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Abstract

Although the introduction of genome-wide association studies (GWAS) have greatly increased the number of genes
associated with common diseases, only a small proportion of the predicted genetic contribution has so far been elucidated.
Studying the cumulative variation of polymorphisms in multiple genes acting in functional pathways may provide a
complementary approach to the more common single SNP association approach in understanding genetic determinants of
common disease. We developed a novel pathway-based method to assess the combined contribution of multiple genetic
variants acting within canonical biological pathways and applied it to data from 14,000 UK individuals with 7 common
diseases. We tested inflammatory pathways for association with Crohn’s disease (CD), rheumatoid arthritis (RA) and type 1
diabetes (T1D) with 4 non-inflammatory diseases as controls. Using a variable selection algorithm, we identified variants
responsible for the pathway association and evaluated their use for disease prediction using a 10 fold cross-validation
framework in order to calculate out-of-sample area under the Receiver Operating Curve (AUC). The generalisability of these
predictive models was tested on an independent birth cohort from Northern Finland. Multiple canonical inflammatory
pathways showed highly significant associations (p 1023–10220) with CD, T1D and RA. Variable selection identified on
average a set of 205 SNPs (149 genes) for T1D, 350 SNPs (189 genes) for RA and 493 SNPs (277 genes) for CD. The pattern of
polymorphisms at these SNPS were found to be highly predictive of T1D (91% AUC) and RA (85% AUC), and weakly
predictive of CD (60% AUC). The predictive ability of the T1D model (without any parameter refitting) had good predictive
ability (79% AUC) in the Finnish cohort. Our analysis suggests that genetic contribution to common inflammatory diseases
operates through multiple genes interacting in functional pathways.
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Introduction

The technological development of high throughput genotyping

has provided a powerful tool to examine the genetic basis of

disease through Genome-Wide Association Studies (GWAS).

These studies have considerably increased the number of known

genes associated with common diseases [1]. However, given the

large number of markers typed and the stringent statistical criteria

necessary to minimize false positive hits [2], so far only the most

significant associations have been established. Attempts to increase

the power of GWAS to detect genes with moderate effects by

increasing sample size through meta-analysis may be less effective

in detecting rarer variants, and is limited by inter-population

heterogeneity. It is likely that the genetic associations reported to

date represent only the tip of the iceberg of genes contributing to

disease risk, and that the majority of genes still remain hidden

within the statistical ‘‘noise’’ inherent in this approach [3]. As a

result, much of the genetic information which may emerge from

GWAS remains unutilised and the question of how many genes

contribute to disease susceptibility, how they interact to cause

disease, and the extent to which disease pathogenesis might be

genetically predicted remains largely unknown [4].

Disease susceptibility is likely to depend on the cumulative effect

of variants in multiple genes interacting in functional pathways.

We use the term ‘‘interacting’’ in the biological sense to define

genes whose products act within functional pathways, to alter the

function or expression of other components of a pathway leading

to a biological output. This ‘‘pathway’’ interaction is distinct from
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the statistical use of the term to define epistatic interaction, which

is defined in the context of a particular phenotype and can be

tested by looking at the correlation structure of mutations

conditional on a phenotypic outcome (case vs. control for

example).

If we consider the genetic regulation of the immune response,

multiple genes contribute to the response to any pathogen - some

acting as positive and others as negative regulators [5] (Figure 1).

The pattern of gene variants within inflammatory pathways will

determine the intensity and nature of an individual’s immune

response to pathogens and thus the outcome of different infectious

diseases encountered throughout life [6,7].

The same gene variants which result in rapid activation of a

vigorous inflammatory response to infection may have the

disadvantage of increasing the risk of auto-immune and inflam-

matory diseases later in life [8,9]. Pro-inflammatory mediators

such as TNF, IL-12, IL-1, IL-6 and IFN-c, essential for

containment of microbial pathogens [10,11], are also associated

with inflammatory processes seen in common auto-immune

diseases such as RA [12], CD [13], or T1D [14]. Conversely,

treatments that reduce inflammation, such as anti-TNF therapy

for CD or RA [15] are associated with increased risk of

opportunistic infection [16], suggesting that pathways involved

in inflammatory diseases are also involved in resistance to

infectious diseases. We postulated that the genetic contribution

to common inflammatory diseases would be determined by

multiple gene variants in the same inflammatory pathways

involved in host response to infectious diseases (Figure 1).

We show here that the application of a pathway approach to

GWAS yields new insight into the biology of CD, T1D and RA

pathogenesis by implicating novel biological pathways as well as

identifying new gene associations in known pathways. We also

show that multiple SNP variants in these pathways can be used to

build predictive models of disease risk, thus providing a new

picture of how multiple gene variants combine to contribute to

disease risk.

Results

Shared and unique disease pathways for each disease
We used the novel statistical approach (described in detail in the

methods section) to evaluate the combined effect of multiple

genetic variants in the genes comprising canonical immune and

inflammatory pathways.

