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Abstract

Mathematical modelling of civil violence can be accomplished in different ways. In

this thesis, four modelling frameworks are investigated, each of which leads to differ-

ent insights into the spatio-temporal properties of civil violence. These frameworks

vary with respect to the extent in which empirical data is used in generating model as-

sumptions, and the extent in which simplifying assumptionsdistance the model from

the real world. An overarching objective is to compare the insights and underlying as-

sumptions of each framework, and to consider how they might be consolidated to aid

policy decision-making.

Within each framework, novel contributions both to the mathematical modelling of

social systems, and to the theoretical understanding of civil violence are made. First, a

novel data-driven approach for analysing local patterns ofgeographic diffusion in event

data is presented, and applied to offences associated with the 2011 London riots. Sec-

ond, by considering the decision-making of individuals, thereby taking an agent-based

perspective, and using existing theory to construct model assumptions, a parametric sta-

tistical model of discrete choice is derived that more closely inspects the targets chosen

by rioters, and how these choices might have changed over time. The application of this

model to the policy domain is explored by considering policedeployment strategies.

Third, focusing on the interaction between two adversaries, and employing stochastic

point process models, a series of multivariate and nonlinear Hawkes processes are pro-

posed and used to explore spatio-temporal dependency during the Naxal insurgency in

India. Fourth, a novel spatially-explicit differential equation-based model of conflict

escalation between two adversaries is derived. A bifurcation is identified that results

from the spatial disaggregation of the model. Implicationsfor the interpretation of the

model in the real world and potential applications are discussed.
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Chapter 1

Introduction



1.1. MOTIVATION

1.1 Motivation

To motivate this thesis, a series of questions are first addressed.

Why model?

Modelling is widespread in a number of domains. The application of models to soci-

ety has begun to deliver insights into, for instance, globalpandemic spreading (Col-

izza et al., 2007), urban planning (Wilson, 2000; Batty, 2013), and the functioning of

economies (Farmer and Foley, 2009). In particular, the application of models to society

is beginning to deliver policy-relevant insights that can be used to better structure our

society and its response to different events (Ball, 2012).

The idea that models can provide policy recommendations is in some sense obvi-

ous: the construction of a model is one of the most common waysby which human be-

ings have come to make decisions. As Epstein (2008) describes, “anyone who ventures

a projection, or imagines how a social dynamic—an epidemic,war, or migration—

would unfold is runningsomemodel”. Effective decision-making requires projections

for a range of choices that might be made, and not just for the decision that is made.

Moreover, better projections should lead to better decisions.

As Epstein goes on to explain, explicit models—which can be written down in

a comprehensive (and ideally standardised) way—are preferable over implicit models

– mental projections that cannot be reproduced and tested inaccordance with the sci-

entific method. The advantages of an explicit model over an implicit one is that the

model can be reduced to a set of statements or assumptions that describe exactly how

the model behaves over the range of scenarios to be considered. Moreover, the model

should be entirely and exactly reproducible from this set ofassumptions so that its im-

plications, and any policy decisions that are made on its basis, can be questioned and

challenged by others.

Besides providing a more scientific means by which the impact of policy interven-

tions might be envisaged, there are a number of other benefitsassociated with the use

of explicit models. For instance, if it is possible to specify a mechanism by which a

particular phenomenon is thought to arise, then an explicitmodel can enable the evalu-

ation of whether that mechanism provides a plausible explanation, thereby providing a

test of associated theories from which that mechanism stems.
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1.1. MOTIVATION

From an inductive perspective, models can help to distinguish between statistical

noise and meaningful signals in empirical data, and might consequently suggest new

theories and research by exposing or clarifying particularpatterns or processes. Deduc-

tive modelling also requires sophisticated techniques to account for uncertainty or to

incorporate potential influences on the mechanisms of interest. This has led to models

being objects of scientific enquiry in their own right.

This thesis is motivated by the use of models in a policy setting. In particular,

the extent to which different models afford policy insightsis investigated. Conclusions

are sought that lead to an improved understanding as to how theory and empirical data

combine to generate model-based policy insights. This is achieved by contrasting the

studies of four very different types of model, each applied to a particular problem re-

garding the spatio-temporal distribution of civil violence.

Why use different frameworks to build models?

There are different ways to build a model. Different models may employ different an-

alytical techniques or have different underlying assumptions that subtly influence the

range of insights that might be obtained. In this thesis, theterm “model framework” is

used to refer to a modelling method that uses a particular analytical approach. There

is no widely agreed upon framework for developing models of social systems. Each

approach can appear to offer a range of advantages and disadvantages over other ap-

proaches. In addition, there are many different frameworksthat might be used for

any given problem, and different frameworks may be favoureddepending on a range

of criteria including, for example, the academic discipline with which the modeller is

most familiar. There have been few attempts at consolidating or contrasting different

modelling frameworks in the study of civil violence.

In this thesis, to distinguish between different frameworks, models will be com-

pared with respect to two facets: the extent to which empirical data is used in the

construction of model assumptions, and the extent to which these assumptions are rep-

resentative of the real-world phenomenon under consideration. Models that incorporate

a large amount of empirical data, and which have few basic assumptions are likely to

provide plausible accounts of the phenomenon of interest. However, the extent to which

sophisticated insights might be obtained (for example, with regards to understanding

16



1.1. MOTIVATION

potential mechanisms or predicting future events) is likely to be limited. In particu-

lar, prediction with data-driven approaches that are informed by observations relies on

the sample data containing sufficient information to enableextrapolation. In contrast,

mechanistic approaches, in which a proposed mechanism generates model outputs that

are thought to be responsible for the empirical data, are likely to be further removed

from the real-world, but more likely to be able to account forqualitative changes in the

underlying data generating process.

Figure 1.1 summarises the trade-off between potential insight and plausibility for

a range of modelling frameworks that have been applied to study civil violence. The

different modelling frameworks are placed along a spectrum, broadly defined by the

ratio given by the number of model assumptions that remove the model from the real

world, to the amount of data incorporated into the development of those model assump-

tions. The two curves represent the extent to which insight and plausibility typically

change as this ratio varies, and as different modelling frameworks are employed.

Why model civil violence?

Outbreaks of civil violence, whether stemming from civil wars, insurgencies, rioting,

or other forms of unrest, continues to dominate news reportsaround the globe. The

onset and evolution of civil violence is traditionally discussed using anecdotal perspec-

tives, rather than by employing explicit models to seek out underlying mechanisms or

patterns that might be exploited from a policy perspective.However, there has been a

recent dramatic increase in the quantity and quality of explicit models detailing vari-

ous aspects of civil violence. This is partly due to increased data availability, which is

crucial for modelling as it enables the development of models that are empirically con-

sistent, and partly due to an increased range of sophisticated modelling techniques. Our

understanding of civil violence can be improved though suchmodels. This may in turn

improve the way in which interventions are planned. Some have even suggested that

by using modern modelling techniques to investigate problems of crime, war and ter-

rorism, the number of fatalities associated with such events can ultimately be reduced

(Helbing et al., 2015).
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Figure 1.1:Potential insight and plausibility of different model fram eworks. The

frameworks considered in this thesis are placed along a spectrum broadly defined by a

ratio given by the number of model assumptions that serve to remove each approach

from the real world, to the extent to which empirical data forms part of the model

development.
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1.2. PROBLEM DEFINITION

Why model civil violence in space and time?

Civil violence tends not to occur uniformly in space and time.Many existing models,

however, do not explicitly account for spatially-varying and temporally-varying factors,

which have been shown to lead to dramatically improved models (Weidmann and Ward,

2010).

Significant implications arise from using a model to design policy that does not

account for appropriate spatial and temporal influences. For example, a model might

predict the onset of civil violence in a particular country at a particular time but if it

does not account for the duration over which this violence isexpected to occur, or even

whether it is a significant change in what has occurred previously, then policy interven-

tions may be misguided. Additionally, for targeted interventions, policy-makers might

be more concerned with determining the specific geographic location of the predicted

violence, rather than the more aggregated spatial region ofthe country in which it is

likely to occur.

Modelling the spatial and temporal influences of civil violence is also interest-

ing from a mathematical perspective. There are a number of ways of incorporating

spatio-temporal dependencies in exploratory, statistical and mechanistic models, many

of which are considered in this thesis. Different methods toincorporate space and time

are likely to influence the model in different ways. The approach taken to handle space

and time in such models is itself an important research challenge.

1.2 Problem definition

Existing literature on civil violence tends to distinguishbetween violence stemming

from civil wars and insurgencies, and violence that occurs during times of peace, such

as civil unrest or rioting. Kalyvas (1999), for example, describes how “war structures

choices and selects actors in fundamentally different waysthan peace – even violent

peace”. However, as Guichaoua (2010) argues, there is oftennot a clear distinction

between these two types of violence as “in many situations, coercive powers are am-

biguously distributed between state and non-state actors,resulting in ‘neither war nor

peace’ forms of social order, conducive to sudden outburstsof collective violence”.

From a modelling perspective, very similar model frameworks have been applied

to civil war, insurgencies, civil violence, riots, and evendifferent types of crime, and
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have been shown to lead to important insights regardless of the particular phenomenon

studied. Although, that is not to say that theories regarding the occurrence of a partic-

ular type of violence cannot be incorporated, but, instead,that the underlying structure

of the models employed for these different phenomena are often very similar. Since

the overarching objective of this thesis is methodological, a strict definition of civil

violence is not enforced. The empirical problem to be considered is the occurrence

of events associated with a more general concept of civil violence, which incorporates

events that occur as a result of insurgent warfare, civil unrest and rioting.

There have been a number of models applied to civil violence,some of which

explicitly incorporate spatio-temporal influences and interdependence between events.

Such studies encompass a range of different model frameworks. There have been few

attempts to consider the implications of adopting one framework over another, particu-

larly with regards to the range of insights that might be afforded in a policy setting. In

particular, it has been previously argued that the choice ofmodel framework too often

depends on a researcher’s familiarity and experience with asmall range of analytical

techniques (Schrodt, 2014). This thesis sets out to addressthis gap in the literature by

providing a comparative exposition of different model frameworks that are capable of

incorporating spatio-temporal influences and event interdependency in different ways.

In addition, this thesis considers whether existing modelsare appropriate for exploring

spatio-temporal influences and event interdependency during civil violence, and, where

appropriate, introduces new models.

1.3 Research objectives

This thesis contributes to the mathematical modelling of civil violence by developing

and analysing several spatio-temporal models that accountfor event interdependency

across the spectrum of modelling frameworks introduced in Figure 1.1. The overarch-

ing objective is to contrast these modelling frameworks anddetermine their suitability

for providing insights that might be utilised in a policy setting. After reviewing the

range of frameworks that have been used to study such phenomena previously, four

frameworks are explored in greater detail, by constructingnovel models and applying

them to case studies of civil violence. Specifically, for each of these frameworks, it is

considered:
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1. Whether the framework is appropriate for modelling civil violence in space and

time, and, if not, methods are provided for disaggregating existing models;

2. What insights can be obtained concerning one of the two casestudies investigated

in this thesis;

3. How these insights might be used within a policy setting.

The four frameworks that are explored can be summarised as exploratory data-driven

modelling; parametric statistical models of individual choice; stochastic models of

point processes; and deterministic differential equations.

1.4 Case studies

Two case studies are employed in this thesis: the 2011 Londonriots and the Naxal

insurgency. These case studies are chosen because they bothexhibit interesting spatial

and temporal variation, yet do so over different scales. Models that are able to be used

over multiple scales are generally desirable since complexsocial systems, such as those

studied in this thesis, can have different influences actingon different scales, many of

which may be important to incorporate. In what follows, the two case studies are briefly

described.

1.4.1 The 2011 London riots

Between the 6th and 10th August 2011, riots occurred at numerous locations across the

UK. Violence initially broke out after a peaceful protest byfamily, friends, and mem-

bers of the community of Mark Duggan, who was shot and killed by police officers

in Tottenham, North London on the 4th August. On the 6th August, riots broke out

in neighbouring communities. For five nights, the riots continued, initially throughout

the capital and subsequently throughout the country. Afterthe initial disturbances, the

unrest on subsequent nights grew in intensity, before largenumbers of police were de-

ployed across the capital and in other cities, leading to a restoration of order. In London,

it is estimated that there was in excess of£200 million of damage to public and private

property; over two hundred injuries to police; and two deaths (Riots Communities and

Victims Panel, 2011). Over 4,000 arrests were made in Londonalone (Metropolitan

Police Service, 2012), many of which were identified via CCTV footage in the days

following the disorder.
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Predominantly, the riots took place in the highly populatedareas of London, Birm-

ingham and Manchester. However, even within these cities, and particularly in London,

civil unrest occurred in some areas but not in others. Several geographically distinct ar-

eas, such as Hackney, Brixton, and Croydon, experienced large-scale violence, looting,

and arson; whereas some of the areas in between—including Central London, Shep-

herd’s Bush, and Leyton—experienced comparatively few events.

The first locations to experience rioting were around the Tottenham area in North

London. Over the next days, riots occurred South London, before also occurring in

other UK cities. This gave the impression that the riots werespreading geographically,

and many commented how the onset of rioting in one location was imitated by others

in different locations, implying some form of dependency between the events (Gross,

2011). This apparent dependency implies that standard modelling techniques assuming

event independence are likely to be inappropriate, and the interactions between events

forms a subject of enquiry in its own right.

There are many policy questions directly relevant to the 2011 UK riots. For ex-

ample, studies have sought to identify the underlying sociological causes of the rioting

(Solomos, 2011), and have examined whether the criminal justice response was appro-

priate (Bell et al., 2014). The policy question considered inthis thesis is concerned with

the spatial and temporal dependency of the riots, particularly with regards to event inter-

dependency. In addition, it is considered how and why targets were chosen in London

and, in particular, how police officers may have been optimally allocated across the city

in order to have prevented damage to property, public space and people’s livelihoods

that occurred as a result of the riots.

1.4.2 The Naxal insurgency

The Naxal movement, whose name is taken from the small village of Naxalbari in West

Bengal, where a peasant revolt took place in 1967, are a left-wing extremist group who

have engaged in numerous attacks against civilians and the state in recent decades.

Grievances of the Naxal movement initially stemmed from economic inequality and ru-

ral agricultural workers’ inaccessibility to land ownership (Ahuja and Ganguly, 2007).

After being quashed by the Indian government in the 1970s through the use of police

and paramilitary forces (Basu, 2011), several factions of the Naxal movement were
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formed, many of which had militant groups who engaged in insurgency against the

state. In the early 2000s, various Naxal groups merged to form both militant (the Peo-

ple’s Liberation Guerrilla Army) and political groups (theCommunist Party of India).

Insurgent violence continues to present day, but, in recentyears, tends to be restricted

within localised regions in Eastern and North Eastern India.

The states of Andhra Pradesh and Telangana, the latter of which was formed in

2014 when Andhra Pradesh bifurcated, experienced high levels of violence during the

2000s. Police periodically adopted various counter-insurgency measures in an attempt

to quell the insurgency, including the formation of an aggressive paramilitary group

called the Greyhounds. On numerous occasions, the police were drawn into armed

conflict with the insurgents, resulting in both Naxal and police loss of life. Police

counter-insurgent measures in Andhra Pradesh have been claimed to be effective in

reducing levels of violence, despite limited quantitativestudies (Sahni, 2007).

Policy questions associated with the Naxal insurgency apply equally here as they

do to many other outbreaks of insurgent violence around the world. As well as be-

ing interested in the underlying mechanisms causing individuals to commit violence,

policy-makers might also be interested in understanding the spatial extent of the vi-

olence, whether there is any evidence for spreading of the violence, and determining

what might be the best counterinsurgency strategy to adopt.

1.4.3 Similarities between rioting and insurgency

The two case studies share a number of similarities but also some crucial differences.

First, events associated with both rioting and insurgency have previously been shown

to exhibit striking spatial, temporal and even spatio-temporal heterogeneity, suggesting

that important processes play out in both space and time. Second, such patterning of

events is likely to be constrained by the decision-making ofthe perpetrators and the en-

vironment in which they act. In the case of rioting, offenders may choose certain times

to offend, and targets at which to commit their offences due to, for example, ongoing

rioting at that same location. Insurgents may be constrained by transport costs or their

desire to inflict damage on targets that are perceived to be particularly valuable. Third,

the occurrence of events associated with both rioting and insurgency is likely to depend

crucially on the interaction between, in the case of the former, rioters and police, and,
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in the case of the latter, insurgents and counterinsurgents. This interaction, however,

may be different in each of these cases. In the case of rioting, offenders who are mo-

tivated purely by the benefit associated with acquisitive crime, such as looting, might

seek to avoid interactions with police in order to minimise the probability of arrest.

Insurgents, however, may be more likely to target counterinsurgents as they represent a

direct link to the state with which they are in conflict. Thesecharacterisations, however,

are not necessarily dichotomous: there may feasibly be scenarios during which police

are purposefully targeted during rioting, for example whenthe rioters have a grievance

they want to make known to the state, and there may also be instances during which

insurgents target civilian areas that are unlikely to contain any counterinsurgent agents.

As a result of these similarities, the two case studies are both explored using the

models presented in this thesis. The detail in the availabledata associated with each

case study enables the investigation of different processes that might be at play in each

scenario and largely determines the type of model frameworkthat can be applied. For

the London riots, offence data is available at a fine spatial and temporal scale, enabling

the consideration of local environmental factors and localevent interdependency during

rioting. In the case of the Naxal insurgency, a distinction can be made between insur-

gent actions and counterinsurgent activity, which enablesthis interaction to be more

closely examined.

1.5 Advances to knowledge

There are several contributions in this thesis that advancethe state of the art in spatio-

temporal modelling of civil violence. Perhaps the main contribution is the consolidated

presentation of a wide variety of model frameworks, all of which, it is argued, have

a role to play in contributing to real-world insights and subsequent policy decision-

making. A comparative study of these frameworks contributes in a novel way to exist-

ing literature. Within each modelling method and application presented, however, there

are more specific contributions that advance existing knowledge. In what follows, these

contributions are summarised.

In Chapter 3, which investigates data-driven frameworks forthe analysis of spatio-

temporal event data, a non-parametric Monte Carlo method forinvestigating local

spatial-temporal patterns of diffusion is presented, which, to the knowledge of the au-
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thor, has not been previously employed in this fashion. Thismethod improves existing

approaches by overcoming limitations associated with the assumption of uniform spa-

tial and temporal randomness in binary Monte-Carlo models ofevent data. It enables

improved understanding into event interdependency duringphenomena that exhibit sig-

nificant spatial and temporal clustering, such as rioting. The method is applied to the

2011 London riots to generate insights into event dependency, and a discussion into the

possible mechanisms that might generate such patterns serves as a theoretical contribu-

tion to the literature.

In Chapter 4, a discrete spatial choice model of rioter targetchoice is used to

investigate the targets selected by individuals during the2011 London riots. To the

knowledge of the author, such an approach has not previouslybeen used in the context

of rioting. The formulation of the model enables assessmentof a number of extant

theories regarding the behaviour of individuals during offending and instances of col-

lective violence. The model presented incorporates interdependency between events

by including a dynamic time-lagged variable tracking the number of events that oc-

cur in each area. Spatial spillover effects are also accounted for by including a range

of spatially-lagged variables. A theoretical contribution is the evaluation of proposed

theories, which have previously sought to explain offenderbehaviour, by assessing the

ability for variables in the model associated with those theories to account for variance

in the empirical data. The discrete spatial choice model is then incorporated into a

novel microsimulation, which, it is argued, might be used within a policy setting to

determine effective police deployment strategies.

Point process models have been widely used to model event interdependency in

civil violence and other types of security and conflict phenomena. In Chapter 5, a range

of multivariate point process models of conflict between twoadversaries are developed,

which enable quantification and estimation of spatial and temporal dependencies in

event data. A contribution to the modelling literature is the derivation of a plurality of

multivariate models that are designed to test a series of hypotheses concerning various

characteristics of the violence. Two of the proposed modelsare also nonlinear, lead-

ing to an adapted estimation procedure to account for complications that arise due to

nonlinearity, something that, to the knowledge of the author, has not been performed in

previous literature. Rigorous analysis of the resulting models, including the estimation
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of confidence intervals for the parameter estimates, a residual analysis, and a test of

one of the model’s out of sample predictive power is another significant contribution,

serving as a best practice guide for reporting the success offuture modelling efforts

(prior studies do not typically report on all three of these aspects).

Finally, in Chapter 6, using the modelling framework of deterministic differential

equations, a novel spatial disaggregation of a widely-cited model of conflict is derived

and its use in obtaining insights into civil violence is discussed. A non-linear dynamical

systems analysis combined with computational approaches for analysing the dynamics

of a high-dimensional version of the system leads to severalmathematical insights.

The models developed are discussed throughout with regardsto the specific policy-

relevant insights they afford. In Chapter 7, a more in-depth discussion of their compar-

ison is presented. This discussion may be of most interest tothose developing models

for the purposes of policy and contains various reflections of the author.

1.6 Thesis outline

This thesis proceeds as follows. Chapter 2 describes the different model frameworks

that have been used to model spatio-temporal influences in civil violence. Previous

studies that employ each type of framework are reviewed. Thediscussion serves to

motivate the advances associated within each framework that are presented throughout

the thesis.

In Chapter 3, the first of the case studies, the 2011 London riots, is investigated

with respect to a variety of space-time exploratory techniques. After performing several

analyses with existing approaches, it is concluded that further insights can be obtained

with a novel method for analysing the local patterns of diffusion in event data. This

method is described, before the results associated with data from the London riots are

presented and discussed. It is argued that the dynamic patterns observed during the

riots were influenced by three principal mechanisms: a contagion effect enhanced by

both new and old media; the environment and urban form withinwhich the riots took

place; and the interaction between rioters and police.

In Chapter 4, the decision-making of rioters is considered with respect to two of

these explanations: contagion, whereby the presence of rioters at a particular location

increases the likelihood of further rioting at that area, and the influence of the environ-
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ment, whereby particular features of a location, such as retail centres, can influence the

likelihood of rioting occurring. Building on theoretical perspectives of crowds, crime

patterns and social disorganisation, a random utility discrete spatial choice model is

proposed that incorporates the role of co-offending, and isapplied to the riots in Lon-

don. The results are presented and the ability for these theories to explain offender

behaviour during rioting is discussed. Considering next theinteraction between rioters

and police, Chapter 4 concludes by incorporating the discrete spatial choice model into

a microsimulation of police deployment. The suitability for the model to be used in a

policy-making environment is discussed.

Chapter 5 investigates the interaction between two adversaries in space and time

which, due to a lack of data on police activities, can not be performed with the 2011

London riots. A series of multivariate point process modelsare derived in the context

of insurgent violence between police and Naxals in the Indian states of Andhra Pradesh

and Telangana. These models are calibrated on data associated with this conflict, and a

series of tests for model goodness of fit are presented, including an out of sample test

on the predictive power of one of the models.

Chapter 6 begins by providing an overview of the Richardson model of conflict es-

calation, which comprises of a system of coupled ordinary differential equations. The

model provides insights into the logical conclusions of a simple set of assumptions,

without the requirement for an extensive amount of empirical data. It is argued that

this model is well-suited to a more general process of conflict between two adversaries.

The chapter addresses one of the weaknesses of the Richardsonmodel—its lack of ex-

plicit dependence on space—by deriving a spatial model using an entropy maximising

approach to disaggregating the effect of conflict escalation in space. This subsequent

model is then analysed from a non-linear dynamical systems perspective, both analyti-

cally using low-dimensional systems, and computationallywith high-dimensional sys-

tems. Insights into the spatial dependency of conflict escalation between adversaries

are obtained and discussed.

In the conclusion of Chapter 7, the range of modelling frameworks presented in

this thesis is consolidated in a comparative exposition. The focus here is on how the

modelling frameworks and their range of possible insights might be used to aid policy

decision-making. Extensions to the work presented in this thesis are considered before
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concluding remarks are made.
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Modelling methodology



2.1. INTRODUCTION

2.1 Introduction

A wide range of frameworks have been used to model civil violence. The insights

afforded by these can be very diverse. The choice of framework employed in many

studies is likely to depend on the questions that motivate the study, data availability,

and the experiences of the modeller. In this chapter, previous models used to obtain

insights into civil violence are discussed. This discussion is loosely based upon (and

progresses along) the spectrum of models introduced in Figure 1.1 of Chapter 1. A

range of exploratory data-driven, statistical and mechanistic modelling frameworks are

described and models associated with each type of frameworkare reviewed. This wide

range of literature serves to highlight the disparate approaches taken by many scholars

to model civil violence, and to emphasise the types of insights that each framework

affords. Additionally, the discussion serves to provide background to the approaches

taken in the chapters that follow.

2.2 Exploratory space-time data-driven modelling

Exploratory techniques refer to a class of model frameworksthat are used to illuminate

and analyse important features of a dataset. They require few modelling assumptions,

so that a researcher has few preconceptions as to what the analysis might reveal. Ex-

ploratory techniques may lead to significant insights in themselves but may also suggest

further analyses, indicate hypotheses to be tested, and hint at assumptions that might

reasonably form the basis of more sophisticated models.

Analysing event data in space and time is particularly suited to exploratory tech-

niques, since they can provide quantitative assessment of the level of spatial and spatio-

temporal dependency in the data. In what follows, a series ofexploratory approaches

that have been used to analyse the spatio-temporal dependency in civil violence event

data are discussed, together with the insights that each approach affords. These three

approaches consider, respectively, spatial autocorrelation, spatio-temporal interaction,

and more intricate techniques that aim to quantify changes in spatial data.

2.2.1 Spatial autocorrelation

Spatial autocorrelation refers to the tendency for events to occur nearby to one another

in geographic space. The detection of spatial autocorrelation is often used as a first
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step in exploratory analysis of spatial data, and requires the rejection of a null model

in which events occur randomly in space. Spatial statisticsare employed to capture the

geographic dependency of the empirical data, and are compared against statistics that

would be obtained under the null model. Null model statistics can either be obtained

analytically, by considering the probability distribution of event occurrence under the

null model, or via Monte-Carlo simulation, in which a large number of realisations of

the null model are generated using pseudo-random number generators and an empirical

distribution of the spatial statistic is obtained (Besag andDiggle, 1977).

There are many spatial statistics that can be employed, the suitability of which

can depend on the characteristics of the available empirical event data. For event data

on civil violence, for instance, the data might be aggregated into spatial areas, and the

frequency of event occurrence in each of those areas reported. In this case, area-level

statistics such as Moran’sI (Moran, 1950) or Geary’sC (Geary, 1954), the latter of

which is more sensitive to local variations, may be employedto detect autocorrelation.

These two statistics are applied globally, incorporating the entire study region. If the

detection of local spatial autocorrelation is required, for example, for the detection of

hotspots of activity, then theGi andG∗
i statistics of Getis and Ord (1992) or local

variants of Moran’sI or Geary’sC (Anselin, 1995) might be employed. If, on the

other hand, the data is available in point form, with accurate locations specified for

each event, then a point pattern analysis may be used to detect spatial autocorrelation.

The calculation of Ripley’sK function (described in Dixon (2002)) or the spatial scan

statistic of Kulldorff (1997) are two methods for the detection of spatial clustering in

point patterns.

Explanations of spatial autocorrelation in event data takeone of two perspectives.

First, spatial autocorrelation may be a result of event occurrence being dependent on a

confounding variable that varies in space and which is not captured by simple null mod-

els of spatial randomness. For example, events associated with civil violence are likely

to vary with population density, which is highly heterogeneous in geographic space. As

a result of this dependency, events will occur more closely to each other in space than

under a null model of complete spatial randomness, in which population density is not

controlled for, and spatial autocorrelation is subsequently observed. There are many

examples of potential confounding variables including thedistance from government
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strongholds (Raleigh and Hegre, 2009); terrain (Do and Iyer,2010); road accessibility

(Zhukov, 2012); and communication links between areas (Myers, 2000). Identification

of spatial autocorrelation can serve to stimulate the search for possible confounding

variables and corresponding explanations that might be explored using more sophisti-

cated models.

The second perspective used to explain spatial autocorrelation supposes that the

occurrence of an event can directly impact the likelihood ofa further event occurring.

If this effect diminishes with geographic distance, so thata future event, should it oc-

cur as a result of an initial event, is more likely to occur near to the initial event than

farther away from it, then spatial autocorrelation will be observed. There are many

scenarios for which it can be argued this mechanism arises during civil violence. In the

next section, spatio-temporal interaction of event data isdescribed, which considers

temporal influences in addition to the analysis of spatial data. In particular, tests for

spatio-temporal interaction are often employed to determine whether spatial autocorre-

lation in a given dataset is a result of static confounding variables, or whether it also

has some dynamic properties, which may be brought about by event interdependency.

2.2.2 Tests for spatio-temporal interaction

Temporal autocorrelation refers to the tendency for eventsto occur nearby to one an-

other in time, and, similarly to spatial autocorrelation can arise as a result of event

interdependency or by confounding variables that also varyin time. Spatio-temporal

interaction is a stricter property of event data than both spatial and temporal autocorre-

lation and can be used to discount the influence of confounding variables that vary in

space but not in time and confounding variables that vary in time but not in space. It

refers to events that occur more closely to each other in bothspace and time than would

be expected given the spatial and temporal distributions ofthe data. The presence

of spatio-temporal interaction suggests that spatially-varying dynamic mechanisms are

more likely to be responsible for the production of events than static or spatially homo-

geneous explanations.

There are a variety of techniques for the detection of spatio-temporal interaction in

event data. The Knox test, described in Knox (1964a), compares the distances in both

space and time between pairs of events by allocating each pair to a spatio-temporal
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window of pre-specified resolution. The resulting categorisation of pairs of events over

spatio-temporal windows of different resolutions can be compared against either the

analytical expectation of a particular process (such as a Poisson process) or a Monte

Carlo simulation, in which event times are randomly permutedover the locations in

the empirical data. The Knox test was initially applied in anepidemiology setting

(Knox, 1964b) but has since been applied to a wide range of problems in crime and

security including burglary (Townsley et al., 2003; Johnson and Bowers, 2004); other

types of urban crime (Grubesic and Mack, 2008); piracy (Marchione and Johnson,

2013); and insurgency and counterinsurgency in Iraq (Townsley et al., 2008; Johnson

and Braithwaite, 2009; Braithwaite and Johnson, 2012).

The Mantel test (Mantel, 1967) provides a single measure of an empirical dataset

without requiring the specification of space-time windows,which consequently allevi-

ates potential edge effects in the data. Johnson and Bowers (2004), who use both the

Mantel and the Knox test to investigate residential burglary, argue that the Knox test

can potentially be more insightful as a range of spatio-temporal windows may be cho-

sen and the clustering within each of them can be compared. Other tests for detecting

spatio-temporal interaction include extensions to a spatio-temporal setting of Ripley’s

K-function for point processes (Diggle et al., 1995) and thek-nearest neighbour test of

Jacquez (1996), used to detect the spatio-temporal signatures of different crime types

in Grubesic and Mack (2008).

One of the main advantages of tests for spatio-temporal interaction is that few

modelling assumptions are required to obtain relatively powerful insights into event

data. Specifically, since such tests provide a relatively straightforward way to control

for spatial and temporal variation, these effects can be largely neglected. The presence

or not of spatio-temporal interaction can discount a range of mechanisms thought to

have been responsible for the generation of event data.

2.2.3 Quantifying change in spatial event data

The timings and locations at which spatio-temporal interaction of event data arises,

and its duration and geographic extent, have recently been of interest in a number of

studies. Many of the tools used in analysing such effects areexploratory in nature, as

they again require few modelling assumptions, which are typically informed by aggre-

33



2.2. EXPLORATORY SPACE-TIME DATA -DRIVEN MODELLING

gating statistics from the empirical data. The insights obtained by local perspectives

of spatio-temporal interaction can be much more beneficial in a policy setting than the

identification of global spatio-temporal interaction. Theearly identification of the lo-

cal spreading of a disease or violence, for example, can leadto targeted vaccination or

policing strategies that help to minimise its adverse impact and possible spreading.

One example of a more local and dynamic spatio-temporal exploratory technique

is Kulldorff’s space-time permutation scan statistic (Kulldorff, 2001; Kulldorff et al.,

2005), which can be used to detect the emergence of hotspots of activity. This statistic

and its associated Monte-Carlo method for assessing statistical significance has been

shown to be robust for different spatial resolutions (Jonesand Kulldorff, 2012) and

under incomplete and inaccurate data (Malizia, 2013). Examples of its use in relation

to civil violence event data can be found in O’Loughlin et al.(2010a), O’Loughlin et al.

(2010b) and O’Loughlin and Witmer (2010). The method deploys moving cylindrical

space-time windows of varying spatial and temporal resolution over the study area and

compares the counts of events with what would be expected under a null hypothesis

(e.g. of spatial and temporal homogeneity). The statistic is given by the maximum

over all deployed cylinders of the generalised likelihood ratio, a function that compares

the counts of empirical events both inside and outside the space-time window with the

counts that would be expected under a null hypothesis. Sincethe method is applied

locally in space and time, it can be used to detect the emergence of hotspots of activity.

A number of other studies have considered change in event patterns at a local level

by, for each spatial regionj, calculating the tuple
(

Xj,
∑

l

WjlXl

)

, (2.1)

where the variableXj is a variable of interest, taken in previous studies to be a stan-

dardised count of events, or a binary indicator of event occurrence, in spatial region

j, andWjl is a row standardised matrix of spatial weights with zero diagonal. For a

suitable definition of the spatial weights matrix,Xj provides information about event

occurrence in spatial regionj, andYj =
∑

l WjlXl provides information about event

occurrence in those areas nearby to regionj. In Anselin (1995), using a standardised

count of events, a comparison ofXj andYj is used to detect statistically significant ar-

eas of local autocorrelation of African conflict. Furthermore, the quadrant in which the
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point (Xj, Yj) lies in the plane indicates whether higher than average event occurrence

is near in geographic space to other higher than average counts, whether low counts

cluster near to other low counts, or whether there is negative autocorrelation and low

counts are near to high counts. The variableZj is specified, which can take one of four

values for each spatial regionj. If there is a high number of events in both the focal

regionj and its neighbouring regions, thenZj = HH. Conversely, if there are a low

number of events in bothj and its neighbouring regions, thenZj = LL. If there is

negative spatial autocorrelation, and a high count of events in the focal region is near

to low counts, thenZj = HL. Zj = LH is defined analogously. Thus,Zj provides a

simple indication of the local spatial autocorrelation near to spatial regionj.

Cohen and Tita (1999) extend the local indicators of spatial association described

in Anselin (1995) to consider temporal effects. By choosing an appropriate temporal

partition of the empirical data, the authors calculate
(

Xj(tk),
∑

l

WjlXl(tk)

)

, (2.2)

for some time steptk where the variablesXj(tk) andYj(tk) =
∑

l WjlXl(tk) are as in

equation 2.1 but specific to the time intervaltk. By determining the quadrant within

which this tuple lies on the plane for different areasj and timestk, the local character-

istics of spatial autocorrelation in the event data at each time interval can be visualised

and, moreover, categorised.

DefiningZj(tk) analogously, and considering the change inZj(tk) over different

time intervals leads to insights into to how the local spatial dependency in the event

data changes. The transitionZj(tk) → Zj(tk+1), which can take one of 16 possible

values (e.g.HH → HH, HL → LH, etc.), can be interpreted as different dynamic

processes in the event data. The transitionHL → LH, for example, corresponds to the

relocation of events in the focal region to neighbouring regions. Similarly,HL → HH

corresponds to escalation of event occurrence from a focal region to neighbouring re-

gions. The identification of these patterns in event data canlead to a better appreciation

of the range of mechanisms that might be at play. In many cases, the counts of each

type of diffusion are compared against the counts that wouldbe expected under a null

hypothesis of event independence, which can be computed using a Monte Carlo simu-

lation.
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Using this framework, Cohen and Tita (1999) identify the presence of the geo-

graphic diffusion of homicide occurrence in Chicago; Hsueh et al. (2012) explore the

different types of geographic diffusion in cases of Dengue fever in Taiwan; and LaFree

et al. (2012) consider whether a change in strategy of the Spanish terrorism organisation

ETA coincided with a change in the nature of the spatial diffusion of event occurrence.

Two further studies—Rey et al. (2011), who investigate burglary events in Ari-

zona, and Schutte and Weidmann (2011), who investigate conflict events during the

civil wars in Bosnia, Kosovo, Burundi and Rwanda—employ binarymeasures of event

occurrence in each spatial region, known as join counts, rather than using standardised

counts as described in Anselin (1995). That is, the variablesXj(tk) andYj(tk) deter-

mine whether at least one event occurred in, respectively, spatial regionj or nearby

regions at timetk. Then, the transitions of the variableZj(tk) = (Xj(tk), Yj(tk))

are considered. This approach is particularly well-suitedto relatively rare events in

space and time and it alleviates the need for modification of the event data, for example

by normalising. In this case, no choice is required regarding how to normalise event

counts, a choice which may have a significant influence on the resulting analysis. To

explain, if event counts are normalised at each time step, then an area with an apparent

high level of events at one time step may appear to become an area with low intensity

due to the onset of events elsewhere and not due to any change in the original area.

Conversely, if the count of events are normalised across all time intervals considered in

the analysis, then the identification of high intensity locations is sensitive to variation

in the overall intensity of events.

Importantly, the frameworks described in this section are all exploratory. The null

models against which some of the statistics described are compared against can often

be easily specified using Monte Carlo modelling. These modelsare constructed with

minimal assumptions regarding the underlying mechanisms in the generation of the

event data. One example of a Monte-Carlo model that can be generated is complete

spatio-temporal randomness, in which events are equally likely to occur within any

spatial region and at any point in time over the entire study area. Simulations are used

to generate the same number of events as in the empirical dataunder this assumption.

Often a more appropriate model when considering spatio-temporal interaction is given

by a Monte Carlo simulation that preserves both the spatial and temporal distribution
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of the event data but loses any spatio-temporal dependence by randomly permuting the

times associated with each event. This model enables a comparison of the data against

a scenario with no spatio-temporal interaction and is useful for considering the effects

of event interdependency.

2.3 Spatio-temporal statistical modelling

A statistical model specifies how a dependent variable is related to one or more explana-

tory variables. In contrast to exploratory approaches, statistical modelling requires

assumptions as to how the system behaves and how some sample data is generated.

Observations from a dataset are assumed to be generated by a probability distribution,

the form of which is defined by the model. For parametric modelling, the model is

specified up to a vector of parameters, denoted byβ. The task is then to select the

valueβ = β̂ so that the model is the one that would have most likely generated the

sample data observed. Hypothesis testing can then be used todetermine whether the

relationship between dependent and explanatory variablesspecified by the model is

appropriate, or whether another relationship should be considered.

Importantly, statistical modelling of civil violence event data can be used to test

whether a proposed variable helps to explain the occurrenceof events. The causal

effect from an explanatory variable is justified by using theory to argue that a particular

mechanism is responsible for the observation. Moreover, statistical modelling often

forms the backbone of arguments that a particular mechanismis indeed responsible for

the occurrence of events.

In classical statistical modelling, such as linear regression, the observation data is

required to be independent. When the dependent variable in the model is the count or

occurrence of events that are themselves suspected to be interdependent, this assump-

tion is violated. Spatio-temporal approaches to statistical modelling have been devel-

oped in which independence across observations is not required. Such approaches are

well-suited to event data occurring on relatively fine spatial and temporal scales.

In what follows, previous literature employing statistical models to obtain insights

into civil violence event data from a spatio-temporal perspective is reviewed. This

review is split into three sections. The first considers studies that employ data detailing

the characteristics of the locations at which conflict is anticipated to occur, in order to
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determine whether some of those variables covary with conflict occurrence, and may

plausibly be incorporated into a explanation of the mechanism by which that conflict

arises. The second section takes an individual perspective, and reviews literature that

has employed statistical models at an individual level to investigate the choices made

by those who engage in civil violence. Finally, statisticalmodels that have been used

to make predictions of event occurrence are considered, andtheir success in doing so

is discussed.

2.3.1 Covariates of civil violence

The use of regression models in studies of civil violence as well as other types of

conflict is widespread. Regression models can be employed to highlight statistical

relationships between a number of variables. Taking the dependent variable of interest

to be the onset or occurrence of civil violence within some space-time window, and

taking the resolution of that space-time window, the units of analysis, to be the country-

year, many studies have used regression models to highlighthow the likelihood of

conflict occurring in a country is related to structural variables such as GDP per capita,

the presence of natural resources, and the type of government in power.

Two of the most widely-cited recent studies of civil conflict, Fearon and Laitin

(2003) and Collier and Hoeffler (2004), use country-year logistic regression models

populated with a range of explanatory variables. They arguethat, in contrast to more

traditional explanations of civil conflict such as relativedeprivation (Gurr, 1970), vari-

ables that capture favourable conditions for a successful insurgency, such as state weak-

ness, large populations and political instability, are often better at explaining civil con-

flict than variables designed at capturing grievances within a population, such as ethnic

and religious fractionalisation, and economic inequality. In particular, variables de-

signed at capturing grievances within a population are shown to add little explanatory

power over the variables that capture the opportunity for insurgency. Although both

models incorporate a temporal lag within each country, intended to capture some of the

unobserved heterogeneity and to alleviate omitted variable bias, neither of the models

incorporate spatial variables to account for spatial dependency.

Although stimulating a large number of subsequent models oncivil conflict, the

models of Fearon and Laitin (2003) and Collier and Hoeffler (2004) have often been
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critiqued with respect to two key limitations: the lack of explicit spatial dependency,

and the inappropriate use of country-years as the units of analysis.

Considering first the issue of spatial dependency, it has longbeen argued that,

due to the presence of spatio-temporal clustering of conflict at the country-year level,

the geographic context of a country appears have a significant influence on its internal

functioning (Richardson, 1960b; Most and Starr, 1980; Starrand Most, 1983). As a

consequence, a range of regression models that explicitly account for spatial depen-

dency have been proposed. Two frameworks are the spatial autoregressive model and

the spatially lagged error model. When an active spatial process is presumed to be

present, such as the geographic contagion of conflict, the spatial autoregressive model

is preferred (Beck et al., 2006); however, this model often requires sophisticated esti-

mation techniques (Ward and Gleditsch, 2002).

Spatial regression models have been proposed that test a wide range of hypotheses

concerning the types of spatial processes at play during civil violence. For example,

exploring mechanisms responsible for the observed clustering of conflict, Salehyan

and Gleditsch (2006) provide evidence for the association of this effect with the flow

of refugees between countries; Buhaug and Gleditsch (2008) show that, by controlling

for a wide range of dyadic variables, the importance of proximity to conflict is reduced,

but neighbourhood contexts of conflict are still important,and that ethnic ties are a

significant determinant in conflict clustering; and Braithwaite (2010) explores how a

state’s capacity to counter potential threats from civil conflict influences the likelihood

of conflict spreading between neighbours. The latter of these employs a spatio-temporal

lagged dependent variable predictor, rather than a pure spatial lag, so that the dependent

variables at each point in time can be treated as independentfrom the explanatory

variables.

Using country-years as a unit of analysis for many conflicts and, indeed, other

types of civil violence is, in many cases, considered to be inappropriate. The spatial

and temporal distribution of factors that influence the occurrence and onset of civil

violence are likely to be highly heterogeneous. The violence may also only affect

a small area of the country. In recent years, data on conflict and civil violence, as

well as potential structural variables, have become available at much finer spatial and

temporal resolutions. As a consequence, a number of recent studies have explored the
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local factors that appear to influence the onset of civil violence and conflict around the

world.

The study of rioting in US cities during the urban race riots of the 1960s is an early

example of regression models being employed for the analysis of subnational factors

associated with the onset of civil violence. In a series of studies, Spilerman (1970,

1971, 1976) argues that the occurrence of rioting was most positively associated with

the proportion of non-white population in a given city. In fact, this variable was shown

to absorb the effect of many of the other variables tested, which were chosen in ac-

cordance with sociological theory. More recently, Myers (1997) repeats the analysis

by Spilerman, using modern event history techniques, to model the time until event

occurrence, accounting for censored observations (i.e. accounting for events that do

not occur in the dataset, rather than just ignoring them). While confirming the impor-

tance of non-white population size in US cities, measures ofethnic competition and

geographic diffusion of riots were also shown to provide significant explanatory power.

Myers (2000, 2010) more closely considers the role of geographic diffusion of rioting

and shows that the effect of rioting did indeed spread spatially, but these effects were

relatively short-lived. Furthermore, the spreading of rioting was found to be heteroge-

neous, with locations better served by mass media networks more likely to experience

future violence.

With recent availability of worldwide data on subnational civil violence, the anal-

yses of Fearon and Laitin (2003) and Collier and Hoeffler (2004) have been repeated

at various levels of spatial and temporal resolution, and, in some cases, have been re-

futed. Using a fine spatial grid, Cederman et al. (2011) show that grievances stemming

from inequalities and fractionalisation across differentethnic and social groups can

indeed have a significant influence on the onset of violence. Local economic mea-

sures have also been shown to lead to an improved understanding of conflict onset over

country-level indicators (Østby et al., 2009; Hegre et al.,2009; Buhaug et al., 2011;

Vadlamannati, 2011).

Employing finer units of analysis than country-years means that the observed data

and dependent variable is more susceptible to errors brought about by spatial depen-

dency. As a consequence, these analyses typically control for spatial spillover effects,

whereby the risk of conflict is potentially influenced by ongoing conflict in neighbour-
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ing regions, using a spatial lag in either the dependent or explanatory variable(s). In ad-

dition, many studies also control for unobserved heterogeneity within each spatial unit

via a temporal lag term. Some disaggregated studies of civilviolence, however, have

more explicitly considered spatial and temporal dependencies by making the spatially

and temporally explicit terms the principal variables of interest. Weidmann and Ward

(2010), for example, demonstrate how the inclusion of spatial and temporal terms in a

logistic regression model of conflict occurrence during thecivil war in Bosnia greatly

improves the predictive ability of the model.

Focusing on other geographic aspects of conflict, Buhaug and Gates (2002) use

the geographic area of a conflict and the distance of that conflict from the capital as the

dependent variable in their regression model and show that,as well as being closely

related, the land area, adjacency of international bordersand the presence of natural

resources can influence the size of the area affected by the conflict, whilst the distance

from the capital is additionally dependent on the nature of the rebellion. Buhaug and

Rød (2006) extend this analysis by showing how separatist conflicts in Africa are more

likely to occur near to international borders and in remote and disadvantaged regions,

whilst governmental conflicts are more likely to occur in urban areas and close to dia-

mond fields.

A number of studies in civil conflict have also used event history approaches to

determine the most likely areas to experience conflict basedon the attributes of each

location. Raleigh and Hegre (2009), for example, use a Cox Proportional Hazards

model (Cox, 1972) to show that conflict is more likely to occur in locations with lo-

cally clustered populations far from capital cities and near to international borders. In

addition, Buhuag et al. (2009) show that such separatist conflicts, which are located far

from capital cities, can last substantially longer, but that the relative strength of rebel

groups can drastically shorten conflicts. Holtermann (2015) employs an event history

analysis of insurgent conflict in Nepal and shows how conflictdependency on covari-

ates can change throughout the duration of the conflict and that, as a consequence,

regression models with time-varying parameters, which arepossible to construct using

event history approaches, can lead to improved models.

Finally, a number of studies have pointed out that spatiallydependent terms in

regression models can have a number of different interpretations. Instead of purely
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geographical distances, they may capture some form of generalised cost associated

with a particular mechanism by which conflict is thought to spread. To explain, Beck

et al. (2006), for example, use a measure of trade between nations, rather than purely

geographic distance, in a model of the spread of democracy. In this way, they attempt

to capture the underlying mechanism for the observed spatial dependency, rather than

just relying on a geographic proxy. Similarly, Zhukov (2012) argues that the operations

of insurgent and government forces during civil violence islikely to be constrained by

infrastructure networks, and shows that by incorporating road networks into a distance

metric via the spatially dependent variables, regression models can be vastly improved.

2.3.2 Individual decision-making during civil violence

Disaggregating from the country level, studies of violenceduring civil conflicts have

often considered the perspective of groups that are boundedby either their proximity

to one another or by their ethnic or socio-economic ties (Østby, 2008; Cederman et al.,

2011). Additionally, various studies concerned with terrorism and insurgencies have

considered the perspective of the terrorist or insurgent group committing attacks by

incorporating independent variables such as terrorist group size, level of training and

the age of the group in regression models (Clauset and Gleditsch, 2012; Asal et al.,

2015; Holtermann, 2015). Despite these advances, there have been calls for the study

of civil violence to be applied at yet lower levels of disaggregation, and to consider the

decision-making of individuals, and how their decision-making results in the spatio-

temporal signatures observed (Wilkinson, 2009).

In existing literature on civil violence, although an individual perspective is often

formulated and discussed, empirical tests tend to rely on data aggregated at a higher

level than the individual, particularly with regards to thespatio-temporal patterns of

events. As an example, Kocher et al. (2011) and Lyall (2009) discuss the range of

strategies available to civilians in the face indiscriminate violence by counterinsur-

gents. They test the theory that civilians are more likely tosupport the insurgents if

they observe higher levels of indiscriminate violence. Using spatial techniques to test

this theory at the village level, rather than at individual levels, they reach opposite con-

clusions using two distinct case studies of violence – aerial bombardment during the

Vietnam War, and Russian artillery fire in Chechnya.
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A small number of studies concerning collective violence and rioting have con-

sidered individual decision-making, largely with regardsto the choice of target (Abudu

et al., 1972; Berk and Aldrich, 1972; Rosenfeld, 1997; Auyero and Moran, 2007; Mar-

tin et al., 2009). The spatio-temporal influences during rioting have, however, not been

adequately accounted for in statistical models of individual decision-making.

In contrast, the literature on criminology has long been concerned with how of-

fender behaviour, and possible influences on that behaviour, shapes the resulting spatio-

temporal distribution of event data. This is partly becauseindividual level data on

offenders and the crimes they commit is readily available for use in statistical models.

There have been a large number of statistical models appliedat the individual level with

mechanisms inspired by a range of criminological theory. Some of the most prominent

theories with regards to the spatio-temporal distributionof crime come from Environ-

mental Criminology (Brantingham and Brantingham, 1981), which explicitly considers

how individuals make decisions to offend based on the situations and surroundings in

which they find themselves. One of Environmental Criminology’s most prominent

contributions, the routine activity approach (Cohen and Felson, 1979), supposes that

crime occurs at the convergence in space and time of a motivated offender, a suitable

target, and in the absence of a capable guardian. Crime pattern theory (Brantingham

and Brantingham, 1993) then considers how the implications of the routine activity

approach leads to the emergence of spatio-temporal concentrations of crime. As a re-

sult, using these theoretical perspectives, many studies have investigated the factors

that influence the decision-making of individuals who commit offences (see Wortley

and Mazerolle (2008) for an overview).

A recent common method for doing so is by employing spatial discrete choice

models, which are suitable for situations in which an actor is faced with a choice in

which each option has associated with it characteristics that are quantitatively distin-

guishable. The choice of location at which to commit a crime is one example where

discrete choice models may be employed, although careful consideration of spatial and

temporal influences is required. In this case, estimation ofdiscrete choice models us-

ing empirical data can highlight the relative importance ofthe characteristics of an area

in influencing the choice that is made. This approach has beenapplied to offender

target choice for residential burglary (Bernasco and Nieuwbeerta, 2005; Clare et al.,
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2009), street robbery (Bernasco and Block, 2009; Bernasco, 2010b; Bernasco et al.,

2013), theft from motor vehicle (Johnson and Summers, 2015), and comparisons have

been made over different types of crime (Bernasco, 2010a) andover different locations

(Townsley et al., 2015).

2.3.3 Predictive models

Statistical models with a large number of independent variables can be criticised for

placing too much emphasis on the outcomes of regression analyses that highlight co-

variates, and not enough emphasis on the causal mechanisms responsible for the gen-

eration of the empirical data (Schrodt, 2014). Some authorshave argued that the focus

of such studies should shift from identifying variables that covary, and which therefore

might relate to a plausible mechanism that generates the data, to identifying the prin-

cipal variables that improve our ability to predict unobserved or out of sample events.

For example, Ward et al. (2010) show that the majority of variables included in the

studies of Fearon and Laitin (2003) and Collier and Hoeffler (2004) amount to little

improvement in the ability for the models to predict the onset of events, beyond what is

included in just two predictors: the population of a country, and its GDP. Furthermore,

they show that models containing a large number of statistically significant variables

(with respect to the regression analysis) can even perform worse than simple baseline

models containing just one of either population or GDP.

A number of predictive frameworks have been developed that attempt to identify

variables that enable some form of prediction of civil conflict. In some cases, a wide

range of independent covariates are incorporated and theirpredictive capability directly

assessed (Hegre et al., 2013). However, as Ward et al. (2010)argue, the identification

of a relatively small number of variables that have the most predictive power can also

provide valuable insights and useful predictions (Ward andGleditsch, 2002; Goldstone

et al., 2010; Weidmann and Ward, 2010).

Another predictive modelling framework that has been employed to investigate

civil violence stems from the theory of point processes. Point process models can be

used to predict the timings and locations of different typesof events. Although a wide

range of structural variables can be incorporated into the model, many recent examples

have included just the information on events that have happened in the past as predictor
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variables. This approach can be particularly successful inusing the temporal cluster-

ing present in much event data to model the increased likelihood of observing further

events after the occurrence of a prior event. For example, Holden (1986) uses so-called

Hawkes processes, which account for such excitation in the rate at which events occur,

to determine whether a contagion effect can be observed in the frequency of aircraft hi-

jackings in the US between 1968 and 1972. More recently, Hawkes processes have also

been employed to model the timings of events associated withgang rivalries (Egesdal

et al., 2010) and civilian deaths during the Iraq war (Lewis et al., 2011). Extensions

of this same model have also been used to consider the timingsof terrorist attacks

in Southeast Asia (Porter and White, 2012; White et al., 2013).Short et al. (2014)

propose a multivariate point process model to account for possible interaction effects

arising from the behaviours of different gangs. Spatio-temporal models of point pro-

cesses, in which the locations as well as the timings of future events are modelled have

been used to model burglary (Mohler et al., 2011; Mohler, 2014) and insurgent warfare

(Zammit-Mangion et al., 2012). In addition, these final studies demonstrate how point

process models can be successfully used to improve prediction of event occurrence in

space and time.

2.4 Spatially-explicit mechanistic modelling

Mechanistic modelling is distinct from the range of exploratory techniques and sta-

tistical approaches discussed so far. The principal reasonfor this is that mechanis-

tic models do not necessarily require extensive amounts of empirical data in order to

obtain insights. Instead, models are proposed by specifying theorised relationships

between variables, which are directly incorporated into a model from which outputs

can be obtained. The outputs of the model can then be assessedfor their plausibility,

and compared against what may have been empirically observed. If the outputs of the

model are in agreement with observation, then there is support for the hypothesis that

the proposed mechanism is indeed the process that is responsible for generating the em-

pirical data. However, agreement between model outputs andempirical data does not

mean that the proposed mechanism is actually responsible, rather, that it must merely

be retained as a candidate explanation until either refutedand discounted, or further

supported through the collection of data and subsequent analyses.
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One of the main advantages of mechanistic models is that theycan be used to con-

sider what the impact might be on changes to the system or scenario being modelled.

These changes may reflect sudden structural changes to the underlying mechanisms

of the model, or may simply reflect a gradual change brought about by varying a pa-

rameter. The ability for mechanistic models to account for such changes makes them

particularly useful in policy environments, where the potential impact of a policy deci-

sion and an understanding of its knock-on effects are often sought by decision-makers.

In what follows, two types of mechanistic model frameworks are discussed with

respect to civil violence. The first, agent-based modelling, is a computational simula-

tion technique that models each component in a system and itsinteractions with other

components as a distinct and autonomous process. Next, the use of differential equa-

tions, which typically take a more aggregate perspective than agent-based models is

considered.

2.4.1 Agent-based models

Agent-based models (ABMs) are simulations that represent each entity in a system as

an independent and autonomous agent (Epstein and Axtell, 1996; Gilbert, 2007). An

ABM consists of a set of rules that describe how the entities behave and, crucially, how

they interact with other entities. Agent-based modelling is a framework well-suited

to model complex systems: systems in which interactions between entities, for exam-

ple between individuals, can produce emergent, or unexpected phenomena (Newman,

2011). Regularities in the spatio-temporal patterns associated with civil violence is an

example of one such emergent phenomenon and ABMs can be constructed that attempt

to replicate such patterns. Overcoming limitations associated with a lack of data at

appropriate resolutions, ABMs have been employed as a means of understanding how

different forms of individual behaviour might aggregate tosystem-wide outputs that

may be empirically observed.

In many early applications of agent-based modelling, the behaviours proposed for

the agents were somewhat simple, and the models were used largely to demonstrate

that unanticipated emergent phenomena can be the result of individual autonomous ad-

herence to simple rules. For example, in the model of neighbourhood segregation by

Schelling (1971), agents’ slight preference for similar neighbours can result in com-
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plete neighbourhood segregation. The emphasis of this model was not to successfully

replicate real-world individual behaviours, but to demonstrate that simple rules, when

combined into a system with many interacting components, can produce unexpected

results. The translation of this finding into the real-worldprovides support for the argu-

ment that observed segregation in urban areas is the result of inherent system properties,

rather than any systematic prejudices in the population.

In another early example, Granovetter (1978) formulates a model of riot partic-

ipation in which individuals can either choose to join a riot, or choose not to join,

depending on the size of the riot and their perceived probability of being arrested. Each

individual has associated to them a threshold that indicates the likelihood that they will

join the riot given the number of rioters already engaged in the disorder. Thus, a safety

in numbers effect is emphasised, with rioters who are more risk averse requiring a larger

riot before they participate themselves. This model demonstrates how even with a range

of risk averse people, it is possible for a cascading effect to result in widespread riot-

ing. Furthermore, the model demonstrates sensitive dependence on initial conditions.

Widespread rioting or a peaceful system state can depend on the presence of so-called

‘instigators’ to start the rioting, those with little to no risk aversion. Instigators enable

others who are slightly risk averse to join who, in turn, enable even more risk averse

individuals to participate.

Epstein (2002) presents an ABM of civil violence, which againincorporates rel-

atively simplistic individual behaviours in order to capture interesting or unexpected

dynamics at the overall system level. In this model, agents have heterogeneous lev-

els of grievance and risk aversion, both of which influence the likelihood that any given

agent engages in violence and becomes ‘active’ via a threshold model similar to the one

employed in Granovetter (1978). The model also contains police agents which arrest

active agents, who are then jailed before returning to the system in a passive state. The

agents are free to move randomly on a simplified lattice and change their state based on

their local environment. The model is explored in a variety of scenarios, including the

occurrence of decentralised rebellion and ethnic violence, and results are interpreted in

the context of the real-world. Given the wide range of empirical studies that investigate

the causes of civil violence, Epstein’s model of individualbehaviour is certainly overly

simplistic; however, Epstein argues that since the model exhibits outbursts and conta-
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gion reminiscent of real-world rebellions, the model can bevaluable in understanding

how simple local behaviours can aggregate to global outcomes.

As the use of agent-based modelling has become more widespread, the range of

behaviours available to agents have become increasingly complex, and more in line

with extant theories of individual behaviour. There are a number of ABMs that, for

example, employ criminological theory and robust empirical observations—such as

the phenomenon of repeat victimisation in residential burglary in which houses who

have recently been burgled are most likely to experience further burglary—to model a

system containing offenders, opportunities to offend, andpolice response (Short et al.,

2008; Johnson, 2008; Malleson et al., 2010; Bosse and Gerritsen, 2010; Birks et al.,

2012) (see also Johnson and Groff (2014)).

