&ncidents that occur within
these 9 districts. This restriction ensures that the mggelposed can be calibrated
over reasonable time frames. Furthermore, this restricitables the remaining data
to be used for out-of-sample model testing, in order to deitez whether the model of
insurgency in the Telangana state also applies in the statadira Pradesh (specif-
ically, only four districts are used in the out of sample datihose four districts that
contained at least 100 events over the period of study).efbie, initially, / = 9 and,
for each event, it is sufficient to takes; = s; € {1,2,...,9}, denoting the district
within which the event took place.

The spatial distribution of both police and Naxal initiagknts in Telangana and
Andhra Pradesh across the entire time period of interesiois as a thematic map in
Figure 5.1. The temporal distribution of incidents ocaugron each day within each
district is shown in Figure 5.2. This figure also disting@isivetween Naxal and police
intiated events, and includes total counts of each type eftthat occurred in each
district. In total, there are 586 police events and 4,234d\axents, of which, 424
police events and 2,963 Naxal events are contained witleimite districts that make
up Telangana. Examining these figures, it can be observedhtharast majority of
events occur within a relatively small number of regionghwhe highest number of
events occurring in the Warangal district. Furthermore,ititensity of police attacks
follows closely the intensity of Naxal attacks in space,grsiing that the two types

of events may well be dependent upon one another (althoughsloould be cautious
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not to confuse correlation with causation). In what follp\wwtchastic point process
models of these events are derived by considering a varfatyeghanisms that may

have influenced their occurrence.

5.3 Hypotheses for a model of the Naxal conflict

In this section, a series of hypotheses related to the Nagafgency are stated and dis-
cussed. These hypotheses serve to articulate the undpadgsumptions of the models
derived in this chapter and are intended to build upon priakvinvestigating the spa-
tial and temporal properties of civil violence. Moreovédre thypotheses presented are
described in general terms, so that they can be considerth@ icontext of other ex-
amples of civil violence. The hypotheses will be evaluatsithgi the case study of the
Naxal insurgency after the models have been derived andghsmmeters estimated.

First, the timings of events are considered. Many studie® ravestigated the
timing of events associated with human behaviour and haversithat homogeneous
Poisson process models of event occurrence, in which eaemtsqually likely to oc-
cur in any given point in time, are often inappropriate (Basip2005). Events tend
to cluster in time and there can be long periods in which namtsveccur. Recently,
many scholars have considered the timings of events assdaiath human conflict,
terrorism, and insurgencies, and have shown similar effédioreover, together with
the distribution for the frequency of the severity of eaclrdgythe inter-event time dis-
tribution has been shown to exhibit heavy-tails, and to ear&ably robust, implying
extensive temporal clustering (Bohorquez et al., 2009; sohret al., 2011; Clauset
and Gleditsch, 2012; Johnson et al., 2013; Picoli et al.4p01

Elsewhere, inhomogeneous and history-dependent tempairdlprocess models
have been shown to improve upon simple Poisson process snfwelerrorist and
insurgent event occurrence in Iraq (Lewis et al., 2011)rdband Northern Ireland
(Mohler, 2013), Afghanistan (Zammit-Mangion et al., 201R)donesia (Porter and
White, 2012), and the Philippines and Thailand (White et 8[13). In these examples,
enabling events to cluster in time more so than would be d@gdeander a Poisson
process leads to improved model fit.

Attempts to explain the temporal clustering of insurgertt semrorist attacks typi-

cally consider the decision-making and operations of thretist organisation commit-
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Naxal attacks

865
692
519
346
173

Police attacks

132
99
66
33

|:| Telangana
Andhra Pradesh

Figure 5.1:A choropleth map of Andhra Pradesh and Telangana showing thepa-

tial distribution of event data. The top map shows the count of Naxal initiated events
that occur within each district over the entire time domdiimterest, and the bottom
map shows the count of police initiated events that occuniwiéach district. The dis-
tricts not in Telangana are hatched. The numbers in thedsof Telangana in the

lower map correspond to the numbered districts in Figure 5.2 179
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Figure 5.2: The time series of the event data for each district in Telangaa and
Andhra Pradesh. The events are colour coded, with points in blue denotingceol
initiated events and points in red denoting Naxal initiadgdnts. The numbers beside
the names of the districts in Telangana correspond to théatsnin the lower map in

Figure 5.1.
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ting them. Employing a rational choice perspective, Toeymst al. (2008) argue that
insurgents are more likely to commit further attacks afteriar successful attack as an
efficient method of operating, and in order to minimise tHeréexpended in planning
new attacks. Insurgents may also be more likely to commih&irattacks shortly after
a prior attack, as they will be more likely to have access ¢otkapons, organisational
structure, and other capabilities necessary to carry it out

Bohorquez et al. (2009) attribute the patterns in the timimg) severity of attacks
to the inevitable coalescence and fragmentation amon{stetit insurgent groups,
combined with a decision-making mechanism by which eadaiotist group attempts
to choose the best time to attack in order to maximise mediarage of that attack.
In contrast, Clauset and Gleditsch (2012) distinguish betwbe frequency at which
insurgent groups commit attacks, and the severity of thtiseks, and construct a
model based on organisational growth and recruitment. Toeyglude that terrorist
groups increase the rate at which attacks are committedegsbécome larger and
more experienced, contributing to the temporal clusterifige severity of attacks is
shown to be independent of both the size and experiencerofistrgroups, but larger
terrorist groups tend to have higher attack fatality rates @esult of committing attacks
more regularly.

The first hypothesis states that insurgent events clustena and, in particular,
that they can exhibit escalation, whereby the occurrencenefevent increases the
likelihood of observing another event for a certain peribtimme. This increased risk
is expected to diminish if no further events occur (in aceo® with previous studies

such as LaFree et al. (2012) and Braithwaite and Johnson 2dl#s leads to:

Hypothesis 1: The likelihood of insurgent violence is increased for a perof time

after insurgent violence.

Counterinsurgent activity may also be temporally clustereslit responds to vari-
ation in political strategies aimed at diminishing the #iréom insurgents; to the
actions of insurgents; and to other intelligence obtainbdsome cases, the coun-
terinsurgent activities have been shown to be even moredumacorrelated than the

insurgent events themselves (O’Loughlin and Witmer, 2@k ajthwaite and Johnson,
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2012).

For Andhra Pradesh in particular, the government were tegdo periodically
adopt both less strict and more severe counterinsurgeraiggies, which correspond
with the activities recorded in the data. It has been repoffta instance, that during
the period before elections in Andhra Pradesh, the police were lenient towards the
insurgents in an attempt to increase government suppom@shaivilians with insur-
gent sympathies (Basu, 2011). Conversely, there were petigisy which prolonged
counterinsurgency strategies were adopted, leading tiN&éxals being consistently

targeted over a period of time. This leads to the second hgsat:

Hypothesis 2: The likelihood of counterinsurgent activity is increased & period

of time after counterinsurgent activity.

As well as the temporal clustering of insurgent and tertaaitacks, many studies
have demonstrated the presence of spatial and spatio-tahgbastering by consid-
ering the locations of events. For instance, inspired byee of spatio-temporal
clustering in a range of different crime types, Townsleyle{2008) and Johnson and
Braithwaite (2009) investigate different types of terrbastivity in Irag and show that
pairs of events are much more likely to be located near to et in both space and
time when compared to a null hypothesis of event indeperedéifte same observation
was found in Chapter 3 when investigating the spatio-tenpmatierns of the 2011
London riots.

Spatio-temporal clustering of events leads to hotspotsisfirgent activity in
which a higher than expected number of events occur. Thespdts may grow, dif-
fuse, or decline over time. Such hotspots of insurgent iagthave been identified
using a variety of analytic techniques designed to invagtigpatio-temporal depen-
dency in Afghanistan and Pakistan (O’Loughlin et al., 2Qanmit-Mangion et al.,
2012), Spain and El Salvador (Behlendorf et al., 2012), aad\ibrthern Caucasus of
Russia (O’Loughlin et al., 2011; O’Loughlin and Witmer, 201k all of these cases,
strong, localised patterns of conflict were demonstratéaghwvcan, in some cases, it is
argued, be used as the basis for the prediction of futuregven

The actions of counterinsurgents have also been shown tpdi-4emporally
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clustered, perhaps as a result of their response to thenaafonsurgents (Braithwaite
and Johnson, 2012) (which will be discussed further in waldws), or through the
organisation of policing activities at local police foraevél. Strong localisation of

event patterns in space leads to the following hypothesis:

Hypothesis 3: The influence of prior events is strongest at nearby location

Counterinsurgency is likely to play a role in the timing anddtion of Naxal attacks;

however, it is not clear what effect it may have. On the onadhaounterinsurgency
may have the desired effect of weakening insurgent capaoitthat they are unable
to commit future attacks; however, on the other, countargency may serve to fuel
hostility by worsening the grievances of the insurgentsrease civilian support for
the insurgency; and make them more willing to engage inietiah. Indeed, tit-for-tat

behaviour, in which insurgents and counterinsurgentsateody engage in retaliation
has been demonstrated in the Iraq insurgency (Linke et@l2)2 the North Caucasus
(O’Loughlin and Witmer, 2012); and the Israeli-Palestm@onflict (Haushofer et al.,
2010).

The impact of any counterinsurgency action is likely to depsignificantly on
the types of counterinsurgent strategies adopted. Howevatence has shown that
even highly indiscriminate counterinsurgent operatioas serve to benefit both the
counterinsurgents by reducing the number of subsequextkat{Lyall, 2009) and the
insurgents, by shifting local support and control in favofithe insurgency (Kocher
etal., 2011).

In a few cases, studies have distinguished between theddifféypes of coun-
terinsurgent action employed, and have shown that, for pigmmore discriminatory
counterinsurgent activity is more likely to reduce the lilkeod of future insurgent
attacks in Iraq (Braithwaite and Johnson, 2012); that diffeistrategies and military
interventions in the Northern Ireland conflict had differeffects on the likelihood of
future insurgent attacks (LaFree et al., 2009); and thédtieg the insurgency is more
effective than direct combat in Russia’s North Caucasus @rudtZhukov, 2012).

The specific counterinsurgency strategies adopted by tieepo the Naxal con-

flict are not detailed in the data, although are known to teswlaxal loss of life. The
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following two hypotheses are included to determine the gban likelihood of future

insurgent activity given the occurrence of counterinsotgents:

Hypothesis 4: The likelihood of insurgent violence is increased for a perof time

after counterinsurgent activity.

Hypothesis 5: The likelihood of insurgent violence is decreased for aqukof time

after counterinsurgent insurgent activity.

A hypothesis is also included to determine whether or nohteEninsurgent activities
are more likely to occur following insurgent activities,sd®wn in the identification of

tit-for-tat behaviour in previous conflicts.

Hypothesis 6: The likelihood of counterinsurgent activity is increased & period

of time after insurgent violence.

The final hypothesis is concerned with how insurgent condliffuses in space and
time. There is a large literature on the factors that fatgtinternational conflict
contagion (see, for example, Salehyan and Gleditsch (2@#)aug and Gleditsch
(2008) and Braithwaite (2010)); however, the literature lom équivalent factors for
the spreading of sub-national insurgent activity and otigpes of civil violence at a
local level is comparatively small. Some authors have sbt@gldetermine the char-
acteristics of areas that make them well-suited to the esiparof insurgent activity
by considering, for example, the distance of the area froenettablished authority
(Raleigh and Hegre, 2009; Buhuag et al., 2009); the terraimaraa (Do and lyer,
2010); accessibility by road (Zhukov, 2012); and commuicalinks between areas
(Myers, 2000). The relative capability of the insurgents baen shown to significantly
influence the role that some of these factors play (Holtermaals).

In many cases, however, the geographic proximity of sugdepareas to areas
with ongoing violence can serve as a good indication of thleaf violence spreading.
Theoretically, insurgents typically look to secure temihl bases before working to

expand their controlled areas through the support anditewnat of civilians (McColl,
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1969). Although the relative success of these strategeebkaly to have an influence
on the locations of violence, Schutte and Weidmann (201dyeathat such insurgent
conflicts exhibit escalation diffusion, by which areas iiguring those with ongoing
conflict events are likely to experience events themselvdba future. Additionally,
O’Loughlin and Witmer (2012) show that retaliation betwaesurgents and counter-
insurgents decays spatially by considering geographghheiuring areas; Weidmann
and Ward (2010) show the benefits of including spatial laghiwia predictive model
of conflict; and Weidmann andiiZcher (2013) provide evidence that the impact of
conflict events decays exponentially in both space and ti@ensequently, the final

hypothesis is:

Hypothesis 7: The effect of prior events will be stronger on neighbouringtrects

than on non-neighbouring districts.

In what follows, the hypotheses articulated here are usecbtwstruct a series of
multivariate point process models for the occurrence ofdland police initiated
events. These models are then calibrated against the laeadlata and the hypotheses

evaluated.

5.4 Point process models of the Naxal conflict

In this section, Hawkes processes are introduced, andessgrmodels derived with
increasing complexity. Hawkes processes are a type of poaeess, and provide a ver-
satile modelling framework capable of incorporating eatcthe hypotheses described
in Section 5.3. The notation in the definitions that follovingccordance with the data
associated with the Naxal insurgency outlined in Secti@n 5.

A point process is a collection of random evefits;, s, m;)},_, 55 ordered
so thatt; < t;,1, wheret; denotes the time at which evenbccurred,s; denotes the
spatial region within which the event took place, andis a mark to denote the type of
event that occurred. The point process is simple if thisulaity is strict for all values
of 4. If the collection of each type of event for each spatial @ags considered as a
separate process, as will be the case in the models thavfdtlen the point process is

multivariate.
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More formally, a multivariate point process is defined asraesef counts
0.
777 T = {z € Z]z > 0}, (5.2)
on some temporal domaih = [0, ¢) for some maximum time € R, defined by

200 = 3 1,(0,1), (5.3)

ti<t
s;=J
m;=l

wherel,, ([0, ¢)) is an indicator function, which is equal to one jfe [0, ¢) and equal
to zero otherwise. The subscripis used to refer to the spatial region within which
events contribute to the couﬂﬁl), and the superscriptis used to denote the type of
event, which, in what follows, will either be an event inigd by Naxals{( = 1) or
an event initiated by policd (= 2). The summation in equation 5.3 applies to events
(t;, s;, m;) with s; = j andm,; = [. That s, each type of event in each region is counted
separately. For example, the coufﬁ) counts Naxal events that occur within the 3rd
spatial region under consideration. Models will be spedifier Z|" for i = 1,2 and
forj = 1,2,...,9, corresponding to the 9 spatial regions within the stateetdiigana
(see Section 5.2 and, in particular, Figures 5.1 and 5.2).

The history of the system until some time#.(¢), is defined to be the set of events

that have occurred before timgso that

The conditional intensity functionxg.” : T — R, associated with the coum'j@,
describes the expected number of events that occur at eadhirpbme. The function
is constructed by considering the expected number of e¥katoccur in time inter-
vals of lengthdt per unit time, and then considering the limit of this numbesta— 0.
Formally, given the history of the systeHi(¢), the conditional intensity function asso-

ciated with the counZ]@ is defined as

)\(.l)(t|7'[(t)) — lim E (Z(t + 6t> — Z(t>’H(t>>

5t—0 ot (5.5)

For a givenj and/, if Z\"(t) is simple and finite for alt € 7, then the associated
conditional intensity functiod\y) (t|H(t)) is unique (Daley and Vere-Jones, 2003). It

follows that in order to define a particular simple and finit@np process given by
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ZJ@, it is sufficient to specify the functiong.l) (t|H(t)). Many models of point pro-
cesses specify a functional form for the conditional iniggrisinction, rather than for
the count, and this is also the approach that is taken here.

In the sections that follow, six models are proposed whidhlve used evaluate
the hypotheses in Section 5.3. The models are constructbdngreasing complexity,
with each subsequent model designed at capturing a furteehamism that may be at

play during the Naxal conflict.

5.4.1 Model 1: The Poisson process

Model 1 is a Poisson process, which is defined by setting tinelitonal intensity
function /\§l) to be equal to a positive constant. The model will initially taken to
consist of just two distinct parameters forladindj: one for the rate at which insurgent
initiated events occur, and one for the rate at which pohaeied events occur. Thus,

model 1 can be written as:
MO =, AP0 = . (5.6)

for positive constantg; andu, and forj = 1,2,...,9. This model assumes that the
probability of an event occurring in time intervals of thergalength is constant over
the entire duration of the period of interest. There is ncetielence oikg.l) onH and so
the model has no memory.

Just two distinct parameters are required in equation 5ié,aae used to distin-
guish between the type of event that occurs. This impliesttigarate at which events
occur is assumed to be constant across the different spagiahs under consideration.
However, Figures 5.1 and 5.2 demonstrate how the numberenitgwvaries substan-
tially in space. A spatially disaggregated model, in whidffedent Poisson rates are

estimated for each district, can also be specified as

AW =y A1) = gy, (5.7)

for j = 1,2,...,9, denoting the spatial region of each intensity functionu&pn 5.7
will be referred to as Model 1la in what follows, and requir@phrameters to fully

specify it.
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5.4.2 Models 2 and 3: Self-exciting Hawkes processes

The Poisson process is often used as a baseline model agdiiest more complex
models can be evaluated. Indeed, for many processes obsertres real-world, par-
ticularly those involving human decision-making, a Poispoocess is not appropriate
(Barakasi, 2005). This is because the models in equations 5.6 &dré.unable to
account for scenarios in which the rate at which events ocaxies in time. This can
occur, for example, when events are highly temporally elest. As a consequence,
a wide range of temporally dependent conditional interfityctions have been pro-
posed. One example is the inhomogeneous Poisson processk, edecurs when the
conditional intensity functiongl) (t) takes the form of an explicit function in

A more complex model of point processes can be obtained byvial) )é” to
depend on a random variable, giving rise to what are knowroablyg stochastic pro-
cesses. One of the most well-known is the Cox process (Cox,) 1855lemonstrated
in equation 5.5, howevej\,gl) (t) can also be dependent up@fit), allowing models to
retain information of the events that have occurred up tinté ¢ and to vary accord-
ingly.

One such model is the Hawkes process, named after Alan Hamhi@stroduced
and first analysed the model in Hawkes (1971). The motivdtothis model was to
account for point processes in which the occurrence of suanteases the probability
of further events occurring in the near future. In order toaduce the model, a sim-
plified scenario is considered, in which, a one-dimensipaaht process is modelled
using the conditional intensity function Sub- and super-scripts are removed from the
notation for clarity.

For a conditional intensity function\, corresponding to a single-dimensional
counting proces¥, with history?(t), a Hawkes process is defined by setting

AHH() = p+ D w(t —ta), (5.8)
ti<t
for somep > 0, known as the background rate, and for some funckign. The
background rate: may be either a constant or a time-dependent function, mgani
that the first term in equation 5.8 corresponds to, respaygtia homogeneous or in-
homogeneous Poisson process. The functign is called the triggering kernel, and

determines the increase in intensity that is due to the oeoae of events, or triggers.
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Typically, «(t) will be positive, meaning that the occurrence of an eventeiases the
probability of observing further events, and decreasing meaning that the increased
intensity due to the occurrence of each event decays over(afthough negative and
increasing triggering functions will also be used lateriis thapter).

It is shown in Hawkes and Oakes (1974) that it 0 and

0< /Oo k(t)dt < 1, (5.9)
0

then a unique Hawkes process exists on the real line. Furtrer in this same article,
by defining the Hawkes process as a branching process, ivasthat, under the same
conditions, the process is stationary: given a sufficielothg history of the process, it
is invariant in time. In this case, the expected long-tertensity of the process is given
by

E(\) (5.10)

Y S

1— [7 k(t)dt
The formulation of the model as a branching process is usatiuitively. A Hawkes
process arises when mother events, occurring with prabali) can, with a certain
probability defined by the triggering kernel, “give birthd tlaughter events, which, in
turn, can generate further daughter events. Providedhbdtiggering kernel satisfies
the condition in equation 5.9, then the process is stabledaed not blow up in finite
time.

These existence, uniqueness and stability charactstistiembined with the
model’s capability for representing clustering of evemtgiine, have led to it being
applied to a wide range of different scenarios includingheprake frequency (Ogata,
1988), neuron spike trains (Johnson, 1996), email corresgace (Blundell et al.,
2012) and financial trades (Bowsher, 2007; Embrechts et@1)2 In particular, there
have been many applications of Hawkes processes to thegtiafievents related to
problems in crime and security (Egesdal et al., 2010; Lewl.e 2011; Porter and
White, 2012; White et al., 2013; Mohler, 2013).

A common choice of the functior(t), and the one that is proposed in Hawkes
(1971), is an exponential decay function. Following thenmalising convention of the

decay function in Liniger (2009), this is defined as
Kk(t) = awe ™", (5.11)
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for constantsy > 0 andw > 0. The inclusion otw in both the exponential and as a

product with the exponential leads to

/ we ¥t =1, (5.12)
0

and so the process is well-defined and stationary accorditiget results outlined in
Hawkes and Oakes (1974) if, and only(f< « < 1.

The value ofaw is the amount that is added to the conditional intensity at th
moment event att = ¢; occurs. This extra intensity then decays ast; increases.
Therefore,aw is equal to the expected number of additional events pertinmé that
are a direct result of the occurrence of each event.

The parameter defines the rate of decay, and determines the timescale bnen w
a significant level of increased intensity is added to theabetensity function after
each event. Small values ofimply «(¢) decays slowly, and, therefore, the additional
intensity that is due to each event remains significant fong time. Conversely, large
values ofw imply a faster decay, and additional intensity due to ea@neis only
significant for a shorter amount of time.

The reciprocal ofu can be interpreted as a characteristic time-window ovechwhi
the majority of the increased risk due to a triggering eveésgigates, and, therefore, is
the time over which additional events can occur that arectlyrelue to the triggering
event. If the events are taken to be Naxal associated evbetsy~! can be thought
of as the time over which a further event is planned and erelcthiat is considered a
direct result of each triggering event. This same integtr@t is used in Lewis et al.
(2011) to determine the time taken to plan and execute iesti@tacks in Irag.

The effect of additional intensity due to triggering evealso depends om, which
dictates the magnitude of the added intensity that is dua¢h event. Moreover, since
the expected additional number of attacks per unit timedhadue to each triggering
event is given bynw, and since the parameter! is a characteristic time window
over which these additional events typically occur, theeet@d number of new events
that are directly due to each triggering event is givernhyy—! = «, and thusy can
be thought of as the mean number of additional events thatliegetly due to each
triggering event.

The total mean number of descendent events that are duehdregering event
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forms a geometric series, as this number includes not jeseviknts that are directly
due to a triggering event, but also those events that aretljirdue to those triggered
events with the same probability. Thus the total mean nurob@escendent events per

eventis:

;o/: 1fa (5.13)
wherei denotes the generation of each event (i.e.rthk generation has on average
o™ direct descendents).

Using equation 5.13, the stationary conditional intensitgquation 5.10 can be
derived by noting that, for an exponentially decaying teéggg kernel, as in equation

5.11,

/OO K(t)dt = a. (5.14)

0

Next, if background events are occurring at rat@nd for each background event there
are on average/(1 — «) + 1 events (where the addition of one is to count the event
arising from the background rate itself), then, assumiagtarity (and that the pro-
cess has an infinite history), the average rate is given bgrthauct of these two values.
That is, by the rate at which background events occur migtddy the average number
of subsequent events each background event stimulates, oy

M<L+1)= £ (5.15)

11—« 11—«

Figure 5.3 plots the conditional intensity function of a H@&s process described
by equation 5.8 with an exponentially decaying triggerirggriel given in equation
5.11, in which events occur at timeés ¢, and¢s. It demonstrates how the occurrence
of events significantly increases the short-term prolgtoli future events occurring.
By varying the parameters, the magnitude of the excitation can be adjusted, whilst
the parameter varies the duration of the decay.

To model events associated with the Naxal insurgency, twdivadate self-
exciting Hawkes process models are proposed. These twolsnedeh contain six
parameters to be estimated. The first model neglects spéeals, and assumes that,
regardless of where events occur, they contribute to thigatixn of the model equally
in all spatial regions. The second model estimates the tondl intensity function

differently for each spatial region, by assuming that etohn is only brought about by
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tl t2 t:}

Figure 5.3:An example of a Hawkes process with events occurring at, t2 and ts.

events occurring within the same spatial region. The firsi@hcs given by

ANOH () =+ Y agaye™ 1), (5.16)

t; <t
mi:l

whilst the second model can be written as

A (t‘% =+ Z e (5.17)

t; <t
mi:l
;=]

where an additional condition on the sum has been addedtinglissh equation 5.17
from equation 5.16. If the model in equation 5.17 leads tolstntial improvement
over the model in equation 5.16 with regards to explainimgvériance in the data, then
it can be concluded that local excitation provides a betiechanism for modelling the
conflict than global excitations.

Note that the background rates in equations 5.16 and p;1depend on the type
of event, given by, but not on the spatial region, given pyAnalogously to the model

in equation 5.7, models can also be constructed with spatetying background rates,
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resulting in multilevel models. However, models with baakgnd rates that are con-
stant in space will initially be favoured, since the estimaiof multilevel background
rates precludes out-of-sample model testing. Spatiahtran will be incorporated into
the model via the triggering kernel, and not the backgrowatds: This decision is

justified in Section 5.5.3.

5.4.3 Model 4: Mutually-exciting Hawkes processes

In his original paper, in order to account for scenarios iricltthe occurrence of a
certain type of event influences the probability of obseg\andifferent type of event,
Hawkes (1971) also introduced mutually-exciting proces3éese are able to account
for interactions across event types, and, as a consequaegearticularly suited to the
case study of the Naxal insurgency. Model 4 is given by

l(t|% =+ Z agye” =t Z apauye” ) (5.18)

t; <t t; <t
m’L m’L
;=7 si=7J

for parametersy; > 0, aip > 0, andw; > 0 for [ = 1,2. The parameters;, and
ap1 determine the strength of the mutual excitation, and haveides interpretation to
the one-dimensional case. That is, the parametemeasures the expected number of
additional events of type (Naxal events) that are brought about as a result of exmitati
from events of typ& (police events), and vice-versa f@4;. The interpretation of these
parameters can be considered in terms of retaliation bethesal and police. As in
the previous model, the parameigrdetermines the rate of decay of increased risk for
events of typd and the background rajg determines the rate at which events that
are not descendants of triggering events occur. The decayngtersy; do not depend
on the type of triggering event that occurs for reasons olyéinal tractability as fast
estimation algorithms rely on decay rates being constagt ewent types. Instead, all
variation from different triggering events is captured lre tcorresponding excitation
parameters.

General properties of multivariate mutually-exciting Has processes, including
existence and uniqueness criteria, are detailed in Lin(2@09) (see also Embrechts
etal. (2011)). In particular, if the parametersandw, are strictly positive, and all other
parameters are non-negative, then analogous results wnthelimensional Hawkes

process can be established. That is, if the spectral radlithe anatrix formed by the
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parameters! = («y); -1 2 IS less than one, then the process exists and is unique on the
real line (Embrechts et al., 2011). Moreover, within eacitisppregionj, the expected

value of the intensity function associated with each typeveit is given by the vector:

B (") ’
1 </\§-2)> = (I —A) n, (5.19)

wherel, is the2-dimensional identity matrix angd = (™, )7 (Liniger, 2009).

5.4.4 Model 5: Spatial Hawkes processes

A model is required that incorporates and distinguishewd&en effects from neigh-
bouring regions, and effects from non-neighbouring regjidfor each spatial region
denote byN (j) the set of indices corresponding to spatial regions thateshdorder
with j, and denote by; U N (j))¢, the remaining set of non-neighbouring districts.
For each districyj, the effect from triggering events occurring in each of éhests of
districts is modelled by an exponentially decaying trigiggrkernel with parameters
that vary over each of the sets, but which are not dependentdnus, the conditional

intensity function for districyj is given as

2
>\§'Z)(t’7'[(t)) =+ Z Z ayrwie” )

/=1 t;<t
m;=l
S,L':j

2
+Z Z agrauye” ) (5.20)

U'=1 <t
mi:l’
s;EN ()
2
+ E E Oélllgwle_wl(t_ti).
I'=1 t;<t

=/
m;=l

si€(UN ()
The subscript, 2 or 3 is added to each of the excitation parameters to denotegscesp
tively, excitation associated with events occurring witthhe same district, excitation
associated with events occurring in neighbouring distyieind excitation associated
with events occurring in non-neighbouring districts.

This results in 12 excitation terms to be estimated, togethth 2 decay parame-
ters and 2 background rate parameters. The parameterstigtering kernels do not

depend on the distrigtand so, whilst still incorporating the spatial structuréhaf case
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study, are used to detect more general structural dynarsgegmted with the spread-
ing of Naxal insurgency across the entire state, ratherttedetection of specific hot

spots of activity.

5.4.5 Model 6: Nonlinear spatial Hawkes processes

In the models considered so far, the excitation parametersanstrained to be non-
negative, leading to an excitation effect. as events odbr,intensity function in-

creases, rather than decreases. In order to considertinhikifects, as specified by
hypothesis 5 in Section 5.3, it should be possible for thensity function to decrease
as events occur, suggesting that the excitation paranmatghd be negative and be as-
sociated with an inhibition process. Relaxing the constriduat the excitation terms
must remain positive brings about complications that teisul nonlinear intensity

function. Specifically, the intensity function becomes

2
MOEHE) = |+ 3> aunwe

V=1 t;<t
m; =l
s8;=J

2
+Z Z ayrawye” ) (5.21)

=1 ti<t
mi:l/

s, €EN(F)

2
+ E E aqpawe ) ;

=1 t;<t
my=1'

si€GON(7)° n

where(.), denotes the positive part of the function, such that

T x>0
(2). = (5.22)
0 x < 0.

The positive part of the function is taken to ensure that tienisity function cannot
become negative, which would be inconsistent with its didinias a limit of a non-
negative counting process. The parameteys, o2 andaoyys for [,17 = 1,2 can now
be negative, and thus the model can exhibit inhibition, dsageexcitation.

Theorem 7 of Bemaud and Massoulie (1996) implies that there exists a eniqu
stationary process with intensity function given by equab.21 if the matrix formed of

the absolute values of the excitation parameters has speadius strictly less than one.
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Since spatial interaction arises in this model, this matigonstructed by including
one row for each intensity function, with entries given by txcitation parameter
associated with events that occur in each of the differagibns considered. With 9
districts of Telangana, each with potentially 2 types ofreveecurring, this matrix has
dimension equal to 18.

Introducing nonlinearity brings about complications i tastimation of the pa-
rameters, which are detailed in Section 5.5. To the knovwdeafgthe author, such
nonlinear models of Hawkes processes have not been appligne tspatio-temporal
properties of problems in crime and security and thus thdoeatoon of this model

makes a significant contribution to the literature.