Highly significant associations were observed between key

inflammatory pathways and the three inflammatory diseases

(Table 1). Jak-STAT signalling, antigen processing and presenta-

tion, T cell activation pathway, cell adhesion molecules,

hematopoietic cell lineage and NK cell mediated cytotoxicity

showed high levels of significance in all three autoimmune diseases

(P,1024 to P,10220). However certain pathways showed

evidence for association with one disease; the pathways of

NOD2 (P,1024 to P,10215), IL-23 and TNF (P,10220), IL-

12 and TGF-b (P,1026), TLR2 signalling (P,1025 to 1029),

classical MAPK (P,10210) and B cell activation (P,1028) with

CD; TLR3 (P,1024), T-cell activation via PLC and via NFAT

Figure 1. Inflammatory response to a pathogen. Pathogen recognised by pattern recognition receptors on phagocytic cell (A) or plasma
opsonins (I). Signal induction (B) and first order inflammatory genes (C) are induced leading to release of inflammatory signals. These bind to
receptors (D), leading to activation of signal transduction pathways and gene induction of second order inflammatory mediators (E, F). These act as
effectors of the inflammatory response (Red Arrow) or as positive or negative regulators. Inflammation upregulates cell adhesion molecules (J) and
those involved in transendothelial migration (K). Genetic variants (A–J) will interact to alter the intensity and nature of the response, and may
determine different outcomes. Individuals making an excessive inflammatory response may succumb to overwhelming inflammation, while those
making an inadequate response may fail to clear the pathogen. EC = endothelial cell.
doi:10.1371/journal.pone.0008068.g001
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Table 1.