In the case of civil violence, there have been several studies that extend the model

of Epstein (2002), attempting to incorporate more realistic mechanisms into each

agent’s individual decision-making, their interactions,and the environment in which

the model is simulated. For example, Fonoberova et al. (2012) explore a range of agent

risk propensity functions that extend on Epstein’s implicit linear relationship between

the likelihood of engaging in violence and the ratio of police to rioters. The authors

explore the effect of lattice size on the modelled police andcrime numbers in compar-

ison to empirical data. Torrens and McDaniel (2013) also extend the Epstein model

by incorporating more realistic spatial information and agent decision-making when

studying the onset of rioting.

Taking the perspective that insights can be obtained from simple models, Bennett

(2008) proposes an ABM of an insurgency in which civilians canchoose to commit

attacks if their level of anger at the state or counterinsurgents exceeds their level of fear.

Bennett uses this model to explore the tradeoff between effectiveness and accuracy

of counterinsurgent forces. Although emphasising that themodel is simplistic and

therefore cannot capture a wide range of behaviours that have been observed in the

literature, the model generates policy-level considerations for counterinsurgent forces,

such as the comparative advantages of being highly accuratewith counterinsurgent

measures during the early stages of an insurgency.

As well as incorporating theories regarding individual behaviour, there is an in-

creasing trend for ABMs of social systems to explicitly consider how the environment
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in which the agents move impacts their decision-making and their interactions (Tor-

rens and McDaniel, 2013; Heppenstall et al., 2012). A numberof sophisticated ABMs

with empirically driven modelling and validation procedures have explored the role of

individual migration and the resulting spatial distributions of ethnic groups in the oc-

currence of violent events (Lim et al., 2007; Bhavnani and Choi, 2012; Weidmann and

Salehyan, 2013; Bhavnani et al., 2014; Rutherford et al., 2014). By constructing mod-

els of specific examples of civil violence, and by calibrating outputs so that they are

empirical consistent, as these studies do, the policy relevance of such models becomes

immediately apparent. Bhavnani et al. (2014), for example, use their model of segrega-

tion and violence in Jerusalem to explore a number of counterfactuals that result from

different policy decisions.

While agent-based modelling began as a conceptual tool to consider emergence in

hypothetical and largely simplified systems, another simulation technique, microsimu-

lation, began with the explicit aim of being data-driven andempirical. Microsimulation

aims to overcome the ecological fallacy—which refers to problems brought about by

assuming that characteristics of individuals within a given population can be assumed

to be equal to the averaged statistics of that population—bymodelling individuals us-

ing data from a population that includes those individuals.This requires a model that

describes the variance within a population, and which therefore disaggregates the pop-

ulation statistics over each individual. Many of these models are typically based on

the calculation of conditional probabilities for the underlying population, and are often

explicitly spatial (Ballas et al., 2005). Such models simulate probabilities for the un-

known attributes of an individual based on what is known about them (e.g. where they

live, and what are the overall characteristics of the location in which they live). The

aim is to construct realistic representation of the population that matches the overall

statistics for a particular area.

The two model frameworks referred to as agent-based modelling and microsim-

ulation are becoming indistinguishable: data-driven and explicitly spatial ABMs have

begun to incorporate statistics of underlying populationsto investigate the interactions

of individuals (Heppenstall et al., 2012), whilst dynamic microsimulation models are

becoming versatile enough to incorporate the changing behaviours of individuals and

are therefore capable of exploring the emergent behaviour of populations (Birkin and
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Wu, 2012).

With regards to such simulations of civil violence, on the one hand, some ABMs

can be criticised for being overly simplistic and not incorporating extant theories re-

garding human behaviour; however, on the other, some modelsmay appear to be overly

complicated, with modelling decisions taken without proper justification. As a research

tool, agent-based models have also been criticised as they can be difficult to reproduce

and write code in a standardised way. More recently, empirical agent-based modelling,

in which model outputs are compared against real-world data, has been demonstrated

as a valuable tool in studying individual behaviours, and how these behaviours result in

aggregate observed outcomes during civil violence. The development of agent-based

models is becoming more established as a research tool (Grimm et al., 2010), and it is

a method that looks set to play an increasing role in future research.

2.4.2 Differential equations

Models composed of differential equations (DEs) have also been widely used to obtain

insights into social systems. In contrast to ABMs, in which the interest is often on

individuals, the dependent variable in a DE-based model of asocial system is often

taken to be some attribute associated with a group of individuals. DE-based models are

therefore typically used for more aggregated scenarios than ABMs (although, there are

exceptions: DE-based models are employed with individual perspectives in Liebovitch

et al. (2008) and Curtis and Smith (2008) and agent-based models are employed with

aggregated perspectives in Cederman (2003)).

There are many examples of DE-based models being applied to study civil vio-

lence in a modern setting. Classical models, however, are typically concerned with

the actions of two or more adversaries during more conventional forms of conflict or

warfare. More recently, some of these have been adapted to consider modern conflicts,

including civil violence and insurgencies. For this reason, attention is initially given

to models of conventional conflict that have more recently been adapted and applied to

civil violence.

In many cases, the dependent variable of a DE conflict model istaken to be the

number of individuals on each side of a conflict. In an early example, Lanchester (1916)

uses DEs to model different types of attritional warfare between two adversaries. He
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considers how new technologies, such as the introduction ofaircraft, might change

military strategy. He does this by proposing two models: onein which the rate of

loss of each adversary is proportional to the size of their opponent, representing aimed

firepower, and one in which the loss of each adversary is proportional to the product

of the size of their opponent and the size of themselves, corresponding to unaimed

fire. In the case of aimed fire, the model suggests that a betteradvantage comes from

having a larger army, rather than training the army to be moreeffective. For unaimed

fire, the benefit associated with being more effective is equivalent to a benefit brought

about by a numerical advantage, suggesting that effective training is likely to be just as

successful as recruitment during warfare.

There have been a number of studies that follow Lanchester inmodelling the

change in the size of adversaries with DEs. Deitchman (1962), for example, proposes

a Lanchester-type model of Guerrilla warfare. This model isfurther developed in In-

triligator and Brito (1988), who incorporate a predator-prey framework to examine the

impact of civilians, and in Kress and MacKay (2014), who generalise the model to ac-

count for military intelligence as well as diminishing numbers of insurgents. Atkinson

et al. (2011) also use Lanchester-type models to investigate insurgent warfare, in which

they compare a DE model to a number of modern conflicts.

Another class of DE-based models stems from the work of Richardson (1960a) on

the actions of nations during the lead up to war. In this case,the dependent variable is

not the size of each adversary but the level of military spending. The key assumption

in Richardson’s model is that the extent of a nation’s military defences, denoted by

p, reacts to the military defences of their adversary, given by q, at a rate proportional

to q. The adversary behaves similarly and reacts to the defencep. This reciprocal

action-reaction process can result in an escalating arms race between two adversaries.

A nation may react to the military defences of its rival both as a defensive measure,

in order to provide protection from the threat posed by theiropponent, as well as an

aggressive measure, to exert threat over their opponent.

Richardson believed this process on its own was not enough to model how arms

races might evolve and so included two more factors which influenced the military

defences of a nation: its own level of expenditure, which washypothesised would

diminish the change in defences as measured by the model, andalso exogenous effects,
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which were termed ‘grievances’. The model was first presented as a two-dimensional

linear system of ordinary differential equations given by

dp

dt
= ṗ = −σ1p+ ρ1q + ǫ1 (2.3)

dq

dt
= q̇ = ρ2p− σ2q + ǫ2,

whereσ1 andσ2 are parameters that specify the strength of inhibition fromeach nation’s

own expenditure on the model,ρ1 andρ2 are parameters that specify the strength of

interaction between adversaries, andǫ1 andǫ2 are parameters that specify the external

grievances of each adversary.

Measuring the ‘defence’ of a nation—the dependent variableconsidered in this

model—is difficult to achieve empirically. Richardson initially operationalised the

dependent variablesp andq by considering military expenditures of two adversaries.

However, there are complications encountered by defining the variable in this way, as

some have pointed out (Brauer, 2002). Richardson’s primary objective was to demon-

strate how modelling simple interactions can shed light on the resolution of conflict,

and was not necessarily on the quantification of military defences. As a result, he also

allowed the possibility for negative values ofp andq. Although difficult to comprehend

in terms of military expenditure, it was argued that negative values might correspond

to some measure of cooperation between the two nations, which might, for example,

be measured via trade.

In the first application of the model in equation 2.3, Richardson (1960a) shows

how the increase in military expenditure of four nations—Russia, Germany, France

and Austria-Hungary—on two sides of a conflict in the years prior to the First World

War very closely follows a pattern that would have been predicted by the model. A

figure from Richardson (1960a) is reproduced in Figure 2.1 that shows the straight line

expected from the model, against the data Richardson gathersfor the years shown.

The equation for the straight line is obtained by summing thetwo equations in 2.3 and

assuming that both sides of the conflict react to their own defences and the defences of

their opponent at the same rate, so thatσ1 = σ2 andρ1 = ρ2.

Perhaps as a consequence of the very close fit between the model and the small

dataset in Figure 2.1, Richardson’s arms race model has been applied to various scenar-

ios around the world which have been considered to exhibit ‘arms race’-type behaviour.
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Figure 2.1:The change in the sum of defence budgets against the sum of defence

budgets for four nations during the four years prior to the First World War. The

four nations are Russia, Germany, France and Austria-Hungary and the values plotted

represent the sum of defence budgets over these nations. Defence expenditure data was

gathered from various sources by Richardson, and the line represents the best fit of

what would be expected from the model in equation 6.1, assuming thatσ1 = σ2 = σ

andρ1 = ρ2 = ρ. This figure is reproduced from Richardson (1960a). The gradient is

given byρ − σ and is estimated by Richardson to be0.73. An ordinary least squares

regression produces the same output.
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In many of these cases, however, when using modern estimation techniques with large

datasets, the model has been unable to reproduce the empirical data to such a close ex-

tent. In fact, much of the time, the model prediction is foundto be a poor fit to the data.

Dunne and Smith (2007) give an overview of some of the econometric applications of

Richardson’s arms race model. They discuss the mixed resultswhen the model is ap-

plied to the India-Pakistan arms race from 1960. In particular, using purely temporal

vector autoregression methods, they apply the Richardson model to arms expenditure

data for India and Pakistan for the period between 1960 and 2003. They find that, for

some time periods, action-reaction type dynamics present in the Richardson model can

be observed in empirical data; however, for other time periods, no such consistencies

can be found.

Brauer (2002) reviews applications of the model to the Greco-Turkish arms race,

and points out several issues associated with fitting such models to arms race data.

Some of the issues Brauer points out are relevant to many applications of differential

equation-based models to social systems. For example, problems are often encountered

with data availability, leading to complications in defining appropriate dependent vari-

ables from the data, which are required in order to validate the model. In the case of

arms expenditure, for example, decisions regarding whether to take the dependent vari-

able as the absolute expenditure on defence for each nation,or the relative amount of

expenditure on defence as a proportion of that nation’s GDP,can lead to varying levels

of success of the fit of the model.

Parameter estimation can also be compromised as, in social systems in particular,

parameter values can change very quickly. As Saperstein (2007) points out, the param-

eters of the original Richardson model in equation 2.3 are assumed to remain constant

for timescales over which the dependent variables change. Since decisions regarding

military expenditure can be made by reacting to a single event that can occur on very

short timescales, there may be many scenarios in which this assumption is not valid.

Saperstein (2007) goes on to define nonlinear extensions of the model in which the

parameters of the system change according to the strategic aims of each nation.

Studies reporting difficulties in matching the model to empirical data sometimes

overlook the principal reason for such discrepancies: the model is very simplistic.

There are mechanisms not present in the model which may well play an important
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role. Richardson’s model is a useful descriptive tool to understand the possible states

of an international system, and how the system might transition between these states.

It was not intended to be used as a predictive tool to forecastdefence budgets (Zinnes

and Muncaster, 1984). Indeed, proponents of Richardson’s model will argue that the

simplicity of the model is a virtue: it can be easily analysed, understood, and be used to

explain the outcomes of different scenarios, and how transitions might occur between

them.

Similarly to Lanchester’s model of combat, Richardson’s model has been extended

in a number of ways to consider the dynamics of different types of conflict. In one

example, asymmetrical conflict is investigated by considering what might occur if a

smaller adversary is unlikely to directly compete with a larger one, instead choosing to

change its tactics by, for example, submitting to the largernation’s threats or attempting

to undermine the larger nation by employing different strategies rather than directly

competing by increasing the size of their own defences. In Richardson (1951) and

Richardson (1960a), the model in equation 2.3 is extended to consider the possibility

of submission of a nation in an arms race if the lead became toolarge. This model is

given by:

ṗ = −σ1p+ ρ1q (1− υ1(q − p)) + ǫ1 (2.4)

q̇ = −σ2q + ρ2p (1− υ2(p− q)) + ǫ2,

whereυ1, υ2 ≥ 0 are additional parameters that Richardson termed ‘submissiveness’,

whilst all other parameters have the same interpretation asin equation 2.3. The param-

etersυ1 andυ2 determine the extent to which the reaction terms are diminished pro-

portional to the opponent’s lead in defences. Their inclusion has the effect of enabling

scenarios in which, once a sufficient lead develops for one nation, their opponent will

slowly begin to react less and eventually begin to reduce their defences, as they concede

their position in the arms race.

Asymmetric dynamics can also occur during insurgent warfare and other types of

civil violence (Ryan, 2006). In this case, whilst it is difficult to measure the dependent

variable in terms of military expenditure, there may be other measures that determine

the level of threat or cooperation between opponents, such as the amount of public

support for either side, or the likelihood of one side initiating conflict against the other.
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Karmeshu et al. (1990) consider an extension of the Richardson model that can be

applied to domestic political conflict in order to investigate the interactions between a

ruling and a challenger group. Similarly, models proposed by Jackson et al. (1978),

Intriligator and Brito (1988) and Blank et al. (2008) are all reminiscent of Richardson’s

model since they incorporate dynamical processes of escalation and inhibition, as well

as various extensions that might be relevant in civil violence scenarios.

The ability for models of escalation processes to be appliedto a range of different

types of conflict, from arms races to insurgencies, suggeststhat they can be interpreted

as models of general conflict between two adversaries. Indeed, recently, a number of

authors have taken this perspective, and proposed models ofgeneral conflict processes

that build upon theories of conflict developed in psychology. The authors argue that

such models can be applied to nations, groups or individualswho interact in a conflict

with an opponent. No constraints are placed upon the range ofsituations to which the

model may be applied. For example, Liebovitch et al. (2008) present the dynamical

properties of the model given by:

ṗ = −σ1p+ ρ1 tanh q + ǫ1 (2.5)

q̇ = −σ2q + ρ2 tanh p+ ǫ2.

The relationship between this model and Richardson’s model in equation 2.3 is clear:

the interaction terms have become nonlinear functions bounded in (−ρ1, ρ1) and

(−ρ2, ρ2), respectively. Further extensions have recently been explored in Qubbaj and

Muneepeerakul (2012) and Rojas-Pacheco et al. (2013) by adding time delays to these

reaction terms.

Perhaps surprisingly, given how important the consideration of space is in various

conflict processes, there have been few spatial extensions of DE-based conflict mod-

els. Borrowing techniques from ecology (see, for example, Malchow et al. (2008)),

some spatially-explicit models have been proposed using reaction-diffusion equations

to specify how a dependent variable of interest varies in space. For example, Keane

(2011a) presents a spatially extended version of the Lanchester equations and demon-

strates how strategic manoeuvring of combat units can be incorporated into a spatially

continuous model. Spatial Lanchester models are explored further in Gonźalez and

Villena (2011), in which they are derived from first principles based on assumptions
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of the movement dynamics of troops. Another example is Brantingham et al. (2012)

who present a spatially extended version of the Lotka-Volterra equations to model the

geographic evolution of gang boundaries in Los Angeles. They observe consisten-

cies between the model and the real world system, demonstrating that events cluster

in space in a way predicted by the model. Reaction-diffusion models have also been

used extensively in models of urban crime (Short et al., 2010a,b; Pitcher, 2010; Ro-

driguez and Bertozzi, 2010; Berestycki and Nadal, 2010). Somehave argued however,

that reaction-diffusion models may not be the most appropriate method of accounting

for spatial dependency since such models can lack a clear theoretical argument for the

continuous diffusion of the dependent variable in space (González and Villena, 2011;

Ilachinski, 2004).

Another approach to modelling spatial dependencies with DEs is through the use

of spatial interaction models. Spatial interaction modelsspecify how the value of a

dependent variable at one location interacts with the dependent variable at another.

They can be readily employed within differential equations, which typically specify the

change in that variable over time, taking into account any spatial interaction. Davies

et al. (2013), for example, present a DE-based model of the London riots that employs

a spatial interaction model to account for spatial dependency in contagion processes

associated with rioting. The authors use their model to investigate policing strategies—

in particular concerning police deployment strategies—inan effort to understand how

these might affect outcomes during such extreme events.

2.5 Discussion

A range of modelling frameworks, each of which have been usedfor the development of

spatio-temporal models of civil violence, have been introduced, and various examples

considered. The amount of empirical data required to formulate the models, and the

extent to which assumptions remove the model from the real world varies over the

different modelling frameworks. Furthermore, this changes both the plausibility of the

model, as well as the range of potential insights, as argued in Chapter 1 (see also Figure

1.1).

Exploratory approaches can be used to construct null modelswhose structure is

directly informed by the empirical data (e.g. through the total number of events or
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the number of expected events in a given spatio-temporal window). Differences be-

tween null models and empirical data can be used to infer certain characteristics of the

data, and possible mechanisms for these characteristics can be considered. It has been

demonstrated how exploratory approaches are particularlywell-suited to analysing the

spatio-temporal properties of civil violence event data. Limitations of exploratory ap-

proaches arise from their inability to explore theorised mechanisms in detail, and their

reliance on accurately recorded spatio-temporal data. Reliance on past data means that

exploratory approaches can not be extensively used in a predictive setting, since any

predictions would rely heavily on extrapolation.

Statistical models require the specification of some hypothesised relationship be-

tween variables. Calibration of the model with empirical data, together with appropri-

ate controls, can lead to an assessment of the extent to whichvariables that proxy for

the proposed mechanisms covary with a dependent variable, and therefore can provide

evidence that those mechanisms do indeed play a role in the data generating process.

Statistical models in which structural covariates are employed as a proxy for a partic-

ular mechanism are widely used to assess the occurrence of civil violence and conflict

events in space and time. Despite recent models being applied at finer spatial and tem-

poral resolutions than have typically been used in the past,such models may still suffer

from sources of error brought about by aggregation. Statistical models of individual

choice may offer an alternative formulation for employing statistical models to study

the spatial context of civil violence.

A significant literature in the statistical modelling of civil violence and conflict

has shifted the focus from standard goodness of fit measures associated with regression

models to their ability to predict the onset and occurrence of events. Even relatively

parsimonious models have been shown to have some predictivevalue. Point processes

provide a statistical modelling framework that are well-suited to predictive modelling.

In particular, there are a number of point process models that have been applied to a

range of problems in crime and security. Some of these have even demonstrated their

ability to predict events in space and time more successfully than traditional models.

Mechanistic frameworks, such as agent-based modelling anddifferential equation-

based modelling, enable the investigation of the logical consequences of a proposed

mechanism at various levels of aggregation. If the model produces outputs in agree-

58



2.5. DISCUSSION

ment with empirical observation then that mechanism may play a prominent role in the

real-world system. Mechanistic models can also be used to consider different scenarios

on which there is little historical precedent and scarce empirical data. In this sense,

mechanistic models can be extremely useful in a policy setting, as policy-makers might

be interested in what might occur in the future under a range of different policy options.

The appropriate level of complexity in a mechanistic model is often difficult to achieve.

Simple models are often preferable due to their ability to beanalytically interrogated,

but can be criticised for not incorporating potentially important processes. More com-

plex models can be also be defined, however, models that are too complex can preclude

validation procedures and therefore useful insights.

The choice to construct a mechanistic model using an agent-based or equation-

based framework is an important one. Although ABMs can potentially better capture

the idiosyncrasies of individual behaviour, they often result in a higher level of model

complexity, which is sometimes undesirable. Additionally, the wide number of an-

alytical approaches developed to study differential equations sometimes means that

DE-based models can lead to more sophisticated insights. Keane (2011b), for exam-

ple, compares a spatially-explicit equation-based model of combat with an equivalent

agent-based model (described in Ilachinski (2004)) and shows that many behaviours of

agent-based models can be reproduced using equation-basedapproaches. If the results

of a DE-based model can be shown to produce complex dynamics such as those in an

ABM, then the analytical power given by the DE model would be preferable so that a

researcher can, in theory, evaluate different regimes of behaviour; a technique which is

difficult to achieve with any certainty in a simulation. Short et al. (2010b) provide an

example where the analytical tractability of an equation-based model generated from

an agent-based model leads to greater insights than the agent-based model alone. Some

studies have combined the two approaches in an attempt to benefit from both of their

advantages (Geller and Alam, 2010).

Finally, although there are some other modelling frameworks that may have been

included in this thesis to investigate the spatio-temporalsetting of civil violence, such

as spatial game theory, bayesian networks and machine learning algorithms, the scope

of the thesis has been bounded to incorporate just those approaches presented above,

which were found to be the most prominent spatio-temporal approaches to modelling
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civil violence in the current literature.
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Chapter 3

Exploring spatio-temporal patterns of

rioting with data-driven models



3.1. INTRODUCTION

3.1 Introduction

The availability of extensive datasets detailing various aspects of human activity has

transformed our ability to examine social systems from a quantitative perspective. Civil

violence is an area of human activity to which this particularly applies. Police forces

and government agencies are collecting considerable quantities of data on the locations

and times at which offences associated with violence occur.The purpose of this chapter

is to examine whether modelling the spatio-temporal profileof event data using an

exploratory data-driven approach can lead to insights intothe mechanisms by which

civil violence occurs. It is then considered how these typesof models might be used to

aid the operational decision-making of police organisations.

Exploratory data-driven approaches typically compare carefully constructed null

models to the empirical data, in order to make inferences about that data. It is common

for null models to be built from initial simple—indeed, almost trivial—assumptions.

Further assumptions are then subsequently incorporated that begin to increase the com-

plexity of the model. As will be demonstrated in this chapter, the inclusion of more

restrictive assumptions can lead to sophisticated insights into the range of plausible

data generating processes.

To demonstrate this model framework, spatial and spatio-temporal patterns in the

2011 London riots are investigated. The aim is to construct amodel for the generation

of times and locations at which offences occurred during theriots, with the objective

of understanding how and why the riots spread as they did. A model is first presented

in which riot data is generated under the assumption of complete spatial randomness.

Comparing this modelled data with the event data, it is concluded that there was sig-

nificant spatial heterogeneity and autocorrelation duringthe London riots. The spatio-

temporal profile of the rioting is then explored, first by determining whether there was

significant spatio-temporal interaction between events that was above and beyond the

effect of the spatial and temporal dependency of the event data and second by exam-

ining how spatio-temporal interaction influenced the localpatterns generated by the

times and locations at which offences occurred. The resultsof this study are discussed

with reference to possible mechanisms for the observed patterns, and evidence for the

presence of these mechanisms is evaluated. The utility of these insights is discussed

both from a theoretical and a policy perspective, and the generality of the modelling
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approach is considered. Finally, it is argued that the insights obtained can be used in

the development of more sophisticated models.

3.2 Data aggregation

To introduce notation, which is defined without loss of generality in order to enable

applicability of the methods presented across different scenarios, suppose that events

occur at(si, ti) ∈ D × T for i = 1, .., N , whereD ⊂ R
2 is a bounded spatial domain,

andT ⊂ R is a bounded temporal domain. Suppose also that the events(si, ti) are

ordered so thatti < ti+1 for i = 1, ..., N − 1, and therefore it is often convenient to

takeT = [t1, tN ].

Event data is often aggregated into a spatio-temporal partition of the domainD ×
T . There are many reasons why event data might be aggregated. Data on civil violence

is highly likely to be of a sensitive nature. At its finest level of spatial resolution, it may

contain identifiers such as home addresses of suspects or other personal information.

The data can also suffer from observation biases. For example, there are difficulties

in obtaining accurate event times when investigating different types of crime since the

occurrence of the crime is rarely directly observed (Ratcliffe, 2000). Consequently, the

interval in which the crime is known to have occurred is oftenrecorded, rather than the

actual time.

To introduce notation, for subsetsDj ∈ D for j = 1, 2, ..., J andTk ∈ T for

k = 1, 2, ..., K, suppose that

D =
J
⋃

j=1

Dj, T =
K
⋃

k=1

Tk. (3.1)

It is further assumed thatsi ∈ Dj impliessi /∈ Dl for all l 6= j and for alli. Similarly,

ti ∈ Tk implies ti /∈ Tl for all l 6= k for all i. In other words,{Dj}j=1,...,J is a non-

overlapping partition of the domainD, and, similarly,{Tk}k=1,...,K is a non-overlapping

partition of the domainT .

Due to constraints in the way event data is collected and reported, the spatial par-

tition of D is often defined by administrative regions that are geometrically irregular.

Consequently, the subsetsDj can vary substantially in size for differentj. In the case of

the 2011 London riots, in which offence data was particularly sensitive given the polit-

ical salience of the riots, the available data reported the location of offences aggregated
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into census output areas within Greater London. Census output areas are a geographic

partition of the UK designed for the reporting of demographic data obtained from the

UK census. Each output area is designed to contain approximately 300 residents and,

therefore, can vary in size according to the population density of the underlying geog-

raphy.

The effects that aggregation has on analysis of spatial datahas been well docu-

mented (see, for example, Weisburd et al. (2009)). One such effect is the modifiable

areal unit problem which is demonstrated in detail in Openshaw (1984). It states that the

choice of spatial partition of the geographic area of interest can have a large influence

on the outcome of any analysis. The results obtained may be more of a consequence

of the particular aggregation chosen and not a property of the underlying process. A

solution is to run multiple analyses for different geographic aggregations of the data,

in order to test whether results are consistent when the datais aggregated in different

ways. One way of achieving this, and the method that is employed in this chapter, is to

overlay a square spatial grid on the geographic area of interest. A square spatial grid

easily enables the researcher to consider different aggregations of the available data by

varying the spatial resolution of the grid, denoted byδs. In laying a regular spatial

grid over an irregular administrative partition, care mustbe taken to ensure that the

spatial grid is of a large enough resolution so that events occurring within a particular

administrative area are mapped to the spatial grid unit in which they occurred.

The modifiable unit problem also holds for temporal aggregations, in which events

are aggregated into time intervalsTk. Similarly to the spatial case, a solution is to

aggregate the data into a regular temporal partition of the time domain of interestT
with resolutionδt. Supposing thatT = [t1, tN ], thenTk is defined fork = 1, ..., K so

that

T =
K
⋃

k=1

Tk =
K
⋃

k=1

[t1 + (k − 1)δt, t1 + kδt), (3.2)

whereK is chosen so thattN − t1 ≤ Kδt. The resolutionδt can then be varied

to test whether any conclusions are consistent across different temporal aggregations.

For spatio-temporal analysis, the modifiable unit problem is addressed by performing

analyses over different values of bothδs andδt. In varyingδs andδt, it is also possible

to examine if, and how, conclusions resulting from the analysis vary over different
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temporal and spatial scales.

3.3 Spatial randomness and autocorrelation

In order to motivate investigation into the spatial autocorrelation of riot events, the ad-

vances made in considering the spatial dependencies of different types of crime are first

considered. Indeed, a large body of research has demonstrated that, for certain types

of crime, there is significant evidence for spatial autocorrelation: the phenomenon by

which the occurrence of events is more likely to be near to other events. This find-

ing has led to subsequent studies investigating possible explanations for the presence

of autocorrelation. Johnson (2008), for instance, compares two possible explanations

for the presence of autocorrelation in studies of residential burglary. The first of these

states that it is the occurrence of events at a particular location that increases an area’s

attractiveness, leading to the occurrence of further events. This is known as the boost

hypothesis. The second explanation is that it is the presence of suitable time-stable en-

vironmental conditions at that particular location that make it particularly vulnerable,

the so-called flag hypothesis. This particular example demonstrates the utility in using

data-driven modelling approaches as a first approximation for a model of a complex

process. The identification of spatial autocorrelation ledto further studies that con-

sidered explanations of the phenomenon. Models based upon simple assumptions can

often inform further studies by suggesting research questions. It is in this vein that this

section proceeds.

In this section, a spatial analysis for the 2011 London riotsis presented in order

to determine whether or not it was the case that riot offencesclustered in space. The

aim is to determine whether further investigation into the spatial patterns of the riots

might lead to more intricate insights, which might ultimately be useful from a policing

perspective. A model of complete spatial randomness (henceforth abbreviated as CSR)

for the event data is first considered. Rejection of CSR is oftenconsidered a “minimal

prerequisite to any serious attempt to model an observed pattern” (Diggle, 2013). In-

deed, if a dataset is indistinguishable from CSR then there isno spatial dependency in

the data, and efforts at spatial modelling are unlikely to generate useful insights.

A series of events(si, ti) for i = 1, ..., N is completely spatially randomwhen

the locations of the events{si}i=1,...,N are indistinguishable from a Poisson process.
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A Poisson processoccurs when counts of events in non-overlapping subsetsDj of D
follow a Poisson distribution. Denoting the number of events that occur in the subset

Dj by the random variableXj and assuming that the subsetsDj have equal area for all

j, this implies that

Pr(Xj = x) =
λxe−λ

x!
, (3.3)

for somex ∈ Z andintensityλ ∈ R for j = 1, 2, ..., J .

Denoting the realisation ofXj in the empirical data byxj, then, in order to reject

CSR for a given dataset, it is necessary to compare the values{xj}j=1,...,J with realisa-

tions ofXj that would be expected under a null hypothesis of CSR. A model ofCSR

is therefore the first model of the empirical data proposed. This model is employed in

order to detect spatial heterogeneity, which can then be explored with more complex

approaches. As well as determining whether the empirical data differs from CSR, the

level of autocorrelation in the data is quantified through the use of spatial statistics,

which are first introduced.

3.3.1 A measure of dispersion

The comparison between the model and the empirical data is typically made through the

use of a test statistic. A test statisticS ∈ R is designed to be a single-valued summary

of the dataset that can detect differences between different data samples (e.g. from the

empirical data or the model). A test statistic that is often used when considering CSR

is the index of dispersion. This is defined as

Sd =
Var[Xj ]

E[Xj]
, (3.4)

where the variance and expectation of the counts are calculated over the different spatial

regionsDj, which are assumed to have equal area.

For idealised distributions, such as that of CSR, the index of dispersion can be

computed analytically. For a Poisson process in which the random variableXj has the

distribution given by equation 3.3, the expected count is:

E[Xj] =
∞
∑

x=1

xPr(Xj = x) =
∞
∑

x=1

x
1

x!
λxe−λ (3.5)

from which, by removing a common factor from the sum, and using the identity
∑∞

k=1 y
k−1/(k − 1)! = ey, it can be shown that

E[Xj] = λ. (3.6)
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The variance of the same process is given by

Var[Xj ] = E[X2
j ]− (E[Xj])

2 =
∞
∑

x=1

x2 1

x!
λxe−λ − λ2, (3.7)

from which, by removing a common factor from the sum, separating the sum into two

components, one with denominator(x − 1)! and one with denominator(x − 2)!, rela-

belling indices and using the exponential identity used in the expectation calculation, it

can be shown that

Var[Xj ] = λ. (3.8)

The index of dispersion for a Poisson process is therefore

Sd =
Var[Xj ]

E[Xj]
= 1. (3.9)

The index of dispersion measures the extent to which event counts are distributed

over different spatial units.Sd is equal to zero when the counts are equal over areas

and are therefore completely uniformly distributed. This might occur if events form

a regular point lattice. As shown in equation 3.9,Sd is equal to one under CSR. A

valueSd ∈ (0, 1) indicates under-dispersion. In this case, the distribution of events

is somewhere between complete uniformity and CSR, and events are distributed more

evenly than would be expected under CSR. Values ofSd > 1 indicate over-dispersion:

there is more clustering of values than would be expected under CSR, and events are

distributed unevenly across relatively few spatial units.

3.3.2 A measure of autocorrelation

Whilst the index of dispersion considers how events are distributed within areas, an-

other test statistic is employed to consider how counts of nearby areas relate to one

another. Moran’sI (Moran, 1950) is an index of spatial autocorrelation that measures

the extent to which areas with similar counts are proximate to each other, or, conversely,

in the case of a negative value, the extent to which lower counts tend to be nearby areas

with high counts. It can be used to investigate whether clustering is due to localised ef-

fects within areas—for example due to the presence of a particular target—or whether

clustering is a result of more widespread regional effects that includes the surrounding

spatial units. If high event counts occur near to areas with low event counts, then there

is negative spatial autocorrelation. If areas with high counts are close to other areas
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with high counts, and areas with low counts are near to other areas with low counts,

then there is positive spatial autocorrelation. Moran’sI is defined as:

SI =
J

∑J

j=1

∑J

l=1wjl

∑J

j=1

∑J

l=1wjl

(

Xj − X̄
) (

Xl − X̄
)

∑

j

(

Xj − X̄
)2 , (3.10)

whereJ is the number of spatial units,Xj is the variable of interest,̄X is the mean of

Xj across the different spatial units, andwjl is a matrix of spatial weights that specifies

the proximity of spatial unitsDj andDl.

SI is bounded between−1 and1. A value equal to1 corresponds to perfect pos-

itive autocorrelation, whilst a value equal to−1 corresponds to perfect negative auto-

correlation. This statistic has been widely employed to characterise the level of spatial

autocorrelation in levels of war and democracy (Gleditsch and Ward, 2000), criminal

activity (Anselin et al., 2000), gang rivalry (Tita and Radil, 2011) and maritime piracy

(Marchione and Johnson, 2013), amongst others.

For an idealised Poisson process, similarly to the index of dispersion, Moran’sI

can be calculated analytically. In particular, for spatialunits of equal area, the expected

value ofSI is −1/(J − 1), whereJ is the number of spatial units.

3.3.3 Simulating a random process

Under CSR, the test statisticsSd andSI are both analytically tractable. In this chapter,

however, more general models than CSR will be considered. Forsuch models, the cal-

culation of test statistics is not as simple. Realisations ofmore complex models can be

generated through the use of simulation. These realisations can then be directly com-

pared with empirical data. Comparison between test statistics obtained from empirical

data and a simulated realisation of data generated from a null model can then either

support or reject the hypothesis that the data are completely spatially random. In this

section, it is shown how simulation can be used to generate anapproximate realisation

of a Poisson process over the same spatial partition as the available data, leading to area

counts
{

x
(1)
j

}

j=1,...,J
. The superscript is introduced to distinguish between realisations

of the random variableXj that are obtained from simulation and realisations that are

obtained from empirical data (for which there is no superscript).

An approximate simulated Poisson process can be constructed as follows: for each

of theN events, assuming that the spatial unitsDj have equal area, one spatial unitDj
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is chosen at random with uniform probability from the set of spatial units (i.e. with

probability 1/J) with replacement, since it is possible that more than one event can

occur within a given spatial unit. Therefore, for eachj, Xj is the number of times

the spatial unitDj was chosen inN selections. The probability thatXj = x for x =

1, 2, 3, ... is then given by the Binomial distribution. This is because for Xj = x to hold

afterN selections have been made, it is necessary thatj must be chosenx times whilst

not chosen(N − x) times, leading to:

Pr(Xj = x) =
N !

x!(N − x)!

(

1

J

)x(

1− 1

J

)N−x

. (3.11)

It can be shown, however, that for largeN , the binomial distribution approximates a

Poisson process. Indeed, settingλ = N/J , leads to

Pr(Xj = x) =
N !

x!(N − x)!

(

λ

N

)x(

1− λ

N

)N−x

. (3.12)

Next, considering the limit asN → ∞,

lim
N→∞

N !

Nx(N − x)!

= lim
N→∞

N(N − 1)(N − 2)...(N − k)(N − k − 1)...(2)(1)

Nx(N − x)(N − x− 1)...(2)(1)

= lim
N→∞

N

N

(N − 1)

N

(N − 2)

N
...
N − x+ 1

N

= 1,

and

lim
N→∞

(

1− λ

N

)N (

1− λ

N

)−x

= lim
N→∞

(

1 +
1

−N
λ

)−N
λ
(−λ)

1−x

= e−λ,

where the identitylimy→∞

(

1 + 1
y

)y

= e is used. Thus, forN → ∞, equation 3.3

is obtained and it has been shown that simulating a random process in this way for a

large number of eventsN is approximately equivalent to simulating a Poisson process.

Moreover, this simulation enables the preservation of the number of events, given by

N , in the simulated distribution, leading to more meaningfulcomparisons between the

empirical data and the random process.
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The next step is to compare this simulated realisation of random variables
{

x
(1)
j

}

j=1,...,J
against the empirical counts{xj}j=1,...,J through the use of a test statistic

S. Doing this for just one realisation of the simulated distribution is not particularly

instructive: one realisation does not indicate how much theempirical distribution dif-

fers from the theoretical one. However a full permutation ofall possible realisations

of the dataset under a binomial distribution is computationally very intensive for large

values ofN andJ . Therefore, a sample ofG realisations from the set of all possible

realisations is taken, leading to simulated realisations
{

x
(g)
j

}

j=1,...,J
for g = 1, 2, ..., G,

and the empirical distribution{xj}j=1,...,J is compared against all of the distributions in

this sample. If the test statistic for the empirical distribution,S ∈ R, sufficiently differs

from the statistics generated from the simulated distributions,S(g) ∈ R, for iterations

g = 1, 2, ..., G, then we conclude that there is evidence to distinguish the empirical data

from what would be expected under CSR.

The significance of the empirical test statistic can be calculated by considering the

rank r of the empirical test statistic with respect to the simulated data, so that, for a

one-tailed test,

r =
G
∑

g=1

1(S(g) ≥ S), (3.13)

where the indicator function1(.) is equal to one if the condition in the bracket holds,

and equal to zero otherwise. Then, following North et al. (2002), if S is a random

variable defined by the test statistic, so thatS(g) are realisations ofS, then the so-called

p-value is defined as

Pr(S ≥ S) = r + 1

G+ 1
. (3.14)

A small p-value indicates that it would have been unlikely for the data summarised by

the test statisticS to have been observed if the data was indeed generated by a process

of CSR.

3.3.4 Testing for CSR in the 2011 London riots

Data obtained from London’s Metropolitan Police Service onthe 2011 London riots

consists of details of3, 914 offences that occurred during the five days of unrest from

the 6th-10th August. Of these,2, 868 contained details of where the offence occurred,

aggregated to the geographic level of UK census output areas. Within Greater London,

within which all offences occurred, there are24, 140 census output areas defined by the
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2001 UK census. These areas have varying size, and are designed to contain approx-

imately300 residents. In Figure 3.1, the spatial distribution of the events is shown by

plotting the centroid of the output area in which an offence occurred. The shading of

each point corresponds to the number of events that occurredwithin that output area

throughout the duration of rioting. In Figure 3.2, the cumulative frequency of the num-

ber of offences occurring within each output area is shown. There are many areas in

which no offences occur, but, as Figure 3.2 demonstrates, there are a few areas in which

many events occur. This would suggest that the data is likelyto be clustered, however,

in order to formally determine this, it is necessary to undergo the simulation procedure

described below.

Figure 3.1:A map of the 2011 London riots. The centroids of the output areas in

which events occurred are plotted, with the counts referring to the number of offences

within each output area over the duration of the disorder.

A spatial grid with spatial resolutionδs is overlaid on the geographic area of

interest—the census output area geography of Greater London—the resolution of

which can be varied in order to address the modifiable areal unit problem. Riot events

are then mapped to the corresponding grid unit that overlaysthe output area in which
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Figure 3.2:The empirical cumulative distribution of counts of offencesacross out-

put areas that contained at least one offence.The graph shows the probability that a

randomly selected output area containing at least one offence had an offence count at

least as large as the value on thex-axis. The largest number of offences within a single

output area is 131, however this value is omitted from the graph for clarity.
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the event is recorded. In Figure 3.3, a comparison between the output area geography

and a regular spatial grid of two different resolutions (400m and650m) is shown. The

mean area of an output area in which riot offences occurred is0.15km2. Accordingly,

values ofδs are chosen so as to not exceed the precision of the data. The smallest spatial

resolution of the overlaid grid considered isδs = 400m, so that the area of each spatial

unit in the grid,0.16km2, exceeds the average area of the output areas within which of-

fences occurred. On average, each event is consequently mapped to the corresponding

spatial unit of the overlaid grid within which the event occurred.

400m
650m

Figure 3.3:Two regular spatial grids over the same portion of London’s Output

Area geography. The resolution of the grids are400m on the left and650m on the

right.

Following the description of testing for CSR in the previous section,G = 499

simulated realisations of the data under the null hypothesis of CSR are generated by

randomly allocating each of the2, 868 offences to one of the spatial grid units. Since

each unit of the spatial grid has equal area, each unit is chosen with equal probability.

The number499 is chosen in accordance with previous literature employingMonte

Carlo simulations. By considering equation 3.14, it can be seen that for each simulated

statisticS(g) that is greater than the empirical value ofS, thep-value increases by a

value of0.002, suggesting a potential high level of confidence in the results.

The index of dispersion and Moran’sI are used as test statistics to distinguish the

empirical data from the modelled data for a range of grid sizes. When calculating the

Moran’sI statistic, the matrix of spatial weights, with entrieswjl, is defined with queen
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contiguity, named after the range of moves available to the queen piece in chess. That

is, wjl = 1 if spatial unitsj andl in the spatial grid share either an edge or a vertex,

otherwisewjl = 0. Thus, the neighbourhood of spatial unitj consists of those units that

surround the focal unitj, as shown in Figure 3.4. For each spatial unitj, units outside

of this neighbourhood are not considered in determining whether counts are correlated.

Figure 3.4:The neighbourhood of a focal spatial unit under queen contiguity. The

grey squares are considered to be the neighbours of the blacksquare.

Figure 3.5 shows the values of the index of dispersion,Sd, and the value of

Moran’s I, SI , for a range of spatial grid resolutionsδs. The figure also shows the

values of the same statistics under the assumption of CSR. For all cases considered,

the statistics of the model are less than the statistics obtained from the empirical data,

leading to ap-value of0.002 for both the index of dispersion and Moran’sI. There-

fore, the chance of observing the data given that the null model of CSR is true is less

than0.002, and it can be concluded that there is highly likely to be significant spatial

clustering in the empirical data. This implies that the spatial distribution of the rioting

warrants investigation through the use of more complex models.

The values ofSd are much greater than1, indicating substantial over-dispersion.

This implies that within grid units there is strong clustering of events and arises since
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the majority of the events occur within a relatively small number of grid units. The

values ofSI are also positive, indicating the presence of positive spatial autocorrelation.

That is, the counts of events occurring in each unit are positively associated with the

counts occurring in neighbouring units. Although being positive, the values ofSI are

close to zero. Taking these values on their own, it might be difficult to conclude that

there is positive autocorrelation since the values ofSI are much closer to zero than to

one – the value indicating perfect spatial autocorrelation. This example demonstrates

the necessity of comparing the statistic against a null hypothesis: the values ofSI from

the empirical data are, in fact, much greater than would be expected when compared to

the same number of events under CSR. Therefore, despite being asmall absolute value,

there is certainly evidence for positive autocorrelation,with the small absolute value

of the statistic being a consequence of the sparseness of thedata over the entire spatial

region of interest.

3.4 Spatio-temporal interaction

When event occurrence varies in both space and time, it can be of great importance to

determine whether there is also spatio-temporal dependency. Tests for spatio-temporal

interaction are distinct from tests that identify the presence of purely spatial or temporal

dependency (or, indeed, both): they focus on the likelihoodof a further event occurring

in a particular location, given the time and location at which a prior event has occurred.

This information can be useful in policy-making. During outbreaks of rioting in a city,

for instance, police leaders face decisions concerning theallocation of limited resources

of police officers in real time. Insights into the spatio-temporal behaviour of rioting

can help to answer questions such as whether police resources should remain at sites

recently rioted or whether these resources would be better deployed elsewhere in the

city, for example at perceived attractive targets that havenot yet experienced rioting.

In this section, in order to investigate such questions, thelevel of spatio-temporal

dependency in the 2011 London riots is determined through the use of a grid-based

Knox statistic. Similarly to the test for spatial autocorrelation in Section 3.3, a model

of the riots is constructed under the assumption that there is no spatio-temporal depen-

dency. This enables the comparison between the empirical data and the data generated

using a null model. Differences between the two can then be evaluated in order to de-
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Figure 3.5:Results of the test for CSR.a) The values ofSd (in black) andS(g)
d (in

white) are shown for each iterationg = 1, 2, ..., 499 for different grid sizes. In this case,

the points in white are so close together that the different iterations are indistinguish-

able. This demonstrates further how strong the spatial clustering is in the empirical

data. b) The values ofSI (in black) andS(g)
I (in white) are shown for each iteration

g = 1, 2, ..., 499 for different grid sizes. In this case, the different iterations of the

model are more distinguishable.
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termine whether the null model provides a reasonable account of the data generating

process, or whether further analyses might be required.

It was demonstrated in Section 3.3 that the distribution of the locations of offences

is highly likely to be spatially clustered. As discussed at the beginning of that section,

there are two prominent explanations for the spatial clustering of event data that have

been investigated in the literature for different types of crime: the flag hypothesis and

the boost hypothesis. These two explanations can be distinguished between by deter-

mining the level of spatio-temporal interaction between events. To explain, the flag

hypothesis supposes that variations in the risk levels of different areas are due to static

time-stable influences that can encourage crime. For example, in the case of residential

burglary, it may be that houses with fewer visible security features are more likely to

be targeted (since the burglar will perceive they are more likely to succeed) and there-

fore experience a higher risk of burglary. This risk will be relatively constant over time

(provided that the homeowners do not improve the level of security during this time),

and so, such properties will likely experience a larger number of burglaries in any given

time period, when compared to another house that has many visible security features.

On the other hand, the boost hypothesis supposes that properties are more at risk as a

direct result of it being targeted for a relatively short period of time after an offence

has occurred. If the boost hypothesis was at play, a larger number of events would be

expected in the locality of a prior event, above and beyond the spatial and temporal

distribution of events within the wider region of study. Theboost hypothesis implies

spatio-temporal interaction; whereas the flag hypothesis attributes apparent space-time

clusters to a heterogeneous distribution of risk in space combined with natural variation

in crime trends. Understanding the extent to which both of these mechanisms play a

role can lead to policy recommendations. For instance, if the boost hypothesis is sig-

nificant in influencing future levels of risk, then, after a burglary, efforts could be made

to reduce the underlying risk levels, ensuring that the riskof burglary does not get too

large.

In the case of rioting, the analogue of the flag hypothesis suggests that time-stable

features of different areas might also influence the risk of rioting at a given location. For

example, if offenders participate in rioting due to the opportunity for them to loot high-

value goods, then targets containing high-value goods are likely to be more at risk of
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experiencing a riot than other targets, as potential rioters perceive the greater benefit of

selecting that target over others. This rational choice perspective on the part of rioters—

that they select targets based on the ability for those targets to fulfil their objectives—

has been explored elsewhere (e.g. Martin et al. (2009)) and there have been several

efforts to understand the features of targets that make themparticularly attractive to

rioters (Berk and Aldrich, 1972; Rosenfeld, 1997). In Chapter 4, the environmental

features of different targets, and their role in attractingrioters will be explored further.

It is noted for now that environmental features of regions can certainly play a role in

the spatial clustering of riots; however, if the environmental features of these regions

are static and time-stable, then the times at which events occur at these locations can be

taken to be independent random events with times drawn from the temporal distribution

of offences over the entire geographic region of interest. The null model for tests of

spatio-temporal interaction supposes that this is indeed the case and, therefore, that

events occurring at a given location do not influence the likelihood of future events

proximate to that location, beyond the spatial and temporaldistributions of the observed

data.

The riots are modelled under the null hypothesis of spatio-temporal independence

by randomly permuting the event times. Considering events(si, ti) for i = 1, ..., N ,

the set of times at which events occur, given by{t1, t2, ..., tN}, is permuted as follows:

choose a uniform psuedo-random integer,k
(1)
1 , between1 andN . Then swap the posi-

tion of t1 with t
k
(1)
1

. Next, choose a uniform psuedo-random integer,k
(1)
2 , between2 and

N . Then swap the position oft2 with t
k
(1)
2

. Continue for eachi = 3, .., N −1 by choos-

ing a psuedo-random integer,k
(1)
i , betweeni andN and then swapping the position ofti

with t
k
(1)
i

. This results in the random permutation of event times
{

t
k
(1)
1
, t

k
(1)
2
, ..., t

k
(1)
N

}

.

The modelled riot data under the null hypothesis of spatio-temporal independence is

then given by(si, tk(1)i

) for i = 1, ..., N . The modelled riot data has the same spatial

distribution, given by the locationss1, s2, ..., sN , and the same temporal distribution,

given by the timest1, t2, ..., tN , as the original data; however, the association between

them is randomised and any interdependency beyond purely spatial and temporal fac-

tors is removed.

As was the case with the CSR model in Section 3.3, comparing this single realisa-

tion of the dataset under a null hypothesis with the empirical dataset is not particularly
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instructive: the significance of any differences between the two datasets is impossible

to determine. However, on the other hand, taking a full permutation of the event data is

computationally intensive for large values ofN (there areN ! different possible permu-

tations). Therefore, a sample ofG = 499 from the possibleN ! random permutations is

taken, leading to temporal permutations
{

t
k
(g)
1
, t

k
(g)
2
, ..., t

k
(g)
N

}

for g = 1, ..., 499, which

are then compared against the empirical data.

In order to compare the empirical data with the modelled data, a test statistic is

required. A common statistic for identifying spatio-temporal interaction is the Knox

statistic,SK (discussed from a methodological perspective in Knox (1964a) and first

employed as a test of spatio-temporal interaction in Knox (1964b)). SK is defined as

the number of pairs of events that occur within a given space-time window of each

other. If the space-time window selected for the calculation of the Knox statistic is

large enough, then the Knox statistic will be given by its maximum value,N(N−1)/2,

since all possible pairs will be included. Employing the same spatio-temporal grid as

in Section 3.3, a grid-based Knox statistic is defined by taking the spatial window for

significant pairs as all events occurring within first-orderqueen contiguity distance of

the original event, as in Figure 3.4. The temporal window forsignificant pairs is taken

to be one hour. This value is chosen so as not to exceed the resolution of the reported

data, in which many of the offences are recorded as occurringto the nearest hour.

Temporal resolutions of2, 3, 4, 5 and6 hours were also tested in order to alleviate the

implications of the modifiable unit problem from a temporal perspective. These results

were consistent with those for1 hour and for reasons of clarity are not presented here.

Of the3, 914 offences associated with the London riots that were obtained from

the Metropolitan Police Service,2, 592 contained details of both the location at which

the offence took place as well as the time at which the event occurred. These were the

events used in the analysis. Figure 3.6 shows the Knox statistics for the empirical data

and for the simulated data for different spatial grid resolutions. The values of the Knox

statistic associated with the empirical data are much larger than the values associated

with the simulated data for all spatial grid sizes tested. Infact, the effect is extremely

strong, with the values of the empirical Knox statistics being around four times the

value when there is no spatio-temporal dependency. Since nosimulated Knox statistic

is larger than the empirical Knox in499 simulations, thep-value is calculated to be
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0.002, however, given the distance of the empirical result to the simulated result, it is

likely that a much smallerp-value could be found through the use of further iterations.
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Figure 3.6:Results of the Knox test.The empirical Knox statistic plotted against499

realisations of the simulated Knox statistic for a range of spatial grids.

It can be concluded that during the riots in London, there wassignificant spatio-

temporal dependency in the event data. This finding implies that it was not just the

suitability of certain locations in space, combined with the suitability of a particular

time that led to riots, but that there was also strong evidence for event dependency: the

occurrence of an event at a particular point in space and timeincreased the likelihood

of observing a further event in proximity to the original event. In the remainder of this

chapter, the precise nature of the interaction between proximate events is explored by

considering the geographic patterns made by the riots.

3.5 Analysing local patterns of geographic diffusion

Two models have been presented so far in this chapter. The first of these assumed that

riot data was generated with complete spatial randomness, and was shown to be a poor
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fit to the empirical data. The second model assumed that riot offences were spatio-

temporally independent, and again was rejected as a plausible model for the London

riots. This is not to say, however, that proposing these models for the London riots

did not produce any insights. In both of these examples, the specification of the model

enabled the testing of a hypothesis regarding the nature of the spatio-temporal distribu-

tion of the riots. Moreover, it has been shown that subsequent models of rioting must

account for the spatial dependency and for the spatio-temporal dependency present in

the data.

In this section, more sophisticated insights into the London riots are sought by

pursuing an exploratory data-driven approach. Localised patterns of offences in space

and time during the riots are investigated using a novel Monte-Carlo simulation, which

builds upon those presented in the previous two sections. Itis argued that the inves-

tigation into the prevalence of specific patterns can aid understanding into the way in

which the riots spread. The analysis presented here enablesthe consideration of more

intricate mechanisms as explanations for the observed patterns and these are discussed.

A binary approach to the analysis of event data in a spatio-temporal grid is used.

The dependent variable of interest is given by a binary tuple(X, Y )(j,k) for each space-

time unit, indexed by the tuple(j, k). The indexj denotes the spatial grid unit of

interest, whilst the indexk denotes the temporal window under consideration. For

each(j, k), X ∈ {0, 1} indicates whether at least one offence occurred in the focal

space-time window of interest, andY ∈ {0, 1} indicates whether at least one offence

occurred within any of the focal area’s neighbouring units,which are defined with

queen contiguity, as shown in Figure 3.4. Since the variables of interest are binary, they

do not distinguish between the number of events occurring ineach space-time window:

the occurrence of a single event is recorded as being equivalent to the occurrence of

many events. This restriction brings with it some limitations to the analysis, which

will be discussed below; however, it also allows the primarysubject of analysis to be

the geographic scope of each outburst of rioting, rather than the relative intensity of

each riot. The geographic scope of a riot is of significant interest to decision-makers

since one objective for law enforcement officers during periods of civil disorder is to

minimise the extent of the area at risk.

The same variables are used in Schutte and Weidmann (2011), who use a grid-
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based analysis to model conflict events across four different civil wars, and in Rey

et al. (2011), who also used a binary approach but do so over irregularly shaped spatial

areas. The method proposed here advances these two studies by proposing a novel

Monte Carlo simulation as a null model. The proposed model is particularly suited to

scenarios involving high levels of spatio-temporal clustering, such as the present case

of rioting.

The prevalence of four local patterns of riot events in spaceand time are investi-

gated. These are first introduced before proposed mechanisms corresponding to each

of these patterns are explored. The first type of pattern is termedcontainment. This

occurs when areas already affected by disorder in one time period are also affected in

the next, but when the disorder does not spread to neighbouring areas. Second,relo-

cation is when the disorder moves from one locality to another, without persisting in

the original location. Third, processes ofescalationoccur when rioting continues for a

prolonged period in a certain area, and also spreads to contiguous areas. Finally,flash-

pointsare outbursts of co-occurring offences located in areas that are geographically

distinct from areas that had recently experienced offences. In other words, they occur

when areas and their neighbouring areas suddenly experience widespread disorder.

These diffusion patterns are defined by considering the change of the variable

(X, Y )(j,k) for each space-time unit(j, k), over sequential time intervals. An instance

of containment at spatial unitj and timek occurs when this variable transitions as

follows:

(1, 0)(j,k) → (1, 0)(j,k+1). (3.15)

Thus, containment occurs when offences take place in a focalcell repeatedly without

occurring in any neighbouring cells. Similarly, an instance of relocation at(j, k) is

defined as

(1, 0)(j,k) → (0, 1)(j,k+1), (3.16)

so the rioting moves from one cell to at least one neighbouring cell, without persisting

in the original cell. Escalation occurs when offences persist in the original cell but also

spread to at least one neighbouring cells that were previously unaffected, given by

(1, 0)(j,k) → (1, 1)(j,k+1). (3.17)

Flashpoints are identified if offences occur within a wider area that had not experienced
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any events in the previous time step, and is therefore given by

(0, 0)(j,k) → (1, 1)(j,k+1). (3.18)

The simplest examples of these diffusion patterns are illustrated in Figure 3.7.

⟶

Containment

⟶

Relocation

⟶

Escalation

⟶

Flashpoint

Figure 3.7:Geographic patterns of diffusion.An illustration of the simplest examples

of each of the diffusion patterns of interest occurring in a spatio-temporal grid.

3.5.1 Proposed mechanisms for riot diffusion patterns

In order to generate more complex models of rioting and civildisorder, assumptions are

required that specify how the models behave. Inspired by a data-driven approach, the

models presented in this chapter are specified with relatively simple assumptions, such

as spatial randomness or spatio-temporal independence. Inthis section, it is demon-

strated how a data-driven approach can be used to suggest mechanisms for the be-

haviour of the system, which may then be employed to construct more intricate as-

sumptions for future models. Mechanisms for the evolution of the 2011 London riots

are discussed, before the prevalence of each of the local offence patterns in space and

time are used to evaluate these mechanisms as possible causes in the observed data.
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Riots involve groups of people at a given location engaging inor threatening acts

of violence often for a common purpose. As was the case for the2011 UK riots—during

which, offences in London comprised just a part of the total number of offences across

the UK—an outbreak of rioting may be followed by other riots,possibly in distinct

geographical areas, and they can persist over a long period of time. Riots can cluster

in space and time as a result of a number of processes. A key distinguishing feature

of rioting from other types of urban crime is that the mutual activity of previously

unacquainted offenders can potentially affect the actionsof others. These influences

can occur and change over very short time scales, particularly when compared to other

types of urban crime, for which influences on the decision to engage in an offence

might be more static and depend more on the environment in which an individual finds

themselves.

Although not entirely separable, it is useful to introduce two different perspectives

for considering riot processes. The first considers the interdependency between events,

and supposes that the presence of rioting at a particular location directly influences the

likelihood of more rioting for a certain time period afterwards. The second treats the

spatio-temporal clustering of event data as a result of the confluence in space and time

of conditions suitable for rioting. This distinction, although similar, is different to the

distinction made between the flag and boost hypotheses discussed in Section 3.4. This

is because, in this case, the environmental conditions thatmake an area suitable for

rioting at a particular point in space can vary quite quicklyin time, for example, due

to the presence and actions of law enforcement officers. Thisis in contrast to the flag

hypothesis, which relied on static environmental conditions to generate clustering of

events.

In the case of the first perspective, an outbreak of rioting might be explained by

a single person committing an offence, for example by committing burglary, followed

by others taking the opportunity to begin looting at the samelocation, as they perceive

the risk of being caught to be lower than it otherwise would be. Explanations using the

second perspective might state that rioting was more likelyat that location and at that

time due to the presence of high-value goods that may have been looted, together with

the lack of law enforcement officers present, and might even include factors such as the

weather (in interviews conducted after the riots it was claimed that the rain helped to
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put a stop to the rioting (Morrell et al., 2011)).

These two related explanations have been explored through the use of statistical

models for a variety of crime and security data in Mohler (2013). In his paper, two

models are compared for the clustering of event data in spaceand time. The first, a

Hawkes process, directly models the increased likelihood of further events based on

the occurrence of existing events. The second, a log Gaussian Cox process, models the

clustering as a result of a random process, in which the occurrence of events do not

necessarily increase the likelihood of further events.