5.5 Parameter estimation

In this section, the parameters of the models describeddtidde5.4 that provide the
best fit to the empirical data are obtained. Maximum likedith@stimation is employed
to find the most likely set of parameters, given the obsewuatin the calibration data.
As described in Section 5.2, the models are calibrated wesiegts in the dataset that
occurred within the nine districts that form the state ofafiglana. The maximum like-
lihood procedure is first described, together with an efficagorithm for calculating
the likelihood function in the case of negative excitati@rgmeters, addressing the
difficulty associated with nonlinear models. Next, anothlgorithm is outlined, which
enables the calculation of confidence intervals assocwithcestimated parameters by
employing bootstrap techniques. The resulting paramstenates for each model, and

corresponding confidence intervals are then presentedamuiusions are discussed.

5.5.1 Likelihood for nonlinear multivariate Hawkes processes

In line with many previous studies of parametric point pgxeodelling, the unknown
parameters are estimated using the method of maximumHdedi. The specification
of a linear Hawkes process model via its conditional intgniinction leads to an
analytical expression for the log-likelihood function. rRosingle-dimensional linear
Hawkes process with conditional intensity function given b

AEH) = p+ D awe ), (5.23)

t; <t
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for some history, with a vector of parametets= (u, o, w) such thaj:, o, w > 0, and

sample data with events occurring at tir{es ny» the log-likelihood function

i€{1,2,3,...,

is given by

log L(B|H(t)) = Y log A(t:|H(t); ) — /T)\(s|7—[(s);0)ds, (5.24)
0

t;<T

whereT' € R is a point in time defining the end of the period of study, sa tha ¢ .
The values of) that maximise the log-likelihood have been shown to coestst ap-
proximate the true values of the process (Ozaki, 1979; Q@8&i). The log-likelihood
in equation 5.24 can be thought of as a comparison betweefaline of the conditional
intensity function at the times at which events occur, agjdime values of the function
at all other times, as given by the integral of the intengityction over the duration of
the sample data. Larger values of the log-likelihood theeetorrespond to a series of
events that are well predicted by the conditional intenityction, and the parameters
0 that maximise the value of the log-likelihood are those thast closely match the
model to the empirical data.

The log-likelihood of a linear multivariate Hawkes procésslescribed in Em-

brechts et al. (2011) and, using the notation of this chastgiven by
9 2

log LOH®) =Y S log (A(” (il H(t): ))

j=1 l=1 <t
mi:l
8;=J

9 2 T
- ZZ/O A (s[H(s); 8)ds. (5.25)
Maximising the function in equation 5.25 leads to the paramealues that maximise
the intensity functior\\”” at the point at which each eveftt, s; = j,m; = [) occurs,
whilst minimising the sum of all intensity functions at ather times, and therefore
leads to the parameter values that most closely match thelmath the empirical
data.

Liniger (2009) outlines how the first term on the left handesad equation 5.25,
the sum of the logarithms of each intensity function for tlaetigular type of event at
the time at which that event occurs, can be approximatedasnecursive formula. In
what follows, the calculation of the likelihood is descidbésing Model 5. Equivalent
expressions for Models 1 to 4 can be obtained by setting theamet excitation param-

eter(s) to zero. Supposing that the first event occurs attintbe algorithm proceeds
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by setting

MO (1) = pu, (5.26)
forj = 1,2,...,9 andl = 1,2. Thus, the initial intensity for each type of event is
assumed to be equal to its background rate. Then, the itydnaictions at all other

event timeg; for: = 2,3, ..., N can be calculated exactly as

>\(~l)<ti> =+ e—wz(ti—tiﬂ) ()\(l)(ti—l) B ,Ul) + almiilgiilwle—wz(ti—tifl)’ (5_27)

J J
wheres;_; € {1,2,3} is used to denote the spatial domain within which the event at
timet;_, occurred relative to the spatial regigiii.e. to determine whether the event at
time ¢;_, occurred within district, within A/(5) or within (j U N (5))¢, respectively).
The use of the recursive scheme in equations 5.26 and 5.3#ygirecreases the speed
with which equation 5.25 can be numerically computed.

The integrals in the second term of the right hand side of soju®.25 can be

computed analytically for linear intensity functions bysebving that
T T
/ ayrawie” T ds = [—Oéu'nefwl(sfti)}o = oy (1 — e T1)) | (5.28)
0

forn = 1,2, 3. Therefore,

T 2
/0 A;l)(S|H(s); 0)ds =T + Z Z aupy (1 B e_wl(T_ti))

I'=1 t;<t
mi:l’
Si:j

2
£33 aun (1 - emaTm) (5.29)

r=1 ti<t
mi:l/
SZEN(j)
2
+ g E aqrs (1 — €_wl(T_ti)) ,
'=1 <t

m;=l’
s; €E(GUN(4))¢

which can be easily computed for any given histd{l).

In the case of nonlinear multivariate Hawkes processe$) aadhe one defined
by the intensity function in equation 5.21, an analyticghression of the integrals in
the log-likelihood is not tractable, and, therefore, thpression described in equation
5.29 cannot be used for fast computation.

Instead, the integrals in equation 5.25 are solved nunistiéanumerical scheme
that discretised the entire temporal region of interesiydwer, would be very compu-

tationally expensive. In particular, to calculate the fimt in equation 5.25 in the
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linear case, when there is no inhibition, the value of thenasity function only requires
evaluation at the time points when events occur. A numedisaretisation of the in-
tegral typically requires the evaluation of the functiormahuch higher resolution and
therefore adds significantly to the computational cost.

In an attempt to alleviate the reliance on computationalgraw the calculation
of the likelihood function in equation 5.25, an algorithmpi®posed that utilises the
analytical solution to the integral when there is no inhdbit as given in equation 5.29.

To explain, an efficient way of approximating the integral

T
O]
/0 A; 7 (s|H(s))ds (5.30)
is sought when
A= (AW 5.31
(). (531)
for some functionﬁy)(t), which, for some values df is negative. The integral given
by
’ NG
/0 SO (s|H(s))ds, (5.32)
is calculated using the analytic expression in equatio.5[Ren, using the trapezoidal
rule for numerical integration, and supposing that the m@jpdomain|0, 7’| is discre-

tised by a uniform partitiod = ¢, < ¢} < ... < t/, = T for some integer. such that

t; = t, for somer for every event, then
! @ . N
/0 A (s|H(s))ds = /0 A; 7 (s|H(s))ds (5.33)

Ot +AV(E) + e

oL~

1 . / / /
— 5D HEN @) (- t) (A
r=1
whereH (z) is the Heaviside step function, given by

0 <0
H(z) = , . (5.34)
x>0,

ande, is an error term satisfying

Oy
T3 math{tB’,l ..... t%} |)\] (t)|
12n2 ’

len]| < (5.35)

a well-known property of the trapezoidal rule. Note thatcsirthe event times are

contained within the seft(,, t/, ..., ¢, }, and since the functiohy)(t) is smooth for all
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values oft at which events do not OCCUBAX,; (y 4 4 Mgl)"(t)l is finite and the error
term tends to zero asincreases.

For a suitable partition on the intervidl, 7’|, the integral in equation 5.30 can be
well approximated using the expression in equation 5.32cfipally, the integral is
approximated by the analytical computation of equatior2 5i®m which the negative
parts are subtracted, which are approximated using thezoéghal rule, where event
times are contained in the set of interval boundaries forp#mition of the temporal
discretisation. In many practical scenarios, particylathen the magnitude of excita-
tion is greater than the magnitude of inhibition, there atatively few time periods for
which the functionig.” IS negative. As a consequence, the computation in equadn 5
greatly improves the speed by which the integrals in eqndii@5 can be computed
when compared to a full discretisation over the entire temp@gion. The values of
the parameter8 that maximise the log-likelihood in equation 5.25, whick abtained
by calculating the value of equations 5.26, 5.27 and 5.28,uming equation 5.33 if
the function)\gl) is nonlinear, with the empirical event histoH/(T'), are therefore the
values that lead to the closest fit between the empiricalaladahe model.

In the dataset on the Naxal conflict, there were a small nuiwiogays on which a
large number of events of the same event type occurred viltkisame spatial region.
In the analysis that follows, some of the events occurringhese days were removed
from the dataset in order to prevent the model calibratitbating too much influence
to these days, which are likely to have occurred as a res@haxogenous process,
rather than the more natural dynamics of the violence treatribdel aims to capture.
Specifically, to do this, the daily count of events of eachnévwgpe and within each
spatial region is obtained and the cumulative distributbthese counts is calculated.
On days whose counts exceed the 99-th percentile of the etireutlistribution of the
non-zero counts, a number of events are removed from theetega that the count on
each of these days is equal to the count at the 99-th pereeAfiler this process, the
maximum number of events of each type within each spatigbreoccurring on each
day is three. Events that take the count beyond three aregme/ed from the analysis
and treated as outliers.

Finally, in order to ensure that the parameter values catiedIfor the conditional

intensity function correspond to a unique point process,pitocess is required to be
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simple, meaning that no two events can occur simultaneolsly the dataset on the
Naxal conflict, there are 1,480 events which occur on the slay@s at least one other
event. For these events, a uniform random number bet@wesm 1 is generated and
added to the event time, leading to an empirical datasetctrabe considered a sim-
ple point process. The potential consequences of this step t@sted in what follows
by repeating the parameter estimation with different sagilons of the empirical his-
tory. Although minor changes were detected, there weregrofgiant deviations from
the estimates that follow as a result of this process. Thexjdained further in what
follows.

The Nelder-Mead algorithm (Nelder and Mead, 1965) withia 8tiPy package
of the Python programming language is used to maximise tpikelihood function.
Constraints are employed to ensure the decay parametarsd the background rate
parameterg,, are positive by adding a penalty to the objective functiorewlany of
these parameters become negative. Furthermore, the decayegters), are also con-
strained to be less than one, so that the characteristiotingow over which triggered
events are supposed to occur cannot be less than one dagmanding to the temporal
resolution of the data. The Nelder-Mead algorithm is usadesit uses only function
evaluations of the objective function it maximises, ratti@n also values of gradients
and higher derivatives. In this case, this is desirableesthe log-likelihood function
in equation 5.25 is discontinuous in the paraméeatue to jumps that occur in the

intensity function as a result of these constraints.

5.5.2 Parametric bootstrapping of confidence intervals

As well as obtaining the parameter estimates that lead tbakefit between the model
and the data, maximum likelihood approaches can also oéerséd to obtain standard
errors of those parameter estimates (as was the case in Chaptieh the conditional
logistic regression). In such cases, the standard errersaculated from the Hessian
of the log-likelihood. In this chapter, however, some ofthedels tested are nonlinear,
and the accuracy of standard errors obtained from the Hegkthe log-likelihood has
not been well-established beyond a few individual casdesu@owsher, 2007).

In order to construct a confidence interval of each paranestigmate, a numeri-

cal technique is employed called parametric bootstrapplings numerical procedure
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consists of two stages. First, a simulated history of the fpariod of interest is con-
structed, in which events are supposed to occur at the raém diy the conditional
intensity function with parameters given by those obtaifrech the maximisation of
the log-likelihood function. Second, the Nelder-Mead alldpon is employed to max-
imise the log-likelihood function in equation 5.25 basedlus simulated history of the
system. It is important to emphasise that the maximisatf@goation 5.25 based on
this simulated data does not use the empirical data, insigagd the simulation version
of the system that is based on the model with parametersrinabiculated from data.

These two stages result in parameter estimates associdiesimulated histories
of the system defined by the model with the maximum likelihestimators as param-
eters. If the model were able to perfectly recreate the eogpuata, then the bootstrap
procedure would be expected to produce the same paramgteates as those found
by the maximum likelihood optimisation procedure with thapérical data. On the
other hand, if the model produces events with a very diffespace-time profile to
the empirical data, then it is likely that the resulting paeder estimates will be very
different to those found by the maximum likelihood procexiwith the empirical data.
Thus, this procedure produces an assessment of the extenictothe model is able to
reproduce the empirical data at the parameter level. Thdtires difference between
the parameters calculated from the empirical model anddhenpeters calculated from
the simulated model can be used to assess the extent to Wkighlue of each param-
eter is likely to lead to similar spatial-temporal distiiloms of events as the empirical
data. This deviation can therefore be used to assess theeoodi associated with the
estimate for each parameter.

Following this two stage procedure—the simulation of eseimding the model
calibrated with the empirical data, followed by the subsaquarameter estimation
based on that history—just once is not particularly indivecsince the generation of
each scenario is a random process, and the minimisatioeguoe may find different
solutions. However, repeating this process a number ofstitae lead to a distribution
of estimated parameters based on a series of simulate@dnersi the data that were
generated from the same model. Consequently, this procetheqgeated 250 times and
a 95% normal confidence interval for each parameter estiateained by calculating

the empirical standard error of the resulting distributbdisimulated parameters.

202



5.5. ARAMETER ESTIMATION

It remains to explain how the times, locations, and typesvehts are obtained
when generating simulated histories of the system. Thelaitron of point processes
over a given period of time is typically performed using sdted thinning algorithms.
Thinning algorithms have been developed in order to sireula event times of point
processes for any given conditional intensity functiomgsiiniform pseudo random
number generators. The procedure described below is baske onethods first intro-
duced in Lewis and Shedler (1979) and then modified in Og&81(l(see also Daley
and Vere-Jones (2003)). It has been adapted here to cointidehe notation and
multivariate nature of the point process described by tmelitional intensity function
in equation 5.21, the model from which all others can be @erlyy placing constraints
on the parameters. The thinning procedure generates a sémnandom numbers at a
rate given by an upper bound on the conditional intensitgtion, denoted by* say.
This generates more than the number of events required peandasidom thinning pro-
cedure is used to delete some of these events, and, in dgiogrsiructs a process that
corresponds to the conditional intensity functL@j"? forj =1,2,...,9andl = 1,2.

The algorithm proceeds as follows:
1. Sett = 0.

2. Calculate an upper bound on the intensity function at thie ind denote this by
A"

3. Generate a exponentially distributed random varidhlg with rate\*, by trans-

forming a uniform random variablR’ € [0, 1] according to

Rexp = —ln(;f ). (5.36)

The next event in a Poisson process with intensitys therefore supposed to

occur at time + Reyp.
4. Generate a second uniform random varidble [0, 1].
5. Setj =0andl = 1.

6. For districtj and event typé, calculate the conditional intensity functi(z\rﬁf)(tqL
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Rexp) and the cumulative sum

1 /
F() = 52 DA (4 Rexp). (5.37)

J
i<
<i

7. f R < Fj(l) (t + Rexp) then assume that the Poisson event at imeR.,,, is
an event of type and occurs within distric§. Add this event to the simulated

history H (¢ + Rexp), S€tt — t + Rexp and return to step 2.

8. Otherwise, consider the next district and/or event typapdating the indiceg
and/orl and return to step 6. If the districts and event types have belkausted
then the Poisson event occurring at time R, is deemed not to have occurred
according to the conditional intensity functions given/téﬁ) and is ignored. In

this case, set— t + Rexp.

9. In order to match the simulation as close to the empiriegh ds possible, the
number of events that occur in the simulation is requiredetedual to the num-
ber of empirical events in the dataset, given/¥yThus, if the number of events
that have not been removed in steps 2-8 excéédben go to step 9. Otherwise,

return to step 2.

10. Since the absolute times at which events are deemed tw scdependent on
the upper bound that is chosen (but the relative rate at wduehts occur have
been thinned according to the model), the events are ressakhat theV events

occur over the same time-scale as the original data set.

The upper bound* at each potential event tintet- R.,, is defined to be the sum
of the conditional intensity function!é” overj = 1,2,...,9andl = 1,2, where each
function is calculated assuming that the event at timeR., is of typel and occurs

within j. This can be written as:

2 9

N+ Resp) = D D A (¢ + RexpH(E) + {(t + Resps 5, )}) . (5.38)

=1 j=1
As well as being used in the parametric bootstrap procedugenerate simulated
histories of the system according to the model, this thigrprocedure can also be
employed to simulate predictions as to how the system mighive, assuming model

correctness.
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5.5.3 Results

In this section, the results of the maximum likelihood opsiation for each of the
models specified in Section 5.4 are presented, togetheresitmated standard errors
obtained from the parametric bootstrap procedure for tla fitodel. The implications
of these results for the hypotheses in Section 5.3 are disdus

Table 5.1 presents the maximum likelihood parameter ettsrfar Models 1-6 in
Section 5.4 together with the value of the log-likelihooddtion at the parameter esti-
mate, and the value of Akaike’s Information Criterion in arttecompare the relative
success of each of the models proposed. Each realisatibe eftipirical history relies
on a random process in order to remove concurrent eventssaitite log-likelihood
function was maximised 100 times based on different readisa of the empirical his-
tory that arises as a result of this random procedure. Thétsggesented are the mean
values obtained from this process. The standard deviatibtise estimates are not
reported as the estimated results are consistent acrosd types for each realisation
of the empirical history and were small in comparison to thneates. Akaike’s In-
formation Criterion (henceforth abbreviated as AIC) prosidemeasure with which
to compare models, and to determine whether a model thatporaties a particular

process or mechanism is an improvement on simpler modeé&sAT is given by
AIC = -2In L + 2P, (5.39)

where P is the number of parameters in the model. The value of the Al& trade-
off between the value of the log-likelihood, for which largalues correspond to a
better model fit, and the number of parameters included imtloalel to obtain that fit.
Models with a lower AIC are preferred, highlighting the mefnce for simpler models
with fewer parameters if the addition of extra parameteesdwt sufficiently improve
the model fit.

Table 5.2 presents the bootstrapped 95% confidence irdet/ethie estimates for
Model 6, which led to the lowest AIC value, and can therefeednsidered as the best
fit to the data. The procedure for generating these intewatsdescribed in Section
5.5.2. The implications of these results are next discussed

Model 1 assumes that Naxal events in each spatial regiorr @gtfua rate given

by the constant;; and that police events in each spatial region occur witheagaen
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Table 5.1:Parameter estimates for each of the six models described ire&tion 5.4
Parameters proceeded by the same dagger symbol in Model @as&ained to be
equal in order to model the effect from events occurring @lkerentire district. For
the excitation terms, the first subscript refers to the tyfpevent affected, the second
subscript refers to the influencing event, and the third sugisrefers to the relevant
relative spatial region within which the influencing eventorred. For exampley;,,

is the additional number of Naxal attacks (tyjpe- 1) that occur due to police events

(type! = 2) within neighbouring districts (relative spatial regian

Model 1 | Model 2| Model 3 | Model 4 | Model 5 | Model 6
1 .0838| .0047| .0066| .0064| .0023| .0023
Lbo .0122 .0025 .0023 .0005 .0003 .0003
o111 1049 9226 .8704 .7801 7780
Q112 1049 .0346 .0389
113 1049 .0020 .0017
191 .3766 .3942 4075
122 .0000| -.0307
Q193 .0109 .0137
Q991 .0881 .8156 .3808 3512 3725
Q999 .0881 .0189 .0429
V223 .088% .0031| .0856
Q211 .0842| .0788| .1365
212 .0000 .0005
Q913 .0000| -.0313
w1 .0655 .0298 .0331 .0427 .0423
Wo .0404 .0102 .0197 .0221 .0115
In£(0) | -12456| -11585| -10572| -10518| -10488| -10446
AIC 24916, 23182| 21157 21048 20989| 20903
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Table 5.2:Bootstrapped 95% confidence intervals of each parameter obitaed with

Model 6. Each of the entries is rounded to four decimal places.

Estimate| Lower | Upper
T .0023| .0000| .0050
Lo .0003| .0000| .0026
111 .7780| .7233| .8327
112 .0389| .0210| .0568
o113 .0017| -.0076| .0110
191 A4075| .2456| .5694
122 -.0307| -.0955| .0341
Q193 .0137| -.0292| .0566
Q991 3725| .0418| .7032
922 .0429| -.0459| .1317
V23 .0856| .0245| .1467
Q911 .1365| -.0076| .2806
Q912 .0005| -.0257| .0267
Q913 -.0313| -.0984| .0358
w1 .0423| .0148| .0698
wo .0115| .0005| .0184
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by 1». This model resulted in the worst fit to the data out of all & thodels tested.
A spatially disaggregated Poisson process model was asedteconsisting of 18 pa-
rameters, corresponding to the rates at which each typesot eccurs in each of the 9
spatial regions under consideration. This was done to mé@terthe improved perfor-
mance of the model when spatial heterogeneity is considdrieéid model (Model 1a)

is not reported in Table 5.1 but led to an AIC value2df244.

Model 2, corresponding to a self-exciting Hawkes processtiith excitation of
the intensity function occurs when an event of the same tgp@éns anywhere in any
of the districts considered, shows a significant improvenoenboth the non-spatial
Poisson process in Model 1, and the spatially disaggregatesion of the Poisson
process that was also tested in Model 1a, as can be seen lmyeAIC. Therefore,
a self-exciting Hawkes process is a better model for expigithe variance in the data
than both Model 1 and its spatially explicit alternative isTeuggests that the dominant
mechanism is not the spatial heterogeneity but the templustiering of the event data.

According to the parameters estimated for Model 2, for eagkadNevent that oc-
curs, the model predicts a furtherl049 Naxal events will occur, and that, for each
police event that occurs, a furth@f881 police events will occur, as indicated by the
excitation parameters, 1, o112, andaq3, determining Naxal self-excitation, and the
parameterso;, oo, aNdassyz, determining police self-excitation. Three parameters
for each excitation are reported in Table 5.1, to highligie fact that the excitation
occurs over the entire spatial region of interest, whetherevent occurs in the same
district, a neighbouring district, or a non-neighbourinstict. Although three param-
eters are reported for each excitation, only one parametedjusted as the model is
calibrated, and thus the parameters for the different tgpescitation are constrained
to be equal to one another. The decay parameieis;5 for Naxal events, and.0404
for police events, suggest that the excitation for Naxahevelecays slightly more
quickly back to baseline levels than for police events. &wjehe characteristic time
window over which the Naxals plan and carry out further &isaas a result of an attack,
is 15 days, whilst police attacks due to excitation are ikeloccur up to 24 days from
a triggering event.

Model 2 lends support for hypotheses 1 and 2 articulated ati@@e5.3. In partic-

ular, the improved model fit when a mechanism is incorporaiéacrease the intensity
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for future events of the same type, suggests that the liketlrof a Naxal event occur-
ring is increased for a period of time after a Naxal event dvad the likelihood of a
police event occurring in also increased in the aftermathpdlice event.

Model 3 contains the same number of calibrated parametéiodsl 2; however,
the triggering kernel in Model 3 for each event type only iparates events that occur
within the same district. This model is spatially-explisihce the conditional inten-
sity functions within each spatial region now vary from eather, depending on the
number of events that occur in each district. A large impnoeet in the model fit is ob-
served, with the AIC reducing by nearl9%. Furthermore, the excitation parameters
estimated—8.9226 for the Naxal events and.8156 for the police events—are much
larger than the excitation parameters in Model 2. The modatipts that, for each
event that occurs, nearly one further event of the same tylpeagur in the same spa-
tial region. The decay parameters suggest that, for Naxaitsythis extra event will
occur up to a month after the triggering event, whilst forigmevents, this extra event
will occur up to three months after the triggering event. Séhéndings lend support
for hypothesis 3 in Section 5.3: the influence from previotenés is much stronger on
districts in which those previous events occur.

A multi-level version of Model 3 was also estimated but is regorted here. This
was done in order to test whether the inclusion of spatiadigymg background rate
parameters significantly altered the results. If the resylparameter estimates were
significantly different from those reported in Table 5.Jenht may be that, rather than
capturing the excitation effects due to the occurrence ehtsy the model is captur-
ing the spatial heterogeneity. The parameter estimatethéotriggering kernel in the
multilevel model—which were not made spatially explicit-em@ consistent with those
reported in Table 5.1. The AIC value for the multi-level mbakas 21, 126 and, thus,
the decrease in the AIC value from Model 3 was the smallesiotezh of all the models
tested. As a consequence, and in order to perform out-opleamsting of the model in
what follows, models with constant background rates ovesfiatial region of interest
were preferred.

Model 4 incorporates interacting excitation effects betwdifferent event types
within the same spatial region. The excitation parameters@nstrained to be positive

in order to detect whether any retaliatory effects are prieisethe dataset. The param-
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etersa;,; andas;—representing the excitation of the Naxal intensity fumetdue to
the occurrence of local police events, and the excitatidh@police intensity function
due to the occurrence of local Naxal events, respectiveiyat+esult in the closest fit
between the model and the data are both greater than zergtind of an interaction
effect. For each police initiated event that occurs, thisleh@redicts an average of
0.3766 further Naxal attacks and, for each Naxal event, an averbd@e)®42 police
events are predicted. In comparison to Model 3, the selitatian rates are reduced
to 0.8704 and0.3808 for Naxal events and police events respectively, suggg iat
some of the excitation found in Model 3 can be better expthimeinteraction effects.
Indeed, the AIC for Model 4 is lower than that found for ModelsBggesting an im-
proved model. Moreover, the results lend support for hygsith4 and hypothesis 6:
‘tit-for-tat’ retaliatory behaviour is observed betwede tNaxals and police.

Model 5, which introduces excitation effects from eventsuwsang in neighbour-
ing and non-neighbouring districts, further improves mditleas indicated by the lower
AIC value. In addition, the estimated parameter valuesigegsome support for hy-
pothesis 7: self-excitation rates appear to decay as eveots further from the region
of interest. That is, for events of both types, self-exmtais strongest in the district
within which the events take place, weakens by an order oinihade for events that
occur in neighbouring districts, and weakens by a furthdeoof magnitude for events
that occur elsewhere in Telangana.

Two of the mutual-excitation parameters become negativenvithibition effects
are incorporated in Model 6: the impact of police events iigimeouring districts on
the rate of Naxal events, and the impact of Naxal events inneghbouring districts
on police events. However, neither of these effects arafgignt at the 95% level,
according to the bootstrap estimates in Table 5.2.

The confidence intervals for parameters measuring exaitadffects on police
intensity from Naxal events contain the value zero and thesetis insufficient evidence
to conclude that police were retaliating to Naxals accaydmmthis model. This puts
into doubt the conclusion of hypothesis 6 stated aboveoagh the point estimates
for retaliation are positive, there is sufficient uncerawith this estimate to question
any positive finding. The confidence interval obtained dg§;, capturing the local

self-excitation of police events, is also relatively lar§ée uncertainty associated with
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the parameters for police events might be explained by théwely small number of
police events that occur in comparison to Naxal events.

The remaining confidence intervals, as detailed in Table & relatively con-
sistent with the parameter estimates of Model 6. Table SoRiges a parameter level
assessment of the accuracy of the model specification. érantite, evidence has been
presented that either supports or refutes each of the hgpeshpresented in Section
5.3.

5.6 Model evaluation

In this section, a global assessment of the model is madeghyionsidering the extent
to which the model explains the occurrence of events, armnsk to determine how
successful the model is able to predict events that are edtinghe model calibration.
The tests that follow are important steps that must be takéore any such model can
be considered for use in a policy setting, and are partilsuiliaaportant if the model is
to be used for forecasting and predicting the evolution offlect based on its history.
A residual analysis is performed to ensure that the vanaiothe values of the
modelled intensity functions at the event times is constsigth the actual event times,
and that no significant mechanisms for the generation oktleeents have been omit-
ted, given the event data. Next, by performing a receiveraipeg characteristic anal-
ysis and by constructing the precision-recall curve usungad-sample data, it is deter-
mined whether the model is capturing a general processéquribduction of events by
insurgents and counter-insurgents during the Naxal condirovhether the model has

been over-fitted to the calibration data.

5.6.1 Residual analysis

The goodness of fit of the overall model to the empirical datalze assessed by a resid-
ual analysis. The procedure in this section correspondselyldo the procedure out-
lined in Peng (2003) for single-dimensional point procesa®d in Schoenberg (2003)
and Peng et al. (2005) for multi-dimensional point procssse

A residual process of length, is the result of a random selection df, events
from the full event space, chosen as examples of events valnechoorly predicted by

the model. Events are considered to be poorly predictee iv#tue of the correspond-
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ing intensity function is small prior to their occurrence.résidual process of length
N, of a point process of lengtN given by(t;, s;, m;) fori = 1,2, ..., N is constructed

by randomly sampling without replacemeyit events from the list ofV events, where

each event is selected with some probability:.

Defining P; by

—1
SO AL ()Y '

wheret; is used to denote the time just before eveatcurs, leads to a residual pro-

cess that selects events that occurred when, on averagatehsity function is at its
smallest.

If the model explains all the variance in the data, then e/t occur when the
intensity functions are at their smallest will appear toedhao temporal dependency.
If there was extensive temporal clustering within the realgrocess, then the model
is likely to be underestimating the excitation as a resulthaise events during the
periods of clustering. Conversely, if there a large periofl§nee during which no
events occur in the residual process, the intensity funasitikely to be overestimating
the likelihood of event occurrence during that time.

If the residual process is approximately a Poisson procébscanstant intensity
throughout the duration of the conflict, then the model caodresidered to reliably cal-
culate the likelihood with which events are anticipatedd¢ow throughout the duration
of the period of study. In particular, if the residual prozessembles a Poisson process
for the duration of the study period then the model is appab@ifor the entirety of this
duration. This is particularly important for the case of Nexal conflict considered in
this chapter, since the period of study is over 10 years.fiatesources of error may
arise if the process dramatically changed its underlyingadyics during this time.

Residual processes of the Naxal conflict using Model 6 aretagted with cho-
sen lengt1. This length was chosen since it is the number of backgrowedts
expected to have occurred over all districts and eventstgpeording to the calibrated
background rate of Model 8000 residual processes are generated and compared with
1000 Poisson processes of reigé/3872 = 0.024, calculated sinc®1 events are re-
quired to occur over a duration 8872 days with constant rate. The Poisson processes

are constructed by simulating successive event timessinglthe result that inter-event

212



5.6. MODEL EVALUATION

times between two successive events in a Poisson processemeentially distributed
with mean given by the reciprocal of the Poisson intensity.

The residual processes are compared with the Poisson pescesing a quantile-
guantile (Q-Q) plot. A Q-Q plot compares the rate at whichnéseccur in two separate
processes by plotting the number of quantiles of eventdinat passed in each process
for different points in time. Beginning with= 0, the Q-Q plot is constructed by adding
ot tot for somedt << 1, and then calculating the proportion of events in each @®ce
that have occurred up until time This generates a line in Q-Q space (the region
[0,1] x [0,1] € R?). Since the two distributions for comparison here each haee
realisations, such a line cannot be drawn and, instead, 3%e &®nfidence intervals
in Q-Q space are plotted. The two solid lines in Figure 5.4espond to the 95%
confidence interval of the Q-Q plot distribution for a reftiprocess compared against
a Poisson process, and the grey shaded region represef&%heonfidence interval
of the Q-Q plot distribution for the simulated Poisson pssss compared against a
Poisson process. For clarity, the aggregate results fdr [dakal initiated events and
police initiated events are explored, rather than retgitie individual counts for each
district.