PATHWAY CD T1D RA HT BD CAD T2D

Pattern recognition receptors

TLR21 3.5E-05 0.029 0.041 0.257 0.187 0.386 0.357

TLR2/11 9.1E-06 0.030 0.026 0.197 0.185 0.318 0.367

TLR2/61 2.4E-05 0.020 0.065 0.129 0.129 0.179 0.316

TLR31 0.001 3.3E-04 0.037 0.319 0.198 0.246 0.145

TLR4 (MyD88 dependent)1 0.020 0.010 0.040 0.199 0.102 0.469 0.335

TLR4 (MyD88 independent)1 0.018 0.018 0.029 0.152 0.124 0.343 0.262

TLR5/TLR7/TLR8/TLR91 2 0.127 0.062 0.397 0.380 0.154 0.342 0.119

TLR2-IRF5 2.7E-06 0.225 0.001 0.116 0.085 0.389 0.477

TLR2/1-IRF5 3.1E-09 0.228 0.001 0.129 0.066 0.453 0.442

TLR2/6-IRF5 8.1E-05 0.171 0.001 0.179 0.066 0.102 0.330

TLR4 (MyD88 dependent)-IRF5 0.022 0.076 0.017 0.173 0.078 0.555 0.482

TLR5/TLR7/TLR8-IRF52 0.441 0.804 0.032 0.315 0.013 0.394 0.004

TLR9-IRF5 0.002 0.058 1.6E-06 0.220 0.112 0.638 0.361

Signal transduction

Jak-STAT signalling 2.5E-07 1.9E-12 4.4E-09 0.005 0.011 0.166 0.045

MAPK: All 7.7E-09 1.5E-06 0.119 0.005 0.054 0.020 0.003

MAPK: Classical 1.8E-10 0.001 0.164 0.009 0.121 0.033 0.001

MAPK: JNK & p38 2.2E-06 0.027 0.139 0.053 0.158 0.046 0.030

NFKB 0.030 0.016 0.010 0.842 0.533 0.333 0.294

NOD11 0.097 0.324 0.633 0.003 0.141 0.001 0.489

NOD2 (via GRIM19)1 4.4E-04 0.055 0.237 0.184 0.102 0.205 0.210

NOD2 (via RICK)1 1.3E-15 0.587 0.528 0.005 0.151 0.045 0.287

Second order cytokines

IL-11 0.003 0.217 0.127 0.101 0.157 0.516 0.496

IL-6 3.5E-04 4.2E-04 0.064 0.140 0.826 0.221 0.426

IL-10 8.4E-06 2.1E-04 0.083 0.378 0.683 0.116 0.836

IL-12 4.9E-06 4.32E-03 0.003 0.324 0.949 0.523 0.747

IL-18 0.017 0.062 0.032 0.220 0.391 0.287 0.287

IL-23 0.0E+00 0.017 0.063 0.012 0.709 0.637 0.301

TNF1 0.0E+00 0.017 0.026 0.045 0.244 0.635 0.283

TGF-b 2.6E-05 0.004 0.035 0.102 0.502 0.155 0.218

Antigen processing and presentation

All1 1.4E-04 0.0E+00 0.0E+00 0.012 0.016 0.256 0.577

MHC I 0.073 0.0E+00 0.0E+00 0.291 0.266 0.420 0.521

MHC II 1.9E-05 0.0E+00 0.0E+00 0.021 0.043 0.810 0.545

B–cell activation

All1 5.2E-08 0.005 0.656 0.005 0.026 0.196 0.006

AKT1 0.039 0.550 0.223 0.015 0.021 0.059 0.004

AP1 7.6E-11 0.037 0.578 0.146 0.136 0.403 0.004

NFAT 1.7E-04 0.002 0.702 0.010 0.009 0.221 0.067

PKC1 0.037 0.050 0.553 0.245 1.1E-04 0.323 0.135

T–cell activation

All1 2.5E-11 1.3E-07 2.4E-05 4.1E-05 0.004 0.069 0.002

AP1 5.3E-07 0.002 0.112 0.124 0.293 0.516 0.003

NFAT 0.004 1.0E-04 0.025 0.021 0.004 0.452 0.047

PLC1 0.002 1.3E-04 0.009 0.028 0.153 0.480 0.007

ICOS/CD281 4.1E-05 0.227 0.029 0.001 0.060 0.024 0.352

Cytokines/receptors 4.3E-04 6.0E-06 2.5E-06 0.156 0.005 0.055 0.123

Cytokines/receptors/Jak-STAT/suppressors 2.4E-04 1.2E-09 1.1E-04 0.007 0.011 0.023 0.014

Pathway Analysis of GWAS
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(P,1024) and ABC transporters (P,10216) with T1D; TLR9

signalling via IRF5 (P,1026) and purine metabolism (P,1025)

with RA (Table 1).

Almost all of the pathways under investigation showed no

evidence of association with the non-inflammatory diseases

(Table 1). However, some signal of association was detected

in pathways with previously identified or biologically plausible

link to a non-inflammatory disease. For instance, association

between the B cell signalling via protein kinase C (PKC)

pathway and bipolar disorder is consistent with reports that

PKC activity has a role in pathophysiology of bipolar disease

[17].

No association was seen for metabolic pathways that are not

expected to have a biological link to the inflammatory diseases

(Table 1 and web-based additional material Table 20).

Common and unique key gene variants for each disease
To identify the genes and SNPs predominantly responsible for

the pathway effect, we applied variable selection and model fitting

on all the SNPs within associated pathways, within the framework

of 10-fold CV. The models developed during CV consisted on

average of 205 SNPs (149 genes) in T1D, 350 SNPs (189 genes) in

RA and 493 SNPs (277 genes) in CD (Table S1). For all, except

the smallest pathways, the signal for pathway association arises

from the cumulative effect of many gene variants (Figure S1).

Furthermore the significance of the majority of pathways was not

dependent on the established significant (single SNP trend test

P,561027) hits, as when the pathway statistic was repeated after

excluding significant hits, and known associations, the pathway

statistic remained significant for the majority of associated

pathways (Table S2).

We reasoned that the genes selected in all ten CV models

represent a ‘‘core’’ set of genes showing consistent association with

the disease. This set comprised a total of 52 genes for T1D, 88

genes in RA and 118 genes in CD as shown in Figure 2 (SNPs

shown in web-based additional material Tables 11–13). Only 12

genes were common to all three diseases, 11 were shared by CD

and T1D, 5 shared by T1D and RA, and 26 were shared by RA

and CD. The majority of identified genes were unique to each

disease. Common genes included the major histocompatibility

complex HLA-DQB1, HLA-G and HLA-C from the antigen

processing and presentation pathway; PPP3R2, PLA2G4A,

ITPR1, VAV3 and PAK7 from the T cell activation pathways;

and the cell adhesion molecules ALCAM, NLGN1, ITGA1 and

the cadherin CDH2.

Several of the genes we identified have been associated with

autoimmune diseases in previous GWAS [18–22]. Of note is that

our analysis identified IL12B, ICOSLG, STAT3, CCR6 for CD

PATHWAY CD T1D RA HT BD CAD T2D

IFN-c 1.7E-05 8.6E-06 0.018 0.065 0.089 0.186 0.630

Signalling molecules and interaction

Cell adhesion molecules: All 0.0E+00 0.0E+00 0.0E+00 0.081 3.1E-04 4.6E-04 2.0E-04

APC: T cell 5.0E-06 0.0E+00 0.0E+00 0.211 0.001 0.618 0.184

Tc cell: target cell 0.010 0.0E+00 0.0E+00 0.577 0.284 0.561 0.438

Th cell: B cell 2.5E-04 0.0E+00 0.0E+00 0.068 0.035 0.363 0.554

Leukocyte: platelet 0.208 0.868 0.631 0.208 3.5E-05 0.680 0.139

Leukocyte: endothelial cell 0.029 0.095 0.257 0.194 2.2E-04 0.190 0.452

Neural cells 7.6E-05 0.123 0.125 0.191 0.045 0.001 0.001

Cytokine-cytokine receptor interactions 4.2E-15 2.7E-12 0.002 0.042 0.026 0.194 0.104

Others

ABC transporters 0.021 2.2E-16 0.004 0.350 0.003 0.276 0.166

Cell communication 0.014 8.3E-05 0.007 0.064 1.6E-04 0.051 0.009

Complement: All 0.080 0.323 0.051 0.245 0.551 0.484 0.206

Haematopoietic cell lineage: All 6.3E-10 0.0E+00 0.0E+00 0.006 2.8E-04 0.019 0.070

