
Neural dynamics in cortical
populations

Marius Pachitariu

Dissertation submitted for the degree of
Doctor of Philosophy

of
University College London

Gatsby Computational Neuroscience Unit

University College London

2014



Declaration

I, Marius Pachitariu, declare that this thesis was composed by
myself, that the work contained herein is my own except where
explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification
except as specified.

Marius Pachitariu
January 30, 2015



Abstract

Many essential neural computations are implemented by large popula-
tions of neurons working in concert. Recent studies have sought both
to monitor increasingly large groups of neurons and to characterise their
collective behaviour, but the standard computational approaches avail-
able to identify the collective dynamics scale poorly with the size of
the dataset. We develop new efficient methods for discovering the low-
dimensional dynamics that underlie simultaneously-recorded spike trains
from a neural population. We use the new models to analyze two different
sets of population recordings, one from motor cortex and another from
auditory cortex. In motor cortex, we describe the nature of the trial-by-
trial spontaneous fluctuations identified by the model and connect these
fluctuations to behavioral events. The spatio-temporal structure of the
spontaneous events was tracked by three trajectories identified by the
model. These trajectories followed similar dynamics during hand reaches
as they did when the hands were stationary. The structure of the mod-
els we developed allow them to be used as decoders of hand position
from neural activity, significantly improving upon previous state-of-the-
art methods. The decoders were able to predict information about the
direction, onset time and speed profile of movements. In auditory cortex,
we use the statistical models to identify population dynamics under dif-
ferent brain states. We report major differences in dynamics and stimulus
coding between synchronized and desychronized brain states. Synchro-
nized but not desynchronized brain states imposed constraints on neural
dynamics such that a four-dimensional system accounted for most of the
dynamical structure of population events. We used the low-dimensional
representation of the data to construct network simulations that repro-
duced the patterns present in the recordings. The simulations suggest
that the overall level of feedback inhibition controls the stability of each
local cortical network, with unstable dynamics resulting in synchronized
brain states. Finally we propose a functional role for dynamics in the
representation of visual motion in visual cortex.
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Outline

This thesis proceeds as follows:

Chapter 1 provides an introduction and literature review on the dynamics of
neural populations, multi-neuron recordings and the statistical and network sim-
ulation tools we use to analyze them.

Chapter 2 develops the recurrent linear model, a novel and effective class of
statistical models of dynamics.

Chapter 3 applies the framework to array recordings from the motor cortex of
behaving primates.

Chapter 4 studies the role of spontaneous as well as stimulus-driven dynamics in
auditory cortex and uses network simulations to characterize the observed effects
in the neural data.

Chapter 5 further develops the statistical models of dynamics to make them
suitable to data from sensory cortices. The model captures the statistical patterns
and stimulus-interactions in auditory cortex of gerbils across different brain states.

Chapter 6 conducts a thorough investigation on the influence of cortical state
on sensory coding in auditory cortex.

Chapter 7 proposes a functional role for dynamics in sensory cortices and devel-
ops a theory for how the dynamics can be optimally-adjusted based on sensory
experience.

Chapter 8 concludes the thesis with a discussion on how the methods developed
here could be used in the context of current emerging neuroscience methods.



I

Introduction

Outline
This chapter starts by considering the collective dynamics of
neuronal populations in the brain and our window into these
dynamics provided by multi-neuron recordings. We motivate
the need for dynamical models fit directly to data sources.
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1.1 An informal introduction to the study of

brain dynamics

The brain is a complex organ that takes as input external stimuli and produces

movements as outputs. Processes in the brain give rise to behavior and the

entire transformation from inputs to outputs is dynamical in nature by necessity.

Dynamics are used to represent and interpret sensory streams, to modify and

use information towards an individual’s purposes and goals. More synapses exist

between pairs of neurons in cortex than anywhere else, and the continual chit-chat

between neurons creates time-dependent processes. Although neural computation

is inherently dynamical, we still know very little about how the dynamics are

implemented by neural architecture and specifically how they enable the complex

transformations most brains can perform.

Dynamics in the brain occur on a multiplicity of temporal and spatial scales.