For the residual process to be an approximate Poisson grcaed therefore for
the model to be a good fit to the data, the solid lines are redquo coincide with the
grey shaded region in the plots in Figure 5.4. For Naxal eyesfitown on the left hand
side of Figure 5.4, the solid lines correspond relativetysely with the grey shaded
region, suggesting that the model provides a reasonable flie data. For police
events, the fit is less good, suggesting that the dynamicsiassd with the production
of police events is not well described by the models propdsrd. Perhaps this is
to be expected: police are likely to operate under more canss than their Naxal
counterparts, and may be unlikely to react as quickly asdbatified retaliation and
excitation processes found as part of the Naxal attacksdifieeent strategies adopted
by the police in various attempts to quell the insurgency imaye also meant that a
Hawkes process with constant background and excitaties @ater the duration of the
study period is not a good description of event occurrencedds that change over
time to reflect different counterinsurgent strategies rmagrove the ability to explain

counterinsurgent events.
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Figure 5.4:A Q-Q plot to compare the Poisson process with the process aihed

from the residual analysis in section 5.6.1 with Model 6 for Naal events (left-

hand side) and police events (right-hand side)The shaded region shows the 95%

confidence interval Q-Q plot of two Poisson processes, whissolid lines show the

95% confidence interval of the residual process against ssBwiprocess. The confi-

dence interval of the residual process is obtained by reygette sampling procedure
described in Section 5.61D00 times.
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5.6.2 Out of sample predictive performance

The performance of a model can be assessed by its abilityettiqgirevents that were
not used in the calibration procedure. This is particulariportant if the model is to
be used in a policy setting to assess the likelihood of evarasrring. In what follows,
two tests of predictive performance are employed: a rec@perating characteristic
analysis and a precision-recall analysis.

Receiver operating characteristic (ROC) analysis is a viesplatoach to determine
how well a model is able to classify a set of new observatiats one of two classes:
positive and negative. Originally developed in the studgighal detection, ROC anal-
ysis has subsequently been considered in a range of fieldsg$essing the goodness of
fit of classifier models (Fawcett, 2006; Ward et al., 2010).CR&halysis is performed
by plotting a ROC curve, which compares the rate at which tbdehis able to suc-
cessfully identify positive observations, the true pesitiate, against the rate at which
the model mistakenly assigns an observation to be posithenvin fact it is negative,
the false positive rate.

In order to perform a ROC analysis, the model of Naxal viokenwst first be
transformed into a classifier model. Although point proaesslels such as the ones
developed in this chapter are naturally continuous in tianegmporal discretisation of
the model is applied in order to define the units of obserwahat require classification.
This is done by taking each day within each spatial unit andaah type of event as
a separate observation. Denoting the time unit offtlie day under consideration by
T = [t t*+1)], the classifier model is required to determine whether omhtgast
one incident of typé occurred in spatial regiopon day7;.

To specify the classifier model, a threshold approach is eyepl. For a given
thresholdr > 0,

A0y > 7, (5.41)

implies that the model predicts at least one event to occulagik, in spatial regiory
of event typd, and
ADE0-y < 7 (5.42)

J

implies that no event is predicted to occur. Note that thaevalf the intensity function

is calculated at the beginning of each observation day aed dot include any of the
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events that occurred on that day.

To plot the ROC curve, the true positive rate and the falséipesate for a given
thresholdr is required. The true positive rate is given by the total nends events that
were successfully predicted by the model divided by thd tatmber of positive events
in the dataset (given by the number of days on which eventsraeithin each spatial
region of each event type), and the false positive rate isrghw the total number of
events mistakenly predicted by the model (i.e. those thldahdt occur in the dataset
but were predicted to occur by the model), divided by thel tmtanber of observations
that contained no events.

For each value of, the above calculation provides one point in ROC space. In
order to plot the ROC curves, different valuesradre considered and the same calcu-
lation of the true positive rate and the false positive ratemmade. The choice of is
made so that the resulting curve is convex, as detailed insCzand Goadrich (2006).
The curves resulting from a ROC analysis omit a useful siafisr comparing models,
given by the area under the curve (AUC). The AUC is equal to tbability that a
new positive event will rank higher than a new observatiofwo event, and therefore
provides a measure of reliability of the model for a given pm

In Figure 5.5, three ROC curves are plotted. The solid cusvealculated using
out of sample data. That is, the true positive rate and falsitipe rate are calcu-
lated for observations that were not used in the calibradiothne model. The out of
sample data consists of the Naxal events that occurrednitttiei 4 districts of Andhra
Pradesh, which contained at least 100 events, and whichaditbrm part of the new
state of Telangana and therefore were not used in the paaesimation procedure.
When calculating the model, excitations from other disdrigte. neighbouring and
non-neighbouring districts) were incorporated but onky dlut of sample events speci-
fied were predicted. The second curve is calculated usingntkample data, contain-
ing events that occurred within the districts forming Tegjana, and which were used to
calibrate the parameters. Finally, a third ROC curve istptbtising an indiscriminate
model, which randomly assigns positive events for eachrgben with probabilityr.

The ROC curves for Model 6 are those that are plotted in Figusesince this
was the model that provided the lowest AIC statistic. Tylhyc@UC values of above

0.8 are considered to correspond to a good model and therefelatavely high level
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of discrimination between positive events and negative&svis observed for both in-
sample and out-of-sample tests. Additionally, the AUC gdbr the out-of-sample data
is very close to the AUC value for the in-sample data, sugggshat the model has
not been overfitted to the calibration data, and that it isact tapturing some of the
general mechanisms underlying the production of confliehé.

There are problems associated with the ROC-curve when tloeiag=d data is
highly skewed. The ROC-curve shows the proportion of evantsessfully predicted
against the proportion of non-events successfully predictSince these are propor-
tions, they do not depend on the actual number of events teaireed. The denom-
inator of the false positive rate is the number of observatithat were successfully
predicted by the model to contain no events. If the numberbskovations with no
events is much greater than the number of observations wittvant (as is the case
with the data used in this study), then the classifier subaispredicts nothing to
happen for a large proportion of observations, and the fadséive rate becomes very
close to one very quickly, giving the impression that thera large level of discrimi-
nation between positive events and non-positive eventsakalysis of events that are
relatively rare, the ROC curve tends to provide a large AUGareless of the actual
success of the model.

To alleviate these limitations associated with the ROC euanother approach
to analysing classifier models is often presented, knowragptecision-recall (PR)
curve. Supposing that the classifier model has positivedgsified an observation,
and thus the model predicts at least one event of a partityparto occur in a given
spatial region on a given day, thprecisionis defined as the probability that this event
will actually occur. Supposing that at least one event of diqdar type occurs in a
particular spatial region on a given day, thecall is defined as the probability that
the model would have positively classified this observataomd therefore predicted the
event to occur. The PR curve therefore shows the trade offdset enabling the model
to predict the actual events, whilst making sure that it da#gredict too many events
that do not happen.

The advantage of the PR curve is that it does not depend onutnéer of ob-
servations which were successfully predicted to have notroed by the model, and

therefore the biases that feature in the ROC curve do not éese. The disadvantage
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of the PR curve is that it is highly dependent on the numberehts that occur in the
dataset. Whereas the ROC curve can be used for different sampls, the PR curve
must be applied on the same sample. For this reason, onlythie eample PR curve
is plotted.

Figure 5.6 shows the PR curve for the out of sample classifiemiodel 6 and
compares the model against an indiscriminate model on tine sample. The curve
is constructed using the algorithm described in Davis andd@oh (2006). It demon-
strates how, for some threshold values piff the model predicts an event to occur then
there will be up to around 20% chance that the event will actually occur. At the same
time, if an event occurs, the model will have up to arourtd@ chance of correctly
predicting that event.

The ROC analysis and the PR analysis subtly demonstraterefiff aspects of
the performance of the model. The closeness between the R&€ for the out of
sample data and the ROC curve for the in-sample data sudgeshe model has not
been overfitted to the available data. The PR curve demdesttae models predic-
tive performance when applied to out-of-sample data. The®Re is unbiased with
respect to the successful prediction of no events occulmingannot be used to com-
pare over different datasets. Although there is significaom for improvement, the
values reported are much greater than is possible from asingdiscriminate model.
In addition, it is worth emphasising that the models prodose= relatively parsimo-
nious and only employ the history of the system as predistareables. Incorporating
a range of structural variable may further improve its penfance (Zammit-Mangion
etal., 2012).

5.7 Discussion

This chapter has proposed novel multivariate and nonliHearkes process models for
the modelling of insurgent violence, together with a ranfj@ols for their calibration
and evaluation. Point process models are a versatile noglélamework well-suited
to the study of civil violence, but are only beginning to bepdoyed in this domain.
The work presented here is intended to contribute to thiggmgestudy area.

The models presented in this chapter have led to theorettbances in the un-

derstanding of insurgent violence. It has been shown, fetaince, that considering
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True positive rate
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Figure 5.5:Receiver operating characteristic (ROC) curves for: i) outof sample
prediction of Naxal and police events using Model 6; ii) in-smple prediction of
Naxal and police events using Model 6; and iii) an indiscrimimte model that ran-
domly assigns events to each day with a certain probability.The out of sample
analysis is performed on four districts in Andhra Pradest ¢ontained at least 100
events that were not used in the calibration of model pararseThe in-sample analy-

sis is performed on all events used in the model calibration.
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Figure 5.6:Precision recall curves for the out of sample classifier of Moell 6 (solid

line) and an indiscriminate model that assigns new observains to be positive with

probability = (dashed line).
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the escalation of both insurgent and counterinsurgersr@eteads to a significant im-
provement in the fit associated with point process models/dfviolence. Incorporat-
ing the spatial dependency of the violence has also beenmstmimprove modelling
performance, as evidenced by the improvement of the modehwsklf-excitation acts
locally, and when spatial interaction effects are incoaped through neighbouring dis-
trict and non-neighbouring district excitation (althoutpe effects from neighbouring
and non-neighbouring districts were less strong).

There was evidence to suggest that insurgents retaliatedlite events: the oc-
currence of a police event was found to increase the liketinaf Naxal events. This
suggests that the counterinsurgent actions of the polateréisulted in the death of at
least one Naxal did, on average, little to improve the ségaituation in the short term.

The timings of police events were less well predicted by the@h Although pos-
itive parameters were found for the excitation of policeentity as a result of Naxal
events, these estimates were not significant at the 95% lawebrding to the para-
metric bootstrapping procedure. The lack of model fit forigekevents suggests that
another model may be more appropriate, such as one thatlvarieme according to
the different counter-insurgent strategies adopted.

For Naxal events, the close fit between the residual progebsa oisson process
for Naxal events suggests that the dynamics underlying thdugtion of insurgent
events appears relatively consistent over the ten yearseddtudy period. Of course,
the data used does not capture the whole picture, as it mieslice actions resulting
in Naxal loss of life and does not account for their othenaintis. Others might also
point to the fact that insurgent activity reduces signifttam the latter stages of the
period of study. Nevertheless, this reduction in violenees wot inconsistent with the
Hawkes model, and thus this demonstrates that the modelecapbowerful tool in the
prediction of event occurrence.

There have been a number of modelling contributions madaisgnchapter. A
series of point process models were constructed with isorgacomplexity to test a
number of hypotheses inspired by current literature o gigience, conflict and in-
surgencies. The models themselves are novel in that theyparate the multivariate
nature of the data, spatial interaction effects and noatities brought about by inhi-

bition. The calibration procedure for maximum likelihoostienation when the con-
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ditional intensity function consists of the positive paftaopossibly negative function
is a new contribution to the literature. In addition, the solidated presentation of
bootstrap estimations of parameter-level confidencevatgrresidual analysis for de-
termining goodness of fit, and techniques for assessing uhefosample predictive
performance of a classifier model derived from the point psses serves to demon-
strate the potential applicability of the model.

There are numerous aspects of the conflict that this studydtataken into ac-
count. The close correspondence between the in-samplesanfisample ROC curves
in Figure 5.5 suggest that the model has not been overfittdgbtoalibration data, and
therefore that other mechanisms may well improve the mogdldyond that which is
demonstrated in the residual analysis in Section 5.6.1. &wmmples of influences that
might be incorporated into future models include the roleigilians in the conflict,
and particular features of each of the spatial regions tlghtmake them either more
or less likely to experience conflict events, two factors Hiave been extensively stud-
ied previously in the context of civil violence. Limitatieralso arise due to the model’s
inability to account for coordinated attacks that occurdtaneously. The models re-
lied on the assumption of a simple point process, which euhbhique conditional
intensity functions to be proposed. The models are alsesuty potential sources of
error due to the choice of spatial units employed. In thigctge choice of spatial units
was made in accordance with the available data since fine kmadtion data was not
available.

This chapter progresses further along the modelling spedintroduced in Chap-
ter 1. General mechanisms have been incorporated into almbaeil violence,
namely, the self- and mutual-excitation of events, and gadial dependency of those
excitations, combined with empirical data on the historyhaf conflict. Compared to
the model of rioter target choice in Chapter 4, less empidegh has been employed,
and the mechanisms proposed are more general. In Chaptan@erfstep along this
spectrum will be made, in which a deterministic model is josmgal based on the mutual

interaction of adversaries.
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6.1. INTRODUCTION

6.1 Introduction

Deterministic models reproduce exactly the same beha¥aruwo identical starting
positions or initial system states. There is no randomnesise behaviour of system
entities, and the system will behave precisely as specifietidmodel for each initial
state. If the apparent random nature of much empirical datebe interpreted as fluc-
tuations from a more deterministic process, then detestinmodels can be used to
model complex systems by specifying the behaviour of imdigl system entities and
their interactions for a range of possible scenarios.

One of the reasons for employing such approaches is thatwiatstic models are
amenable to a range of powerful mathematical techniquestapf exploring and pro-
viding insights into the logical consequences that folloand the model specification.
Consequently, inappropriate implications that result fthenproposed mechanisms are
highlighted, and these mechanisms can be assessed witdségdheir suitability for
describing the system. In this sense, deterministic maatelsiseful for evaluating the
extent to which our understanding of how a system works pies/a plausible account
of the observed phenomenon. Furthermore, if a mechanisonsdered to be appro-
priate, analytical tractability can provide intricateigists into the system it models.

The formulation of differential equations is one way of doasting determinis-
tic models of complex systems. Differential equations nhaolde rate of change of a
dependent variable with respect to an independent variabtk can be naturally for-
mulated for a wide range of systems. Additionally, sincéedéntial equations have
been analysed largely in the context of physical systemkdadreds of years, a large
range of tools and analytical concepts exist to interrogatsh models. These tools
are largely concerned with the evolution and behaviour efrttodelled system state
in phase space—the space defined as the union of all posgdtarsstates—and the
consideration of how this might change through either théatian of parameters as-
sociated with the model, or through perturbations of the ehddelf. Two properties
of a deterministic model that might be of interest include skability of system states
and the robustness of that stability to possible changes.

Differential equations are well-equipped to model a ranfjbath temporal and
spatio-temporal processes and, in Chapter 2, many examgegvan related to the

study of conflict and civil violence. One of these, the Riclsardarms race model, is

224



6.1. INTRODUCTION

considered in this chapter in more detail. This example elus demonstrate tech-
niques to analyse differential equations, and to consider $uch techniques might
provide insights into an observed phenomenon. The relatimglicity of this model
ensures wide applicability to a range of conflict scenamos| not just to the military
aims of competing nations, a fact that has been exploitethier studies.

Inspired by the findings earlier in this thesis and elsewh®ehighlight the need
for incorporating spatial dependency in models of humarfliobna novel spatial ex-
tension to the Richardson model is presented, which endideditect consideration
of space on the interactions of competitive adversaries Jatially explicit model is
distinct from existing spatial models of conflict, which igally rely on partial differ-
ential equations or agent-based simulations to modelamtpendencies. It is argued
why this approach to spatial disaggregation, which is baseéntropy-maximising
spatial interaction models, is well-suited to modellingtsgl dependency in civil vio-
lence. Advantages arise due to the model’s ability to inof® non-smooth spatial
domains and more general metric spaces. Moreover, it iedrthat, in contrast to
other types of spatial models, this model is more in line Wtbhardson’s original in-
centives for developing his model: that simple, heuriséisults can lead to powerful
insights, as well as a framework for investigating conflicigesses.

After deriving this spatial model, which to the knowledgetioé author has not
been proposed elsewhere previously, a range of analygchhiques are applied in
order to gain insights into its properties. Starting witgHiy simplified scenarios, for
which the behaviour of the model can be wholly determinad;aimplexity is slowly in-
creased by considering higher-dimensional phase spadesamesponding parameter
spaces, leading to an understanding of the model’s dynamiasre general scenarios.

A supercritical pitchfork bifurcation in the solution paththe model is identified
within a region of the phase space in which real-world systare likely to be located.
This bifurcation is shown to be persistent under a wide rasfgegarameter choices,
and its consequences are discussed. In particular, it wrsthow this bifurcation
comes about as a result of the spatial disaggregation of tielnand emphasises the
importance of considering spatial dependency in such nsodel

This chapter fits into this thesis by considering a modellipgroach that has been

widely employed to model social systems, and, in doing dopduces and analyses a
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new model capable of capturing spatial dependencies ihvidlence and other types
of conflict. Although stochastic models might be better giteang the apparent ran-
domness with which social systems appear to exhibit, ancfilie might be more
adept at prediction and the estimation of model uncertadgterministic models can
still be used to provide insights into our understandingadfial processes. Further-
more, deterministic models can often be specified at a mas®aa level than many
statistical models, and, as such, their findings can bel&t@usacross a range of ex-
amples. This chapter progresses further along the specfumodel types introduced
in Chapter 1, and enables the comparison between the insigtaimed by this model,
and insights obtained by the types of models considerew/eé&ze in this thesis. This

perspective will be summarised in Chapter 7.

6.2 The Richardson model

As described in Chapter 2, the Richardson model was initiahceived as a model
of arms expenditure between two nations in the lead up to Wara consequence,
the dependent variables, given herepbgndg, were taken to be the level of military
expenditure of two nations. The model is given by the follagviwo-dimensional linear

system of ordinary differential equations:

dp .

a =p=-—01p+pq+e (6.1)
dg . N

dt =(q = pP2p — 029 T €2,

where parameters; ando, determine the influence on the change in defence expen-
diture proportional to existing expenditure, apdand p, determine the rate of the
action-reaction relationship between the two adversafiks terms; ande; are those
associated with the external grievances. Typicallyand p, will be positive, as mil-
itary defences of one side will cause increasing defencekeobther.s; ando, are

also typically positive: Richardson hypothesised thatelveitl be some inhibition as-
sociated with an increasing military arsenal, perhapaujingressures placed upon the
government of each nation by their electorate.

In order to analyse the system in equation 6.1, it is firsttemiin vector form as

D —01 P p €1
— + ,

q P2 —O02 q €2
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or, equivalently,

p = Pp +e, (6.2)

where the vectorp = (p, ¢) ande = (€1, €2) and the matrix

—01 M

P p—y

P2 —O02

have been defined.

Given an initial conditionp, = (po, ¢), @ solution of equation 6.2 defines the
resulting trajectory, or solution curve(py, t), with p(pe,0) = po. In general, it can
be shown that, for suitable systems (i.e. those whose deegaare defined locally
by continuously differentiable functiong), solution curves to the differential equation
p = f(p) exist locally top, and are unique (Guckenheimer and Holmes, 1983, pg. 3).

Of patrticular interest when faced with an ordinary diffdralhequation is not just
on the identification of particular solution curves, but sioleration of a family of so-
lution curves. There may, for instance, be different solutturves which eventually
result in exactly the same long-term behaviour. When thisasase, it is instructive to
identify the set of all initial conditions that result in teeame long-term behaviour. This
set of initial conditions is commonly known as the basin ¢rfeettion of that particular
long-term system state.

For general systems of differential equations, there aenge of different types
of long-term behaviours, however just two are considerdaily: divergence to in-
finity, and convergence to a single equilibrium point. Bothtafse behaviours will be
shown to be present in the Richardson system, meaning tleatrdaicg to the model,
defence levels of both nations will either tend to a constantontinue escalating (or
de-escalating, depending on the sign of infinity). It is fsebwn analytically how
these behaviours can occur, before discussing the reddhwoplications for the dif-
ferent types of behaviour. Although the analysis initigdhgsented is straightforward,
it is nevertheless instructive to understand the possid@tiours of the system, and to
understand how insights might be obtained from deterninisbdels more generally.

Equilibrium points occur when solution curves in the plane stop changing, so
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thatp = 0. For the system in equation 6.2, this occurs at the padjnts;.) for which

—01Pe + p1ge + €1 =0 (6.3)

—02Ge + p1pe + €2 = 0. (6.4)

If o109 # p1p2, then, by adding, multiplied by equation 6.3 te; multiplied by
equation 6.4, and by adding multiplied by equation 6.3 tp; multiplied by equation
6.4, it can be shown that there is a unique solution given by

02€1 + p1€2 0162 + Po2€q
(Pes qe) = ( , ) : (6.5)
0102 — P1pP2 0102 — P1P2

Alternatively, if o105 = p1p2, then if
o261 + prég = 0, o162 + p261 = 0,

there are infinitely many equilibrium values in the plane, otherwise there are none.
Looking first at the case in whichy, oy # p1p2, the equilibrium point in equation
6.5 is the only point in the-q plane at which the system is stationary: at this point,
bothp andq are equal to zero. The constant te¢raan be eliminated from equation
6.2 by changing variables using the mappjsig= p — P~'e (the determinant of is
o109 — p1p2, Which is set as nonzero, which ensures the invergedgists). Removing

primes for convenience, the system becomes

p = Pp, (6.6)

and the change of variables has the effect of moving theibquiin point to the origin.
Since the system is linear in the dependent variables, amiite@arly independent

solutionsp; (¢) andp,(t) can be combined to form a general solution

p(t) = aipi(t) + c2pa(t)

which spans the-q plane, where, for each initial conditign,, the unknown constants
c¢1 andc, are chosen so that(0) = po.

Since the analogous one-dimensional differential eqoatie- ay has solutions
of the formy(t) = ke, solutions of the system in equation 6.6 are sought in tha for

p(t) = veM for some) € R andv € R2. This yields

Aver = Pvel,
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and, therefore) andv are, respectively, an eigenvalue and eigenvectdr.of
If v, andv, are two linearly independent eigenvectorsigfwith corresponding
eigenvalues\; and A\, (which may be complex), then the two solutions are linearly

independent and the general solution is given by their tineenbination, so that
p(t) = c;vieM! + cyvae? (6.7)

for constantsg; andc, which are specified by the initial conditions. Furthermdarean
also be shown that, for a given initial conditipg, the general solution in equation 6.7
is unique (Hirsch et al., 2004).

If v; andv, are linearly dependent, then another, linearly indepenseltion
is required in order to construct the general solution inglane. This linearly in-
dependent solution can be derived from the generalisechesgéor v;, defined as
(P — M\5)vs = vy, Wherel, is the two-dimensional identity matrix, and the corre-
sponding solution is given bys(t) = tvieM + vie (see, for example, Britton et al.
(1963, pg. 996)).

The analytic form of the general solution enables us to seethe qualitative
dynamics depend crucially on the eigenvalues. In fact, pissible to categorise the
different types of qualitative behaviour that might arigeebnsidering the range of pos-
sible eigenvalues for a given matriX Previous authors (e.g. Hirsch et al. (2004, pg.
63), Strogatz (1994, pg. 137)) have sought to demonstrateatige of behaviour for
linear systems of the form in equation 6.6 by presentingrdeetdeterminant diagram
in Figure 6.1. This arises because the eigenvalyés : = 1, 2 of the two-dimensional

matrix P are defined by its trac&yr(P), and determinaniet(P), according to
A? — Tr(P)A; + Det(P) = 0.

In particular, the relationship between the trace and detemt determine the type of
equilibrium. For the Richardson system in equation 6.6, theet Tr(P) = —(o; +
09), is the negative of the sum of the inhibition parameters,levtfie determinant,
Det(P) = o109 — p1p2, iS @ measure of the size of inhibition parameters in corspari
to the action-reaction parameters.

In Figure 6.2, the dynamics locally to the equilibrium of thestem in equation

6.6 are shown. The parameters used for each of these casdwasn to correspond
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with the points in Figure 6.1. Note that cases brought abgwgdualities (i.e. those

lying on the lines in Figure 6.1) are not shown as these ar@apmses to separate the

more common dynamics shown in real systems that do not eeqqgurality.

Tr? =4Det

Stable focus

Stable node

Det

Unstable focus

Unstable node

f) (*37*2)

Saddle

e) (2,-1)

Figure 6.1:The trace-determinant diagram for linear planar systems.For a given

two-dimensional systenyy = Pp, the location of the matrix’ on this diagram de-

termines the type of the equilibrium at the origin. The psiaj-f) correspond to the

subfigures in Figure 6.2, which show the qualitative dynanfioc each case.

6.2.1 Nodes

For Det(P) > 0, if Tr(P)? > 4Det(P), the equilibrium is known as a node. Solution

curves near to a node equilibrium are determined by theivelatrength of the eigen-

values and the directions of each associated eigenvee®iFigures 6.2(a) and (d) for

an attractive and a repelling equilibrium, respectivel/)[r(P)? = 4Det(P), then the

eigenvalues are repeated, and solution curves move in aelgioection either towards

or away from the equilibrium value. Bet(P) = 0 andTr(P) # 0, then one of the

eigenvalues is equal to zero and there are infinitely manyl fp@nts on a line that

solution curves either move towards or away from in a perjpetat direction.
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a) Stable Node b) Stable Focus

(=) o
T T

—p —p
~ ¢) Unstable Focus o d) Unstable Node
T T
. ¢) Saddle "o f) Saddle g
T T

—p —p

Figure 6.2:The dynamics around the equilibrium value of the Richardson nodel in
equation 6.6 for different parameter values The parameters are chosen to coincide

with each point in Figure 6.1.
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For Det(P) > 0 andTr(P)? > 4Det(P), if Tr(P) > 0 then both eigenvalues are
real and positive and almost all trajectories diverge tanityfi In this case, nations are
reacting to their own defence levels, as well as the levekheif adversary, without
any inhibition. There is no damping in the system and it isseguently very unstable,
with interactions compounding the escalation effect. Ridban argued that; andos
are typically positive (which is to say there is some inhedamping behaviour), and
it will therefore be assumed thdt(P) < 0.

For Det(P) > 0, Tr(P) < 0 andTr(P)* > 4Det(P), both eigenvalues are real
and negative and trajectories converge to the equilibriafue:s In fact, given the as-
sumption thaflr(P) < 0, the condition thaDet(P) > 0 is necessary and sufficient
to result in a stable equilibrium. Thus, two nations will iggily only cease changing
their defence levels if the sum of the inhibition parametsrpositive, so that there
IS some damping in the system, and if those inhibition terotsveigh the escalation
parameters. In this case, nations are being restraineddy ithernal dynamics—
perhaps through pressures placed upon them by the electarather than reacting to
the threatening actions of their adversary. This heurigsult agrees with common
sense, and begins to hint at how Richardson’s model might pkedpto real-world

scenarios.

6.2.2 Foci

Another type of stable equilibrium can occur whbat(P) > 0 andTr(P) < 0. If
Tr(P)? < 4Det(P) then the eigenvalues are complex conjugates and, sifice
cosf + isin 0, there is rotation of solutions curves and they spiral tolsgsee Figure
6.2 (b)) or away from (see Figure 6.2 (c)) the equilibriumisTie known as a focus.

If Tr(P) = 0 with Det(P) > 0, then the real part of the complex eigenvalues
is equal to zero and solution curves are periodic circulajettories centred on the
equilibrium. By comparing (b) and (c) in Figure 6.2, it can keesthat the closer to the
determinant axis in Figure 6.1 the system is, the more wmtahere is in the solution
curves. For instance, in Figure 6.2(b), the equilibrium fe@us which is far from the
determinant axis, and thus has very quick convergence tedqb#ibrium value. The
system is highly dissipative, and in many practical situaiit can be difficult to detect

the difference between a node and a focus. In Figure 6.2gedquilibrium is a focus
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which is close to the determinant axis and therefore hagisnlaurves that are much
slower, and the system is more conservative. In this caseeves, the equilibrium
is also unstable and so solution curves are diverging away the equilibrium. In
many practical situations, due to the noisiness of availdalkasets, it is possible that
such instability, which is very close to conservative péicarbits, can be mistaken for

either conservative behaviour, or even a stable equihtoriu

6.2.3 Saddles

If Det(P) < 0, then one eigenvalue has negative real part, and the otkgrdsitive
real part, and the equilibrium is a saddle. Saddles havehagracteristic that there is
one direction in which solutions converge to the equilibriand another direction in
which solutions diverge to infinity. All other solutions aadinear combination of the
behaviour in these two directions, which are defined by theraiectors associated with
the negative and positive eigenvalues respectively, aacttbre typically eventually
diverge to infinity. Two saddles are shown in Figures 6.2 (&) @).

Saddles provide further insights of real-world escalapoocesses: they occur
whenDet(P) = o109 — p1p2 < 0, which implies that the action-reaction parameters
outweigh the inhibition parameters. In this scenario, §ysem can be susceptible to
arms races. More insight into this scenario can be obtaigezbbsidering the eigen-
vectors of the matri¥’. Assuming, without loss of generality, that # 0 holds in all
cases of interest (since if both = p, = 0 then there are no action-reaction dynamics,
and if p; = 0 but p, # 0, then the equations are relabelled), the eigenvectorsiaer g
by

o1+ M\ o1+ Ao
vV = ) Vo =
P1 P1
Saddles occur when both eigenvalues are real, with one Ipaisigive and one being

negative. Denoting the positive eigenvalue Qay then, ifo; > 0 andp; > 0, which
Richardson argued occurs in most cases of interest, theveig®en associated with the
positive eigenvalue points in the direction of the positjiadrant in the plane. Almost
all solution curves then either diverge(te, o) or (—oo, —o0). As Richardson stated,
there is either a ‘drift toward war’ or a ‘drift toward closeooperation’ (Richardson,
1960a). For a given parameter set, the condition on whichesig occur depends on the

initial conditions. If the initial condition lies above thiee defined by the eigenvector
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associated with the negative eigenvalue then solutiomsgiao positive infinity, whilst
if the initial conditions lie below this line, then solutisrdiverge to negative infinity.
In either case, the system is unstable, and the state of ediefidiual nation is largely

determined more by international dynamics than by intgpnatesses.

6.2.4 Richardson policy options

According to Richardson’s model, a nation hoping to avoidstakating arms race with
an adversary has several ways in which they can increaseahiditg of the system.
The impacts of these strategies on the system parametessiiamarised in Figure
6.3. They can, for instance, attempt to enforce a stabldiequim by increasing the
value ofDet(P) = o109 — p1p2. They can do this either by decreasing their escalation
parameter, as shown in Figure 6.3(a) or by increasing théibition parameter, as
shown in Figure 6.3(b).