Leucocyte transendothelial migration 0.013 0.575 0.102 0.418 0.003 0.059 0.203

Natural killer cell mediated cytotoxicity 3.3E-10 0.0E+00 1.4E-09 0.003 0.001 0.100 0.431

Neutrophil activation 4.5E-05 0.002 0.043 0.061 0.290 0.043 0.605

Purine metabolism 1.04E-02 0.026 3.2E-05 0.174 0.474 0.010 0.367

Pyrimidine metabolism 7.02E-02 0.160 0.039 0.389 0.377 0.590 0.280

Type 1 diabetes pathway from KEGG 4.8E-07 0.0E+00 0.0E+00 0.231 0.045 0.672 0.940

Non-inflammatory pathways

Urea cycle 0.928 0.081 0.771 0.318 0.153 0.257 0.069

Citrate Cycle (TCA cycle) 0.829 0.935 0.331 0.197 0.235 0.761 0.327

Arachidonic Acid metabolism 0.411 0.844 0.289 0.157 0.806 0.338 0.192

1Addition of NFKB did not change the result.
2Although shown together, these were considered as separate pathways.
3Additional pathways analyzed are shown in Table S3 & S4.
doi:10.1371/journal.pone.0008068.t001

Table 1. Cont.
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which have only been identified in subsequent meta-analysis of

three separate GW scans [22], as well as IL18RAP which was

identified in a recent case-control study [23]. For T1D, STAT4

was associated with the disease in follow-up candidate gene studies

[24,25] as was PRKCQ [26–28] (Figure 2). The previously

identified genes found by our approach include for T1D, genes in

the HLA region, CTLA4, PTPN22 and IL-2RA. For RA;

PRKCQ and GZMB (these showed nominal significance

P,1024 to 1025 in the WTCCC study), IL2RA, IL2RB and

TNFAIP3 (these showed a modest evidence of association P,1025

to 561027 in WTCCC study), and MICA [29–31] as well as IRF5

[32,33] that was confirmed by meta-analysis [34]. Similarly for

CD, the well established associations with NOD2, IL23R and the

recently implicated IL12B and STAT3 were all confirmed.

However, in addition to these established associations we also

identified other components of key pathways contributing to

disease, such as RIPK2 and MAP3K7 from the NOD2 pathway in

CD. We also identified genes in novel pathways: in T1D, a

number of genes controlling T cell activation were selected

including the calcium channel ITPR1, the calcium dependent

phospholipase PLA2G4A, the regulatory subunit of calcineurin

PPP3R2 and the calcineurin dependent transcription factor

NFATC2 suggesting a role for calcineurin/nuclear factor of

activated T-cells (NFAT) signalling in susceptibility of type 1

diabetes.

TNF plays a critical role in inflammation in RA and CD [12,13]

and has been a major target for therapeutic antibody treatments.

The TNF pathway was significant in CD only, and key

components selected include two enzymes that are regulators of

NF-kB signalling–a negative regulator of NF-kB, the deubiquiti-

nating enzyme CYLD [35] (rs7342715) and TNFAIP3

(rs7753394) both a deubiquitinating enzyme and a ubiquitin ligase

[36]. Both of these enzymes deubiquitinate NEMO and, when

knocked out in vivo, lead to inflammatory bowel disease [37].

Genetic variants near TNFAIP3 have recently been associated

with RA (see below) as well as ulcerative colitis and CD [18,38]

and was associated in our study for both CD (rs7753394) and RA

(rs6920220) (see below).

Figure 2. Genes identified by variable selection in all 10 folds of cross-validation for T1D, RA, CD. Key genes that showed consistent
association with each disease had at least one mapping SNP selected in all 10 logistic models of CV. Genes are grouped in their pathways, which are
shown as bubbles. Pathways are colour-coded in agreement with Table 1 and Supplementary Tables. Overlapping bubbles represent pathways that
share key genes. Underlined genes correspond to associations that have been reported in previous association studies.
doi:10.1371/journal.pone.0008068.g002
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Considering the possible involvement of TLR signalling in RA,

we found that only TLR9 signalling via IRF5 was significant

among TLR pathways. TLR9 is constitutively expressed on B cells

that are critical in the pathogenesis of rheumatoid arthritis [39].

The plausibility of this pathway is strengthened by the finding that

several genes downstream of TLR9 were also selected; IRF5

(rs3807306) and the negative regulators SOCS1 (rs11074956,

rs243325) and TNFAIP3 (rs6920220). It is of interest that recent

studies show an association of the IRF5 gene with RA [32,33], and

2 studies link region 6q23, flanked by TNFAIP3 and OLIG3 with

RA susceptibility [40,41].

Genomic prediction of disease risk
We next investigated how well the combination of gene variants

selected by variable selection can predict disease in individuals. We

used ten fold cross-validation (see methods) to build predictive

models on 90% of the cases and controls, which are then tested on

the remaining 10%. The process was then repeated using a

different 90% and 10% of the cohorts on each occasion. The

sensitivity and specificity of the models for each disease are shown

in ROC curves (Figure 3A–C). The area under the average ROC

(AUC) is 91%, 85% and 60% for T1D, RA and CD respectively,

which correlates inversely to the number of SNPs in the models for

each disease.