The fast dynamics of ion channels opening and closing are the fundamental basis

for the production of quick action potentials that support information processing

and synaptic transmission throughout the brain. The slower dynamics result in

synapse modifications and enable the formation of life-long memories and learned

behaviors. The timescale of dynamics we study in this thesis could be considered

intermediate: neurons in spatially localized regions of cortex fire action poten-

tials in a coordinated fashion over periods of tens to hundreds of milliseconds.

Their coordinated behavior is enabled by tight interconnections, as well as by the

common external inputs they receive. This is the time scale of understanding the

visual content of an image or perceiving a spoken word, the timescale of produc-

ing a hand movement or visual saccade, the timescale of retrieving memories and

recognizing known faces, the timescale of thoughts and ideas.

We wanted to understand cortical dynamics but quickly stumbled across a little-

appreciated property of biological networks of neurons: there are ”good” and

”bad” dynamics in the brain. ”Bad” fluctuations in network activity are only

weakly-linked to sensory processing or motor production, as we will show over
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the course of this thesis. The bad dynamics are known, in their extreme instan-

tiation, as up and down state fluctuations or synchronized brain states, typically

dominant during sleep or anesthesia. Less extreme versions of bad dynamics occur

in awake animals, where population-wide fluctuations in brain activity are still

present and dominate the multi-neuron activity patterns in recordings. Periods of

synchronized fluctuations in networks have little spatio-temporal structure, and

in fact activate all neurons in the network indiscriminately. As such, we regard

these dynamics as bad and of little interest to the study of complex computations

performed in the brain. We will later show that they constitute a distraction from

the more diverse and higher dimensional aspects of cortical processing that can

be enabled in networks of neurons.

The contrast between good and bad dynamics is best illustrated with a popular

neuroscience metaphor, which we extend. Imagine a stadium seating 40,000 peo-

ple passionately watching a game together. Listening-in to the roar of the crowd

is usually compared to low-resolution brain imaging methods like functional MRI

or EEG. Lowering a microphone close to a single person is compared to lowering

an electrode in the brain to listen closely to the activity of a single neuron. But

if the game is truly engaging, most people will in fact express their enthusiasm

at the same timepoints during the game. Thus, listening to what a single person

has to say will sound very much like the overall roar of the crowd. Such are

synchronized brain states in cortex, because strongly-interconnected networks of

neurons can produce and sustain periods of high and indiscriminate neural firing.

Imagine now the same 40000 people instead working together as part of a Fortune

500 company. Their interactions are now spatially limited, their tasks diverse and

the structure of the company helps the collective achieve their goals of prosperity.

Everyone has their separate role to play and their overall coordination ensures

that complex tasks can be achieved. However, there is now no roar of the crowd

and listening in to all 40,000 people at once simply sounds like noise. Such

is, we believe, the state of the brain when neurons are performing complicated

computations together. We will attempt to characterize such states throughout

this thesis and emphasize their properties, especially in relation to the states that
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do not allow for complex computations.

1.2 Collective behavior in networks of neurons

Understanding sensory processing in the cerebral cortex requires characterizing

the interactions between stimulus-driven inputs from the periphery and the intrin-

sic state-dependent dynamics of cortical networks. Cortical dynamics have been

characterized relatively well in animals with synchronized brain states. Synchro-

nized brain states are identified by characteristic slow-wave LFP oscillations and

occur during sleep, passive wakefulness and under certain anesthetic preparations.

Previous studies in synchronized sensory cortices have suggested rather simplis-

tic roles for intracortical dynamics, which are presumed to merely amplify thala-

mic inputs by a fixed factor regardless of stimulus ([Han and Mrsic-Flogel, 2013];

[Li et al., 2013a]; [Li et al., 2013b]; [Lien and Scanziani, 2013]). These studies

appear to disprove a long-standing hypothesis in neuroscience that intracortical

dynamics have an important role in performing stimulus-dependent computa-

tions. For example, lateral inhibition has been proposed to sharpen the selectivity

of principal excitatory cells to external stimulus qualities and generate sensory re-

sponses that are susceptible to surround suppression ([Ferster and Miller, 2000]).

Experimental work have confirmed surround suppression effects in the responses

of neurons in primary visual cortex to stimuli outside their classical receptive

fields ([Allman et al., 1985], [Cavanaugh et al., 2002], [Jones et al., 2001]). More

recently, direct causal evidence for lateral inhibition has been provided by opti-

cal stimulation studies, in which neurons are activated at a specific location in

cortex and their effect on other neurons is measured as a function of the distance

between their physical locations ([Sato et al., 2013], [Zhang et al., 2014]).