As another strategy, if they perceive the system to be ulestabd in the form
of a saddle, they can attempt to change the location of thersysn thep-q plane so
that any initial conditions will lie below the eigenvectassaciated with the negative
eigenvalue. This could be done by decreasing the level @ndek, or increasing the
level of cooperation with their adversary.

Alternatively, they could attempt to alter the directioriloé eigenvector associated
with the negative eigenvalue so that the current state afyktem falls below this line,
and the system will result in an escalating process of catiper. This could be done
by altering the parameters in the system in order to minithealifference betweew,
andv, by ensuring that,; and )\, are as close as possible. Given that the eigenvalues
are equal wheflr(P)? = 4Det(P), this again involves increasing the value of the
determinant.

Finally, the position of the equilibrium can be changed byyiray the level of
grievances determined hyas shown in Figure 6.3(c). Bet(P) < 0, an objective
might be to minimise grievances so that the equilibrium p@ras close to the origin
as possible, thereby increasing the possibility that thte sif the system will lie in the
half of the plane which results in an escalation of coopenati

Of course, even if a nation were to make these changes, there guarantee

that their adversary will not change their dynamics in otdgout the system back on
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Figure 6.3:Unilateral policy options available to nationi. a) shows the change in the
system according the trace-determinant diagram from Eigut whery; is decreased
and b) shows the change wheris increased. Note that the half plane witi( P) > 0

is shaded since i#;,0, > 0, as Richardson hypothesised, the system will not lie in
this portion of the plane. c) shows the impact of natiseducing external grievances
when the system is a saddle. The equilibrium point will maweards the positive
quadrant, meaning that for initial conditions given @y, o), the system will tend

towards greater cooperation, rather than greater hgstilit
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a course to an escalating arms race. The Richardson modedfid us highlighting
the possible consequences of a ‘mechanical’ arms race. AsmRison described, the
model is “merely a description of what people would do if tlikgf not stop to think”
(Richardson, 1960a, pg. 12). This implies a view of intewradl conflict whose conse-
guences, once set in motion, cannot be escaped. Subsgraatitibrs have considered
various ways of extending the Richardson model in order torjpmrate some notion
of decision-making on the part of the adversaries. Someexample, have consid-
ered the Richardson model from the perspective of contrarthand game theory, in
which nations act according to a set of predefined objec{igsligator and Brito,
1976; Gillespie et al., 1977; Bennett, 1987). Although mdosely considering the
decision-making of individuals that lead to the system onrtes, such approaches can
lose some of the generality that a more descriptive modesoaretimes afford.

The analysis of the Richardson model has been presented theingnguage of
military arms races, in which two nations retaliate by irasieg their level of military
expenditure. As explained in Chapter 2, the dependent Jasabight also represent
more abstract measures of conflict, or through measuresdhdie interpreted through
means other than expenditure. Indeed, it has been arguedhelse that the model
represents a very general conflict escalation process angljch, can be considered
to model a wide range of potential systems in which two adres are subject to
retaliation. The ability for the model to consider such m®ses during conflicts such
as insurgency and other types of civil violence is the redtduas been presented in this
chapter. For the remainder of this chapter, the dependeablasp andq are taken to

be a more general and abstract measure of hostility betweeadversaries.

6.3 Spatial disaggregation of the Richardson model

It has been demonstrated in this thesis and elsewhere thigdlspependency in models
of civil violence captures important processes. Consedyegterministic models that
do not explicitly model these spatial dependencies haves mestrictive assumptions
than those that do. It is advantageous, therefore, to cenbmlv to incorporate space
in such models, so that a modeller may assess whether orenotdlusion of space is
required in any given scenario.

In this section, the Richardson model of conflict escalatsospatially disaggre-
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gated in two different ways. First, a partial differentigjuation (henceforth abbrevi-
ated as PDE) is derived, which is inspired by a spatial dissgggion of the competitive
Lotka-Volterra model used to model gang rivalries in Bragiiam et al. (2012). This
approach to incorporate spatial dependency is widely usedological models (Mal-
chow et al., 2008), and has also been used in a range of differequation-based
models of human conflict. Some limitations of this approaghdiscussed, and, as a
result, it is concluded that a different approach might alsaitilised. Consequently, a
second method for the spatial disaggregation of conflictetsod presented that uses
an entropy maximising spatial interaction model to accdantnterdependencies be-
tween spatial regions. It is argued that this spatial dissgggion addresses some of
the limitations encountered with the PDE approach sincante applied to more gen-
eral metric spaces. Additionally, it is argued that this eidwblds an advantage over
simulation approaches, such as agent-based simulatiertodts suitability for inter-
rogation using non-linear dynamical systems analysis. dis@ussion in what follows
is related closely to previous studies investigating the ob spatial disaggregation in

deterministic models, such as Durrett and Levin (1994).

6.3.1 A PDE disaggregation of the competitive Lotka-Volterra sys-

tem
The non-spatial competitive Lotka-Volterra model is firggented, in order to motivate
the spatial disaggregation of deterministic ordinaryedié#htial equations. This model
describes competition between two species, and has beéstadied, usually in an
ecological context. Given the populations of two specieandg, the equations that

govern their evolution are

: P+ Ci2q
- 11— 6.8
= (1 2521) ©8)
i = rog | 4t Gap
2 K2 )

for parameters,, 5, (12, (21, K1 andK,. The interpretation of the model is as follows:
r1 andr, represent growth rates—that is, birth rates minus natwalldrates—of the
two populationsg and g, respectively. K; and K, are the carrying capacities of the
environment for the populationsandg, respectively. These are the maximum possible

values for each of the populations that the environmentlis bsupport and sustain.
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The parameters;; and(,; are competition terms and determine the rate at which the
population ofp is decreased by the presence of the populatiand the rate at which
the population of; is decreased by the presence of populatiomspectively.

Using a similar analysis to the Richardson model that wasepted in Section
6.2, it can be shown that certain parameter values andlindiaitions lead to either
the peaceful coexistence of the two species, or the extimcti one species due to the
presence of the other. This analysis is well presented wg&te (1994, pg. 155) for
parameter values, = K; = 3,17, = Ky = 2, (13 = 2 and({y; = 1, in which the
dependent variables are taken to be populations of rabhitsheep competing over
the same patch of grass.

By re-labelling the parameters of the model in equation 618, model can be
related to the Richardson model, as highlighted in Epsted®7{L In particular, by

setting
_ T _ _T’1C12
Kl P1 Kl )

and similarly fore,, o andp,, the system in equation 6.8 can be written as

€1 =" 01

p=p(—=0o1p+ pig + &) (6.9)

G =q( pop — 02q + €2),

which is reminiscent of the functional form of the Richardsnadel in equation 6.1,
but with a multiplicative dependent variable term in eachatpn. If the initial con-
ditions of this system are in the positive quadrant, the iplidative term ensures that
either component of the dependent variable cannot becogative. It is also interest-
ing to note that this system has the same equilibrium valubeRichardson system,
together with three other equilibria brought about by the-hoearity. The Richardson
equilibrium corresponds to the peaceful coexistence oftloespecies.

In Brantingham et al. (2012), a spatially explicit versiorttté competitive Lotka-
Volterra model is used to model two gangs that compete ovetagal boundaries in
a city, in which the dependent variables of the system vargpice as well as time.
Rather than considering the population of two types of gaag$s often the case with
the competitive Lotka-\Volterra system, the dependentalées,p(x,t) and ¢(x,t),
are taken to be the density of gang-related activitieshaiieid to gand and gang?,

respectively. Thus, the locations and timings of gangteelactivities are modelled
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using spatially continuous functiopsandg, and their values dix, ¢) correspond to the
risk of observing a gang-related activity(at, ¢).
The spatially-explicit competitive Lotka-Volterra modilat Brantingham et al.

(2012) propose is given by

0

8_275) =Dy V2 p+p(—o1p+ pig+e) — 6ip (6.10)
0

8—;]:D2VQQ+Q(102P—U2Q+€2)—52(17

where diffusion coefficient®); and D, are introduced, together with extra inhibition
parameters$; andd,. The inhibition termsy;p andd,q serve to incorporate intrinsic
linear growth or decay of gang-related activities. The apmry/? is known as the
Laplacian and can be written as

, o o

vV

providing the model’s diffusive dynamics in accordancehvick’s laws of diffusion
(De La Barrera, 2005). In particular, this model supposesghag-related activities
will spread from areas in which high levels of gang-relatetivities occur to areas in
which low levels of gang-related activities occur. The aushargue that such dynamics
are justified due to the tendency for gangs to seek new terthat has not experienced
previous gang-related activities. Such expansion is ti&lyebarriers in the urban envi-
ronment, and the behaviours and spatial extent of the opga@sing, according to the
other terms in the equation.

Given evidence for expansion, the diffusive assumptioritescsuitable; however,
in considering more general scenarios, this assumptionmoaylways be appropri-
ate. In what follows, a PDE version of the Richardson modeké&sgnted, which is
disaggregated in the same way as the Lotka-Volterra systeaguation 6.10. The ap-
plicability of the model to more general spaces is consifleand the assumptions used

in deriving this model are critiqued.

6.3.2 A PDE disaggregation of the Richardson model

It is possible to spatially disaggregate the Richardson iadeguation 6.1 using an
analogous diffusive approach to Brantingham et al. (201R)erspatially continuous

dependent variables(x, t) and ¢(x, t), which now correspond to the more general
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concept of conflict or contempt between two adversariesatadly disaggregated PDE

Richardson model is given by

0

a—f =DiV’p—op+pmqtea (6.12)
0

8_§ = Dy \J? q + pap — 02q + €3,

where D, and D, are diffusion coefficientsy/? is the operator defined in equation
6.11, and the remaining parameters are interpreted acgpiaihe original Richardson
model.

A number of assumptions implicit in this model may be unddde when the
model is applied to particular conflicts, such as insurgear other types of civil
violence. First, as with the model by Brantingham et al. (30&2quation 6.10, the
diffusive dynamics imply that dependent variables willuratly spread from areas with
high concentration to areas of low concentration. This iegpthat, according to this
model, the intensity of the conflict will tend to spread oueog geographic area over
time.

As has been shown in this thesis and elsewhere; howeverctugrence of civil
violence can be very highly clustered in space, with a larggnty of events occurring
over a long time scale within a few small areas. It was show®hapter 3, for instance,
that relocation of offences during the 2011 London riotshpps the most analogous
with the types of diffusive dynamics discussed here, oeclimuch less often than
would be anticipated had the events been modelled indepndét the same time,
occurrences of containment, corresponding to conflictsrédraain stationary and do
not spread, occurred at a higher rate than could have beanpated if the events
were independent. Of course, it is possible for conflictpread spatially, but forcing
models to observe this dynamical behaviour is potentiahtrictive. Such models
sometimes unnecessarily use physical analogies from tildg sf fluid dynamics that
may not always be appropriate (Durrett and Levin, 1994; @Gtezzand Villena, 2011).

Second, the model requires the dependent varighlest) and ¢(x,t) to be
smooth functions, in order to ensure that their secondalatérivatives exist. Since
data is often aggregated into discrete geographic are@sintplies that such mod-
els often require the construction of kernel density edimsa particularly if they are

to be applied to real-world data. This requires further niiode assumptions to be
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made regarding the choice of estimator and the value of argnpaters required by
that estimator. Furthermore, discontinuities may be meguwithin the model due to

geographical features over which the conflict may be moréeiylto spread, such

as rivers, roads, or geopolitical boundaries. There areedechniques, however, that
exist to incorporate such effects (see, for example, Snigth €2010)).

Finally, solutions to partial differential equations réguthe specification of spa-
tial boundary conditions, which, in many cases may be difficudefine if the spatial
area of interest has no natural boundary that contains thandigs.

All of these factors suggest that a number of additional,, amdome cases, re-
strictive assumptions are required for the model to be mpdgadly explicit through
the use of PDEs. In what follows, a different approach forgpatial disaggregation of
the model is employed in an effort to preserve more of the igdibe associated with

the original Richardson model than is afforded by PDE appresc

6.3.3 An entropy-maximising spatial interaction disaggregation

In this section, the Richardson model in equation 6.1 is ajiatilisaggregated using
an entropy maximising spatial interaction model that hasnbdeveloped to address
social systems with spatial dependency. Spatial intemactiodels have been employed
previously within both static and dynamic spatial modelsomsider retail systems
(Harris and Wilson, 1978; Wilson, 2008); international naigpn (Dennett and Wilson,
2013); rioting (Davies et al., 2013); international tradey(and Wilson, 2012) and
ecological dynamics (Wilson, 2006).

To begin, consider a two-dimensional manifold, on which conflict between
two adversaries takes place. Suppose that one adversapgated at the points
X1,Xs,...,Xy € M. In other words, the adversary is disparately distributesr g1,
perhaps due to the positions of military bases, alliedesathts, or gang safe houses,
depending on the application of the model. Similarly, siggptihat their adversary is
located at the pointg;, y»,...,ya € M.

In order to maintain generality, the dependent variablesHe system are taken
to be general measures of conflict, hostility or contemptitols each adversary. In the
disaggregated system, however, a measure of conflict atleaation is tracked. In

other words, the variables to be consideredares, ..., py, which correspond to lev-
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els of hostility associated with locatiors, x», ..., x, respectively, and,, ¢, ..., qv,
which correspond to levels of hostility associated withalt@nsy , yo, ..., y s, respec-
tively.

It is assumed similar mechanisms to the original Richardsodahinfluence the
variablep;, for each index. That is,p; depends on three terms: the action-reaction
term that itself depends on the adversary who is distriboted the manifold, repre-
senting the retaliatory dynamics driving the system; a meagf inhibition, represent-
ing each adversary’s natural inclination to avoid conflasig external grievances that
may be present a;.

The action-reaction term within the equation fgris assumed to depend on the
variablesqy, ¢s, ..., qur, representing the level of hostility of their adversary. plar-
ticular, it is proposed that this term is given by a weightath=f these terms, with
correspondingveighting factorsw;; € [0, 1], which serve to specify the proportion
of ¢, that contributes to the action-reaction dynamicgpfor everyl and;j. These
weighting factors will be modelled explicitly in what folls. Following Richardson,
the second term, representing inhibition mechanismskentéo be proportional to the
hostility of p; and the third term, representing external grievances &gsdowith the
hostility p;, is taken to be a constant.

With an analogous equation fgr, for some index, but with corresponding action-
reaction weighting factors denoted by, the disaggregated Richardson model is

M

]jj = —01DPj +,01 quwlj + €14, ] = 17 "'7N7 (613)
=1
N
qQ = pzzpjvjl—02%+€2/ﬁ, l=1,...,M,

j=1
where, as beforep; and p, specify the intensity of the action-reaction dynamies,
ando, specify the extent to which there is inhibition to growth wstility, ande;¢; and
ez are the levels of external grievance associated witindg;, respectively.
Since the model is a disaggregation of the full Richardsonehatlis assumed
that the dynamics of the aggregated system—that is, thersydtfined by the hostility

of each adversary as a whole—follows the original Richardbgramics. Thus, it is
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assumed that

N
dwy=1, I=1..M (6.14)
j=1

M

dop=1,  j=1..,N

=1

and that

N
> =1, (6.15)
j=1
M
Z Ry 1,
=1
so that

N M N
ZﬁjzpleJ—Ulzpj+el, (6.16)
J=1 =1 j=1

M N M
ZC}Z = Pzij _UIZQl + €2.
=1 =1 =1

Settingp = Z?’:lpj andg = " ¢, it can be seen that the system in equation 6.16
is equivalent to the system in equation 6.1. Therefore, yimauhics for the aggregated
system can be inferred from the analysis in section 6.2. iSkas important feature of
the model and is utilised in the analysis sections of thiptdran what follows.

In order to derive an explicit form for the model in equatiod® further as-
sumptions are required. It is assumed that 1/N andx; = 1/M, so that external
grievances impagi; andg; similarly over different values of and!. This assumption
can be generalised, although such generalisations ar@nsidered in this thesis.

In order to find an explicit analytical expression foy; andv;;, constraints are
imposed that describe how these weightings depend on thialsgiatribution of the
locations of each adversary and the measures of hostilitgsd constraints are analo-
gous to the derivation of the entropy maximising spatiariattion model described in
Wilson (2008).

In order to define the constraints, a mettic M x M — Ris introduced. Taking
two locations,x;,y; € M, d(x;,y;) is a measure of impedance, distance, or cost

betweenx; andy;. Metrics are symmetric and thu$x;,y;) = d(y;, x;).
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Considering first the weightings;;, it is assumed that the weighted mean distance

over all possible locations is constant so that

M N
Z sz]‘d(xj, yi) =, (6.17)
=1 j=1

for some positive constant. Sincew;; > 0 by construction and sine&x;,y;) > 0 for
all i andy (which is another property of a metric), then whé;, y;) is large,w;; will
be small, meaning that two adversaries located a long way &wm each other will
have a small effect on each other; whereas, wife, y;) is small,w;; is large, and
two nearby adversaries will be influenced by each other. trapee, therefore, has a
diminishing effect on the magnitude of the resulting weligiptand formulates Tobler’s
first law of geography within the model, forcing nearer tharig be more related than
farther things (Tobler, 1970).

Whilst the constraint in equation 6.17 specifies the relatigm between the dis-
tance metric and the weightings; in what will be the final model, a second constraint
specifies the relationship between the weights and theliystieasured;, ps, ..., p;

as

M N N
Z Zwlj Inp; =In (prl) = (o (6.18)
j 1=1

=1 j=1

for some constant,. p,, in equation 6.18 is the weighted geometric mean, weighted
according tow;; for j = 1,2, ..., N, for each adversary This is a measure of central
tendency associated with the hostility measyrg9», ..., py. The product of these
measures of central tendency are constrained to be cofstaitpossible weightings
wy;. The geometric mean is used instead of the arithmetic meamé&hematical
simplicity in what follows. For an adversary g, this constraint forces the weighting
wy; to be proportional to a power @f;, as will be shown in what follows.

Following Wilson (1970), it is assumed that the weightingsfor [ = 1,..., M
andj = 1, ..., N can be considered to arise from a thermodynamic system ésingpr
of a large number of very small distinct units that are ablfdw from locationsy;,
to x;. The weightingw;; represents the proportion of these small unité tat flow
to j when the thermodynamic system is in equilibrium. In presi@pplications of
the model, the individual units that flow have included moaeyg people; however,

for the present purposes, in which a general model of condlisbught, the quantity
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flowing from i to 5 is assumed to be a conceptual measure of threat. This is & nove
interpretation of the following well-known derivation dfi¢ model, and, as will be
demonstrated, enables a link between this modelling frasrieand a range of conflict
models, such as the general Richardson model that is derared h

Forl =1,...M andj = 1,..., N, the set of flows given byw;,; }—where the
bracket notation corresponds to the set of all flawsfor i = 1,2,...,M andj =
1,2, ..., N—can be realised by a number of different so-called micabest in which
wy; Is the proportion of all units flowing frony; to x;.

To illustrate this further, consider the scenario in whicére are just four distinct
units of threat (as opposed to a large number of units in tHed&rivation). Sup-
pose also that these four units can flow from eithieror y,—the locations of one
adversary—and can flow to eithef or x,—the locations of another adversary. De-
note the number of units that flow frofrto 5 by @;;, where the tilde notation is used
to distinguish the counts of these units in contrast to tlp@rtion. Then, given no
constraints on the types of flows that are possible, the niady Idistribution of the
flow of threat is the realisation in which a single unit of tarédows from fromy, to
bothx; andx, and a single unit flows fromg, to bothx; andx, so thatw;; = 1 for alll

[ andj. With four units, there are exactly

!
W ({@y;}) = ﬁ =24 (6.19)

possible scenarios, or ‘micro-states’, which result iis game distribution of flows. In
contrast, the scenario in whiehl; = 4 whilst@w;; = 0 for (I,5) # (1,1) has exactly
one corresponding micro-state in which all units of threawvfiromy; to x;. Thus, the
first scenario is considered to be more likely to occur, angse] as the distribution of
the flows within the model.

For a large number of threat units given bythe number of possible micro-states
that give rise to a specific set of floys,; } can be calculated as

T!

B sz 7I’lj!'

W ({w;;}) is the number of ways in which a particular realisation of diribution

W ({wy;})

given by{w;; } can arise, and is therefore a measure of the likelihood afrvibgy the
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set of valueqw;; }. This measure can be simplified by taking the logarithm taiobt
In (W ({a0y;})) = In(T") Z In(a;!)
and, by substituting Stirling’s approximation, which stthat, for large,
log(n!) ~ nlnn —n,
the following is obtained:
In (W ({a;})) = In(T1) =Y~ (g In(iby;) — 1) - (6.20)

ly

The final term in equation 6.20 is
> =T (6.21)
lj

and is therefore equal to a constant.is also constant, thus, in order select the distri-
bution {w;; } with the highest likelihood of being observed (providedraitro-states
are equally possible), it is sufficient to take the distridat{;; } that maximises the

entropy of the system, defined as

M N
S ({iy}) ==Y Y iy Indiy. (6.22)

=1 j=1
Maximising the value of5' in equation 6.22, whilst satisfying the constraints in equa
tions 6.14, 6.17 and 6.18 (which also hold fab;;} sinceTw;; = w;;) produces an
unbiased maximum likelihood estimate of the flows subjeetxiactly these constraints
and no other assumptions. In what follows, proporti¢ns } are used rather than ac-
tual counts of the units of threat, since the function in ¢igme6.22 can be maximised

without loss of generality by maximising the function

S ({wy,}) = Zzwm In wy;. (6.23)

=1 j=1
This result provides the model of the weightings required] B obtained using the

method of Lagrangian multipliers. Following this methduk points at which

VA =0, (6.24)
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whereA is defined as

A({wi;} s o, B, {m}) Zzwu Inwy; + « <ZZU}U Inp; — ) (6.25)
1=1

=1 j=1 j=1

- <Z Zwljd(xja Yl) - C1>

=1 j=1
M N
=1 j=1
for so-called Lagrangian multiplierg g and~, forl = 1, ..., M, are the points at which
the value ofS in equation 6.22 is maximised subject to the constraintguagon 6.14,
6.17 and 6.18. Differentiating with respect to eagh and with respect to each of the

Lagrangian multipliers gives

oA
8wlj N

fori=1,...,Mandj=1,..,N, and

_ln(wlj) -1+ Oéh’l(pj) - Bd(xjayl) - M,

M N

OA
a— = ZZwljlnpj — Co
o I=1 j=1
oA M N
% = Z Zwljd(xjy}’l) — G
I=1 j=1
N
8_71 = Zwlj -1,

1

<.
I

forl =1,..., M. If the constraints are satisfied, then equation 6.24 isfediwhen

i exp(—pBd(x;,y1))
1 exp(1+ ) '

fori = 1,..,.M andj = 1,...,N. The constraint in equation 6.14 can be used to

eliminate~,, since

ip exp(—Bd(x;,y1))

=1,
exp(l + )

j=1
and so

exp(l + ) ij exp(—Bd(x;, y1))-

Thus, the weighting factors;, belng the values that maximise the entropy in equation
6.22, subject to the constraints in equations 6.14, 6.1 64 can be written as
p?efﬁd(xg»yz)

N —Bd(x. ’
Zj/:1p?/e Bd(x;1,y1)

wlj =
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for parametersy and 3, and where the subscrigt has been introduced to distinguish
it from j. The weightingw;; determines the extent to whighinfluences the reactive
retaliatory behaviour of;. It can be interpreted as a weighted comparisap; @gainst
py for j/ =1,2,...N, weighted according to the distances betwgeandx;, andy;
andx;.
By writing
pj =exp (alnpy), (6.26)

for j/ = 1,2,..., N, it can be seen that the model has a similar functional fortheo
discrete choice model used to model rioter target choice iap@mn 4. Indeed, the
two models are known to be equivalent (Fotheringham and {B/KES89). One might
therefore interpret the weightings; as the attractiveness perceived by the adversary at
y;, of each target at; for j = 1,2, ..., N. In this case, ‘attractiveness’ is a function of
hostility levelsp; and distancé(x;,y;). The use of the term ‘attractiveness’, however,
should be used with caution, as this implies that an adwelisaattracted to target
adversaries with high hostility, which may not be reflectféhe purposeful choices of
each adversary, but rather a necessary precaution. Itikiforeason that the entropy-
maximisation derivation proposed here is used, as opposkd formal discrete choice
framework outlined in Chapter 4.

By an analogous derivation, a similar expression may be efior the retaliatory
effect ong, from p;, with corresponding weightings;, given by

v ,—6d(y1,x;)

Vi1 = ¢
= M _ N
Zl’:l qﬁe dd(yy x;)

(6.27)

for further new parametersandd, and subscript.
Returning to equation 6.13, and substituting in the expoassiorw;; andv;;, the
spatially-explicit Richardson model for two adversariespdirately distributed over a

manifold M with associated distance metric M x M — R, is given by

p;?le—ﬁd(xj Y

M
€1

PjZ—Ulpj‘FPlE UESN o iy T v
=1 Z]/ p]/e B ( 3 7YZ) N

(6.28)

Y ,—0d(y1,%x;
ql e (¥ XJ) n 6_2
Zl]y q;/fe_‘Sd()’l’vxj) M’

N
@ = —o2q; + p2 ij

Jj=1

foryj=1,2,...Nandl=1,2,..., M.
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The model in equation 6.28 extends Richardson’s model byaithplincorporat-
ing the impact of space via the metric Advantages over other methods of modelling
spatial conflict processes (such as partial differentialatigns or multi-agent simu-
lations) include the explicit and relatively general asptions required to derive the
model, together with its concise analytical form, enabtimg model to be interrogated
analytically to obtain insights. Since few restrictionsédeen placed upon the dis-
tance metric, the model can be applied to a range of conflictgases. For example, it
might be applied to international arms races, in which gpaffects between nations
plays a role in their armament decision-making processes {er example, Goldsmith
(2007) who demonstrates such spatial dependency in ryitans expenditure). The
metric may also be constructed to incorporate non-spagalures such as historic ties
between nations as a means of reducing the effect of thespameling threat weight-
ing.

Moreover, the model is general enough to be applied to anflicoprocess in-
volving retaliatory dynamics and spatial dependency. I$ wescussed in Chapter 2
how similar models—some with explicit spatial dependeacy] some without—have
been considered in the context of gang rivalries, psychcédgonflict, and civil and
insurgent conflicts, amongst others. To the knowledge cdthior, the model in equa-
tion 6.28 is novel and has not been investigated elsewhekegusly. For this reason,
the generality of the model is preserved and, for the timadyespecific applications
are not considered. Thus, in what follows, this model is @sqal using techniques from
non-linear dynamical systems analysis to obtain genesajlits into its properties and

to demonstrate some of its logical implications.

6.4 Nonlinear dynamical systems analysis

In this section, a range of tools that have been developechdtyse nonlinear dy-
namical systems are employed to obtain insights into theemwdequation 6.28.
The types of insights sought include the understanding efdéimge of possible long-
term behaviours of the system, and an appreciation of howinguthe model’s pa-
rameters changes this behaviour. As in section 6.2, in wtiiehinear Richardson
model was considered from a dynamical systems perspedtiienot just individ-

ual solution curves for a specific initial condition, dertbteere by(p(to), q(to)) =
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(p1(to), -, pn(to), q1(to), ---, qar(to)), that are of interest, but also families of solution
curves, which can be used to determine the range of posséhiaviburs that might
arise for any initial condition within a given subset of tHeage space.

To begin, some simplifying assumptions are made. In whaovia, a reduced
parameter space is considered in whick- v = 1, 6 = 3, ando; = 0, = 0. Respec-
tively, these imply: thap depends linearly op in both the numerator and denominator
of the action-reaction term (which combine to form a nordinteinction); that both ad-
versaries react to impedance 81 at the same rate; and that both adversaries react to
internal constraints at the same rate. In accordance withaRison’s original model,
the parameterg,, p2, 01, 02, €; ande, are set to be nonnegative. The paraméter
is also taken to be nonnegative, to ensure that distance pldyminishing role in the
weighting factorsy;; andvj;.

It is possible to simplify the model further, this time at nostto the generalis-

ability of the model, by rescaling the system. Indeed, stultistg

1.
t= —t, Pi = O',éi, € = Uéi, (629)
g

into the model eliminates the parameter Relabelling the parameters by removing
hats, and taking into account the other simplifying assuongt the model in equation

6.28 becomes

| M pj€76d(xj’yl) €1
Pi==pitn 12—1: ! SN e Y (60
N —Bd(yi,x;)
. Qe ! &
q = —q + P2 ij M ql’e_ﬂd(yl,’Xj) + M

j=1 v

There are five parameters in equation 6.30 whose effect ogygtem dynamics
requires exploration.p; and p, are analogous to the action-reaction terms for each
adversary in the original Richardson model and are antiegotd play a similar role.
That is, as they increase, the system is expected to becomeeunstable. A similar
comparison can be made fer ande,, which are external grievance terms, and are
anticipated to play a role in the magnitude of resulting solucurves. The parameter
B, however, has no analogy within the original Richardson rmhodks inclusion in
equation 6.30 is as a direct result of the spatial disaggicega

In the sections that follow, the model in equation 6.30 issidered in a series

of idealised scenarios. From these scenarios, modeshtssigto the model can be
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obtained. It will be demonstrated how some of these insighgsconsistent with the
behaviour of the model in more complicated scenarios, feptti more useful insights
that might be employed within case studies. Initially, th@ehsion of the dependent
variable, given byN + M, is minimised, since low-dimensional non-linear systems
are often the easiest to analyse. To this end, the model i<éirsidered withV +

M = 3, which is the lowest dimension of the dependent variableviach the model
admits non-trivial spatial disaggregation of conflict dgmies (V. = M = 1 leads to
Richardson’s original system). Next, a scenario is consdievith N + M = 4, and
thenN + M = 8. Finally, the model is investigated in a general number ofatisions,

using the findings of the more simple scenarios to instrueatmlysis.

6.4.1 A three-dimensional scenario

The first scenario to be considered is the simplest with nigiak spatial disaggrega-
tion. Without loss of generality, this is given by the caseewlV = 2 and M = 1,
so that one adversary is distributed over two locations—eaitpnsx;, x, € M—and
the other adversary remains at just one location, gives lay M. This scenario can
be thought of as one step below a macro-level model in whietsgfatial dependency
is completely aggregated (and therefore given by the aldg®ichardson model).