The predictive models, as expected, contained some of the well-

established markers associated with each disease. To evaluate the

extent to which prediction was driven by these significant hits, we

split each model into two models without any refitting of the

coefficients; a model excluding all SNPs with single-SNP

P,561027 as well as any SNPs in LD with these (r2
§0:3);

specifically for T1D and RA we also removed any SNPs that

mapped to the MHC gene clusters in chromosome 6 [42] and a

model with only these excluded SNPs. As shown in Figure 3, a

large proportion of the predictive power comes from established

associations (Figure 3A–C red curves, T1D AUC^0:84, RA

AUC^0:7, CD AUC^0:58), however the SNPs identified by the

pathway analysis have predictive power in the absence of these hits

(Figure 3A–C blue curves, T1D AUC^0:7, RA AUC^0:81, CD

AUC^0:56) and also increase the predictive power when added

to the significant hits (Figure 3A–C green curves, T1D

AUC^0:91, RA AUC^0:85, CD AUC 0.60). In all three

diseases, the pathway-derived models had greater predictive value

than the significant hits alone. Remarkably for RA, the SNPs

identified by the pathway approach, excluding the significant hits,

have higher predictive value than the significant hits on their own.

Validation Study
In order to test the generalisability of our approach to other

populations, and to investigate its applicability in the general

population (rather than a case-control design), we tested the T1D

predictive models in the Northern Finnish Birth cohort (NFBC).

Each of the 10 T1D models trained on different 90% subsets of the

WTCCC samples were used to calculate disease risk, without any

parameter refitting. As the NFBC was typed on a different

platform to the WTCCC, those SNPs which were not in common

between the two genotyping platforms were imputed (see

methods). The 10 T1D models trained on 90% of the WTCCC

predicted on average over 60% of the Finnish T1D cases with a

false positive rate of 10%, compared to 73% in the original UK

sample (Figure 3D, green curve AUC^0:79). The single model

trained on the entire WTCCC T1D case-control dataset achieved

almost the same predictive power (Figure S2, green curve,

AUC^0:77). Although the significant SNPs (P,561027) ac-

counted for a considerable proportion of the predictive power

(Figure 3D and Figure S2, red curves, AUC^0:76), the additional

SNPs identified by our approach contribute to the predictive

power (Figure 3D and Figure S2, green curves) and have

predictive value on their own (Figure 3D and Figure S2, blue

curves, AUC^0:71).

Visualisation of genomic risk
We reasoned that each SNP has a different effect on disease

predisposition either increasing or decreasing the risk due to its

functional effect on the regulation of the overall pathway output

(Figure 1). We categorized SNPs as adverse or protective on the basis

of their coefficient in the CV model (relative to the minor allele for

additive effects). As shown in Figure S3, each SNP exerts an adverse

or protective effect through dominant, recessive, additive or

heterozygous modes. In T1D for example, there are two adverse

HLA-DQB1 variants (rs9273363/rs9275418) and two protective

HLA-DQA1 variants (rs9272723/rs9270986), and PTPN22

(rs6679677) is adverse for both T1D and RA. Figure S3 also

illustrates the differing magnitude of effect of individual SNPs, with

many showing only a small effect, but less common variants having

more powerful adverse or protective effects.

In order to display for any individual, the pattern of rare and

common variants, and the protective or adverse effect of each variant,

in Figure 4 we plot for every individual (columns) their genotype at

each SNP. We used red to indicate an adverse and green a protective

SNP (rows). The intensity of colour reflects the effect of the SNP in

the model (Methods S1). This provides a way of visualising the

predictive models. Each individual seems to carry a unique

combination of adverse and protective variants, which may represent

a personal ‘‘genomic fingerprint’’ of disease predisposition. Despite

the vast number of different combinations, a pattern is revealed

where patients (left side) compared to healthy individuals (right

side) are seen to carry a higher number of adverse genotypes and

fewer number of protective genotypes and vice versa.

Discussion

Our pathway analysis has shown that variation in conserved

canonical inflammatory pathways underlies genetic susceptibility

to T1D, CD, and RA. Although a number of pathways we have

identified contain genes implicated in susceptibility to these

diseases in previous single SNP based studies, our analysis presents

a new perspective on the number of contributing pathways, the

number of genes within pathways that interact to determine

disease occurrence, and also identifies novel pathways and genes

associated with each disease. Furthermore our analysis provides

new insight into the pathways that are common as well as those

unique to the three diseases, and suggests that genetic influence

operates through functionally interacting genes.