These two perspectives are subtly different and can be difficult to distinguish be-

tween in many studies of event data (although the algorithm proposed by Mohler (2013)

is a promising attempt to do so). They do, however, provide the opportunity to sepa-

rate possible mechanisms that may be at play during rioting,and to consider how each

perspective might be reflected in the space-time patterns introduced above. In what

follows, the idea of contagion of rioting, and the argument that offences directly in-

fluence further offences is first discussed. Next, other factors that might influence the

geographic diffusion of rioting, including the presence ofpolice officers and the envi-

ronment in which the riots occur are considered.

Mechanisms for Event Interdependency: Social and Geographic

Contagion

Large-scale outbreaks of disorder can be consequences of underlying tensions and

grievances within a widely distributed population. If newsof an initial riot at a given

location spreads, then others who share similar grievances, regardless of where they

are, may be inspired to behave similarly in an effort to address their grievances. Con-

sidering the London riots of 2011, some have suggested that aprocess of contagion

resulting from such grievances was at least partly responsible for the severe escalation

and perseverance of observed patterns (Gross, 2011). A process of social contagion,

possibly facilitated by social networks or conventional media reports, could lead to the

mobilisation of more motivated offenders, and the subsequent wider engagement in dis-

order at particular locations and at particular times. Mobilised and motivated offenders

may be attracted to particular areas, regardless of how far they would need to travel to

reach them.
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Social contagion refers to the mobilisation of motivated offenders, regardless of

their location. Contagion may also increase the number of rioters via a more local

process. Geographic contagion refers to the way an offender’s decision to engage in

disorder is influenced by situational precipitators, almost regardless of the decision-

maker’s underlying grievances. Wortley (2008) argues thatsituational precipitators,

such as environmental cues, events or influences can prompt,pressure, permit or pro-

voke criminal behaviour. It is possible that visible signs of rioting act as precipitators

that encourage potential offenders to engage in the disorder. If those who live near to

or happen to pass by ongoing riots are more likely to engage inthe disorder more so

than they otherwise would, then a process of geographic contagion is present. This

mechanism assumes that witnessing disorder serves to prompt, pressure, permit or pro-

voke engagement with the disorder at a particular location.Bystanders perceive that

engaging in the disorder at that location is acceptable, given the circumstances. If it is

perceived that the risks of apprehension are lower than theyotherwise would be, by-

standers may be encouraged to engage in the disorder themselves, leading to further

offences nearby. The mechanism by which potential rioters are more likely to engage

in rioting if offences are currently taking place in close proximity is perhaps due to the

perception of safety in numbers: the perceived risk of arrest is likely to be lower in

those areas where rioters substantially outnumber law enforcement agents. This mech-

anism has been explored in a range of other studies, two of themost widely cited of

which are Epstein (2002) and Granovetter (1978).

While processes of contagion of both a geographic and non-geographic nature

have been discussed in the literature, only a limited numberof empirical studies have

examined space-time patterns of offending during outbreaks of rioting. In a study of the

US race riots in the 1960s, Spilerman (1970) tested for the presence of geographic con-

tagion by examining the extent to which cities were more or less likely to experience

riots if those nearby had recently experienced them. Finding no significant effect, he

argued that widespread riots might have been stimulated by the sharing of grievances

facilitated by national news coverage of injustices on television. Subsequent studies

using more precise methods and data have, however, shown that collective violence

may diffuse geographically at the spatial scale of cities and on the time scale of days,

but have also provided evidence to suggest that contagion ismore likely in cities where
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news outlets such as television provide coverage of disorders occurring elsewhere (Mid-

larsky, 1978; Myers, 1997, 2000, 2010).

While it can be difficult to disentangle contagion effects of ageographic or non-

geographic nature, it is possible to identify particular space-time patterns of events that

would be anticipated if either or both mechanisms had a part to play. For example,

considering patterns of riots within a city, Abudu Stark et al. (1974) provide one of the

few empirical studies of the space-time dynamics of riots ata fine spatial scale, and find

evidence to suggest that rioting spread both between contiguous and non-contiguous ar-

eas. The former would be expected in the case that the risk of rioting diffuses spatially,

the latter where the process is not dependent upon geography. Other fine-scale em-

pirical studies have investigated the characteristics of targets during rioting (Berk and

Aldrich, 1972; Rosenfeld, 1997); however, few have directlyexamined localised dif-

fusion and, consequently, the space-time dynamics of civildisorders are not currently

well understood.

Considering contagion in the context of the space-time patterns introduced above

and depicted in Figure 3.7, incidents of containment would be expected if the contagion

effect was strongly localised. That is, if the occurrence ofone offence led to the occur-

rence of further events at the same location. In this case, the contagion effect might be

strongly influenced by local environmental factors, such asthe presence of a particular

retail centre that was attractive to rioters.

On the other hand, the prevalence of relocation and escalation patterns would be

expected if the geographic contagion was not localised by environmental features in

this way, and nearby areas offered suitable opportunities at which to offend. In these

cases, rioters may be attracted to the wider area in which disorder occurs, but do not

necessarily commit offences at exactly the same location, instead offending nearby:

the disorder is more dynamic and moves or expands in geographic extent. Another rea-

son for dynamic patterns could be that an initial location which experienced extensive

disorder may reach some kind of capacity (for example, by running out of goods to

be looted), leading to rioters that may have been attracted to that area by the ongoing

rioting searching for other nearby locations in which to engage in the disorder.

Finally, the prevalence of flashpoints might indicate occurrences of social conta-

gion in which groups of motivated individuals select areas to target by coordinating
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the collective activity of at least some rioters. The organisation of sudden widespread

outbreaks of disruption might be achieved through the use ofsocial media. Blackberry

Messenger—a private and instant messaging service for those with Blackberry mobile

phones—was cited by the Metropolitan Police Service as one of the ways by which

rioters communicated and were able to organise themselves by arranging times and

locations at which to meet (Metropolitan Police Service, 2012).

Dynamic environment effects: Interaction with police

There are a variety of possible explanations for clusteringin the event data. Spatial

clustering may occur at a particular location because that location provides a suitable

opportunity for rioters to loot high-value goods, and offences may be clustered in time

due to a majority of rioters having more free time during the evening, rather than during

the day.

In a similar way, there are environmental influences that maybe used to explain

spatio-temporal clustering of offences beyond the effectsof both spatial and temporal

clustering. These influences do not have to depend solely on the presence of ongoing

rioting. For example, if the environmental features of places and those that surround

them vary substantially in terms of their attractiveness tooffenders, observed instances

of containment may be highly likely, as rioting is more likely to continue at particular

(attractive) locations, and not to diffuse to nearby (but dissimilar) areas. On the other

hand, if rioters’ spatial decision-making was less determined by such factors, instances

of relocation would be more likely. These types of effects, however, are dependent

on the continued occurrence of rioting and so are closely related to the effect brought

about by contagion.

Perhaps the largest influence on the space-time patterns of rioting that does not ex-

plicitly depend on processes of contagion, comes from the interactions between rioters

and police officers. These interactions can provide anothermechanism through which

disorder may spread or be suppressed. Wilkinson (2009) suggests that this is an area

not sufficiently investigated in the previous literature, perhaps largely due to a lack of

sufficiently detailed data on law enforcement activities. Although the study presented

here suffers from a lack of data on where the police were, it ispossible to comment

upon the types of patterns that may be more or less prevalent based on the tactics used
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by the police.

During the riots in London, the actions of the police came under great scrutiny. In

particular, the public and media questioned the course of action taken by police when

faced with the disorder (Riots Communities and Victims Panel,2011). It was perceived

that, in an effort to limit the spread of events, the police were standing by and containing

offenders, without being drawn into the disorder to make arrests, thereby failing to

protect some locations from being looted. The use of these tactics by police officers

would lead to more instances of containment, as opposed to any of the other patterns

described above.

The Metropolitan Police Service have stated that containment tactics were initially

used to counter the riots (Metropolitan Police Service, 2012). It was claimed that this

was due a combination of the severe and unprecedented scale of the riots together with

a lack of resources (in terms of the number of police officers)available to react to the

disorder. Specifically, they were apparently concerned that,

“should they send officers forward into a dangerous situation to try to make

an arrest, they would then no longer be able to maintain a police cordon

which was critical to holding a junction or protecting a location to prevent

the spread of disorder or to protect life.”

Such reports suggests the presence of uncertainty with regards to the most appro-

priate public order tactics: should police officers attemptto contain the disorder within

defined boundaries or to attempt to proactively arrest rioters. The first tactic would

lead to a concentration of incidents in one area, and hence tomore counts of contain-

ment patterns, whilst the second might cause the rioters, and therefore their disorder,

to spread to new locations, albeit whilst some of the riotersare arrested. In the case of

the latter, the number of occurrences of relocation would expected to be higher as the

disorder spreads.

Since the police resource scarcity was largely viewed as being responsible for

this uncertainty, extra officers were brought in from other police forces in the UK as

the riots intensified (see Figure 3.8). It is widely claimed that this was the key factor in

bringing an end to the prolonged period of disorder. Indeed,Her Majesty’s Inspectorate

of Constabulary (HMIC, 2011) stated,
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“While the immediate response to the public disorder in August was hesi-

tant, this transformed into a decisive and effective response in which large

number of assets were mobilised to regain control of the streets.”

Although some have questioned whether the number of officerson the final night

of the unrest was, in fact, suboptimal (Davies et al., 2013),the increase in police num-

bers would have enabled the police officers present during anoutbreak of rioting to be

more proactive in stopping on-going disorder: they may havebeen able to make ar-

rests without the risk of other offenders present dispersing to nearby areas, and thereby

spreading the disorder.

The relatively abrupt change in police manpower, and the subsequent arguments

that this was the principal reason for the quelling of disorder, provides conditions com-

parable to a natural experiment, and enables the investigation into how patterns of of-

fending changed with the police’s ability to employ more effective public order tactics.

As a consequence, the offence data considered in this section is split in two, to see

whether this apparent change led to a change in the patterns of offences. During the

first half of the riots, when police tactics were more constrained, if the on-going rioting

provoked or prompted others to engage in the disorder, the unrest would be expected to

spread in one of the four ways discussed above and depicted inFigure 3.7. As the range

of public order tactics available to the police increased, changes in the diffusion pat-

terns of riot events would be expected as the space-time dependency of offences would

likely have been disrupted. While some places would still be expected to experience

hotspots of activity, less evidence of the spreading of the disorder as time progresses is

expected. Indeed, the occurrence of escalation and flashpoints would suggest that the

police are not in control of the disorder as it spreads to new locations.

3.5.2 Simulating spatio-temporal independence with binary event

data

The number of observed instances of containment, relocation, escalation and flash-

points are counted by considering the values of(X, Y )(j,k) and (X, Y )(j,k+δt) for all

values ofj andk. After enumerating the observed patterns of interest, it isneces-

sary to determine the statistical significance of the countsof each pattern. Similarly to

Sections 3.3 and 3.4, this is achieved by constructing a nullmodel against which test
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Figure 3.8:Police officers and offences.Bar chart of the number of police officers on

the streets of London for each night throughout the durationof the disorder, and the

number of recorded offences. The dashed vertical line represents the mid-point of the

offence data.
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statistics—in this case, the count of each type of diffusionpattern—can be compared.

A null model is sought that removes spatio-temporal dependency in the offence

patterns but preserves the underlying spatial and temporaldistributions of the data.

Since the test statistics of this section are based upon binary interpretations of the

spatio-temporal distribution of the data, the random permutation to generate the null

model that was described in Section 3.4 cannot be used here. The reason for this is

due to the high levels of spatio-temporal clustering in the event data. There are many

space-time windows in which more than one event occurs and a few in which many

events occur. Consequently, a random permutation of the times at which events occur

spreads out these offences across different space-time windows that previously con-

tained no events. Since many more space-time windows now contain events, a binary

measure obtained from this permuted dataset is not comparable with a binary measure

of the original dataset. In order to preserve the binary spatial distribution and the bi-

nary temporal distribution, but to randomise the spatio-temporal interaction, a different

approach is required.

The simulation of the data under the null hypothesis of spatio-temporal indepen-

dence requires consideration of the binary matrixB, known as the space-time contin-

gency table. The matrixB is constructed as follows: letB be aJ ×K binary matrix,

whereJ is the number of spatial units in the spatial-temporal grid andK is the number

of temporal units. DefineBjk = 1 if, and only if, the number of offences in spatial

unit Dj within temporal unitTk exceeds zero. The contingency matrixB describes the

distribution of events across the study region, and, for thespatio-temporal grid defined

in section 3.2 with a spatial resolutionδs = 20km andδt = 24 hours, is given by:

B =
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, (3.19)
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where the columns correspond to each temporal unit in the space-time grid (which, in

this case, correspond to each of the five days of the rioting) and the rows correspond to

each spatial unit.

The generation of the data under the null hypothesis involves the random sampling

of binary contingency tables subject to the constraints brought about by preserving the

row and column sums - the spatial and temporal distributions, respectively. To generate

the expected distribution, assuming the null hypothesis ofthe space-time independence

of events, a bipartite graph denoted byG = (V1, V2, E) is constructed, in which the sets

of verticesV1 andV2 are partitioned so that every edge inE connects one vertex inV1

with one vertex inV2. DefiningV1 as the set of spatial units, indexed byj, andV2 as

the set of temporal units, indexed byk, an edge(j, k) betweenj andk is added if, and

only if, Bjk = 1.

Figure 3.9 shows this bipartite network for2, 592 offences associated with the

2011 London riots. These offences are the ones included in the analysis and correspond

to the offences in the original dataset (for whichN = 3, 914) that contain data on the

location and time at which the offence occurred.

Spatial units (resolution 20km)

Temporal units (resolution 24 hours)

Figure 3.9:Network visualisation of the London riot data. The bipartite networkG

for the London riot data withδt = 24 hours andδs = 20km, visualising the matrix in

equation 3.19.

Using a uniform pseudo-random number generator, two edges are selected. De-

noting the chosen edges by(j1, k1) and(j2, k2), it is first determined whether or not the

edges defined by(j1, k2) and(j2, k1) already exist. If they do not, which, for the sparse

dataset associated small spatial areas during the 2011 London riots is highly likely,
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then the edges(j1, k1) and(j2, k2) are removed, and the edges(j1, k2) and(j2, k1) are

created.

Of course, the resulting bipartite network produced from this procedure will ap-

pear almost identical to the original network, obtained from the real data: a maxi-

mum of two edges have been removed and replaced with new edges. Thus, in order

to generate a permuted dataset against which hypotheses concerning spatio-temporal

dependency can be tested, the process by which two edges swaptemporal nodes in

the bipartite graphs is repeated many times. After sufficient number of iterations, a

distinct network is constructed that becomes quite unrecognisable to the original net-

work, although the degree of each vertex (defined as the number of edges connected

to it) is equal to the degree of that same vertex in the original network. It remains to

define a suitable number of iterations for this procedure that sufficiently removes the

spatio-temporal dependencies from the original network.

Suppose that this process is repeatedM times. ThenM is the number of times

that two edges are selected at random and rewired so that the edges swap end nodes,

provided that the new edges created do not already exist.M is calculated by con-

sidering the total number of selections required to ensure that every edge is selected

at least once. Since edges are selected uniformly randomly each time, and therefore

some edges will almost always be selected more than once, this number will vary over

different attempts at this procedure.

It is therefore supposed that this number is given by the random variableχ. M
is chosen to be equal to the value in the distribution ofχ that is greater than95% of

all the possible values thatχ can take. By definingM in this way, it is ensured with

95% confidence that the rewiring procedure outlined above selects every edge, and,

therefore, ensures that the distribution given by the null hypothesis (that there is no

spatio-temporal interaction) is sufficiently random, subject to the constraints brought

about by preserving the spatial and temporal distributionsof offences.

The95% confidence interval on the random variableχ is calculated by first letting

χm be the random variable given by the number of selections required in order to select

them-th new edge, afterm − 1 distinct edges have already been selected. Then one
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realisation ofχ is given by

χ =
M
∑

m=1

χm, (3.20)

whereM is the total number of edges. The probability of selecting a new edge in the

next selection afterm− 1 distinct edges have been selected is given by

Pm = 1− m− 1

M
. (3.21)

Thus, for the variableχm to be equal to some value, sayh, there must beh−1 selections

in which an already selected edge is chosen, followed by1 selection in which a distinct

edge is chosen. The expected value of the variableχm is then

E [χm] =
∞
∑

h=1

h (1− Pm)
h−1 Pm. (3.22)

The right hand side of equation 3.22 contains the negative ofa polynomial derivative

of (1− Pm), and, thus

E [χm] = Pm

∞
∑

h=1

− d

dPm

(1− Pm)
h . (3.23)

Swapping the derivative and summation and using the formulafor the sum of a geo-

metric series, the following is obtained:

E [χm] = −Pm

d

dPm

1− Pm

Pm

=
1

Pm

. (3.24)

The variance ofχm can be calculated similarly. The expected value ofχ2
m is given by

E
[

χ2
m

]

=
∞
∑

h=1

h2(1− Pm)
h−1Pm, (3.25)

which, using the identity

d2

dP 2
m

(1− Pm)
h+1 = h2(1− Pm)

h−1 + h(1− Pm)
h−1, (3.26)

can be written as

E
[

χ2
m

]

= Pm

∞
∑

h=1

d2

dPm

(1− Pm)
h+1 + Pm

∞
∑

h=1

−h(1− Pm)
h−1. (3.27)

Noting that the final term in equation 3.27 contains a polynomial derivative of(1−Pm),

and then swapping the derivatives and summations, leads to

E
[

χ2
m

]

= Pm

d2

dP 2
m

(1− Pm)
2

Pm

+ Pm

d

dPm

1− Pm

Pm

=
2

P 2
m

− 1

Pm

, (3.28)
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after differentiating. Thus the variance ofχm is then

Var [χm] = E
[

χ2
m

]

− (E [χm])
2 =

1− Pm

P 2
m

. (3.29)

Since the expected sum ofM random variables is the sum of those expected ran-

dom variables, the expected value ofχ can be calculated as

E [χ] =
M
∑

m=1

E [χm] =
M
∑

m=1

1

Pm

= M
M
∑

m=1

1

M −m+ 1
, (3.30)

which can be simplified by settingm′ = M −m + 1 and removing primes for conve-

nience to obtain

E [χ] = M
M
∑

m=1

1

m
. (3.31)

Similarly, since the random variablesχm are independent for all values ofm, the vari-

ance ofχ is given by

Var [χ] =
M
∑

m=1

Var [χm] =
M
∑

m=1

1− Pm

P 2
m

=
M
∑

m=1

m−1
M

(

1− m−1
M

)2 , (3.32)

which, by multiplying both sides of the fraction byM3, and setting the indexm′ =

M − (m− 1) and removing primes, becomes

Var [χ] = M2

M
∑

m=1

(

1

m2
− 1

Mm

)

≤ M2

K
∑

m=1

1

m2
< 2M2, (3.33)

since
∑∞

m=1 1/m
2 = π2/6.

In order to find the95% confidence interval ofχ, and therefore to find the value

of M, Chebyshev’s inequality is used. Chebyshev’s inequality states that for unknown

distributions with known mean and known variance, the majority of values can be spec-

ified to be within a certain number of standard deviations from the mean. Formally,

Chebyshev’s inequality is given as

Pr
(

|χ− E [χ] | ≥ c
√

Var [χ]
)

≤ 1

c2
, (3.34)

for all positive real constantsc. Thus,

1

c2
≥ Pr

(

|χ−M

M
∑

m=1

1

m
| ≥ c

√

Var [χ]

)

(3.35)

≥ Pr

(

|χ−M
M
∑

m=1

1

m
| ≥ c

√
2M2

)

(3.36)

≥ Pr

(

χ−M
M
∑

m=1

1

m
≥ c

√
2M2

)

, (3.37)
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where the first inequality arises from Chebyshev’s inequality in equation 3.34, the sec-

ond inequality arises from equation 3.33 and the third inequality arises since|x| ≥ x

for all values ofx. Consequently,

Pr

(

χ ≥ M

K
∑

m=1

(

1

m
+
√
2cM

)

)

≤ 1

c2
. (3.38)

Finally, settingc =
√
20 obtains

Pr

(

χ ≥ M
M
∑

m=1

(

1

m
+
√
40M

)

)

≤ 0.05, (3.39)

and, thus for

M ≥ M

(

M
∑

m=1

(1/m+
√
40M)

)

, (3.40)

the realisation of the random variableχ is less than the value ofM with 95% confi-

dence. Therefore, withM = M(
∑M

m=1(1/m +
√
40M)), the re-wiring procedure on

the bipartite networkG selects every edge with95% confidence.

In what follows, using this value ofM, the results of this rewiring procedure

as applied to spatio-temporal grids of varying sizes and the2011 London riot data

are presented. As the results will demonstrate, this re-wiring procedure, despite not

being perfectly random for some realisations of the data under the null hypothesis,

is sufficiently random in order to detect differences in the prevalence of the different

patterns of diffusion described above. This approach to simulation therefore usefully

enables the comparison of binary test statistics against data simulated under the null

hypothesis of spatio-temporal independence, but with the binary spatial and temporal

distributions of the simulated data identical to the empirical data.

3.5.3 Results

In order to determine the effect of increasing police numbers, two separate analyses of

the data are performed, one for each half of the data. For the first half, it is argued that

the police were under resourced and unsure of the correct public order tactics to adopt.

For the second half, the police numbers were much higher, andit is therefore expected

that the police were able select the best approach from a wider range of public order

strategies. The two time periods are split at the median timefor all offences used in

the analysis, to ensure that there are the same number of offences within each analy-

sis. The median time is 20:30 on the 8th August 2011. In Figures 3.10 and 3.11, the
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prevalence of each pattern of interest against499 realisations of the data under the null

hypothesis, for each spatio-temporal grid resolution, andfor each half of the data, re-

spectively, are presented. Using heat maps to represent theprevalence of each pattern,

the colours in these figures show the values of theZ-scores, calculated as the observed

count of each diffusion pattern minus the mean of the counts of each diffusion pattern

in the simulated data, divided by the standard deviation of the counts over the simu-

lated distribution. Specifically, lettingS be the count of either containment, relocation,

escalation or flashpoints in the observed data, theZ-score is defined as

Z =
S − 1

G

∑G

g=1 S(g)

√

1
G

∑G

g=1

(

S(g) − 1
G

∑G

g=1 S(g)
)2

, (3.41)

whereS(g) is the value of the count of the pattern in theg-th iteration of the simulated

data. The results were also tested using the empirical performance of the Monte-Carlo

simulation, using the expression in equation 3.14. The distributions of the test statis-

tics were sufficiently normal that these were results were consistent with theZ-scores

defined here.Z-scores are used as an easily interpreted measure for the distance of

a particular value from the mean. In particular, the value oftheZ-score specifies the

number of standard deviations from the mean of the statisticin question. The more pos-

itive the value of eachZ-score in Figures 3.10 and 3.11, the further the distance from

the statistic to the mean in the positive direction, and, therefore, the more prevalent

each pattern is in the empirical data when compared to spatio-temporal independent

data. On the other hand, if theZ-score is negative, then the expected pattern is less

prevalent than when compared to the spatio-temporal independent data. For the pur-

poses of clarity, the plots in Figures 3.10 and 3.11 are conditional upon the significance

of each result. This means that the cells are coloured only ifthe observed differences

are statistically significant (based on a two-sided95% confidence interval). If the re-

sults do not reach significance for a particular space-time window, then that window is

shaded white.

According to the results shown in Figures 3.10 and 3.11, it isevident that during

the first half of the riots, observed counts of escalation were much more prevalent than

would be expected, assuming that the timing and location of events were independent.

This finding is relatively insensitive to the space-time resolutions for the grids that were
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Figure 3.10: Results for the first half of the data. Z-scores for each observed

count outside a 95% two-sided confidence interval of the resulting distribution from

the Monte Carlo simulation, for each diffusion pattern for the first half of the data.

Spatial-temporal resolutions that do not reach statistical significance are shaded white.
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Figure 3.11:Results for the second half of the data.Z-scores for each observed

count outside a 95% two-sided confidence interval of the resulting distribution from

the Monte Carlo simulation, for each diffusion pattern for the second half of the data.

Spatial-temporal resolutions that do not reach statistical significance are shaded white.
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tested. There is evidence to suggest that containment is more prevalent than would

expected in the first half of the rioting, although this appears to be far more sensitive to

the time window used, with the most prevalence for this type of pattern being apparent

for three-hour intervals. Flashpoints were also observed significantly more than would

be expected, particularly for smaller spatial units. In contrast, instances of relocation

were observed significantly less frequently than would be expected across most of the

grid resolutions tested.

The results for the second half of the data vary from the results for the first half

quite significantly. In fact, although for the resolutions that are significant, they are

significant in the same direction as in the first half of the data, there is a distinct lack of

evidence that these results are consistent across different grid resolutions tested. Given

that there are36 significance tests for each pattern, corresponding to each space-time

window tested, and that tests are performed at the95% significance level,36×0.05 = 2

false positive findings would be expected for each pattern. Thus, for the second half of

the disorder, it is evident that the prevalence of the localised patterns of offences did

not differ from the null hypothesis in which spatio-temporal interaction is removed.

3.5.4 Conclusions

Interpreting these results, the first conclusion that can bemade is that the local patterns

in space and time made by the offences in the 2011 London riotschanged significantly

between the first and second halves of the disorder. Moreover, it appears that spatio-

temporal dependency between offences did not influence the spreading of the riots in

the second half of the disorder. It was argued in Section 3.5.1, that this may be due

to the increased police presence during the second half of the rioting, enabling police

officers to adopt more effective public order tactics, essentially bringing a stop to the

contagious nature of the riots. This suggests that the police not only supressed the

overall level of the disorder, as has been argued by various reports since the riots (e.g.

House of Commons (2011)), but also suppressed the role of contagion processes (e.g.

escalation and flashpoints) which were a feature during the first half of the disorder.

During the first half of the riots, disorder appears to have persisted at locations

already experiencing riots, sometimes without moving intothe surrounding areas (con-

tainment) and sometimes spreading to those nearby (escalation). This provides support
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for the idea that there were localised effects whereby rioters were attracted to sites

where there was on-going disorder. The results cannot detect the effects that may

be due to social contagion, in which offenders were mobilised more systematically

through social media or other means, or to geographic contagion, in which those who

encountered activity through their proximity to ongoing disorder were encouraged to

participate; however, there is sufficient evidence that at least some form of contagion

and dependency between offences took place. Distinction between these two effects is

considered further in Chapter 4.

Evidence of flashpoints during the first half of rioting suggests that there were in-

stances in which unaffected areas suddenly found themselves subject to disorder. This

is consistent with the arguments put forward that groups of rioters were able to organ-

ise times and places at which to offend. The occurrence of flashpoints from a policy

perspective represents an intriguing problem for the allocation of police officers. In

particular, flashpoints are difficult to predict because, unlike instances of containment

or escalation, which stem from locations in which rioting isongoing, flashpoints origi-

nate in locations with no rioting nearby, which occurs many times for the sparse dataset

of the London riots.

The prevalence of relocation was significantly less than expected during the first

half of the disorder across a range of different grid resolutions. This is consistent with

the argument that environmental features localised the contagion effect and therefore

tied disorder to certain areas. The disorder was not so dynamic that it easily moved

from location to location. Considering the actions of policeand their influence on

possible relocation, it appears that during the first half ofriots they did not encourage

the dispersion of rioters to other regions. Given that the occurrence of containment was

significant, it appears that the policing strategy of containment was indeed effective. A

common concern associated with geographically focused police activity is that it will

merely displace offending to different areas (Bowers et al.,2011). Of course, different

riots may have different dynamics, but in the current case, there was no evidence of this,

which suggests that police action did not simply move rioting to neighbouring areas.
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3.6 Discussion

Exploratory data-driven approaches, in which model assumptions are derived from em-

pirical data, can lead to various insights. Moreover, by considering possible mecha-

nisms for how such data may have been generated, it is possible to test hypotheses

concerning these mechanisms, thereby evaluating how well these explanations are sup-

ported by the observed data. Of course, the success of a hypothesis test does not neces-

sarily mean that the explanation proposed is the mechanism that results in the observed

data, but it may help to discount certain processes. For example, when considering local

patterns in space and time made by the occurrence of riot offences in this chapter, it was

shown that the pattern of relocation occurred much less often than would be expected,

assuming that the offences were independent. This finding rules out mechanisms for

riots that result in dynamic ‘hotspots’ for the short timescales that were considered. In-

stead, as shown by the greater than expected prevalence of containment and escalation,

at least for the first half of rioting, the outbursts were morestatic in space, perhaps as a

result of the attraction of the underlying areas.

Another reason for employing data-driven approaches to modelling, particularly

when first faced with an empirical dataset, is that it can often suggest assumptions that

might be used to construct more descriptive or complex models. It has been argued in

this chapter that important considerations when investigating riots and civil disorder are

the impact of interdependency between events, the relationship between the locations of

the riots and the underlying geography, and the interactionbetween rioters and police.

In Chapter 4, two of these—interdependency between events, and the relationship with

the underlying geography—will be incorporated into a behavioural model of rioter tar-

get choice. The third consideration, the interaction between rioters and police, is more

difficult to incorporate due a lack of data on law enforcementactivities. In Chapter 5,

a case study of conflict between Naxal insurgents and police will be modelled using

more descriptive models than have been presented here.

This chapter has made novel contributions to the theoretical understanding of ri-

oting and civil disorder. In contrast to much previous research on the spatio-temporal

analysis of riot patterns, the analysis presented here usesrelatively fine spatial and tem-

poral scales to examine the spatio-temporal patterns of riots. Furthermore, it has been

shown that the spatio-temporal patterns of the London riotswere consistent with theo-
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ries of contagion, in which the occurrence of an offence at a given location increases the

likelihood that another offence will occur nearby in space and time. This effect may be

brought about by situational precipitators, in which the presence of rioting encourages

individuals who are nearby to participate in the rioting, leading to geographic conta-

gion. Alternatively, the contagion process could be a result of mobilising those who

share similar grievances, regardless of where they are located. Social contagion can

spread through a range of various media channels. These two perspectives will be con-

sidered further in Chapter 4 by investigating the distance that rioters typically travelled

in order to offend. These two mechanistic explanations for the spreading of riots are

consistent with the analysis presented here, suggesting both are plausible mechanisms

for the spreading of rioting. They are difficult to distinguish between, and it is likely

that both have a role to play.

Policy questions have also arisen through this modelling approach. The onset of

rioting and civil disorder forces policy-makers to immediately decide how best to al-

locate scarce resources. It has been shown that the presenceof more police coincided

with the reduction of the local spreading of disorder in space. The prevalence of flash-

points during the first half of the riots, in which widespreaddisorder occurs at a given

location quite spontaneously, is a phenomenon which would have been difficult to pre-

dict and it is therefore unlikely that police officers could have been present at such

locations antecedently. The occurrence of flashpoints are inherently difficult to police.

On the other hand, the analysis in this chapter has shown thatinstances of containment

and escalation were more prevalent than would have been expected, assuming that the

events were independent. These patterns provide more opportunity for policing. A

general finding is that the rioting appeared to be fairly static as a result of the spatio-

temporal interdependency, and rooted in the underlying geography for timescales over

which police may be deployed. The adoption of reactive strategies by police officers,

by which officers are quickly deployed to locations where rioting is ongoing, as op-

posed to proactive strategies, by which officers are deployed to locations which are not

experiencing disorder but at which disorder may be anticipated, is perhaps a good strat-

egy to adopt. The prevalence of flashpoints, however, suggests that police allocation

should also be dynamic, and that there is a balance that needsto be struck.

In Chapter 1, it was argued that policy-makers are more trustworthy of approaches
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that rely more upon the empirical data and less upon extensive assumptions that remove

the model from the real world. Whilst the findings of this chapter have been shown to

be robust to a variety of different grid sizes, and may be useful in informing policy-

makers of the need to incorporate underlying geography intoallocation problems, they

are unable to offer more extensive insights into, for example, the locations which are

more vulnerable than others of experiencing flashpoints. The aim of the proceeding

chapters is to consider more descriptive, and, in turn, predictive models.

A number of caveats to the conclusions of this chapter are worthy of discussion.

First, as is the case with any study that employs police crimedata, not all incidents of

disorder would have been recorded by the police, and it is unclear how much disorder

went unreported. In the analysis of local patterns of diffusion, it was the geographic

scope of the rioting, rather than its relative intensities in different locations that was

examined. Because of this binary approach to analysis, it is hoped that the effects of

underreporting have been minimised: it is reasonable to suggest that the largest source

of underreporting would have occurred at the sites of the largest outbursts of disorder.

Second, analyses of the kind reported here are only as good asthe precision of the data

available for analysis and the data utilised were not perfectly precise in terms of when

and where events occurred. To mitigate this issue, a sensitivity analysis was performed

by varying the spatial and temporal resolutions at which patterns were explored. Again,

such issues are true of most studies of crime and disorder, but should be borne in mind.

As a tool for the analysis of event data in space and time, the methods utilised

in this section can be extremely valuable to gain insights into a given dataset. These

methods involve the use of Monte-Carlo simulations to compare empirical data against

null models. The simulations increased in complexity - first, by assuming the number

of events remains consistent with the empirical dataset, but that they occur in random

locations; second, by assuming the spatial and temporal distribution of events are pre-

served, but spatio-temporal dependency between them removed; and third, by suppos-

ing that the binary spatial and temporal distributions are preserved by the null model.

The latter of these is a novel contribution to the literatureand focuses more on the

geographic scope and its local diffusion patterns than on individual offences.
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Modelling individual target choice
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4.1. INTRODUCTION

4.1 Introduction

The literature on criminality and collective behaviour contains a number of theories

regarding the nature by which individuals make decisions during outbreaks of civil

violence such as rioting. These theories, combined with thefindings of the preceding

Chapter, which argued that both contagion and environmentalfeatures of targets played

a significant role in the spatio-temporal distribution of rioting, are employed in this

chapter to investigate the 2011 London riots from a rioter’sperspective. A parametric

statistical model is presented that evaluates the extent towhich extant theory of offender

behaviour offers explanations for the distinctive space-time patterns of the riots. The

individual behaviour that is modelled is the choice of target for each offender, a key

driver in the emergent spatio-temporal profile of the system.

Parametric statistical modelling requires the selection of a family of models, de-

pendent on a vector of parametersβ = (β1, β2, ..., βn), from which, a particular model

may be constructed by specifying a value forβ. In many cases, these values are es-

timated through inference procedures that incorporate theavailable data and find the

value ofβ that provides the closest fit (in some sense) between the model and the data.

A key distinction between the parametric approach to modelling in this chapter, and the

nonparametric approach in Chapter 3, is that the specification of a parametric family

of models requires theoretical assumptions in order to define relationships between the

variables. In the nonparametric case in Chapter 3, model assumptions were either very

simple (e.g. complete spatial randomness) or derived from the empirical data (e.g. by

specifying the spatial and temporal distributions of the offences). The difference in this

chapter is that theoretical arguments are introduced in order to construct more complex

assumptions. The parameterisation of the model can then be used to test hypotheses

related to these assumptions.

In what follows, a family of probabilistic models for the choices made by rioters

concerning where to offend is derived. The model is a versionof a random utility

discrete choice model, popularised for analysing choice problems following McFadden

(1974). This model distinguishes itself from traditional regression modelling since

it can be derived theoretically from relatively simple assumptions concerning choice

behaviour. An extension to the standard model presented in this thesis is that dynamic

variables are incorporated to account for the effect of contagion influencing the target
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choice of each rioter. The model is derived by considering a variety of explanations for

how the characteristics of a particular area influence the likelihood that it is chosen as a

location in which to riot. An inference procedure that exploits the multinomial logistic

form of the model is used to estimate the parameters in the vector β. Conclusions

resulting from these estimates in the context of theories for rioter target choice are then

presented.

The ability of the model to explain the spatio-temporal profile of the riots is as-

sessed. By considering the observed riots as just one realisation of the probabilistic

model, a simulation is constructed in an attempt to recreatethe spatio-temporal pro-

file of the riots. Since each rioter is modelled as an autonomous entity acting proba-

bilistically, this simulation can be considered as a stochastic agent-based model or a

microsimulation model. As discussed in Chapter 2, such models have previously been

shown to be effective tools for policy development and decision-making. The simula-

tion is therefore considered from the perspective of its possible application in the policy

domain, with the findings of the model used to calculate optimal police deployment

strategies for a range of riot scenarios.

4.2 A model of target choice in the 2011 London riots

The desires and objectives of individuals requires attention when developing models

of social systems. In this section, a model of target choice is derived that is based on

choice models more commonly found in the field of economics. The target choice of

each rioter is modelled because it provides an objective measure of individual behaviour

that can be related to other measures used to capture characteristics of each target and

it directly impacts the spatio-temporal profile of the riots– an emergent behaviour of

the system studied in Chapter 3.

Choice models suppose that a decision-maker (or an agent) is required to select

one option out of a set of alternatives. In the case of rioters, each rioter must undergo a

decision process that results in them first deciding to engage in the disorder, and, sec-

ond, choosing the timing and location at which they engage with the disorder. Thus,

at some stage during this process, they choose between a set of possible locations at

which to riot. This set of locations represents the set of alternatives available to each

rioter. Choice models enable us to model the possible driversand influences behind the
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choices that are made. The aim of this study is to determine the types of areas, as mea-

sured using a variety of data sources, that are particularlysuitable for rioting, thereby

understanding which areas might be more at risk if a similar outbreak of disorder were

to occur in the future.

In order to differentiate between the different choices, itis assumed that each

choice that could be made has associated to it some intrinsicvalue, or utility, to the

decision-maker. If the decision-maker were to choose a particular option, they would

then obtain that level of utility. Utility is often thought of as the difference between

benefits and costs of selecting a particular option and, as well as tangible constituents,

such as financial gain, can also incorporate abstract concepts, such as well-being or po-

tential happiness of the decision-maker. As will be demonstrated in the case of rioting,

utility can consist of a number of factors, including the ease of accessing a particular

target, or the value of potential goods that may be looted from a target.

Modelling the choices made by decision-makers when faced with a choice set

involves assigning numeric values for the utility of each choice. The utility is often

modelled from the perspective of the decision-maker, and can therefore incorporate

variation across decision-makers. A rule is then prescribed that determines how the

decision-maker chooses a single alternative out of the choice set, based on the utility

values for each possible choice. The most widely used rule for choosing amongst

alternatives states that the decision-maker chooses the alternative that offers them the

most utility. The model then reduces to finding the alternative that offers the highest

utility from the perspective of the decision-maker. In thiscase, it is the relative values of

the utility that determine the preferences of the decision-maker, rather than the absolute

value of utility, which may not have standardised units or dimensions.

Utility maximising models have been extensively developedin the field of eco-

nomics and, throughout their history, have come under criticism arguing that they are

incapable of modelling the behaviour of individuals (Beinhocker, 2007). Such criticism

often stems from two major arguments: first, the rule that a decision-maker always

chooses the option that provides them with the most utility is flawed; and, second, that

utilities are so subjective as to be meaningless: a modellercannot understand the de-

sires and objectives of an individual, even if that individual were acting to maximise

their utility. In this chapter a model is developed with these criticisms in mind. Namely,
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it is acknowledged that it is impossible to incorporate the myriad of different factors

and influences that may play a role in the decision-making process. It is assumed in

what follows that the decision-maker will indeed select theoption that provides them

with the most utility, but that it is impossible to model the utility of different options

in such a way that incorporates the limitations, prejudices, and idiosyncrasies of in-

dividuals, their environment, and their understanding of the choices available, whilst

also keeping track of how these perceived utilities might change over time. The idea

that an individual has limited access to available information, and may be unknowingly

not acting in their best interest due to this limited information, has been referred to as

bounded rationality, a concept discussed in Simon (1955).

One might conclude that, since it is impossible to determinethe preferences of

an individual, any attempts to model choices by assigning utilities to each alternative

might be in vain. In fact, many authors in a variety of different fields have shown that

by modelling the choices of individuals, significant insights can often be obtained, both

into the behaviour of those individuals, as well as into the characteristics of choices that

make them particularly attractive to decision-makers. Forexample, proposing a vari-

ant of bounded rationality, which the authors term rationalchoice theory, Cornish and

Clarke (1986) argue that the deviant behaviour of a criminal is largely driven by their

desire to maximise some form of utility, subject to their understanding of the choices

that are available (see also Cornish and Clarke (2008)). This perspective has been

attributed to a changing focus within the field of criminology. Traditionally, the occur-

rence of criminality was considered a consequence of the upbringing and psychology

of the offender. An individual was thought be a motivated offender as a direct result of

these factors. The use of bounded rationality in models of criminality—in which the

offender is merely concerned with maximising the benefits offset by the costs of taking

up a particular action—has led to much modern research considering the environment

and the possible circumstances that might lead to an act of crime, allowing the concept

of a motivated offender to be applicable to any individual who finds themselves in a par-

ticular set of circumstances, and not just to those who exhibit a particular psychological

makeup.

Supposing that the actions and choices of offenders rely upon an element of

bounded rationality, models of individual decision-making have been developed that
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account for at least some level of uncertainty, and which explicitly incorporate an of-

fender’s bounded access to information, as well as a researcher’s inability to capture

this information. In what follows, a random utility model ofdiscrete choice is derived

in which offenders are assumed to be idiosyncratic. The probabilities of an individual

making a particular choice are modelled, rather than the actual choice, in order to ac-

count for unobserved variance amongst choices that may be playing a role in the utility

maximising behaviour of each individual. The operationalisation of this model is con-

sidered by identifying some of the features of the choice set—the set of targets available

to offenders during the London riots—that enable the estimation of the model. The es-

timation of the parameters in the model is outlined, before presenting the results. This

section concludes by discussing the findings from the perspective of criminological and

social science theories that speak to the explanation of target choice during rioting, and

highlights the contributions that mathematical modellingcan make to the theoretical

understanding of criminality.

4.2.1 A random utility model of discrete choice

For decision-makeri, suppose that alternativej has utilityUij ∈ R associated with it,

for alternativesj = 1, ..., J , and for decision-makersi = 1, 2, ..., N . In other words,Uij

is the utility decision-makeri obtains by selecting alternativej. The set of alternatives

is assumed to be mutually exclusive, exhaustive, and finite.This implies, respectively,

that: choosing a particular alternativej necessarily means that choicel is not chosen

for all l 6= j; that exactly one alternative must be chosen; and thatJ < ∞. The

principal assumption is that a decision-maker will select the alternative that offers the

maximum utility across all possible alternatives. That is,decision-makeri will select

the alternativej with Uij > Uil for all l 6= j.

A random utility model estimatesUij for all i andj by supposing the perception

of the utility to decision-makeri is composed of two components given by

Uij = Vij + ǫij . (4.1)

The first component, denoted byVij, is the observable component of the utilityUij.

That is,Vij is the utility of alternativej according to decision makeri that is percepti-

ble to an observer of that decision-maker. This is the portion of utility that a researcher

can attempt to model. The second component, denoted byǫij, corresponds to the un-
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observed utility. This corresponds to the desires and objectives of the decision-maker

that are unknown to an observer, and can be used to incorporate idiosyncratic prefer-

ences across individual decision-makers. The unobserved component of utility cannot

be accurately obtained, and thus is treated as a random errorterm.

The inclusion of the random error term in the utility of each alternative explicitly

accounts for uncertainty in the model. Moreover, the error term is assumed to incorpo-

rate the variation in choices for each decision-maker, as well as the limitations of the

model to account for such idiosyncrasies.

Assuming that the utilityUij is equal toVij and therefore that the error term is

equal to zero would be one way of defining the model; however, this would not account

for uncertainty. Instead a random variableZi is introduced, defined as the choice that

is made by decision-makeri. In what follows, a model is derived for the probability

distributionPr(Zi = j) for each choicej = 1, 2, ..., J and for each decision-maker

i = 1, 2, ..., N .

Assuming that each decision-maker will select the alternative that provides them

with the most utility, the probability thatZi = j is equal to the probability that the

utility Uij, is greater than the utility of all other alternativesl for l 6= j. Thus,

Pr(Zi = j) = Pr(Uij > Uil ∀ l 6= j). (4.2)

Substituting equation 4.1 into equation 4.2 leads to

Pr(Zi = j) = Pr(Vij + ǫij > Vil + ǫil ∀ l 6= j)

= Pr(ǫil − ǫij < Vij − Vil ∀ l 6= j). (4.3)

Thus,Pr(Zi = j) is equal to the value of the cumulative probability distribution of the

random variableǫil− ǫij, which is unknown, at the valueVij −Vil, which is assumed to

be observable and therefore known. Definingǫi = (ǫi1, ǫi2, ..., ǫiJ) to be a multivariate

random variable with joint probability distribution givenby fǫi(ǫi), then

Pr(Zi = j) =

∫

{ǫi∈RJ |(ǫil−ǫij<Vij−Vil) ∀ l 6=j}

fǫi(ǫi)dǫi

=

∫

ǫi

1i((ǫil − ǫij < Vij − Vil) ∀ l 6= j)fǫi(ǫi)dǫi, (4.4)

where1i is the indicator function which is equal to1 if the evaluated condition inside

the bracket is true, and equal to0 otherwise.
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The specification of the discrete choice model is therefore reduced to specifying

a functional form for the joint probability distributionfǫi(ǫi), and then calculating the

integral in equation 4.4. Due to the multi-dimensional nature of this integral, the vast

majority of models for the distribution ofǫi do not have analytical solutions, and are

therefore solved numerically. For example, the multinomial probit model is constructed

by assuming thatfǫi(ǫi) is given by the multivariate joint normal distribution with

specified mean and variance. This model does not have a closedanalytical form, and

requires numerical calculation of the integral in equation4.4 (although by assuming the

ǫij for j = 1, .., J , are independent and identically distributed, it can be reduced to a

single dimensional integral).

The model that is specified here is the multinomial logit model, and is derived by

assuming that the errorsǫij for j = 1, .., J are independent and identically distributed

according to an extreme value type I distribution (which is also known as a Gumbel

distribution). For eachǫij, this distribution is given by

fǫij(ǫij) = exp
(

−ǫij − e−ǫij
)

, (4.5)

and the cumulative distribution is given by

Fǫij(ǫij) = exp
(

−e−ǫij
)

. (4.6)

Following Train (2003), and assuming that, initially,ǫij is assumed to be known

but ǫil unknown, then

Pr(Zi = j|ǫij) = Pr (ǫil < Vij − Vil + ǫij ∀ l 6= j) , (4.7)

which, sinceǫil are independent, is equal to the product overl 6= j for all possible

values ofl. Thus,

Pr(Zi = j|ǫij) =
∏

l 6=j

Pr (ǫil < Vij − Vil + ǫij) . (4.8)

The right hand side of equation 4.8 is a product over evaluations of the cumulative

distribution functionFǫil , so that

Pr(Zi = j|ǫij) =
∏

l 6=j

Fǫij(Vij − Vil + ǫij) =
∏

l 6=j

exp
(

e−(Vij−Vil+ǫij)
)

. (4.9)
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By applying Bayes’ theorem for a conditioned probability, andevaluating the like-

lihood of ǫij occurring for all possible realisations ofǫij,

Pr(Zi = j) =

∫

ǫij

Pr(Zi = j|ǫij)fǫij(ǫij)dǫij, (4.10)

which, by substituting in equations 4.9 and 4.5, becomes

Pr(Zi = j) =

∫

ǫij

∏

l 6=j

exp
(

e−(Vij−Vil+ǫij)
)

exp
(

−ǫij − e−ǫij
)

dǫij. (4.11)

The integral in equation 4.11 can be evaluated analytically, the explicit calculation

of which is shown in Train (2003, pg. 85). The solution to the integral provides the

functional form of the multinomial logit model, described in closed form as

Pr(Zi = j) =
eVij

∑J

l=1 e
Vil

. (4.12)

The probability of each decision-makeri selecting alternativej is therefore given

by an expression that is dependent on only the observed component of utility for each

choice, and does not depend on the unknown errorǫij. Given the observed component

of utility for each alternative and for each decision-maker, this probability can be found

by calculating the ratio of the exponential of the observed utility, compared against

the sum of the exponentials for all alternatives. The model emphasises the compara-

tive nature of the discrete choice model: the decision-maker is more likely to select

those alternatives which offer comparatively greater observed utility. An account of the

history of this model and the range of different uses is givenin McFadden (2001).

There are notable consequences from the derivation of this model that are not im-

mediately obvious. By assuming that the error termsǫij are independent, the resulting

model leads to what is known as independence of irrelevant alternatives. That is, the

ratio of choice probabilities between any two alternativesis unaffected by the presence

of other alternatives, which arises due the following equation:

Pr(Zi = j)

Pr(Zi = l)
=

eVij

eVil
, (4.13)

for two different alternativesj andl. Since the right hand side of equation 4.13 does

not depend on any of the other alternatives, the ratio of the probability of choosing

alternativej and l is constant regardless of which other options might be available.

There are many thought experiments that can highlight why the inclusion of a new
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option might cause the value of equation 4.13 to change. For instance, if an optionj′

is introduced to the alternatives, which is almost identical to optionj but which is very

different to optionl, then it might be expected that the value in equation 4.13 would

decrease: decision-makers who might have chosen optionj would be more likely to

switch to j′ whilst decision-makers who might have chosen optionl would be less

likely to switch toj′.

Independence of irrelevant alternatives arises as a resultof the assumption of in-

dependence over the error termsǫij. In many scenarios, particularly those related to

spatial choice problems, this assumption is likely to be violated. In particular, it im-

plies that a particular area is chosen as a result of just the features of that area, and

not as a result of the features of areas nearby. Since it is conceivable that a rioter may

offend in a particular area due to the characteristics of a neighbouring area, the errors

are likely to be correlated between nearby targets. This mechanism would manifest

as a spillover effect. The presence of spillover effects is consistent with the analysis

of Chapter 3, which demonstrated the prominence of escalation diffusion during the

riots. To account for this limitation of the model, and the fact that there may well be

correlated error terms over different alternatives, therehave been a number of more

complex models proposed in which the integral in equation 4.4 can not be calculated

analytically (Train, 2003). However, as Bernasco et al. (2013) explains, whilst such

models allow for spatial dependence, they do not directly treat it as an active process,

instead accounting for it indirectly as part of the error term. Accounting for spatial

effects in the observed part of the model enables investigation into the spatial processes

that might be at play (see also Beck et al. (2006)). This is the approach taken in this

study and spillover effects are incorporated into the observed part of the model. This is

discussed further in the proceeding sections.

Another consequence of the model derivation is that it can bereadily extended

to include time-dependent utility functions. This can enable the model to account for

preferences of decision-makers or characteristics of alternatives that might change over

time, resulting in a dynamic utility function. Supposing that the time period of interest

can be partitioned into discrete time intervalst1, t2, ..., tK , the utility function is given

by

Uijk = Vijk + ǫijk, (4.14)
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where the observed utilityVijk is known for each decision-makeri (for i = 1, 2, ..., N ),

for each alternativej (for j = 1, 2, ..., J) and for each time periodk (for k =

1, 2, ..., K). Defining the random variableZik to be the choice of decision-makeri

at timek, an analogous derivation results in

Pr(Zik = j) =
eVijk

∑J

l=1 e
Vilk

. (4.15)

The important assumption in deriving this model is that the analogous error termsǫijk

are not only independent and identically distributed over both i and j but also over

k. That is, the error terms are required to be uncorrelated over time across decision-

makers. This can be viewed as quite a restrictive assumptionas the choices of decision-

makers tend to be consistent over time due to time-stable preferences of individuals. In

what follows, a temporally dependent model will be derived for the observed utility

function Vij for each rioteri and potential targetj. The observed utilitiesVij will

not be explicitly dependent on time, however, and so the limitation described here

does not arise. Instead, the temporal dependence will be incorporated into the utilities’

dependence on each decision-maker.

4.2.2 Modelling the observed utility for rioter target choice

In order to apply the discrete choice model in equation 4.12 to the 2011 London riots,

it is first necessary to define the choice set. Since it is the target choice of each offender

that is of interest, as measured by the random variableZi for each rioteri, the choice

set is required to consist of all possible locations at whicheach rioter could have chosen

to commit an offence. Considering all possible locations as the set of points within a

particular spatial region would result in an infinite choiceset, contradicting the model

assumptions. Consequently, a finite partition of the geographic area within which rioter

targets could have been selected is required.

Given that all offences in the dataset were observed to occurwithin Greater Lon-

don, it is assumed that all choices that could have been made were also contained within

Greater London. A partition of Greater London is therefore required which enables the

characteristics of each area to be evaluated for each decision-maker, in order to con-

struct a utility function. For reasons of data compatibility, which will become clear

as the utility function is specified, this set is taken to be the set of 4,765 Lower Super

Output Areas (henceforth abbreviated as LSOAs) in Greater London. LSOAs are a
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geographic partition of the United Kingdom for the purposesof reporting census data.

Each LSOA is designed to contain around 1,500 residents, and, consequently, the set

of LSOAs vary in size according to the underlying populationdensity.

The choice to perform the analysis at this level of aggregation was made, on the

one hand, to perform a novel spatial analysis of rioting at a fine scale of resolution, but,

on the other, not to make the spatial resolution so fine that problems are encountered

in the inference of parameters. Indeed, the LSOA geography consists of areas that are

typically smaller than the units of analysis used in previous parametric approaches to

the study of rioting, which have often considered the spatial patterns of rioting at a

national level (Myers, 1997, 2000, 2010; Olzak and Shanahan, 1996; Spilerman, 1970,

1971, 1976). Moreover, the level of resolution offered by the LSOA geography is also

smaller than many previous applications of similar discrete choice models to other types

of crime (Bernasco and Nieuwbeerta, 2005; Clare et al., 2009),although newer studies

have applied the model to yet smaller geographical areas (Bernasco, 2010b; Bernasco

et al., 2013). The advantage of smaller sized units of analysis in the discrete choice

approach is that the explanatory variables used to construct the utility function are more

representative of the population and characteristics of each area. However, potential

issues with using smaller areas arise with increased difficulty in accounting for spillover

effects, as well as in finding structural data at an appropriate level of resolution.

The data that will be used to calibrate the model of target choice was obtained

from the Metropolitan Police Service and consists of all crimes associated with the

2011 London riots. For each offence, the data included identifiers for: the LSOA within

which the offence took place; the LSOA in which the offender was recorded as living;

the date and time on which the offence was estimated to have occurred; and the age of

the offender; all for 2,299 offences (of the total available3,914 records). Only these

records were used in the analysis and no offender appears in the data more than once.

Table 4.1 details the types of offences committed for the 2,299 records used in the

analysis. The majority of crimes were incidents of burglaryor theft, which supports

the common view that looting was prevalent during the riots,and therefore may have

influenced the target choice of offenders. Indeed, the majority of crime types are those

that would commonly be associated with rioting behaviour (cf. Abudu Stark et al.

(1974)). Since the primary interest lies in identifying thefactors that most consistently

117



4.2. A MODEL OF TARGET CHOICE IN THE2011 LONDON RIOTS

influenced offender spatial decision-making during the riots, all of the data is analysed.

Offence Type Percentage of offences

Burglary 59.1%

Theft 11.4%

Criminal damage 6.4%

Violence against the person 4.5%

Robbery 1.7%

Other 16.8%

Table 4.1:The distribution of different crime types over the five days ofrioting

(N=2,299).

The observed component of utilityVij for offenderi and targetj can be mod-

elled by considering the characteristics of the targetj, its relationship to the offender

i, and how this might change based on the time at which the offender chooses to en-

gage in the disorder. It is modelled as a linear combination of n variables, denoted by

W1ij,W2ij , ...,Wnij, so that

Vij = β1W1ij + β2W2ij + ...+ βnWnij, (4.16)

for parametersβ1, β2, ..., βn.

The construction of the model requires the specification of each of these variables

for all values ofi andj, and, in what follows, this is described for eachWgij, for g =

1, 2, ..., n. These variables are chosen in accordance with three criminological theories

that have previously been used to explain the target choice of crime and rioting. These

are: the theory of crowds, crime pattern theory, and the theory of social disorganisation.

These theories, each of which is discussed in more detail in what follows, describe,

respectively, how: the behaviour of a crowd, and therefore the presence of rioting at

a particular location, influences the likelihood of selecting that area in which to riot;

how decisions made with respect to rioting are influenced by the routine activities of

rioters combined with the environment and urban form of the potential locations; and

how rioting is more likely to occur in areas with weak social ties.
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Crowd Theory

In Chapter 3, it was argued that contagion would have played a significant role in

generating the spatio-temporal patterns of the riots. In particular, evidence was found

to suggest that the occurrence of offences at a particular location in space and time

increased the likelihood of subsequent events occurring nearby. The effect of crowds

on the dynamics of target choice is therefore the first consideration in this model.

The effect of contagion arises as a result of both planned co-offending amongst ri-

oters, and as a precipitating influence between previously unacquainted offenders. Co-

offending of burglary, in which collaborators jointly commit crimes, has been shown

to typically target similar areas to those targeted by sole offenders (Bernasco, 2006).

Target choice among previously unacquainted offenders, however, has rarely been con-

sidered from a modelling perspective, particularly at a relatively fine spatial scale, such

as that proposed here.

In Chapter 3, two possible explanations for contagion duringoutbreaks of riot-

ing were discussed. The first stated that contagion was the result of shared grievances

across a widely distributed population and had little to do with the initial location of

the rioter. The second argued that contagion during riotingwas a result of situational

precipitators, in which proximity to rioting in space and time served to prompt, permit,

pressure and provoke others to partake in criminal activity(Wortley, 2008). These two

perspectives imply a rational choice approach when considering the decision to engage

in the disorder: potential offenders weigh up the potentialbenefits (e.g. the opportunity

to address grievances or for criminal acquisition) againstthe potential costs (cost of ar-

rest or political prosecution). Perhaps surprisingly, much early research into rioting did

not take a similar view. In fact, early theories concerning the behaviour of crowds dur-

ing rioting, such as those posited by Le Bon (1896; 1960) and Freud (1921), suggested

that crowds were irrational, ‘animal-like’, and that the behaviour of the crowd could

only be considered from the perspective of an irrational collective mind, with targets

more or less selected at random. Within such crowds, individuals were supposed to be

unable to control their own behaviours, were ‘swept up’, andadopted the incentives of

this collective mind. From the perspective of complex systems, this interpretation of

the aggregation of behaviour implies that it is the interactions between individuals that

is most prominent in determining the macro-level outcomes,rather than the internal
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incentives and choices of the individuals.

Since this early work, however, researchers have argued that the process of rioting

is, in fact, driven by a more rational process (Berk and Aldrich, 1972; Berk, 1974; Ma-

son, 1984; McPhail, 1991). According to such accounts, individuals decide whether to

engage in the rioting based on the available information andsome internal cost-benefit

calculation. Even after individuals have decided to engage, they have more control

over their actions than is suggested by early accounts of collective violence. For in-

stance, there is evidence that targets can be chosen selectively by rioters (Auyero and

Moran, 2007; Berk and Aldrich, 1972; Rosenfeld, 1997), and, indeed, that, by con-

sidering those targets, more can be learnt about the mechanisms at play during riots

(Martin et al., 2009). In this interpretation of crowds, in contrast to earlier theories, the

incentives and choices of the individual play a more prominent role in the aggregation

of crowd behaviour. Moreover, this viewpoint supports the approach taken in this sec-

tion, suggesting that, consistent with rational choice theory, an element of rationality is

present in the decision-making of individuals.

Recent treatments of crowds have often incorporated individual incentives with

some degree of rationality, but also allow individuals to beinfluenced by the actions of

those around them. For example, Gordon et al. (2009) extend atraditional economic

model that estimates an individual’s ‘willingness to pay’ for a certain good, in order to

incorporate the impact of interaction between individuals. This perspective of crowd

behaviour, in which individuals, or agents, influence the behaviour of others, each of

whom has their own set of behaviours, attributes, or objectives, and which might vary

widely over the population, has also previously been considered in models of rioting

and civil disorder (Granovetter, 1978; Midlarsky, 1978; Myers, 2000; Epstein, 2002).