In order to fully specify the model, the metritis defined. A metric is required
that distinguishes between the locationsandx,, and, for analytic simplicity, is set
here so that

d(xy,y) =0, d(xa,y) =1,

so that the distance betwegnandy is negligible, whilsty andx, are different loca-

tions onM. The resulting three-dimensional system can be written as

. qp1 €1
=—-pt+p—+ =
h D1 P1p1 +pge—5 5
-8
. qpoe €
P2 = —p2 + ,01—2 + - (6.31)

p1+pe P 2
qd=—q+ p2(p1 +p2) + €2

The first constraint specified in the spatial disaggregaifadhe model in equation
6.14 ensures that the aggregated system, taken to be the sherhostility levels over

the different locations of each adversary, is equivalethécsystem as described by the
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original linear Richardson model. The dynamics of the vdeish = p; + p, andq are
therefore given by equation 6.1. Consequently, the linesdilgly analysis presented

in Section 6.2 can also be utilised here. During this anglyisiwas determined that
the Richardson model has a unique equilibrium which is stépdad only if, 0,05 —

pip2 > 0 ando; + o5 > 0. Translating these criteria using the same rescaling as in
6.29, and taking into account the constraints placed upoanpeters, the aggregated

system converges to a stable equilibrium if, and only if,

p1p2 < 1,
and this equilibrium is given by
p=pi+p= A2 _atma (6.32)
L= pip2 L= pip2

Equation 6.32 defines a line in three-dimensidgpal p,, ¢)-space as the intersec-
tion of two planes. If the stability criteria are satisfie@ithe system converges to this
line. If p1po > 1, then the aggregated system is unstable and almost alicsotuirves
diverge to infinity.

For the remainder of this section, it is assumed fhat < 1, so that all solu-
tion curves in the aggregated system converge to a stabikbeigm, and all solution
curves in the three-dimensional system in equation 6.3%erge to the line defined by
equation 6.32. It remains to find the dynamics of the systenthisrline, representing
the behaviour of the system that is due to spatial disaggjogga

The dynamics on the line of equation 6.32 can be found thraughange of
variables to separate the model into two components: tlggnatilinear Richardson
system, which is well-understood, and the unknown dynabmgsght about by spatial

disaggregation. To this end, the variables

p =p1+ Do, T =p1 — D2,

are introduced.

Re-writing the system in equation 6.31 in terms of the vagap] ¢ andr, leads
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to

p=-pr+tpqg+ta (6.33)

¢=—q+pp+ e (6.34)
p(l—eP)+r(l+e?)
p(1+eP)+r(l—eh)

which isolates the dynamics of the aggregated system wathriexplored dynamics on

r = —r+ piq (6.35)

the line defined by 6.32. Equations 6.33 and 6.34 correspotitetRichardson model
in equation 6.1 withr; = 0, = 1, and do not depend an The unexplored dynamics
captured by equation 6.35, which incorporates the effespatial disaggregation, can
be considered as a distinct system for given valugsanfdg.

In what follows, it is assumed that the system has convergehet line in 6.32,
and therefore the values pfandq are fixed positive constants as given in 6.32. The
dynamics are therefore given by the one-dimensional system

p(l—eP)+r(l+eP)
p(l+ef)+r(l—ef)

This section proceeds by considering the dynamics of tmgpldied system,

r=—r+pq (6.36)

thereby leading to an understanding of how spatial depeaydisnincorporated into
the model, and, specifically, how hostility against the aslaey aty is distributed over
the locationsx; andx, for different parameter values.

The system in equation 6.36 is undefined when

r:—<1+eﬂ)n (6.37)

1—e b

and so the analysis presented here is restricted to casésadh this condition does not
occur. For equality in equation 6.37 andp must have opposite signs; however, since
d(x1,y) < d(x2,y), and since distance is hypothesised to have a diminishfagtefn
the resulting hostility, it may be assumed that> p, for p > 0 and, therefore, that
r > 0. Thus, this condition is assumed not to occur in scenariastefest.

The system in equation 6.36 is stationary when

l—e ) +r(l+e”
R (e R (e B
pl+e?) tr(l—e?)

the roots of which are solutions to the quadratic equation

1+e?
72+(1_65)@—pmﬁ—pmq=0 (6.38)
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There are two real roots to equation 6.38, given by

1/1+eP 1 //1+eB\?
re=—= ( > (p—pmq) £ —\/( ) (p — p19)® +4p1pg,  (6.39)

2\1—¢eh 2 1—eh
which implies that there are two equilibria on the line dedfily equation 6.32. Since
4p1pq > 0,7_ < 0 andr, > 0. The pointr, is therefore a unique positive equilibrium
of equation 6.36.
The stability of this equilibrium can be determined by coesing the derivative
of  with respect to-, at the point-, . If

dar
dr

T+

<0, (6.40)

then the equilibrium is stable. This condition can be vedifiey considering small
deviations from the equilibrium at = r,, and determining whether the system will
return to the equilibrium value or move away from it. Speaillig if ¢ > 0 is small
enough, then, if equation 6.40 holds, the value atr = r, — € is positive, and so
the value ofr will increase (since determines the rate at whietchanges), and move
towardsr = r,. Similarly, if equation 6.40 holds, then the valuerchtr = r, + ¢
will be negative, the value of will decrease, and again move back towards The
converse also holds: if the derivativejioltr = r, is positive, then the equilibrium is
unstable.
Differentiating equation 6.36 obtains
dr 1+ef)?2—(1—eh)?
o plpq(p((l + 65)) + :(1 - eﬁ)))Q'

If p > r as expected, then
(1+eP)2— (1 —eP)?
(p(L+e77)? +p(1 = e7F)?)
., P ( (I+e )P —(1—eP) )
p \((1+eB)+1—eB)?/)
Additionally, substituting the expressions for the eduilim value ofp andg, obtains
pq (€2+P2€1> <1—0102)
— =M
D 1 —pip2 €1 + piéo
_ P&+ pipe€s
P1€2 + €1

(6.41)

dr
< —1+ pipg
.

<1,
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sincep;py < 1. Also,
(1+eP)?2—(1—eh)? _ (1+eP)?2—(1—eP)?
(+e )+ (1—eh)? (L+ef)2+(1-e¥)?)

and, therefore,

<1,

dr
dr
T4
which holds provided- < p andr > 0. Under these conditions the unique positive

< 0,

equilibrium is locally attractive. In addition, sine& /dr only changes sign when=

ry orr = r_, the equilibriumr = r is attractive forr > 0. Figure 6.4 shows the
dynamics of the one-dimensional system for the given seadipeter values. Initial
conditionsr, such thatd < r, < p will always converge to the equilibrium given by
r., and therefore ip; > p,, the system in equation 6.31 converges to a single positive

equilibrium value.

3

Figure 6.4:A plot of 7 againstr for the one-dimensional system in equation 6.36
The parameter values used afe= ¢; = 1, p; = p, = 0.5 and = 1. The arrows

show the direction of solution curvest) for ¢ > 0 along ther-axis.

Under the assumptions of the model, two adversaries engagimetaliatory
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conflict—one of which is distributed over two distinct loiwats, one nearby to the
adversary, and one further away—will approach an equilibrivhereby the respective
level of hostile activity aix; andx,; serves to counter the hostility by the adversary at
y. If, initially, p; > po, which would be anticipated given thaf is closer toy than

X5, and since distance is assumed to play a diminishing role@retaliatory nature of
the conflict, then the resulting distribution of hostilitgtawveen the locations; andx;

is determined by the value of , according to equation 6.39. If, for exampie, = 0,
then, at this pointy; = p, and hostility is equally distributed over the locatiansand

Xs.

Equation 6.39 enables the investigation of how the parasatBuence the value
of r,, and therefore influence the resulting spatial distributbhostility. The param-
eterspi, po, €1 ande, have a similar interpretation on the aggregate equilibriatoe
given in equation 6.32, as in Section 6.2; however, the par@am does not appear in
the original model as it results from the spatial disaggtiiega

To investigate hows influences the spatial distribution of the resulting edpili

rium, its limiting influence orr.. is first considered. Ag — 0,

14+e?
— 00,
1—eFb

however, the value of, in the limit asg — 0 can be found by applying the generalised

N|=

binomial expansion to the analytical expressiom pin equation 6.39, leading to
1/1 —p
1imr+:lim(—§( re >(p—,01q)+
1—e— 8 )
i 1/1+e” ( )+
Tano | 2\1—e8 )T

B—0 B—0 1-— 6_5
1 /1+e 7 1 4
- (—_5) p—p1g)| 1+ = glpq +...]]. (642
2\1—e 2<1+e*5) (p — p1q)?

1 /1+e” 4p1pq
5(1_6_5>(p—p1q)<1+ — -
(*—) (p — p19)?
1—e—8

Higher order terms of equation 6.42 can be neglected sisgea 0, they approach

more quickly than the other terms. Consequently,

limr, = 0.
B—0 +
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In this casep; = p-, the level of hostility at bothx; andx, is equal, and space plays

no role in the model. The conditigh > 0 leads to spatial dependency in the model.

1+e?
— 1,
1—e b

. 1 1
lim r, = ——(p — plq) + —\/(p — p1q)2 +4p1pg,

As  — oo,

and thus

from which, by expanding the squared term inside the squexteand then factorising,
can be obtained:

ﬁh_{glo r+ = p1q.
Therefore, as? increases, the difference in the levels of hostilityxatand x, ap-
proaches the limip;q. Figure 6.5 plots the value of_ given in equation 6.39 for
different values of3. The plot produces a monotonically increasing functionicivh
approaches the limjt;q. Therefore, the difference in hostility levels=at andx, is
at its maximum a$ — oo. The parametef determines the extent to which hostility
is distributed over the locations, andx,, and therefore captures the strength of the
spatial dependency in the system. Similar interpretatearsalso be obtained from
the more general system in equation 6.30.4As;> 0, the system becomes completely
aggregated, regardless of the spatial distribution of mdwvees, whilst ag — oo, the
system becomes increasingly local, with adversaries agilyganfluenced by their im-
mediate neighbours. The value @fletermines the strength of spatial dependency and
the accessibility of the space, and will require approprealibration in the application

of the model to conflict scenarios.

6.4.2 A four-dimensional scenario

In this section the complexity of the model is increased bysadering a scenario in
which each adversary is located over two distinct locati@gppose that the locations
x1,%2,Y1,Y2 € M are associated with hostility measurgsp., ¢1,¢2 € R, respec-
tively. For analytic simplicity, the distance metids chosen to consist of zeros and

ones. In this case, tiiex 2 matrix D given byD;; = d(x;, y;) is defined to be

01
D = ,
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1.0

0.6 b

0.41 b

Figure 6.5:The value ofr,, as given in equation 6.39, for different values off. The

parameter values used ate= e, = 1, p; = p2 = 0.5andg = 1.
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so that adversaries are distributed identically\dn The two adversaries can be thought
of as being both distributed across two spatial zones. Bigbenario, the model in

equation 6.30 becomes

-8
. qip1 q2p1€ €1
D1 b1 Plpl +p2€_5 P1p16_ﬂ ¥ 5
—B
. qip2€ qz2p2 1
= —po+p— _ 4+ — 6.43
D2 D2 Plpl +p26—5 1p1€_5 ¥ 0 9 ( )
-8
. P1ga b2q1€ €2
G =—q@Q +pp————— o——————— + —
! P q1 + qe™? ge P +q 2
. pigee? P2G2 €2
Q2= —Q2+ p2——2 — + =

o+gpe?  Pge g 2

Similarly to the three dimensional case in section 6.4.&,dynamics of the original
Richardson model can be extracted from this system by a changeiables, leading
to a reduced dynamical system to which the system conveages, f, < 1. The

following parameters are therefore introduced:
D = D1+ D2, r=p1— p2,
q=q +q2, $=4q1 — Q2.

Substituting these expressions into equation 6.43, anditag the system so that it

depends only op, ¢, r ands, obtains

e ptpgte (6.44)
=t ot e (6.45)
o B UL
g 640
e B D U
e e S ©40

Equations 6.44 and 6.45 are equivalent to the original Rasaar system withr; =
oy = 1, whilst equations 6.46 and 6.47 represent the added dysaanit complexity
that is due to spatial disaggregation. ep, < 1, the system converges to the plane
defined by the equilibrium of the aggregated system, given by

B P1€2 + €1 o P2€1 + €2 (648)

_1—P1P2’ 1—6162'

259



6.4. NONLINEAR DYNAMICAL SYSTEMS ANALYSIS

For the remainder of the section, it is assumed fhat < 1 and that a sufficient
amount of time has passed so that the unexplored dynamibg sf/stem are given by
equations 6.46 and 6.47, wherandq are constants given in equation 6.48.

The system is undefined when
14+e”
T=i<1_6_ﬁ)p,
1+e?
S_i(l—eﬁ> q.

Consequently, the analysis presented here is restrictediiiions that do not cross this

or when

region in phase space. For a valuesof- 0, the lines at which the system is undefined
generate a rectangle i-space surrounding the origin. Considering possible swisti
within this rectangle, it can be observed that the origimigquilibrium: forr = 0 and
s=0,

o) ()

(r.5)=(0.0) 2 \1+e# 2 \1+e#
(i) ()

voeon 2 \te?) T2 \Tre?

The origin of thers-plane represents the point at whigh= p, and¢; = ¢». Thus

73;

hostility is equally distributed amongst the differentdations in space and the system
is perfectly balanced and symmetric.

The stability properties of this equilibrium provide sifjoant insight into the
model. On the one hand, if the equilibrium is attractive nttselution curves will
converge towards this point and, according to the modehlgwdistributed hostility
levels in space will be anticipated to arise; however, ondther, if the equilibrium is
unstable, then solution curves will be repelled from thisypand the model will tend
to exhibit more unequal distributions of hostility in spadée stability of the equilib-
rium point can be determined by considering the planar systeequations 6.46 and
6.47, in which the values gf andq are treated as constants given by equation 6.48,

denoted by
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wheref andg are given by the right hand sides of equation 6.46 and 6.4pecively.
A Taylor expansion about, s) = (0,0) leads to
( F(r,s) ) B ( P £,(0,0) + 5£,(0,0) + O(2) + O(s2) + O(rs) )
g(r,s) N rg,(0,0) + 595(0,0) + O(r?) + O(s?) + O(rs) ’
where the subscript notation represents partial difféméan with respect to the sub-

scripted variable. Using matrix notation, this is equivéh®

()00 0)

The2 x 2 matrix in equation 6.49 is the Jacobian of the funcfiae- (f, g). Equation

( ' ) + O(r?*) + O(s*) + O(rs). (6.49)
(r,s)=(0,0)

S

6.49 therefore separates the dynamics of the planar systema linear component—
whose dynamics are given by the Jacobiafi-efand a non-linear component, consist-
ing of higher order terms. The Hartman-Grobman theorenestiat, for non-linear
systems, if the Jacobian matrix evaluated at the equilibpoint is invertible (i.e. has
non-zero determinant) then the equilibrium is known as hyplec and the behaviour

of the system near to the equilibrium point is equivalentiltnear system given by

(T)(fr f8> (T)
$ 9r 9s ) lrs)=0,0) \ S

More details of this theorem can be found in Guckenheimeoithes (1983), for ex-

ample. Proofs typically consider the relative sizes of tighér order terms in equation
6.49 near to the equilibrium point.
Differentiating, and using the Hartman-Grobman theordénsan be shown that

the behaviour near the equilibrium is equivalent to thedimsy/stem given by

() e (1-(50)) e () : ()

e B
P2 (he*/f) —1+p2 <1 - (i—l—e*ﬁ

S S

(6.50)

which can be simplified by defining

n= (1 — 66) , (6.51)

14+e b
which is dependent o > 0 in such a way so that < n < 1. Equation 6.50 then

becomes

7 _ —1+p(1 =7 PT] " ) (6.52)
; pon ~1+po(1—77) s
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As shown in Section 6.2, the behaviour of a linear system midpexclusively on its
eigenvalues and eigenvectors. The eigenvalues are cothipinifferent ways to cal-
culate the trace and determinant, which determine the rsystecation on the trace-
determinant diagram in Figure 6.1, and therefore the qisdt behaviour of the dy-

namics near the equilibrium. The eigenvalues of the systeequation 6.52 are

1 1
A= =1+ (o +p) (1-77) & 5\/(p1 —p2)* (1= n?)* + 4n’p1ps.  (6.53)

For clarity, a simplified scenario in whichh = p, = p is first considered. This
implies that the intensity of the action-reaction dynani@seach adversary is equal.

Substituting into equation 6.53, the eigenvalues simpaify
A =—1+p(1 —n*=£n). (6.54)

If both eigenvalues are less than zero, then solution cumlésonverge to the equi-
librium value, and it is stable; whereas if at least one eigkre is positive, then the
magnitude of the dependent variable can grow and almostiadlliconditions diverge

away from the equilibrium, and it is unstable. Consideringtfir_,

A=—1+pl-—n*—n)<—-1+p<0, (6.55)

sincen > 0 and0 < p < 1. Thus one eigenvalue is always negative and the condition

for stability depends solely on the eigenvalue In particular, the equilibrium is stable

when
Ay =—14+p(1—n*+n) <0, (6.56)
which occurs when
1
< —. 6.57
A (6.57)
Substituting the expression fgrfrom equation 6.51 into equation 6.57 leads to
(e” +1)
p < 2 ah 1 (6.58)

Considering the right hand side of equation 6.58,

(P +1)2 e +2ef+1 2P +2P +1+2(eP 1)

0< = <
28 4 4ef —1 28 4 — 1 €28 4+ 4ef — 1

=1, (6.59)

and, thus, fop < 1, itis possible that the equilibrium can be either stablermtable,
depending on the value pfin comparison to the valuegiven by

(" +1)
e2f +4ef — 1

p(B) = (6.60)
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Forp < p, the equilibrium is stable and all solutions converge talsat, but forp > p,
the equilibrium is a saddle and almost all solution curve®idie away from it. A
bifurcation is said to occur gs increases abovg, andp is said to be a bifurcation
point.

The dynamics near to the equilibrium, as given by the lingatesn in equation
6.52, withg = 1, are shown in Figure 6.6 for both< p andp > p. The directions of
the solution curves demonstrate how the equilibrium pougli¢atively changes as
increases beyonad This loss of stability implies that a sudden change canocthe
qualitative dynamics as the action-reaction paramegtertich might be interpreted as
the level of aggression in the system, increases. Morewvepossible for this sudden
change to occur even before the aggregated system losédsystdly = 1, after which

solution curves diverge away from the plane defined by eqn#i48.

a) p<p b) p>p

Figure 6.6:Selected solution curves of the linear system in equation® for p < p
and for p > p. For both figures? = 1, leading top =~ 0.8. In a), p = 0.7 whilst in b),
p=20.9.

In Figure 6.7, the functiop(5) for 5 > 0 is shown, in order to demonstrate how
the bifurcation poinp varies with the parametét. In Section 6.4.1, it was shown how
the parametef corresponds to the strength of spatial dependency in themysvith
B = 0 leading to each adversary’s location being treated equedigrdless of where

it is located, and? — oo leading to more isolated dynamics, in which adversaries
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increasingly only respond to those nearby to them. FiguresBows that for a large
range of3, the value ofp is significantly less than one, meaning that bifurcations ca
occur on thers-plane by increasing, before the aggregated system loses stability at
p = 1. However, since the value @f approaches one with increasig and since
p(0) = 1, bifurcations are only likely to occur when the value/®fs of order one,
and when the system is balanced between being very isole¢edf¢r larges), and
having no spatial dependency (f6r= 0). The minimum ofp can be calculated by

differentiating equation 6.60, and occursiat, such that

dp _ 2¢Pmin(gfmin 4 1) 2ePmin(ePmin 4 2)(ePrin 4 1)2 0 (6.61)
dg P "~ 2Bmin + 4ebmin — 1 (625min + 4eBmin — 1)2 o )
Calculating the value of, leads to
Bmin =In3 ~ 1.1, P(Bmin) = 0.8. (6.62)

1.00

0.95

0.85

0.80

075 I I I I I I I
0

Figure 6.7:The bifurcation point p plotted against3 according to equation 6.60.

The existence of the bifurcation has important implicadiéor the model. Given

an appropriate value fgt, for relatively small values g < 1, corresponding to scenar-
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ios in which retaliatory dynamics are weak, then hostilevégtis likely to be evenly
distributed in space. However, jif < 1 is close to one, corresponding to scenarios
with stronger retaliation and therefore higher levels ajragsion, then hostile activity
is likely to be more unevenly distributed, even if the aggtegsystem converges to a
stable equilibrium.

For p < p, the equilibrium at the origin of thes-plane is locally attractive: initial
conditions that begin sufficiently close to this point witlhwverge towards it. Fqr > p,
the same equilibrium becomes a saddle. In this case, ingiaditions that begin close
to this point will almost always diverge away from it. It istneal to consider what
might happen to these solution curves. Indeed, if realdvoonflicts exhibiting such
dynamics were to suddenly lose stability in a similar wagntkkonsidering what might
happen to the modelled trajectory would be of great impadan

Whenp = p, the matrix in the system in equation 6.52 has a zero eigeeyvahd
the matrix is no longer invertible. This implies that the t#@an-Grobman theorem
no longer applies and the dynamics near the equilibrium atalpe determined by the
linearised system obtained from the Taylor expansion. iBHigcause the higher order
terms of the Taylor expansion, which can be neglected fariibe linearised matri-
ces, cannot be neglected when the matrix is not invertibte. tiis reason, a Taylor
expansion is next considered that incorporates more oéthggher order terms. The
Taylor expansion for a general two-dimensional functfém, ) about the origin up to

third order is given by
f(@,y) =£(0,0) + f2(0,0)z + f,(0,0)y
1
+5 (f22(0,0)2% + 2., (0,0) + £,,,(0,0))
1 3 2 2 3
+5 (fa22(0,0)2% + 3 fuzy (0,0)2%y + 3 f1yy (0, 0)zy” + f,(0,0)y°)
+0(2%) + O(a’y) + O(ay?) + O(zy*) + O(y"),
where, again, subscript notation is used to denote diffextaon with respect to the

subscripted variable. Evaluating this formula for the plasystem given by equations
6.46 and 6.47 leads to

P\ [ (1= P+ s+ 2o (1 —n?)r® — 21— p?)rs
. 2
$ (=14 p—pn®)s + pnr + 2(1 = 1*)s* — B(1 — n?)s*r
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The linearised system in equation 6.52 can be seen as a centpwithin equation
6.63, but there are also additional non-linear terms upderathree which reflect more
of the dynamics of the system close to equilibrium. Two phaseraits of the non-
linear system in equation 6.63 are shown in Figure 6.8, irckvparameter values are
chosen to reflect two different values @fone in whichp < p, and so the equilibrium
at the origin of thers-plane is stable, and one in whigh> p, after the bifurcation
has occurred. Fgr > p, three equilibria exist, two of which appear to stable, and o
which is unstable. The figure appears to demonstrate thatreseases beyong not
only does the equilibrium at the origin become unstablefwatnew stable equilibria

appear. This particular bifurcation is known as a supecatipitchfork bifurcation.

a) p<p b) p>p

«
.

Figure 6.8: The phase portrait of the system in equation 6.63 for two diffeent
values ofp. For figure a),, = 0.7 whilst for figure b),p = 0.803. All other parameter

values are such that= 0.801.

Suppose now that = s, and that; = ¢, in equation 6.63. These further simpli-
fying assumptions are employed to investigate analytich# behaviour leading to the
supercritical pitchfork bifurcation, and lead to the oneensional non-linear system
given by

P = (—1—|-p(1—772—|—77))7’—|— (';—Z(l—nQ)(n— 1)) rs. (6.64)
If e, = €9, then the system in 6.63 is symmetric and equilibria of tletesy in 6.64 will

correspond to equilibria of the system in 6.63. Equilibrdh® system in 6.64 occur
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when eitherr = 0 or when

o _1—p(l—n*+n)
B—-n)n-1)

which has solutions only when the right-hand side of equadi65 is greater than zero.

(6.65)

It can be shown that this occurs when

1
p > 12+ 24n
which is exactly the condition for the loss of stability iretkquilibrium at the origin,
as identified in equation 6.57. In Figure 6.9, the equilibrivalues for the system in
6.64 are shown for different values @f As p increases beyong two stable equilibria

appear, with values given by

(6.66)

A bifurcation of the system in equations 6.46 and 6.47 at thelirium of the
rs-plane has been shown to exist in the special case when p,. It is important to
determine whether the same bifurcation occurs wheg p,. This is because conflict
scenarios to which the model may be applied will often be asgtric: each adversary
may adopt different tactics, resulting in different reaédry mechanisms and therefore
result in different action-reaction parameters, as giwemwband p,. In Figure 6.10
the stability of the origin of thes-plane is shown for values of, and p, between
0.5 and1, and for three different values ¢f In this figure, green represents stability
of the equilibrium, and blue represents instability. Thieitwation can be observed in
the transition from stability to instability in each of therée cases considered, across
different values for3. This figure confirms that the identified bifurcation is robtes
variation of the parameter values. Furthermore, the chamglee bifurcation point
appears to be smooth with varying parameters: an increagsemoves the bifurcation
point in the direction of decreasing. This suggests that the system requires some
total sum of aggression, as determined by a combinationeopfnameterg;, and ps,
before the equilibrium at the origin of the-plane becomes unstable.

The four-dimensional model given in equation 6.43 has bdéwmws to exhibit

richer behaviour than the three-dimensional case. By imgagstg the stability of the
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Figure 6.9:Equilibria of the system in equation 6.64, denoted by, for varying

values ofp.
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B3=1.0

1.0 1.0

P2 P2
0.5 0.5
0.5 1.0 0.5 1.0
P1 P1
1.0 p=20
- Unstable
P2
[ ] stable
0.5
0.5 1.0
P1

Figure 6.10: The stability of the equilibrium at the origin of the rs-plane for
p. €10.5,1) and p, € [0.5,1) and for 3 =0.5, 3 =1, and 8 = 2. Blue corre-
sponds to an unstable equilibrium for the given parameterevand green corresponds
to a stable equilibrium. The stability of the equilibriumdstermined by finding the
signs of the eigenvalues whose analytic expressions aga giequation 6.53, for each
parameter value. If the real part of both eigenvalues arativeg then the equilibrium

is stable; but if either eigenvalue has positive real pamthe equilibrium is unstable.
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most natural equilibrium point in the system, given by theapat which hostility levels
are equally distributed over adversaries, a supercrifitehfork bifurcation has been
identified which can occur within a feasible region of thegmaeter space. It has been
shown that this bifurcation is robust to asymmetric cordlicr scenarios represented
by the four-dimensional model. In what follows, further uskness properties of the
bifurcation are sought that serve to remove any suspicibnsliance on some of the
limiting assumptions employed in this section. In part@cuthe model is considered

with different distance metrics and in higher-dimensistdnarios.

6.4.3 Eight-dimensional scenarios

The supercritical pitchfork bifurcation identified in Siect 6.4.2 may have existed as a
consequence of the particular form of distance metric eygalpor may have even been
a result of the number of dimensions included in the modethis section, an eight-
dimensional model witlvV. = M = 4 is considered with two distinct distance metrics,
and the stability of the most natural equilibrium as systeitle aggression increases
is investigated. Doubling the dimension of the model leads teduction in analytical
tractability. As a consequence, numerical simulation efriiodel is used to explore
the range of potential scenarios in what follows. Numerstadulations are employed
using the Runge-Kutta method for temporal discretisatiowals found that step sizes
of around0.1 produced consistent simulation results which were in ages® with the
analytical results presented in Sections 6.4.1 and 6.4.2.

The first metric proposed for studying the eight-dimensi@yatem withN' =
M = 4 is a natural extension to the example studied in Sectior2 6 4.is assumed
that, instead of adversaries being located across twandistbnes, they are instead
located acrosg distinct zones. The metri¢ : M x M — R is defined analogously
to Section 6.4.2, so that the distance within the same zamegisgible, whilst any two
distinct zones are a significant distance from each othex.4Th 4 matrix D given by

Dj; = d(x;,y;) is defined to be

e}

111
01 1
D= , (6.67)
101

1 110

—_ =

270



6.4. NONLINEAR DYNAMICAL SYSTEMS ANALYSIS

and a corresponding spatial distribution of adversarias iiight correspond to this
matrix is shown in Figure 6.11. In Figure 6.11, the spatiediagement of four distinct
locations for each adversary (themselves distinguishedohyr) are shown, with the
corresponding zonal structure that is used in this modet.aFgiven adversary, each
location has nearby to it another adversary with whom iteva will be strongest; but
they also interact to a lesser extent with adversaries ighbeiuring zones, according
to the distance metric. Interactions across zones are settw with the same strength,

regardless of whether zones share a portion of their boyndiawhether they meet in

a single point.
Zone 1 Zone 2
@ O
O @
Zone 3 Zone 4

Figure 6.11:A scenario corresponding to the distance metric as defined iequation
6.67.Adversaries, who are distinguished by color, interactggest with the adversary

nearest to them in the same zone. Cross-zonal interactionswith the same strength.

In Figure 6.12, the sum of the two solution curves for eacheeghry within each
zone in Figure 6.11 for two different sets of parameter \&@lae shown. Two sets of
parameter values are chosen in order to demonstrate thaiewobf the system under

two distinct regimes. The first set of parameter values aosei to correspond to a
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scenario in which the level of aggression in the system, @by the parameters
andp,, does not exceed some characteristic level of aggressowted byp, which is
used to approximate the bifurcation point. In this casestima of the solution curves,
shown as the solid line, undergoes convergence to an equifiin which hostility

levels are constant within each zone, and given by

1p162 + € q 1p262 + €9
= 77 1= 77 >
41— pips 41— pip2

j
for 7,1 =1,2,3,4, which are obtained from the aggregate equilibrium sofuti@ether
with the finding that the equilibrium is constant across sne

The second set of parameter values have been chosen soghatgnitude of
aggression in the system exceeds this characteristicdéagjgressiorp. In this case,
if the bifurcation identified in Section 6.4.2 also existshigher dimensions, then the
evenly distributed equilibrium would be unstable, and 8ofucurves would move else-
where. This is indeed what is observed: solution curves ineZoconverge to a larger
equilibrium value and solution curves in the other zonesatese to compensate for the
increase in zone 1. In performing both numerical simulatjamtial conditions in zone
1 were perturbed slightly to ensure the solution curves didest on the now unstable
equilibrium in equation 6.68. The author believes that fbrsthis reason why hostility
levels increase in zone 1, as opposed to any of the other zones

Since the scenario defined by the distance metric in equét®hcan be thought
of as a natural extension to the model investigated in Seétib.2, it might be the case
that the bifurcation identified in Figure 6.12 arises beeaxfg¢he nature of the distance
metric used. Next, a scenario is considered for a differestadce metric, which is

defined by thel x 4 matrix D whereD,; = d(x;,y;), given by

3
2

(6.68)
1

w NN = O
N = O
= e \V]

0

This metric can be thought of as imposing a different spatiaicture on the system.
Since the distance between zgrend! is determined byj —| for j,1 = 1,2, 3, 4, con-
secutive zones can be considered to be near to each othace, simd non-consecutive

zones further apart. A scenario which this model may reptasedepicted in Figure
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Figure 6.12:The sum of the two solution curves in each zone for the spatialra
rangement of zones as shown in Figure 6.11, for two differerdgets of parameter

values.The parameter values are chosen so that the magnitude efsaggr in the sys-

tem lies on either side of an approximate bifurcation palahoted by. The parameter

values used are, in the case of the solid line= 0.8, p» = 0.85, ¢; = ¢ = 0.4, and
B = 1; and in the case of the dashed lipe,= 0.8, p, = 0.9,¢; = e = 0.4 andg = 1.
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6.13. Adversaries are supposed to interact strongest hatladversary located in the
same zone, as specified by the zeros on the diagonal of thexnmagquation 6.68.