Pathway-based approaches have been employed in previous

studies [43–48], but have focused less on the underlying

mechanisms that affect disease occurrence. Our approach not

only enables the pathways associated with disease to be identified,

but provides a method to identify the individual genes and their

SNPs within the pathway that are predominantly responsible for

the genetic effect. Our approach relies on the existence of well-

defined biological pathways involved in inflammation, and our

hypothesis that the cumulative effect of mutations in these

pathways are likely to affect disease susceptibility in T1D, CD

and RA. In many other diseases the relevant pathways are not yet

as clearly identified. However, as the understanding of the function

of genes increases [49,50], the same approach may be readily

applied to other diseases.
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The number of genes associated through GWAS with CD, T1D

and RA has been increasing progressively through the use of meta-

analysis. In order to place the findings of our pathway-based

approach in the context of what has been found using

conventional single SNP analysis in the original WTCCC study,

in previous studies or in more recent meta-analysis, we have

tabulated in web-based additional material Tables 17–19, the

previously reported associations for CD, RA, and T1D and related

these to the genes implicated in our analysis. These tables show

that several genes, which were not significant in the initial

WTCCC analysis, but were identified by our approach, have now

been confirmed in subsequent meta-analysis or candidate gene

studies. One obvious concern of the pathway approach is that it

can only evaluate the genetic contribution of genes known to act

within pathways. As shown in web-based additional material

Tables 17–19 several of the previously reported associations are

genes not present in our inflammatory pathways, and thus are

‘‘missed’’ by our approach. However, there are many other genes

Figure 3. ROC curves showing the average predictive performance for T1D, RA and CD. True positive rate and false positive rate for
predicting case/control status for A) type 1 diabetes, B) rheumatoid arthritis, C) Crohn’s disease on the WTCCC dataset and D) ROC showing the
average predictive performance of the T1D models built on the UK WTCCC dataset and applied to the 4,763 subjects in the Northern Finland 1966
Birth Cohort. Each colored line is the average ROC of the 10 models fitted during CV. The green curves show the performance of the models, as built
by the variable selection algorithm. Blue curves show the performance of the same models with all significant hits (individual trend test P,561027)
and SNPs in LD (r2

§0:3) removed. Red curves show the predictive performance of the models formed only by the previously excluded SNPs
(significant hits and SNPs in LD). In T1D (A) the area under the average ROC curves is 91%, 71% and 84%, in RA (B) it is 85%, 81%, 70% and in CD (C)
60%, 56%, 58% for the pathway-derived models (green-curves), the pathway-derived models excluding the significant hits (blue curves) and the
significant-hit models (red-curves) respectively. In (D) the AUC of the green, blue and red ROC is 0.79, 0.71 and 0.76 respectively.
doi:10.1371/journal.pone.0008068.g003
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which are identified by our analysis that have also been identified

by meta-analysis or in large studies subsequent to WTCCC studies

and which were ‘‘missed’’ by the WTCCC single SNP analysis.

These genes suggest that the pathway approach may be a useful

method for identification of real associations without recourse to

meta-analysis, and using smaller cohorts than required for some of

the confirmed associations. In web-based additional material

Tables 17–19 we also show that there are genes that are implicated

by our pathway-based approach which have not been found in

previous studies, and thus require validation in independent data

sets. While these associations have yet to be replicated, their

predictive performance during cross-validation and the validation

of the gene set identified on the WTCCC in predicting T1D in the

NFBC suggests that these genes are plausible associations. As data

from other studies on CD and RA become available, these novel

associations can be validated either in GWAS or in candidate gene

studies.

We have identified gene/SNP sets within inflammatory

pathways which appear to have predictive value for disease

occurrence. We stress that our evaluation of these gene sets as

predictive markers of disease status was not aimed at assessing

their clinical use in disease prediction. Instead we aimed to use the

predictive performance of the models as an indication of the

importance of genetic influence on disease occurrence [46,51].

The validation of our T1D models on a different population

provides the most stringent test of our approach. The predictive

models trained on the UK WTCCC cohort predicted develop-

ment of T1D in over 60% of the Finnish patients who developed

disease by age 30 (with a false positive rate of 10%). Although the

level of prediction was lower than that on the WTCCC cohort

(true positive rate = 73%, false positive rate = 10%), which may

suggest that the initial predictive power on the WTCCC was over-

inflated, the lower performance may also be due to biological or

technical factors, such as the use of imputed SNPs in the Finnish

samples, and because the Finnish population differs from UK

Caucasians in haplotypic structure [52]. However, the predictive

power was still higher than achieved in other studies [53–55].

Definitive assessment of the predictive performance of models

developed on one cohort (such as the WTCCC) will require

validation studies to be undertaken on a second cohort from the

same population and ethnic groups, and with direct genotyping

undertaken on the same SNPs.

Although much of the predictive power in T1D was due to the

MHC complex effects and other known associations, the

remaining SNPs in our models have substantial predictive value

in their own right, and remarkably in RA, the genes not meeting

GWAS significance provide better predictive value than the

significant hits alone. The lower predictive performance of the

models in CD may reflect that this disease (which has a number of

well recognised clinical phenotypic subgroups [51]) is more

heterogeneous in its genetic origins, a possibility also suggested

by the higher number of SNPs identified by variable selection in

CD.

The strategy of using curated biological pathways has some

limitations. As noted previously [56], this approach is dependent

on the quality and completeness of the curated biological pathways

used as input. Another obvious concern is that it can only evaluate

the genetic contribution of genes known to act within pathways.