As emphasised in Myers (2000), care must be taken in interpreting the influence

of crowds, in order to avoid confusion between irrational actors having no choice in

getting swept up in rioting—as would be the case in contagionof a disease, and tradi-

tional theories of crowd behaviour—and actors that are perhaps more willing to engage

in disorder due to the precipitating influence of crowd behaviour after weighing up the

costs and benefits of doing so. Using the perspective of bounded rationality, the latter

view is the one that is taken here. It is important to be clear that such an argument

does not assume that offenders cease to act like rational agents, but that the decision to
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engage in a criminal event can be rather dynamic and may be influenced by more than

an individuals internal desires or motivations.

In order to incorporate riot precipitators into the model oftarget choice, it is as-

sumed that the utility of each target depends on the number ofriot-related offences

that have recently occurred at that target. It is hypothesised that, all other things being

equal, areas in which riots have recently occurred will be more likely to be selected by

rioters in which to offend.

To measure the effect that prior offences at a location have on the spatial decision-

making of a new potential rioter, for each rioter decision, the number of detected of-

fences that occurred for a certain time period before the decision is made to offend are

counted. The sum of this calculation is denoted byW δt
1ij, where the subscriptj corre-

sponds to the target area, the subscripti refers to the decision-maker, which implicitly

determines the time at which the decision to offend is made, and the superscriptδt de-

notes the time period before the decision is made over which offences contribute to the

count. For example, forδt = 12, the sum of prior offences in a given area is taken to be

the number of offences that occurred in the previous12 hours from the time at which

the decision to offend is made.

The variableW δt
1ij is taken to depend on the time at which offenderi commits

their offence. Although implicitly dependent on time, the model is not the same as the

temporal version of the discrete choice model in equation 4.15, as decision-makers do

not make a decision at every discrete time interval. Instead, only one decision for each

offender is made. It is assumed that the time at which each offence occurs is given, and

that an offender becomes motivated to commit their offence at this particular time due

to processes that are not under direct consideration here. For this reason, the variable is

indexed by the decision-makeri, which is assumed to incorporate information on when

the decision is made, rather than any explicit temporal dependency as in equation 4.15.

A question that was not addressed in Chapter 3 was the length oftime that any

increased level of attractiveness due to ongoing rioting lasts at a particular area. That

is, for how long does the precipitating influence of prior events at a given location last?

Turning again to the literature on criminology, this influence has been widely studied

in the case of the increased attractiveness of targets of residential burglary (Bowers and

Johnson, 2005; Johnson and Bowers, 2004), in which the effectof increased risk due to
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a recent burglary has been observed to last for up to two months. Given the highly dy-

namic nature of the riots, its short time-scale, and the factthat each offender is included

in the dataset only once (which is in contrast to the literature on burglary in which at

least part of the increased attractiveness at a particular site is often attributed to offend-

ers returning to where they have successfully burgled previously), it is anticipated that

the time scales over which increased risk may be observed aremuch shorter. To test

this, models are run withδt = 6, 12, and24 hours, and the relative success of each of

these models is evaluated.

In selecting these variables, models were also run withδt < 6; however, singu-

larities were encountered in the calibration procedure dueto there being insufficient

variance in the variableW δt
1ij. δt = 6 was the minimum value for which the model was

successfully calibrated and is therefore used as the minimum value in this study.

Crime Pattern Theory

There have been many attempts at explanations of the spatialand temporal clustering of

crime. Environmental criminology is specifically concerned with explaining how envi-

ronmental effects—which can incorporate a range of spatialand temporal processes—

influence the prevalence of different types of crime (Brantingham and Brantingham,

1981). Much of this theory builds upon the routine activity approach, which asserts

that the necessary conditions for crime to occur are the convergence in space and time

of: a motivated offender; a suitable target; and the absenceof a capable guardian (Co-

hen and Felson, 1979). According to this approach, routine activity patterns—defined

as the locations and times at which individuals are more likely to be found as a direct

result of their everyday behaviour, for example on the routeto work before the start

of the working day or at recreational areas in the evening—shape the opportunities for

this convergence. From this perspective, crime is seen as opportunistic: offenders are

largely believed to come across opportunities to commit crimes as a result of their ev-

eryday routines, rather than purposefully going out of their way to commit a particular

offence. The routine activity approach stimulated great interest in understanding crime

as a (bounded) rational process that focused on the environmental circumstances in

which crime occurs, rather than the underlying psychological makeup of offenders.

Resulting from this interest, crime pattern theory argues that the patterns brought
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about by the occurrence of crime in space and time are a directresult of those areas

being more likely to coincide with the routine activity patterns of potential offenders

(Brantingham and Brantingham, 1993). Moreover, crime pattern theory considers how

routine activity patterns shape awareness of criminal opportunities, and how this may

lead to the emergence of spatial concentrations of crime. According to crime pattern

theory, people create mental maps of their routine activitypatterns, which typically

consist of routine activity nodes (locations at which individuals frequently visit, or at

which they spend much of their time), and the routes that the individual takes to travel

between these nodes. It is asserted that it is at these locations that crimes are more

likely to be committed by an individual.

Prominent features of the urban environment are expected tolie within the aware-

ness spaces of a range of different people, including many potential offenders. In par-

ticular, much of the population of London and other urban areas around the world, are

highly likely to retain local landmarks—including retail centres, transport hubs such

as train stations and schools—within their awareness spaces as routine activity nodes,

which makes these areas more likely to experience crime. Bernasco and Block (2009)

provide evidence that this is indeed the case with these examples in a study of robbery

in Chicago.

Consequently, on the basis of crime pattern theory, it is hypothesised that dur-

ing rioting, with all other things being equal, offenders will be more likely to choose

locations to offend that are nearby schools, public transport hubs, retail centres and

locations that are proximate to the city centre, as these represent locations which are

likely to be prominent within the mental maps of a wide range of rioters.

In order to incorporate these effects into the model ofVij, W2j is taken to be the

number of key stage 4 schools (roughly equivalent to secondary schools for those aged

11-16) in each LSOA and is counted using data from the UK Department of Education.

W3j is taken to be a binary indicator of whether or not an underground station

is located within the LSOAj. The locations of underground stations are obtained

from Open Street Map (www.openstreetmap.org). Crime pattern theory does not only

assume that transport hubs are areas that much of the population would be familiar

with, and therefore more likely to be located in the mental maps of offenders, but also

that transport hubs are likely to be areas travelled throughas potential rioters move
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between prominent locations in their awareness spaces.

W4j is taken to be a measure of retail floorspace within each target area j,

obtained from the Valuation Office Agency floorspace data forthe year 2004 (see

www.planningstatistics.org.uk). Specifically, it is taken to be the number of250m2

portions of retail floor space within each areaj, where the units are chosen to aid in-

terpretation of the resulting parameter estimates. In the case of rioting, retail centres in

particular may be targeted simply because they contain opportunities for looting, rather

than as a direct result of that location being present in the routine activity nodes of of-

fenders. Nevertheless, it is expected that retail centres will act as crime attractors, and

that, where they are targeted, the retail centres chosen will be those that are likely to be

within an offender’s awareness space.

Finally,W5j is taken to be the distance between the centroid of the targetLSOA j

and the centre of London (measured as a point just south of Trafalgar Square: longitude

−0.1277, latitude51.5073) in kilometres.

In the framework of the discrete choice model outlined in Section 4.2.1, it is pos-

sible to incorporate variables into the observed utilityVij that not only depend on the

target locationj but which also depend on the offenderi who is making the choice of

where to offend. This enables further variables inspired bycrime pattern theory to be

incorporated. In particular, although overlapping mentalmaps provide the opportunity

to capture routine activity nodes for a wide range of the population, the best indicators

for routine activity nodes are likely to more specific to eachindividual.

For the 2011 London riots, given that the offender data details not only where the

crime occurred but also where the offender resided, it is possible to incorporate into

Vij, for each offenderi, the distance between the area in which the offender resided

and the areaj in which that offender could have chosen to engage in the disorder. This

contributes to the utility of each area a measure of how far the target is from where the

rioter is most likely to have been based and the locations with which the rioter is likely

to be most familiar. Supposing that the awareness space of anoffender is more likely

to contain areas near to where that offender resides, it would be expected that targets

closer to the residential area of each rioter are more likelyto experience rioting.

In fact, there has been much prior research into the so-called journey to crime:

the distance between an offenders residential location andthe location at which they
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commit their crime. Supporting the principle proposed by Zipf (1949), that individuals

are most likely to take up the option that provides the most reward for the least effort,

studies of the journey to crime indicate that, despite the many and varied opportunities

available to them, most offenders commit crime close to their home location (for a

recent review of this literature, see Townsley and Sidebottom (2010)).

To operationalise a measure of journey to crime, the Euclidean distance between

the LSOA centroid within which each offender was recorded asliving, and the LSOA

centroid of each target area was calculated, and incorporated as one of the variables in

the model for the observed utility, denoted byW6ij.

In the case that an offender committed an offense within the LSOA within which

they reside, the distance between the more precise locations at which they were

recorded as living and at which they committed their offencewas computed. These

more precise locations are given by the centroids of the census output area, the finest

level of aggregation at which the data are available.

Figure 4.1 shows the distribution of these journey to crime distances. Consistent

with previous studies, and in line with the expectations of crime pattern theory, a clear

pattern of distance decay can be observed. Moreover, the scale and central tendency

of the distribution of distances travelled is very similar to that for other types of crime

(Rossmo, 2000).

Offender awareness of a location is expected to be inverselyrelated to the distance

between that location and their routine activity nodes. Forstudies into the journey to

crime, distance is considered to be a measure of impedance that affects the likelihood

of an individual becoming familiar with a particular area. However, factors other than

distance can influence awareness in this way. For example, features of the urban en-

vironment, such as natural barriers (e.g. rivers) or transport links (e.g. train stations),

may impede or facilitate the ease with which people can travel to, and hence become

familiar with, a particular location. In their study, Clare et al. (2009) examined the ex-

tent to which features of the physical environment, such as major highways and rivers,

act as barriers to an offender’s choice of burglary location. They found that the pres-

ence of either feature between an offender’s home location and a potential target area

decreases the likelihood that the latter will be selected. Furthermore, studies of gang

activity in Los Angeles have found that such environmental boundaries appear to sig-
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Figure 4.1: Histogram of the distance between residential location andoffence

location. The distances are calculated as the Euclidean distance between the centroids

of the LSOAs recorded as the residential area and the crime area of each offender.
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nificantly influence the spatial patterns of gang rivalries (Tita et al., 2003; Radil et al.,

2010).

In the case of London, it is likely that the greatest such barrier and, thus, influ-

ence of this kind on the spatial decision-making of offenders, is the River Thames. The

Thames divides London into distinct northern and southern areas, and, while there are

bridges that connect North and South London, the presence ofthe Thames can substan-

tially impede movement between the two. Given the size of theriver and the scope for

natural barriers to shape offender awareness spaces, it is expected that offenders will

be less likely to cross the river in order to offend. In order to incorporate this effect into

the model, each LSOA is coded as being located either north orsouth of the Thames so

that, for any LSOA pair, it is possible to indicate whether the two areas are located on

the same side of the river. The variableW7ij is then defined to be an indicator variable

that determines whether or not the residential area of offender i and the target areaj

are located on the same side of the River Thames.

Finally, since the model forVij is a linear combination of the variablesWgij, for

g = 1, 2, ..., n, it is possible to disaggregate them by considering different types of

offender. To explain why this might be desirable, it is first considered how the aware-

ness spaces of individuals might vary over different offenders. Previous research has

suggested that the awareness space of offenders is unlikelyto remain static through-

out an individual’s lifetime (Bernasco, 2010a). As people move houses, jobs, and take

up new activities, they are likely to encounter areas they have not encountered before.

These experiences will all contribute in some way to the mental map of an individual.

Moreover, it is hypothesised that the mental map of minors—those under the age of

18—will have a more restricted mental map, than compared to both their own mental

map when they are older, but also to the mental maps of older individuals. Because

of this, it might be the case that older offenders have a widerrange of locations in

which they can choose to offend. They might also have more means to travel there, as

older offenders can be expected to have more disposable income to travel via public

or private transport. It is therefore hypothesised that adult offenders are more likely

to travel further than their younger counterparts (such findings have been reported for

other types of crime in Snook et al. (2005); Townsley and Sidebottom (2010)).

Figure 4.2 shows the age distribution of offenders. A large proportion of the of-
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fenders were under the age of twenty, however, offenders across the age spectrum are

represented, creating the skewed distribution observed; adistribution that is very simi-

lar to the typical age-crime curve (Stolzenberg and D’Alessio, 2008). In particular, this

figure demonstrates that there were a significant number of offenders under the age of

18, and so, the journey to crime variableW6ij is separated by an indicator function into:

β6W6ij + βa
6Ia(i)W6ij, (4.17)

whereIa(i) is equal to one if offenderi is over the age of 18, and equal to zero oth-

erwise.β6 therefore measures the effect that distance has on the utility of each area to

juveniles, whilstβ6 + βa
6 measures the same effect but for adults.
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Age distribution of offenders (N = 3906)

Figure 4.2:Age distribution of offenders. Of the total available 3,914 offences con-

tained in the data, 3,906 contained the age of the offender.

To further distinguish between the offending behaviour of minors and adults, it

is noted that some nodes of activity, such as schools, work locations and retail cen-

tres, might feature more prominently in the awareness spaces of particular age groups.

Young offenders might be more likely to target areas that contain routine activity nodes
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that are particularly relevant to them, such as schools. Therefore, in a similar way to

the journey to crime variable, the variable used to denote the count of schools in each

area is also disaggregated as follows:

β2W2j + βa
2Ia(i)W2j, (4.18)

with analogous interpretations forβ2 andβa
2 .

Social Disorganisation

The theory of social disorganisation largely stems from theinfluential work of Shaw

and McKay (1969), who investigated the relationship between neighbourhood charac-

teristics and the spatial distribution of crime and delinquency in the US city of Chicago.

They concluded, amongst other things, that the areas withinChicago containing resi-

dents who were economically disadvantaged, ethnically diverse and who were residen-

tially mobile, were more likely to have higher rates of crimeand delinquency.

Social disorganisation theory was used as an explanation ofthis effect, and asserts

that the inability of a community to jointly identify commonsocial values, and to sub-

sequently exert effective informal social controls, substantially increases the crime and

delinquency within an area. That is, for neighbourhoods in which there is a strong sense

of community and mutual cooperation, residents are more likely to intervene to prevent

crime. Reviews of the development of social disorganisationtheory can be found in

Bursik (1988) and Kubrin and Weitzer (2003).

Tests for social disorganisation theory typically identify conditions that might lead

to a lack of social cohesion, which can be affected by a numberof different neighbour-

hood characteristics. For neighbourhoods with a transientpopulation, for example,

brought about by a large flux of inward and outward migration,it is asserted that there

will be relatively fewer opportunities for the formation ofstable social ties, leading to

the lack of social cohesion which fosters inability to jointly act to prevent and miti-

gate crime. Other conditions identified as having an impact on the resulting crime and

delinquency rates include ethnic heterogeneity (it is argued that diversity amongst in-

dividuals can act as a barrier to social cohesion as different communities can fail to

share consensus), family disruption (close family is oftenviewed as a first opportunity

to exert such informal social control), and deprivation (rather than having a direct result

on levels of crime, it is argued that within disadvantaged neighbourhoods, communities
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may lack the resources and organisational base of their moreaffluent counterparts, and

so are less likely to exert formal control) (Sampson and Groves, 1989; Sampson et al.,

1997; Bernasco, 2006).

In the case of rioting, in accordance with previous studies,the level of social disor-

ganisation of an area can influence the likelihood of disorder occurring there in slightly

different ways. First, cohesive neighbourhoods may exert control over their own resi-

dents to reduce the likelihood that they will engage in disorder or form a rioting crowd.

Since most of the rioting occurred nearby the residential areas of the rioters (see Figure

4.1), it is likely that if this explanation has a role to play,there would be a reduced

risk of rioting in areas with greater social cohesion. Second, signs of cohesion within

a neighbourhood might affect whether offenders, regardless of where they live, choose

to engage in disorder within that neighbourhood. In this case, social cohesion might be

seen as acting as a social barrier to deter rioters from targeting or coalescing in a given

neighbourhood (Bernasco (2006) argues this from the perspective of target choice for

residential burglary).

It is therefore reasonable to hypothesise that there is an increased likelihood of

areas being selected as targets for rioting if those areas have greater levels of social

disorganisation. In order to incorporate the impact of social disorganisation into the

measure of observed utility for each rioter, three measuresof each target area are cal-

culated. It should be noted that in this study the levels of social disorganisation are

measured indirectly (as in Shaw and McKay (1969)), rather than through the use of

survey samples that attempt to more directly measure local social processes (Sampson

and Groves, 1989; Sampson et al., 1997).

The first variable estimates the extent to which the population in a given areaj is

transient by considering the inward and outward migration within each area. This is

done using a measure of population churn, as outlined in Dennett and Stillwell (2008),

which quantifies the residential migration of individuals.Specifically, this measure is

given by

W8j =

(

Dj +Oj +Mj

Pj

)

× 10, (4.19)

whereDj is the in-migration to areaj over a particular period of time,Oj is the out-

migration from the area andMj is the total migrants that relocate from one residence to

another whilst remaining within the same areaj over that time period.Pj is the popu-
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lation of areaj. Using the best data available for this purpose, the values of Dj, Oj and

Mj were obtained for each LSOA in Greater London from the 2001 UKCensus. This

data was obtained by asking census participants for their usual address one year earlier.

The multiplicative factor of 10 was chosen as a scaling factor to aid interpretation of

the resulting estimates, which otherwise has no bearing on the results.

The second variable to incorporate into the estimate of observed utility for each

target measures the ethnic heterogeneity of each target area. The index of qualitative

variation (Agresti and Agresti, 1978; Wilcox, 1973) is used, and defined as

W9j =

(

1−
E
∑

k=1

e2kj

)

× 10, (4.20)

whereE is the total number of distinct ethnic groups andekj is the proportion of in-

dividuals belonging to ethnic groupk, that reside in areaj. W9j is interpreted to be a

measure of the probability that two individuals selected atrandom from the population

of zonej will be of different ethnicity. The data is again obtained from the 2001 UK

Census, which specifies the number of residents of different ethnicities in each LSOA

in Greater London. The different ethnic groups specified andincluded in the model

are: White British, White Irish, Other White, White and Black Caribbean, White and

Black African, Other Mixed, Indian, Pakistani, Bangladeshi,Other Asian, Caribbean,

African, Other Black, Chinese, Other Ethnic Group. Again, thescaling factor of 10

was chosen to aid parameter interpretation.

A potential source of error with the findings associated withthese variables is that

the data used to estimate neighbourhood levels of ethnic diversity and population churn

are based on data from the 2001 UK census. These data were usedas they are the most

recent that are available, and, in using them, it is assumed that the demographics (and

changes in them) of an area are relatively stable on the time-scale of a decade.

Finally, a measure of deprivation is incorporated into the observed utility of each

target choice. Denoted byW10j, this is given by the Index of Multiple Deprivation,

a measure used extensively in the UK to determine disadvantaged areas (McLennan

et al., 2011). The estimates from 2010 are used as they are themost recent available,

and just one year away from the time at which the riots occurred.
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Spillover effects and controls

Several variables have been defined and have been argued to help capture the observed

component of utility of each target area for each offender and, in the case of contagion,

over different periods of time. In addition to the variablesdiscussed above, a measure

of population density of each target area is also included inthe model, denoted byW11j.

This is included to control for its potential effects and is obtained using the Mid-2010

Population Estimates for LSOAs by the UK Office for National Statistics.

It was discussed in Section 4.2.1 that the inclusion of spatially lagged variables

in the specification of the observed utility can mitigate some of the unintended effects

that arise due to independence of irrelevant alternatives.Spatial spillover occurs when

a rioter is attracted to a particular area not due to the attributes of that area, but to the

attributes of a neighbouring area. If this were to occur, then the errors in the utility

of each target area would no longer be independent, violating the assumptions of the

model. In the case of the London riots, for example, it may be that an offender chose

to go to an area that contained an underground station. They then might have walked

from the underground station to a neighbouring area and found a suitable opportunity

to offend in that neighbouring area. In this situation, the effect of having an under-

ground station in a neighbouring area influences the attractiveness of the area that the

rioter chose, and so the unobserved portion of utility over these choices is no longer

independent, as assumed by the model. To account for this, the attributes of neighbour-

ing areas can be incorporated into the utility of each area, in an attempt to capture the

correlation across the unobserved utility within the observed utility, thereby ensuring

that the errors remain independent and the model assumptions are not violated. To do

this, a similar approach to Bernasco et al. (2013) is used. In what follows, the spillover

effects accounted for in the model are described.

In Chapter 3, it was shown how the occurrence of offences in a particular location

can increase the likelihood of offences occurring in neighbouring locations. Since the

number of prior offences is incorporated within the model inthe variableW δt
1ij, it is

natural to also include a spatially lagged version of this variable. It is therefore hy-

pothesised that areas will be more likely to be selected by rioters if neighbouring areas

have recently experienced rioting. The number of offences that occur in neighbouring

areas to the target areaj within δt hours preceding the time at which rioteri decides to
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engage in the disorder is denoted byW δt
12ij.

In order to test for further spatial spillover effects, three neighbourhood variables

are also incorporated into the model of observed utility. These are: the average number

of schools in neighbouring areas, denoted byW13j; an indicator variable to determine

whether the neighbouring area contained an underground station, denoted byW14j; and

the average retail floor space in neighbouring areas, denoted byW15j. All neighbouring

areas are defined with queen contiguity: areas need to just share a single point of a

boundary in order to be classed as neighbours.

Extending equation 4.16 to incorporate the variables discussed, leads to the final

model for the observed utility of each target areaj, for each offenderi:

V δt
ij =βδt

1 W
δt
1ij + β2W2j + βa

2Ia(i)W2j + β3W3j + β4W4j + β5W5j (4.21)

+ β6W6ij + βa
6Ia(i)W6ij + β7W7ij + β8W8j + β9W9j + β10W10j

+ β11W11j + βδt
12W

δt
12ij + β13W13j + β14W14j + β15W15j ,

where the vector of parametersβ = (β1, β2, ...β15) is to be estimated from the data.

For ease of notation in what follows, equation 4.21 is written in vector notation as

V δt
ij = β.Wδt

ij , (4.22)

whereWδt
ij is the vector of variables associated with offenderi and targetj and includes

the indicator functionIa(i). Each of the distinct variables included in this model is

outlined in Table 4.2, together with the theoretical perspective from which the argument

for including each variable stems.

4.2.3 Parameter estimation

Without specifying a particular value for the vector of parametersβ, the discrete choice

model determines a family of models. Equation 4.12 specifiesthe form by which the

observed components of utility influence the probability that a given alternative is se-

lected, whilst equation 4.21 determines the way in which observed utilities are derived

from data associated with each alternative. Moreover, the role of equation 4.21 is to

proxy the effect of the theoretical perspectives discussedin Section 4.2.2 into the utility

of each target. In this section, the vector of parametersβ is estimated using the offence

data from the 2011 London riots. In doing so, the model becomes fully specified, en-

abling the estimation of the probability that rioteri would have selected targetj, for
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Variable Parameter Description Expected effect of higher

values on attractiveness

Theoretical

perspective

W δt
1ij βδt

1 Previous offence count Increase CT

W2j β2, βa
2 Number of schools Increase, particularly to

juveniles

CPT

W3j β3 Underground station

indicator

Increase CPT

W4j β4 Retail floorspace Increase CPT

W5j β5 Distance to city centre Decrease CPT

W6ij β6, βa
6 Distance between resi-

dence and target

Decrease, particularly to

juveniles

CPT

W7ij β7 Thames between resi-

dence and target

Decrease CPT

W8j β8 Churn rate Increase SDT

W9j β9 Ethnic diversity Increase SDT

W10j β10 Deprivation Increase SDT

W11j β11 Population density None Control

W δt
12ij β12 Previous offence count

in neighbouring areas

Increase Spillover

W13j β13 Number of schools in

neighbouring areas

Increase Spillover

W14j β14 Number of under-

ground stations in

neighbouring areas

Increase Spillover

W15j β15 Average retail

floorspace in neigh-

bouring areas

Increase Spillover

Table 4.2:The variables used to estimate the observed utility of each target. The

theoretical perspective from which each variable stems is also shown and the follow-

ing abbreviations are used: Crowd theory = CT; Crime pattern theory = CPT; Social

disorganisation theory = SDT.
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everyi andj, given the offences that have occurred up until the point in time at which

rioter i engages with the disorder.

Furthermore, by selecting the value ofβ that results in the best fit between the

model and the offence data, it is possible to observe the influence of each of the vari-

ables in equation 4.21 on the observed utility, and the resulting probability distribution.

If, for someg, βg is estimated to be equal to zero, then that variable is asserted to play

little role in the attractiveness of targets to rioters, according to the data used in the cal-

ibration procedure. Alternatively, ifβg is estimated to be positive with a high level of

confidence, then the associated variable is positively associated with the attractiveness

of each target: higher values of that particular variable ata target are thought to in-

crease its attractiveness. Conversely, ifβg is estimated to be negative with a high level

of confidence, then higher values of the associated variableare thought to decrease

attractiveness.

The log-likelihood function

The form of the discrete choice model is particularly suitable for maximum-likelihood

estimation, in which the parameter vector is selected that maximises the likelihood of

observing the data over all possible values ofβ. Specifically, the likelihood function is

defined as

L(β|ZN = zN , ZN−1 = zN−1, ..., Z1 = z1)

= Pr(ZN = zN , ZN−1 = zN−1, ..., Z1 = z1|β), (4.23)

where a lower case variablezi denotes the realisation of the random variableZi. Equa-

tion 4.23 states that the value of the likelihood function isthe probability of observing

the empirical data, given the modelled joint probability distribution together with a par-

ticular value forβ. Applying Bayes rule to the joint distribution, and conditioning so

that conditional dependencies are applied to the events in chronological order, it can be

shown that

L(β|ZN = zN , ZN−1 = zN−1, ..., Z1 = z1) =

Pr(ZN = zN |ZN−1 = zN−1, ZN−2 = zN−2, ..., Z1 = z1)

× Pr(ZN−1 = zN−1|ZN−2 = zN−2, ZN−3 = zN−3, ..., Z1 = z1)

× ...× Pr(Z1 = z1). (4.24)
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Using the model for the probability distribution in equation 4.12, the conditional

probability for a random variableZi is assumed to be given by

Pr(Zi = zi|Zi−1 = zi−1, Zi−2 = zi−2, ..., Z1 = z1) =
eV

δt
ij

∑J

l=1 e
V δt
il

, (4.25)

whereV δt
ij is given as in equation 4.21. The probabilities can be taken to be equivalent

to conditional probabilities because the model for the probability distribution depends

on the history of the system, and specifically on the realisations of random variables

Zi′ for i′ < i. In other words, each decision-maker selects the alternative that offers

them the most utility using the information on where riotershave previously offended.

Consequently, the likelihood function is given by

L (β|zN , zN−1, ..., z1) =
N
∏

i=1

J
∏

j=1

(

eV
δt
ij

∑J

l=1 e
V δt
il

)1(zi=j)

, (4.26)

where1(zi = j) is an indicator function, equal to one ifzi = j, and equal to zero

otherwise.

In order to maximise the likelihood function, it is often computationally more effi-

cient to maximise the logarithm of the likelihood function,and this case is no exception.

This is possible since the logarithm is a monotonically increasing function, and thus the

maximum of the logarithm of a function occurs at the same location as the maximum of

the function. Taking the natural logarithm, and substituting in equation 4.22, equation

4.26 becomes

lnL (β|zN , zN−1, ..., z1) =

N
∑

i=1

J
∑

j=1

1(zi = j)β.Wδt
ij −

N
∑

i=1

J
∑

j=1

1(zi = j) ln

(

J
∑

l=1

exp(β.Wδt
il )

)

. (4.27)

The maximum likelihood estimator forβ occurs when

(

∂ lnL
∂β1

,
∂ lnL
∂β2

, ...,
∂ lnL
∂βn

)

= (0, 0, ..., 0) . (4.28)

Differentiating the terms in equation 4.27, it can be shown that, forg = 1, 2, ..., n,

∂

∂βg

N
∑

i=1

J
∑

j=1

1(zi = j)β.Wδt
ij =

N
∑

i=1

J
∑

j=1

1(zi = j)Wδt
gij, (4.29)
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and that

∂

∂βg

N
∑

i=1

J
∑

j=1

1(zi = j) ln

(

J
∑

l=1

exp(β.Wδt
il )

)

=
N
∑

i=1

J
∑

j=1

1(zi = j)

∑J

l′=1 W
δt
gil′ exp(β.W

δt
il′)

∑J

l=1 exp(β.W
δt
il )

=
N
∑

i=1

J
∑

j=1

1(zi = j)
J
∑

l′=1

W δt
gil′Pr(Zi = l′)

=
N
∑

i=1

J
∑

l′=1

W δt
gil′Pr(Zi = j′), (4.30)

where the final equality arises due to the fact that
∑J

j=1 1(zi = j) = 1 (i.e. that each

rioter makes exactly one choice). Consequently, the derivative of the log-likelihood in

equation 4.27 is:

∂

∂β
lnL (β|zN , zN−1, ..., z1) =

=
N
∑

i=1

J
∑

j=1

1(zi = j)Wδt
ij −

N
∑

i=1

J
∑

j=1

Wδt
ijPr(Zi = j) (4.31)

=
N
∑

i=1

J
∑

j=1

(1(zi = j)− Pr(Zi = j))Wδt
ij . (4.32)

Thus, the value ofβ that maximises the log-likelihood satisfies

N
∑

i=1

J
∑

j=1

(1(zi = j)− Pr(Zi = j))Wδt
ij = 0. (4.33)

In McFadden (1974), it is shown that the functionlnL(β) is strictly concave, and,

therefore, that if a valueβ satisfies equation 4.33, and is a local maximum, then it is

also the global maximum. This result, together with the existence criteria detailed in

McFadden (1974), ensures that robust and efficient estimation procedures are available

to calibrate the model. Moreover, these properties have ledto the model in equation

4.12, with linear-in-parameter observed utility functionsVij being used widely for the

analysis of choice problems.

Optimisation

Using the offence data from the 2011 London riots, 2,299 choice events are used to cal-

culate the likelihood function, together with the data detailing attributes of each alter-

native, as described in section 4.2.2. The value ofβ that maximises the log-likelihood
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is found using the Survival package in the statistical software R (Therneau, 2014). This

particular package has been widely used in the estimation ofmultinomial logistic re-

gression models and is employed here due to its convergence speed with a large number

of observations in the calculation of the likelihood function. The optimisation proce-

dure that this software performs is based upon the algorithmpresented in Gail et al.

(1981).

Since the calculation of the maximum likelihood estimator requires the compar-

ison of each of the 2,299 offenders with each of the 4,765 choices available to that

offender (corresponding to the LSOA geography in Greater London), the amount of

computation required is very large, and, in this case, the computational power available

to run the optimisation (64-bit version of R running on 3.2 GHz Intel Core i3 with 4GB

RAM) is quickly exceeded.

One way of circumnavigating the need to include all of the required data, and

to consequently reduce the computational requirements, isto use sampling methods.

These approaches estimate the likelihood function by, for each offender, selecting a

random sample of alternatives that were not chosen, in orderto compare against the

location that was chosen. Such approaches have been shown toproduce consistent

estimates for the parameter values (Bernasco et al., 2013).

For this study, however, sampling methods are not used and instead the entire

dataset is incorporated by splitting up the analysis and running separate optimisation

procedures for each day of rioting. Running a separate optimisation for each day is

possible using the available computational power, and, furthermore, enables the ex-

amination of if and how the parameter estimates varied on each day of rioting. If the

parameter estimates are consistent over the different daystested, it would provide evi-

dence that the conclusions that may be drawn from them are robust under the data for

the different days (which involves different offenders since each offender appears in

the dataset only once).

The number of offences that occur for each day of rioting, andtherefore the num-

ber of offences included in each optimisation procedure, together with the number of

LSOAs which contain offences during each day, is shown in Table 4.3.

For purposes of clarity, and to avoid making conclusions from an insufficient

amount of data, the results for the first and last day of rioting—the 6th and 10th
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Dates Number of Arrest Records Number of LSOAs Affected

6th August 2011 54 20

7th August 2011 232 42

8th August 2011 1,477 247

9th August 2011 446 162

10th August 2011 90 55

Total 2,299 436

Table 4.3:The number of offences and the number of LSOAs affected by day of

rioting. The total number number of LSOAs affected is the total numberof LSOAs

that experienced rioting over the 5 days.

August—are excluded from the presentation in what follows.Therefore, only results

for the 7th, 8th and 9th of August are reported, which included 93.7% (2,155) of avail-

able records.

Overall model fit and selection ofδt

The first task is to determine the most appropriate value ofδt. The value ofδt cor-

responds to the time interval prior to each offence over which the count of previous

offences at each area, and within each neighbouring area, iscalculated. Maximum

likelihood estimators are found for each day of unrest forδt = 6, δt = 12 andδt = 24.

The overall fit of each model is assessed, and described below, and the most appropriate

value forδt is used in the presentation of results that follows.

As well as different optimisation procedures employed for different values ofδt,

two different optimisation procedures are run in order to examine the spillover effects.

The first model assumes thatβδt
12 = β13 = β14 = β15 = 0, so that the effects of

neighbouring areas do not influence the probability that a target is selected. The second

model assumes that these same parameters are not fixed and arecalibrated in the same

way as the others.

The models with and without the spillover effects are separated due to the antici-

pated high levels of collinearity between the spatially lagged variables and the variables

associated with each target area, which can lead to problemsin the interpretation of pa-

rameter estimates. A model without neighbourhood effects would be preferred from
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the perspective of minimising collinearity in the explanatory variables, but a model

with these effects would be preferred from the perspective of mitigating the impact

from independence of irrelevant alternatives. If the inclusion of spatial spillover ef-

fects has little effect on the estimation of the other parameters, then there will be more

confidence in the robustness of the parameter estimates.

In order to consider the effectiveness of the model as a whole, and to measure the

extent to which it is able to reproduce the observed data, a pseudo r-squared statistic is

calculated for each model run. Denoting the maximum likelihood estimator bȳβ, this

statistic compares the value of the log-likelihood function lnL(β) with β = β̄ and the

value of the same function withβ = 0. Specifically,R2 is defined as

R2 = 1− lnL(β̄)
lnL(0) . (4.34)

Whenβ = 0, the observed component of the utility of each choice is equal to

0, and there is an equal probability that each site is chosen. In this case, there are no

distinguishable features accounted for across the possible choices. Given that the log-

likelihood lnL(β) is a measure of the probability that the model with parameterβ will

result in the observed data, the value ofR2 indicates the extent to which the model

estimated with the parameterβ̄ increases this probability against a null model in which

targets are selected uniformly randomly. It can be interpreted as the extent to which the

model with the parameter̄β explains the variance observed in the model.

The values ofR2 for each of the models calibrated—for each day under considera-

tion, for each value ofδt, and for both inclusion and exclusion of spillover effects—are

shown in Figure 4.3. Considering first the variation with different values ofδt, it is

not immediately clear which value provides the best model. For instance, the model

with δt = 12 appears to have a higherR2 value on the 7th August but the model with

δt = 24 has a slightly higher value on both the 8th August and the 9th August. This is

consistent across models both with spillover effects and without. In order to determine

the value ofδt that provides the best fit to the data, a weighted averageR2 is calcu-

lated given by the weighted meanR2 over each day, weighted according to the number

of offences occurring on each day, given in Table 4.3. These averagedR2 values are

shown in Table 4.4. This table shows that the value ofδt resulting in the model with

the overall best fit isδt = 24. In what follows, this is the value ofδt that is employed.
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6 12 24

Time interval

7th

8th

9th

D
a
y

No lag

6 12 24

Time interval

7th

8th

9th

With lag

0.30

0.32

0.34

0.36

0.38

Figure 4.3:R2 values for each of the different models tested.The darker the shading,

the higher the value ofR2, and the better the fit to the data. The model without spillover

effects is shown on the left, and the model with spillover effects is shown on the right.

The time interval used corresponds to the value ofδt.

Model Weighted R-squared

6hr without spillover 0.3352

12hr without spillover 0.3374

24hr without spillover 0.3405

6hr with spillover 0.3544

12hr with spillover 0.3561

24hr with spillover 0.3581

Table 4.4:Weighted R2 values. These are calculated by taking the average of each

R-squared value over each day of rioting, weighted linearly according to how many

offences occur on each day of unrest.
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Considering overall model fit, the averageR2 across all days of rioting for the

case withδt = 24 is 0.3405 without spillover effects and0.3581 with spillover effects.

The first observation that can be made is that the model performs well in explaining

the variation of target choice in the data: the likelihood function increases by around

35% when explanatory variables are included. In particular, McFadden (1979) states

that values between0.2 and0.4 represent an excellent fit to the data. It should be noted

that theR2 values are typically much lower for maximum likelihood estimation than

R-squared values that can be calculated in ordinary least-squares regression. This is

because the model uses probabilities to estimate a binary choice (whether each area is

chosen). Consequently, theR2 can only be equal to one if the choices that are made are

estimated with probability equal to one, and the choices that are not made are estimated

with probability zero. Uncertainty in the model necessarily decreases the value of the

R2 in a way that does not occur with ordinary least squares regression, and thus the

values are typically lower.

Testing for unobserved heterogeneity in the dynamic variable

Before the results are presented for the parameter estimates, a final complication

brought about by the inclusion of dynamic variables in the attributes of each area is

addressed. The variable used to estimate the role of recent offences on rioter target

choice, denoted byW δt
1ij, may in fact not be capturing the desired effect: that the in-

creased likelihood of areaj being selected is a direct consequence of previous offences

in that area. This is because it may instead be capturing unobserved heterogeneity that

is not otherwise incorporated in the model.

Unobserved heterogeneity arises when factors that are largely responsible for in-

fluencing the choices of individuals are not included in the model. Whilst it is hoped

that, in the derivation of the model, the large majority of such factors have been in-

corporated in some way, it may be that some have been missed due either to a lack of

theoretical understanding of target choice during riotingor due to the lack of available

data.

Similarly to the variables already present in the observed utility function, unob-

served heterogeneity can be either time stable or dynamic. An example of dynamic

unobserved heterogeneity may arise from the behaviour of police, which is likely to
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influence the choice of target, but which has not been included in the model due to a

lack of data on law enforcement activities. Static unobserved heterogeneity may arise

due to the presence of particular retail stores at certain locations or the locations of

police stations, the inclusion of which in the model may haveunnecessarily increased

its complexity.

Since the variableW δt
1ij counts the number of rioters who choose areaj in theδt

hours prior to each offence, it may be that it is actually capturing either dynamic or

static unobserved heterogeneity: areas with high values ofW δt
1ij may have high values

because those areas attracted more rioters due to its characteristics that are not captured

by the model.

The extent to which this variable measures static unobserved heterogeneity can

be directly tested. To do this, the model is calibrated usingthe same optimisation

procedure for each of the three days under consideration with just three variables: the

distance between the residential area of each rioter and their potential target, denoted

byW6ij; the number of rioters who had engaged in the disorder at eachpotential target

in the previous 24 hours; and the number of rioters who had engaged in the disorder

at each potential target throughout the remainder of the duration of the disorder (that

is, the total number of rioters at each location, minus the number who had offended

within the previous 24 hours), denoted byW δt
16ij. The distance between a residential

area and target area is included in this version of the model as it was considered to be

the variable that accounts for most of the variation in the target choice of rioters.

The parameter estimates and their 95% confidence interval are shown in Table

4.5. The parameters associated with counts of an area, both for the previous 24 hours,

as well as for all other times, are significant, and greater than one, indicating that the

presence of offences in a particular area does indeed increase the likelihood that it

is selected for rioting. Since both estimates are significant, it can be concluded that

offences in the previous 24 hours, as measured by the variable W δt
1ij, includes effects

above and beyond what would be anticipated from static unobserved heterogeneity,

since otherwise the static unobserved heterogeneity wouldbe captured by the variable

W δt
16ij. Results are next presented that include the variableW δt

1ij under the assumption

that it is indeed capturing some form of contagion process. However, it should be borne

in mind that there is some level of unobserved heterogeneitynot accounted for in the
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Date Parameter Exponentiated parame-

ter estimate

95% confidence interval

of estimate

7th Aug βδt
1 1.173 [1.156,1.191]

7th Aug β6 0.628 [0.598,0.659]

7th Aug βδt
16 1.060 [1.055,1.065]

8th Aug βδt
1 1.049 [1.046,1.053]

8th Aug β6 0.588 [0.576,0.601]

8th Aug βδt
16 1.079 [1.076,1.081]

9th Aug βδt
1 1.040 [1.030,1.042]

9th Aug βδt
6 0.560 [0.537, 0.584]

9th Aug βδt
16 1.120 [1.106, 1.126]

Table 4.5:Parameter estimates and their associated confidence intervals for the

test of unobserved heterogeneity.

model, which may well arise from processes such as police action on which there is no

available data.

Results

In Figure 4.4, the results of the optimisation procedure arepresented forδt = 24 with-

out spillover effects. In Figure 4.5, spillover effects areincluded. For each component

of the parameter vectorβ, exponentiated point estimates are shown that maximise the

log-likelihood function, subject to the conditions in equation 4.33. A 95% normal

confidence interval is also shown for each parameter. The exponentiated value of the

parameterβg is the multiplicative effect of a one-unit increase in attributeWgij on the

odds that decision-makeri selects targetj. The odds are defined as the probability that

i selectsj, divided by the probability thati does not selectj. If eβg = 1 then there is

no association between that variable and offender spatial decision-making during the

London riots. Values above one suggest that the likelihood of an area being chosen

is positively associated with the variable considered, andvalues below one suggest a

negative association. The value of each exponentiated parameter in Figures 4.4 and 4.5

can therefore enable the interpretation of each attribute in the model.
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Without spillover effects

Figure 4.4: Exponentiated parameter estimates of the discrete choice model for

δt = 24. This model excludes spillover effects. For each parameter,three point esti-

mates are shown as crosses, one for each day under consideration. Each estimate also

has a corresponding 95% confidence interval, shown as an error bar. The error bar is

shaded grey if it crosses zero, otherwise it is shaded black.If it is shaded black, it

implies that the associated parameter is significant at the 0.05 level. The description of

each parameter is given in the supporting text.
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Figure 4.5: Exponentiated parameter estimates of the discrete choice model for

δt = 24. This model includes spillover effects. For each parameter and model run,

three point estimates are shown as crosses, one for each day under consideration. Each

estimate also has a corresponding 95% confidence interval, shown as an error bar. The

error bar is shaded grey if it crosses zero, otherwise it is shaded black. If it is shaded

black, it implies that the associated parameter is significant at the 0.05 level. The

description of each parameter is given in the supporting text.
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Interpretation of estimates

In this section, each parameter estimate from the results presented in Figures 4.4 and

4.5 is considered in turn, and each associated hypothesis related to the theoretical per-

spectives introduced in section 4.2.2 is discussed in the context of these findings. The

results with the spillover variables omitted are first investigated, corresponding to Fig-

ure 4.4.

Taking the first parameter,β24
1 , which measures the effect that offences occurring

in the previous 24 hours at each location has on the attractiveness of that target, the

estimates are consistently positive and significant. Although the magnitude of the ex-

ponentiated variable is only slightly greater than one, therelatively small confidence

intervals for the parameter estimate suggest that this is a highly significant finding.

This finding supports the analysis of Chapter 3: ongoing rioting can act as a situational

precipitator, in which rioters are encouraged to engage in the disorder more so than

they otherwise would. To illustrate, on the 7th September, the odds of an area being

targeted by an offender increased by a factor of1.143 for every additional (detected)

offence that occurred in that area in the previous 24 hours.

Similar statements can be made for each day of unrest; however, when consider-

ing how this variable changes over the three days of rioting—from 1.143 on the 7th, to

1.064 on the 8th, to1.039 on the 9th—the temporal distribution of offences throughout

the duration of rioting requires consideration. This is because the number of offences

that occur within any 24 hour period prior to an offence changes significantly over time,

and such a change may well affect the parameter estimates. Indeed, since the parameter

estimates measure the increased attractiveness of each area due to a single extra offence

with all other things equal, one might expect to experience diminishing returns on the

extent to which attractiveness can increase as the number ofrioters increases. That is,

the increased attractiveness per rioter is likely to decrease with more rioters: it has been

hypothesised elsewhere that the first rioter can be the most important in influencing the

chance of a full scale outburst (Granovetter, 1978). Since the parameter estimates con-

sidered here decrease with each passing day, and since the number of rioters increased

from the 6th August to the 8th August (see Table 4.3), the period of time prior to events

on the 9th August would, in all likelihood, include the greatest number of rioters. Thus,

if there was a diminishing effect on the increased attractiveness as the number of rioters
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at each site increases, then the estimates of the parametersfor this variable would be

expected to decrease over time, which is indeed what is observed.

The parameter estimates forβ2, corresponding to the presence of schools in the

target area, are all positively associated and significant at the0.05 level with the choices

made. Thus, rioters were more likely to offend in areas containing schools. It was

argued in Section 4.2.2 that this is likely to occur due to therole of schools in the

collective routine activity nodes of offenders. Considering all offenders, the odds of a

rioter selecting an area for each additional school contained within that area increases

by a factor of between1.692 and2.101 for each of the days under consideration.

In order to further test the hypothesis that the role of schools in the target choice

of offenders was a result of those schools being prominent inthe routine activity nodes

of offenders, an interaction parameter was also estimated to determine the extra effect

brought about by the offender being over the age of 18. Although only significant at

the0.05 level for the 8th August, there is some indication that the effect of schools on

the decision making of adults is less prominent than it is forjuvenile offenders. For

instance, on the 8th August, the point estimate ofeβ
a
2 is 0.769, meaning that the total

impact of schools will be around23% less for adult offenders. This provides some

support for the theory that routine activity nodes are likely to change and diminish for

individuals as they get older.

The effect from the connectivity of an area, proxied by an indicator of the presence

of an underground train station given byβ3, was, for the 7th and 9th August, positively

associated with the chance that the area was selected. In fact, on those days, the odds of

an area being targeted by an offender more than doubled if it contained a station. This

provides further support that those areas in the routine activity nodes of offenders were

more likely to be targeted. On the 8th August, the estimate was not significant, and,

curiously, was in the opposite direction to the other two days. This might be explained

by the fact that, on the 8th August, the rioting was much more widespread than on the

other days and so the ease of accessibility might have been less of a concern for rioters

on this particular day.

The effect of retail centres, as measured byβ4, was positively associated and sig-

nificant with the likelihood of an area being selected for alldays considered. For every

additional250m2 of retail floorspace in an area, the odds that it was selected as a lo-
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cation in which to riot increased by a value of between1.22 and1.32, all other things

being equal. Whilst this finding might be interpreted as evidence for the targeting of

routine activity nodes, which may include retail centres, it may also be a result of many

of the offences during the riots being associated with looting of high-value goods.

The effect on target attractiveness from its distance to thecity centre, as measured

by β5, did not appear to play a consistent role, as the estimate wasonly significant for

one of the days tested. On the 7th August, the exponentiated coefficient was statistically

significant and positively associated with the choice of target, suggesting that rioters

were more likely to offend further away from the city centre.However, on the 8th

August and 9th August, the effect was indistinguishable. One reason for the apparent

absence of the influence of this variable may be that, for a city like London, the city

centre may be too crude to represent a routine activity node for all offenders.

The point estimates forβ6 are significantly negatively associated with the choices

made by rioters for each day of unrest. Sinceβ6 measures the effect of Euclidean

distance between the offender’s residence and their riot location, this suggests that areas

further away from a rioter’s residence were less likely to beselected, which is entirely

consistent both with the theory of crime patterns and studies investigating the journey

to crime. Indeed, given the distance decay shown in Figure 4.1, this finding is to be

expected. For interpretation, the odds of an offender selecting an area reduces by a

factor of between0.482 and0.608 for each additional kilometre of distance between

their residence and that target area, all other things beingequal.

Two of the three estimates ofβa
6 are statistically significant at the0.05 level, sug-

gesting that the magnitude of the exponentiated parameter estimate for the journey to

crime variable is closer to one for adults than it is for juveniles. This indicates that,

as hypothesised in Section 4.2.2, the effect of distance on the target choice of rioters is

more pronounced for juvenile offenders, and adult offenders did indeed appear to travel

further to commit their crimes. This could be a result of the extended awareness spaces

of adults perhaps combined with their increased means to travel farther.

The influence of the River Thames, as measured byβ7, was significantly positively

associated with rioter target choice, and consistent across all days. The odds of an

offender selecting an area were up to five times higher if thatarea was on the same side

of the river as the area in which they lived, all other things being equal. This supports
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the hypothesis derived from crime pattern theory, which states that the river acts as a

natural barrier to the awareness spaces of offenders.

With respect to social disorganisation, as measured by population churn, ethnic

diversity and deprivation, whose effect is measured byβ8, β9 andβ10 respectively, the

parameter estimates were, in general, positively associated with target choice, although

some results were not statistically significant at the0.05 level. In particular, areas with

a higher level of deprivation were more likely to be selectedon each day of the riots.

The odds of an area selected increased by a factor between1.269 and1.632 for each

unit increase in the measure of deprivation. The likelihoodof an area being selected

increased by a factor of between1.2 and1.3 for each unit increase in the measure of

churn of that area, although the effect was not statistically significant on the 7th August.

The effect of attractiveness on target choice increased by asimilar amount for ethnic

diversity on the 7th and 8th August but was not significant on the 9th. Thus, areas

with higher levels of churn, ethnic diversity and deprivation were more likely to be

targeted, thereby supporting theories of social disorganisation, which state that in areas

with higher values of such variables, the residents are lesslikely to have the ability to

collectively prevent such crimes from occurring.

As discussed in Section 4.2.2, there are two mechanisms by which this effect is

likely to come about. Cohesive neighbourhoods might exert control over their residents

to reduce the likelihood that they would engage in the disorder. Alternatively, signs

of social cohesion, or collective action, might act as a barrier to deter rioters from

targeting a neighbourhood. Such action was reported as helping to stop some of the

rioting that took place in the United States during the summer of 1967 (Corman, 1967),

and, while not systematic, anecdotal evidence from media coverage of the London 2011

riots suggested that in some areas residents acted collectively to prevent rioters from

targeting their neighbourhoods.

With respect to population density, and the parameter estimate forβ11, it would

appear that, while the strength of the effect decayed over the course of the three days,

with it being statistically insignificant at the0.05 level on the final day, offenders tended

to select areas with lower population density. In this model, population density is in-

cluded as a control and is not discussed with respect to a particular hypothesis. This

finding does, however, demonstrate the value of including this variable in the model
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specification.

In Figure 4.5, in which estimates of the exponentiated coefficients for the spillover

variables are also presented, it can be seen that the resultsare consistent with those

discussed so far, both with respect to the direction in whichthe effect acts, as well

as to the significance of each variable. Thus, it can be concluded that the inclusion of

spillover effects does not drastically alter the parameterestimates of the other variables.

This demonstrates that the findings are robust, and implies that the substitution patterns

captured by the spillover variables do not unduly impact theother estimates.

The spillover effect from prior offences, as measured byβ24
12 , is significant and

positive for all days under consideration. The occurrence of offences in neighbouring

areas therefore appears to increase the attractiveness of areas to rioters. These results

are consistent with the findings of Chapter 3 in which evidencefor the spreading of

offences in space and time was demonstrated. Considering thespillover effects for the

presence of schools, underground train stations and retailareas, as measured byβ13,

β14 andβ15, respectively, the results are more mixed, with significanteffects at the0.05

level detected for schools on the 7th and 8th August, for underground stations on the

8th August and for retail areas on the 7th and 8th August.

The interpretation of the individual spillover parametersis complicated due to high

levels of collinearity with non-spillover variables that arise due to spatial autocorrela-

tion of those variables. The importance of including the spillover effects is largely to

determine whether the non-spillover parameters are consistent when the spillover ef-

fects are included. Since this appears to be the case, this provides evidence for the

robustness of the parameter estimates and the model itself.In particular, variables as-

sociated with crowd theory, crime pattern theory and socialdisorganisation theory have

been shown to provide robust estimates for influences on rioter target choice. Consis-

tency of many of these estimates over the different days tested implies consistency in

the decision-making of rioters, providing some evidence for the presence of (bounded)

rationality in rioter target choice.
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4.3 Simulating the 2011 London riots: Towards a policy

tool

Mechanistic models of rioting, in which model assumptions specify how system entities

behave, can be used to generate different scenarios wherebyhypothetical outbreaks of

rioting are simulated. These hypothetical scenarios can becompared against empirical

observation and the mechanisms that are used to construct the model can be evaluated.

In this section, a novel microsimulation model of rioter target choice is proposed, based

upon the statistical model of target choice presented in Section 4.2. First, the model is

described and evaluated as a mechanistic model for rioter target choice. The model

is novel due to the way it incorporates theoretical perspectives via the target choice

model described in Section 4.2. The extent to which it improves upon prior models

of rioter behaviour is discussed. Second, the potential forthe model to be used in a

policy-making context is explored by using it to propose solutions for police resource

allocation during rioting.

4.3.1 Microsimulation of target choice

Microsimulations and agent-based models are, in many cases, indistinguishable. They

both model the behaviour of individuals and are concerned with how local behaviour

aggregates to global outcomes (both techniques are introduced in more detail in Chapter

2). Efforts at separating the two approaches typically consider the extent to which

empirical data forms model assumptions; or whether the objective for constructing the

model is for the quantitative prediction of a real-world phenomenon, as is the case

for microsimulation models, rather than for the explanation of how that phenomenon

emerges through the behaviour of system entities, which is often the case for agent-

based models (Birkin and Wu, 2012). The model presented here uses the model from

Section 4.2, which is based on empirical data, to form its assumptions. Furthermore,

its potential as a component model for the quantitative prediction of riot locations is

considered. For these reasons, the term ‘microsimulation’is preferred.

The objective of a microsimulation model is to generate realisations of individu-

als, based on aggregated empirical data, which might have applicability within a policy

setting (Ballas et al., 2005). Microsimulation models typically consist of an empirical

dataset of a particular population, which is used to specifythe initial conditions, to-
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gether with a series of probability distributions that may be conditional upon a range

of factors. Pseudo-random number generators combined withthese probability distri-

butions are then used simulate certain characteristics associated with each individual in

the population, such as the decisions that they make over a period of time.

The successful estimation of parameters in the statisticalmodel of discrete choice

in Section 4.2 suggests that an appropriate decision to be simulated is the target choice

of rioters during the 2011 London riots. The probability distribution defined by the

model in Section 4.2 is conditional upon the initial location of each rioter, the age of

the rioter, the time at which the rioter decides to engage with the disorder, and the

characteristics of the riot scenario up until that time. Thus, this model is well suited to

being applied within a microsimulation framework.

The model is described as follows: suppose that each offender, indexed byi for

i = 1, 2, ..., N , resides within an LSOA in Greater London, denoted bys
(o)
i , and is

deemed to commit their offence at timeti, corresponding to the hourly interval within

which the offence occurred. LetIa(i) indicate whether offenderi is an adult or under

the age of 18, and lets(d)i denote the LSOA that was chosen according to the empirical

data. Suppose also that the offences are ordered so thatti < ti+1 for i = 1, 2, ..., N −1.

Since the discrete choice model presented in Section 4.2 depends on the riot scenario

up until each rioter makes their decision as to where to engage with the disorder, the

history of the system at timet, denoted byH(t), is defined by the set

H(t) =
{

(ti, s
(d)
i )|ti < t

}

. (4.35)

The variable to be simulated is the target choice of each offender. Since there is

uncertainty surrounding the choice that each offender makes, a random variableZi is

modelled. Realisations ofZi are required to correspond to the LSOA which offenderi

selects as a target within the simulation; thus, the set of possible values forZi is given

by the setD = {1, 2, 3, ..., 4765}, where each member ofD corresponds to an LSOA.

The probability mass function ofZi prescribes the probability with which each

member of the setD becomes a realisation ofZi, and therefore determines the prob-

ability with which each LSOA is chosen by offenderi in the model. In Section 4.2,

the model estimated was for the probability mass function ofZi, conditional upon the

origin of the offender, their age, the time at which the offence occurred, and the history
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of the system at that time. Denoting this function byfZi
, then

fZi
(j|s(o)i , Ia(i),H(ti)) = Pr(Zi = j|s(o)i , Ia(i),H(ti)) =

eV
δt
i (j)

∑J

l=1 e
V δt
i (l)

, (4.36)

whereV δt
i (j) is the observed component of utility gained by offenderi if they were to

select optionj ∈ D.

A candidate for the functionV δt
i (j|s(o)i , Ia(i),H(ti)) was constructed in Section

4.2 where it was writtenV δt
ij ; however, not all of the components of the model were

deemed to be significant predictors for the behaviour of rioters. As a consequence, the

model taken in this section is chosen to only include the variables which provided the

most predictive power, assessed by the corresponding confidence interval associated

with each variable. Thus, the following function is defined:

V δt
i (j) =βδt

1 W
δt
1ij + β2W2j + βa

2Ia(i)W2j + β3W3j

+ β4W4j + β6W6ij + βa
6Ia(i)W6j + β7W7ij + β10W10j, (4.37)

where the terms are denoted as in Section 4.2 and measure, respectively, the effect

from: offences occurring in target areaj during the previousδt hours toti; schools

in target areaj; underground train stations in target areaj; retail floorspace in target

areaj; the distance between the offender’s residence and target areaj; whether or not

target areaj is on the same side of the river Thames as the offender’s residence; and

deprivation in target areaj. As well as explaining a large amount of the variance in

the data, these variables also capture the three theoretical perspectives—crowd theory,

crime pattern theory, and social disorganisation theory—discussed in the derivation of

the model. The measure for the number of rioters in the previous δt hours,W δt
1ij, is

taken withδt = 24, in accordance with Section 4.2.

The values of the vectorβ = (βδt
1 , β2, β

a
2 , β3, β4, β6, β7, β

a
7 , β10) are selected in

accordance with the estimation of these parameters in Section 4.2. For offenderi, the

corresponding parameterβ is found by sampling independently from the joint normal

distribution with mean given by the point estimates ofβ from Section 4.2 and standard

deviation given by the corresponding standard errors. Recall that three sets of param-

eters were estimated: one for each day of rioting under consideration. The choice of

distribution for each parameter therefore also depends upon the day on which the of-

fence occurred.
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Random sampling of the parameter values is employed to betterreflect the uncer-

tainty associated with each parameter over the different decision-makers. The resulting

model is related to a mixed logit specification, in which the parameters themselves are

random variables described by a corresponding distribution function (see, for exam-

ple Train (2003)). The simulation itself might be thought ofas a mixed logit model

with independent normally distributed parameters, with means and variances given by

the conditional logistic regression estimated in the previous section. Although the pa-

rameters might, in reality, be likely to covary with decision-makers, the assumption

of independence is used as an approximation, and merely as a means of incorporating

variation across decision-makers.

The simulation proceeds as follows:

1. Seti = 1.

2. At timeti, offenderi commits their offence at some location. Calculate the value

of fZi
(j|s(o)i , Ia(i),H(ti)) for eachj ∈ D.

3. For eachj, find the value of the function

FZi
(j|s(o)i , Ia(i),H(ti)) = Pr(Zi ≤ j|s(o)i , Ia(i),H(ti))

=

j
∑

l=1

fZi
(l|s(o)i , Ia(i),H(ti)), (4.38)

which forms an increasing function on the setD, taking values in the interval

[0, 1].