In contrast to the previous example, adversaries in diffezenes now interact with
different strengths. Neighbouring zones interact momngfly than non-neighbouring

zones, leading to a more complex spatial structure thanqarsly considered.

Zone 1 Zone 2 Zone 3 Zone 4

Figure 6.13:A scenario corresponding to the distance metric as defined iequation
6.68. Adversaries, who are distinguished by color, interactegest with the adversary
nearest to them in the same zone. Cross-zonal interactieus according to the rela-

tive positions of the zones.

Figure 6.14 shows the sum of the two solution curves in eacke,zior each of
the four zones in the scenario in Figure 6.13, for two diffésets of parameter values.
Again, the parameter values have been chosen so that thartodant of aggression
in the system, specified by the magnitude of the actiond@atérmsp,; andp,, lie on
either side of an approximate bifurcation point for thisrem@, which is denoted by
p. For|p1 + p2| < p, corresponding to the solid line in Figure 6.13, the systppears
to converge to a natural equilibrium. According to the nuoarsolution with these

parameter values, this equilibrium is given by

=021, p=025  p3=025  p=0.2l,

¢ =020, ¢=023  ¢=023 g =0.20.

In this case, the hostility levels are not equal across zosiase zones 2 and 3 ex-
perience higher levels of hostility. This is because the ehalno longer symmetric.

Furthermore, the relative values of the equilibrium emp®athe spatial structure of
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the system, since zones 2 and 3 are the zones that closekbtbealzones, and will
therefore experience the greatest amount of interactitin ther zones. The equilib-
rium brought about by the magnitude of aggression in theegydteing less thap is
not the equilibrium that leads to equality of resulting fiaggtacross zones, but repre-
sents a spatially-weighted equilibrium, in which zoneg tir@ closest to other zones
are naturally assumed to contain higher levels of hostilign zones that are farther
away.

The second set of parameter values used to generate th®osalutves repre-
sented by the dashed curves in Figure 6.14 converge to amasyim solution. Since
resulting hostility levels in zone 2 are much greater thastility levels in zone 3,
this equilibrium can be considered distinct from the spigtaeighted equilibrium to
which the solid curve converges. This provides further supfhat the bifurcation
identified in Section 6.4.2 exists not just in higher dimensj but also for more gen-
eral distance metrics and spatial distributions of advegsaSimilarly to the previous
example, zone 1 is given perturbed initial conditions toiéwvesting on any unstable
equilibrium states. However, in this case, rather than Zoegperiencing a dramatic
increase in hostility levels, zone 2 is the one that increakes hypothesised that this
is due to the more central location of zone 2 in comparisotez.

This section has demonstrated the model’s versatility ingpapplied to a range of
potential spatial conflict scenarios. The two eight-diniemsl models considered have
both been shown to contain bifurcation-type behaviour éasfble parameter values,
supporting the hypothesis that the bifurcation identifre8ection 6.4.2 exists in higher
dimensions, and in more general spaces. The second exasgaaruthis section, in
which the spatial structure of the system is made asymméti shown that the most
natural equilibrium to which the system appears to convergsmall values op, and
p2, IS not necessarily an equilibrium with equal hostilityéés/in each zone, as was
the case for the first example. Instead, the model appeamsnieerge to a spatially-
weighted equilibrium, for which adversaries located cibde other adversaries have
a higher resulting level of hostility. The fact that a spitiaveighted solution is an
equilibrium confirms intuition regarding the evolution gdatial conflict: it is those
areas nearest to an adversary that are likely to experigeeageg levels of conflict over

long periods of time. The existence of the bifurcation, hesveand the somewhat
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Figure 6.14:The sum of the two solution curves in each zone for the spatialra
rangement of zones as defined in equation 6.68, for two diffent parameter values.
Similarly to Figure 6.12 represents an approximate bifurcation point and paraseter
are chosen so that the system lies on either side of this péeamvalue. The parameter
values used are, for the solid lin@, = 0.6, po = 0.5, ¢; = e = 0.4 andf = 1; and,

for the dashed lingy; = 0.8, p1 = 0.9, ¢; = 5 = 0.4, 5 = 1. The layout of the figures

is chosen to reflect the linear spatial arrangement of zong®imodel.
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unpredictable nature of resulting solution curves afterlifiurcation has taken place,

IS a counter-intuitive finding that is generalised furtrethie next section.

6.4.4 A randomly-generated large N-dimensional model

Conflicts can occur over large areas and involve a number dicpeamts located in
distinct locations. So far in this chapter, only scenarimsiving up to four distinct
participants on each side of the conflict have been considditee model is now inves-
tigated in higher dimensions. This is done to emphasisethieatnodel may be scaled
up to consider conflict occurring over large spatial scatesiavolving many partici-
pants, as well as to determine whether the bifurcation ifiedtin Sections 6.4.2 and
6.4.3 exists in a more general setting, and does not ariseesuli of the particular
form of the scenarios already considered. To this end, thdehyroposed in this sec-
tion contains100 dimensions, in whichV # M, and in which a Euclidean distance
metric is used that is distinct from the zonal approach tondejithe metrics used in
Section 6.4.3.

To specify the model, first set
M={(z,y) eR0<z<1,0<y <1},

so that adversaries are located within a unit square ancedefint x M — R to be the
Euclidean distance metric. One hundred point&4rare uniformly randomly generated
and each point is uniformly randomly allocated to either ohtvo adversaries. Each
point is assigned an initial hostility level equal to one.

A scenario is constructed from this random process, whithiob a realisation of
a random spatial distribution of adversaries wkh= 46 and M = 54. The parameter
space is simplified by setting= ¢, /N = ¢;/M andp; = p, = p. In what follows,
e=0.1andg = 1.

Solutions of the system in equation 6.30 are numericallyexblising the Runge-
Kutta method. According to these numerical simulationsfec 1 there exists > 0

such that
p;(t + 6t) — p; ()] < 1077, |t + 6t) — q(f)] < 1075, (6.69)

forj=1,2,...,Nandl = 1,2,..., M, wheredt = 0.1. It is therefore assumed that the

system converges to an equilibrium in all cases of inteest,that this equilibrium is
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given by the values gf;(¢) andg(¢) for j = 1,2,..., N andl = 1,2, ...M, wheret = ¢
is the first value of for which the condition in equation 6.69 holds.

The equilibria for two different values gfare shown in Figure 6.15. These figures
depict the conflict scenario by plotting each location ofreadversary as it is located
on M. The colour of each point is used to distinguish between adebrsary, and the
size of each point is proportional to the correspondingiliyskevel of each point at
the equilibrium. In Figure 6.15 ay,= 0.8 and in Figure 6.15 b); = 0.9.

Considering first Figure 6.15 a), and comparing the size ofréiselting equi-
librium near the boundary oM with those near the middle, it can be seen that the
equilibrium is largest for locations towards the centrehaf inanifold, and therefore for
locations that are, on average, closest to the locatioseafadversary. This is consis-
tent with the finding in Section 6.4.3, where it was suggestatthe system converges
to its most natural equilibrium, which is spatially weigtitaccording to the locations
of the adversaries.

Figure 6.15 b) shows another equilibrium; however, in trase; the resulting
hostility levels of the overall system are largely concated within a very small pro-
portion of the possible locations. In particular, the digttion of the equilibrium in
Figure 6.15 b) appears to be very different from the spatia#ighted equilibrium in
Figure 6.15 a), suggesting that the spatially weightedldgguim in Figure 6.15 a) may
have become unstable betwges 0.8 andp = 0.9, and, therefore, that the bifurcation
identified in Section 6.4.2 also exists in this system. Famtiore, although in Figure
6.15 b), the locations with the highest level of hostilite aowards the centre of the
manifold, it would be difficult to predict the locations witlramatically concentrated
levels of hostility asp increases priori, since there are many possible locations that
might have experienced a similar increase in hostility. $ygem withp = 0.9 might
be considered much more unpredictable and potentiallyefang than the system with
p = 0.8, in which the hostility levels are more balanced over thesjis locations.

In order to test whether the bifurcation exists for this mowenplex model, equi-
libria for different values of are now compared. With increasipgthe most natural
equilibrium to which the system converges, one which isiafpiweighted according
to the locations of adversaries, is anticipated to becons¢abie forp > p for some

valuep < 1, denoting the approximate proposed bifurcation point. When p, the
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equation 6.69.

Figure 6.15:The equilibrium of the system with a) p = 0.8 and b) p = 0.9. The
location of each point represents the location of the adwgien. M, the colours distin-
guish between each adversary at each location, and thefstrme moint is proportional

to the corresponding equilibrium value at that point, asndefiby the condition in
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system is anticipated to converge to an equilibrium in whiahlevels of hostility are
highly concentrated in a few locations within the systeme®my of measuring this
is to consider the variance of the resulting hostility lsydlowever, the variance was
found to vary with increasing values pftiue to the changing equilibrium, and therefore
would not have been able to identify the bifurcation.

Instead, for each adversary, the rank of each location dogpto their equilibrium
value is considered. If the equilibrium is considered totable and spatially-balanced
with increasingp, then the rank of each location would be expected to remaily fa
consistent. However, if the equilibrium was to suddenlydmee highly concentrated
in a small number of locations, then the ranks of the equuiibrvalues at each lo-
cation would be expected to drastically change. This was#se for the scenarios
in Section 6.4.3, for which the ranks were different befone after the bifurcation.
Changing ranks corresponds to a form of instability in theesys since the dynamical
equilibrium is both qualitatively and quantitatively bgialtered by a potentially small
increase in parameter values.

The rank of locatiorx; is

Ry =D 1(Ey(p) > 0i(p). (6.70)

for j = 1,2,...,N, wherep;(p) denotes the value of the equilibrium at locatiep
which is dependent op, and1(.) is an indicator function, equal to one if the condition
inside the brackets is satisfied, and equal to zero otherwise

To determine the state of the equilibrium, the ranks of thetesy are compared

for different values op. For small values ofp, the function given by
1 N
fp) =5 D 1%(p +0p) — Ry (o)), (6.71)
j=1

wherefR;(p) is given in equation 6.70, calculates the number of changései ranks
of equilibria betweem andp + 6p. The resulting value is divided by two since any one
permutation in the ranked list of equilibrium points re@siswapping the positions of
two locations.

Figure 6.16 plots the cumulative version of this functioneg by
P
Fio)= [ (). (6.72)
p'=0
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wheref(p’) is given in equation 6.71, which tracks the number of rankngles in the
equilibrium value a increases frond to p for each value op < 1. The plot shows
a sudden transition between= 0.8 andp = 0.9 during which a large number of rank
changes occur. This value is consistent with previous aqmiations of the bifurcation
point p, and suggests that the bifurcation is indeed present irhtgisdimenensional
scenario, during which a more evenly distributed equilibrisuddenly loses stability

and results in the concentration of hostility over a fewididtlocations.

100

40 |

20 §

Figure 6.16:The value of F(p), given in equation 6.72 for different values ofp, for
the scenario depicted in Figure 6.15F (p) is the cumulative number of rank changes

in the resulting equilibrium values of the model,ascreases.

Evidence has been presented that the bifurcation identifiedction 6.4.2 is ro-
bust to a variety of parameter values, dimensions and aistaretrics. This is a sig-
nificant result brought about by the spatial disaggregaifdhe system, and highlights
the types of insights that can be obtained using non-lingaaishical systems analysis.
In particular, according to the model, in spatially dependsystems with increasing

aggression, a qualitative change in the spatial distobubf hostility levels would be
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anticipated to be observed, before the entire system beconstable and an arms race
is initiated (according to the original Richardson modeat)wihat follows, the applica-
bility of the model to real-world conflict scenarios, and tiipes of inferences about

those systems that might be made, are discussed.

6.5 Discussion

In this chapter, a novel spatially explicit version of Riatswn’s conflict model has
been derived and analysed using the tools of non-linearrdigad systems analysis.
The motivation for introducing the model has been justifigddentifying the need to
incorporate space in deterministic models of conflict, atralso noting limitations as-
sociated with other spatial models of conflict, many exaspfevhich were described
in Chapter 2. The model addresses some of these limitatiobsihg discrete in space,
and by providing explicit model assumptions, which are Hasethe principle of max-
imum entropy, together with the constraints introduced goations 6.14, 6.17 and
6.18.

The model has been analysed using concepts of dynamicahsystnalysis that
rely on the evolution of solution curves in phase space. Qmmdi for convergence
to a natural equilibrium have been proposed, and this duiuitn has been described
using a range of case studies. In particular, a superdrgitehfork bifurcation has
been identified that occurs as the magnitude of aggressithie isystem increases. The
effect of this bifurcation requires interpretation in thentext of real-world conflict
scenarios.

Prior to the bifurcation, for low levels of aggression in 8ystem, solution curves
are expected to converge naturally to an equilibrium wheckgatially weighted ac-
cording to the relative locations of adversaries. For higéeels of aggression in the
system, once the bifurcation has occurred, the spatialighted equilibrium becomes
unstable and the model converges to a new equilibrium in hvhistility levels are
highly concentrated within a few locations. Increasing ldweel of aggression in the
system further can, as demonstrated in the analysis of Risbais original model,
lead to an unstable escalating arms race. The bifurcatiots lait a potential early-
warning system for real-world conflicts: with increasingyeggsion, before the system

results in an arms race and hostility increases exponbngaime spatial instability is
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expected and particular locations may suddenly experidisggoportionate increases
in hostility or conflict. If vulnerable locations can be idiied prior to such increases
in aggression, then policy interventions might seek to cedensions in those areas
that are likely to experience this initial increase in hidsgti

The potential insights that might be obtained from this nhade greater than any
of the other models considered in this thesis. The modelmigtenables forecasting of
how a conflict might evolve, but also how a change in the intgrmd the interactions
might influence the resulting stability of the system. Tipews up a more sophisticated
range of policy applications. For instance, rather thantragking the intensity with
which two adversaries retaliate to one another, trackiegctiange in intensity might
enable analysis of whether or not the system is close to &chifion point, such as the
one identified in this chapter. Policy interventions mighert be targeted at ensuring
certain parameters do not vary into undesirable regimeslodviour.

Any insights are, of course, reliant on the assumptions eénntiodel providing a
plausible account of the underlying mechanisms. In the sspité as Richardson’s
original model, the model explored here can be used to iigagstscenarios in which
the actions of participants in the conflict are mechanistiagf actors “did not stop to
think” (Richardson, 1960b). Despite in many cases leadimgddels far removed from
the real-world, deterministic modelling frameworks camaastrate how complex be-
haviour might arise and are able to capture the consequehaestain well-defined
scenarios.

There are limitations associated with the specific form eflitiurcation identified
in the model. Supercritical pitchfork bifurcations are wmoto be structurally unstable,
since a small change in the model specification often leadst®nario in which there
is no bifurcation. The normal form of the supercritical piwrk bifurcation, together
with a perturbed system is shown in Figure 6.17. For manyweald systems, only
structurally stable results are generally observed, dusmtrlying noise. Neverthe-
less, the identification of the bifurcation is an importanéoEven when the system has
been perturbed, and there is no bifurcation, there is B&lintroduction of new station-
ary solutions in the system. In addition, the stationarysoh on which the system
is located may also drastically change, as shown on the iy side of Figure 6.17.

The bifurcation identified acts as a special case. Givenrtaiog surrounding the
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Figure 6.17:Normal form of the supercritical pitchfork bifurcation (le ft hand side)
and its perturbation (right hand side). The values oft, plotted are the equilibria in

each case. The parametes the bifurcation parameter.

noise providing the perturbation, it is likely to be uncleagpriori which of the possible
resulting solution curves will be the one that the systemnagak
Finally, although demonstrating how the inclusion of sp@ceodels of civil vi-

olence can lead to richer behaviour, the derivation andyarsabf the model in this
chapter has been approached from a more abstract and gpaespéctive than any
of the other models considered in this thesis. This enahkesiiodel to be potentially
applicable over a wide range of examples. Furthermoresat démonstrates the math-
ematical insights that deterministic models can sometiafiesd, and emphasises, in
particular, the complications that the inclusion of sdadieépendencies in such mod-
els can sometimes have. As this chapter has highlightedngights obtained from
deterministic models are sometimes more qualitative themntitative, and can force
the researcher to consider not only what is happening, bat wight happen should
the underlying mechanisms be altered. This will be disaifseher in the conclusion

chapter that follows.
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7.1. COMPARISON OF MODELLING FRAMEWORKS

7.1 Comparison of modelling frameworks

This thesis has employed different frameworks to model eialence in space and
time. Four frameworks have been presented: data-driveroapipes that exploit ag-
gregate statistics from the empirical data and combineckEsgumptions to construct
null models against which the data can be compared; a statistodel of discrete
spatial choice, which uses attributes of targets to quaatifninological theory; point
process models that explicitly account for event interdeljeacy to obtain some degree
of predictive power; and a spatially-explicit differenteguation-based model, which
extends a well-studied non-spatial model of conflict esmaila Each framework has a
different perspective of the real-world phenomenon cargid. In this section, these
different frameworks are summarised and a comparison issmatth respect to the
types of insights that can be obtained. It is argued that ajys of modelling frame-
works applied to any given problem can lead to increased itmitte way models are
used in a policy setting. Furthermore, a plurality of modehieworks can greatly
improve the accuracy of inferences about the real-world.

Data-driven frameworks, such as those presented in Chaptae 3Exploratory
since they can be used to gain understanding into the pahf@atures of a dataset.
In some cases, sophisticated insights are obtained byractisg null models with
relatively high levels of complexity. This was done in ChaBeby proposing a null
model for the geographic independence of events to expharéotalised patterns of
diffusion during rioting.

Such approaches can lead to robust findings for a particalasdt but have two
principal limitations. The first is concerned with data dadaility. Although an increas-
ing amount of data on civil violence has become availabletiquaarly of a spatial
nature (Gleditsch and Weidmann, 2012), data-driven fraonleswrequire a significant
amount of accurate data at an appropriate level of aggmgtiiproduce meaningful
insights. In many cases, available data provides only agbaiew, or is not supplied at
the desired level of accuracy and precision (Weidmann, R0 Beliance on available
empirical data leads to insights that are specific to thequaatr case study considered.
This means, on the one hand, that some insights may not beadjeed to other case
studies, but, on the other, ensures that the insights aselglcelated to the scenario of

interest and have relatively high levels of confidence. u®ad limitation associated

286



7.1. COMPARISON OF MODELLING FRAMEWORKS

with data-driven approaches is that they are typically lenethincorporate mechanisms
that may be responsible for the generation of the event dsgaa consequence, they
are often unsuitable for investigating theories or testing understanding of a given
phenomenon.

The strength of data-driven frameworks is that they can bd tsidentify promi-
nent features of an empirical dataset, which may lead tbéundnalyses and models. In
Chapter 4, insights from the data-driven analysis of the lbontbts inspired a model
of target choice by suggesting that environmental featamelscontagion were likely to
play prominent roles in the decision-making of offenders.

Statistical regression modelling is also specific to theade considered. In con-
trast to data-driven approaches, the objective of stedilstegression models is to cap-
ture some mechanism in the underlying data-generatingepsocThis is achieved by
using sample data to determine whether variables assdaiatie this mechanism co-
vary with the empirical data in the expected direction. Thitirn invites insights into
the proposed mechanisms corresponding to those varidbdg¢sa-driven models might
be preferred over statistical regression models if theeenar preconceptions or pre-
existing theories that might explain the phenomenon. Thightalso be preferred if
statistical regression models produce no significant irsig

In Chapter 4, a discrete choice model was used to investigdas target choice
with respect to three key theories from the criminological aocial science literature.
Evidence was provided that all three of those theories camsbd to explain at least
some of the variance in rioter target choice, and, moredivat rioter target choice was
consistent with arguments based on the bounded ratiorddlitypters. The proposed
mechanisms, which were quantified via this model, were usatieadata generating
process in a microsimulation model. The model generatedlated riot scenarios,
given the location and times at which rioters were known teehaffended. Although
this model relied on empirical data to inform its initialigen, it was argued that it
could form a component in a policy tool by modelling the résgl spatial distribution
of the riots and considering how best to formulate policel@gpent strategies based
on this output. In proposing specific and quantifiable meismas for the way in which
the decision-making of rioters leads to the spatial pastebserved, the model is trans-

formed into a predictive tool that can be considered in theed of different scenarios.
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It should be borne in mind, however, that the model is caldzt@n data specific to the
London riots. Out of sample testing of the model is not penked due to a lack of data
on other riot scenarios.

Stochastic point processes consider the timings and, ire s@®es, the locations
of event occurrence. In Chapter 5, a series of such modelsppted to the Naxal
insurgency. A number of models are proposed and are usecdhtoad® hypotheses
regarding the spatial and temporal distribution of the igeacy. These models are
notable in that they depend only on the history of the systecthcansist of relatively
simple proposed mechanisms for how events spread in spactnaa Although it
is possible to incorporate a range of structural covariatEssuch models (Zammit-
Mangion et al., 2012), it is demonstrated in Chapter 5 how,nepriporating just the
history of the process in a mathematically sophisticatedrélatively parsimonious
model, some predictive power can be obtained in an out of Eatagt. Point process
models are naturally prospective and, as such, can oftesdfally employed as pre-
dictive models to determine the likely locations and tingrgd future events (Mohler
et al., 2011). Such information would be invaluable in desig targeted interventions
aimed at reducing insurgent violence. Since the modelstachastic, they explic-
itly account for uncertainty, which may lead to more confickein their output when
decisions are to be made in the context of uncertainty.

Insurgencies can change dramatically over their life aaurs the case of the
models presented in Chapter 5, the performance of the mod@ldral events did
not seem to be affected by the long duration of the study geritis was shown by
demonstrating that the residual process, containing swieat were poorly predicted by
the model, was very close to a Poisson process for the eniotg period. This may not
be the case in other scenarios. If underlying mechanisms teegualitatively change
during an insurgency, then the predictive performanceehtbdel may be diminished.
Some studies have attempted to account for a change in tleglyind mechanisms of
insurgency by altering the model when the empirical datagyssgthe insurgency may
be in a different dynamical regime (Lewis et al., 2011).

Although stochastic models explicitly account for uncierttg deterministic mod-
els may still generate useful insights as a result of theatydical tractability. This is

demonstrated by the long history of such models being appdigroblems relating to
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conflict and violence. For these models, the emphasis i®letse prediction of future
events and more on determining the implications of a speaiéchanism by which the
system is thought to evolve.

In Chapter 6, the Richardson model of conflict escalation issicemed. This
model specifies a deterministic mechanism in which two acitacrease their levels
of hostility towards one another but are restrained by m#kprocesses. Policy rele-
vant implications of the hypothesised relationship betwie two adversaries can be
obtained from the original Richardson model. It was shownirfstance, that an arms
race can occur when two nations act in their own self-intered when their reaction to
their adversary outweighs the effect that might be restrgithem from more internal
processes. Although the policy-relevant insights thatlmaobtained from simplified
models are often confirmation of common sense, it can stilidegul to articulate them
in a mathematical formulation. Richardson (1960a) eloduexplains why this is the
case, emphasising the benefits associated with deteriminmistels, whilst also pro-
viding a word of caution when employing models that are itably simplified from

the real-world process:

“To have to translate one’s verbal statements into mathealdormulae
compels one carefully to scrutinize the ideas therein esga@. Next the
possession of formulae makes it much easier to deduce tlsegoences.
In this way absurd implications, which might have passedotined in
a verbal statement, are brought clearly into view and stiweubne to
amend the formula. An additional advantage of a mathenmatcae of
expression is its brevity, which greatly diminishes theolabof memo-
rizing the idea expressed. If the statements of an individeaome the
subject of a controversy, this definiteness and brevity teaa speeding
up of discussions over disputable points, so that obsear@an be cleared
away, errors refuted and truth found and expressed moré&lguian they
could have been, had a more cumbrous method of discussionpuze
sued. Mathematical expressions have, however, theirageaidencies to
pervert thought: the definiteness may be spurious, existitige equations
but not in the phenomena to be described; and the brevity raajub to

the omission of the more important things, simply becausg dannot be
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mathematized. Against these faults we must constantly lmeioguard. It
will probably be impossible to avoid them entirely, and seytbught to be

realized and admitted.”

More complex deterministic models can lead to more inteidasights. For in-
stance, in Chapter 6, by constructing a spatially disaggeegaersion of the model, a
bifurcation is identified that indicates a loss of systenbisityg as hostility increases.
This occurs prior to the loss of global stability in the aggreed system, suggesting a
potential means of detecting the onset of an escalatiorepsod his study emphasises
the advantages that analytically tractable determinmtidels have over their stochas-
tic counterparts. Their relative mathematical simpli@tyables the exploration of the
model over a wide range of potential regimes, and not jusrégane within which
the real-world system is thought to be located. By considehniow the system might
qualitatively change (for instance, by undergoing a b#ititn), such approaches can
lead to high levels of insight. Policy interventions mayocale formulated that seek
to constrain the system within a viable region of the phaseesga concept explored
further in Deffuant and Gilbert (2011)).

Deterministic differential equations rely on the proposgethanism in the model
being the actual mechanism that drives behaviour in the gghenon of interest. In
many cases, the assumptions are highly simplified and tkdileely to be noise and
uncertainty in translating the implications of the anadyisto the real world. As a con-
sequence, the plausibility of such insights are sometineaded with more skepticism
than approaches that rely more on empirical data. The modedssumptions must
be carefully considered when acting on any insights obtairem such models. If
communicating the results of such a model to a policy-mdkermeans that the artic-
ulation of these assumptions becomes a crucial componéiatirthe model might be
used to aid policy-making.

The mathematical form of the Hawkes mutually-exciting pgrocess model in
equation 5.18 and the linear Richardson in equation 6.1 esaldnalytical comparison
to be made between the two models. Recall that, for the mytewatiiting point process

model, whose conditional intensity function is given by

/\(l) =+ Z &llwle—w(t—ti) 4 Z CY[QWle_wl(t_ti), (71)

<t t;<t
m;=1 m;=2
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for different types of evenit= 1, 2, the long term expected value of the intensity in the

case of a stationary process is given by the vector
(I, —A) ', (7.2)

wherel, is the2-dimensional identity matrixA = (o) =12 iS @ matrix composed
of the self- and mutual-excitation terms apd= (p"), 4(?) is a vector consisting of

the background rates for each process. Thus, for a longdt&tionary process,

1 — o) i1 + Qiafin
E (0D} = ( 22 , 7.3
( ) (1= 011)(1 = ag) — arpag (7:3)
B ()\(2)) _ gy + (1 — oqp)pe

(1 - 0611)(1 - 0422) — Q20091
Considering the analysis of the Richardson model in Chaptéegquilibrium of
the original Richardson model in equation 6.1 in the gagg # 0,05, was shown to
be
O9€1 + p1€2 O1€2 + Po2€q

Pe= —— GQe = —"— (7.4)

) e .
0102 — P1P2 0109 — P1P2

The form of equation 7.3 and equation 7.4 suggests an acely@gomparison
might be made between the two modelling frameworks. Spadifjcassuming that
the resulting expected intensity of a stationary point pesds equivalent to the equi-
librium of the Richardson model, and that the grievance tentise Richardson model
may be interpreted as the background rate in the Hawkes s dse thaj,; = ¢; and

Lo = €3), the following relationships can be obtained:

I —an =o1, I —ap =0
Q12 = pP1, Qo1 = P2. (7.5)
This implies that the self-excitation of a Hawkes processasponds to one minus
the inhibition parameter in the Richardson model, whilst @ualiexcitation is directly
equivalent to the action-reaction parameter of the modak means that the parameter
estimates of Model 4 in Chapter 5, corresponding to the systeaquation 5.18, can

be considered in the context of the Richardson framework. atiqular, the point

estimates of the Richardson parameter values for the Nagtdrsyare given by

o1 =0.1296 oy = 0.6192 (7.6)

p1=0.3766  p» = 0.0842. (7.7)
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These values suggest that the Naxal conflict has a stableindde Richardson sys-
tem. The valuep,p,/0100 = 0.3953 compares the magnitude of aggression in the
system against the magnitude of inhibition, and gives sardeation of the distance
between the estimated system and the bifurcation ideniifi€hapter 6. In Chapter
6, the bifurcation was observed to occur when values of #tis were around.S. It
therefore appears as though the Naxal system is locatedificagt distance from this
bifurcation and is not at risk of the onset of spatial indigbi

Comparing the initial data-driven approaches of Chapter B e final model
investigated in Chapter 6 emphasises the range of model darke that might be
employed to investigate civil violence. The spectrum idtroed in Chapter 1 is re-
produced in Figure 7.1, this time including positions ofle&@mework used in this
thesis. In Chapter 3, the models were grounded in realitgingato a high degree of
confidence in their plausibility, but the insights that abbé obtained, particularly with
regards to mechanisms that might be at play and the preelicsiture of the modelling,
were limited. In Chapter 6, proposed mechanisms were exploithout any empiri-
cal data informing the model development, leading to wigleging potential insights
but, at the same time, leading to complications with resfmelsow the model might be
translated into the real world.

The modelling frameworks explored in Chapter 4 and Chapten®beahought to
lie somewhere in between these two extremes since they baistigate the mecha-
nisms of the phenomenon studied but also incorporate erapitata into the modelling
process. In Chapter 4, the model tested a range of covarrepsead by theories re-
garding offender behaviour, whereas in Chapter 5, the modsis driven by patterns
of spatio-temporal dependency in the empirical data. Algioboth approaches used
empirical data, they did so in different ways. The modelloigective in Chapter 4
was more concerned with the explanation of the phenomenditsastructural covari-
ates, rather than evaluating the level of prediction that loa obtained by explicitly
modelling event interdependency, as was the case in Chagteas tteresting to com-
pare the relative levels of success in terms of predictiothefmodel in Chapter 4,
in which it was examined whether a microsimulation modet th#éised the results of
the regression model was able to reproduce the generatnmattethe data, with the

predictive ability of the point process in Chapter 5, wherly oalatively basic theories
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Figure 7.1:Potential insight and plausibility of different modelling frameworks.