Genes which are not yet within the accepted ‘‘canonical’’

pathways used for the analysis will be missed by our approach.

For example some of the genes which were associated with T1D in

the recent meta-analysis [26], were not included in the current

curated pathways (e.g. PTPN2, C1QTNF) included as a starting

point for our analysis. However, biological understanding of the

Figure 4. Variant SNPs carried by cases with type 1 diabetes and controls. (a) Predicted probability of being a case, (b) Actual case or
control status. Patients shown in red and controls in green. The model correctly assigns the majority of cases at the extreme left, and controls at
extreme right, with less predictive ability in the middle. (c) Individual patients or controls are displayed in columns and each row represents one SNP.
Red indicates an adverse and green a protective SNP. Intensity of colour indicates disease log-odds from the predictive model. The magnified sections
show regions where very marked differences between cases and controls can be readily seen.
doi:10.1371/journal.pone.0008068.g004
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function of genes in pathways is evolving rapidly, and currently

available lists of ‘‘canonical’’ pathways will inevitably expand

rapidly in the future as new data on function of genes becomes

available. The strength of the single SNP approaches which have

been used in most previous GWAS analysis is that they are

‘‘hypothesis free’’ and can bring to light associations with genes not

previously suspected as having roles in a particular disease. Our

pathway approach may be useful to complement the findings of

significant associations at the single SNP level. Once a gene has

been implicated by association at the single SNP level, all the other

genes in the pathway in which the associated gene functions can

then be included in the analysis, to identify other genes which may

be acting in concert to produce the overall genetic effect.

Defining whether a particular SNP is part of, or regulates a gene

can also be problematic, and can result in functionally important

trans-regulatory SNPs being missed and will also miss the effect of

SNPs in gene deserts. Large pathways or pathways with genes that

reside in large LD blocks are likely to inflate the pathway statistic,

although we accounted partially for this potential bias via the

permutations procedure. These limitations however can each be

addressed as functional pathways become better defined and

understanding of gene function improves, through linking genomic

and gene expression and/or proteomic data.

Our approach suggests a new picture of how variation in

multiple genes linked in functional pathways contributes to

inflammatory disease susceptibility and provides a useful tool to

reveal the hidden information of GWAS that would be missed in

single SNP analysis. We suggest that a biological pathway-based

approach is likely to be valuable in elucidating the genomic

mechanisms underlying common diseases and may identify new

pathways as therapeutic targets.

Methods

The flow chart in Figure S4 outlines the sequential steps in our

analysis, and more detailed statistical methods are described in the

supplementary section (Methods S1 and S2 and Figure S5).

Patient Cohorts
The study was approved by the Clinical Research Governance

Office of Imperial College London (Reference ICREC_9_1_11).

All data were analyzed anonymously. We analysed the raw

anonymous genotypic data from the Wellcome Trust Case

Control Consortium (WTCCC) study on 14,000 Caucasian UK

patients and 3000 controls genotyped on the Affymetrix 500K

mapping array. The cohort included 7 common diseases; Crohn’s

disease, rheumatoid arthritis, type 1 diabetes, hypertension, type 2

diabetes, bipolar disorder and coronary artery disease and has

been described in detail [18]. For the validation study we used

anonymous data from 4,763 individuals in the Northern Finland

1966 Birth Cohort (NFBC 1966) [57] genotyped on the Illumina

Infinium 370cnvDuo array, thirty of whom were ultimately

diagnosed as having T1D.

Pathway selection
We selected key canonical pathways associated with the innate

and acquired immune response to pathogens (Figure 1 and Table

S3 and S4), defined using the KEGG [58] and Ingenuity Pathways

Analysis 6 databases, supplemented from the literature. We

examined 84 pathways containing 1415 genes and 20,309 SNPs

within 10KB of the genes. As negative controls, we selected

metabolic pathways which biologically were not expected to

contribute to inflammatory disease susceptibility (Table S3 and

web-based additional material Table 9). Genes in all examined

pathways are shown in the web-based additional material located

at http://www1.imperial.ac.uk/medicine/people/l.coin/. A sum-

mary of the numbers of genes and SNPs used for each stage of

analysis is shown in Table S1.

Test for pathway association: cumulative trend test
statistic

To evaluate the overall genetic contribution of a given pathway,

we developed a cumulative trend test statistic CTpathway by

summing the Armitage trend test statistic over all of the SNPs in

the pathway. We estimated the parameters of a parametric

approximation of the null distribution of the statistic by fitting a

skew normal distribution to results obtained from 1000 random

permutations of case/control labels. This procedure was carried

out separately for each disease and given pathway. Pathway

significance was defined at a~0:0005, i.e. significance level

a~0:05 Bonferroni corrected for ,100 pathways.

Variable selection and logistic regression
To identify the genes (and SNPs) predominantly responsible for

the pathway effect, we collected the SNPs within pathways with

CTpathway P,0,005 and applied HyperLasso [59] a variable

selection algorithm designed to build a predictive model of disease

risk. HyperLasso [59] fits a logistic regression model while

performing variable selection to generate models with relatively

few predictors. Variable selection and model fitting were

performed under the framework of 10-fold cross validation (CV).