4. Generate a pseudo-random number between0 and1, denoted byR.

5. Find a realisation ofZi, given byzi = F−1
Zi

(R).

6. If i < N , seti → i+ 1 and return to step 2, otherwise stop.

This simulation produces a set of chosen target areas,z1, z2, ..., zN , where the

lower case notation is used to correspond to the realisationof the random variableZi

for i = 1, 2, ..., N . The outputs of this simulation represent a riot scenario inwhich

the rioters behave according to the discrete choice model derived in Section 4.2. If the

model is able to recreate the observed riot data, then it provides evidence to suggest that
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the theoretical perspectives discussed in Section 4.2 are both necessary and sufficient to

explain rioter target choice. Furthermore, if the model canprovide accurate realisations

of riots, then it may be possible for the model to be employed as a predictive tool. In

what follows, a comparison between the model outputs and theempirical data is first

made, before considering a potential policy application.

4.3.2 Comparison of the model with empirical data

A full out of sample validation of the model is not possible since it has been estimated

using all of the available empirical data for each day. This was done in order to gain

the best possible understanding into the range of mechanisms that might underlie rioter

target choice. Nevertheless, an assessment of the model canbe made by determining

the extent to which the incorporated mechanisms are able to both quantitatively and

qualitatively predict the distribution of rioting in the sample data.

In order to assess the model, it is noted that each realisation is the result of a

number of stochastic elements, and, thus, to get a more complete understanding of the

model outputs, a sample of100 realisations is made, resulting in chosen target areas

z
(g)
1 , z

(g)
2 , ..., z

(g)
N for g = 1, 2, ..., 100. To determine whether the model is capable of

producing similar output to the observed phenomenon, the average number of rioters

that targeted LSOAj over the100 simulations of the model, given by

C̄j =
1

100

100
∑

g=1

N
∑

i=1

1(z
(g)
i = j), (4.39)

where1(.) is an indicator function equal to one if the condition insidethe bracket is

satisfied, and equal to zero otherwise, is compared against the actual counts of events

that occurred in LSOAj for j = 1, 2, ..., J .

Figure 4.6 is a bar chart in which thex-axis represents the 30 LSOAs that were

most targeted by the rioters according to the empirical data. The bars in the positive

direction correspond to the empirical count of offences in each LSOA and the bars in

the negative direction correspond to the values ofC̄j that are obtained from the 100

iterations of the simulation for the corresponding LSOAsj. Although a significant dis-

crepancy between the model and the data is observed, there issome indication that the

most targeted LSOAs were also those that were most targeted according to the simula-

tion. This implies that the model might indeed be able to contribute to the prediction of
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riot locations; however, it doesn’t necessarily capture all of the underlying behaviour

of the rioters. In particular, the values of the counts in theempirical data are much

larger than the counts resulting from the simulation, suggesting that there was greater

clustering in some areas observed than is accounted for in the model.
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Figure 4.6:Rioter counts for the 30 most targeted LSOAs according to the empiri-

cal data. The positive bar chart shows the empirical counts, and the negative bar chart

shows the averaged simulated counts.

If the model is to be used as a forecasting tool in a policy setting, one must also

be wary of the false positive rate of the simulation, which might occur when the model

erroneously predicts that an particular location will be targeted. Figure 4.7 shows a bar

chart in which thex-axis represents the 30 LSOAs that were most targeted according

to the averaged simulation counts, given byC̄j for j = 1, 2, ..., J . The majority of loca-

tions most selected by rioters in the simulation were also those areas selected according

to the empirical data. There are, however, two notable outliers that deserve attention.

The largest outlier, the second most selected as a target according to the simula-

tion, experienced no offences according to the empirical data. This particular LSOA

represents a region in North London containing five schools.Since the count of schools
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was used as an attractiveness factor in the model of target choice, which, for this LSOA

would have been five times as strong, many simulated rioters selected it as a suitable lo-

cation at which to commit their offence. Possible explanations for why this area was not

selected by rioters according to the empirical data may be that the effect from schools is

not additive, and that a school indicator function, taking values0 or 1, would have been

a more appropriate measure of the effect from schools, rather than the count. Another

explanation may be that the effect from the presence of schools in each LSOA is, in

reality, dependent upon a range of other area-level attributes such as retail floorspace.

Nonlinear utility functions can be used to model such dependencies.

Another outlier, representing the fifth most selected LSOA according to the simu-

lation, contains part of London’s largest retail centre in the area around Oxford Street.

According to the empirical data, this LSOA experienced no riot offences. Since retail

floorspace is an attractiveness factor within the simulation, the large retail floorspace

of this particular LSOA in comparison to all other areas is likely to have attracted a

greater proportion of rioters. Possible explanations for why rioters perceived the very

centre of London’s retail district as a poor target according to the empirical data may

be the perception that, within the centre of London, there may be more law enforce-

ment officers available to counter any riots, which may increase the chances that each

rioter will be arrested. Furthermore, larger retail centres may also have higher levels of

security, meaning that looting and other riot related offences are difficult to commit.

Although each simulation of the riots has the same number of offences as in the

empirical data by construction, the average of the varianceof counts across each sim-

ulation is3.29, compared to11.90 for the empirical data. The offences are therefore

more spread out over the LSOAs in the simulation of the riots than is actually observed.

This suggests that, although the model goes someway to explaining the target choice

of rioters, it does not incorporate all possible explanations as to why rioters selected

certain locations over others. Nevertheless, although there are discrepancies between

the model and the empirical data with respect to the counts ofoffences that occurred

within each LSOA, the present model may still be of use in a policy setting if it is able

to broadly reproduce the spatial patterning of the riots. Todetermine this, it is next con-

sidered whether, with as few outliers as possible, the simulation broadly consistently

highlights those areas that were most vulnerable to experiencing riots. For this purpose,
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Figure 4.7:Rioter counts for the 30 most targeted LSOAs according to the average

of the simulations.The positive bar chart shows the empirical counts, and the negative

bar chart shows the averaged simulated counts.
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another metric is employed: the ratio of the count of the LSOAto its rank, where the

LSOAs are ranked according to the number of offences that occur within it. The inclu-

sion of the rank of each LSOA is to reduce the dependency of thefollowing tests on

just the counts of offences, which have been shown to includenotable discrepancies. If

the model is able to broadly highlight the areas most at risk,then it may be of use for

the prediction of the location of riots.

Figure 4.8 plots the ratio of the count of offences to its rankfor each LSOA, com-

paring the empirical data to the averaged simulated data. Ifthe model is a good fit to the

data, a positive correlation would be expected. Although there is a significant amount

of variation between the model and the simulated data, a positive correlation is also

observed. The Pearson’s product moment correlation coefficient is0.906, confirming

a strong positive correlation and suggesting that the simulation is indeed capable of

reproducing some of the more general patterns observed in the empirical data.
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Figure 4.8:Ratio of count to rank for each LSOA for both the empirical data and

the simulation. The ranks are obtained by sorting the LSOAs according to their count.

The plot is shown on a log-scale for clarity.
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4.3.3 The model as a component in a policy tool

In this section, it is demonstrated how the microsimulationmodel presented in section

4.3.1 might be used within a policy context. The strategic deployment of police during

a city-wide outbreak of rioting, as observed in London, is animportant policy issue.

Police allocations can be made in anticipation of rioting, and are dynamic, meaning that

law enforcement officers can move towards nearby sites at which rioting occurs. The

objective for police commanders, therefore, is to optimally allocate law enforcement

officers over different areas in the city so that the maximum number of police officers

are within a short travel distance of anticipated riot locations, enabling police to arrive

quickly once rioting occurs.

In order to understand which locations might be best for deployment, the mi-

crosimulation model described in Section 4.3.1 is used to generate realisations of riot

scenarios. In what follows, a dynamic allocation algorithmis proposed that uses the

outputs of such realisations to produce potential deployment distributions in London.

Suppose thatG riot realisations are given byz(g)1 , z
(g)
2 , ..., z

(g)
N for g = 1, 2, ..., G,

as in Section 4.3.1. Let the count of offences that occur in LSOA j (for j = 1, 2, ..., J)

in theg-th realisation be denoted byC(g)
j and suppose that the number of police officers

available to be deployed prior to a potential riot outbreak is given byL. For scenarios

in which the police are unable to be present over the entire region in which riots are

anticipated, as was the case during the riots in London, it can be expected thatL ≪ J .

When considering potential deployments, the police will consider the number of

police officers that may be required for any given number of rioters at each location. In

this section, the number of police officers required to alleviate the threats posed by one

rioter (in terms of the damage they may incur on property and danger to civilians) is

assumed to be given by the parameterν. To explain, a riot of50 rioters would require

a deployment of50ν police officers to be quelled.

The anticipated riot intensity at LSOAj is defined to be

ln

(

1 + C
(g)
j

1 + νL
(g)
j

)

, (4.40)

whereL(g)
j is the number of police officers deployed to areaj in iterationg. This par-

ticular form is chosen partly because it increases logarithmically with increasing rioter

count, meaning that whilst the intensity will be significantly increased when a single
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rioter decides to engage with a small disorder—indicating that the disorder is showing

significant signs of growth—a rioter joining an already large disorder will increase the

intensity by a smaller amount since it is of relatively less importance in comparison

to the already large disorder. In addition, the measure deceases logarithmically with

increasingνL(g)
j , suggesting that a small number of police can drastically reduce the

threats posed by a small disorder but that the allocation of additional police to larger

disorders, at which there is already a significant police presence, does not have a similar

reduction. The addition of1 to both the numerator and denominator avoids the measure

being undefined for all non-negative values ofC
(g)
j andL(g)

j .

The allocation of police should also incorporate the time ittakes for police to

travel between expected rioter sites, since once rioting emerges in certain locations,

police officers may wish to arrive quickly to alleviate its impact and to prevent the riot

from growing. The proximity between two LSOAsl andj is defined to be

exp(−υdlj), (4.41)

wheredlj is taken here to be the Euclidean distance between the centroids of LSOAj

and LSOAl in kilometres andυ is a positive parameter. Other implementations might

consider alternative distance metrics, such as road traveltime between two LSOAs.

The form of this function is useful since it obtains a maximumvalue of1 only for the

LSOA in which police are already located, and decreases quickly for nearby LSOAs.

Therefore, greater emphasis is placed on police being more inclined to remain where

they are, rather than travelling too far, and, arriving at a location at which the presence

of police is no longer required. The parameterυ controls the extent to which emphasis

is placed upon nearby locations, rather than locations farther away.

Using the two components of riot intensity and proximity, a measure of deploy-

ment utility is next defined. The idea behind this measure is to determine the benefit

of allocating a single police officer to a particular LSOA, whilst accounting for their

ability to travel to nearby potential riot sites and, simultaneously, accounting for the

police that might already be located nearby. Denoting deployment utility for LSOA l

and iterationg byY(g)
l , the measure is defined as

Y(g)
l =

J
∑

j=1

ln

(

1 + C
(g)
j

1 + νL
(g)
j

)

e−υdjl . (4.42)
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In order to produce a full allocation of theL available police, a dynamic allocation

is required. To explain, after each police officer has been allocated to the LSOA with

the maximum value ofY(g)
l , the value ofY(g)

l requires recalculation, taking into account

the effect of the previous deployment. Thus, a suitable algorithm for the allocation of

police according to the microsimulation model is given by the following procedure:

1. SetL(g)
l = 0 for l = 1, 2, ..., 4765.

2. CalculateY(g)
l as in equation 4.42 for each LSOAl.

3. Find the maximum value ofY(g)
l over all LSOAs and allocate one police unit to

that location. Update the values ofL
(g)
l to reflect this deployment.

4. If there are still more police to allocate, return to step 2, otherwise stop.

The average value of the deployment utility overG = 100 iterations withL(g)
j = 0

for each LSOAj and iterationg and withν = υ = 1, is shown in Figure 4.9 as a heat

map. LSOAs that are shaded darker have a higher initial deployment utility associated

with them, and are therefore areas where rioting is predicted to occur. According to

the simulation, there are two prominent areas that have the highest level of deploy-

ment utility: one above the river Thames and one below the river Thames (the river is

indicated by the white line through the centre of Greater London). The value of the

deployment utility of an LSOAj, in comparison to the other LSOAs, can be thought

of as the relative importance of allocating police officers to that particular area and this

figure shows the spatial distribution of this measure.

As a final comparison between the microsimulation model described in Section

4.3.1, the equivalent value of the deployment utility calculated with the empirical

counts of offences, rather than the simulated countsC
(g)
j , is shown in Figure 4.10.

Again, the darker the shading of the LSOA, the higher the deployment utility and more

value is assigned to that particular area. In this case, the darker areas of the map are

more localised, with three or four prominent areas at which the deployment utility is

highest.

Although there is some discrepancy between the model outputs and the empirical

data, there is agreement in terms of the broad pattern. In particular, the model appears
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Figure 4.9:The simulated deployment utility for each LSOA in Greater London.

The average value ofY(g)
j overg = 1, 2, ..., 100 iterations is calculated assuming that

no police officers have been deployed. This value corresponds to the shading of each

LSOA j. Darker shades indicate higher levels of deployment utility. The rioter counts

for each LSOA are those estimated from the microsimulation model in Section 4.3.1.

The river Thames is indicated by the white line through the centre of London.
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Figure 4.10:The empirical deployment utility for each LSOA in Greater London.

The value ofYj is calculated assuming that no police officers have been deployed. This

value corresponds to the shading of each LSOAj. Darker shades indicate higher levels

of deployment utility. The rioter counts for each LSOA are obtained from the data. The

river Thames is indicated by the white line through the centre of London.
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to generate a number of peaks of deployment utility in broadly similar areas to the de-

ployment utility calculated with the empirical data. The distribution of the deployment

utility with the actual data appears to be strongly clustered in certain locations in com-

parison to the model, where the clusters are much larger. Potential explanations for

this effect include the fact that the deployment utility forthe model is calculated using

the average of a number of simulations, and thus may become more smooth. Another

explanation may be due to the fact that the variance of the counts of offences is much

greater for the empirical data than was observed in the simulation. The simulation

led to the occurrence of offences that were more spread out inspace, and the results

presented here reflect this.

As a policy tool, the model presented here is, as yet, incomplete. It cannot be

used on its own to predict the locations of future riots due toits conditional dependence

upon certain features of the empirical data. Each of the factors upon which the model

is conditional requires the development and implementation of separate sub-models.

The model is conditional on the age and residential locations of each offender, the time

at which each offender chooses to commit their offence, and the history of the riot up

until one hour prior to the point at which the model is used. Models for rioter age and

residential location might be developed by exploring further the characteristics of the

rioters who have previously engaged in rioting combined with demographic statistics

from London. Models for the timing of rioter offences might be used to explore further

mechanisms of contagion. In particular, such models will berequired to specify pre-

cisely how a rioter chooses to engage in the disorder, and notjust where they choose to

do so. The history of the system can be provided by real-time police recording during

a riot. Such models are not explored further in this thesis soas to not detract from its

principle objective: understanding how different models might be used to gain insight

into the spatio-temporal characteristics of civil violence. Instead, the presentation of a

policy model of target choice in this section has provided a proof of concept that statis-

tical models of this type might be usefully incorporated into predictive policy models.

Another limitation of this model is that it does not account for the effect that

the deployment of police officers may have on the target choice of rioters. Further

development of the model might incorporate such effects although this was not possible

in the present study due to a lack of available data on law enforcement activity. Game
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theory might usefully contribute to the models developed here since both rioters and

police might aim to strategically position themselves in anattempt to maximise their

utility (see, for example, Oléron Evans and Bishop (2013)).

Finally, rioting is a dynamic phenomenon that occurs over relatively short time

periods (the London riots occurred over five days in total). The optimal allocation of

policing is therefore likely to vary on shorter timescales than is accounted for here, and

further work might account for this.

4.4 Discussion

Difficulties in the mathematical modelling of social systems arise because the be-

haviours of individuals and their interactions with othersare complicated and uncertain.

Individuals can behave with inconsistency under seeminglysimilar situations. Policy-

makers, however, can benefit greatly from the generation of modelled scenarios. Such

scenarios can, for instance, enable training of decision-makers, or can enable the test-

ing of crowd control measures, which are almost impossible to test during outbreaks of

rioting due to the challenge of making key decisions in real-time.

Previous models of rioting have typically taken the perspective that simplicity is a

virtue. In this section, almost as an alternative to this perspective, insights have been

obtained from theories in the social sciences, which have been built up over many

decades of qualitative and quantitative studies into the behaviour of both individuals

and crowds. By incorporating well-developed theories into amodel of rioter target

choice, and having calibrated this model against the Londonriot data to estimate the

parameters and assess the goodness of fit of the model, a simulation has been proposed

that produces realisations of riot scenarios. It has been demonstrated how this model

might be used in a policy-making context, through the optimisation of the allocation of

police officers based on model outputs.

There are many new contributions presented in this chapter.The novel application

of a discrete spatial choice model to rioter target choice has provided further evidence

that, across the three days of rioting considered, there is evidence to suggest that of-

fenders selectively chose targets. This supports previousresearch on target selection of

rioting. Furthermore, the estimation of model parameters suggest that it is largely the

factors that have been used to influence offender spatial decision-making for a range of
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different crime types that can be used to explain target selection in rioting. Considering

the different theories examined, factors associated with crime pattern theory—namely,

the distance an offender travels between their residence and their offending location,

whether or not the Thames is to be crossed, and the presence ofschools, retail centres

and transport hubs—all appear to contribute to the spatial decision-making of rioters.

The consistency of the findings, both in terms of their alignment with the hypotheses

articulated in Section 4.2.2, and the patterns observed across the days for which results

were presented, provide further support for crime pattern theory as a model of offender

spatial decision-making. These findings emphasise the value of crime pattern theory as

a means of explaining offender target selection in extreme circumstances such as those

associated with riots, for which some scholars have previously argued that rational

decision-making is abandoned.

The findings provide further support that the riots were highly contagious, as the

occurrence of ongoing rioting at a particular location significantly increased the likeli-

hood that that area was to be selected. There was also supportfor the idea that social

disorganisation theory had a part to play, and areas which had fewer means of exert-

ing social control of a particular area were more likely to have experienced riots. The

extent to which the model explains the variance in the empirical data is fairly high,

improving upon a model based on uniform random choice of target areas by rioters by

around 35%.

A simulation model that is based on this discrete choice model has also been out-

lined, in order to consider how such statistical modelling might be employed within

a policy setting. Models of rioting can have a direct and immediate impact on policy

decision-making, as the presence of crowds and riots often requires decisions to be

made with regards to how they are managed in real-time. The use of models to gener-

ate crowd and rioting scenarios can be used to understand what a good set of strategies

or actions might be in order to increase safety or alleviate the negative effects of riot-

ing, such as looting or property damage. Models of crowds have previously been used

when designing the fastest evacuation routes from buildings (Zarboutis and Marmaras,

2004), to decide on optimal street layouts (Batty et al., 2003), and to design crowd

control strategies at mass gatherings (Helbing et al., 2007).

Some have argued that many of these agent-based models do notsufficiently cap-
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ture the range of realistic behaviours that might be expected of individuals in such

scenarios (Aguirre et al., 2011; Drury and Stott, 2011). In particular, there is concern

that recent simulation and agent-based models of rioting are too simplistic, and that

they are based more upon early theories of ‘panic’ and irrationality, such as those artic-

ulated by Le Bon (1896; 1960) and Freud (1921), rather than based on the more recent

theoretical research which argues that individuals in facttend to exhibit more rationality

in their behaviour. Models that incorporate the behavioursof agents according to these

more recent theoretical developments are beginning to demonstrate greater utility by

generating more realistic scenarios (a recent example is the agent-based model of Tor-

rens and McDaniel (2013) who incorporate the interaction behaviour between rioters

and the more immediate urban environment in which the riot takes place). The simula-

tion model presented in this chapter directly incorporatesa complex decision-making

process on the part of each rioter, based on theories that attempt to explain offender

behaviour. In this sense, the model represents a significantcontribution to modelling of

riots.

There are limitations to the model presented in this chapterthat require discussion.

The applicability of statistical models in the policy domain has been previously ques-

tioned (Ward et al., 2010) since statistical models that have been thought to explain

empirical data rather well have been shown to be largely inappropriate when testing

predictions or forecasts. This is largely due to the problems associated with overfit-

ting the model on the available data. In this chapter, the model is calibrated with data

from the 2011 London riots, which is just one example of a riotprocess. It has been

shown that the model explains variance in the empirical datarather well; however, it

may be that it will not be of any use in predicting new or out of sample riot scenarios,

such as those occurring at different times, and those occurring at different locations.

This effect is hoped to have been mitigated by basing the model assumptions on ex-

isting criminological theory. Another question that mightbe considered is whether the

model can be applied to scenarios outside of London. Cultural, social and geographic

effects may well play a role in determining the attractiveness levels associated with

the variables tested elsewhere. Indeed it may be that a different city with a different

transport network, and with different convergence of routine activity spaces, leads to

different parameter estimates and different conclusions as to the important factors of
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rioter target choice.

There are a variety of choice models that could have been chosen to model the

decision-making of rioters. The conditional logit discrete choice model was chosen due

to its attractive properties: the likelihood function is globally concave with linear utility

functions, ensuring a maximum likelihood estimator is unique, and thus the model is

very computationally efficient. In addition, the model can readily incorporate spatial

spillover effects, mitigating the impact from independence of irrelevant alternatives and

correlated error terms. The choice of model can be justified by considering its potential

use in the policy domain. In particular, if the model were to be employed in real-

time, updating parameters based on where and when offences are occurring, then such

computational efficiency would be highly desirable.

If the simulation described in Section 4.3.1 is to be ultimately useful from a policy

perspective, then it cannot rely upon the data used in the simulation to determine the

locations of where rioters originate, and the time at which they choose to offend. A

method for identifying the likely locations of rioter’s origins and the times at which

they decide to engage in the disorder is therefore required.

It has been shown that the likely origin of a rioter is a significant predictor for

the target of each offender. An advantage of the modelling procedure presented in this

chapter is that it is able to distinguish between the attractiveness of two otherwise iden-

tical areas based purely on their relationship to the locations at which rioters may be

located, and the time at which the offence occurs. Models that do not account for where

rioters come from, and which merely examine the associationbetween where offences

occur and the characteristics of those areas, may be more prone to highlighting appar-

ently vulnerable areas that are not at risk since they are somewhat isolated from the

rioter population. Similarly, areas that would otherwise not be particularly vulnerable

may be so if there is a high density of potential offenders living near to them. Thus,

it is important to explicitly consider the initial distribution of rioters when the vulnera-

bility of targets depend on characteristics such as distance from the rioting population.

Some models for the initial distribution of rioters and their decision to become moti-

vated to engage in the disorder have been considered elsewhere in the literature (Davies

et al., 2013; Torrens and McDaniel, 2013), and an extension to the work presented in

this chapter would be to integrate these models within a policy framework, in which
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parameters might be updated in real-time.

One important process that has been missing from this chapter, and which, for the

riots in London in particular, would have played a significant role, is the behaviour of

the police, and the reaction of rioters to that behaviour. This is largely due to a lack

of data on where the police were at different periods of time,and the range of tactics

that were employed to counter the riots. In the following chapters, competition between

different actors during civil violence in space and time is considered in more detail, first

by employing spatio-temporal point processes, and then by employing a deterministic

differential equation based model.
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5.1. INTRODUCTION

5.1 Introduction

Acts of hostility between two adversaries are often the manifestation of ongoing and

intractable violence. In many cases, our understanding of aparticular outbreak of civil

violence can be improved by analysing these events. Mappingthe locations and fre-

quencies of hostile events can be useful from a policy-making perspective to indicate

the intensity and geographic extent of the violence, as wellas its evolution over time

(O’Loughlin et al., 2010a). However, as has been shown elsewhere in this thesis, the

development of more sophisticated models that incorporatedata, combined with some

assumptions as to how the conflict might be evolving, can be used to better understand

the underlying mechanisms, and can sometimes be used to forecast how civil violence

might evolve in the future.

In this chapter, the spatio-temporal dependency of hostileevents between two ad-

versaries is modelled with a stochastic model. Direct interaction between adversaries is

a mechanism that has not yet been explicitly modelled in thisthesis, but it has formed

the basis of many previous models of conflict (for example, competition type mech-

anisms are used as the basis for the differential equation models of both Lanchester

(1916) and Richardson (1960a)). Many models that consider interactions between ad-

versaries, particularly those at fine spatio-temporal scales, are abstract models used to

articulate hypothesised interactions. This is in contrastto what follows, in which, a

novel dataset is employed to parameterise a model of insurgent and counterinsurgent

activity. Datasets containing detailed information on theactions of different adver-

saries at a local level are only more recently becoming widespread in the study of

civil violence (for examples, see Braithwaite and Johnson (2012); Kocher et al. (2011);

O’Loughlin et al. (2010a); Lyall (2009), amongst others).

A stochastic model is employed in order to account for natural variation from the

proposed mechanisms in the empirical data. This approach also enables access to a

range of tools developed to perform hypothesis testing of model assumptions. Specific

hypotheses concerning how the occurrence of events dependson the history of the

conflict will be articulated and tested. Empirical data is incorporated in the modelling

process to test specific assumptions, as well as to ascertainoverall model fit.

In what follows, a range of stochastic multivariate, and in some cases nonlinear,

point process models are constructed. This type of model is chosen for two principal
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reasons: first, it is flexible enough to enable the examination of a series of hypotheses

concerning causal mechanisms as to how civil violence mightevolve, and, second,

similar models have been applied to crime and security events elsewhere and have

been shown to successfully forecast the timing and locationof future conflict events

(see, for example, Zammit-Mangion et al. (2012)). Moreover, similar models can also

provide insights regarding resource allocation for law enforcement agencies, and can

be applied in a policy setting to reduce levels of crime and violence (Mohler, 2014).

This particular modelling approach is chosen over others inorder to contribute to this

burgeoning research area by building a novel spatio-temporal model that is capable

of incorporating competition type dynamics prevalent in a range of different conflict

models.

This chapter fits into the thesis by exploring a well-studiedmechanism incorpo-

rated into previous conflict models within a novel spatio-temporal point process frame-

work. Furthermore, it progresses the thesis further along the spectrum of models in-

troduced and discussed in Chapter 1. Models such as those proposed in this chapter

can provide insight through the better understanding of proposed mechanisms, and, if

a model is successful, through forecasting the evolution ofcivil violence. The mod-

els presented in this chapter also incorporate empirical data and uncertainty, enabling

better forecasts than might be obtained from deterministicapproaches. The broader

question that this chapter sets out to address is whether such modelling approaches

that combine causal mechanisms with empirical data can be more usefully employed

in policy-making than other modelling frameworks.

In what follows, the case study used in this chapter is first described then pro-

posed mechanisms for the conflict are discussed in the form ofa series of hypotheses.

A series of multivariate stochastic point process models are derived that incorporate

these mechanisms. Parameters are estimated using a maximumlikelihood approach,

and their confidence obtained using parametric bootstrap methods. The models are

then evaluated first with respect to the articulated hypotheses, and then by considering

the extent to which the model explains variation in the empirical data. The extent to

which the models can usefully inform policy-making concerning the case studied is

considered with an out-of-sample test, and the comparativeadvantages of this mod-

elling approach over others is discussed.
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5.2 The Naxal insurgency and police response in

Andhra Pradesh

For a number of decades, the Naxal movement (introduced in section 1.4.2) engaged

in attacks against both civilians and the state. This hostility was the result of a long-

standing commitment by the Naxals to armed struggle againstthe state in order to

address wide-ranging grievances. Andhra Pradesh was one ofthe most affected Indian

states during this time, and its government came under criticism for their apparent

ambivalence towards the violence, failing to devise a long-term strategy that improved

the security situation (Basu, 2011). At the height of hostilities in 2006, the Indian

Prime Minister Manmohan Singh stated that the Naxals represented the “single largest

internal security threat to India” (Basu, 2011). In recent years, the level of violence has

substantially reduced; however, for much of the previous decade, violence and hostility

increased periodically, often to unprecedented levels.

Data was obtained from police forces in India that detailed hostile events associ-

ated with the Naxal insurgency for ten years between 2000 and2010 in the state of

Andhra Pradesh. The data consisted of official police records of Naxal-related violence

or threat recorded in the 1,642 police stations within the state.

Over the course of the duration of this dataset, there is evidence to suggest that

the police adopted various counterinsurgency strategies.For instance, during a period

in 2004, in which various splinter groups of the Naxal movement combined to form a

unified and potentially diplomatic group, counterinsurgency actions were ceased com-

pletely in the hope that a diplomatic solution to the conflictcould be found. During

other periods, the police took up strict counterinsurgencyaction. Activities resulting

from such police action were not detailed in the data; however, aggressive counterin-

surgency activity, which involved the killing of Naxals during shootouts, were known

to have been adopted as a result of fieldwork described in Belur(2010). As a result, it

is assumed that events described in the dataset as an “exchange of fire” between Naxal

and police, and which resulted in at least one Naxal fatality, were largely caused by

strategic counterinsurgency activities. It has been claimed that using this description

for Naxal fatalities is a way of legally justifying extrajudicial killings (Belur, 2010).

Using the assumption that incidents describing an “exchange of fire” and during
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which at least one Naxal was killed corresponds to a counterinsurgency event under-

taken by the police, it is possible to partition the dataset into events initiated by Naxals

and counterinsurgency events initiated by the police. As a consequence, the dataset

employed in this chapter is distinct from the data on the London riots investigated in

previous chapters. During the London riots, the behaviour of the police was unknown

and could not be empirically tested within the models presented. In this case, data on

the activities of both adversaries in the conflict can be usedto explicitly consider the ef-

fect of actions of one side on the actions of the other. Moreover, the scarce availability

of such datasets elsewhere implies that the model presentedin this chapter provides a

significant contribution to existing literature concerning the spatio-temporal modelling

of sub-national conflict between two adversaries.

In total, there are 4,820 incidents in the dataset, which covers the entire state of

Andhra Pradesh. For each eventi, a three-dimensional tuple is constructed, given by

(ti, si,mi), whereti ∈ T denotes when eventi took place,si ∈ D denotes where the

event took place, andmi ∈ {0, 1} is a mark that indicates whether incidenti was ini-

tiated by Naxals (mi = 1) or was initiated by police as part of their counterinsurgency

campaign (mi = 2). The setsD andT represent the spatial and temporal domains of

the model, which are next described.

The models developed in this chapter will be continuous in time; however, the

data on the Naxal conflict is discrete in time, with a daily temporal resolution. The first

day included in the dataset is the 1st January 2000 and the final day is 7th August 2010

(3,872 days in total). TakingT = [0, 3872], the date of each event is translated into

continuous time by initially settingti to be equal to midnight on the day on which the

event occurred. In section 5.5, concurrent events are distinguished by a randomisation

procedure, which is explained in the relevant part of the text.

The domainD represents the geographic area of interest and, due to the resolution

at which the data is available, is taken to be composed of the union of non-overlapping

districts, as

D =
J
⋃

j=1

Dj, (5.1)

where eachDj corresponds to a district in Andhra Pradesh. According to the 2011

Indian census, there are 23 districts in the state of Andhra Pradesh. In one of these
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districts, Hyderabad, just two events were recorded. Sincethis district comprises of

the city of Hyderabad, and therefore is small in its geographic extent, and does not

experience a large amount of violence, this district and thetwo events that occur within

it are omitted from the analysis.

In 2014, the state of Andhra Pradesh was bifurcated, and the state of Telangana

was formed consisting of nine districts that were previously part of Andhra Pradesh.

Andhra Pradesh itself remained but now consisted of just 13 districts. The state bifur-

cated to more closely align language, ethnicity and old political ties. 3,387 of the 4,820

incidents in the dataset (70%) occurred within the districts that formed the new state

Telangana. For reasons of computational tractability, thedomainD is initially chosen to

consist of the 9 districts in Telangana, and the analysis is restricted to just these events.

In particular, the models outlined below are calibrated using incidents that occur within

these 9 districts. This restriction ensures that the modelsproposed can be calibrated

over reasonable time frames. Furthermore, this restriction enables the remaining data

to be used for out-of-sample model testing, in order to determine whether the model of

insurgency in the Telangana state also applies in the state of Andhra Pradesh (specif-

ically, only four districts are used in the out of sample data– those four districts that

contained at least 100 events over the period of study). Therefore, initially,J = 9 and,

for each eventi, it is sufficient to takesi = si ∈ {1, 2, ..., 9}, denoting the district

within which the event took place.

The spatial distribution of both police and Naxal initiatedevents in Telangana and

Andhra Pradesh across the entire time period of interest is shown as a thematic map in

Figure 5.1. The temporal distribution of incidents occurring on each day within each

district is shown in Figure 5.2. This figure also distinguishes between Naxal and police

intiated events, and includes total counts of each type of event that occurred in each

district. In total, there are 586 police events and 4,234 Naxal events, of which, 424

police events and 2,963 Naxal events are contained within the nine districts that make

up Telangana. Examining these figures, it can be observed that the vast majority of

events occur within a relatively small number of regions, with the highest number of

events occurring in the Warangal district. Furthermore, the intensity of police attacks

follows closely the intensity of Naxal attacks in space, suggesting that the two types

of events may well be dependent upon one another (although, one should be cautious
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not to confuse correlation with causation). In what follows, stochastic point process

models of these events are derived by considering a variety of mechanisms that may

have influenced their occurrence.

5.3 Hypotheses for a model of the Naxal conflict

In this section, a series of hypotheses related to the Naxal insurgency are stated and dis-

cussed. These hypotheses serve to articulate the underlying assumptions of the models

derived in this chapter and are intended to build upon prior work investigating the spa-

tial and temporal properties of civil violence. Moreover, the hypotheses presented are

described in general terms, so that they can be considered inthe context of other ex-

amples of civil violence. The hypotheses will be evaluated using the case study of the

Naxal insurgency after the models have been derived and their parameters estimated.

First, the timings of events are considered. Many studies have investigated the

timing of events associated with human behaviour and have shown that homogeneous

Poisson process models of event occurrence, in which eventsare equally likely to oc-

cur in any given point in time, are often inappropriate (Barabási, 2005). Events tend

to cluster in time and there can be long periods in which no events occur. Recently,

many scholars have considered the timings of events associated with human conflict,

terrorism, and insurgencies, and have shown similar effects. Moreover, together with

the distribution for the frequency of the severity of each event, the inter-event time dis-

tribution has been shown to exhibit heavy-tails, and to be remarkably robust, implying

extensive temporal clustering (Bohorquez et al., 2009; Johnson et al., 2011; Clauset

and Gleditsch, 2012; Johnson et al., 2013; Picoli et al., 2014).

Elsewhere, inhomogeneous and history-dependent temporalpoint process models

have been shown to improve upon simple Poisson process models for terrorist and

insurgent event occurrence in Iraq (Lewis et al., 2011), Israel and Northern Ireland

(Mohler, 2013), Afghanistan (Zammit-Mangion et al., 2012), Indonesia (Porter and

White, 2012), and the Philippines and Thailand (White et al., 2013). In these examples,

enabling events to cluster in time more so than would be expected under a Poisson

process leads to improved model fit.

Attempts to explain the temporal clustering of insurgent and terrorist attacks typi-

cally consider the decision-making and operations of the terrorist organisation commit-
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Figure 5.1:A choropleth map of Andhra Pradesh and Telangana showing thespa-

tial distribution of event data. The top map shows the count of Naxal initiated events

that occur within each district over the entire time domain of interest, and the bottom

map shows the count of police initiated events that occur within each district. The dis-

tricts not in Telangana are hatched. The numbers in the districts of Telangana in the

lower map correspond to the numbered districts in Figure 5.2. 179
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2000 2002 2004 2006 2008 2010

Adilabad (1)
Karimnagar (2)
Khammam (3)

Mahaboobnagar (4)
Medak (5)

Nalgonda (6)
Nizamabad (7)
Rangareddy (8)

Warangal (9)

Ananthapur
Chittoor

East Godawari
Guntur
Kadapa
Krishna
Kurnool
Nellore

Prakasham
Srikakulam

Vijayanagaram
Visakhapatnam
West Godawari

239 38
573 94
410 47
263 40
156 17
242 27
190 25
25 4
865 132

206 36
19 3
56 6
343 49
51 7
6 0
55 7
3 0
148 25
24 1
60 6
294 16
6 6

CountsTelangana

Andhra Pradesh

Naxal Police

Figure 5.2: The time series of the event data for each district in Telangana and

Andhra Pradesh. The events are colour coded, with points in blue denoting police

initiated events and points in red denoting Naxal initiatedevents. The numbers beside

the names of the districts in Telangana correspond to the numbers in the lower map in

Figure 5.1.
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ting them. Employing a rational choice perspective, Townsley et al. (2008) argue that

insurgents are more likely to commit further attacks after aprior successful attack as an

efficient method of operating, and in order to minimise the effort expended in planning

new attacks. Insurgents may also be more likely to commit further attacks shortly after

a prior attack, as they will be more likely to have access to the weapons, organisational

structure, and other capabilities necessary to carry it out.

Bohorquez et al. (2009) attribute the patterns in the timing and severity of attacks

to the inevitable coalescence and fragmentation amongst different insurgent groups,

combined with a decision-making mechanism by which each terrorist group attempts

to choose the best time to attack in order to maximise media coverage of that attack.

In contrast, Clauset and Gleditsch (2012) distinguish between the frequency at which

insurgent groups commit attacks, and the severity of those attacks, and construct a

model based on organisational growth and recruitment. Theyconclude that terrorist

groups increase the rate at which attacks are committed as they become larger and

more experienced, contributing to the temporal clustering. The severity of attacks is

shown to be independent of both the size and experience of terrorist groups, but larger

terrorist groups tend to have higher attack fatality rates as a result of committing attacks

more regularly.

The first hypothesis states that insurgent events cluster intime, and, in particular,

that they can exhibit escalation, whereby the occurrence ofone event increases the

likelihood of observing another event for a certain period of time. This increased risk

is expected to diminish if no further events occur (in accordance with previous studies

such as LaFree et al. (2012) and Braithwaite and Johnson (2012)). This leads to:

Hypothesis 1: The likelihood of insurgent violence is increased for a period of time

after insurgent violence.

Counterinsurgent activity may also be temporally clustered, as it responds to vari-

ation in political strategies aimed at diminishing the threat from insurgents; to the

actions of insurgents; and to other intelligence obtained.In some cases, the coun-

terinsurgent activities have been shown to be even more time-autocorrelated than the

insurgent events themselves (O’Loughlin and Witmer, 2012;Braithwaite and Johnson,
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2012).

For Andhra Pradesh in particular, the government were reported to periodically

adopt both less strict and more severe counterinsurgency strategies, which correspond

with the activities recorded in the data. It has been reported, for instance, that during

the period before elections in Andhra Pradesh, the police were more lenient towards the

insurgents in an attempt to increase government support amongst civilians with insur-

gent sympathies (Basu, 2011). Conversely, there were periodsduring which prolonged

counterinsurgency strategies were adopted, leading to theNaxals being consistently

targeted over a period of time. This leads to the second hypothesis:

Hypothesis 2: The likelihood of counterinsurgent activity is increased for a period

of time after counterinsurgent activity.

As well as the temporal clustering of insurgent and terrorist attacks, many studies

have demonstrated the presence of spatial and spatio-temporal clustering by consid-

ering the locations of events. For instance, inspired by evidence of spatio-temporal

clustering in a range of different crime types, Townsley et al. (2008) and Johnson and

Braithwaite (2009) investigate different types of terrorist activity in Iraq and show that

pairs of events are much more likely to be located near to eachother in both space and

time when compared to a null hypothesis of event independence. The same observation

was found in Chapter 3 when investigating the spatio-temporal patterns of the 2011

London riots.

Spatio-temporal clustering of events leads to hotspots of insurgent activity in

which a higher than expected number of events occur. These hotspots may grow, dif-

fuse, or decline over time. Such hotspots of insurgent activity have been identified

using a variety of analytic techniques designed to investigate spatio-temporal depen-

dency in Afghanistan and Pakistan (O’Loughlin et al., 2010a; Zammit-Mangion et al.,

2012), Spain and El Salvador (Behlendorf et al., 2012), and the Northern Caucasus of

Russia (O’Loughlin et al., 2011; O’Loughlin and Witmer, 2012). In all of these cases,

strong, localised patterns of conflict were demonstrated, which can, in some cases, it is

argued, be used as the basis for the prediction of future events.

The actions of counterinsurgents have also been shown to be spatio-temporally

182



5.3. HYPOTHESES FOR A MODEL OF THENAXAL CONFLICT

clustered, perhaps as a result of their response to the actions of insurgents (Braithwaite

and Johnson, 2012) (which will be discussed further in what follows), or through the

organisation of policing activities at local police force level. Strong localisation of

event patterns in space leads to the following hypothesis:

Hypothesis 3:The influence of prior events is strongest at nearby locations.

Counterinsurgency is likely to play a role in the timing and location of Naxal attacks;

however, it is not clear what effect it may have. On the one hand, counterinsurgency

may have the desired effect of weakening insurgent capacityso that they are unable

to commit future attacks; however, on the other, counterinsurgency may serve to fuel

hostility by worsening the grievances of the insurgents; increase civilian support for

the insurgency; and make them more willing to engage in retaliation. Indeed, tit-for-tat

behaviour, in which insurgents and counterinsurgents repeatedly engage in retaliation

has been demonstrated in the Iraq insurgency (Linke et al., 2012); the North Caucasus

(O’Loughlin and Witmer, 2012); and the Israeli-Palestinian conflict (Haushofer et al.,

2010).

The impact of any counterinsurgency action is likely to depend significantly on

the types of counterinsurgent strategies adopted. However, evidence has shown that

even highly indiscriminate counterinsurgent operations can serve to benefit both the

counterinsurgents by reducing the number of subsequent attacks (Lyall, 2009) and the

insurgents, by shifting local support and control in favourof the insurgency (Kocher

et al., 2011).

In a few cases, studies have distinguished between the different types of coun-

terinsurgent action employed, and have shown that, for example, more discriminatory

counterinsurgent activity is more likely to reduce the likelihood of future insurgent

attacks in Iraq (Braithwaite and Johnson, 2012); that different strategies and military

interventions in the Northern Ireland conflict had different effects on the likelihood of

future insurgent attacks (LaFree et al., 2009); and that isolating the insurgency is more

effective than direct combat in Russia’s North Caucasus (Toftand Zhukov, 2012).

The specific counterinsurgency strategies adopted by the police in the Naxal con-

flict are not detailed in the data, although are known to result in Naxal loss of life. The
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following two hypotheses are included to determine the change in likelihood of future

insurgent activity given the occurrence of counterinsurgent events:

Hypothesis 4: The likelihood of insurgent violence is increased for a period of time

after counterinsurgent activity.

Hypothesis 5: The likelihood of insurgent violence is decreased for a period of time

after counterinsurgent insurgent activity.

A hypothesis is also included to determine whether or not counterinsurgent activities

are more likely to occur following insurgent activities, asshown in the identification of

tit-for-tat behaviour in previous conflicts.

Hypothesis 6: The likelihood of counterinsurgent activity is increased for a period

of time after insurgent violence.

The final hypothesis is concerned with how insurgent conflictdiffuses in space and

time. There is a large literature on the factors that facilitate international conflict

contagion (see, for example, Salehyan and Gleditsch (2006), Buhaug and Gleditsch

(2008) and Braithwaite (2010)); however, the literature on the equivalent factors for

the spreading of sub-national insurgent activity and othertypes of civil violence at a

local level is comparatively small. Some authors have sought to determine the char-

acteristics of areas that make them well-suited to the expansion of insurgent activity

by considering, for example, the distance of the area from the established authority

(Raleigh and Hegre, 2009; Buhuag et al., 2009); the terrain of an area (Do and Iyer,

2010); accessibility by road (Zhukov, 2012); and communication links between areas

(Myers, 2000). The relative capability of the insurgents has been shown to significantly

influence the role that some of these factors play (Holtermann, 2015).

In many cases, however, the geographic proximity of susceptible areas to areas

with ongoing violence can serve as a good indication of the risk of violence spreading.

Theoretically, insurgents typically look to secure territorial bases before working to

expand their controlled areas through the support and recruitment of civilians (McColl,
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1969). Although the relative success of these strategies are likely to have an influence

on the locations of violence, Schutte and Weidmann (2011) argue that such insurgent

conflicts exhibit escalation diffusion, by which areas neighbouring those with ongoing

conflict events are likely to experience events themselves in the future. Additionally,

O’Loughlin and Witmer (2012) show that retaliation betweeninsurgents and counter-

insurgents decays spatially by considering geographic neighbouring areas; Weidmann

and Ward (2010) show the benefits of including spatial lags within a predictive model

of conflict; and Weidmann and Zürcher (2013) provide evidence that the impact of

conflict events decays exponentially in both space and time.Consequently, the final

hypothesis is:

Hypothesis 7: The effect of prior events will be stronger on neighbouring districts

than on non-neighbouring districts.

In what follows, the hypotheses articulated here are used toconstruct a series of

multivariate point process models for the occurrence of Naxal and police initiated

events. These models are then calibrated against the available data and the hypotheses

evaluated.

5.4 Point process models of the Naxal conflict

In this section, Hawkes processes are introduced, and a series of models derived with

increasing complexity. Hawkes processes are a type of pointprocess, and provide a ver-

satile modelling framework capable of incorporating each of the hypotheses described

in Section 5.3. The notation in the definitions that follow isin accordance with the data

associated with the Naxal insurgency outlined in Section 5.2.

A point process is a collection of random events{(ti, si,mi)}i=1,2,3,...,N ordered

so thatti ≤ ti+1, whereti denotes the time at which eventi occurred,si denotes the

spatial region within which the event took place, andmi is a mark to denote the type of

event that occurred. The point process is simple if this inequality is strict for all values

of i. If the collection of each type of event for each spatial region is considered as a

separate process, as will be the case in the models that follow, then the point process is

multivariate.
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More formally, a multivariate point process is defined as a series of counts

Z
(l)
j : T → {z ∈ Z|z ≥ 0} , (5.2)

on some temporal domainT = [0, t̄) for some maximum timēt ∈ R, defined by

Z
(l)
j (t) =

∑

ti<t

si=j

mi=l

1ti([0, t)), (5.3)

where1ti([0, t)) is an indicator function, which is equal to one ifti ∈ [0, t) and equal

to zero otherwise. The subscriptj is used to refer to the spatial region within which

events contribute to the countZ(l)
j , and the superscriptl is used to denote the type of

event, which, in what follows, will either be an event initiated by Naxals (l = 1) or

an event initiated by police (l = 2). The summation in equation 5.3 applies to events

(ti, si,mi) with si = j andmi = l. That is, each type of event in each region is counted

separately. For example, the countZ
(1)
3 counts Naxal events that occur within the 3rd

spatial region under consideration. Models will be specified for Z(l)
j for l = 1, 2 and

for j = 1, 2, ..., 9, corresponding to the 9 spatial regions within the state of Telangana

(see Section 5.2 and, in particular, Figures 5.1 and 5.2).

The history of the system until some timet, H(t), is defined to be the set of events

that have occurred before timet, so that

H(t) = {(ti, si,mi)|ti < t} . (5.4)

The conditional intensity function,λ(l)
j : T → R, associated with the countZ(l)

j ,

describes the expected number of events that occur at each point in time. The function

is constructed by considering the expected number of eventsthat occur in time inter-

vals of lengthδt per unit time, and then considering the limit of this number asδt → 0.

Formally, given the history of the systemH(t), the conditional intensity function asso-

ciated with the countZ(l)
j is defined as

λ
(l)
j (t|H(t)) = lim

δt→0

E (Z(t+ δt)− Z(t)|H(t))

δt
. (5.5)

For a givenj and l, if Z
(l)
j (t) is simple and finite for allt ∈ T , then the associated

conditional intensity functionλ(l)
j (t|H(t)) is unique (Daley and Vere-Jones, 2003). It

follows that in order to define a particular simple and finite point process given by
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Z
(l)
j , it is sufficient to specify the functionλ(l)

j (t|H(t)). Many models of point pro-

cesses specify a functional form for the conditional intensity function, rather than for

the count, and this is also the approach that is taken here.

In the sections that follow, six models are proposed which will be used evaluate

the hypotheses in Section 5.3. The models are constructed with increasing complexity,

with each subsequent model designed at capturing a further mechanism that may be at

play during the Naxal conflict.

5.4.1 Model 1: The Poisson process

Model 1 is a Poisson process, which is defined by setting the conditional intensity

function λ
(l)
j to be equal to a positive constant. The model will initially be taken to

consist of just two distinct parameters for alll andj: one for the rate at which insurgent

initiated events occur, and one for the rate at which police initiated events occur. Thus,

model 1 can be written as:

λ
(1)
j (t) = µ1, λ

(2)
j (t) = µ2. (5.6)

for positive constantsµ1 andµ2 and forj = 1, 2, ..., 9. This model assumes that the

probability of an event occurring in time intervals of the same length is constant over

the entire duration of the period of interest. There is no dependence ofλ(l)
j onH and so

the model has no memory.

Just two distinct parameters are required in equation 5.6, and are used to distin-

guish between the type of event that occurs. This implies that the rate at which events

occur is assumed to be constant across the different spatialregions under consideration.

However, Figures 5.1 and 5.2 demonstrate how the number of events varies substan-

tially in space. A spatially disaggregated model, in which different Poisson rates are

estimated for each district, can also be specified as

λ
(1)
j (t) = µ1j, λ

(2)
j (t) = µ2j, (5.7)

for j = 1, 2, ..., 9, denoting the spatial region of each intensity function. Equation 5.7

will be referred to as Model 1a in what follows, and requires 18 parameters to fully

specify it.
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5.4.2 Models 2 and 3: Self-exciting Hawkes processes

The Poisson process is often used as a baseline model againstwhich more complex

models can be evaluated. Indeed, for many processes observed in the real-world, par-

ticularly those involving human decision-making, a Poisson process is not appropriate

(Barab́asi, 2005). This is because the models in equations 5.6 and 5.7 are unable to

account for scenarios in which the rate at which events occurvaries in time. This can

occur, for example, when events are highly temporally clustered. As a consequence,

a wide range of temporally dependent conditional intensityfunctions have been pro-

posed. One example is the inhomogeneous Poisson process, which occurs when the

conditional intensity functionλ(l)
j (t) takes the form of an explicit function int.

A more complex model of point processes can be obtained by allowing λ
(l)
j to

depend on a random variable, giving rise to what are known as doubly stochastic pro-

cesses. One of the most well-known is the Cox process (Cox, 1955). As demonstrated

in equation 5.5, however,λ(l)
j (t) can also be dependent uponH(t), allowing models to

retain information of the events that have occurred up untiltime t and to vary accord-

ingly.

One such model is the Hawkes process, named after Alan Hawkeswho introduced

and first analysed the model in Hawkes (1971). The motivationfor this model was to

account for point processes in which the occurrence of events increases the probability

of further events occurring in the near future. In order to introduce the model, a sim-

plified scenario is considered, in which, a one-dimensionalpoint process is modelled

using the conditional intensity functionλ. Sub- and super-scripts are removed from the

notation for clarity.

For a conditional intensity functionλ, corresponding to a single-dimensional

counting processZ, with historyH(t), a Hawkes process is defined by setting

λ(t|H(t)) = µ+
∑

ti<t

κ(t− ti), (5.8)

for someµ > 0, known as the background rate, and for some functionκ(t). The

background rateµ may be either a constant or a time-dependent function, meaning

that the first term in equation 5.8 corresponds to, respectively, a homogeneous or in-

homogeneous Poisson process. The functionκ(t) is called the triggering kernel, and

determines the increase in intensity that is due to the occurrence of events, or triggers.
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Typically, κ(t) will be positive, meaning that the occurrence of an event increases the

probability of observing further events, and decreasing int, meaning that the increased

intensity due to the occurrence of each event decays over time (although negative and

increasing triggering functions will also be used later in this chapter).

It is shown in Hawkes and Oakes (1974) that ifµ > 0 and

0 <

∫ ∞

0

κ(t)dt < 1, (5.9)

then a unique Hawkes process exists on the real line. Furthermore, in this same article,

by defining the Hawkes process as a branching process, it is shown that, under the same

conditions, the process is stationary: given a sufficientlylong history of the process, it

is invariant in time. In this case, the expected long-term intensity of the process is given

by

E(λ) =
µ

1−
∫∞

0
κ(t)dt

. (5.10)

The formulation of the model as a branching process is usefulintuitively. A Hawkes

process arises when mother events, occurring with probability µ, can, with a certain

probability defined by the triggering kernel, “give birth” to daughter events, which, in

turn, can generate further daughter events. Provided that the triggering kernel satisfies

the condition in equation 5.9, then the process is stable anddoes not blow up in finite

time.

These existence, uniqueness and stability characteristics, combined with the

model’s capability for representing clustering of events in time, have led to it being

applied to a wide range of different scenarios including earthquake frequency (Ogata,

1988), neuron spike trains (Johnson, 1996), email correspondence (Blundell et al.,

2012) and financial trades (Bowsher, 2007; Embrechts et al., 2011). In particular, there

have been many applications of Hawkes processes to the timing of events related to

problems in crime and security (Egesdal et al., 2010; Lewis et al., 2011; Porter and

White, 2012; White et al., 2013; Mohler, 2013).

A common choice of the functionκ(t), and the one that is proposed in Hawkes

(1971), is an exponential decay function. Following the normalising convention of the

decay function in Liniger (2009), this is defined as

κ(t) = αωe−ωt, (5.11)
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for constantsα > 0 andω > 0. The inclusion ofω in both the exponential and as a

product with the exponential leads to

∫ ∞

0

ωe−ωtdt = 1, (5.12)

and so the process is well-defined and stationary according to the results outlined in

Hawkes and Oakes (1974) if, and only if,0 < α < 1.

The value ofαω is the amount that is added to the conditional intensity at the

moment eventi at t = ti occurs. This extra intensity then decays ast − ti increases.

Therefore,αω is equal to the expected number of additional events per unittime that

are a direct result of the occurrence of each event.

The parameterω defines the rate of decay, and determines the timescale over which

a significant level of increased intensity is added to the overall intensity function after

each event. Small values ofω imply κ(t) decays slowly, and, therefore, the additional

intensity that is due to each event remains significant for a long time. Conversely, large

values ofω imply a faster decay, and additional intensity due to each event is only

significant for a shorter amount of time.

The reciprocal ofω can be interpreted as a characteristic time-window over which

the majority of the increased risk due to a triggering event dissipates, and, therefore, is

the time over which additional events can occur that are directly due to the triggering

event. If the events are taken to be Naxal associated events,thenω−1 can be thought

of as the time over which a further event is planned and executed that is considered a

direct result of each triggering event. This same interpretation is used in Lewis et al.

(2011) to determine the time taken to plan and execute insurgent attacks in Iraq.

The effect of additional intensity due to triggering eventsalso depends onα, which

dictates the magnitude of the added intensity that is due to each event. Moreover, since

the expected additional number of attacks per unit time thatare due to each triggering

event is given byαω, and since the parameterω−1 is a characteristic time window

over which these additional events typically occur, the expected number of new events

that are directly due to each triggering event is given byαωω−1 = α, and thusα can

be thought of as the mean number of additional events that aredirectly due to each

triggering event.

The total mean number of descendent events that are due to each triggering event
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forms a geometric series, as this number includes not just the events that are directly

due to a triggering event, but also those events that are directly due to those triggered

events with the same probability. Thus the total mean numberof descendent events per

event is:
∞
∑

i=1

αi =
α

1− α
(5.13)

wherei denotes the generation of each event (i.e. then-th generation has on average

αn direct descendents).

Using equation 5.13, the stationary conditional intensityin equation 5.10 can be

derived by noting that, for an exponentially decaying triggering kernel, as in equation

5.11,
∫ ∞

0

κ(t)dt = α. (5.14)

Next, if background events are occurring at rateµ and for each background event there

are on averageα/(1 − α) + 1 events (where the addition of one is to count the event

arising from the background rate itself), then, assuming stationarity (and that the pro-

cess has an infinite history), the average rate is given by theproduct of these two values.

That is, by the rate at which background events occur multiplied by the average number

of subsequent events each background event stimulates, given by

µ

(

α

1− α
+ 1

)

=
µ

1− α
. (5.15)

Figure 5.3 plots the conditional intensity function of a Hawkes process described

by equation 5.8 with an exponentially decaying triggering kernel given in equation

5.11, in which events occur at timest1, t2 andt3. It demonstrates how the occurrence

of events significantly increases the short-term probability of future events occurring.

By varying the parametersα, the magnitude of the excitation can be adjusted, whilst

the parameterω varies the duration of the decay.

To model events associated with the Naxal insurgency, two multivariate self-

exciting Hawkes process models are proposed. These two models each contain six

parameters to be estimated. The first model neglects spatialeffects, and assumes that,

regardless of where events occur, they contribute to the excitation of the model equally

in all spatial regions. The second model estimates the conditional intensity function

differently for each spatial region, by assuming that excitation is only brought about by
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t1 t2 t3

t

µ

λ
(t
)

Figure 5.3:An example of a Hawkes process with events occurring att1, t2 and t3.

events occurring within the same spatial region. The first model is given by

λ
(l)
j (t|H(t)) = µl +

∑

ti<t

mi=l

αllωle
−ωl(t−ti), (5.16)

whilst the second model can be written as

λ
(l)
j (t|H(t)) = µl +

∑

ti<t

mi=l
si=j

αllωle
−ωl(t−ti), (5.17)

where an additional condition on the sum has been added to distinguish equation 5.17

from equation 5.16. If the model in equation 5.17 leads to a substantial improvement

over the model in equation 5.16 with regards to explaining the variance in the data, then

it can be concluded that local excitation provides a better mechanism for modelling the

conflict than global excitations.

Note that the background rates in equations 5.16 and 5.17,µl, depend on the type

of event, given byl, but not on the spatial region, given byj. Analogously to the model

in equation 5.7, models can also be constructed with spatially varying background rates,
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resulting in multilevel models. However, models with background rates that are con-

stant in space will initially be favoured, since the estimation of multilevel background

rates precludes out-of-sample model testing. Spatial variation will be incorporated into

the model via the triggering kernel, and not the background rates. This decision is

justified in Section 5.5.3.

5.4.3 Model 4: Mutually-exciting Hawkes processes

In his original paper, in order to account for scenarios in which the occurrence of a

certain type of event influences the probability of observing a different type of event,

Hawkes (1971) also introduced mutually-exciting processes. These are able to account

for interactions across event types, and, as a consequence,are particularly suited to the

case study of the Naxal insurgency. Model 4 is given by

λ
(l)
j (t|H(t)) = µl +

∑

ti<t
mi=1
si=j

αl1ωle
−ωl(t−ti) +

∑

ti<t
mi=2
si=j

αl2ωle
−ωl(t−ti), (5.18)

for parametersαl1 > 0, αl2 > 0, andωl > 0 for l = 1, 2. The parametersα12 and

α21 determine the strength of the mutual excitation, and have a similar interpretation to

the one-dimensional case. That is, the parameterα12 measures the expected number of

additional events of type1 (Naxal events) that are brought about as a result of excitation

from events of type2 (police events), and vice-versa forα21. The interpretation of these

parameters can be considered in terms of retaliation between Naxal and police. As in

the previous model, the parameterωl determines the rate of decay of increased risk for

events of typel and the background rateµl determines the rate at which events that

are not descendants of triggering events occur. The decay parametersωl do not depend

on the type of triggering event that occurs for reasons of analytical tractability as fast

estimation algorithms rely on decay rates being constant over event types. Instead, all

variation from different triggering events is captured in the corresponding excitation

parameters.