The frameworks considered in this thesis are placed alopgetraim broadly defined
by a ratio given by the number of model assumptions that remeech approach from
the real world, to the extent to which empirical data formdg pathe model develop-

ment.
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concerning the generation of insurgent violence were usedrstruct models. In par-
ticular, although a more extensive amount of structursh ees employed, a number
of notable discrepancies were found between the model tauipChapter 4 and the
patterns in the sample data. In contrast, in Chapter 5, aisungievel of predictive
ability was obtained with relatively small amounts of daféhis raises questions as
to the appropriate balance between explanation and pi@dict models of civil vio-
lence. Understanding the salience of different theoriesbmaextremely useful when
developing broader policies, which might seek more longentstrategies for reducing
civil violence. Prediction of events might be more usefubwhlesigning more targeted
interventions.

This serves to highlight that, in any modelling task, an appate choice of
framework is required. If, on the one hand, the modelling tasspecific and well-
defined (e.g. to assess a range of proposed policy optiods) éuere is data available,
then more empirical approaches may be preferred. On the loéimgl, if the objective
for modelling is to consider how a range of proposed mechammight correspond
to the underlying data generating processes, then the e framework may lie
towards the right hand side of the spectrum in Figure 7.1.

More generally, this thesis has demonstrated that modeleinsorks across this
spectrum can be usefully employed to gain insights into plagis-temporal dependen-
cies of civil violence. Furthermore, the range of models drer respective frame-
works have an associated range of advantages and disagisnt@hich have been
discussed in this section. The range of insights that carbtared from each of them
varies with respect to their generality, their accuracy, éeir usefulness for aiding the
design of policy interventions. Since no single modellirgpiework can be shown to
dominate any of the others with respect to the advantagesiassd with it, this thesis
concludes that each has a part to play, and that a pluralityoalelling approaches can

be used to gain a more rounded perspective of the phenomasa@ered.

7.2 Topics for further research

There are a number of opportunities for extensions to th& ysented in this thesis.
It has been demonstrated that it is important to considesttieagths and limitations of

different modelling frameworks when investigating thetepéemporal dependencies
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of civil violence. Furthermore, this thesis has concludgdsbggesting that, rather
than using a single modelling framework to consider poliagstions, a number of
frameworks might be used to obtain a more rounded view of riq@rtant features

of the problem, and to consider the range of mechanisms thuyttrbe at play. The

same is likely to be true of other problems encountered ircypoA unified approach

to identifying suitable modelling frameworks for diffeftetypes of policy problems

would be a valuable guide to applying models in a policy sgtti To achieve this,

new methods for comparing different modelling approacipasticularly concerning

the tradeoff between potential insight against plausibias proposed by Figure 7.1,
might be required.

In addition, once a range of plausible models have been reanistl, each using
different frameworks, and each obtaining complementargpeztives, there remains
the challenge of how insights can be usefully incorporatéal the policy-making pro-
cess. Conveying model outcomes to policy-makers typicaltyuires relatively short
presentations at which the modeller is required to presamtise insights with associ-
ated levels of uncertainty. At present, consolidating thdence for policy-making that
might be obtained from different model frameworks is a resdeahallenge that is yet
to be overcome in many fields (reports from the Intergovemtaid?anel on Climate
Change is one example where some success has been achiesdragard (IPCC,
2013)).

Within each of the model frameworks presented in this thélsese are a number
of avenues for future research. Focusing first on exployatata-driven modelling, as
employed in Chapter 3, further research might consider taethe binary approach to
geographic diffusion of events presented in this thesidihbg used in different scenar-
ios. If the patterns of offending observed during the Londots can also be observed
during other outbreaks of rioting, both within the UK and iffetent countries around
the world, then it can be assessed whether or not the patemrespond to some inher-
ent property of rioting, or whether they are dependent orutiderlying geography or
the underlying motivation for the riots. Comparing the patseacross different types
of civil violence may also yield useful insights.

Extensions to the analysis might consider different pasterf diffusion by chang-

ing the geographic neighbourhood of the focal cells intocktevents may spread. In
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addition, further advances might be made by optimising #melomisation procedure
that permutes the spatial and temporal units in which ewvastar. For instance, in the
proposed algorithm, Chebyshev’s inequality was used fgaterality but is known to
often provide suboptimal criteria for many underlying diaftions. A more nuanced
stopping criteria might lead to more computational efficienAdditionally, the prob-
lem of estimating binary contingency tables might also bprowed by considering
other approaches to this problem, some of which employ Ma@dwain Monte Carlo
methods (Besag and Clifford, 1989; Bdm\a et al., 2007; Verhelst, 2008; Blanchet
and Stauffer, 2013).

The discrete choice analysis of target selection duringngo as presented in
Chapter 4, would also benefit by applying the analysis to whffeexamples of civil
unrest around the globe. Consistent findings were found inenteross-national anal-
ysis of target choice by burglars (Townsley et al., 2015), aneddition, a recent study
has compared the consistency of target selection acrdssattif crime types (Johnson
and Summers, 2015). If the same findings regarding riotgetarhoice can be found
in different examples of civil unrest, then the resultingigiation models that were
described in Chapter 4 might be more likely to provide plalesitsights.

Although the microsimulation model of rioter target chomee&Chapter 4 was able
to reproduce the broad patterns of the distribution of mgptithere were discrepancies
observed between the model and the empirical data. Theréwaagrincipal sources
of discrepancy which might form the basis of future reseaFdtst, the empirical data
appeared to be much more spatially clustered than the ireg@patial distribution
arising from the microsimulation model. This may have arideie to the averaging
procedure employed to obtain model outputs. Averagingsaadferent realisations of
the simulation was required since the model was a result efiassof random choices,
and therefore a single realisation would not have led toraafssessment. Methods to
compare the model outputs with the empirical data withoatubke of this averaging
procedure may lead to insights that alleviate this limitati The second discrepancy
was that a number of areas were predicted to have been skéesctargets in the model
but did not appear as targets in the empirical data. It waerebd, for instance, that
the risk of rioting in one of these areas may have been inededse to the presence of

a high number of schools. Refining the variables used to ext& impact of crime
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pattern theory might lead to more successful predictiveetsodf target choice.

The microsimulation model of rioter target choice in Chagtenight also be ex-
panded upon. One way of doing this is to consider a mixed logitlel of discrete
choice in which the selection of model parameters are agélover decision-makers
(Train, 2003). Further theories regarding the underlyirgghanisms of the riots might
also be incorporated. For example, the Riots Communities actdng Panel (2011)
separated the UK rioters into four different profiles: “Qmgaed criminals”, who were
first to the scene and who set off a ‘chain reaction’; “Violaggressors”, who commit-
ted the most serious crimes; “Late night shoppers”, whabdetitely travelled to dif-
ferent sites for looting; and “Opportunists” who were drawto riots and encouraged
to engage as a result of situational precipitators. Disaggging a spatial choice model
so that each decision-maker is categorised as one of thest/fees of offender might
lead to further insights and a more accurate microsimuladioagent-based model.
In addition, the inclusion of a dynamic mechanism of targegice based on the ac-
tions of police might open the model up to being used to expbarblic order policing
strategies.

Considering Chapter 5, similar models of stochastic pointg@sses have been
shown to produce useful predictions regarding the onsebeadrrence of conflict and
crime (Zammit-Mangion et al., 2012; Mohler, 2014). Evenhnat relatively parsimo-
nious model such as the one presented in this thesis, an sabgfle test demonstrated
some predictive power associated with the model. Furthek woght consider im-
proving these predictions by incorporating a range of stina¢ covariates that might
also be thought to influence the onset of violent events imelasi way to the model
of target choice in Chapter 4. These covariates might bermgdrby a range of spatial
regression models that were discussed in Chapter 2 and wanehdxamined the pre-
dictive capability of various socio-economic, demographind geographical variables
associated with insurgent and civil violence.

In Chapter 6, the spatially-explicit deterministic modelcoinflict was explored
within a relatively restricted region of the phase spaceec8ally, it was the geo-
graphically weighted equilibrium that was stable for lowdks of aggression in the
system, and the deviation from this equilibrium as the le¥elggression in the system

increased that was explored. Since the model is nonlineauy@er of other trajec-
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tories are possible. The analysis was also not extensive resipect to the range of
parameters considered. Further research might do moremprebiensively explore
the parameter space.

Another avenue for further research is the application efrtiodel in Chapter
6 to real-world scenarios. Calibrating the model againstieogh data might deter-
mine where the real-world system lies in the phase spacehanefore might indicate
whether the system is near to an undesirable bifurcationud for model calibration
that explicitly accounts for some of the uncertainty in thedal might come from the
relationship between Richardson’s model and Hawkes’ mwgx@aiting point process
model, as outlined in section 7.1. Stochastic spatiallgtiex models that account for
spatial dependencies in the same way as the deterministielnmo Chapter 6 might
provide useful predictive models, whilst, at the same tibeeof a form that can be an-
alytically interrogated in order determine bifurcatiomslather instabilities that might
arise if the system changes. The development of a “best &f Wwotlds” modelling
framework, based on stochastic differential equationghtriead to a framework that

can be useful in designing policy interventions.

7.3 Concluding remarks

Four modelling frameworks have been utilised to construatiehs of civil violence.
For each of these frameworks, contributions to the liteeahave been made with re-
gards to how civil violence is modelled in space and time. ®actude, the main
contributions of the thesis are now summarised.

A novel data-driven exploratory approach for analysinglgatterns of diffusion
was proposed and applied to the 2011 London riots. The MGaté model against
which the empirical data is compared against is an externsiothe state of the art
(Cohen and Tita, 1999; Rey et al., 2011; Schutte and Weidmdiii,)2and enables
the exploration of empirical data in which the geographigpecof the violence is of
interest, rather than its intensity. This is particularetul for rioting, which exhibits
high levels of spatial and temporal clustering, and disithecpatterns of geographic
diffusion in the 2011 London riots were found and discussed.

It was argued how analysis of the geographic diffusion dingpcan be used to

consider some of the behaviours of the rioters. Specificdllyas argued that three
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types of behaviours were occurring — rioters were influermgdheir surroundings,

which they utilised for the acquisition of high-value gopdseters were influenced by
those around them, who, by engaging in the riots, promptechitted, pressured and
provoked those around them to engage similarly; and rioter® influenced by the
presence and behaviours of the police.

With a desire to seek out more mechanistic approaches, gethisspatial choice
model of rioter target choice was next proposed, in whidmicological theories were
used to construct proposed covariates. Regressing theeistnoice model against
these variables led to the evaluation of a series of hypetheegyarding the underlying
mechanisms associated with target choice. This is a nomtibation to the literature,
since it uses a model not previously employed to study rets particular component
of rioting that has seen recent calls for further researchk{igon, 2009). It was
demonstrated how such a model might also be incorporatecaicbmputational tool
to plan police resources.

The behaviour of the police was not incorporated into the ehofl rioter target
choice due to a lack of sufficient data on their locations arategies. Inspired by
the need to more closely investigate the interactions otesdvies, the example of
the Naxal insurgency was considered, using data that disshed between actions of
insurgents and police. To do this, a modelling framework a@mployed that has pre-
viously been shown to provide significant predictive pow&arimit-Mangion et al.,
2012; Mohler, 2014). A series of novel multivariate and, am& cases, nonlinear
point process models were proposed for the rate at whicht®wessociated with the
Naxal insurgency occur. The calibration of these modelbligbted certain features
of the conflict, such as the strong local influence from prig@rgs, and the ability for
self-excitation, rather than mutual excitation, to explailarge amount of the variance
in the data. The model was assessed with regards to its pvedoower. As others
have pointed out, the predictive power of statistical meds had insufficient atten-
tion in the literature. In particular, Ward et al. (2010) @eghat many statistical models
associated with the study of conflict include many covasiditat do little to improve
predictive performance. The study presented in this thesiddes further support that
more sophisticated mathematical models, although somntepdraimonious with re-

gards to the amount of data used, might be usefully emplayadgredictive modelling
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framework.

Many traditional models for the interaction between adares use determinis-
tic differential equations to articulate proposed mectasi. From these models, the
logical implications of those hypotheses can be deducedChiapter 6, an entropy-
maximisation approach to spatial disaggregation of the &adon model of conflict
escalation resulted in a novel model that was explored froiwndinear dynamical sys-
tems perspective. A bifurcation was identified that cameutibe a result of consider-
ing space in this way, which may indicate the onset of undbkrescalation processes
between two adversaries.

In addition to these specific advances, this thesis has detnated that there are
a wide range of frameworks that might be employed to model wiwlence in space
and time. In much prior literature, models are often prodasithout due justification
of the framework employed. Careful consideration of the tgp&amework used is
crucial if the insights obtained from such models are to lefulsn designing success-
ful policy interventions. In addition, the different peespiives obtained from different
modelling frameworks might all contribute to a given polagcision and so a plurality
of modelling approaches, consolidated in a way in whichrtivsights can be use-
fully conveyed to a policy-maker, is likely to lead to a mommprehensive view of the

problem and its potential solutions.

300



Bibliography

Abudu, M. J., Raine, W. J., Burbeck, S. L., and Davison, K. K. 2.9Black ghetto
violence: A case study inquiry into the spatial pattern afrfoos Angeles riot event-

types.Social Problems19(3):408—426.

Abudu Stark, M. J., Raine, W. J., Burbeck, S. L., Keith, K., araviSon, K. K. 1974.
Some empirical patterns in a riot proces8merican Sociological Reviev89(6):
865-876.

Agresti, A. and Agresti, B. F. 1978. Statistical analysis aalitative variation. In

Schuessler, K. F., editd8ociological Methodologylossey-Bass, San Francisco, CA.

Aguirre, B. E., El-Tawil, S., Best, E., Gill, K. B., and Fedor&,2011. Contributions
of social science to agent-based models of building evamuaontemporary Social

Science: Journal of the Academy of Social Sciene€:415-432.

Ahuja, P. and Ganguly, R. 2007. The fire within: Naxalite iigguncy violence in India.
Small Wars and Insurgencigeb8(2):249-274.

Anselin, L. 1995. Local indicators of spatial associatidiSA. Geographical Analy-
sis 27(2):93-115.

Anselin, L., Cohen, J., Cook, D., Gorr, W., and Tita, G. 200Gat&panalyses of crime.
In Duffee, D., editorCriminal Justice 2000: Volume 4, Measurement and Analysis

of Crime and Justicgpages 213-262. National Institute of Justice, Washinddah

Asal, V., Gill, P., Rethemeyer, R. K., and Horgan, J. 2015. ikgllrange: Explain-
ing lethality variance within a terrorist organisatiajournal of Conflict Resolutign

Forthcoming.



BIBLIOGRAPHY

Atkinson, M. P., Gutfraind, A., and Kress, M. 2011. When do @dmevolts succeed:
Lessons from Lanchester theoryournal of the Operational Research Socjed
(10):1363-1373.

Auyero, J. and Moran, T. P. 2007. The dynamics of collectiadence: Dissecting
food riots in contemporary Argentin&ocial Forces85(3):1341-1367.

Ball, P. 2012. Why society is a complex matter: Meeting Twenty-first Centugl-Ch

lenges with a New Kind of Sciencgpringer, Berlin.

Ballas, D., Rossiter, D., Thomas, B., Clarke, G., and Dorling,2D05. Geography

Matters Joseph Rowntree Foundation, York.

Baralasi, A.-L. 2005. The origin of bursts and heavy tails in hurdgnamics.Nature
435:207-211.

Basu, I. 2011. Security and development - are they two sidéseofame coin? In-
vestigating India’s two-pronged policy towards left wingremism.Contemporary
South Asial9(4):373-393.

Batty, M. 2013.The New Science of CitieMIT Press, Cambridge, MA.

Batty, M., Desyllas, J., and Duxbury, E. 2003. Safety in nureBeModelling crowds
and designing control for the Notting Hill CarnivalUrban Studies40(8):1573—
1590.

Beck, N., Gleditsch, K. S., and Beardsley, K. 2006. Space iertian geography:
Using spatial econometrics in the study of political ecogommternational Studies
Quarterly, 50:27-44.

Behlendorf, B., LaFree, G., and Legault, R. 2012. Microcycledaence: Evidence
from terrorist attacks by ETA and the FMLNournal of Quantitative Criminology
28:49-75.

Beinhocker, E. 2007.The origin of wealth: Evolution, complexity and the radical

remaking of economic&kandom House Business Books, London.

302



BIBLIOGRAPHY

Bell, B., Jaitman, L., and Machin, S. 2014. Crime deterrencaddnhce from the
London 2011 riotsThe Economic Journall24:480-506.

Belur, J. 2010.Permission to Shoot? Police Use of Deadly Force in Demoesaci

Springer, New York, NY.

Bennett, D. 2008. Governments, civilians, and the evolubbmsurgency: Model-
ing the early dynamics of insurgenciesournal of Artificial Societies and Social
Simulation 11(4):7.

Bennett, P. 1987. Beyond game theory - where? In Bennett, By gsinalysing Con-
flict and its Resolution: Some Mathematical Contributiqreges 43—69. Clarendon

Press, Oxford.

Berestycki, H. and Nadal, J.-P. 2010. Self-organised eatithot spots of criminal
activity. European Journal of Applied Mathematj&sl (4-5):371-399.

Berk, R. A. 1974. A gaming approach to crowd behaviédmmerican Sociological
Review 39(3):355-373.

Berk, R. A. and Aldrich, H. E. 1972. Patterns of vandalism duigivil disorders as an

indicator of selection of target&merican Sociological Review7(5):523-47.

Bernasco, W. 2006. Co-offending and the choice of target arbarglary.Journal of

Investigative Psychology and Offender Profili3gl39-155.

Bernasco, W. 2010a. A sentimental journey to crime: Effettesidential history on

crime location choiceCriminology, 48:389-416.

Bernasco, W. 2010b. Modeling micro-level crime locationicko Application of the
discrete choice framework to crime at placdsurnal of Quantitative Criminology

26(1):113-138.

Bernasco, W. and Block, R. 2009. Where offenders choose to atatikcrete choice

model of robberies in Chicag&riminology, 47(1):93-130.

Bernasco, W. and Nieuwbeerta, P. 2005. How do residentigjldmsr select target
areas? A new approach to the analysis of criminal locatiaiceh British Journal
of Criminology 44(3):296—-315.

303



BIBLIOGRAPHY

Bernasco, W., Block, R., and Ruiter, S. 2013. Go where the mon&jadeling street

robbers location choicesournal of Economic Geograph$3(1):119-143.

Besag, J. and Clifford, P. 1989. Generalized Monte Carlo saamfie testBiometrikg
76(4):633-642.

Besag, J. and Diggle, P. J. 1977. Monte Carlo tests for spatitdm. Journal of the
Royal Statistical Society. Series C (Applied Statisti26}3):327—-333.

Bezakowa, |., Bhatnagar, N., and Vigoda, E. 2007. Sampling binaryingency tables
with a greedy startRandom Structures and Algorithp8)(1-2):168-205.

Bhavnani, R. and Choi, H. J. 2012. Modeling civil violence in Afgistan: Ethnic
geography, control, and collaboratic@omplexity 17(6):42-51.

Bhavnani, R., Donnay, K., Miodownik, D., Mor, M., and Helbing, 2014. Group
segregation and urban violencAmerican Journal of Political Scienc&8(1):226—
245.

Birkin, M. and Wu, B. 2012. A review of microsimulation and hibragent-based
approaches. In Heppenstall, A., Crooks, A., See, L., and Bittyeditors,Agent-
based models of geographical systepages 51-68. Springer, New York.

Birks, D., Townsley, M., and Stewart, A. 2012. Generativelaxations of crime:

Using simulation to test criminological theor@riminology, 50(1):221-254.

Blanchet, J. and Stauffer, A. 2013. Characterizing optimad@ing of binary contin-
gency tables via the configuration modeandom Structures and Algorithp#2(2):
159-184.

Blank, L., Enomoto, C. E., Gegax, D., Mcguckin, T., and Simmads 2008. A
dynamic model of insurgency: The case of the war in liRepce Economics, Peace

Science and Public Poligy14(2):1-26.

Blundell, C., Heller, K. A., and Beck, J. M. 2012. Modelling nemcating relationships
with Hawkes processes. In Pereira, F., Burges, C., Bottound. Veeinberger, K.,
editors,Advances in Neural Information Processing System$ages 2600-2608.

Curran Associates, Inc.

304



BIBLIOGRAPHY

Bohorquez, J. C., Gourley, S., Dixon, A. R., Spagat, M., and soahnN. F. 2009.
Common ecology quantifies human insurgendgture 462(7275):911-4.

Bosse, T. and Gerritsen, C. 2010. Social simulation and asalyshe dynamics of

criminal hot spotsJournal of Artificial Societies and Social SimulatjdrB(2):5.

Bowers, K. J. and Johnson, S. D. 2005. Domestic burglary te@eal space-time

clusters: The dimensions of risEuropean Journal of Criminology2(1):67-92.

Bowers, K. J., Johnson, S. D., Guerette, R. T., Summers, L.Paydton, S. 2011.
Spatial displacement and diffusion of benefits among geugeally focused polic-
ing initiatives: a meta-analytical reviedournal of Experimental Criminology (4):
347-374.

Bowsher, C. 2007. Modelling security market events in comtirsutime: Intensity

based, multivariate point process moddgurnal of Econometrigsl41:876—912.

Braithwaite, A. 2010. Resisting infection: How state capacibnditions conflict

contagion.Journal of Peace Research7(3):311-319.

Braithwaite, A. and Johnson, S. D. 2012. Space-time modelfngsurgency and

counterinsurgency in Iraglournal of Quantitative Criminology28:31-48.

Brantingham, P. J. and Brantingham, P. L. 19&hvironmental Criminology Sage

Publications, Inc., Thousand Oaks, CA.

Brantingham, P. J. and Brantingham, P. L. 1993. Environmentjne, and situation:
Toward a pattern theory of crime. Routine Activity and Rational Choice: Advances
in Criminological Theoryvolume 5, pages 259-294. Transaction, New Brunswick,
NJ.

Brantingham, P. J., Tita, G. E., Short, M. B., and Reid, S. E. 2002 ecology of
gang territorial boundarieriminology, 50(3):851-885.

Brauer, J. 2002. Survey and review of the defense econortecatlire on Greece and

Turkey: What have we learned?efense and Peace Economit8(2):85-107.

305



BIBLIOGRAPHY

Brémaud, P. and Massoulie, L. 1996. Stability of nonlinear keswprocessesThe
Annals of Probability 24(3):1563-1588.

Britton, J. R., Kriegh, R. B., and Rutland, L. W. 1963alculus and Analytic Geometry

W.H. Freeman and Company, San Francisco, CA.

Buhaug, H. and Gates, S. 2002. The geography of civil daurnal of Peace Research
39(4):417-433.

Buhaug, H. and Gleditsch, K. S. 2008. Contagion or confusion9 ®dhflicts cluster
in space International Studies Quarter)yp2(2):215-233.

Buhaug, H. and Rad, J. K. 2006. Local determinants of Africait wiars. Political
Geography25:315-335.

Buhaug, H., Gleditsch, K. S., Holtermann, H., @stby, G., aalfetsen, A. F. 2011.
It's the local economy, stupid! Geographic wealth dispersaand conflict outbreak

location. Journal of Conflict Resolutigrb5(5):814—-840.

Buhuag, H., Gates, S., and Lujala, P. 2009. Geography, repabdity, and the
duration of civil conflict.Journal of Conflict Resolutiqrb3(4):544-5609.

Bursik, R. J. 1988. Social disorganization and theories oherand delinquency:

Problems and prospectSriminology; 26:519-552.

Cederman, L.-E. 2003. Modeling the size of wars: From bdliballs to sandpiles.

American Political Science Revie®7(1):135.

Cederman, L.-E., Weidmann, N. B., and Gleditsch, K. S. 201 Xizdotal inequalities
and ethnonationalist civil war: A global comparisoAmerican Political Science
Review 105(3):478-495.

Clare, J., Fernandez, J., and Morgan, F. 2009. Formal ew@uaitthe impact of bar-
riers and connectors on residential burglars’ macro-leffehding location choices.

Australian and New Zealand Journal of Criminology2(2):139-158.

Clauset, A. and Gleditsch, K. S. 2012. The developmentalmyesof terrorist organ-
isations.PL0S One7(11):e48633.

306



BIBLIOGRAPHY

Cohen, J. and Tita, G. 1999. Diffusion in homicide: explorangeneral method for
detecting spatial diffusion processe3ournal of Quantitative Criminologyl5(4):
451.

Cohen, L. E. and Felson, M. 1979. Social change and crime netels: A routine
activity approachAmerican Sociological Review4(4):588—-608.

Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.-J., anelSgignani, A. 2007. Mod-
eling the worldwide spread of pandemic influenza: Baselirs® @nd containment

interventions.PLoS Medicing4(1):el13.

Collier, P. and Hoeffler, A. 2004. Greed and grievance in eidt. Oxford Economic
Papers 56(4):563-595.

Corman, J. C. 1967. The riot commission’s repétizona Law Reviey9:347-359.

Cornish, D. B. and Clarke, R. V. 1986The Reasoning Criminal: Rational Choice
Perspectives on Offendin@pringer-Verlag, New York, NY.

Cornish, D. B. and Clarke, R. V. 2008. The rational choice petsgedn Wortley, R.
and Mazerolle, L., editor&nvironmental Criminology and Crime Analysiillan

Pub., Portland OR.

Cox, D. 1955. Some statistical methods connected with sefegents.Journal of the
Royal Statistical Sociefyl 7(2):129-164.

Cox, D. 1972. Regression models and life-tabldsurnal of the Royal Statistical
Society. Series B (MethodologicaBy(2):187—-220.

Curtis, J. P. and Smith, F. T. 2008. The dynamics of persuasiernational Journal
of Mathematical Models and Methods in Applied Scien2€k):115-122.

Daley, D. and Vere-Jones, D. 2008n Introduction to the Theory of Point Processes,

Volume I: Elementary Theory and Metho@&pringer, New York, 2nd edition.

Davies, T. P, Fry, H. M., Wilson, A. G., and Bishop, S. R. 2013.mathematical

model of the London riots and their policin§cientific reports3:1303.

307



BIBLIOGRAPHY

Davis, J. and Goadrich, M. 2006. The relationship betweegigion-recall and ROC
Curves. InProceedings of the 23rd International Conference on Machi&ning
ICML '06, pages 233—-240, New York, NY, USA.

De La Barrera, E. 2005. On the sesquicentennial of Fick’s lafndiffusion. Nature
Structual and Molecular Biologyl2(4):280.

Deffuant, G. and Gilbert, N. 2011Viability and Resilience of Complex Systems:
Concepts, Methods and Case Studies from Ecology and So&gtynger-Verlag,

Berlin.

Deitchman, S. J. 1962. A Lanchester model of guerrilla wari@perations Research
10(6):818-827.

Dennett, A. and Stillwell, J. 2008. Population turnover ahdrn: Enhancing under-
standing of internal migration in Britain through measuréstability. Population
Trends 134:24-41.

Dennett, A. and Wilson, A. G. 2013. A multi-level spatialeriction modelling frame-
work for estimating inter-regional migration in EuropEnvironment and Planning

A, 45:1491-1507.

Diggle, P. J. 2013 Statistical Analysis of Spatial and Spatio-temporal P&tatterns
CRC Press, Boca Raton, FL, third edition.

Diggle, P. J., Chetwynd, A., &bgkvist, R., and Morris, S. 1995. Second-order analysis
of space-time clusterindgstatistical Methods in Medical Reseayeh124-136.

Dixon, P. M. 2002. Ripley’s K function. In El-Shaarawi, A. Hh&Piegorsch, W. W.,
editors,Encyclopedia of Environmetricgolume 3, pages 1796-1803. John Wiley &

Sons, Chichester.

Do, Q.-T. and lyer, L. 2010. Geography, poverty and conflicNepal. Journal of
Peace Researcd7(6):735—748.

Drury, J. and Stott, C. 2011. Contextualising the crowd in eoydorary social science.
Contemporary Social Science: Journal of the Academy of §8ciances6(3):275—
288.

308



BIBLIOGRAPHY

Dunne, P. J. and Smith, R. P. 2007. The econometrics of nyikians races. In Sandler,
T. and Hartley, K., editorsilandbook of Defense Economigslume 2, chapter 28,

pages 913-940. North-Holland, Amsterdam.

Durrett, R. and Levin, S. 1994. The importance of being diecfand spatial) Theo-
retical Population Biology46:363—394.

Egesdal, M., Fathauer, C., Louie, K., and Neuman, J. 201Qisttal and stochastic
modeling of gang rivalries in Los AngeleSIAM Undergraduate Research Onljne

3:72-94.

Embrechts, P., Liniger, T., and Lin, L. 2011. Multivariateaikes processes: An

application to financial datdNew Frontiers in Applied Probability48A:367-378.

Epstein, J. M. 1997Nonlinear dynamics, mathematical biology, and social soen

Addison-Wesley, Reading, MA.

Epstein, J. M. 2002. Modeling civil violence: an agent-lshsemputational approach.
Proceedings of the National Academy of Sciences of the USiiatgs of America
99 Suppl 3(2):7243-7250.

Epstein, J. M. 2008. Why model®urnal of Artificial Societies and Social Simulatjon
11(4):12.

Epstein, J. M. and Axtell, R. 1996Growing Artificial Societies MIT Press, Cam-

bridge, MA.

Farmer, J. D. and Foley, D. 2009. The economy needs ageettbasdelling.Nature
460:685—686.

Fawcett, T. 2006. An introduction to ROC analysiattern Recognition Letter27:
861-874.

Fearon, J. D. and Laitin, D. D. 2003. Ethnicity, insurgeraiyl civil war. American
Political Science Reviev®7(1):75.

Fonoberova, M., Fonoberov, V. A., Mezic, I., Mezic, J., an@@mgham, P. J. 2012.
Nonlinear dynamics of crime and violence in urban settingsurnal of Artificial

Societies and Social Simulatiotb:2.

309



BIBLIOGRAPHY

Fotheringham, A. S. and O’Kelly, M. E. 198%patial interaction models: Formula-

tions and applicationsKluwer Academic Publishers, Dordrecht, the Netherlands.

Freud, S. 1921Group Psychology and Analysis of Egmternational Psychoanalytic

Press, London.

Fry, H. and Wilson, A. G. 2012. A dynamic global trade moddah#our sectors: food,

natural resources, manufactured goods and lalf@ABA Working Paped 78.

Gail, M. H., Lubin, J. H., and Rubinstein, L. V. 1981. Likelibd calculations for
matched case-control studies and survival studies withdeath timesBiometrika
68(3):703-707.

Geary, R. 1954. The contiguity ratio and statistical mappiffie Incorporated Statis-
tician, 5(3):115-127.

Geller, A. and Alam, S. J. 2010. A socio-political and -ctélumodel of the war in

Afghanistan.International Studies Review2:8—-30.

Getis, A. and Ord, J. 1992. The analysis of spatial assoaidiy use of distance

statistics.Geographic Analysi®24(3):189-206.
Gilbert, N. 2007.Agent-based modelSage Publications, Inc, Thousand Oaks, CA.

Gillespie, J. V., Zinnes, D. A., Tahim, G., Schrodt, P. Addubison, R. M. 1977. An
optimal control model of arms raceghe American Political Science Reviefl(1):

226-244.