Model evaluation and ROCs
To evaluate the performance of the predictive logistic models,

we displayed the average sensitivity/specificity across all 10 trials

via Receiver Operating Characteristic (ROC) plots and calculated

the area under the ROC curves (AUC) [60].

Validation in an independent cohort
The validation of our predictive models on an independent

dataset was carried out in two ways; to achieve direct

comparability between the level of prediction on the WTCCC

data and the NFBC 1966 data, we used the same 10 models

trained during cross-validation on a 90% subset of the WTCCC

dataset on the independent dataset; we also fitted a single model

on the entire WTCCC data and tested its ability to predict T1D in

the subjects of the NFBC.

Supporting Information

Figure S1 Fraction of the associated pathways selected on

average by variable selection. The bar charts show for each disease

the average number of genes in a pathway, selected during

variable selection, divided by the total number of genes in that

pathway and expressed as a percentage. Only associated pathways

are shown. The total number of genes in a pathway are shown in

parenthesis after the pathway name. The colour-coded bars for

each disease are not stacked (i.e. they are not summated).

Found at: doi:10.1371/journal.pone.0008068.s001 (0.85 MB TIF)

Figure S2 Single model fitted on the entire WTCCC T1D cases

and controls when applied to the Northern Finland 1966 Birth

Cohort. The area under the ROC curve for the pathway-derived

model is 0.77 (green curve), for the same model but with all

significant hits (single SNP trend test P,561027) and the SNPs in

LD (r2$0.3) excluded is 0.69 (blue curve) and for the model with

only the excluded SNPs is 0.74 (red curve).

Found at: doi:10.1371/journal.pone.0008068.s002 (0.43 MB TIF)
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Figure S3 The allelic architecture of the logistic regression

models of disease risk. Minor allele frequency vs. beta coefficient

for each SNP retained in the fitted logistic regression model from

first round of cross-validation. Additive, recessive, dominant and

heterozygous effects are displayed by black squares, blue dots,

mauve triangles and cyan diamonds respectively. Adverse vs.

protective SNPs have a positive vs. negative beta value

respectively. Labels are given for all SNPs with beta greater than

0.25. In T1D there are a number of SNPs with large adverse

effects acting in a dominant and additive manner and hence a

significantly different sum of additive (t-test, P = 2610e-06) and

dominant (P = 2610e-06) effects between cases and controls. In

RA, we observe SNPs with large additive adverse and protective

effects resulting in a significant difference in the sum of additive

(P = 2610e-14), as well as dominant (P = 6610e-04) and recessive

(P = 0.014) effects. In CD there are fewer SNPs with large effect

yet still significant differences for additive (P = 4e-03) and

heterozygous (P = 0.04) cumulative effects.

Found at: doi:10.1371/journal.pone.0008068.s003 (1.17 MB TIF)

Figure S4 Stepwise procedure for the pathway-based analysis.

Found at: doi:10.1371/journal.pone.0008068.s004 (0.66 MB TIF)

Figure S5 Histogram, density function and q-q plots of various

distribution fits to permutation data of the cumulative trend test

statistic. The plot on the top left corner shows the histogram and

the fitted skew normal density function of the cumulative trend test

statistic calculated from 10,000 permutations of cases/control label

for the IL-1 pathway in CD and the top middle plot shows the

QQ-plot of the fitted skew normal distribution. The next four plots

correspond to QQ-plots of four distribution fits to the same null

distribution. The P-value of Kolmogorov-Smirnof goodness of fit

test statistic is depicted in the legend of each plot.

Found at: doi:10.1371/journal.pone.0008068.s005 (0.41 MB TIF)

Table S1 Summary statistics at each stage of the analysis.

Found at: doi:10.1371/journal.pone.0008068.s006 (0.02 MB

XLS)

Table S2 P-values of the pathway statistic over the examined

pathways without any SNPs with single-marker P,561027. P-

values in bold and scientific format correspond to pathways that

preserved their statistical significance even after the removal of the

significant hits. P-values in italics stand for pathways that were

statistically significant with the significant hits included but not

without.

Found at: doi:10.1371/journal.pone.0008068.s007 (0.02 MB

XLS)

Table S3 List of examined pathways with the corresponding

numbers of genes and SNPs. The column of significant hits shows

the number of SNPs with individual trend test P,561027 within

each pathway. Bold highlighting denotes association of a pathway

with the disease. The last column shows the table index in the web-

based additional material which contains lists of genes for every

pathway.

Found at: doi:10.1371/journal.pone.0008068.s008 (0.02 MB

XLS)

Table S4 Additional inflammatory pathways analyzed. These

pathways are not shown in Table 1, either because they showed no

association to any disease (e.g. pyrin) or showed association but

were combined into one to be used for downstream analysis (e.g.

haematopoietic cell lineage).

Found at: doi:10.1371/journal.pone.0008068.s009 (0.03 MB

XLS)

Methods S1

Found at: doi:10.1371/journal.pone.0008068.s010 (11.21 MB

PDF)
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