General properties of multivariate mutually-exciting Hawkes processes, including

existence and uniqueness criteria, are detailed in Liniger(2009) (see also Embrechts

et al. (2011)). In particular, if the parametersω1 andω2 are strictly positive, and all other

parameters are non-negative, then analogous results to theone dimensional Hawkes

process can be established. That is, if the spectral radius of the matrix formed by the
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parametersA = (αll′)l,l′=1,2 is less than one, then the process exists and is unique on the

real line (Embrechts et al., 2011). Moreover, within each spatial regionj, the expected

value of the intensity function associated with each type ofevent is given by the vector:





E

(

λ
(1)
j

)

E

(

λ
(2)
j

)



 = (I2 − A)−1µ, (5.19)

whereI2 is the2-dimensional identity matrix andµ = (µ(1), µ(2))T (Liniger, 2009).

5.4.4 Model 5: Spatial Hawkes processes

A model is required that incorporates and distinguishes between effects from neigh-

bouring regions, and effects from non-neighbouring regions. For each spatial regionj,

denote byN (j) the set of indices corresponding to spatial regions that share a border

with j, and denote by(j ∪ N (j))c, the remaining set of non-neighbouring districts.

For each districtj, the effect from triggering events occurring in each of these sets of

districts is modelled by an exponentially decaying triggering kernel with parameters

that vary over each of the sets, but which are not dependent onj. Thus, the conditional

intensity function for districtj is given as

λ
(l)
j (t|H(t)) =µl +

2
∑

l′=1

∑

ti<t

mi=l′

si=j

αll′1ωle
−ωl(t−ti)

+
2
∑

l′=1

∑

ti<t

mi=l′

si∈N (j)

αll′2ωle
−ωl(t−ti) (5.20)

+
2
∑

l′=1

∑

ti<t

mi=l′

si∈(j∪N (j))c

αll′3ωle
−ωl(t−ti).

The subscript1, 2 or 3 is added to each of the excitation parameters to denote, respec-

tively, excitation associated with events occurring within the same district, excitation

associated with events occurring in neighbouring districts, and excitation associated

with events occurring in non-neighbouring districts.

This results in 12 excitation terms to be estimated, together with 2 decay parame-

ters and 2 background rate parameters. The parameters in thetriggering kernels do not

depend on the districtj and so, whilst still incorporating the spatial structure ofthe case
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study, are used to detect more general structural dynamics associated with the spread-

ing of Naxal insurgency across the entire state, rather thanthe detection of specific hot

spots of activity.

5.4.5 Model 6: Nonlinear spatial Hawkes processes

In the models considered so far, the excitation parameters are constrained to be non-

negative, leading to an excitation effect: as events occur,the intensity function in-

creases, rather than decreases. In order to consider inhibition effects, as specified by

hypothesis 5 in Section 5.3, it should be possible for the intensity function to decrease

as events occur, suggesting that the excitation parametersmight be negative and be as-

sociated with an inhibition process. Relaxing the constraint that the excitation terms

must remain positive brings about complications that result in a nonlinear intensity

function. Specifically, the intensity function becomes

λ
(l)
j (t|H(t)) =











µl +
2
∑

l′=1

∑

ti<t

mi=l′

si=j

αll′1ωle
−ωl(t−ti)

+
2
∑

l′=1

∑

ti<t

mi=l′

si∈N (j)

αll′2ωle
−ωl(t−ti) (5.21)

+
2
∑

l′=1

∑

ti<t

mi=l′

si∈(j∪N (j))c

αll′3ωle
−ωl(t−ti)











+

,

where(.)+ denotes the positive part of the function, such that

(x)+ =







x x ≥ 0

0 x < 0.
(5.22)

The positive part of the function is taken to ensure that the intensity function cannot

become negative, which would be inconsistent with its definition as a limit of a non-

negative counting process. The parametersαll′1, αll′2 andαll′3 for l, l′ = 1, 2 can now

be negative, and thus the model can exhibit inhibition, as well as excitation.

Theorem 7 of Bŕemaud and Massoulie (1996) implies that there exists a unique

stationary process with intensity function given by equation 5.21 if the matrix formed of

the absolute values of the excitation parameters has spectral radius strictly less than one.
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Since spatial interaction arises in this model, this matrixis constructed by including

one row for each intensity function, with entries given by the excitation parameter

associated with events that occur in each of the different regions considered. With 9

districts of Telangana, each with potentially 2 types of event occurring, this matrix has

dimension equal to 18.

Introducing nonlinearity brings about complications in the estimation of the pa-

rameters, which are detailed in Section 5.5. To the knowledge of the author, such

nonlinear models of Hawkes processes have not been applied to the spatio-temporal

properties of problems in crime and security and thus the exploration of this model

makes a significant contribution to the literature.

5.5 Parameter estimation

In this section, the parameters of the models described in Section 5.4 that provide the

best fit to the empirical data are obtained. Maximum likelihood estimation is employed

to find the most likely set of parameters, given the observations in the calibration data.

As described in Section 5.2, the models are calibrated usingevents in the dataset that

occurred within the nine districts that form the state of Telangana. The maximum like-

lihood procedure is first described, together with an efficient algorithm for calculating

the likelihood function in the case of negative excitation parameters, addressing the

difficulty associated with nonlinear models. Next, anotheralgorithm is outlined, which

enables the calculation of confidence intervals associatedwith estimated parameters by

employing bootstrap techniques. The resulting parameter estimates for each model, and

corresponding confidence intervals are then presented and conclusions are discussed.

5.5.1 Likelihood for nonlinear multivariate Hawkes processes

In line with many previous studies of parametric point process modelling, the unknown

parameters are estimated using the method of maximum likelihood. The specification

of a linear Hawkes process model via its conditional intensity function leads to an

analytical expression for the log-likelihood function. For a single-dimensional linear

Hawkes process with conditional intensity function given by

λ(t|H(t)) = µ+
∑

ti<t

αωe−ω(t−ti), (5.23)
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for some historyH, with a vector of parametersθ = (µ, α, ω) such thatµ, α, ω > 0, and

sample data with events occurring at times{ti}i∈{1,2,3,...,N}, the log-likelihood function

is given by

logL(θ|H(t)) =
∑

ti<T

log λ(ti|H(t);θ)−
∫ T

0

λ(s|H(s);θ)ds, (5.24)

whereT ∈ R is a point in time defining the end of the period of study, so that T ≥ tN .

The values ofθ that maximise the log-likelihood have been shown to consistently ap-

proximate the true values of the process (Ozaki, 1979; Ogata, 1981). The log-likelihood

in equation 5.24 can be thought of as a comparison between thevalue of the conditional

intensity function at the times at which events occur, against the values of the function

at all other times, as given by the integral of the intensity function over the duration of

the sample data. Larger values of the log-likelihood therefore correspond to a series of

events that are well predicted by the conditional intensityfunction, and the parameters

θ that maximise the value of the log-likelihood are those thatmost closely match the

model to the empirical data.

The log-likelihood of a linear multivariate Hawkes processis described in Em-

brechts et al. (2011) and, using the notation of this chapter, is given by

logL(θ|H(t)) =
9
∑

j=1

2
∑

l=1

∑

ti<t

mi=l
si=j

log
(

λ
(l)
j (ti|H(t);θ)

)

−
9
∑

j=1

2
∑

l=1

∫ T

0

λ
(l)
j (s|H(s);θ)ds. (5.25)

Maximising the function in equation 5.25 leads to the parameter values that maximise

the intensity functionλ(l)
j at the point at which each event(ti, si = j,mi = l) occurs,

whilst minimising the sum of all intensity functions at all other times, and therefore

leads to the parameter values that most closely match the model with the empirical

data.

Liniger (2009) outlines how the first term on the left hand side of equation 5.25,

the sum of the logarithms of each intensity function for the particular type of event at

the time at which that event occurs, can be approximated using a recursive formula. In

what follows, the calculation of the likelihood is described using Model 5. Equivalent

expressions for Models 1 to 4 can be obtained by setting the relevant excitation param-

eter(s) to zero. Supposing that the first event occurs at timet1, the algorithm proceeds
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by setting

λ
(l)
j (t1) = µl, (5.26)

for j = 1, 2, ..., 9 and l = 1, 2. Thus, the initial intensity for each type of event is

assumed to be equal to its background rate. Then, the intensity functions at all other

event timesti for i = 2, 3, ..., N can be calculated exactly as

λ
(l)
j (ti) = µl + e−ωl(ti−ti−1)

(

λ
(l)
j (ti−1)− µl

)

+ αlmi−1s̃i−1
ωle

−ωl(ti−ti−1), (5.27)

wheres̃i−1 ∈ {1, 2, 3} is used to denote the spatial domain within which the event at

time ti−1 occurred relative to the spatial regionj (i.e. to determine whether the event at

time ti−1 occurred within districtj, within N (j) or within (j ∪ N (j))c, respectively).

The use of the recursive scheme in equations 5.26 and 5.27 greatly increases the speed

with which equation 5.25 can be numerically computed.

The integrals in the second term of the right hand side of equation 5.25 can be

computed analytically for linear intensity functions by observing that
∫ T

0

αll′nωle
−ωl(s−ti)ds =

[

−αll′ne
−ωl(s−ti)

]T

0
= αll′n

(

1− e−ωl(T−ti)
)

, (5.28)

for n = 1, 2, 3. Therefore,
∫ T

0

λ
(l)
j (s|H(s);θ)ds =µlT +

2
∑

l′=1

∑

ti<t

mi=l′

si=j

αll′1

(

1− e−ωl(T−ti)
)

+
2
∑

l′=1

∑

ti<t

mi=l′

si∈N (j)

αll′2

(

1− e−ωl(T−ti)
)

(5.29)

+
2
∑

l′=1

∑

ti<t

mi=l′

si∈(j∪N (j))c

αll′3

(

1− e−ωl(T−ti)
)

,

which can be easily computed for any given historyH(T ).

In the case of nonlinear multivariate Hawkes processes, such as the one defined

by the intensity function in equation 5.21, an analytical expression of the integrals in

the log-likelihood is not tractable, and, therefore, the expression described in equation

5.29 cannot be used for fast computation.

Instead, the integrals in equation 5.25 are solved numerically. A numerical scheme

that discretised the entire temporal region of interest, however, would be very compu-

tationally expensive. In particular, to calculate the function in equation 5.25 in the
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linear case, when there is no inhibition, the value of the intensity function only requires

evaluation at the time points when events occur. A numericaldiscretisation of the in-

tegral typically requires the evaluation of the function ata much higher resolution and

therefore adds significantly to the computational cost.

In an attempt to alleviate the reliance on computational power in the calculation

of the likelihood function in equation 5.25, an algorithm isproposed that utilises the

analytical solution to the integral when there is no inhibition, as given in equation 5.29.

To explain, an efficient way of approximating the integral
∫ T

0

λ
(l)
j (s|H(s))ds (5.30)

is sought when

λ
(l)
j =

(

λ̂
(l)
j

)

+
, (5.31)

for some function̂λ(l)
j (t), which, for some values oft, is negative. The integral given

by
∫ T

0

λ̂
(l)
j (s|H(s))ds, (5.32)

is calculated using the analytic expression in equation 5.29. Then, using the trapezoidal

rule for numerical integration, and supposing that the temporal domain[0, T ] is discre-

tised by a uniform partition0 = t′0 < t′1 < ... < t′n = T for some integern such that

ti = t′r for somer for every eventi, then
∫ T

0

λ
(l)
j (s|H(s))ds =

∫ T

0

λ̂
(l)
j (s|H(s))ds (5.33)

− 1

2

n
∑

r=1

H(−λ
(l)
j (t′r−1))

(

t′r − t′r−1

)

(

λ
(l)
j (t′r−1) + λ

(l)
j (t′r)

)

+ ǫn,

whereH(x) is the Heaviside step function, given by

H(x) =







0 x ≤ 0

1 x > 0,
(5.34)

andǫn is an error term satisfying

|ǫn| ≤
T 3 max

t 6∈{t′0,′1,...,t′n} |λ
(l)′′
j (t)|

12n2
, (5.35)

a well-known property of the trapezoidal rule. Note that since the event times are

contained within the set{t′0, t′1, ..., t′n}, and since the functionλ(l)
j (t) is smooth for all
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values oft at which events do not occur,max
t 6∈{t′0,t′1,...,t′n} |λ

(l)′′
j (t)| is finite and the error

term tends to zero asn increases.

For a suitable partition on the interval[0, T ], the integral in equation 5.30 can be

well approximated using the expression in equation 5.33. Specifically, the integral is

approximated by the analytical computation of equation 5.32, from which the negative

parts are subtracted, which are approximated using the trapezoidal rule, where event

times are contained in the set of interval boundaries for thepartition of the temporal

discretisation. In many practical scenarios, particularly when the magnitude of excita-

tion is greater than the magnitude of inhibition, there are relatively few time periods for

which the function̂λ(l)
j is negative. As a consequence, the computation in equation 5.33

greatly improves the speed by which the integrals in equation 5.25 can be computed

when compared to a full discretisation over the entire temporal region. The values of

the parametersθ that maximise the log-likelihood in equation 5.25, which are obtained

by calculating the value of equations 5.26, 5.27 and 5.29, and using equation 5.33 if

the functionλ(l)
j is nonlinear, with the empirical event historyH(T ), are therefore the

values that lead to the closest fit between the empirical dataand the model.

In the dataset on the Naxal conflict, there were a small numberof days on which a

large number of events of the same event type occurred withinthe same spatial region.

In the analysis that follows, some of the events occurring onthese days were removed

from the dataset in order to prevent the model calibration attributing too much influence

to these days, which are likely to have occurred as a result ofan exogenous process,

rather than the more natural dynamics of the violence that the model aims to capture.

Specifically, to do this, the daily count of events of each event type and within each

spatial region is obtained and the cumulative distributionof these counts is calculated.

On days whose counts exceed the 99-th percentile of the cumulative distribution of the

non-zero counts, a number of events are removed from the dataset so that the count on

each of these days is equal to the count at the 99-th percentile. After this process, the

maximum number of events of each type within each spatial reigon occurring on each

day is three. Events that take the count beyond three are thusremoved from the analysis

and treated as outliers.

Finally, in order to ensure that the parameter values calculated for the conditional

intensity function correspond to a unique point process, the process is required to be
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simple, meaning that no two events can occur simultaneously. For the dataset on the

Naxal conflict, there are 1,480 events which occur on the sameday as at least one other

event. For these events, a uniform random number between0 and1 is generated and

added to the event time, leading to an empirical dataset thatcan be considered a sim-

ple point process. The potential consequences of this step were tested in what follows

by repeating the parameter estimation with different realisations of the empirical his-

tory. Although minor changes were detected, there were no significant deviations from

the estimates that follow as a result of this process. This isexplained further in what

follows.

The Nelder-Mead algorithm (Nelder and Mead, 1965) within the SciPy package

of the Python programming language is used to maximise the log-likelihood function.

Constraints are employed to ensure the decay parametersωl and the background rate

parametersµl are positive by adding a penalty to the objective function when any of

these parameters become negative. Furthermore, the decay parametersωl are also con-

strained to be less than one, so that the characteristic timewindow over which triggered

events are supposed to occur cannot be less than one day, corresponding to the temporal

resolution of the data. The Nelder-Mead algorithm is used since it uses only function

evaluations of the objective function it maximises, ratherthan also values of gradients

and higher derivatives. In this case, this is desirable since the log-likelihood function

in equation 5.25 is discontinuous in the parameterθ due to jumps that occur in the

intensity function as a result of these constraints.

5.5.2 Parametric bootstrapping of confidence intervals

As well as obtaining the parameter estimates that lead to thebest fit between the model

and the data, maximum likelihood approaches can also often be used to obtain standard

errors of those parameter estimates (as was the case in Chapter 4, with the conditional

logistic regression). In such cases, the standard errors are calculated from the Hessian

of the log-likelihood. In this chapter, however, some of themodels tested are nonlinear,

and the accuracy of standard errors obtained from the Hessian of the log-likelihood has

not been well-established beyond a few individual case studies (Bowsher, 2007).

In order to construct a confidence interval of each parameterestimate, a numeri-

cal technique is employed called parametric bootstrapping. This numerical procedure
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consists of two stages. First, a simulated history of the time period of interest is con-

structed, in which events are supposed to occur at the rate given by the conditional

intensity function with parameters given by those obtainedfrom the maximisation of

the log-likelihood function. Second, the Nelder-Mead algorithm is employed to max-

imise the log-likelihood function in equation 5.25 based onthis simulated history of the

system. It is important to emphasise that the maximisation of equation 5.25 based on

this simulated data does not use the empirical data, insteadusing the simulation version

of the system that is based on the model with parameters that are calculated from data.

These two stages result in parameter estimates associated with simulated histories

of the system defined by the model with the maximum likelihoodestimators as param-

eters. If the model were able to perfectly recreate the empirical data, then the bootstrap

procedure would be expected to produce the same parameter estimates as those found

by the maximum likelihood optimisation procedure with the empirical data. On the

other hand, if the model produces events with a very different space-time profile to

the empirical data, then it is likely that the resulting parameter estimates will be very

different to those found by the maximum likelihood procedure with the empirical data.

Thus, this procedure produces an assessment of the extent towhich the model is able to

reproduce the empirical data at the parameter level. The resulting difference between

the parameters calculated from the empirical model and the parameters calculated from

the simulated model can be used to assess the extent to which the value of each param-

eter is likely to lead to similar spatial-temporal distributions of events as the empirical

data. This deviation can therefore be used to assess the confidence associated with the

estimate for each parameter.

Following this two stage procedure—the simulation of events using the model

calibrated with the empirical data, followed by the subsequent parameter estimation

based on that history—just once is not particularly instructive since the generation of

each scenario is a random process, and the minimisation procedure may find different

solutions. However, repeating this process a number of times can lead to a distribution

of estimated parameters based on a series of simulated versions of the data that were

generated from the same model. Consequently, this procedureis repeated 250 times and

a 95% normal confidence interval for each parameter estimateis obtained by calculating

the empirical standard error of the resulting distributionof simulated parameters.
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It remains to explain how the times, locations, and types of events are obtained

when generating simulated histories of the system. The simulation of point processes

over a given period of time is typically performed using so-called thinning algorithms.

Thinning algorithms have been developed in order to simulate the event times of point

processes for any given conditional intensity function using uniform pseudo random

number generators. The procedure described below is based on the methods first intro-

duced in Lewis and Shedler (1979) and then modified in Ogata (1981) (see also Daley

and Vere-Jones (2003)). It has been adapted here to coincidewith the notation and

multivariate nature of the point process described by the conditional intensity function

in equation 5.21, the model from which all others can be derived by placing constraints

on the parameters. The thinning procedure generates a series of random numbers at a

rate given by an upper bound on the conditional intensity function, denoted byλ∗ say.

This generates more than the number of events required, and so a random thinning pro-

cedure is used to delete some of these events, and, in doing so, constructs a process that

corresponds to the conditional intensity functionλ(l)
j for j = 1, 2, ..., 9 and l = 1, 2.

The algorithm proceeds as follows:

1. Sett = 0.

2. Calculate an upper bound on the intensity function at this time and denote this by

λ∗.

3. Generate a exponentially distributed random variableRexp with rateλ∗, by trans-

forming a uniform random variableR′ ∈ [0, 1] according to

Rexp = − ln(R′)

λ∗
. (5.36)

The next event in a Poisson process with intensityλ∗ is therefore supposed to

occur at timet+Rexp.

4. Generate a second uniform random variableR ∈ [0, 1].

5. Setj = 0 andl = 1.

6. For districtj and event typel, calculate the conditional intensity functionλ(l)
j (t+
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Rexp) and the cumulative sum

F
(l)
j (t) =

1

λ∗

∑

j′≤j

l′≤l

λ
(l′)
j′ (t+Rexp). (5.37)

7. If R < F
(l)
j (t + Rexp) then assume that the Poisson event at timet + Rexp is

an event of typel and occurs within districtj. Add this event to the simulated

historyH(t+Rexp), sett → t+Rexp and return to step 2.

8. Otherwise, consider the next district and/or event type by updating the indicesj

and/orl and return to step 6. If the districts and event types have been exhausted

then the Poisson event occurring at timet+Rexp is deemed not to have occurred

according to the conditional intensity functions given byλ
(l)
j and is ignored. In

this case, sett → t+Rexp.

9. In order to match the simulation as close to the empirical data as possible, the

number of events that occur in the simulation is required to be equal to the num-

ber of empirical events in the dataset, given byN . Thus, if the number of events

that have not been removed in steps 2-8 exceedsN , then go to step 9. Otherwise,

return to step 2.

10. Since the absolute times at which events are deemed to occur is dependent on

the upper bound that is chosen (but the relative rate at whichevents occur have

been thinned according to the model), the events are rescaled so that theN events

occur over the same time-scale as the original data set.

The upper boundλ∗ at each potential event timet+Rexp is defined to be the sum

of the conditional intensity functionsλ(l)
j overj = 1, 2, ..., 9 andl = 1, 2, where each

function is calculated assuming that the event at timet +Rexp is of typel and occurs

within j. This can be written as:

λ∗(t+Rexp) =
2
∑

l=1

9
∑

j=1

λ
(l)
j (t+Rexp|H(t) + {(t+Rexp, j, l)}) . (5.38)

As well as being used in the parametric bootstrap procedure to generate simulated

histories of the system according to the model, this thinning procedure can also be

employed to simulate predictions as to how the system might evolve, assuming model

correctness.
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5.5.3 Results

In this section, the results of the maximum likelihood optimisation for each of the

models specified in Section 5.4 are presented, together withestimated standard errors

obtained from the parametric bootstrap procedure for the final model. The implications

of these results for the hypotheses in Section 5.3 are discussed.

Table 5.1 presents the maximum likelihood parameter estimates for Models 1-6 in

Section 5.4 together with the value of the log-likelihood function at the parameter esti-

mate, and the value of Akaike’s Information Criterion in order to compare the relative

success of each of the models proposed. Each realisation of the empirical history relies

on a random process in order to remove concurrent events, andso the log-likelihood

function was maximised 100 times based on different realisations of the empirical his-

tory that arises as a result of this random procedure. The results presented are the mean

values obtained from this process. The standard deviationsof the estimates are not

reported as the estimated results are consistent across model types for each realisation

of the empirical history and were small in comparison to the estimates. Akaike’s In-

formation Criterion (henceforth abbreviated as AIC) provides a measure with which

to compare models, and to determine whether a model that incorporates a particular

process or mechanism is an improvement on simpler models. The AIC is given by

AIC = −2 lnL+ 2P, (5.39)

whereP is the number of parameters in the model. The value of the AIC is a trade-

off between the value of the log-likelihood, for which larger values correspond to a

better model fit, and the number of parameters included in that model to obtain that fit.

Models with a lower AIC are preferred, highlighting the preference for simpler models

with fewer parameters if the addition of extra parameters does not sufficiently improve

the model fit.

Table 5.2 presents the bootstrapped 95% confidence intervals of the estimates for

Model 6, which led to the lowest AIC value, and can therefore be considered as the best

fit to the data. The procedure for generating these intervalswas described in Section

5.5.2. The implications of these results are next discussed.

Model 1 assumes that Naxal events in each spatial region occur with a rate given

by the constantµ1 and that police events in each spatial region occur with a rate given
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Table 5.1:Parameter estimates for each of the six models described in Section 5.4.

Parameters proceeded by the same dagger symbol in Model 2 areconstrained to be

equal in order to model the effect from events occurring overthe entire district. For

the excitation terms, the first subscript refers to the type of event affected, the second

subscript refers to the influencing event, and the third subscript refers to the relevant

relative spatial region within which the influencing event occurred. For example,α122

is the additional number of Naxal attacks (typel = 1) that occur due to police events

(typel = 2) within neighbouring districts (relative spatial region2.)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

µ1 .0838 .0047 .0066 .0064 .0023 .0023

µ2 .0122 .0025 .0023 .0005 .0003 .0003

α111 .1049† .9226 .8704 .7801 .7780

α112 .1049† .0346 .0389

α113 .1049† .0020 .0017

α121 .3766 .3942 .4075

α122 .0000 -.0307

α123 .0109 .0137

α221 .0881‡ .8156 .3808 .3512 .3725

α222 .0881‡ .0189 .0429

α223 .0881‡ .0031 .0856

α211 .0842 .0788 .1365

α212 .0000 .0005

α213 .0000 -.0313

ω1 .0655 .0298 .0331 .0427 .0423

ω2 .0404 .0102 .0197 .0221 .0115

lnL(θ) -12456 -11585 -10572 -10518 -10488 -10446

AIC 24916 23182 21157 21048 20989 20903
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Table 5.2:Bootstrapped 95% confidence intervals of each parameter obtained with

Model 6. Each of the entries is rounded to four decimal places.

Estimate Lower Upper

µ1 .0023 .0000 .0050

µ2 .0003 .0000 .0026

α111 .7780 .7233 .8327

α112 .0389 .0210 .0568

α113 .0017 -.0076 .0110

α121 .4075 .2456 .5694

α122 -.0307 -.0955 .0341

α123 .0137 -.0292 .0566

α221 .3725 .0418 .7032

α222 .0429 -.0459 .1317

α223 .0856 .0245 .1467

α211 .1365 -.0076 .2806

α212 .0005 -.0257 .0267

α213 -.0313 -.0984 .0358

ω1 .0423 .0148 .0698

ω2 .0115 .0005 .0184
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by µ2. This model resulted in the worst fit to the data out of all of the models tested.

A spatially disaggregated Poisson process model was also tested, consisting of 18 pa-

rameters, corresponding to the rates at which each type of event occurs in each of the 9

spatial regions under consideration. This was done to determine the improved perfor-

mance of the model when spatial heterogeneity is considered. This model (Model 1a)

is not reported in Table 5.1 but led to an AIC value of23, 244.

Model 2, corresponding to a self-exciting Hawkes process inwhich excitation of

the intensity function occurs when an event of the same type happens anywhere in any

of the districts considered, shows a significant improvement on both the non-spatial

Poisson process in Model 1, and the spatially disaggregatedversion of the Poisson

process that was also tested in Model 1a, as can be seen by the lower AIC. Therefore,

a self-exciting Hawkes process is a better model for explaining the variance in the data

than both Model 1 and its spatially explicit alternative. This suggests that the dominant

mechanism is not the spatial heterogeneity but the temporalclustering of the event data.

According to the parameters estimated for Model 2, for each Naxal event that oc-

curs, the model predicts a further0.1049 Naxal events will occur, and that, for each

police event that occurs, a further0.0881 police events will occur, as indicated by the

excitation parametersα111, α112, andα113, determining Naxal self-excitation, and the

parametersα221, α222, andα223, determining police self-excitation. Three parameters

for each excitation are reported in Table 5.1, to highlight the fact that the excitation

occurs over the entire spatial region of interest, whether the event occurs in the same

district, a neighbouring district, or a non-neighbouring district. Although three param-

eters are reported for each excitation, only one parameter is adjusted as the model is

calibrated, and thus the parameters for the different typesof excitation are constrained

to be equal to one another. The decay parameters,0.0655 for Naxal events, and0.0404

for police events, suggest that the excitation for Naxal events decays slightly more

quickly back to baseline levels than for police events. Indeed, the characteristic time

window over which the Naxals plan and carry out further attacks as a result of an attack,

is 15 days, whilst police attacks due to excitation are likely to occur up to 24 days from

a triggering event.

Model 2 lends support for hypotheses 1 and 2 articulated in Section 5.3. In partic-

ular, the improved model fit when a mechanism is incorporatedto increase the intensity
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for future events of the same type, suggests that the likelihood of a Naxal event occur-

ring is increased for a period of time after a Naxal event and that the likelihood of a

police event occurring in also increased in the aftermath ofa police event.

Model 3 contains the same number of calibrated parameters asModel 2; however,

the triggering kernel in Model 3 for each event type only incorporates events that occur

within the same district. This model is spatially-explicitsince the conditional inten-

sity functions within each spatial region now vary from eachother, depending on the

number of events that occur in each district. A large improvement in the model fit is ob-

served, with the AIC reducing by nearly10%. Furthermore, the excitation parameters

estimated—0.9226 for the Naxal events and0.8156 for the police events—are much

larger than the excitation parameters in Model 2. The model predicts that, for each

event that occurs, nearly one further event of the same type will occur in the same spa-

tial region. The decay parameters suggest that, for Naxal events, this extra event will

occur up to a month after the triggering event, whilst for police events, this extra event

will occur up to three months after the triggering event. These findings lend support

for hypothesis 3 in Section 5.3: the influence from previous events is much stronger on

districts in which those previous events occur.

A multi-level version of Model 3 was also estimated but is notreported here. This

was done in order to test whether the inclusion of spatially varying background rate

parameters significantly altered the results. If the resulting parameter estimates were

significantly different from those reported in Table 5.1, then it may be that, rather than

capturing the excitation effects due to the occurrence of events, the model is captur-

ing the spatial heterogeneity. The parameter estimates forthe triggering kernel in the

multilevel model—which were not made spatially explicit—were consistent with those

reported in Table 5.1. The AIC value for the multi-level model was21, 126 and, thus,

the decrease in the AIC value from Model 3 was the smallest reduction of all the models

tested. As a consequence, and in order to perform out-of-sample testing of the model in

what follows, models with constant background rates over the spatial region of interest

were preferred.

Model 4 incorporates interacting excitation effects between different event types

within the same spatial region. The excitation parameters are constrained to be positive

in order to detect whether any retaliatory effects are present in the dataset. The param-
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etersα121 andα211—representing the excitation of the Naxal intensity function due to

the occurrence of local police events, and the excitation ofthe police intensity function

due to the occurrence of local Naxal events, respectively—that result in the closest fit

between the model and the data are both greater than zero, indicative of an interaction

effect. For each police initiated event that occurs, this model predicts an average of

0.3766 further Naxal attacks and, for each Naxal event, an average of 0.0842 police

events are predicted. In comparison to Model 3, the self-excitation rates are reduced

to 0.8704 and0.3808 for Naxal events and police events respectively, suggesting that

some of the excitation found in Model 3 can be better explained by interaction effects.

Indeed, the AIC for Model 4 is lower than that found for Model 3, suggesting an im-

proved model. Moreover, the results lend support for hypothesis 4 and hypothesis 6:

‘tit-for-tat’ retaliatory behaviour is observed between the Naxals and police.

Model 5, which introduces excitation effects from events occurring in neighbour-

ing and non-neighbouring districts, further improves model fit, as indicated by the lower

AIC value. In addition, the estimated parameter values provide some support for hy-

pothesis 7: self-excitation rates appear to decay as eventsoccur further from the region

of interest. That is, for events of both types, self-excitation is strongest in the district

within which the events take place, weakens by an order of magnitude for events that

occur in neighbouring districts, and weakens by a further order of magnitude for events

that occur elsewhere in Telangana.

Two of the mutual-excitation parameters become negative when inhibition effects

are incorporated in Model 6: the impact of police events in neighbouring districts on

the rate of Naxal events, and the impact of Naxal events in non-neighbouring districts

on police events. However, neither of these effects are significant at the 95% level,

according to the bootstrap estimates in Table 5.2.

The confidence intervals for parameters measuring excitation effects on police

intensity from Naxal events contain the value zero and thus there is insufficient evidence

to conclude that police were retaliating to Naxals according to this model. This puts

into doubt the conclusion of hypothesis 6 stated above: although the point estimates

for retaliation are positive, there is sufficient uncertainty with this estimate to question

any positive finding. The confidence interval obtained forα221, capturing the local

self-excitation of police events, is also relatively large. The uncertainty associated with

210



5.6. MODEL EVALUATION

the parameters for police events might be explained by the relatively small number of

police events that occur in comparison to Naxal events.

The remaining confidence intervals, as detailed in Table 5.2, are relatively con-

sistent with the parameter estimates of Model 6. Table 5.2 provides a parameter level

assessment of the accuracy of the model specification. Furthermore, evidence has been

presented that either supports or refutes each of the hypotheses presented in Section

5.3.

5.6 Model evaluation

In this section, a global assessment of the model is made, first by considering the extent

to which the model explains the occurrence of events, and, second, to determine how

successful the model is able to predict events that are not used in the model calibration.

The tests that follow are important steps that must be taken before any such model can

be considered for use in a policy setting, and are particularly important if the model is

to be used for forecasting and predicting the evolution of conflict based on its history.

A residual analysis is performed to ensure that the variation of the values of the

modelled intensity functions at the event times is consistent with the actual event times,

and that no significant mechanisms for the generation of those events have been omit-

ted, given the event data. Next, by performing a receiver operating characteristic anal-

ysis and by constructing the precision-recall curve using out-of-sample data, it is deter-

mined whether the model is capturing a general process for the production of events by

insurgents and counter-insurgents during the Naxal conflict, or whether the model has

been over-fitted to the calibration data.

5.6.1 Residual analysis

The goodness of fit of the overall model to the empirical data can be assessed by a resid-

ual analysis. The procedure in this section corresponds closely to the procedure out-

lined in Peng (2003) for single-dimensional point processes and in Schoenberg (2003)

and Peng et al. (2005) for multi-dimensional point processes.

A residual process of lengthNs is the result of a random selection ofNs events

from the full event space, chosen as examples of events whichare poorly predicted by

the model. Events are considered to be poorly predicted if the value of the correspond-

211



5.6. MODEL EVALUATION

ing intensity function is small prior to their occurrence. Aresidual process of length

Ns of a point process of lengthN given by(ti, si,mi) for i = 1, 2, ..., N is constructed

by randomly sampling without replacementNs events from the list ofN events, where

each eventi is selected with some probabilityPi.

DefiningPi by

Pi =

(

λ
(mi)
si (t−i )

)−1

∑N

i′=1 λ
(mi′)
si′ (t−i′ )

−1
, (5.40)

wheret−i is used to denote the time just before eventi occurs, leads to a residual pro-

cess that selects events that occurred when, on average, theintensity function is at its

smallest.

If the model explains all the variance in the data, then events that occur when the

intensity functions are at their smallest will appear to have no temporal dependency.

If there was extensive temporal clustering within the residual process, then the model

is likely to be underestimating the excitation as a result ofthose events during the

periods of clustering. Conversely, if there a large periods of time during which no

events occur in the residual process, the intensity function is likely to be overestimating

the likelihood of event occurrence during that time.

If the residual process is approximately a Poisson process with constant intensity

throughout the duration of the conflict, then the model can beconsidered to reliably cal-

culate the likelihood with which events are anticipated to occur throughout the duration

of the period of study. In particular, if the residual process resembles a Poisson process

for the duration of the study period then the model is appropriate for the entirety of this

duration. This is particularly important for the case of theNaxal conflict considered in

this chapter, since the period of study is over 10 years. Potential sources of error may

arise if the process dramatically changed its underlying dynamics during this time.

Residual processes of the Naxal conflict using Model 6 are constructed with cho-

sen length91. This length was chosen since it is the number of background events

expected to have occurred over all districts and events types according to the calibrated

background rate of Model 6.1000 residual processes are generated and compared with

1000 Poisson processes of rate91/3872 = 0.024, calculated since91 events are re-

quired to occur over a duration of3872 days with constant rate. The Poisson processes

are constructed by simulating successive event times, utilising the result that inter-event
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times between two successive events in a Poisson process areexponentially distributed

with mean given by the reciprocal of the Poisson intensity.

The residual processes are compared with the Poisson processes using a quantile-

quantile (Q-Q) plot. A Q-Q plot compares the rate at which events occur in two separate

processes by plotting the number of quantiles of events thathave passed in each process

for different points in time. Beginning witht = 0, the Q-Q plot is constructed by adding

δt to t for someδt << 1, and then calculating the proportion of events in each process

that have occurred up until timet. This generates a line in Q-Q space (the region

[0, 1] × [0, 1] ∈ R
2). Since the two distributions for comparison here each have1000

realisations, such a line cannot be drawn and, instead, the 95% confidence intervals

in Q-Q space are plotted. The two solid lines in Figure 5.4 correspond to the 95%

confidence interval of the Q-Q plot distribution for a residual process compared against

a Poisson process, and the grey shaded region represents the95% confidence interval

of the Q-Q plot distribution for the simulated Poisson processes compared against a

Poisson process. For clarity, the aggregate results for both Naxal initiated events and

police initiated events are explored, rather than retaining the individual counts for each

district.

For the residual process to be an approximate Poisson process, and therefore for

the model to be a good fit to the data, the solid lines are required to coincide with the

grey shaded region in the plots in Figure 5.4. For Naxal events, shown on the left hand

side of Figure 5.4, the solid lines correspond relatively closely with the grey shaded

region, suggesting that the model provides a reasonable fit to the data. For police

events, the fit is less good, suggesting that the dynamics associated with the production

of police events is not well described by the models proposedhere. Perhaps this is

to be expected: police are likely to operate under more constraints than their Naxal

counterparts, and may be unlikely to react as quickly as the identified retaliation and

excitation processes found as part of the Naxal attacks. Thedifferent strategies adopted

by the police in various attempts to quell the insurgency mayhave also meant that a

Hawkes process with constant background and excitation rates over the duration of the

study period is not a good description of event occurrence. Models that change over

time to reflect different counterinsurgent strategies may improve the ability to explain

counterinsurgent events.
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Figure 5.4:A Q-Q plot to compare the Poisson process with the process obtained

from the residual analysis in section 5.6.1 with Model 6 for Naxal events (left-

hand side) and police events (right-hand side).The shaded region shows the 95%

confidence interval Q-Q plot of two Poisson processes, whilst the solid lines show the

95% confidence interval of the residual process against a Poisson process. The confi-

dence interval of the residual process is obtained by repeating the sampling procedure

described in Section 5.6.11000 times.
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5.6.2 Out of sample predictive performance

The performance of a model can be assessed by its ability to predict events that were

not used in the calibration procedure. This is particularlyimportant if the model is to

be used in a policy setting to assess the likelihood of eventsoccurring. In what follows,

two tests of predictive performance are employed: a receiver operating characteristic

analysis and a precision-recall analysis.

Receiver operating characteristic (ROC) analysis is a visualapproach to determine

how well a model is able to classify a set of new observations into one of two classes:

positive and negative. Originally developed in the study ofsignal detection, ROC anal-

ysis has subsequently been considered in a range of fields forassessing the goodness of

fit of classifier models (Fawcett, 2006; Ward et al., 2010). ROC analysis is performed

by plotting a ROC curve, which compares the rate at which the model is able to suc-

cessfully identify positive observations, the true positive rate, against the rate at which

the model mistakenly assigns an observation to be positive when in fact it is negative,

the false positive rate.

In order to perform a ROC analysis, the model of Naxal violence must first be

transformed into a classifier model. Although point processmodels such as the ones

developed in this chapter are naturally continuous in time,a temporal discretisation of

the model is applied in order to define the units of observation that require classification.

This is done by taking each day within each spatial unit and ofeach type of event as

a separate observation. Denoting the time unit of thek-th day under consideration by

Tk = [t(k), t(k+1)], the classifier model is required to determine whether or notat least

one incident of typel occurred in spatial regionj on dayTk.

To specify the classifier model, a threshold approach is employed. For a given

thresholdτ > 0,

λ
(l)
j (t(k)−) ≥ τ, (5.41)

implies that the model predicts at least one event to occur ondayk, in spatial regionj

of event typel, and

λ
(l)
j (t(k)−) < τ, (5.42)

implies that no event is predicted to occur. Note that the value of the intensity function

is calculated at the beginning of each observation day and does not include any of the
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events that occurred on that day.

To plot the ROC curve, the true positive rate and the false positive rate for a given

thresholdτ is required. The true positive rate is given by the total number of events that

were successfully predicted by the model divided by the total number of positive events

in the dataset (given by the number of days on which events occur within each spatial

region of each event type), and the false positive rate is given by the total number of

events mistakenly predicted by the model (i.e. those that did not occur in the dataset

but were predicted to occur by the model), divided by the total number of observations

that contained no events.

For each value ofτ , the above calculation provides one point in ROC space. In

order to plot the ROC curves, different values ofτ are considered and the same calcu-

lation of the true positive rate and the false positive rate is made. The choice ofτ is

made so that the resulting curve is convex, as detailed in Davis and Goadrich (2006).

The curves resulting from a ROC analysis omit a useful statistic for comparing models,

given by the area under the curve (AUC). The AUC is equal to the probability that a

new positive event will rank higher than a new observation with no event, and therefore

provides a measure of reliability of the model for a given sample.

In Figure 5.5, three ROC curves are plotted. The solid curve is calculated using

out of sample data. That is, the true positive rate and false positive rate are calcu-

lated for observations that were not used in the calibrationof the model. The out of

sample data consists of the Naxal events that occurred within the 4 districts of Andhra

Pradesh, which contained at least 100 events, and which did not form part of the new

state of Telangana and therefore were not used in the parameter estimation procedure.

When calculating the model, excitations from other districts (i.e. neighbouring and

non-neighbouring districts) were incorporated but only the out of sample events speci-

fied were predicted. The second curve is calculated using thein-sample data, contain-

ing events that occurred within the districts forming Telangana, and which were used to

calibrate the parameters. Finally, a third ROC curve is plotted using an indiscriminate

model, which randomly assigns positive events for each observation with probabilityτ .

The ROC curves for Model 6 are those that are plotted in Figure5.5 since this

was the model that provided the lowest AIC statistic. Typically, AUC values of above

0.8 are considered to correspond to a good model and therefore a relatively high level
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of discrimination between positive events and negative events is observed for both in-

sample and out-of-sample tests. Additionally, the AUC value for the out-of-sample data

is very close to the AUC value for the in-sample data, suggesting that the model has

not been overfitted to the calibration data, and that it is in fact capturing some of the

general mechanisms underlying the production of conflict events.

There are problems associated with the ROC-curve when the associated data is

highly skewed. The ROC-curve shows the proportion of events successfully predicted

against the proportion of non-events successfully predicted. Since these are propor-

tions, they do not depend on the actual number of events that occurred. The denom-

inator of the false positive rate is the number of observations that were successfully

predicted by the model to contain no events. If the number of observations with no

events is much greater than the number of observations with an event (as is the case

with the data used in this study), then the classifier successfully predicts nothing to

happen for a large proportion of observations, and the falsepositive rate becomes very

close to one very quickly, giving the impression that there is a large level of discrimi-

nation between positive events and non-positive events. For analysis of events that are

relatively rare, the ROC curve tends to provide a large AUC, regardless of the actual

success of the model.

To alleviate these limitations associated with the ROC curve, another approach

to analysing classifier models is often presented, known as the precision-recall (PR)

curve. Supposing that the classifier model has positively classified an observation,

and thus the model predicts at least one event of a particulartype to occur in a given

spatial region on a given day, thenprecisionis defined as the probability that this event

will actually occur. Supposing that at least one event of a particular type occurs in a

particular spatial region on a given day, thenrecall is defined as the probability that

the model would have positively classified this observation, and therefore predicted the

event to occur. The PR curve therefore shows the trade off between enabling the model

to predict the actual events, whilst making sure that it doesnot predict too many events

that do not happen.

The advantage of the PR curve is that it does not depend on the number of ob-

servations which were successfully predicted to have not occurred by the model, and

therefore the biases that feature in the ROC curve do not occur here. The disadvantage
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of the PR curve is that it is highly dependent on the number of events that occur in the

dataset. Whereas the ROC curve can be used for different sample sizes, the PR curve

must be applied on the same sample. For this reason, only the out of sample PR curve

is plotted.

Figure 5.6 shows the PR curve for the out of sample classifier for model 6 and

compares the model against an indiscriminate model on the same sample. The curve

is constructed using the algorithm described in Davis and Goadrich (2006). It demon-

strates how, for some threshold values ofτ , if the model predicts an event to occur then

there will be up to around a20% chance that the event will actually occur. At the same

time, if an event occurs, the model will have up to around a20% chance of correctly

predicting that event.

The ROC analysis and the PR analysis subtly demonstrate different aspects of

the performance of the model. The closeness between the ROC curve for the out of

sample data and the ROC curve for the in-sample data suggest that the model has not

been overfitted to the available data. The PR curve demonstrates the models predic-

tive performance when applied to out-of-sample data. The PRcurve is unbiased with

respect to the successful prediction of no events occurringbut cannot be used to com-

pare over different datasets. Although there is significantroom for improvement, the

values reported are much greater than is possible from usingan indiscriminate model.

In addition, it is worth emphasising that the models proposed are relatively parsimo-

nious and only employ the history of the system as predictivevariables. Incorporating

a range of structural variable may further improve its performance (Zammit-Mangion

et al., 2012).

5.7 Discussion

This chapter has proposed novel multivariate and nonlinearHawkes process models for

the modelling of insurgent violence, together with a range of tools for their calibration

and evaluation. Point process models are a versatile modelling framework well-suited

to the study of civil violence, but are only beginning to be employed in this domain.

The work presented here is intended to contribute to this emerging study area.

The models presented in this chapter have led to theoreticaladvances in the un-

derstanding of insurgent violence. It has been shown, for instance, that considering
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Figure 5.5:Receiver operating characteristic (ROC) curves for: i) outof sample

prediction of Naxal and police events using Model 6; ii) in-sample prediction of

Naxal and police events using Model 6; and iii) an indiscriminate model that ran-

domly assigns events to each day with a certain probability.The out of sample

analysis is performed on four districts in Andhra Pradesh that contained at least 100

events that were not used in the calibration of model parameters. The in-sample analy-

sis is performed on all events used in the model calibration.
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Figure 5.6:Precision recall curves for the out of sample classifier of Model 6 (solid

line) and an indiscriminate model that assigns new observations to be positive with

probability τ (dashed line).
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the escalation of both insurgent and counterinsurgent actions leads to a significant im-

provement in the fit associated with point process models of civil violence. Incorporat-

ing the spatial dependency of the violence has also been shown to improve modelling

performance, as evidenced by the improvement of the model when self-excitation acts

locally, and when spatial interaction effects are incorporated through neighbouring dis-

trict and non-neighbouring district excitation (althoughthe effects from neighbouring

and non-neighbouring districts were less strong).

There was evidence to suggest that insurgents retaliated topolice events: the oc-

currence of a police event was found to increase the likelihood of Naxal events. This

suggests that the counterinsurgent actions of the police that resulted in the death of at

least one Naxal did, on average, little to improve the security situation in the short term.

The timings of police events were less well predicted by the model. Although pos-

itive parameters were found for the excitation of police intensity as a result of Naxal

events, these estimates were not significant at the 95% level, according to the para-

metric bootstrapping procedure. The lack of model fit for police events suggests that

another model may be more appropriate, such as one that varied in time according to

the different counter-insurgent strategies adopted.

For Naxal events, the close fit between the residual process and a Poisson process

for Naxal events suggests that the dynamics underlying the production of insurgent

events appears relatively consistent over the ten years of the study period. Of course,

the data used does not capture the whole picture, as it relieson police actions resulting

in Naxal loss of life and does not account for their other activities. Others might also

point to the fact that insurgent activity reduces significantly in the latter stages of the

period of study. Nevertheless, this reduction in violence was not inconsistent with the

Hawkes model, and thus this demonstrates that the model can be a powerful tool in the

prediction of event occurrence.

There have been a number of modelling contributions made in this chapter. A

series of point process models were constructed with increasing complexity to test a

number of hypotheses inspired by current literature on civil violence, conflict and in-

surgencies. The models themselves are novel in that they incorporate the multivariate

nature of the data, spatial interaction effects and nonlinearities brought about by inhi-

bition. The calibration procedure for maximum likelihood estimation when the con-
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ditional intensity function consists of the positive part of a possibly negative function

is a new contribution to the literature. In addition, the consolidated presentation of

bootstrap estimations of parameter-level confidence intervals, residual analysis for de-

termining goodness of fit, and techniques for assessing the out of sample predictive

performance of a classifier model derived from the point processes serves to demon-

strate the potential applicability of the model.

There are numerous aspects of the conflict that this study hasnot taken into ac-

count. The close correspondence between the in-sample and out of sample ROC curves

in Figure 5.5 suggest that the model has not been overfitted tothe calibration data, and

therefore that other mechanisms may well improve the model fit, beyond that which is

demonstrated in the residual analysis in Section 5.6.1. Twoexamples of influences that

might be incorporated into future models include the role ofcivilians in the conflict,

and particular features of each of the spatial regions that might make them either more

or less likely to experience conflict events, two factors that have been extensively stud-

ied previously in the context of civil violence. Limitations also arise due to the model’s

inability to account for coordinated attacks that occur simultaneously. The models re-

lied on the assumption of a simple point process, which enabled unique conditional

intensity functions to be proposed. The models are also subject to potential sources of

error due to the choice of spatial units employed. In this case, the choice of spatial units

was made in accordance with the available data since fine scale location data was not

available.

This chapter progresses further along the modelling spectrum introduced in Chap-

ter 1. General mechanisms have been incorporated into a model of civil violence,

namely, the self- and mutual-excitation of events, and the spatial dependency of those

excitations, combined with empirical data on the history ofthe conflict. Compared to

the model of rioter target choice in Chapter 4, less empiricaldata has been employed,

and the mechanisms proposed are more general. In Chapter 6, a further step along this

spectrum will be made, in which a deterministic model is proposed based on the mutual

interaction of adversaries.
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6.1. INTRODUCTION

6.1 Introduction

Deterministic models reproduce exactly the same behaviourfor two identical starting

positions or initial system states. There is no randomness in the behaviour of system

entities, and the system will behave precisely as specified by the model for each initial

state. If the apparent random nature of much empirical data can be interpreted as fluc-

tuations from a more deterministic process, then deterministic models can be used to

model complex systems by specifying the behaviour of individual system entities and

their interactions for a range of possible scenarios.

One of the reasons for employing such approaches is that deterministic models are

amenable to a range of powerful mathematical techniques capable of exploring and pro-

viding insights into the logical consequences that follow from the model specification.

Consequently, inappropriate implications that result fromthe proposed mechanisms are

highlighted, and these mechanisms can be assessed with regards to their suitability for

describing the system. In this sense, deterministic modelsare useful for evaluating the

extent to which our understanding of how a system works provides a plausible account

of the observed phenomenon. Furthermore, if a mechanism is considered to be appro-

priate, analytical tractability can provide intricate insights into the system it models.

The formulation of differential equations is one way of constructing determinis-

tic models of complex systems. Differential equations model the rate of change of a

dependent variable with respect to an independent variable, and can be naturally for-

mulated for a wide range of systems. Additionally, since differential equations have

been analysed largely in the context of physical systems forhundreds of years, a large

range of tools and analytical concepts exist to interrogatesuch models. These tools

are largely concerned with the evolution and behaviour of the modelled system state

in phase space–the space defined as the union of all possible system states—and the

consideration of how this might change through either the variation of parameters as-

sociated with the model, or through perturbations of the model itself. Two properties

of a deterministic model that might be of interest include the stability of system states

and the robustness of that stability to possible changes.

Differential equations are well-equipped to model a range of both temporal and

spatio-temporal processes and, in Chapter 2, many examples are given related to the

study of conflict and civil violence. One of these, the Richardson arms race model, is
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considered in this chapter in more detail. This example is used to demonstrate tech-

niques to analyse differential equations, and to consider how such techniques might

provide insights into an observed phenomenon. The relativesimplicity of this model

ensures wide applicability to a range of conflict scenarios,and not just to the military

aims of competing nations, a fact that has been exploited in other studies.

Inspired by the findings earlier in this thesis and elsewherethat highlight the need

for incorporating spatial dependency in models of human conflict, a novel spatial ex-

tension to the Richardson model is presented, which enables the direct consideration

of space on the interactions of competitive adversaries. This spatially explicit model is

distinct from existing spatial models of conflict, which typically rely on partial differ-

ential equations or agent-based simulations to model spatial dependencies. It is argued

why this approach to spatial disaggregation, which is basedon entropy-maximising

spatial interaction models, is well-suited to modelling spatial dependency in civil vio-

lence. Advantages arise due to the model’s ability to incorporate non-smooth spatial

domains and more general metric spaces. Moreover, it is argued that, in contrast to

other types of spatial models, this model is more in line withRichardson’s original in-

centives for developing his model: that simple, heuristic results can lead to powerful

insights, as well as a framework for investigating conflict processes.

After deriving this spatial model, which to the knowledge ofthe author has not

been proposed elsewhere previously, a range of analytical techniques are applied in

order to gain insights into its properties. Starting with highly simplified scenarios, for

which the behaviour of the model can be wholly determined, its complexity is slowly in-

creased by considering higher-dimensional phase spaces and corresponding parameter

spaces, leading to an understanding of the model’s dynamicsin more general scenarios.

A supercritical pitchfork bifurcation in the solution pathof the model is identified

within a region of the phase space in which real-world systems are likely to be located.

This bifurcation is shown to be persistent under a wide rangeof parameter choices,

and its consequences are discussed. In particular, it is shown how this bifurcation

comes about as a result of the spatial disaggregation of the model, and emphasises the

importance of considering spatial dependency in such models.

This chapter fits into this thesis by considering a modellingapproach that has been

widely employed to model social systems, and, in doing so, introduces and analyses a
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new model capable of capturing spatial dependencies in civil violence and other types

of conflict. Although stochastic models might be better at capturing the apparent ran-

domness with which social systems appear to exhibit, and therefore might be more

adept at prediction and the estimation of model uncertainty, deterministic models can

still be used to provide insights into our understanding of social processes. Further-

more, deterministic models can often be specified at a more abstract level than many

statistical models, and, as such, their findings can be translated across a range of ex-

amples. This chapter progresses further along the spectrumof model types introduced

in Chapter 1, and enables the comparison between the insightsobtained by this model,

and insights obtained by the types of models considered elsewhere in this thesis. This

perspective will be summarised in Chapter 7.

6.2 The Richardson model

As described in Chapter 2, the Richardson model was initially conceived as a model

of arms expenditure between two nations in the lead up to war.As a consequence,

the dependent variables, given here byp andq, were taken to be the level of military

expenditure of two nations. The model is given by the following two-dimensional linear

system of ordinary differential equations:

dp

dt
= ṗ = −σ1p+ ρ1q + ǫ1 (6.1)

dq

dt
= q̇ = ρ2p− σ2q + ǫ2,

where parametersσ1 andσ2 determine the influence on the change in defence expen-

diture proportional to existing expenditure, andρ1 and ρ2 determine the rate of the

action-reaction relationship between the two adversaries. The termsǫ1 andǫ2 are those

associated with the external grievances. Typically,ρ1 andρ2 will be positive, as mil-

itary defences of one side will cause increasing defences ofthe other.σ1 andσ2 are

also typically positive: Richardson hypothesised that there will be some inhibition as-

sociated with an increasing military arsenal, perhaps through pressures placed upon the

government of each nation by their electorate.

In order to analyse the system in equation 6.1, it is first written in vector form as




ṗ

q̇



 =





−σ1 ρ1

ρ2 −σ2









p

q



+





ǫ1

ǫ2



 ,
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6.2. THE RICHARDSON MODEL

or, equivalently,

ṗ = Pp+ ǫ, (6.2)

where the vectorsp = (p, q) andǫ = (ǫ1, ǫ2) and the matrix

P =





−σ1 ρ1

ρ2 −σ2



 ,

have been defined.

Given an initial condition,p0 = (p0, q0), a solution of equation 6.2 defines the

resulting trajectory, or solution curve,p(p0, t), with p(p0, 0) = p0. In general, it can

be shown that, for suitable systems (i.e. those whose derivatives are defined locally

by continuously differentiable functions,f ), solution curves to the differential equation

ṗ = f(p) exist locally top0 and are unique (Guckenheimer and Holmes, 1983, pg. 3).

Of particular interest when faced with an ordinary differential equation is not just

on the identification of particular solution curves, but consideration of a family of so-

lution curves. There may, for instance, be different solution curves which eventually

result in exactly the same long-term behaviour. When this is the case, it is instructive to

identify the set of all initial conditions that result in thesame long-term behaviour. This

set of initial conditions is commonly known as the basin of attraction of that particular

long-term system state.

For general systems of differential equations, there are a range of different types

of long-term behaviours, however just two are considered initially: divergence to in-

finity, and convergence to a single equilibrium point. Both ofthese behaviours will be

shown to be present in the Richardson system, meaning that, according to the model,

defence levels of both nations will either tend to a constant, or continue escalating (or

de-escalating, depending on the sign of infinity). It is firstshown analytically how

these behaviours can occur, before discussing the real-world implications for the dif-

ferent types of behaviour. Although the analysis initiallypresented is straightforward,

it is nevertheless instructive to understand the possible behaviours of the system, and to

understand how insights might be obtained from deterministic models more generally.

Equilibrium points occur when solution curves in thep-q plane stop changing, so
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thatṗ = 0. For the system in equation 6.2, this occurs at the points(pe, qe) for which

−σ1pe + ρ1qe + ǫ1 = 0 (6.3)

−σ2qe + ρ1pe + ǫ2 = 0. (6.4)

If σ1σ2 6= ρ1ρ2, then, by addingρ2 multiplied by equation 6.3 toσ1 multiplied by

equation 6.4, and by addingσ2 multiplied by equation 6.3 toρ1 multiplied by equation

6.4, it can be shown that there is a unique solution given by

(pe, qe) =

(

σ2ǫ1 + ρ1ǫ2
σ1σ2 − ρ1ρ2

,
σ1ǫ2 + ρ2ǫ1
σ1σ2 − ρ1ρ2

)

. (6.5)

Alternatively, ifσ1σ2 = ρ1ρ2, then if

σ2ǫ1 + ρ1ǫ2 = 0, σ1ǫ2 + ρ2ǫ1 = 0,

there are infinitely many equilibrium values in thep-q plane, otherwise there are none.

Looking first at the case in whichσ1σ2 6= ρ1ρ2, the equilibrium point in equation

6.5 is the only point in thep-q plane at which the system is stationary: at this point,

both ṗ and q̇ are equal to zero. The constant termǫ can be eliminated from equation

6.2 by changing variables using the mappingp′ = p − P−1ǫ (the determinant ofP is

σ1σ2−ρ1ρ2, which is set as nonzero, which ensures the inverse toP exists). Removing

primes for convenience, the system becomes

ṗ = Pp, (6.6)

and the change of variables has the effect of moving the equilibrium point to the origin.

Since the system is linear in the dependent variables, any two linearly independent

solutionsp1(t) andp2(t) can be combined to form a general solution

p(t) = c1p1(t) + c2p2(t)

which spans thep-q plane, where, for each initial conditionp0, the unknown constants

c1 andc2 are chosen so thatp(0) = p0.

Since the analogous one-dimensional differential equation ẏ = ay has solutions

of the formy(t) = keat, solutions of the system in equation 6.6 are sought in the form

p(t) = veλt for someλ ∈ R andv ∈ R
2. This yields

λveλt = Pveλt,
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and, therefore,λ andv are, respectively, an eigenvalue and eigenvector ofP .

If v1 andv2 are two linearly independent eigenvectors ofP , with corresponding

eigenvaluesλ1 andλ2 (which may be complex), then the two solutions are linearly

independent and the general solution is given by their linear combination, so that

p(t) = c1v1e
λ1t + c2v2e

λ2t (6.7)

for constantsc1 andc2 which are specified by the initial conditions. Furthermore,it can

also be shown that, for a given initial conditionp0, the general solution in equation 6.7

is unique (Hirsch et al., 2004).

If v1 andv2 are linearly dependent, then another, linearly independent solution

is required in order to construct the general solution in theplane. This linearly in-

dependent solution can be derived from the generalised eigenvectorv3, defined as

(P − λI2)v3 = v2, whereI2 is the two-dimensional identity matrix, and the corre-

sponding solution is given byp3(t) = tv1e
λt + v3e

λt (see, for example, Britton et al.

(1963, pg. 996)).

The analytic form of the general solution enables us to see how the qualitative

dynamics depend crucially on the eigenvalues. In fact, it ispossible to categorise the

different types of qualitative behaviour that might arise by considering the range of pos-

sible eigenvalues for a given matrixP . Previous authors (e.g. Hirsch et al. (2004, pg.