Gleditsch, K. S. and Ward, M. D. 2000. War and peace in spaddiae: The role of

democratizationInternational Studies Quarter)y#4:1-29.

Gleditsch, K. S. and Weidmann, N. B. 2012. Richardson in thermétion age:
Geographic Information Systems and spatial data in Intenmal Studies.Annual
Review of Political Scien¢cd5(1):461-481.

Goldsmith, B. E. 2007. Arms racing in ‘space’: Spatial moidellof military spending
around the worldAustralian Journal of Political Scien¢d2(3):419-440.

310



BIBLIOGRAPHY

Goldstone, J. A., Bates, R., Epstein, D., Lustik, M., Marshill, Ulfelder, J., and
Woodward, M. 2010. A global model for forecasting politicatability. American
Journal of Political Scienceb4:190-208.

Gonalez, E. and Villena, M. 2011. Spatial Lanchester modElstopean Journal of

Operational Researct210(3):706—715.

Gordon, M., Nadal, J.-P., Phan, D., and Semeshenko, V. 2Di3@rete choices under
social influence: Generic propertiddathematical Models and Methods in Applied
Sciencesl9(supp01):1441-1481.

Granovetter, M. 1978. Threshold models of collective b&ra\vAmerican Journal of
Sociology 83(6):1420-1443.

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, G. J., Giskk, and Railsback, S. F.
2010. The ODD protocol: A review and first updatEcological Modelling 221
2760-2768.

Gross, M. 2011. Why do people riourrent Biology 21(18):673-676.

Grubesic, T. H. and Mack, E. A. 2008. Spatio-temporal irdeoa of urban crime.
Journal of Quantitative Criminology24:285-306.

Guckenheimer, J. and Holmes, P. 198®&nlinear Oscillations, Dynamical Systems,

and Bifurcations of Vector FieldsSpringer-Verlag, New York, NY.

Guichaoua, Y. 2010. Processes of violent political moaitian: An overview of
contemporary debates and CRISE findings. Technical reportr&tar Research

on Inequality, Human Security and Ethnicity.
Gurr, T. 1970.Why Men RebelPrinceton University Press, Princeton.

Harris, B. and Wilson, A. 1978. Equilibrium values and dynesnof attractiveness
terms in production-constrained spatial-interaction eil®denvironment and Plan-
ning A 10:371-388.

Haushofer, J., Biletzki, A., and Kanwisher, N. 2010. Both sidgetaliate in the Israeli-

Palestinian conflictProceedings of the National Academy of Sciences of the United

States of Americal07(42):17927-17932.

311



BIBLIOGRAPHY

Hawkes, A. G. 1971. Spectra of some self-exciting and mlyteiciting point pro-
cessesBiometrika 58(1):83-90.

Hawkes, A. G. and Oakes, D. 1974. A cluster process repiasambf a self-exciting
process.Journal of Applied Probability11(3):493-503.

Hegre, H., @stby, G., and Raleigh, C. 2009. Poverty and civilavants: A disaggre-
gated study of LiberiaJournal of Conflict Resolutigrb3(4):598-623.

Hegre, H., Karlsen, J., Nggd, M., Strand, H., and Urdal, H. 2013. Predicting armed
conflict, 2010-2050International Studies Quarter/y67:250-270.

Helbing, D., Johansson, A., and Al-Abideen, H. 2007. Dyrenaf crowd disasters:
An empirical study.Physical Review E75(4):0461009.

Helbing, D., Brockmann, D., Chadefaux, T., Donnay, K., Blarlde, Woolley-Meza,
0., Moussaid, M., Johansson, A., Krause, J., Schutte, 8.Parc, M. 2015. Sav-
ing human lives: What complexity science and informatiorteays can contribute.

Journal of Statistical Physic4d58(3):735-781.

Heppenstall, A., Crooks, A., See, L. M., and Batty, M. 20Bgent-based Models of
Geographical System$pringer, New York.

Hirsch, M. W., Smale, S., and Devaney, R. L. 20DM4fferential Equations, Dynamical

Systems & an Introduction to Chaoslsevier, San Diego, CA, second edition.

HMIC. 2011. The rules of engagement: A review of the Augustl?2@isorders.
Technical report, HMIC.

Holden, R. T. 1986. The contagiousness of aircraft hijackiAgherican Journal of
Sociology 91(4):874-904.

Holtermann, H. 2015. Relative capacity and the spread ofllrebe Insights from

Nepal. Journal of Conflict Resolutigri-orthcoming.

House of Commons. 2011. Policing large scale disorder: lnssfsom the disturbances

of August 2011. Technical report, House of Commons.

312



BIBLIOGRAPHY

Hsueh, Y.-H., Lee, J., and Beltz, L. 2012. Spatio-temporéepas of dengue fever
cases in Kaoshiung City, Taiwan, 2003—-208@plied Geography34:587-594.

llachinski, A. 2004. Artificial War: Multiagent-Based Simulation of Combatvorld
Scientific Publishing Co. Pte. Ltd., Singapore.

Intriligator, M. D. and Brito, D. L. 1976. Formal models of asmaces. Conflict

Management and Peace Scien2€l):77—-88.

Intriligator, M. D. and Brito, D. L. 1988. A predator-prey meldf guerrilla warfare.
Synthesg2:235-244.

IPCC. 2013. Fifth Assessment Report (AR5). Technical repotérgovernmental

Panel on Climate Change, Geneva, Switzerland.

Jackson, S., Russett, B., Snidal, D., and Sylvan, D. 1978. Coaftid coercion in
dependent statedournal of Conflict Resolutiqr22(4):627-657.

Jacquez, G. M. 1996. A nearest neighbour test for space-time interactatistics

in Medicine 15:1935-1949.

Johnson, D. H. 1996. Point process models of single-neusmmarges.Journal of

Computational Neuroscienc8:275—-299.

Johnson, N. F., Carran, S., Botner, J., Fontaine, K., Laxagydjuetzel, P., Turnley,
J., and Tivhan, B. 2011. Pattern in escalations in insurgedttarrorist activity.

Science333(81):81-84.

Johnson, N. F., Medina, P., Zhao, G., Messinger, D. S., Hoi@aGill, P., Bohorquez,
J. C., Mattson, W., Gangi, D., Qi, H., Manrique, P., Velasqidz Morgenstein, A.,
Restrepo, E., Johnson, N., Spagat, M., and Zarama, R. 2013leéSmathematical

law benchmarks human confrontatioi&cientific Reports3:3463.

Johnson, S. D. 2008. Repeat burglary victimisation: A talewoftheories.Journal of
Experimental Criminology4(3):215-240.

Johnson, S. D. and Bowers, K. J. 2004. The stability of space-¢lusters of burglary.
British Journal of Criminology44(1):55-65.

313



BIBLIOGRAPHY

Johnson, S. D. and Braithwaite, A. 2009. Spatio-temporéalidigion of insurgency in
Irag. Countering Terrorism through SCP, Crime Prevention Studi89-32.

Johnson, S. D. and Groff, E. R. 2014. Strengthening theatd@sting in Criminology
using agent-based modelingpurnal of Research in Crime and Delinquenbg(4):
509-525.

Johnson, S. D. and Summers, L. 2015. Testing ecologicatideeof offender spatial

decision making using a discrete choice mod&ime and DelinquengyForthcom-
ing.

Jones, S. G. and Kulldorff, M. 2012. Influence of spatial hason on space-time
disease cluster detectioRLOS One7(10):e48036.

Kalyvas, S. N. 1999. Wanton and senseless?: The logic ofanassin Algeria.
Rationality and Societyl 1(3):243—-285.

Karmeshu, M., Jain, V., and Mahajan, A. 1990. A dynamic madelbmestic political
conflict processJournal of Conflict Resolutiqr84(2):252—-269.

Keane, T. 2011a. Combat modelling with partial differenéigiations Applied Math-
ematical Modelling35(6):2723-2735.

Keane, T. 2011b. Partial differential equations versukilzlautomata for modeling
combat.The Journal of Defense Modeling and Simulation: ApplicagidViethodol-
ogy, TechnologyB(4):191-204.

Knox, E. G. 1964a. The detection of space-time interactialwirnal of the Royal
Statistical Society, Series C (Applied Statistids)(1):25-30.

Knox, G. 1964b. Epidemiology of childhood leukaemia in Narnberland and

Durham.British Journal of Preventive and Social Medicjrie3:17-24.

Kocher, M. A., Pepinsky, T. B., and Kalyvas, S. N. 2011. Aebaimbing and coun-
terinsurgency in the Vietnam warAmerican Journal of Political Scienc&5(2):
201-218.

314



BIBLIOGRAPHY

Kress, M. and MacKay, N. J. 2014. Bits or shots in combat? Tineigdized Deitch-

man model of guerrilla warfaréOperations Research Lette#2:102—-108.

Kubrin, C. E. and Weitzer, R. 2003. New directions in sociabdignization theory.
Journal of Research in Crime and Delinquend(4):374—-402.

Kulldorff, M. 1997. A spatial scan statisti€ommunications in Statistics - Theory and
Methods 26(6):1481-1496.

Kulldorff, M. 2001. Prospective time periodic geographid@sease surveillance using

a scan statisticJournal of the Royal Statistical Society 264(1):61-72.

Kulldorff, M., Heffernan, R., Hartman, J., Assuing, R., and Mostashari, F. 2005. A
space-time permutation scan statistic for disease owtlietaction PLoS Medicing
2(3):e59.

LaFree, G., Dugan, L., and Korte, R. 2009. The impact of Britishnterterrorist
strategies on political violence in Northern Ireland: Compgdeterrence and back-
lash modelsCriminology, 47(1):17—45.

LaFree, G., Dugan, L., Xie, M., and Singh, P. 2012. Spatidltamporal patterns of
terrorist attacks by ETA 1970 to 200dournal of Quantitative Criminology28(1):
7-29.

Lanchester, F. W. 1916&Aircraft in Warfare: The Dawn of the Fourth ArnConstable

and Company Limited, London.

Le Bon, G. 1896; 1960The Crowd: A Study of the Popular Min¥iking Press, New
York.

Lewis, E., Mohler, G., Brantingham, P. J., and Bertozzi, A.Q12. Self-exciting point
process models of civilian deaths in Ira§ecurity Journgl25(3):244—-264.

Lewis, P. and Shedler, G. 1979. Simulation of non-homoges@wisson processes by

thinning. Naval Research Logistics Quarter6:403-413.

Liebovitch, L. S., Naudot, V., Vallacher, R., Nowak, A., Bui-¥ésinska, L., and Cole-
man, P. 2008. Dynamics of two-actor cooperation-competitonflict models.
Physica A: Statistical Mechanics and its Applicatip887(25):6360—6378.

315



BIBLIOGRAPHY

Lim, M., Metzler, R., and Bar-Yam, Y. 2007. Global pattern faton and eth-
nic/cultural violence Science317(5844):1540-1544.

Liniger, T. J. 2009Multivariate Hawkes ProcesseBhD thesis, Swiss Federal Institute

of Technology, Zurich.

Linke, A. M., Witmer, F. D., and O’Loughlin, J. 2012. Spadew Granger analysis
of the war in Irag: A study of coalition and insurgent acti@action. International
Interactions 38(4):402—-425.

Lyall, J. 2009. Does indiscriminate violence incite insmgattacks?: Evidence from
ChechnyaJournal of Conflict Resolutigrb3(3):331-362.

Malchow, H., Petrovskii, S., and Venturino, E. 20(patiotemporal Patterns in Ecol-

ogy and EpidemiologyChapman and Hall/CRC, Boca Raton, FL.

Malizia, N. 2013. Inaccuracy, uncertainty and the space-fpermutation scan statistic.
PLOS One8(2):e52034.

Malleson, N., Heppenstall, A., and See, L. 2010. Crime radao¢hrough simulation:
An agent-based model of burglarnfComputers, Environment and Urban Systems
34:236-250.

Mantel, N. 1967. The detection of disease clustering andnergdized regression

approachCancer Researct27:209-220.

Marchione, E. and Johnson, S. D. 2013. Spatial, temporapatio-temporal patterns

of maritime piracy.Journal of Research in Crime and Delinquen69(4):504-524.

Martin, A. W., McCarthy, J. D., and McPhail, C. 2009. Why targetstter: Toward a
more inclusive model of collective violenc&merican Sociological Review4(5):
821-841.

Mason, T. D. 1984. Individual participation in collectivacial violence: A rational

choice synthesisAmerican Political Science RevieW8(4):1040-1056.

McColl, R. W. 1969. The insurgent state: Territorial basesgblution. Annals of the
Association of American Geographe&9(4):613—-631.

316



BIBLIOGRAPHY

McFadden, D. 1974. Conditional logit analysis of qualitatshoice behavior. In
Zarembka, P., editoFrontiers in Econometrigsvolume 1 ofEconomic theory and

mathematical economigcshapter 4, pages 105-142. Academic Press.

McFadden, D. 1979. Quantitative methods for analysingetraehaviour of indi-
viduals: Some recent developments. In Hensher, D. A. anph®8tp P. R., editors,

Behavioural Travel Modellingchapter 13, pages 279-319. Croom Helm, London.

McFadden, D. 2001. Economic choice$he American Economic Revie@1(3):
351-378.

McLennan, D., Barnes, H., Noble, M., Davies, J., Garrattaid Dibben, C. 2011.
The English Indices of Deprivation 2010K Department of Communities and Local

Government, London.
McPhail, C. 1991.The Myth of the Madding Crowdhldine, New York, NY.

Metropolitan Police Service. 2012. 4 days in August: Sg@atesview into the disorder

of August 2011. Technical report, Metropolitan Police $egv

Midlarsky, M. 1978. Analyzing diffusion and contagion effs: The urban disorders
of the 1960s.The American Political Science Revier(3):996-1008.

Mohler, G. 2013. Modeling and estimation of multi-sourcastéring in crime and
security dataThe Annals of Applied Statistics(3):1525-1539.

Mohler, G. 2014. Marked point process hotspot maps for hmmiand gun crime
prediction in Chicagolnternational Journal of Forecasting0:491-497.

Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg,,land Tita, G. E. 2011.
Self-exciting point process modeling of crim@ournal of the American Statistical
Association 106(493):100-108.

Moran, P. A. 1950. Notes on continuous stochastic phenonigioanetrikg 37(1/2):
17-23.

Morrell, G., Scott, S., McNeish, D., and Webster, S. 201% Abgust riots in England:
Understanding the involvement of young people. Technigabrt, National Centre

for Social Research.

317



BIBLIOGRAPHY

Most, B. A. and Starr, H. 1980. Diffusion, reinforcement, gelitics and the spread

of war. The American Political Science Revieid(4):932—946.

Myers, D. J. 1997. Racial rioting in the 1960s: An event higtanalysis of local
conditions.American Sociological Review§2(1):94-112.

Myers, D. J. 2000. The diffusion of collective violence:dnfiousness, susceptibility,

and mass media network&merican Journal of Sociology06(1):173—-208.

Myers, D. J. 2010. Violent protest and heterogeneous diffugrocesses: The spread
of U.S. racial rioting from 1964 to 197 Mobilization, 15(3):289-321.

Nelder, J. and Mead, R. 1965. A simplex method for functionimiration. The
Computer Journal7(4):308-313.

Newman, M. 2011. Complex Systems: A surveymerican Journal of Physicg9:
800-810.

North, B., Curtis, D., and Sham, P. 2002. A note on the calanabf empirical P
values from Monte Carlo procedure&merican Journal of Human Genetjc&lL(2):
496-502.

Ogata, Y. 1981. On Lewis’ simulation method for point prassIEEE Transactions

on Information Theory27(1):23-31.

Ogata, Y. 1988. Statistical models for earthquake occuaeand residual analysis for

point processeslournal of the American Statistical Associati@3(401):9-27.

Oléron Evans, T. P. and Bishop, S. R. 2013. Static search ganyesigaer graphs and

general metric space&uropean Journal of Operational Reseay@31:667—689.

O’Loughlin, J. and Witmer, F. D. 2010. The localized geodpiap of violence in the
North Caucasus of RussiAnnals of the Association of American Geograph&sl
(1):178-201.

O’Loughlin, J. and Witmer, F. D. 2012. The diffusion of vialee in the North Caucasus
of Russia, 1999-201@&nvironment and Planning,A4:2379-2396.

318



BIBLIOGRAPHY

O’Loughlin, J., Witmer, F. D., and Linke, A. M. 2010a. The Afgnistan-Pakistan
wars, 2008—-2009: Micro-geographies, conflict diffusior atusters of violence.

Eurasian Geography and Economiéd.(4):437-471.

O’Loughlin, J., Witmer, F. D., Linke, A. M., and Thorwardsdd. 2010b. Peering into
the fog of war: The geography of the Wikileaks Afghanistam \egs, 2004—2009.
Eurasian Geography and Economiéd (4):472-495.

O’Loughlin, J., Holland, E. C., and Witmer, F. D. 2011. The mhimg geography
of violence in Russia’s North Caucasus, 1999-2011: Regioeatitr and local dy-
namics in Dagestan, Ingushetia, and Kabardino-Balk&taasian Geography and
Economics52(5):596-630.

Olzak, S. and Shanahan, S. 1996. Deprivation and race Aotextension of Spiler-
man’s analysisSocial Forces74(3):931-961.

Openshaw, S. 1984The Modifiable Areal Unit ProblemGeo Books, Norwich, Nor-
folk.

@stby, G. 2008. Polarization, horizontal inequalities gindent civil conflict. Journal
of Peace Research5(2):143-162.

@stby, G., Nords, R., and Rgd, J. K. 2009. Regional inequalities and civil il
sub-Saharan Africanternational Studies Quarter/y3:301-324.

Ozaki, T. 1979. Maximum likelihood estimation of Hawkeslfsexciting point pro-

cessesAnnals of the Institute of Statistical Mathematig4:145—-155.

Peng, R. 2003. Multi-dimensional point process models inJ&urnal of Statistical
Software 8(16):1-27.

Peng, R. D., Schoenberg, F. P., and Woods, J. A. 2005. A spaeecbnditional
intensity model for evaluating a wildfire hazard indedournal of the American
Statistical Associationl00(469):26—35.

Picoli, S., del Castillo-Mussot, M., Ribeiro, H., Lenzi, EndaMendes, R. 2014.

Universal bursty behaviour in human violent conflicBientific Reporis4:4773.

319



BIBLIOGRAPHY

Pitcher, A. B. 2010. Adding police to a mathematical model wfghary. European
Journal of Applied Mathematic21:401-419.

Porter, M. D. and White, G. 2012. Self-exciting hurdle modelsterrorist activity.
The Annals of Applied Statistids$(1):106—-124.

Qubbaj, M. and Muneepeerakul, R. 2012. Two-actor conflichiine delay: A
dynamical modelPhysical Review E86(5):056101.

Radil, S. M., Flint, C., and Tita, G. E. 2010. Spatializing sdaietworks: Using
social network analysis to investigate geographies of gavadyy, territoriality and
violence in Los AngelesAnnals of the Association of American Geographé&0
(2):307-326.

Raleigh, C. and Hegre, H. 2009. Population size, concentraéind civil war: A
geographically disaggregated analys$tslitical Geography28:224—-238.

Ratcliffe, Jerry, H. 2000. Aoristic analysis: The spatidkenpretation of unspecific
temporal events.International Journal of Geographical Information Sciend4:
669-679.

Rey, S. J., Mack, E. A., and Koschinsky, J. 2011. Exploratpacs-time analysis of
burglary patternsJournal of Quantitative Criminology28(3):509-531.

Richardson, L. F. 1951. Could an arms-race end without figRtigture 168(4274):
567-8.

Richardson, L. F. 1960aArms and InsecurityThe Boxwood Press, Pittsburgh, PA.

Richardson, L. F. 1960bStatistics of Deadly QuarrelsThe Boxwood Press, Pitts-
burgh.

Riots Communities and Victims Panel. 2011. 5 days in Augustindrim report on

the 2011 English riots. Technical report, Riots Communitied @ictims Panel.

Rodriguez, N. and Bertozzi, A. 2010. Local existence and wengss of solutions to
a PDE model for criminal behavioMathematical Models and Methods in Applied

Sciences20(supp01):1425.

320



BIBLIOGRAPHY

Rojas-Pacheco, A., Obrég-Quintana, B., Liebovitch, L. S., and GuamVargas, L.
2013. Time-delay effects on dynamics of a two-actor confticidel. Physica A:
Statistical Mechanics and its Applicatiqr$92(3):458-467.

Rosenfeld, M. 1997. Celebration, politics, selective logtamd riots: A micro level

study of the Bulls riot of 1992 in Chicag&ocial Problems44(4):483-501.
Rossmo, K. D. 2000Geographic Profiling CRC Press LLC, Boca Raton, FL.

Rutherford, A., Harmon, D., Werfel, J., Gard-Murray, A. S.r&am, S., Gros, A,
Xulvi-Brunet, R., and Bar-Yam, Y. 2014. Good fences: The imgace of setting
boundaries for peaceful coexisten€d.OS ONE 9(5):e95660.

Ryan, A. 2006. About the bears and the bees: Adaptive respdosgsymmetric
warfare. In Minai, A., Braha, D., and Bar-Yam, Y., editoPspceedings of the Sixth
International Conference on Complex Systepages 1-9. New England Complex

Systems Institute.

Sahni, A. 2007. Andhra Pradesh: The state advances, thestdaotreatSouth Asia

Intelligence Review: Weekly Assessments and Brief(#)8):1.

Salehyan, I. and Gleditsch, K. S. 2006. Refugees and thedspfeavil war. Interna-
tional Organization 60(2):335—-366.

Sampson, R. J. and Groves, W. B. 1989. Community structure ame.ciTesting

social-disorganization theonAmerican Journal of Sociolog®p4:774—-802.

Sampson, R. J., Raudenbush, S. W., and Earls, F. 1997. Neigidus and violent

crime: A multilevel study of collective efficacyscience277:918-924.

Saperstein, A. M. 2007. Chaos in Models of Arms Races and thiatlan of War.
Complexity 12(3).

Schelling, T. C. 1971. Dynamic models of segregatiqalmurnal of Mathematical
Sociology 1:143-186.

Schoenberg, F. P. 2003. Multidimensional residual angalyigpoint process models for
earthquake occurrencedournal of the American Statistical Associati®8(464):
789-795.

321



BIBLIOGRAPHY

Schrodt, P. A. 2014. Seven deadly sins of contemporary gaawve political analysis.
Journal of Peace Researchl(2):287-300.

Schutte, S. and Weidmann, N. B. 2011. Diffusion patterns olevice in civil wars.

Political Geography30(3):143-152.

Shaw, C. R. and McKay, H. D. 1969uvenile Delinquency and Urban Ared&ehavior

research fund monographs. University of Chicago Press, Gbjdh.

Short, M. B., D’Orsogna, M. R., Pasour, V. B., Tita, G. E., Bragtiam, P. J., Bertozzi,
A. L., and Chayes, L. B. 2008. A statistical model of criminahaeiour. Mathe-
matical Models and Methods in Applied Sciendg{supp01):1249-1267.

Short, M. B., Bertozzi, A., and Brantingham, P. 2010a. Nonlirngstterns in urban
crime: Hotspots, bifurcations and suppressi8AM Journal of Applied Dynamical
Systems9(2):462—-483.

Short, M. B., Brantingham, P. J., Bertozzi, A. L., and Tita, G.2Zb10b. Dissipation
and displacement of hotspots in reaction-diffusion modélsime. Proceedings of
the National Academy of Scien¢@97(9):3961-3965.

Short, M. B., Mohler, G. O., Brantingham, P. J., and Tita, G. B12 Gang rivalry
dynamics via coupled point process networksscrete and Continuous Dynamical
Systems - Series B9(5):1459-1477.

Simon, H. A. 1955. A behavioral model of rational choidéhe Quarterly Journal of
Economics69(1):99-118.

Smith, L. M., Keegan, M. S., Wittman, T., Mohler, G. O., and®eei, A. L. 2010. Im-
proving density estimation by incorporating spatial im@ation. EURASIP Journal
on Advances in Signal Processjr&10:265631.

Snook, B., Cullen, R. M., Mokros, A., and Harbort, S. 2005. Seniarderers’ spatial
decisions: Factors that influence crime location choideurnal of Investigative
Psychology and Offender Profiling:147-164.

Solomos, J. 2011. Race, rumours and riots: Past, presenuaué.f Sociological
Research Onlinegl6(4):20.

322



BIBLIOGRAPHY

Spilerman, S. 1970. The causes of racial disturbances: Apadson of alternative

explanationsAmerican Sociological Review85(4):627—649.

Spilerman, S. 1971. The causes of racial disturbancess déan explanationAmer-

ican Sociological Revieyd6:427—-42.

Spilerman, S. 1976. Structural characteristics of citre$the severity of racial disor-

ders.American Sociological Revigw1:771-793.

Starr, H. and Most, B. A. 1983. Contagion and border effectsomemmporary African
conflict. Comparative Political Studied6:92-117.

Stolzenberg, L. and D’Alessio, S. J. 2008. Co-offending drelage-crime curve.
Journal of Research in Crime and Delinquend$(1):65—-86.

Strogatz, S. H. 1994Nonlinear Dynamics and Chaos with Applications to Physics,
Biology, Chemistry and Engineerin@erseus Books, Reading, MA.

Therneau, T. M. 2014A Package for Survival Analysis in R package version 2.37-7.

Tita, G., Riley, K., Ridgeway, G., Grammich, C., Abra-hamseFA.and Greenwood,
P. W. 2003Reducing gun violence: Results from an intervention in EastAngeles

Rand, Santa Monica, CA.

Tita, G. E. and Radil, S. M. 2011. Spatializing the social reeks of gangs to explore

patterns of violenceJournal of Quantitative Criminology27:521-545.

Tobler, W. R. 1970. A computer model simulating urban growtthie Detroit region.

Economic Geographyt6:234-240.

Toft, M. D. and Zhukov, Y. M. 2012. Denial and punishment i tRorth Cauca-
sus: Evaluating the effectiveness of coercive countarrgency. Journal of Peace
Research49(6):785-800.

Torrens, P. M. and McDaniel, A. W. 2013. Modeling Geogra@tavior in Riotous
Crowds.Annals of the Association of American Geograph&f3(1):20—46.

323



BIBLIOGRAPHY

Townsley, M. and Sidebottom, A. 2010. All offenders are ¢ghbat some are more
equal than others: Variation in journeys to crime betwedeanafers. Criminology,
48:897-917.

Townsley, M., Homel, R., and Chaseling, J. 2003. Infectiouglanes: A test of the
near repeat hypothesiBritish Journal of Criminology43:615—633.

Townsley, M., Johnson, S. D., and Ratcliffe, J. H. 2008. Spawe dynamics of
insurgent activity in IraqSecurity Journgl21(3):139-146.

Townsley, M., Birks, D., Bernasco, W., Ruiter, S., Johnson, SWhite, G., and Baum,
S. 2015. Burglar target selection: A cross-national congpariJournal of Research

in Crime Delinquency52:3-31.

Train, K. 2003. Discrete Choice Methods With Simulatioil©ambridge University

Press, Cambridge.

Vadlamannati, K. C. 2011. Why Indian men rebel? Explainingeatmebellion in the
Northeastern states of India, 1970-200@urnal of Peace Research(5):605—-619.

Verhelst, N. D. 2008. An efficient MCMC algorithm to sample dniy matrices with
fixed marginals Psychometrika73(4):705—-728.

Ward, M. D. and Gleditsch, K. S. 2002. Location, locatiorcdtbon: An MCMC
approach to modeling the spatial context of war and pefakgical Analysis 10(3):
244-260.

Ward, M. D., Greenhill, B. D., and Bakke, K. M. 2010. The perilgolicy by p-value:
Predicting civil conflicts.Journal of Peace Research7(4):363-375.

Weidmann, N. B. 2015. On the accuracy of media-based confi@ttalata.Journal

of Conflict ResolutionForthcoming.

Weidmann, N. B. and Salehyan, I. 2013. Violence and ethniegatjon: A computa-
tional model applied to Baghdathternational Studies Quarter)ys7(1):52—64.

Weidmann, N. B. and Ward, M. D. 2010. Predicting conflict incgand timeJournal
of Conflict Resolution54(6):883—-901.

324



BIBLIOGRAPHY

Weidmann, N. B. and drcher, C. 2013. How wartime violence affects social cohesio

The spatial-temporal gravity modeTivil Wars 15(1):1-18.

Weisburd, D., Bernasco, W., and Bruinsma, G. J. 20B8tting Crime in its Place:

Units of Analysis in Geographic Criminologgpringer, New York, NY.

White, G., Porter, M. D., and Mazerolle, L. 2013. Terrorisrskriresilience and
volatility: A comparison of terrorism patterns in three 8weast Asian countries.
Journal of Quantitative Criminology29(2):295-320.

Wilcox, A. R. 1973. Indices of qualitative variation and pigial measurementThe
Western Political Quarterly26:325-343.

Wilkinson, S. I. 2009. RiotsAnnual Review of Political Scienc&2(1):329-343.
Wilson, A. G. 1970.Entropy in Urban and Regional Modellindg?ion, London, UK.

Wilson, A. G. 2000. Complex spatial systems: The modelling foundations of urban

and regional analysisPrentice Hall, Harlow.

Wilson, A. G. 2006. Ecological and urban systems models: &enplorations of
similarities in the context of complexity theoryenvironment and Planning,/38:
633—646.

Wilson, A. G. 2008. Boltzmann, Lotka and Volterra and spatialictural evolution: An
integrated methodology for some dynamical systedasirnal of the Royal Society,

Interface / the Royal Societ$(25):865—71.

Wortley, R. 2008. Situational precipitators of crime. In \flley, R. and Mazerolle, L.,
editors,Environmental Criminology and Crime Analyspages 48-69. Willan Pub.,
Portland OR.

Wortley, R. and Mazerolle, L. 200&nvironmental Criminology and Crime Analysis
Willan Publishing, Portland, OR.

Zammit-Mangion, A., Dewar, M., Kadirkamanathan, V., andh@anetti, G. 2012.
Point process modelling of the Afghan War Diaryroceedings of the National

Academy of Sciences of the United States of Amet@®(31):12414-124109.

325



BIBLIOGRAPHY

Zarboutis, N. and Marmaras, N. 2004. Searching efficiemgfar emergency rescue
through simulation: The case of a metro fi@ognition, Technology & Worl6(2):
117-126.

Zhukov, Y. M. 2012. Roads and the diffusion of violence: Thgistics of conflict in
Russia’s North CaucasuBolitical Geography 31:144—156.

Zinnes, D. A. and Muncaster, R. G. 1984. The dynamics of leattivity and the
prediction of war.Journal of Conflict Resolutiqr28(2):187-229.

Zipf, G. K. 1949.Human Behavior and the Principle of Least Effolddison-Wesley,
Oxford.

326