63), Strogatz (1994, pg. 137)) have sought to demonstrate the range of behaviour for

linear systems of the form in equation 6.6 by presenting the trace-determinant diagram

in Figure 6.1. This arises because the eigenvaluesλi for i = 1, 2 of the two-dimensional

matrixP are defined by its trace,Tr(P ), and determinant,Det(P ), according to

λ2
i − Tr(P )λi +Det(P ) = 0.

In particular, the relationship between the trace and determinant determine the type of

equilibrium. For the Richardson system in equation 6.6, the trace,Tr(P ) = −(σ1 +

σ2), is the negative of the sum of the inhibition parameters, while the determinant,

Det(P ) = σ1σ2−ρ1ρ2, is a measure of the size of inhibition parameters in comparison

to the action-reaction parameters.

In Figure 6.2, the dynamics locally to the equilibrium of thesystem in equation

6.6 are shown. The parameters used for each of these cases arechosen to correspond
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with the points in Figure 6.1. Note that cases brought about by equalities (i.e. those

lying on the lines in Figure 6.1) are not shown as these are special cases to separate the

more common dynamics shown in real systems that do not require equality.

a) (−4,3)

Stable node

b) (−3,4)

Stable focus

c) (1,4)

Unstable focus

d) (4,3)

Unstable node

e) (2,−1)
f) (−3,−2) Saddle

Tr

Det

Tr2 =4Det

Figure 6.1:The trace-determinant diagram for linear planar systems.For a given

two-dimensional system,̇p = Pp, the location of the matrixP on this diagram de-

termines the type of the equilibrium at the origin. The points a)-f) correspond to the

subfigures in Figure 6.2, which show the qualitative dynamics for each case.

6.2.1 Nodes

ForDet(P ) > 0, if Tr(P )2 > 4Det(P ), the equilibrium is known as a node. Solution

curves near to a node equilibrium are determined by the relative strength of the eigen-

values and the directions of each associated eigenvector (see Figures 6.2(a) and (d) for

an attractive and a repelling equilibrium, respectively).If Tr(P )2 = 4Det(P ), then the

eigenvalues are repeated, and solution curves move in only one direction either towards

or away from the equilibrium value. IfDet(P ) = 0 andTr(P ) 6= 0, then one of the

eigenvalues is equal to zero and there are infinitely many fixed points on a line that

solution curves either move towards or away from in a perpendicular direction.
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→p

→
q a) Stable Node

→p

→
q b) Stable Focus

→p

→
q c) Unstable Focus

→p

→
q d) Unstable Node

→p

→
q e) Saddle

→p

→
q f) Saddle

Figure 6.2:The dynamics around the equilibrium value of the Richardson model in

equation 6.6 for different parameter values. The parameters are chosen to coincide

with each point in Figure 6.1.
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ForDet(P ) > 0 andTr(P )2 > 4Det(P ), if Tr(P ) > 0 then both eigenvalues are

real and positive and almost all trajectories diverge to infinity. In this case, nations are

reacting to their own defence levels, as well as the levels oftheir adversary, without

any inhibition. There is no damping in the system and it is consequently very unstable,

with interactions compounding the escalation effect. Richardson argued thatσ1 andσ2

are typically positive (which is to say there is some inherent damping behaviour), and

it will therefore be assumed thatTr(P ) < 0.

ForDet(P ) > 0, Tr(P ) < 0 andTr(P )2 > 4Det(P ), both eigenvalues are real

and negative and trajectories converge to the equilibrium value. In fact, given the as-

sumption thatTr(P ) < 0, the condition thatDet(P ) > 0 is necessary and sufficient

to result in a stable equilibrium. Thus, two nations will typically only cease changing

their defence levels if the sum of the inhibition parametersis positive, so that there

is some damping in the system, and if those inhibition terms outweigh the escalation

parameters. In this case, nations are being restrained by their internal dynamics—

perhaps through pressures placed upon them by the electorate—rather than reacting to

the threatening actions of their adversary. This heuristicresult agrees with common

sense, and begins to hint at how Richardson’s model might be applied to real-world

scenarios.

6.2.2 Foci

Another type of stable equilibrium can occur whenDet(P ) > 0 andTr(P ) < 0. If

Tr(P )2 < 4Det(P ) then the eigenvalues are complex conjugates and, sinceeiθ =

cos θ + i sin θ, there is rotation of solutions curves and they spiral towards (see Figure

6.2 (b)) or away from (see Figure 6.2 (c)) the equilibrium. This is known as a focus.

If Tr(P ) = 0 with Det(P ) > 0, then the real part of the complex eigenvalues

is equal to zero and solution curves are periodic circular trajectories centred on the

equilibrium. By comparing (b) and (c) in Figure 6.2, it can be seen that the closer to the

determinant axis in Figure 6.1 the system is, the more rotation there is in the solution

curves. For instance, in Figure 6.2(b), the equilibrium is afocus which is far from the

determinant axis, and thus has very quick convergence to theequilibrium value. The

system is highly dissipative, and in many practical situations it can be difficult to detect

the difference between a node and a focus. In Figure 6.2(c), the equilibrium is a focus
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which is close to the determinant axis and therefore has solution curves that are much

slower, and the system is more conservative. In this case, however, the equilibrium

is also unstable and so solution curves are diverging away from the equilibrium. In

many practical situations, due to the noisiness of available datasets, it is possible that

such instability, which is very close to conservative periodic orbits, can be mistaken for

either conservative behaviour, or even a stable equilibrium.

6.2.3 Saddles

If Det(P ) < 0, then one eigenvalue has negative real part, and the other has positive

real part, and the equilibrium is a saddle. Saddles have the characteristic that there is

one direction in which solutions converge to the equilibrium and another direction in

which solutions diverge to infinity. All other solutions area linear combination of the

behaviour in these two directions, which are defined by the eigenvectors associated with

the negative and positive eigenvalues respectively, and therefore typically eventually

diverge to infinity. Two saddles are shown in Figures 6.2 (e) and (f).

Saddles provide further insights of real-world escalationprocesses: they occur

whenDet(P ) = σ1σ2 − ρ1ρ2 < 0, which implies that the action-reaction parameters

outweigh the inhibition parameters. In this scenario, the system can be susceptible to

arms races. More insight into this scenario can be obtained by considering the eigen-

vectors of the matrixP . Assuming, without loss of generality, thatρ1 6= 0 holds in all

cases of interest (since if bothρ1 = ρ2 = 0 then there are no action-reaction dynamics,

and ifρ1 = 0 butρ2 6= 0, then the equations are relabelled), the eigenvectors are given

by

v1 =





σ1 + λ1

ρ1



 , v2 =





σ1 + λ2

ρ1



 .

Saddles occur when both eigenvalues are real, with one beingpositive and one being

negative. Denoting the positive eigenvalue byλ1, then, ifσ1 > 0 andρ1 > 0, which

Richardson argued occurs in most cases of interest, the eigenvector associated with the

positive eigenvalue points in the direction of the positivequadrant in the plane. Almost

all solution curves then either diverge to(∞,∞) or (−∞,−∞). As Richardson stated,

there is either a ‘drift toward war’ or a ‘drift toward closercooperation’ (Richardson,

1960a). For a given parameter set, the condition on which of these occur depends on the

initial conditions. If the initial condition lies above theline defined by the eigenvector
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associated with the negative eigenvalue then solutions diverge to positive infinity, whilst

if the initial conditions lie below this line, then solutions diverge to negative infinity.

In either case, the system is unstable, and the state of each individual nation is largely

determined more by international dynamics than by internalprocesses.

6.2.4 Richardson policy options

According to Richardson’s model, a nation hoping to avoid an escalating arms race with

an adversary has several ways in which they can increase the stability of the system.

The impacts of these strategies on the system parameters aresummarised in Figure

6.3. They can, for instance, attempt to enforce a stable equilibrium by increasing the

value ofDet(P ) = σ1σ2 − ρ1ρ2. They can do this either by decreasing their escalation

parameter, as shown in Figure 6.3(a) or by increasing their inhibition parameter, as

shown in Figure 6.3(b).

As another strategy, if they perceive the system to be unstable, and in the form

of a saddle, they can attempt to change the location of the system on thep-q plane so

that any initial conditions will lie below the eigenvector associated with the negative

eigenvalue. This could be done by decreasing the level of defences, or increasing the

level of cooperation with their adversary.

Alternatively, they could attempt to alter the direction ofthe eigenvector associated

with the negative eigenvalue so that the current state of thesystem falls below this line,

and the system will result in an escalating process of cooperation. This could be done

by altering the parameters in the system in order to minimisethe difference betweenv1

andv2 by ensuring thatλ1 andλ2 are as close as possible. Given that the eigenvalues

are equal whenTr(P )2 = 4Det(P ), this again involves increasing the value of the

determinant.

Finally, the position of the equilibrium can be changed by varying the level of

grievances determined byǫ as shown in Figure 6.3(c). IfDet(P ) < 0, an objective

might be to minimise grievances so that the equilibrium point is as close to the origin

as possible, thereby increasing the possibility that the state of the system will lie in the

half of the plane which results in an escalation of cooperation.

Of course, even if a nation were to make these changes, there is no guarantee

that their adversary will not change their dynamics in orderto put the system back on
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↓ρi
Tr

Det
Tr2 =4Det

a) Varying ρi

0 →p

0

→
q Before intervention

0 →p

0

→
q After intervention

↑σi
Tr

Det
Tr2 =4Det

b) Varying σi

0 →p

0

→
q Before intervention

0 →p

0

→
q After intervention

p

q

↓ ǫi

c) Varying ǫi

0 →p

0

→
q

(p0 ,q0 )

Before intervention

0 →p

0

→
q

(p0 ,q0 )

After intervention

Figure 6.3:Unilateral policy options available to nation i. a) shows the change in the

system according the trace-determinant diagram from Figure 6.1 whenρi is decreased

and b) shows the change whenσi is increased. Note that the half plane withTr(P ) > 0

is shaded since ifσ1, σ2 > 0, as Richardson hypothesised, the system will not lie in

this portion of the plane. c) shows the impact of nationi reducing external grievances

when the system is a saddle. The equilibrium point will move towards the positive

quadrant, meaning that for initial conditions given by(p0, q0), the system will tend

towards greater cooperation, rather than greater hostility.
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a course to an escalating arms race. The Richardson model is useful in highlighting

the possible consequences of a ‘mechanical’ arms race. As Richardson described, the

model is “merely a description of what people would do if theydid not stop to think”

(Richardson, 1960a, pg. 12). This implies a view of international conflict whose conse-

quences, once set in motion, cannot be escaped. Subsequently, authors have considered

various ways of extending the Richardson model in order to incorporate some notion

of decision-making on the part of the adversaries. Some, forexample, have consid-

ered the Richardson model from the perspective of control theory and game theory, in

which nations act according to a set of predefined objectives(Intriligator and Brito,

1976; Gillespie et al., 1977; Bennett, 1987). Although more closely considering the

decision-making of individuals that lead to the system outcomes, such approaches can

lose some of the generality that a more descriptive model cansometimes afford.

The analysis of the Richardson model has been presented usingthe language of

military arms races, in which two nations retaliate by increasing their level of military

expenditure. As explained in Chapter 2, the dependent variables might also represent

more abstract measures of conflict, or through measures thatcan be interpreted through

means other than expenditure. Indeed, it has been argued elsewhere that the model

represents a very general conflict escalation process and, as such, can be considered

to model a wide range of potential systems in which two adversaries are subject to

retaliation. The ability for the model to consider such processes during conflicts such

as insurgency and other types of civil violence is the reasonit has been presented in this

chapter. For the remainder of this chapter, the dependent variablesp andq are taken to

be a more general and abstract measure of hostility between two adversaries.

6.3 Spatial disaggregation of the Richardson model

It has been demonstrated in this thesis and elsewhere that spatial dependency in models

of civil violence captures important processes. Consequently, deterministic models that

do not explicitly model these spatial dependencies have more restrictive assumptions

than those that do. It is advantageous, therefore, to consider how to incorporate space

in such models, so that a modeller may assess whether or not the inclusion of space is

required in any given scenario.

In this section, the Richardson model of conflict escalation is spatially disaggre-
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gated in two different ways. First, a partial differential equation (henceforth abbrevi-

ated as PDE) is derived, which is inspired by a spatial disaggregation of the competitive

Lotka-Volterra model used to model gang rivalries in Brantingham et al. (2012). This

approach to incorporate spatial dependency is widely used in ecological models (Mal-

chow et al., 2008), and has also been used in a range of differential equation-based

models of human conflict. Some limitations of this approach are discussed, and, as a

result, it is concluded that a different approach might alsobe utilised. Consequently, a

second method for the spatial disaggregation of conflict models is presented that uses

an entropy maximising spatial interaction model to accountfor interdependencies be-

tween spatial regions. It is argued that this spatial disaggregation addresses some of

the limitations encountered with the PDE approach since it can be applied to more gen-

eral metric spaces. Additionally, it is argued that this model holds an advantage over

simulation approaches, such as agent-based simulation, due to its suitability for inter-

rogation using non-linear dynamical systems analysis. Thediscussion in what follows

is related closely to previous studies investigating the role of spatial disaggregation in

deterministic models, such as Durrett and Levin (1994).

6.3.1 A PDE disaggregation of the competitive Lotka-Volterra sys-

tem

The non-spatial competitive Lotka-Volterra model is first presented, in order to motivate

the spatial disaggregation of deterministic ordinary differential equations. This model

describes competition between two species, and has been well-studied, usually in an

ecological context. Given the populations of two species,p andq, the equations that

govern their evolution are

ṗ = r1p

(

1− p+ ζ12q

K1

)

(6.8)

q̇ = r2q

(

1− q + ζ21p

K2

)

,

for parametersr1, r2, ζ12, ζ21, K1 andK2. The interpretation of the model is as follows:

r1 andr2 represent growth rates—that is, birth rates minus natural death rates—of the

two populationsp andq, respectively.K1 andK2 are the carrying capacities of the

environment for the populationsp andq, respectively. These are the maximum possible

values for each of the populations that the environment is able to support and sustain.
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The parametersζ12 andζ21 are competition terms and determine the rate at which the

population ofp is decreased by the presence of the populationq and the rate at which

the population ofq is decreased by the presence of populationq, respectively.

Using a similar analysis to the Richardson model that was presented in Section

6.2, it can be shown that certain parameter values and initial conditions lead to either

the peaceful coexistence of the two species, or the extinction of one species due to the

presence of the other. This analysis is well presented in Strogatz (1994, pg. 155) for

parameter valuesr1 = K1 = 3, r2 = K2 = 2, ζ12 = 2 andζ21 = 1, in which the

dependent variables are taken to be populations of rabbits and sheep competing over

the same patch of grass.

By re-labelling the parameters of the model in equation 6.8, the model can be

related to the Richardson model, as highlighted in Epstein (1997). In particular, by

setting

ǫ1 = r1 σ1 =
r1
K1

ρ1 = −r1ζ12
K1

,

and similarly forǫ2, σ2 andρ2, the system in equation 6.8 can be written as

ṗ = p(−σ1p+ ρ1q + ǫ1) (6.9)

q̇ = q( ρ2p− σ2q + ǫ2),

which is reminiscent of the functional form of the Richardsonmodel in equation 6.1,

but with a multiplicative dependent variable term in each equation. If the initial con-

ditions of this system are in the positive quadrant, the multiplicative term ensures that

either component of the dependent variable cannot become negative. It is also interest-

ing to note that this system has the same equilibrium value asthe Richardson system,

together with three other equilibria brought about by the non-linearity. The Richardson

equilibrium corresponds to the peaceful coexistence of thetwo species.

In Brantingham et al. (2012), a spatially explicit version ofthe competitive Lotka-

Volterra model is used to model two gangs that compete over territorial boundaries in

a city, in which the dependent variables of the system vary inspace as well as time.

Rather than considering the population of two types of gangs,as is often the case with

the competitive Lotka-Volterra system, the dependent variables,p(x, t) and q(x, t),

are taken to be the density of gang-related activities attributed to gang1 and gang2,

respectively. Thus, the locations and timings of gang-related activities are modelled
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using spatially continuous functionsp andq, and their values at(x, t) correspond to the

risk of observing a gang-related activity at(x, t).

The spatially-explicit competitive Lotka-Volterra modelthat Brantingham et al.

(2012) propose is given by

∂p

∂t
= D1 ▽2 p+ p(−σ1p+ ρ1q + ǫ1)− δ1p (6.10)

∂q

∂t
= D2 ▽2 q + q( ρ2p− σ2q + ǫ2)− δ2q,

where diffusion coefficientsD1 andD2 are introduced, together with extra inhibition

parametersδ1 andδ2. The inhibition termsδ1p andδ2q serve to incorporate intrinsic

linear growth or decay of gang-related activities. The operator ▽2 is known as the

Laplacian and can be written as

▽2 =
∂2

∂x2
+

∂2

∂y2
, (6.11)

providing the model’s diffusive dynamics in accordance with Fick’s laws of diffusion

(De La Barrera, 2005). In particular, this model supposes that gang-related activities

will spread from areas in which high levels of gang-related activities occur to areas in

which low levels of gang-related activities occur. The authors argue that such dynamics

are justified due to the tendency for gangs to seek new territory that has not experienced

previous gang-related activities. Such expansion is halted by barriers in the urban envi-

ronment, and the behaviours and spatial extent of the opposing gang, according to the

other terms in the equation.

Given evidence for expansion, the diffusive assumption is often suitable; however,

in considering more general scenarios, this assumption maynot always be appropri-

ate. In what follows, a PDE version of the Richardson model is presented, which is

disaggregated in the same way as the Lotka-Volterra system in equation 6.10. The ap-

plicability of the model to more general spaces is considered, and the assumptions used

in deriving this model are critiqued.

6.3.2 A PDE disaggregation of the Richardson model

It is possible to spatially disaggregate the Richardson model in equation 6.1 using an

analogous diffusive approach to Brantingham et al. (2012). Given spatially continuous

dependent variablesp(x, t) and q(x, t), which now correspond to the more general
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concept of conflict or contempt between two adversaries, a spatially disaggregated PDE

Richardson model is given by

∂p

∂t
= D1 ▽2 p− σ1p+ ρ1q + ǫ1 (6.12)

∂q

∂t
= D2 ▽2 q + ρ2p− σ2q + ǫ2,

whereD1 andD2 are diffusion coefficients,▽2 is the operator defined in equation

6.11, and the remaining parameters are interpreted according to the original Richardson

model.

A number of assumptions implicit in this model may be undesirable when the

model is applied to particular conflicts, such as insurgencies or other types of civil

violence. First, as with the model by Brantingham et al. (2012) in equation 6.10, the

diffusive dynamics imply that dependent variables will naturally spread from areas with

high concentration to areas of low concentration. This implies that, according to this

model, the intensity of the conflict will tend to spread out over a geographic area over

time.

As has been shown in this thesis and elsewhere; however, the occurrence of civil

violence can be very highly clustered in space, with a large majority of events occurring

over a long time scale within a few small areas. It was shown inChapter 3, for instance,

that relocation of offences during the 2011 London riots, perhaps the most analogous

with the types of diffusive dynamics discussed here, occurred much less often than

would be anticipated had the events been modelled independently. At the same time,

occurrences of containment, corresponding to conflicts that remain stationary and do

not spread, occurred at a higher rate than could have been anticipated if the events

were independent. Of course, it is possible for conflicts to spread spatially, but forcing

models to observe this dynamical behaviour is potentially restrictive. Such models

sometimes unnecessarily use physical analogies from the study of fluid dynamics that

may not always be appropriate (Durrett and Levin, 1994; González and Villena, 2011).

Second, the model requires the dependent variablesp(x, t) and q(x, t) to be

smooth functions, in order to ensure that their second partial derivatives exist. Since

data is often aggregated into discrete geographic areas, this implies that such mod-

els often require the construction of kernel density estimators, particularly if they are

to be applied to real-world data. This requires further modelling assumptions to be
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made regarding the choice of estimator and the value of any parameters required by

that estimator. Furthermore, discontinuities may be required within the model due to

geographical features over which the conflict may be more unlikely to spread, such

as rivers, roads, or geopolitical boundaries. There are some techniques, however, that

exist to incorporate such effects (see, for example, Smith et al. (2010)).

Finally, solutions to partial differential equations require the specification of spa-

tial boundary conditions, which, in many cases may be difficult to define if the spatial

area of interest has no natural boundary that contains the dynamics.

All of these factors suggest that a number of additional, and, in some cases, re-

strictive assumptions are required for the model to be made spatially explicit through

the use of PDEs. In what follows, a different approach for thespatial disaggregation of

the model is employed in an effort to preserve more of the generality associated with

the original Richardson model than is afforded by PDE approaches.

6.3.3 An entropy-maximising spatial interaction disaggregation

In this section, the Richardson model in equation 6.1 is spatially disaggregated using

an entropy maximising spatial interaction model that has been developed to address

social systems with spatial dependency. Spatial interaction models have been employed

previously within both static and dynamic spatial models toconsider retail systems

(Harris and Wilson, 1978; Wilson, 2008); international migration (Dennett and Wilson,

2013); rioting (Davies et al., 2013); international trade (Fry and Wilson, 2012) and

ecological dynamics (Wilson, 2006).

To begin, consider a two-dimensional manifoldM, on which conflict between

two adversaries takes place. Suppose that one adversary is located at the points

x1,x2, ...,xN ∈ M. In other words, the adversary is disparately distributed overM,

perhaps due to the positions of military bases, allied settlements, or gang safe houses,

depending on the application of the model. Similarly, suppose that their adversary is

located at the pointsy1,y2, ...,yM ∈ M.

In order to maintain generality, the dependent variables for the system are taken

to be general measures of conflict, hostility or contempt towards each adversary. In the

disaggregated system, however, a measure of conflict at eachlocation is tracked. In

other words, the variables to be considered arep1, p2, ..., pN , which correspond to lev-
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els of hostility associated with locationsx1,x2, ...,xN , respectively, andq1, q2, ..., qN ,

which correspond to levels of hostility associated with locationsy1,y2, ...,yM , respec-

tively.

It is assumed similar mechanisms to the original Richardson model influence the

variablepj, for each indexj. That is,ṗj depends on three terms: the action-reaction

term that itself depends on the adversary who is distributedover the manifold, repre-

senting the retaliatory dynamics driving the system; a measure of inhibition, represent-

ing each adversary’s natural inclination to avoid conflict;and external grievances that

may be present atxj.

The action-reaction term within the equation forṗj is assumed to depend on the

variablesq1, q2, ..., qM , representing the level of hostility of their adversary. Inpar-

ticular, it is proposed that this term is given by a weighted sum of these terms, with

correspondingweighting factorswlj ∈ [0, 1], which serve to specify the proportion

of ql that contributes to the action-reaction dynamics ofpj for every l andj. These

weighting factors will be modelled explicitly in what follows. Following Richardson,

the second term, representing inhibition mechanisms, is taken to be proportional to the

hostility of pj and the third term, representing external grievances associated with the

hostility pj, is taken to be a constant.

With an analogous equation forql, for some indexl, but with corresponding action-

reaction weighting factors denoted byvjl, the disaggregated Richardson model is

ṗj = −σ1pj + ρ1

M
∑

l=1

qlwlj + ǫ1ιj, j = 1, ..., N, (6.13)

q̇l = ρ2

N
∑

j=1

pjvjl − σ2ql + ǫ2κl, l = 1, ...,M,

where, as before,ρ1 andρ2 specify the intensity of the action-reaction dynamics,σ1

andσ2 specify the extent to which there is inhibition to growth in hostility, andǫ1ιj and

ǫ2κl are the levels of external grievance associated withpj andql, respectively.

Since the model is a disaggregation of the full Richardson model, it is assumed

that the dynamics of the aggregated system—that is, the system defined by the hostility

of each adversary as a whole—follows the original Richardsondynamics. Thus, it is
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assumed that

N
∑

j=1

wlj = 1, l = 1, ...,M (6.14)

M
∑

l=1

vjl = 1, j = 1, ..., N

and that

N
∑

j=1

ιj = 1, (6.15)

M
∑

l=1

κl = 1,

so that

N
∑

j=1

ṗj = ρ1

M
∑

l=1

ql − σ1

N
∑

j=1

pj + ǫ1, (6.16)

M
∑

l=1

q̇l = ρ2

N
∑

j=1

pj − σ1

M
∑

l=1

ql + ǫ2.

Settingp =
∑N

j=1 pj andq =
∑M

l=1 ql, it can be seen that the system in equation 6.16

is equivalent to the system in equation 6.1. Therefore, the dynamics for the aggregated

system can be inferred from the analysis in section 6.2. Thisis an important feature of

the model and is utilised in the analysis sections of this chapter in what follows.

In order to derive an explicit form for the model in equation 6.13, further as-

sumptions are required. It is assumed thatιj = 1/N andκl = 1/M , so that external

grievances impactpj andql similarly over different values ofj andl. This assumption

can be generalised, although such generalisations are not considered in this thesis.

In order to find an explicit analytical expression forwlj andvjl, constraints are

imposed that describe how these weightings depend on the spatial distribution of the

locations of each adversary and the measures of hostility. These constraints are analo-

gous to the derivation of the entropy maximising spatial interaction model described in

Wilson (2008).

In order to define the constraints, a metricd : M×M → R is introduced. Taking

two locations,xj,yl ∈ M, d(xj,yl) is a measure of impedance, distance, or cost

betweenxj andyl. Metrics are symmetric and thusd(xj,yl) = d(yl,xj).
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Considering first the weightingswlj, it is assumed that the weighted mean distance

over all possible locations is constant so that

M
∑

l=1

N
∑

j=1

wljd(xj,yl) = c1, (6.17)

for some positive constantc1. Sincewlj ≥ 0 by construction and sinced(xj,yl) ≥ 0 for

all i andj (which is another property of a metric), then whend(xj,yl) is large,wlj will

be small, meaning that two adversaries located a long way away from each other will

have a small effect on each other; whereas, whend(xj,yl) is small,wlj is large, and

two nearby adversaries will be influenced by each other. Impedance, therefore, has a

diminishing effect on the magnitude of the resulting weighting, and formulates Tobler’s

first law of geography within the model, forcing nearer things to be more related than

farther things (Tobler, 1970).

Whilst the constraint in equation 6.17 specifies the relationship between the dis-

tance metric and the weightingswlj in what will be the final model, a second constraint

specifies the relationship between the weights and the hostility measuresp1, p2, ..., pj

as
M
∑

l=1

N
∑

j=1

wlj ln pj = ln

(

N
∏

l=1

p̄wl.

)

= c2 (6.18)

for some constantc2. p̄wl.
in equation 6.18 is the weighted geometric mean, weighted

according towlj for j = 1, 2, ..., N , for each adversaryl. This is a measure of central

tendency associated with the hostility measuresp1, p2, ..., pN . The product of these

measures of central tendency are constrained to be constantfor all possible weightings

wlj. The geometric mean is used instead of the arithmetic mean for mathematical

simplicity in what follows. For an adversary atyl, this constraint forces the weighting

wlj to be proportional to a power ofpj, as will be shown in what follows.

Following Wilson (1970), it is assumed that the weightingswlj for l = 1, ...,M

andj = 1, ..., N can be considered to arise from a thermodynamic system comprising

of a large number of very small distinct units that are able toflow from locationsyl

to xj. The weightingwlj represents the proportion of these small units atl that flow

to j when the thermodynamic system is in equilibrium. In previous applications of

the model, the individual units that flow have included moneyand people; however,

for the present purposes, in which a general model of conflictis sought, the quantity
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flowing from i to j is assumed to be a conceptual measure of threat. This is a novel

interpretation of the following well-known derivation of the model, and, as will be

demonstrated, enables a link between this modelling framework and a range of conflict

models, such as the general Richardson model that is derived here.

For l = 1, ...,M andj = 1, ..., N , the set of flows given by{wlj}—where the

bracket notation corresponds to the set of all flowswlj for l = 1, 2, ...,M and j =

1, 2, ..., N—can be realised by a number of different so-called micro-states, in which

wlj is the proportion of all units flowing fromyl to xj.

To illustrate this further, consider the scenario in which there are just four distinct

units of threat (as opposed to a large number of units in the full derivation). Sup-

pose also that these four units can flow from eithery1 or y2—the locations of one

adversary—and can flow to eitherx1 or x2—the locations of another adversary. De-

note the number of units that flow froml to j by w̃lj, where the tilde notation is used

to distinguish the counts of these units in contrast to the proportion. Then, given no

constraints on the types of flows that are possible, the most likely distribution of the

flow of threat is the realisation in which a single unit of threat flows from fromy1 to

bothx1 andx2 and a single unit flows fromy2 to bothx1 andx2 so thatw̃lj = 1 for all

l andj. With four units, there are exactly

W ({w̃lj}) =
4!

1!1!1!1!
= 24 (6.19)

possible scenarios, or ‘micro-states’, which result in this same distribution of flows. In

contrast, the scenario in which̃w11 = 4 whilst w̃lj = 0 for (l, j) 6= (1, 1) has exactly

one corresponding micro-state in which all units of threat flow fromy1 tox1. Thus, the

first scenario is considered to be more likely to occur, and isused as the distribution of

the flows within the model.

For a large number of threat units given byT , the number of possible micro-states

that give rise to a specific set of flows{w̃lj} can be calculated as

W ({w̃lj}) =
T !

∏

lj w̃lj!
.

W ({w̃lj}) is the number of ways in which a particular realisation of thedistribution

given by{w̃lj} can arise, and is therefore a measure of the likelihood of observing the
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set of values{w̃lj}. This measure can be simplified by taking the logarithm to obtain:

ln (W ({w̃lj})) = ln(T !)−
∑

lj

ln(w̃lj!),

and, by substituting Stirling’s approximation, which states that, for largen,

log(n!) ≈ n lnn− n,

the following is obtained:

ln (W ({w̃lj})) = ln(T !)−
∑

lj

(w̃lj ln(w̃lj)− w̃lj) . (6.20)

The final term in equation 6.20 is

∑

lj

w̃lj = T (6.21)

and is therefore equal to a constant.T ! is also constant, thus, in order select the distri-

bution{w̃lj} with the highest likelihood of being observed (provided allmicro-states

are equally possible), it is sufficient to take the distribution {w̃lj} that maximises the

entropy of the system, defined as

S ({w̃lj}) = −
M
∑

l=1

N
∑

j=1

w̃lj ln w̃lj. (6.22)

Maximising the value ofS in equation 6.22, whilst satisfying the constraints in equa-

tions 6.14, 6.17 and 6.18 (which also hold for{w̃lj} sinceTwlj = w̃lj) produces an

unbiased maximum likelihood estimate of the flows subject toexactly these constraints

and no other assumptions. In what follows, proportions{wlj} are used rather than ac-

tual counts of the units of threat, since the function in equation 6.22 can be maximised

without loss of generality by maximising the function

S ({wlj}) = −
M
∑

l=1

N
∑

j=1

wlj lnwlj. (6.23)

This result provides the model of the weightings required, and is obtained using the

method of Lagrangian multipliers. Following this method, the points at which

▽Λ = 0, (6.24)
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whereΛ is defined as

Λ({wlj} , α, β, {γl}) =−
M
∑

l=1

N
∑

j=1

wlj lnwlj + α

(

M
∑

l=1

N
∑

j=1

wlj ln pj − c2

)

(6.25)

− β

(

M
∑

l=1

N
∑

j=1

wljd(xj,yl)− c1

)

−
M
∑

l=1

γl

(

N
∑

j=1

wlj − 1

)

,

for so-called Lagrangian multipliersα, β andγl for l = 1, ...,M , are the points at which

the value ofS in equation 6.22 is maximised subject to the constraints in equation 6.14,

6.17 and 6.18. Differentiating with respect to eachwlj, and with respect to each of the

Lagrangian multipliers gives

∂Λ

∂wlj

= − ln(wlj)− 1 + α ln(pj)− βd(xj,yl)− γl,

for l = 1, ...,M andj = 1, ..., N , and

∂Λ

∂α
=

M
∑

l=1

N
∑

j=1

wlj ln pj − c2

∂Λ

∂β
=

M
∑

l=1

N
∑

j=1

wljd(xj,yl)− c1

∂Λ

∂γl
=

N
∑

j=1

wlj − 1,

for l = 1, ...,M . If the constraints are satisfied, then equation 6.24 is satisfied when

wlj =
pαj exp(−βd(xj,yl))

exp(1 + γl)
.

for l = 1, ...,M and j = 1, ..., N . The constraint in equation 6.14 can be used to

eliminateγl, since
N
∑

j=1

pαj exp(−βd(xj,yl))

exp(1 + γl)
= 1,

and so

exp(1 + γl) =
N
∑

j=1

pαj exp(−βd(xj,yl)).

Thus, the weighting factorswlj, being the values that maximise the entropy in equation

6.22, subject to the constraints in equations 6.14, 6.17 and6.18, can be written as

wlj =
pαj e

−βd(xj ,yl)

∑N

j′=1 p
α
j′e

−βd(xj′ ,yl)
,
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for parametersα andβ, and where the subscriptj′ has been introduced to distinguish

it from j. The weightingwlj determines the extent to whichql influences the reactive

retaliatory behaviour ofpj. It can be interpreted as a weighted comparison ofpj against

pj′ for j′ = 1, 2, ...N , weighted according to the distances betweenyl andxj′, andyl

andxj.

By writing

pαj′ = exp (α ln pj′) , (6.26)

for j′ = 1, 2, ..., N , it can be seen that the model has a similar functional form tothe

discrete choice model used to model rioter target choice in Chapter 4. Indeed, the

two models are known to be equivalent (Fotheringham and O’Kelly, 1989). One might

therefore interpret the weightingswlj as the attractiveness perceived by the adversary at

yl, of each target atxj for j = 1, 2, ..., N . In this case, ‘attractiveness’ is a function of

hostility levelspj and distanced(xj,yl). The use of the term ‘attractiveness’, however,

should be used with caution, as this implies that an adversary is attracted to target

adversaries with high hostility, which may not be reflectiveof the purposeful choices of

each adversary, but rather a necessary precaution. It is forthis reason that the entropy-

maximisation derivation proposed here is used, as opposed to the formal discrete choice

framework outlined in Chapter 4.

By an analogous derivation, a similar expression may be derived for the retaliatory

effect onql from pj, with corresponding weightingsvjl, given by

vjl =
qγl e

−δd(yl,xj)

∑M

l′=1 q
γ
l′e

−δd(yl′ ,xj)
, (6.27)

for further new parametersγ andδ, and subscriptl′.

Returning to equation 6.13, and substituting in the expressions forwlj andvjl, the

spatially-explicit Richardson model for two adversaries disparately distributed over a

manifoldM with associated distance metricd : M×M → R, is given by

ṗj = −σ1pj + ρ1

M
∑

l=1

ql
pαj e

−βd(xj ,yl)

∑N

j′ p
α
j′e

−βd(xj′ ,yl)
+

ǫ1
N

(6.28)

q̇l = −σ2ql + ρ2

N
∑

j=1

pj
qγl e

−δd(yl,xj)

∑M

l′ qγl′e
−δd(yl′ ,xj)

+
ǫ2
M

,

for j = 1, 2, ..., N andl = 1, 2, ...,M .
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The model in equation 6.28 extends Richardson’s model by explicitly incorporat-

ing the impact of space via the metricd. Advantages over other methods of modelling

spatial conflict processes (such as partial differential equations or multi-agent simu-

lations) include the explicit and relatively general assumptions required to derive the

model, together with its concise analytical form, enablingthe model to be interrogated

analytically to obtain insights. Since few restrictions have been placed upon the dis-

tance metric, the model can be applied to a range of conflict processes. For example, it

might be applied to international arms races, in which spatial effects between nations

plays a role in their armament decision-making processes (see, for example, Goldsmith

(2007) who demonstrates such spatial dependency in military arms expenditure). The

metric may also be constructed to incorporate non-spatial measures such as historic ties

between nations as a means of reducing the effect of the corresponding threat weight-

ing.

Moreover, the model is general enough to be applied to any conflict process in-

volving retaliatory dynamics and spatial dependency. It was discussed in Chapter 2

how similar models—some with explicit spatial dependency,and some without—have

been considered in the context of gang rivalries, psychological conflict, and civil and

insurgent conflicts, amongst others. To the knowledge of theauthor, the model in equa-

tion 6.28 is novel and has not been investigated elsewhere previously. For this reason,

the generality of the model is preserved and, for the time being, specific applications

are not considered. Thus, in what follows, this model is explored using techniques from

non-linear dynamical systems analysis to obtain general insights into its properties and

to demonstrate some of its logical implications.

6.4 Nonlinear dynamical systems analysis

In this section, a range of tools that have been developed to analyse nonlinear dy-

namical systems are employed to obtain insights into the model in equation 6.28.

The types of insights sought include the understanding of the range of possible long-

term behaviours of the system, and an appreciation of how varying the model’s pa-

rameters changes this behaviour. As in section 6.2, in whichthe linear Richardson

model was considered from a dynamical systems perspective,it is not just individ-

ual solution curves for a specific initial condition, denoted here by(p(t0),q(t0)) =
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(p1(t0), ..., pN (t0), q1(t0), ..., qM (t0)), that are of interest, but also families of solution

curves, which can be used to determine the range of possible behaviours that might

arise for any initial condition within a given subset of the phase space.

To begin, some simplifying assumptions are made. In what follows, a reduced

parameter space is considered in whichα = γ = 1, δ = β, andσ1 = σ2 = σ. Respec-

tively, these imply: thaṫp depends linearly onp in both the numerator and denominator

of the action-reaction term (which combine to form a nonlinear function); that both ad-

versaries react to impedance onM at the same rate; and that both adversaries react to

internal constraints at the same rate. In accordance with Richardson’s original model,

the parametersρ1, ρ2, σ1, σ2, ǫ1 and ǫ2 are set to be nonnegative. The parameterβ

is also taken to be nonnegative, to ensure that distance plays a diminishing role in the

weighting factorswlj andvjl.

It is possible to simplify the model further, this time at no cost to the generalis-

ability of the model, by rescaling the system. Indeed, substituting

t =
1

σ
t̂, ρi = σρ̂i, ǫi = σǫ̂i, (6.29)

into the model eliminates the parameterσ. Relabelling the parameters by removing

hats, and taking into account the other simplifying assumptions, the model in equation

6.28 becomes

ṗj = −pj + ρ1

M
∑

l=1

ql
pje

−βd(xj ,yl)

∑N

j′ pj′e
−βd(xj′ ,yl)

+
ǫ1
N

(6.30)

q̇l = −ql + ρ2

N
∑

j=1

pj
qle

−βd(yl,xj)

∑M

l′ ql′e−βd(yl′ ,xj)
+

ǫ2
M

.

There are five parameters in equation 6.30 whose effect on thesystem dynamics

requires exploration.ρ1 and ρ2 are analogous to the action-reaction terms for each

adversary in the original Richardson model and are anticipated to play a similar role.

That is, as they increase, the system is expected to become more unstable. A similar

comparison can be made forǫ1 and ǫ2, which are external grievance terms, and are

anticipated to play a role in the magnitude of resulting solution curves. The parameter

β, however, has no analogy within the original Richardson model. Its inclusion in

equation 6.30 is as a direct result of the spatial disaggregation.

In the sections that follow, the model in equation 6.30 is considered in a series

of idealised scenarios. From these scenarios, modest insights into the model can be
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obtained. It will be demonstrated how some of these insightsare consistent with the

behaviour of the model in more complicated scenarios, leading to more useful insights

that might be employed within case studies. Initially, the dimension of the dependent

variable, given byN + M , is minimised, since low-dimensional non-linear systems

are often the easiest to analyse. To this end, the model is first considered withN +

M = 3, which is the lowest dimension of the dependent variable forwhich the model

admits non-trivial spatial disaggregation of conflict dynamics (N = M = 1 leads to

Richardson’s original system). Next, a scenario is considered withN + M = 4, and

thenN +M = 8. Finally, the model is investigated in a general number of dimensions,

using the findings of the more simple scenarios to instruct the analysis.

6.4.1 A three-dimensional scenario

The first scenario to be considered is the simplest with non-trivial spatial disaggrega-

tion. Without loss of generality, this is given by the case whenN = 2 andM = 1,

so that one adversary is distributed over two locations—at positionsx1,x2 ∈ M—and

the other adversary remains at just one location, given byy ∈ M. This scenario can

be thought of as one step below a macro-level model in which the spatial dependency

is completely aggregated (and therefore given by the original Richardson model).

In order to fully specify the model, the metricd is defined. A metric is required

that distinguishes between the locationsx1 andx2, and, for analytic simplicity, is set

here so that

d(x1,y) = 0, d(x2,y) = 1,

so that the distance betweenx1 andy is negligible, whilsty andx2 are different loca-

tions onM. The resulting three-dimensional system can be written as

ṗ1 = −p1 + ρ1
qp1

p1 + p2e−β
+

ǫ1
2

ṗ2 = −p2 + ρ1
qp2e

−β

p1 + p2e−β
+

ǫ1
2

(6.31)

q̇ = −q + ρ2(p1 + p2) + ǫ2.

The first constraint specified in the spatial disaggregationof the model in equation

6.14 ensures that the aggregated system, taken to be the sum of the hostility levels over

the different locations of each adversary, is equivalent tothe system as described by the
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original linear Richardson model. The dynamics of the variablesp = p1 + p2 andq are

therefore given by equation 6.1. Consequently, the linear stability analysis presented

in Section 6.2 can also be utilised here. During this analysis, it was determined that

the Richardson model has a unique equilibrium which is stableif, and only if,σ1σ2 −
ρ1ρ2 > 0 andσ1 + σ2 > 0. Translating these criteria using the same rescaling as in

6.29, and taking into account the constraints placed upon parameters, the aggregated

system converges to a stable equilibrium if, and only if,

ρ1ρ2 < 1,

and this equilibrium is given by

p = p1 + p2 =
ǫ1 + ρ1ǫ2
1− ρ1ρ2

, q =
ǫ2 + ρ2ǫ1
1− ρ1ρ2

. (6.32)

Equation 6.32 defines a line in three-dimensional(p1, p2, q)-space as the intersec-

tion of two planes. If the stability criteria are satisfied then the system converges to this

line. If ρ1ρ2 > 1, then the aggregated system is unstable and almost all solution curves

diverge to infinity.

For the remainder of this section, it is assumed thatρ1ρ2 < 1, so that all solu-

tion curves in the aggregated system converge to a stable equilibrium, and all solution

curves in the three-dimensional system in equation 6.31 converge to the line defined by

equation 6.32. It remains to find the dynamics of the system onthis line, representing

the behaviour of the system that is due to spatial disaggregation.

The dynamics on the line of equation 6.32 can be found througha change of

variables to separate the model into two components: the original linear Richardson

system, which is well-understood, and the unknown dynamicsbrought about by spatial

disaggregation. To this end, the variables

p = p1 + p2, r = p1 − p2,

are introduced.

Re-writing the system in equation 6.31 in terms of the variablesp, q andr, leads
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to

ṗ = −p+ ρ1q + ǫ1 (6.33)

q̇ = −q + ρ2p+ ǫ2 (6.34)

ṙ = −r + ρ1q
p(1− e−β) + r(1 + e−β)

p(1 + e−β) + r(1− e−β)
, (6.35)

which isolates the dynamics of the aggregated system with the unexplored dynamics on

the line defined by 6.32. Equations 6.33 and 6.34 correspond to the Richardson model

in equation 6.1 withσ1 = σ2 = 1, and do not depend onr. The unexplored dynamics

captured by equation 6.35, which incorporates the effect ofspatial disaggregation, can

be considered as a distinct system for given values ofp andq.

In what follows, it is assumed that the system has converged to the line in 6.32,

and therefore the values ofp andq are fixed positive constants as given in 6.32. The

dynamics are therefore given by the one-dimensional system

ṙ = −r + ρ1q
p(1− e−β) + r(1 + e−β)

p(1 + e−β) + r(1− e−β)
. (6.36)

This section proceeds by considering the dynamics of this simplified system,

thereby leading to an understanding of how spatial dependency is incorporated into

the model, and, specifically, how hostility against the adversary aty is distributed over

the locationsx1 andx2 for different parameter values.

The system in equation 6.36 is undefined when

r = −
(

1 + e−β

1− e−β

)

p, (6.37)

and so the analysis presented here is restricted to cases in which this condition does not

occur. For equality in equation 6.37,r andp must have opposite signs; however, since

d(x1,y) < d(x2,y), and since distance is hypothesised to have a diminishing effect on

the resulting hostility, it may be assumed thatp1 > p2 for p > 0 and, therefore, that

r > 0. Thus, this condition is assumed not to occur in scenarios ofinterest.

The system in equation 6.36 is stationary when

−r + ρ1q
p(1− e−β) + r(1 + e−β)

p(1 + e−β) + r(1− e−β)
= 0,

the roots of which are solutions to the quadratic equation

r2 +

(

1 + e−β

1− e−β

)

(p− ρ1q)r − ρ1pq = 0. (6.38)
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There are two real roots to equation 6.38, given by

r± = −1

2

(

1 + e−β

1− e−β

)

(p− ρ1q)±
1

2

√

(

1 + e−β

1− e−β

)2

(p− ρ1q)2 + 4ρ1pq, (6.39)

which implies that there are two equilibria on the line defined by equation 6.32. Since

4ρ1pq > 0, r− < 0 andr+ > 0. The pointr+ is therefore a unique positive equilibrium

of equation 6.36.

The stability of this equilibrium can be determined by considering the derivative

of ṙ with respect tor, at the pointr+. If

dṙ

dr

∣

∣

∣

∣

∣

r+

< 0, (6.40)

then the equilibrium is stable. This condition can be verified by considering small

deviations from the equilibrium atr = r+, and determining whether the system will

return to the equilibrium value or move away from it. Specifically, if ǫ > 0 is small

enough, then, if equation 6.40 holds, the value ofṙ at r = r+ − ǫ is positive, and so

the value ofr will increase (sincėr determines the rate at whichr changes), and move

towardsr = r+. Similarly, if equation 6.40 holds, then the value ofṙ at r = r+ + ǫ

will be negative, the value ofr will decrease, and again move back towardsr+. The

converse also holds: if the derivative ofṙ at r = r+ is positive, then the equilibrium is

unstable.

Differentiating equation 6.36 obtains

dṙ

dr
= −1 + ρ1pq

(1 + e−β)2 − (1− e−β)2

(p(1 + e−β) + r(1− e−β))2
.

If p > r as expected, then

dṙ

dr
< −1 + ρ1pq

(1 + e−β)2 − (1− e−β)2

(p(1 + e−β)2 + p(1− e−β)2)
(6.41)

= −1 +
ρ1q

p

(

(1 + e−β)2 − (1− e−β)2

((1 + e−β) + (1− e−β))2

)

.

Additionally, substituting the expressions for the equilibrium value ofp andq, obtains

ρ1q

p
= ρ1

(

ǫ2 + ρ2ǫ1
1− ρ1ρ2

)(

1− ρ1ρ2
ǫ1 + ρ1ǫ2

)

=
ρ1ǫ2 + ρ1ρ2ǫ1
ρ1ǫ2 + ǫ1

< 1,
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sinceρ1ρ2 < 1. Also,

(1 + e−β)2 − (1− e−β)2

((1 + e−β) + (1− e−β))2
<

(1 + e−β)2 − (1− e−β)2

((1 + e−β)2 + (1− e−β)2)
< 1,

and, therefore,
dṙ

dr

∣

∣

∣

∣

∣

r+

< 0,

which holds providedr < p andr > 0. Under these conditions the unique positive

equilibrium is locally attractive. In addition, sincedṙ/dr only changes sign whenr =

r+ or r = r−, the equilibriumr = r+ is attractive forr > 0. Figure 6.4 shows the

dynamics of the one-dimensional system for the given set of parameter values. Initial

conditionsr0 such that0 ≤ r0 ≤ p will always converge to the equilibrium given by

r+, and therefore ifp1 ≥ p2, the system in equation 6.31 converges to a single positive

equilibrium value.

r+ p
�r

0

�

ṙ

Figure 6.4:A plot of ṙ againstr for the one-dimensional system in equation 6.36.

The parameter values used areǫ1 = ǫ2 = 1, ρ1 = ρ2 = 0.5 andβ = 1. The arrows

show the direction of solution curvesr(t) for t > 0 along ther-axis.

Under the assumptions of the model, two adversaries engaging in retaliatory
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conflict—one of which is distributed over two distinct locations, one nearby to the

adversary, and one further away—will approach an equilibrium whereby the respective

level of hostile activity atx1 andx2 serves to counter the hostility by the adversary at

y. If, initially, p1 ≥ p2, which would be anticipated given thatx1 is closer toy than

x2, and since distance is assumed to play a diminishing role on the retaliatory nature of

the conflict, then the resulting distribution of hostility between the locationsx1 andx2

is determined by the value ofr+, according to equation 6.39. If, for example,r+ = 0,

then, at this point,p1 = p2 and hostility is equally distributed over the locationsx1 and

x2.

Equation 6.39 enables the investigation of how the parameters influence the value

of r+, and therefore influence the resulting spatial distribution of hostility. The param-

etersρ1, ρ2, ǫ1 andǫ2 have a similar interpretation on the aggregate equilibriumvalue

given in equation 6.32, as in Section 6.2; however, the parameterβ does not appear in

the original model as it results from the spatial disaggregation.

To investigate howβ influences the spatial distribution of the resulting equilib-

rium, its limiting influence onr+ is first considered. Asβ → 0,
(

1 + e−β

1− e−β

)

→ ∞,

however, the value ofr+ in the limit asβ → 0 can be found by applying the generalised

binomial expansion to the analytical expression ofr+ in equation 6.39, leading to

lim
β→0

r+ = lim
β→0

(

− 1

2

(

1 + e−β

1− e−β

)

(p− ρ1q)+

1

2

(

1 + e−β

1− e−β

)

(p− ρ1q)

(

1 +
4ρ1pq

(

1+e−β

1−e−β

)2

(p− ρ1q)2

) 1
2
)

= lim
β→0

(

− 1

2

(

1 + e−β

1− e−β

)

(p− ρ1q)+

1

2

(

1 + e−β

1− e−β

)

(p− ρ1q)

(

1 +
1

2

4ρ1pq
(

1+e−β

1−e−β

)2

(p− ρ1q)2
+ ...

))

. (6.42)

Higher order terms of equation 6.42 can be neglected since, asβ → 0, they approach0

more quickly than the other terms. Consequently,

lim
β→0

r+ = 0.
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In this case,p1 = p2, the level of hostility at bothx1 andx2 is equal, and space plays

no role in the model. The conditionβ > 0 leads to spatial dependency in the model.

As β → ∞,
(

1 + e−β

1− e−β

)

→ 1,

and thus

lim
β→∞

r+ = −1

2
(p− ρ1q) +

1

2

√

(p− ρ1q)2 + 4ρ1pq,

from which, by expanding the squared term inside the square root and then factorising,

can be obtained:

lim
β→∞

r+ = ρ1q.

Therefore, asβ increases, the difference in the levels of hostility atx1 andx2 ap-

proaches the limitρ1q. Figure 6.5 plots the value ofr+ given in equation 6.39 for

different values ofβ. The plot produces a monotonically increasing function, which

approaches the limitρ1q. Therefore, the difference in hostility levels atx1 andx2 is

at its maximum asβ → ∞. The parameterβ determines the extent to which hostility

is distributed over the locationsx1 andx2, and therefore captures the strength of the

spatial dependency in the system. Similar interpretationscan also be obtained from

the more general system in equation 6.30. Asβ → 0, the system becomes completely

aggregated, regardless of the spatial distribution of adversaries, whilst asβ → ∞, the

system becomes increasingly local, with adversaries only being influenced by their im-

mediate neighbours. The value ofβ determines the strength of spatial dependency and

the accessibility of the space, and will require appropriate calibration in the application

of the model to conflict scenarios.

6.4.2 A four-dimensional scenario

In this section the complexity of the model is increased by considering a scenario in

which each adversary is located over two distinct locations. Suppose that the locations

x1, x2, y1, y2 ∈ M are associated with hostility measuresp1, p2, q1, q2 ∈ R, respec-

tively. For analytic simplicity, the distance metricd is chosen to consist of zeros and

ones. In this case, the2× 2 matrixD given byDjl = d(xj,yl) is defined to be

D =





0 1

1 0



 ,
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r+

Figure 6.5:The value ofr+, as given in equation 6.39, for different values ofβ. The

parameter values used areǫ1 = ǫ2 = 1, ρ1 = ρ2 = 0.5 andβ = 1.
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so that adversaries are distributed identically onM. The two adversaries can be thought

of as being both distributed across two spatial zones. In this scenario, the model in

equation 6.30 becomes

ṗ1 = −p1 + ρ1
q1p1

p1 + p2e−β
+ ρ1

q2p1e
−β

p1e−β + p2
+

ǫ1
2

ṗ2 = −p2 + ρ1
q1p2e

−β

p1 + p2e−β
+ ρ1

q2p2
p1e−β + p2

+
ǫ1
2

(6.43)

q̇1 = −q1 + ρ2
p1q1

q1 + q2e−β
+ ρ2

p2q1e
−β

q1e−β + q2
+

ǫ2
2

q̇2 = −q2 + ρ2
p1q2e

−β

q1 + q2e−β
+ ρ2

p2q2
q1e−β + q2

+
ǫ2
2
.

Similarly to the three dimensional case in section 6.4.1, the dynamics of the original

Richardson model can be extracted from this system by a changeof variables, leading

to a reduced dynamical system to which the system converges for ρ1ρ2 < 1. The

following parameters are therefore introduced:

p = p1 + p2, r = p1 − p2,

q = q1 + q2, s = q1 − q2.

Substituting these expressions into equation 6.43, and re-writing the system so that it

depends only onp, q, r ands, obtains

ṗ =− p+ ρ1q + ǫ1 (6.44)

q̇ =− q + ρ2p+ ǫ2 (6.45)

ṙ =− r +
ρ1
2
(q + s)

(1− e−β)p+ (1 + e−β)r

(1 + e−β)p+ (1− e−β)r

+
ρ1
2
(q − s)

(e−β − 1)p+ (1 + e−β)r

(1 + e−β)p+ (e−β − 1)r
(6.46)

ṡ =− s+
ρ2
2
(p+ r)

(1− e−β)q + (1 + e−β)s

(1 + e−β)q + (1− e−β)s

+
ρ2
2
(p− r)

(e−β − 1)q + (1 + e−β)s

(1 + e−β)q + (e−β − 1)s
. (6.47)

Equations 6.44 and 6.45 are equivalent to the original Richardson system withσ1 =

σ2 = 1, whilst equations 6.46 and 6.47 represent the added dynamics and complexity

that is due to spatial disaggregation. Forρ1ρ2 < 1, the system converges to the plane

defined by the equilibrium of the aggregated system, given by

p =
ρ1ǫ2 + ǫ1
1− ρ1ρ2

, q =
ρ2ǫ1 + ǫ2
1− ǫ1ǫ2

. (6.48)
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For the remainder of the section, it is assumed thatρ1ρ2 < 1 and that a sufficient

amount of time has passed so that the unexplored dynamics of the system are given by

equations 6.46 and 6.47, wherep andq are constants given in equation 6.48.

The system is undefined when

r = ±
(

1 + e−β

1− e−β

)

p,

or when

s = ±
(

1 + e−β

1− e−β

)

q.

Consequently, the analysis presented here is restricted to solutions that do not cross this

region in phase space. For a value ofβ > 0, the lines at which the system is undefined

generate a rectangle inrs-space surrounding the origin. Considering possible solutions

within this rectangle, it can be observed that the origin is an equilibrium: forr = 0 and

s = 0,

ṡ

∣

∣

∣

∣

(r,s)=(0,0)

=
ρ1q

2

(

1− e−β

1 + e−β

)

+
ρ1q

2

(

e−β − 1

1 + e−β

)

= 0

ṙ

∣

∣

∣

∣

(r,s)=(0,0)

=
ρ2p

2

(

1− e−β

1 + e−β

)

+
ρ2p

2

(

e−β − 1

1 + e−β

)

= 0.

The origin of thers-plane represents the point at whichp1 = p2 andq1 = q2. Thus

hostility is equally distributed amongst the different locations in space and the system

is perfectly balanced and symmetric.

The stability properties of this equilibrium provide significant insight into the

model. On the one hand, if the equilibrium is attractive, then solution curves will

converge towards this point and, according to the model, evenly distributed hostility

levels in space will be anticipated to arise; however, on theother, if the equilibrium is

unstable, then solution curves will be repelled from this point and the model will tend

to exhibit more unequal distributions of hostility in space. The stability of the equilib-

rium point can be determined by considering the planar system in equations 6.46 and

6.47, in which the values ofp andq are treated as constants given by equation 6.48,

denoted by

(ṙ, ṡ) =





f(r, s)

g(r, s)



 ,
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wheref andg are given by the right hand sides of equation 6.46 and 6.47, respectively.

A Taylor expansion about(r, s) = (0, 0) leads to




f(r, s)

g(r, s)



 =





rfr(0, 0) + sfs(0, 0) +O(r2) +O(s2) +O(rs)

rgr(0, 0) + sgs(0, 0) +O(r2) +O(s2) +O(rs)



 ,

where the subscript notation represents partial differentiation with respect to the sub-

scripted variable. Using matrix notation, this is equivalent to




ṙ

ṡ



 =





fr fs

gr gs





∣

∣

∣

∣

∣

(r,s)=(0,0)





r

s



+O(r2) +O(s2) +O(rs). (6.49)

The2× 2 matrix in equation 6.49 is the Jacobian of the functionf := (f, g). Equation

6.49 therefore separates the dynamics of the planar system into a linear component—

whose dynamics are given by the Jacobian off—and a non-linear component, consist-

ing of higher order terms. The Hartman-Grobman theorem states that, for non-linear

systems, if the Jacobian matrix evaluated at the equilibrium point is invertible (i.e. has

non-zero determinant) then the equilibrium is known as hyperbolic and the behaviour

of the system near to the equilibrium point is equivalent to the linear system given by




ṙ

ṡ



 =





fr fs

gr gs





∣

∣

∣

∣

∣

(r,s)=(0,0)





r

s



 .

More details of this theorem can be found in Guckenheimer andHolmes (1983), for ex-

ample. Proofs typically consider the relative sizes of the higher order terms in equation

6.49 near to the equilibrium point.

Differentiating, and using the Hartman-Grobman theorem, it can be shown that

the behaviour near the equilibrium is equivalent to the linear system given by




ṙ

ṡ



 =









−1 + ρ1

(

1−
(

1−e−β

1+e−β

)2
)

ρ1

(

1−e−β

1+e−β

)

ρ2

(

1−e−β

1+e−β

)

−1 + ρ2

(

1−
(

1−e−β

1+e−β

)2
)













r

s



 ,

(6.50)

which can be simplified by defining

η =

(

1− e−β

1 + e−β

)

, (6.51)

which is dependent onβ > 0 in such a way so that0 < η < 1. Equation 6.50 then

becomes




ṙ

ṡ



 =





−1 + ρ1(1− η2) ρ1η

ρ2η −1 + ρ2(1− η2)









r

s



 . (6.52)
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As shown in Section 6.2, the behaviour of a linear system depends exclusively on its

eigenvalues and eigenvectors. The eigenvalues are combined in different ways to cal-

culate the trace and determinant, which determine the system’s location on the trace-

determinant diagram in Figure 6.1, and therefore the qualitative behaviour of the dy-

namics near the equilibrium. The eigenvalues of the system in equation 6.52 are

λ± = −1 +
1

2
(ρ1 + ρ2)

(

1− η2
)

± 1

2

√

(ρ1 − ρ2)
2 (1− η2)2 + 4η2ρ1ρ2. (6.53)

For clarity, a simplified scenario in whichρ1 = ρ2 = ρ is first considered. This

implies that the intensity of the action-reaction dynamicsfor each adversary is equal.

Substituting into equation 6.53, the eigenvalues simplifyto

λ± = −1 + ρ(1− η2 ± η). (6.54)

If both eigenvalues are less than zero, then solution curveswill converge to the equi-

librium value, and it is stable; whereas if at least one eigenvalue is positive, then the

magnitude of the dependent variable can grow and almost all initial conditions diverge

away from the equilibrium, and it is unstable. Considering firstλ−,

λ− = −1 + ρ(1− η2 − η) < −1 + ρ < 0, (6.55)

sinceη > 0 and0 < ρ < 1. Thus one eigenvalue is always negative and the condition

for stability depends solely on the eigenvalueλ+. In particular, the equilibrium is stable

when

λ+ = −1 + ρ(1− η2 + η) < 0, (6.56)

which occurs when

ρ <
1

1− η2 + η
. (6.57)

Substituting the expression forη from equation 6.51 into equation 6.57 leads to

ρ <
(eβ + 1)2

e2β + 4eβ − 1
. (6.58)

Considering the right hand side of equation 6.58,

0 <
(eβ + 1)2

e2β + 4eβ − 1
=

e2β + 2eβ + 1

e2β + 4eβ − 1
<

e2β + 2eβ + 1 + 2(eβ − 1)

e2β + 4eβ − 1
= 1, (6.59)

and, thus, forρ < 1, it is possible that the equilibrium can be either stable or unstable,

depending on the value ofρ in comparison to the valuēρ given by

ρ̄(β) =
(eβ + 1)2

e2β + 4eβ − 1
. (6.60)
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Forρ < ρ̄, the equilibrium is stable and all solutions converge towards it, but forρ > ρ̄,

the equilibrium is a saddle and almost all solution curves diverge away from it. A

bifurcation is said to occur asρ increases abovēρ, and ρ̄ is said to be a bifurcation

point.

The dynamics near to the equilibrium, as given by the linear system in equation

6.52, withβ = 1, are shown in Figure 6.6 for bothρ < ρ̄ andρ > ρ̄. The directions of

the solution curves demonstrate how the equilibrium point qualitatively changes asρ

increases beyond̄ρ. This loss of stability implies that a sudden change can occur to the

qualitative dynamics as the action-reaction parameterρ, which might be interpreted as

the level of aggression in the system, increases. Moreover,it is possible for this sudden

change to occur even before the aggregated system loses stability at ρ = 1, after which

solution curves diverge away from the plane defined by equation 6.48.

r

s

a) �<�̄

r

s
b) �>�̄

Figure 6.6:Selected solution curves of the linear system in equation 6.52 for ρ < ρ̄

and for ρ > ρ̄. For both figuresβ = 1, leading toρ̄ ≈ 0.8. In a),ρ = 0.7 whilst in b),

ρ = 0.9.

In Figure 6.7, the function̄ρ(β) for β > 0 is shown, in order to demonstrate how

the bifurcation point̄ρ varies with the parameterβ. In Section 6.4.1, it was shown how

the parameterβ corresponds to the strength of spatial dependency in the system, with

β = 0 leading to each adversary’s location being treated equallyregardless of where

it is located, andβ → ∞ leading to more isolated dynamics, in which adversaries

263



6.4. NONLINEAR DYNAMICAL SYSTEMS ANALYSIS

increasingly only respond to those nearby to them. Figure 6.7 shows that for a large

range ofβ, the value of̄ρ is significantly less than one, meaning that bifurcations can

occur on thers-plane by increasingρ, before the aggregated system loses stability at

ρ = 1. However, since the value of̄ρ approaches one with increasingβ, and since

ρ̄(0) = 1, bifurcations are only likely to occur when the value ofβ is of order one,

and when the system is balanced between being very isolated (i.e. for largeβ), and

having no spatial dependency (forβ = 0). The minimum ofρ̄ can be calculated by

differentiating equation 6.60, and occurs atβmin such that

dρ̄

dβ

∣

∣

∣

∣

∣

β=βmin

=
2eβmin(eβmin + 1)

e2βmin + 4eβmin − 1
− 2eβmin(eβmin + 2)(eβmin + 1)2

(e2βmin + 4eβmin − 1)2
= 0. (6.61)

Calculating the value ofβmin leads to

βmin = ln 3 ≈ 1.1, ρ̄(βmin) ≈ 0.8. (6.62)

0 1 2 3 4 5 6 7 8

β

0.75

0.80

0.85

0.90

0.95

1.00

ρ̄

Figure 6.7:The bifurcation point ρ̄ plotted againstβ according to equation 6.60.

The existence of the bifurcation has important implications for the model. Given

an appropriate value forβ, for relatively small values ofρ < 1, corresponding to scenar-
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ios in which retaliatory dynamics are weak, then hostile activity is likely to be evenly

distributed in space. However, ifρ < 1 is close to one, corresponding to scenarios

with stronger retaliation and therefore higher levels of aggression, then hostile activity

is likely to be more unevenly distributed, even if the aggregate system converges to a

stable equilibrium.

Forρ < ρ̄, the equilibrium at the origin of thers-plane is locally attractive: initial

conditions that begin sufficiently close to this point will converge towards it. Forρ > ρ̄,

the same equilibrium becomes a saddle. In this case, initialconditions that begin close

to this point will almost always diverge away from it. It is natural to consider what

might happen to these solution curves. Indeed, if real-world conflicts exhibiting such

dynamics were to suddenly lose stability in a similar way, then considering what might

happen to the modelled trajectory would be of great importance.

Whenρ = ρ̄, the matrix in the system in equation 6.52 has a zero eigenvalue, and

the matrix is no longer invertible. This implies that the Hartman-Grobman theorem

no longer applies and the dynamics near the equilibrium cannot be determined by the

linearised system obtained from the Taylor expansion. Thisis because the higher order

terms of the Taylor expansion, which can be neglected for invertible linearised matri-

ces, cannot be neglected when the matrix is not invertible. For this reason, a Taylor

expansion is next considered that incorporates more of these higher order terms. The

Taylor expansion for a general two-dimensional functionf(x, y) about the origin up to

third order is given by

f(x, y) =f(0, 0) + fx(0, 0)x+ fy(0, 0)y

+
1

2!

(

fxx(0, 0)x
2 + 2fxy(0, 0) + fyy(0, 0)

)

+
1

3!

(

fxxx(0, 0)x
3 + 3fxxy(0, 0)x

2y + 3fxyy(0, 0)xy
2 + fyyy(0, 0)y

3
)

+O(x4) +O(x3y) +O(x2y2) +O(xy3) +O(y4),

where, again, subscript notation is used to denote differentiation with respect to the

subscripted variable. Evaluating this formula for the planar system given by equations

6.46 and 6.47 leads to




ṙ

ṡ



 =





(−1 + ρ− ρη2)r + ρηs+ ρη2

p2
(1− η2)r3 − ρη

p2
(1− η2)r2s

(−1 + ρ− ρη2)s+ ρηr + ρη2

q2
(1− η2)s3 − ρη

q2
(1− η2)s2r



 . (6.63)
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The linearised system in equation 6.52 can be seen as a component within equation

6.63, but there are also additional non-linear terms up to order three which reflect more

of the dynamics of the system close to equilibrium. Two phaseportraits of the non-

linear system in equation 6.63 are shown in Figure 6.8, in which parameter values are

chosen to reflect two different values ofρ: one in whichρ < ρ̄, and so the equilibrium

at the origin of thers-plane is stable, and one in whichρ > ρ̄, after the bifurcation

has occurred. Forρ > ρ̄, three equilibria exist, two of which appear to stable, and one

which is unstable. The figure appears to demonstrate that asρ increases beyond̄ρ, not

only does the equilibrium at the origin become unstable, buttwo new stable equilibria

appear. This particular bifurcation is known as a supercritical pitchfork bifurcation.

r

s

a) ρ<ρ̄

r

s

b) ρ>ρ̄

Figure 6.8: The phase portrait of the system in equation 6.63 for two different

values ofρ. For figure a),ρ = 0.7 whilst for figure b),ρ = 0.803. All other parameter

values are such that̄ρ = 0.801.

Suppose now thatr = s, and thatǫ1 = ǫ2 in equation 6.63. These further simpli-

fying assumptions are employed to investigate analytically the behaviour leading to the

supercritical pitchfork bifurcation, and lead to the one-dimensional non-linear system

given by

ṙ =
(

−1 + ρ(1− η2 + η)
)

r +

(

ρη

p2
(1− η2)(η − 1)

)

r3. (6.64)

If ǫ1 = ǫ2, then the system in 6.63 is symmetric and equilibria of the system in 6.64 will

correspond to equilibria of the system in 6.63. Equilibria of the system in 6.64 occur
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when eitherr = 0 or when

r2 =
1− ρ(1− η2 + η)
ρη

p2
(1− η2)(η − 1)

, (6.65)

which has solutions only when the right-hand side of equation 6.65 is greater than zero.

It can be shown that this occurs when

ρ >
1

1− η2 + η
,

which is exactly the condition for the loss of stability in the equilibrium at the origin,

as identified in equation 6.57. In Figure 6.9, the equilibrium values for the system in

6.64 are shown for different values ofρ. As ρ increases beyond̄ρ, two stable equilibria

appear, with values given by

r± = ±p

(

1− ρ(1− η2 + η)

ρη(1− η2)(η − 1)

)
1
2

. (6.66)

A bifurcation of the system in equations 6.46 and 6.47 at the equilibrium of the

rs-plane has been shown to exist in the special case whenρ1 = ρ2. It is important to

determine whether the same bifurcation occurs whenρ1 6= ρ2. This is because conflict

scenarios to which the model may be applied will often be asymmetric: each adversary

may adopt different tactics, resulting in different retaliatory mechanisms and therefore

result in different action-reaction parameters, as given by ρ1 andρ2. In Figure 6.10

the stability of the origin of thers-plane is shown for values ofρ1 andρ2 between

0.5 and1, and for three different values ofβ. In this figure, green represents stability

of the equilibrium, and blue represents instability. The bifurcation can be observed in

the transition from stability to instability in each of the three cases considered, across

different values forβ. This figure confirms that the identified bifurcation is robust to

variation of the parameter values. Furthermore, the changein the bifurcation point

appears to be smooth with varying parameters: an increase inρ1 moves the bifurcation

point in the direction of decreasingρ2. This suggests that the system requires some

total sum of aggression, as determined by a combination of the parametersρ1 andρ2,

before the equilibrium at the origin of thers-plane becomes unstable.

The four-dimensional model given in equation 6.43 has been shown to exhibit

richer behaviour than the three-dimensional case. By investigating the stability of the
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Figure 6.9:Equilibria of the system in equation 6.64, denoted byre, for varying

values ofρ.
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β=0.5
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1.0
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β=1.0
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Figure 6.10: The stability of the equilibrium at the origin of the rs-plane for

ρ1 ∈ [0.5,1) and ρ2 ∈ [0.5,1) and for β = 0.5, β = 1, and β = 2. Blue corre-

sponds to an unstable equilibrium for the given parameter value and green corresponds

to a stable equilibrium. The stability of the equilibrium isdetermined by finding the

signs of the eigenvalues whose analytic expressions are given in equation 6.53, for each

parameter value. If the real part of both eigenvalues are negative, then the equilibrium

is stable; but if either eigenvalue has positive real part then the equilibrium is unstable.
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most natural equilibrium point in the system, given by the point at which hostility levels

are equally distributed over adversaries, a supercriticalpitchfork bifurcation has been

identified which can occur within a feasible region of the parameter space. It has been

shown that this bifurcation is robust to asymmetric conflicts for scenarios represented

by the four-dimensional model. In what follows, further robustness properties of the

bifurcation are sought that serve to remove any suspicions of reliance on some of the

limiting assumptions employed in this section. In particular, the model is considered

with different distance metrics and in higher-dimensionalscenarios.

6.4.3 Eight-dimensional scenarios

The supercritical pitchfork bifurcation identified in Section 6.4.2 may have existed as a

consequence of the particular form of distance metric employed, or may have even been

a result of the number of dimensions included in the model. Inthis section, an eight-

dimensional model withN = M = 4 is considered with two distinct distance metrics,

and the stability of the most natural equilibrium as system-wide aggression increases

is investigated. Doubling the dimension of the model leads to a reduction in analytical

tractability. As a consequence, numerical simulation of the model is used to explore

the range of potential scenarios in what follows. Numericalsimulations are employed

using the Runge-Kutta method for temporal discretisation. It was found that step sizes

of around0.1 produced consistent simulation results which were in agreement with the

analytical results presented in Sections 6.4.1 and 6.4.2.

The first metric proposed for studying the eight-dimensional system withN =

M = 4 is a natural extension to the example studied in Section 6.4.2. It is assumed

that, instead of adversaries being located across two distinct zones, they are instead

located across4 distinct zones. The metricd : M × M → R is defined analogously

to Section 6.4.2, so that the distance within the same zone isnegligible, whilst any two

distinct zones are a significant distance from each other. The 4 × 4 matrixD given by

Djl = d(xj,yl) is defined to be

D =

















0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

















, (6.67)
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and a corresponding spatial distribution of adversaries that might correspond to this

matrix is shown in Figure 6.11. In Figure 6.11, the spatial arrangement of four distinct

locations for each adversary (themselves distinguished bycolor) are shown, with the

corresponding zonal structure that is used in this model. For a given adversary, each

location has nearby to it another adversary with whom interaction will be strongest; but

they also interact to a lesser extent with adversaries in neighbouring zones, according

to the distance metric. Interactions across zones are set tooccur with the same strength,

regardless of whether zones share a portion of their boundary, or whether they meet in

a single point.

Zone 3 Zone 4

Zone 1 Zone 2

Figure 6.11:A scenario corresponding to the distance metric as defined inequation

6.67.Adversaries, who are distinguished by color, interact strongest with the adversary

nearest to them in the same zone. Cross-zonal interactions occur with the same strength.

In Figure 6.12, the sum of the two solution curves for each adversary within each

zone in Figure 6.11 for two different sets of parameter values are shown. Two sets of

parameter values are chosen in order to demonstrate the evolution of the system under

two distinct regimes. The first set of parameter values are chosen to correspond to a
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scenario in which the level of aggression in the system, governed by the parametersρ1

andρ2, does not exceed some characteristic level of aggression, denoted bŷρ, which is

used to approximate the bifurcation point. In this case, thesum of the solution curves,

shown as the solid line, undergoes convergence to an equilibrium in which hostility

levels are constant within each zone, and given by

pj =
1

4

ρ1ǫ2 + ǫ1
1− ρ1ρ2

, ql =
1

4

ρ2ǫ2 + ǫ2
1− ρ1ρ2

,

for j, l = 1, 2, 3, 4, which are obtained from the aggregate equilibrium solution together

with the finding that the equilibrium is constant across zones.

The second set of parameter values have been chosen so that the magnitude of

aggression in the system exceeds this characteristic levelof aggression̂ρ. In this case,

if the bifurcation identified in Section 6.4.2 also exists inhigher dimensions, then the

evenly distributed equilibrium would be unstable, and solution curves would move else-

where. This is indeed what is observed: solution curves in zone 1 converge to a larger

equilibrium value and solution curves in the other zones decrease to compensate for the

increase in zone 1. In performing both numerical simulations, initial conditions in zone

1 were perturbed slightly to ensure the solution curves did not rest on the now unstable

equilibrium in equation 6.68. The author believes that it isfor this reason why hostility

levels increase in zone 1, as opposed to any of the other zones.

Since the scenario defined by the distance metric in equation6.67 can be thought

of as a natural extension to the model investigated in Section 6.4.2, it might be the case

that the bifurcation identified in Figure 6.12 arises because of the nature of the distance

metric used. Next, a scenario is considered for a different distance metric, which is

defined by the4× 4 matrixD whereDjl = d(xj,yl), given by

d =

















0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

















. (6.68)

This metric can be thought of as imposing a different spatialstructure on the system.

Since the distance between zonej andl is determined by|j− l| for j, l = 1, 2, 3, 4, con-

secutive zones can be considered to be near to each other in space, and non-consecutive

zones further apart. A scenario which this model may represent is depicted in Figure
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Figure 6.12:The sum of the two solution curves in each zone for the spatial ar-

rangement of zones as shown in Figure 6.11, for two differentsets of parameter

values.The parameter values are chosen so that the magnitude of aggression in the sys-

tem lies on either side of an approximate bifurcation point,denoted bŷρ. The parameter

values used are, in the case of the solid line,ρ1 = 0.8, ρ2 = 0.85, ǫ1 = ǫ2 = 0.4, and

β = 1; and in the case of the dashed line,ρ1 = 0.8, ρ2 = 0.9, ǫ1 = ǫ2 = 0.4 andβ = 1.
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6.13. Adversaries are supposed to interact strongest with the adversary located in the

same zone, as specified by the zeros on the diagonal of the matrix in equation 6.68.

In contrast to the previous example, adversaries in different zones now interact with

different strengths. Neighbouring zones interact more strongly than non-neighbouring

zones, leading to a more complex spatial structure than previously considered.

Zone 1 Zone 2 Zone 3 Zone 4

Figure 6.13:A scenario corresponding to the distance metric as defined inequation

6.68.Adversaries, who are distinguished by color, interact strongest with the adversary

nearest to them in the same zone. Cross-zonal interactions occur according to the rela-

tive positions of the zones.

Figure 6.14 shows the sum of the two solution curves in each zone, for each of

the four zones in the scenario in Figure 6.13, for two different sets of parameter values.

Again, the parameter values have been chosen so that the total amount of aggression

in the system, specified by the magnitude of the action-reaction termsρ1 andρ2, lie on

either side of an approximate bifurcation point for this scenario, which is denoted by

ρ̂. For |ρ1 + ρ2| < ρ̂, corresponding to the solid line in Figure 6.13, the system appears

to converge to a natural equilibrium. According to the numerical solution with these

parameter values, this equilibrium is given by

p1 = 0.21, p2 = 0.25, p3 = 0.25, p4 = 0.21,

q1 = 0.20, q2 = 0.23, q3 = 0.23, q4 = 0.20.

In this case, the hostility levels are not equal across zones, since zones 2 and 3 ex-

perience higher levels of hostility. This is because the model is no longer symmetric.

Furthermore, the relative values of the equilibrium emphasise the spatial structure of
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the system, since zones 2 and 3 are the zones that closest to all other zones, and will

therefore experience the greatest amount of interaction with other zones. The equilib-

rium brought about by the magnitude of aggression in the system being less than̂ρ is

not the equilibrium that leads to equality of resulting hostility across zones, but repre-

sents a spatially-weighted equilibrium, in which zones that are closest to other zones

are naturally assumed to contain higher levels of hostilitythan zones that are farther

away.

The second set of parameter values used to generate the solution curves repre-

sented by the dashed curves in Figure 6.14 converge to an asymmetric solution. Since

resulting hostility levels in zone 2 are much greater than hostility levels in zone 3,

this equilibrium can be considered distinct from the spatially-weighted equilibrium to

which the solid curve converges. This provides further support that the bifurcation

identified in Section 6.4.2 exists not just in higher dimensions, but also for more gen-

eral distance metrics and spatial distributions of adversaries. Similarly to the previous

example, zone 1 is given perturbed initial conditions to avoid resting on any unstable

equilibrium states. However, in this case, rather than zone1 experiencing a dramatic

increase in hostility levels, zone 2 is the one that increases. It is hypothesised that this

is due to the more central location of zone 2 in comparison to zone 1.

This section has demonstrated the model’s versatility in being applied to a range of

potential spatial conflict scenarios. The two eight-dimensional models considered have

both been shown to contain bifurcation-type behaviour for feasible parameter values,

supporting the hypothesis that the bifurcation identified in Section 6.4.2 exists in higher

dimensions, and in more general spaces. The second example used in this section, in

which the spatial structure of the system is made asymmetric, has shown that the most

natural equilibrium to which the system appears to convergefor small values ofρ1 and

ρ2, is not necessarily an equilibrium with equal hostility levels in each zone, as was

the case for the first example. Instead, the model appears to converge to a spatially-

weighted equilibrium, for which adversaries located closest to other adversaries have

a higher resulting level of hostility. The fact that a spatially-weighted solution is an

equilibrium confirms intuition regarding the evolution of spatial conflict: it is those

areas nearest to an adversary that are likely to experience greater levels of conflict over

long periods of time. The existence of the bifurcation, however, and the somewhat
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Figure 6.14:The sum of the two solution curves in each zone for the spatial ar-

rangement of zones as defined in equation 6.68, for two different parameter values.

Similarly to Figure 6.12,̂ρ represents an approximate bifurcation point and parameters

are chosen so that the system lies on either side of this parameter value. The parameter

values used are, for the solid line,ρ1 = 0.6, ρ2 = 0.5, ǫ1 = ǫ2 = 0.4 andβ = 1; and,

for the dashed line,ρ1 = 0.8, ρ1 = 0.9, ǫ1 = ǫ2 = 0.4, β = 1. The layout of the figures

is chosen to reflect the linear spatial arrangement of zones in the model.
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unpredictable nature of resulting solution curves after the bifurcation has taken place,

is a counter-intuitive finding that is generalised further in the next section.

6.4.4 A randomly-generated large N-dimensional model

Conflicts can occur over large areas and involve a number of participants located in

distinct locations. So far in this chapter, only scenarios involving up to four distinct

participants on each side of the conflict have been considered. The model is now inves-

tigated in higher dimensions. This is done to emphasise thatthe model may be scaled

up to consider conflict occurring over large spatial scales and involving many partici-

pants, as well as to determine whether the bifurcation identified in Sections 6.4.2 and

6.4.3 exists in a more general setting, and does not arise as aresult of the particular

form of the scenarios already considered. To this end, the model proposed in this sec-

tion contains100 dimensions, in whichN 6= M , and in which a Euclidean distance

metric is used that is distinct from the zonal approach to defining the metrics used in

Section 6.4.3.

To specify the model, first set

M =
{

(x, y) ∈ R
2|0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}

,

so that adversaries are located within a unit square and defined : M×M → R to be the

Euclidean distance metric. One hundred points inM are uniformly randomly generated

and each point is uniformly randomly allocated to either oneof two adversaries. Each

point is assigned an initial hostility level equal to one.

A scenario is constructed from this random process, which obtains a realisation of

a random spatial distribution of adversaries withN = 46 andM = 54. The parameter

space is simplified by settingǫ = ǫ1/N = ǫ2/M andρ1 = ρ2 = ρ. In what follows,

ǫ = 0.1 andβ = 1.

Solutions of the system in equation 6.30 are numerically solved using the Runge-

Kutta method. According to these numerical simulations, for ρ < 1 there exists̄t > 0

such that

|pj(t̄+ δt)− pj(t̄)| < 10−8, |ql(t̄+ δt)− ql(t̄)| < 10−8, (6.69)

for j = 1, 2, ..., N andl = 1, 2, ...,M , whereδt = 0.1. It is therefore assumed that the

system converges to an equilibrium in all cases of interest,and that this equilibrium is
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given by the values ofpj(t̄) andql(t̄) for j = 1, 2, ..., N andl = 1, 2, ...M , wheret = t̄

is the first value oft for which the condition in equation 6.69 holds.

The equilibria for two different values ofρ are shown in Figure 6.15. These figures

depict the conflict scenario by plotting each location of each adversary as it is located

onM. The colour of each point is used to distinguish between eachadversary, and the

size of each point is proportional to the corresponding hostility level of each point at

the equilibrium. In Figure 6.15 a),ρ = 0.8 and in Figure 6.15 b),ρ = 0.9.

Considering first Figure 6.15 a), and comparing the size of theresulting equi-

librium near the boundary ofM with those near the middle, it can be seen that the

equilibrium is largest for locations towards the centre of the manifold, and therefore for

locations that are, on average, closest to the locations of their adversary. This is consis-

tent with the finding in Section 6.4.3, where it was suggestedthat the system converges

to its most natural equilibrium, which is spatially weighted according to the locations

of the adversaries.

Figure 6.15 b) shows another equilibrium; however, in this case, the resulting

hostility levels of the overall system are largely concentrated within a very small pro-

portion of the possible locations. In particular, the distribution of the equilibrium in

Figure 6.15 b) appears to be very different from the spatially weighted equilibrium in

Figure 6.15 a), suggesting that the spatially weighted equilibrium in Figure 6.15 a) may

have become unstable betweenρ = 0.8 andρ = 0.9, and, therefore, that the bifurcation

identified in Section 6.4.2 also exists in this system. Furthermore, although in Figure

6.15 b), the locations with the highest level of hostility are towards the centre of the

manifold, it would be difficult to predict the locations withdramatically concentrated

levels of hostility asρ increasesa priori, since there are many possible locations that

might have experienced a similar increase in hostility. Thesystem withρ = 0.9 might

be considered much more unpredictable and potentially dangerous than the system with

ρ = 0.8, in which the hostility levels are more balanced over the possible locations.

In order to test whether the bifurcation exists for this morecomplex model, equi-

libria for different values ofρ are now compared. With increasingρ, the most natural

equilibrium to which the system converges, one which is spatially-weighted according

to the locations of adversaries, is anticipated to become unstable forρ > ρ̂ for some

value ρ̂ < 1, denoting the approximate proposed bifurcation point. Whenρ > ρ̂, the
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a) �=0.8

b) �=0.9

Figure 6.15:The equilibrium of the system with a) ρ = 0.8 and b) ρ = 0.9. The

location of each point represents the location of the adversary onM, the colours distin-

guish between each adversary at each location, and the size of the point is proportional

to the corresponding equilibrium value at that point, as defined by the condition in

equation 6.69.
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system is anticipated to converge to an equilibrium in whichthe levels of hostility are

highly concentrated in a few locations within the system. One way of measuring this

is to consider the variance of the resulting hostility levels; however, the variance was

found to vary with increasing values ofρ due to the changing equilibrium, and therefore

would not have been able to identify the bifurcation.

Instead, for each adversary, the rank of each location according to their equilibrium

value is considered. If the equilibrium is considered to be stable and spatially-balanced

with increasingρ, then the rank of each location would be expected to remain fairly

consistent. However, if the equilibrium was to suddenly become highly concentrated

in a small number of locations, then the ranks of the equilibrium values at each lo-

cation would be expected to drastically change. This was thecase for the scenarios

in Section 6.4.3, for which the ranks were different before and after the bifurcation.

Changing ranks corresponds to a form of instability in the system, since the dynamical

equilibrium is both qualitatively and quantitatively being altered by a potentially small

increase in parameter values.

The rank of locationxj is

Rj =
N
∑

j′=1

1 (p̄j′(ρ) > p̄j(ρ)) , (6.70)

for j = 1, 2, ..., N , wherep̄j(ρ) denotes the value of the equilibrium at locationxj,

which is dependent onρ, and1(.) is an indicator function, equal to one if the condition

inside the brackets is satisfied, and equal to zero otherwise.

To determine the state of the equilibrium, the ranks of the system are compared

for different values ofρ. For small values ofδρ, the function given by

f(ρ) =
1

2

N
∑

j=1

|Rj(ρ+ δρ)−Rj(ρ)|, (6.71)

whereRj(ρ) is given in equation 6.70, calculates the number of changes in the ranks

of equilibria betweenρ andρ+ δρ. The resulting value is divided by two since any one

permutation in the ranked list of equilibrium points requires swapping the positions of

two locations.

Figure 6.16 plots the cumulative version of this function, given by

F (ρ) =

∫ ρ

ρ′=0

f(ρ′)dρ′, (6.72)
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wheref(ρ′) is given in equation 6.71, which tracks the number of rank changes in the

equilibrium value asρ increases from0 to ρ for each value ofρ < 1. The plot shows

a sudden transition betweenρ = 0.8 andρ = 0.9 during which a large number of rank

changes occur. This value is consistent with previous approximations of the bifurcation

point ρ̂, and suggests that the bifurcation is indeed present in thishigh-dimenensional

scenario, during which a more evenly distributed equilibrium suddenly loses stability

and results in the concentration of hostility over a few distinct locations.

0.5 0.6 0.7 0.8 0.9 1.0
�

0

20

40

60

80

100

F
(�

)

Figure 6.16:The value ofF(ρ), given in equation 6.72 for different values ofρ, for

the scenario depicted in Figure 6.15.F (ρ) is the cumulative number of rank changes

in the resulting equilibrium values of the model, asρ increases.

Evidence has been presented that the bifurcation identifiedin section 6.4.2 is ro-

bust to a variety of parameter values, dimensions and distance metrics. This is a sig-

nificant result brought about by the spatial disaggregationof the system, and highlights

the types of insights that can be obtained using non-linear dynamical systems analysis.

In particular, according to the model, in spatially dependent systems with increasing

aggression, a qualitative change in the spatial distribution of hostility levels would be
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anticipated to be observed, before the entire system becomes unstable and an arms race

is initiated (according to the original Richardson model). In what follows, the applica-

bility of the model to real-world conflict scenarios, and thetypes of inferences about

those systems that might be made, are discussed.

6.5 Discussion

In this chapter, a novel spatially explicit version of Richardson’s conflict model has

been derived and analysed using the tools of non-linear dynamical systems analysis.

The motivation for introducing the model has been justified by identifying the need to

incorporate space in deterministic models of conflict, whilst also noting limitations as-

sociated with other spatial models of conflict, many examples of which were described

in Chapter 2. The model addresses some of these limitations bybeing discrete in space,

and by providing explicit model assumptions, which are based on the principle of max-

imum entropy, together with the constraints introduced in equations 6.14, 6.17 and

6.18.

The model has been analysed using concepts of dynamical systems analysis that

rely on the evolution of solution curves in phase space. Conditions for convergence

to a natural equilibrium have been proposed, and this equilibrium has been described

using a range of case studies. In particular, a supercritical pitchfork bifurcation has

been identified that occurs as the magnitude of aggression inthe system increases. The

effect of this bifurcation requires interpretation in the context of real-world conflict

scenarios.

Prior to the bifurcation, for low levels of aggression in thesystem, solution curves

are expected to converge naturally to an equilibrium which is spatially weighted ac-

cording to the relative locations of adversaries. For higher levels of aggression in the

system, once the bifurcation has occurred, the spatially weighted equilibrium becomes

unstable and the model converges to a new equilibrium in which hostility levels are

highly concentrated within a few locations. Increasing thelevel of aggression in the

system further can, as demonstrated in the analysis of Richardson’s original model,

lead to an unstable escalating arms race. The bifurcation hints at a potential early-

warning system for real-world conflicts: with increasing aggression, before the system

results in an arms race and hostility increases exponentially, some spatial instability is
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expected and particular locations may suddenly experiencedisproportionate increases

in hostility or conflict. If vulnerable locations can be identified prior to such increases

in aggression, then policy interventions might seek to reduce tensions in those areas

that are likely to experience this initial increase in hostility.

The potential insights that might be obtained from this model are greater than any

of the other models considered in this thesis. The model not only enables forecasting of

how a conflict might evolve, but also how a change in the intensity of the interactions

might influence the resulting stability of the system. This opens up a more sophisticated

range of policy applications. For instance, rather than just tracking the intensity with

which two adversaries retaliate to one another, tracking the change in intensity might

enable analysis of whether or not the system is close to a bifurcation point, such as the

one identified in this chapter. Policy interventions might then be targeted at ensuring

certain parameters do not vary into undesirable regimes of behaviour.

Any insights are, of course, reliant on the assumptions in the model providing a

plausible account of the underlying mechanisms. In the samespirit as Richardson’s

original model, the model explored here can be used to investigate scenarios in which

the actions of participants in the conflict are mechanistic,or if actors “did not stop to

think” (Richardson, 1960b). Despite in many cases leading tomodels far removed from

the real-world, deterministic modelling frameworks can demonstrate how complex be-

haviour might arise and are able to capture the consequencesof certain well-defined

scenarios.

There are limitations associated with the specific form of the bifurcation identified

in the model. Supercritical pitchfork bifurcations are known to be structurally unstable,

since a small change in the model specification often leads toa scenario in which there

is no bifurcation. The normal form of the supercritical pitchfork bifurcation, together

with a perturbed system is shown in Figure 6.17. For many realworld systems, only

structurally stable results are generally observed, due tounderlying noise. Neverthe-

less, the identification of the bifurcation is an important one. Even when the system has

been perturbed, and there is no bifurcation, there is still the introduction of new station-

ary solutions in the system. In addition, the stationary solution on which the system

is located may also drastically change, as shown on the righthand side of Figure 6.17.

The bifurcation identified acts as a special case. Given uncertainty surrounding the
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Figure 6.17:Normal form of the supercritical pitchfork bifurcation (le ft hand side)

and its perturbation (right hand side). The values ofxe plotted are the equilibria in

each case. The parameterr is the bifurcation parameter.

noise providing the perturbation, it is likely to be uncleara priori which of the possible

resulting solution curves will be the one that the system takes.

Finally, although demonstrating how the inclusion of spacein models of civil vi-

olence can lead to richer behaviour, the derivation and analysis of the model in this

chapter has been approached from a more abstract and generalperspective than any

of the other models considered in this thesis. This enables the model to be potentially

applicable over a wide range of examples. Furthermore, it also demonstrates the math-

ematical insights that deterministic models can sometimesafford, and emphasises, in

particular, the complications that the inclusion of spatial dependencies in such mod-

els can sometimes have. As this chapter has highlighted, theinsights obtained from

deterministic models are sometimes more qualitative than quantitative, and can force

the researcher to consider not only what is happening, but what might happen should

the underlying mechanisms be altered. This will be discussed further in the conclusion

chapter that follows.
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Conclusions and discussion



7.1. COMPARISON OF MODELLING FRAMEWORKS

7.1 Comparison of modelling frameworks

This thesis has employed different frameworks to model civil violence in space and

time. Four frameworks have been presented: data-driven approaches that exploit ag-

gregate statistics from the empirical data and combine basic assumptions to construct

null models against which the data can be compared; a statistical model of discrete

spatial choice, which uses attributes of targets to quantify criminological theory; point

process models that explicitly account for event interdependency to obtain some degree

of predictive power; and a spatially-explicit differential equation-based model, which

extends a well-studied non-spatial model of conflict escalation. Each framework has a

different perspective of the real-world phenomenon considered. In this section, these

different frameworks are summarised and a comparison is made with respect to the

types of insights that can be obtained. It is argued that a plurality of modelling frame-

works applied to any given problem can lead to increased trust in the way models are

used in a policy setting. Furthermore, a plurality of model frameworks can greatly

improve the accuracy of inferences about the real-world.

Data-driven frameworks, such as those presented in Chapter 3, are exploratory

since they can be used to gain understanding into the principal features of a dataset.

In some cases, sophisticated insights are obtained by constructing null models with

relatively high levels of complexity. This was done in Chapter 3 by proposing a null

model for the geographic independence of events to explore the localised patterns of

diffusion during rioting.

Such approaches can lead to robust findings for a particular dataset but have two

principal limitations. The first is concerned with data availability. Although an increas-

ing amount of data on civil violence has become available, particularly of a spatial

nature (Gleditsch and Weidmann, 2012), data-driven frameworks require a significant

amount of accurate data at an appropriate level of aggregation to produce meaningful

insights. In many cases, available data provides only a partial view, or is not supplied at

the desired level of accuracy and precision (Weidmann, 2015). A reliance on available

empirical data leads to insights that are specific to the particular case study considered.

This means, on the one hand, that some insights may not be generalised to other case

studies, but, on the other, ensures that the insights are closely related to the scenario of

interest and have relatively high levels of confidence. The second limitation associated
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with data-driven approaches is that they are typically unable to incorporate mechanisms

that may be responsible for the generation of the event data.As a consequence, they

are often unsuitable for investigating theories or testingour understanding of a given

phenomenon.

The strength of data-driven frameworks is that they can be used to identify promi-

nent features of an empirical dataset, which may lead to further analyses and models. In

Chapter 4, insights from the data-driven analysis of the London riots inspired a model

of target choice by suggesting that environmental featuresand contagion were likely to

play prominent roles in the decision-making of offenders.

Statistical regression modelling is also specific to the scenario considered. In con-

trast to data-driven approaches, the objective of statistical regression models is to cap-

ture some mechanism in the underlying data-generating process. This is achieved by

using sample data to determine whether variables associated with this mechanism co-

vary with the empirical data in the expected direction. Thisin turn invites insights into

the proposed mechanisms corresponding to those variables.Data-driven models might

be preferred over statistical regression models if there are no preconceptions or pre-

existing theories that might explain the phenomenon. They might also be preferred if

statistical regression models produce no significant insights.

In Chapter 4, a discrete choice model was used to investigate rioter target choice

with respect to three key theories from the criminological and social science literature.

Evidence was provided that all three of those theories can beused to explain at least

some of the variance in rioter target choice, and, moreover,that rioter target choice was

consistent with arguments based on the bounded rationalityof rioters. The proposed

mechanisms, which were quantified via this model, were used as the data generating

process in a microsimulation model. The model generated simulated riot scenarios,

given the location and times at which rioters were known to have offended. Although

this model relied on empirical data to inform its initialisation, it was argued that it

could form a component in a policy tool by modelling the resulting spatial distribution

of the riots and considering how best to formulate police deployment strategies based

on this output. In proposing specific and quantifiable mechanisms for the way in which

the decision-making of rioters leads to the spatial patterns observed, the model is trans-

formed into a predictive tool that can be considered in the context of different scenarios.
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It should be borne in mind, however, that the model is calibrated on data specific to the

London riots. Out of sample testing of the model is not performed due to a lack of data

on other riot scenarios.

Stochastic point processes consider the timings and, in some cases, the locations

of event occurrence. In Chapter 5, a series of such models are applied to the Naxal

insurgency. A number of models are proposed and are used to evaluate hypotheses

regarding the spatial and temporal distribution of the insurgency. These models are

notable in that they depend only on the history of the system and consist of relatively

simple proposed mechanisms for how events spread in space and time. Although it

is possible to incorporate a range of structural covariatesinto such models (Zammit-

Mangion et al., 2012), it is demonstrated in Chapter 5 how, by incorporating just the

history of the process in a mathematically sophisticated but relatively parsimonious

model, some predictive power can be obtained in an out of sample test. Point process

models are naturally prospective and, as such, can often be usefully employed as pre-

dictive models to determine the likely locations and timings of future events (Mohler

et al., 2011). Such information would be invaluable in designing targeted interventions

aimed at reducing insurgent violence. Since the models are stochastic, they explic-

itly account for uncertainty, which may lead to more confidence in their output when

decisions are to be made in the context of uncertainty.

Insurgencies can change dramatically over their life course. In the case of the

models presented in Chapter 5, the performance of the model for Naxal events did

not seem to be affected by the long duration of the study period. This was shown by

demonstrating that the residual process, containing events that were poorly predicted by

the model, was very close to a Poisson process for the entire study period. This may not

be the case in other scenarios. If underlying mechanisms were to qualitatively change

during an insurgency, then the predictive performance of the model may be diminished.

Some studies have attempted to account for a change in the underlying mechanisms of

insurgency by altering the model when the empirical data suggest the insurgency may

be in a different dynamical regime (Lewis et al., 2011).

Although stochastic models explicitly account for uncertainty, deterministic mod-

els may still generate useful insights as a result of their analytical tractability. This is

demonstrated by the long history of such models being applied to problems relating to
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conflict and violence. For these models, the emphasis is lesson the prediction of future

events and more on determining the implications of a specificmechanism by which the

system is thought to evolve.

In Chapter 6, the Richardson model of conflict escalation is considered. This

model specifies a deterministic mechanism in which two actors increase their levels

of hostility towards one another but are restrained by internal processes. Policy rele-

vant implications of the hypothesised relationship between the two adversaries can be

obtained from the original Richardson model. It was shown, for instance, that an arms

race can occur when two nations act in their own self-interest and when their reaction to

their adversary outweighs the effect that might be restraining them from more internal

processes. Although the policy-relevant insights that canbe obtained from simplified

models are often confirmation of common sense, it can still beuseful to articulate them

in a mathematical formulation. Richardson (1960a) eloquently explains why this is the

case, emphasising the benefits associated with deterministic models, whilst also pro-

viding a word of caution when employing models that are inevitably simplified from

the real-world process:

“To have to translate one’s verbal statements into mathematical formulae

compels one carefully to scrutinize the ideas therein expressed. Next the

possession of formulae makes it much easier to deduce the consequences.

In this way absurd implications, which might have passed unnoticed in

a verbal statement, are brought clearly into view and stimulate one to

amend the formula. An additional advantage of a mathematical mode of

expression is its brevity, which greatly diminishes the labour of memo-

rizing the idea expressed. If the statements of an individual become the

subject of a controversy, this definiteness and brevity leadto a speeding

up of discussions over disputable points, so that obscurities can be cleared

away, errors refuted and truth found and expressed more quickly than they

could have been, had a more cumbrous method of discussion been pur-

sued. Mathematical expressions have, however, their special tendencies to

pervert thought: the definiteness may be spurious, existingin the equations

but not in the phenomena to be described; and the brevity may be due to

the omission of the more important things, simply because they cannot be
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mathematized. Against these faults we must constantly be onour guard. It

will probably be impossible to avoid them entirely, and so they ought to be

realized and admitted.”

More complex deterministic models can lead to more intricate insights. For in-

stance, in Chapter 6, by constructing a spatially disaggregated version of the model, a

bifurcation is identified that indicates a loss of system stability as hostility increases.

This occurs prior to the loss of global stability in the aggregated system, suggesting a

potential means of detecting the onset of an escalation process. This study emphasises

the advantages that analytically tractable deterministicmodels have over their stochas-

tic counterparts. Their relative mathematical simplicityenables the exploration of the

model over a wide range of potential regimes, and not just theregime within which

the real-world system is thought to be located. By considering how the system might

qualitatively change (for instance, by undergoing a bifurcation), such approaches can

lead to high levels of insight. Policy interventions may also be formulated that seek

to constrain the system within a viable region of the phase space (a concept explored

further in Deffuant and Gilbert (2011)).

Deterministic differential equations rely on the proposedmechanism in the model

being the actual mechanism that drives behaviour in the phenomenon of interest. In

many cases, the assumptions are highly simplified and there is likely to be noise and

uncertainty in translating the implications of the analysis into the real world. As a con-

sequence, the plausibility of such insights are sometimes treated with more skepticism

than approaches that rely more on empirical data. The modelling assumptions must

be carefully considered when acting on any insights obtained from such models. If

communicating the results of such a model to a policy-maker,this means that the artic-

ulation of these assumptions becomes a crucial component inhow the model might be

used to aid policy-making.

The mathematical form of the Hawkes mutually-exciting point process model in

equation 5.18 and the linear Richardson in equation 6.1 enables a analytical comparison

to be made between the two models. Recall that, for the mutually exciting point process

model, whose conditional intensity function is given by

λ(l) = µl +
∑

ti<t
mi=1

αl1ωle
−ωl(t−ti) +

∑

ti<t
mi=2

αl2ωle
−ωl(t−ti), (7.1)
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for different types of eventl = 1, 2, the long term expected value of the intensity in the

case of a stationary process is given by the vector

(I2 − A)−1µ, (7.2)

whereI2 is the2-dimensional identity matrix,A = (αll′)l,l′=1,2 is a matrix composed

of the self- and mutual-excitation terms andµ = (µ(1), µ(2)) is a vector consisting of

the background rates for each process. Thus, for a long-termstationary process,

E
(

λ(1)
)

=
(1− α22)µ1 + α12µ2

(1− α11)(1− α22)− α12α21

, (7.3)

E
(

λ(2)
)

=
α21µ1 + (1− α11)µ2

(1− α11)(1− α22)− α12α21

.

Considering the analysis of the Richardson model in Chapter 6, the equilibrium of

the original Richardson model in equation 6.1 in the caseρ1ρ2 6= σ1σ2, was shown to

be

pe =
σ2ǫ1 + ρ1ǫ2
σ1σ2 − ρ1ρ2

, qe =
σ1ǫ2 + ρ2ǫ1
σ1σ2 − ρ1ρ2

. (7.4)

The form of equation 7.3 and equation 7.4 suggests an analytical comparison

might be made between the two modelling frameworks. Specifically, assuming that

the resulting expected intensity of a stationary point process is equivalent to the equi-

librium of the Richardson model, and that the grievance termsin the Richardson model

may be interpreted as the background rate in the Hawkes process (so thatµ1 = ǫ1 and

µ2 = ǫ2), the following relationships can be obtained:

1− α11 = σ1, 1− α22 = σ2

α12 = ρ1, α21 = ρ2. (7.5)

This implies that the self-excitation of a Hawkes process corresponds to one minus

the inhibition parameter in the Richardson model, whilst a mutual-excitation is directly

equivalent to the action-reaction parameter of the model. This means that the parameter

estimates of Model 4 in Chapter 5, corresponding to the systemin equation 5.18, can

be considered in the context of the Richardson framework. In particular, the point

estimates of the Richardson parameter values for the Naxal system are given by

σ1 = 0.1296 σ2 = 0.6192 (7.6)

ρ1 = 0.3766 ρ2 = 0.0842. (7.7)
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These values suggest that the Naxal conflict has a stable nodein the Richardson sys-

tem. The valueρ1ρ2/σ1σ2 = 0.3953 compares the magnitude of aggression in the

system against the magnitude of inhibition, and gives some indication of the distance

between the estimated system and the bifurcation identifiedin Chapter 6. In Chapter

6, the bifurcation was observed to occur when values of this ratio were around0.8. It

therefore appears as though the Naxal system is located a significant distance from this

bifurcation and is not at risk of the onset of spatial instability.

Comparing the initial data-driven approaches of Chapter 3 with the final model

investigated in Chapter 6 emphasises the range of model frameworks that might be

employed to investigate civil violence. The spectrum introduced in Chapter 1 is re-

produced in Figure 7.1, this time including positions of each framework used in this

thesis. In Chapter 3, the models were grounded in reality, leading to a high degree of

confidence in their plausibility, but the insights that could be obtained, particularly with

regards to mechanisms that might be at play and the predictive nature of the modelling,

were limited. In Chapter 6, proposed mechanisms were explored without any empiri-

cal data informing the model development, leading to wide-ranging potential insights

but, at the same time, leading to complications with respectto how the model might be

translated into the real world.

The modelling frameworks explored in Chapter 4 and Chapter 5 can be thought to

lie somewhere in between these two extremes since they both investigate the mecha-

nisms of the phenomenon studied but also incorporate empirical data into the modelling

process. In Chapter 4, the model tested a range of covariates inspired by theories re-

garding offender behaviour, whereas in Chapter 5, the modelswere driven by patterns

of spatio-temporal dependency in the empirical data. Although both approaches used

empirical data, they did so in different ways. The modellingobjective in Chapter 4

was more concerned with the explanation of the phenomenon and its structural covari-

ates, rather than evaluating the level of prediction that can be obtained by explicitly

modelling event interdependency, as was the case in Chapter 5. It is interesting to com-

pare the relative levels of success in terms of prediction ofthe model in Chapter 4,

in which it was examined whether a microsimulation model that utilised the results of

the regression model was able to reproduce the general patterns in the data, with the

predictive ability of the point process in Chapter 5, where only relatively basic theories
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Figure 7.1:Potential insight and plausibility of different modelling frameworks.

The frameworks considered in this thesis are placed along a spectrum broadly defined

by a ratio given by the number of model assumptions that remove each approach from

the real world, to the extent to which empirical data forms part of the model develop-

ment.
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concerning the generation of insurgent violence were used to construct models. In par-

ticular, although a more extensive amount of structural data was employed, a number

of notable discrepancies were found between the model outputs in Chapter 4 and the

patterns in the sample data. In contrast, in Chapter 5, a surprising level of predictive

ability was obtained with relatively small amounts of data.This raises questions as

to the appropriate balance between explanation and prediction in models of civil vio-

lence. Understanding the salience of different theories can be extremely useful when

developing broader policies, which might seek more longer term strategies for reducing

civil violence. Prediction of events might be more useful when designing more targeted

interventions.

This serves to highlight that, in any modelling task, an appropriate choice of

framework is required. If, on the one hand, the modelling task is specific and well-

defined (e.g. to assess a range of proposed policy options) and if there is data available,

then more empirical approaches may be preferred. On the other hand, if the objective

for modelling is to consider how a range of proposed mechanisms might correspond

to the underlying data generating processes, then the appropriate framework may lie

towards the right hand side of the spectrum in Figure 7.1.

More generally, this thesis has demonstrated that model frameworks across this

spectrum can be usefully employed to gain insights into the spatio-temporal dependen-

cies of civil violence. Furthermore, the range of models andtheir respective frame-

works have an associated range of advantages and disadvantages, which have been

discussed in this section. The range of insights that can be obtained from each of them

varies with respect to their generality, their accuracy, and their usefulness for aiding the

design of policy interventions. Since no single modelling framework can be shown to

dominate any of the others with respect to the advantages associated with it, this thesis

concludes that each has a part to play, and that a plurality ofmodelling approaches can

be used to gain a more rounded perspective of the phenomena considered.

7.2 Topics for further research

There are a number of opportunities for extensions to the work presented in this thesis.

It has been demonstrated that it is important to consider thestrengths and limitations of

different modelling frameworks when investigating the spatio-temporal dependencies
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of civil violence. Furthermore, this thesis has concluded by suggesting that, rather

than using a single modelling framework to consider policy questions, a number of

frameworks might be used to obtain a more rounded view of the important features

of the problem, and to consider the range of mechanisms that might be at play. The

same is likely to be true of other problems encountered in policy. A unified approach

to identifying suitable modelling frameworks for different types of policy problems

would be a valuable guide to applying models in a policy setting. To achieve this,

new methods for comparing different modelling approaches,particularly concerning

the tradeoff between potential insight against plausibility, as proposed by Figure 7.1,

might be required.

In addition, once a range of plausible models have been constructed, each using

different frameworks, and each obtaining complementary perspectives, there remains

the challenge of how insights can be usefully incorporated into the policy-making pro-

cess. Conveying model outcomes to policy-makers typically requires relatively short

presentations at which the modeller is required to present concise insights with associ-

ated levels of uncertainty. At present, consolidating the evidence for policy-making that

might be obtained from different model frameworks is a research challenge that is yet

to be overcome in many fields (reports from the Intergovernmental Panel on Climate

Change is one example where some success has been achieved in this regard (IPCC,

2013)).

Within each of the model frameworks presented in this thesis, there are a number

of avenues for future research. Focusing first on exploratory data-driven modelling, as

employed in Chapter 3, further research might consider the how the binary approach to

geographic diffusion of events presented in this thesis might be used in different scenar-

ios. If the patterns of offending observed during the Londonriots can also be observed

during other outbreaks of rioting, both within the UK and in different countries around

the world, then it can be assessed whether or not the patternscorrespond to some inher-

ent property of rioting, or whether they are dependent on theunderlying geography or

the underlying motivation for the riots. Comparing the patterns across different types

of civil violence may also yield useful insights.

Extensions to the analysis might consider different patterns of diffusion by chang-

ing the geographic neighbourhood of the focal cells into which events may spread. In
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addition, further advances might be made by optimising the randomisation procedure

that permutes the spatial and temporal units in which eventsoccur. For instance, in the

proposed algorithm, Chebyshev’s inequality was used for itsgenerality but is known to

often provide suboptimal criteria for many underlying distributions. A more nuanced

stopping criteria might lead to more computational efficiency. Additionally, the prob-

lem of estimating binary contingency tables might also be improved by considering

other approaches to this problem, some of which employ Markov Chain Monte Carlo

methods (Besag and Clifford, 1989; Bezákov́a et al., 2007; Verhelst, 2008; Blanchet

and Stauffer, 2013).

The discrete choice analysis of target selection during rioting, as presented in

Chapter 4, would also benefit by applying the analysis to different examples of civil

unrest around the globe. Consistent findings were found in a recent cross-national anal-

ysis of target choice by burglars (Townsley et al., 2015) and, in addition, a recent study

has compared the consistency of target selection across different crime types (Johnson

and Summers, 2015). If the same findings regarding rioter target choice can be found

in different examples of civil unrest, then the resulting simulation models that were

described in Chapter 4 might be more likely to provide plausible insights.

Although the microsimulation model of rioter target choicein Chapter 4 was able

to reproduce the broad patterns of the distribution of rioting, there were discrepancies

observed between the model and the empirical data. There wastwo principal sources

of discrepancy which might form the basis of future research. First, the empirical data

appeared to be much more spatially clustered than the resulting spatial distribution

arising from the microsimulation model. This may have arisen due to the averaging

procedure employed to obtain model outputs. Averaging across different realisations of

the simulation was required since the model was a result of a series of random choices,

and therefore a single realisation would not have led to a fair assessment. Methods to

compare the model outputs with the empirical data without the use of this averaging

procedure may lead to insights that alleviate this limitation. The second discrepancy

was that a number of areas were predicted to have been selected as targets in the model

but did not appear as targets in the empirical data. It was observed, for instance, that

the risk of rioting in one of these areas may have been increased due to the presence of

a high number of schools. Refining the variables used to explain the impact of crime
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pattern theory might lead to more successful predictive models of target choice.

The microsimulation model of rioter target choice in Chapter4 might also be ex-

panded upon. One way of doing this is to consider a mixed logitmodel of discrete

choice in which the selection of model parameters are correlated over decision-makers

(Train, 2003). Further theories regarding the underlying mechanisms of the riots might

also be incorporated. For example, the Riots Communities and Victims Panel (2011)

separated the UK rioters into four different profiles: “Organised criminals”, who were

first to the scene and who set off a ‘chain reaction’; “Violentaggressors”, who commit-

ted the most serious crimes; “Late night shoppers”, who deliberately travelled to dif-

ferent sites for looting; and “Opportunists” who were drawninto riots and encouraged

to engage as a result of situational precipitators. Disaggregating a spatial choice model

so that each decision-maker is categorised as one of these four types of offender might

lead to further insights and a more accurate microsimulation or agent-based model.

In addition, the inclusion of a dynamic mechanism of target choice based on the ac-

tions of police might open the model up to being used to explore public order policing

strategies.

Considering Chapter 5, similar models of stochastic point processes have been

shown to produce useful predictions regarding the onset andoccurrence of conflict and

crime (Zammit-Mangion et al., 2012; Mohler, 2014). Even with a relatively parsimo-

nious model such as the one presented in this thesis, an out ofsample test demonstrated

some predictive power associated with the model. Further work might consider im-

proving these predictions by incorporating a range of structural covariates that might

also be thought to influence the onset of violent events in a similar way to the model

of target choice in Chapter 4. These covariates might be informed by a range of spatial

regression models that were discussed in Chapter 2 and which have examined the pre-

dictive capability of various socio-economic, demographic, and geographical variables

associated with insurgent and civil violence.

In Chapter 6, the spatially-explicit deterministic model ofconflict was explored

within a relatively restricted region of the phase space. Specifically, it was the geo-

graphically weighted equilibrium that was stable for low levels of aggression in the

system, and the deviation from this equilibrium as the levelof aggression in the system

increased that was explored. Since the model is nonlinear, anumber of other trajec-
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tories are possible. The analysis was also not extensive with respect to the range of

parameters considered. Further research might do more to comprehensively explore

the parameter space.

Another avenue for further research is the application of the model in Chapter

6 to real-world scenarios. Calibrating the model against empirical data might deter-

mine where the real-world system lies in the phase space, andtherefore might indicate

whether the system is near to an undesirable bifurcation. A clue for model calibration

that explicitly accounts for some of the uncertainty in the model might come from the

relationship between Richardson’s model and Hawkes’ mutual-exciting point process

model, as outlined in section 7.1. Stochastic spatially-explicit models that account for

spatial dependencies in the same way as the deterministic model in Chapter 6 might

provide useful predictive models, whilst, at the same time,be of a form that can be an-

alytically interrogated in order determine bifurcations and other instabilities that might

arise if the system changes. The development of a “best of both worlds” modelling

framework, based on stochastic differential equations, might lead to a framework that

can be useful in designing policy interventions.

7.3 Concluding remarks

Four modelling frameworks have been utilised to construct models of civil violence.

For each of these frameworks, contributions to the literature have been made with re-

gards to how civil violence is modelled in space and time. To conclude, the main

contributions of the thesis are now summarised.

A novel data-driven exploratory approach for analysing local patterns of diffusion

was proposed and applied to the 2011 London riots. The Monte-Carlo model against

which the empirical data is compared against is an extensionon the state of the art

(Cohen and Tita, 1999; Rey et al., 2011; Schutte and Weidmann, 2011) and enables

the exploration of empirical data in which the geographic scope of the violence is of

interest, rather than its intensity. This is particularly useful for rioting, which exhibits

high levels of spatial and temporal clustering, and distinctive patterns of geographic

diffusion in the 2011 London riots were found and discussed.

It was argued how analysis of the geographic diffusion of rioting can be used to

consider some of the behaviours of the rioters. Specifically, it was argued that three
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types of behaviours were occurring – rioters were influencedby their surroundings,

which they utilised for the acquisition of high-value goods; rioters were influenced by

those around them, who, by engaging in the riots, prompted, permitted, pressured and

provoked those around them to engage similarly; and rioterswere influenced by the

presence and behaviours of the police.

With a desire to seek out more mechanistic approaches, a discrete spatial choice

model of rioter target choice was next proposed, in which, criminological theories were

used to construct proposed covariates. Regressing the discrete choice model against

these variables led to the evaluation of a series of hypotheses regarding the underlying

mechanisms associated with target choice. This is a novel contribution to the literature,

since it uses a model not previously employed to study riots to a particular component

of rioting that has seen recent calls for further research (Wilkinson, 2009). It was

demonstrated how such a model might also be incorporated into a computational tool

to plan police resources.

The behaviour of the police was not incorporated into the model of rioter target

choice due to a lack of sufficient data on their locations and strategies. Inspired by

the need to more closely investigate the interactions of adversaries, the example of

the Naxal insurgency was considered, using data that distinguished between actions of

insurgents and police. To do this, a modelling framework wasemployed that has pre-

viously been shown to provide significant predictive power (Zammit-Mangion et al.,

2012; Mohler, 2014). A series of novel multivariate and, in some cases, nonlinear

point process models were proposed for the rate at which events associated with the

Naxal insurgency occur. The calibration of these models highlighted certain features

of the conflict, such as the strong local influence from prior events, and the ability for

self-excitation, rather than mutual excitation, to explain a large amount of the variance

in the data. The model was assessed with regards to its predictive power. As others

have pointed out, the predictive power of statistical models has had insufficient atten-

tion in the literature. In particular, Ward et al. (2010) argue that many statistical models

associated with the study of conflict include many covariates that do little to improve

predictive performance. The study presented in this thesisprovides further support that

more sophisticated mathematical models, although somewhat parsimonious with re-

gards to the amount of data used, might be usefully employed in a predictive modelling
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framework.

Many traditional models for the interaction between adversaries use determinis-

tic differential equations to articulate proposed mechanisms. From these models, the

logical implications of those hypotheses can be deduced. InChapter 6, an entropy-

maximisation approach to spatial disaggregation of the Richardson model of conflict

escalation resulted in a novel model that was explored from anonlinear dynamical sys-

tems perspective. A bifurcation was identified that came about as a result of consider-

ing space in this way, which may indicate the onset of undesirable escalation processes

between two adversaries.

In addition to these specific advances, this thesis has demonstrated that there are

a wide range of frameworks that might be employed to model civil violence in space

and time. In much prior literature, models are often proposed without due justification

of the framework employed. Careful consideration of the typeof framework used is

crucial if the insights obtained from such models are to be useful in designing success-

ful policy interventions. In addition, the different perspectives obtained from different

modelling frameworks might all contribute to a given policydecision and so a plurality

of modelling approaches, consolidated in a way in which their insights can be use-

fully conveyed to a policy-maker, is likely to lead to a more comprehensive view of the

problem and its potential solutions.
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