In rodent A1 in particular, intrinsic cortical dynamics observed in syn-

chronized states prevent the network from responding reliably and

with temporal precision to tone stimuli ([Bandyopadhyay et al., 2010];

[Bathellier et al., 2012];[Rothschild et al., 2010a]). Moreover, the cortical pat-

terns observed with respect to different tones are highly constrained and generally
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resemble the patterns observed in spontaneous activity ([Luczak et al., 2009]).

Fortunately, radically different patterns of responses are observed in desyn-

chronized states, in which responses to stimuli are well-tuned, reliable

and sharply time-locked to stimulus features ([Marguet and Harris, 2011];

[Goard and Dan, 2009]; [Otazu et al., 2009]; [Abolafia et al., 2013], Pachi-

tariu et al, 2015). Desynchronization of cortex occurs at stimulus on-

set in awake behaving animals ([Tan et al., 2014];[Mitchell et al., 2009];

[Ecker et al., 2014]), as well as in some anesthetized preparations

([Middleton et al., 2012]; [Constantinople and Bruno, 2011]; [Tan et al., 2013];

[Hirata and Castro-Alamancos, 2011]).

Intrinsic cortical dynamics in synchronized cortex have been observed even with-

out thalamic inputs. For example, traveling waves of neuronal activity are

ubiquitous in sensory cortices and may facilitate long-range stimulus interac-

tions and higher level computation ([Sato et al., 2012]). When thalamic input

is severed, these waves persist both in vivo and in vitro in rodent brain tissue

([Song et al., 2006]; [MacLean et al., 2005]). Synchronized cortical activity is also

characterized by periods of population-wide neural firing and subsequent network

quiescence (”up” and ”down” states), which require Layer V pyramidal neurons

for their generation ([Beltramo et al., 2013a]).

Theoretical models have captured cortical dynamics using a recur-

rent neural network with short-term synaptic depression which pre-

vents runaway excitation and allows for periodic transitions between

”up” and ”down” states ([Latham et al., 2010]; [Loebel et al., 2007];

[Curto et al., 2009]). Inhibition has also been proposed as a mecha-

nism to control recurrent excitation and sharpen spike timing in cortex

([Wehr and Zador, 2005]; [Murphy and Miller, 2009];[de la Rocha et al., 2007];

[Goard and Dan, 2009];[Wolf et al., 2014]). In particular, in both desynchronized

and synchronized auditory cortex, strong inhibitory responses precede excitatory

responses ([Zhou et al., 2014b]; [Atencio and Schreiner, 2013];[Sun et al., 2014];

[yun Li et al., 2014]). In desynchronized rodent cortices, inhibitory conductances

are shown to dominate excitatory conductances ([Haider et al., 2013]) and
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there is evidence that certain inhibitory neurons are sharply tuned to the

stimulus ([yun Li et al., 2014]; [Sun et al., 2010]). The suppression of responses

in auditory cortex lasting hundreds of milliseconds has also been observed

in ketamine-anesthetized rats with synchronized brain activity. Inhibitory

conductances contribute to suppression for only 50-100 ms after tone onset.

This long-lasting suppression has been attributed to synaptic depression

[Wehr and Zador, 2005]; [Gabernet et al., 2005]).

1.3 Four types of state-dependent patterns in cor-

tical recordings

We collected multi-neuron spiking activity from the auditory cortex of rodents

while in several different brain states. We show that four distinctly identifiable

brain states exist. Two of these states have previously been described, the classic

desynchronized and synchronized states. The two novel states, which we describe

here, will be referred to as synchronized bumpy and desynchronized quiescent.

Multi-neuron patterns have qualitatively different properties under these four

cortical states both spontaneously and in response to stimuli.

The desynchronized quiescent state is characterized by non-synchronous popu-

lation responses to stimuli, similar to the classical desynchronized state. Unlike

this classical desynchronized state, the desynchronized quiescent state has much

lower levels of driven activity and little spontaneous network activation. Response

variability and covariability in response to stimuli is very low, even lower than in

classical desynchronized states.

We suggest that this quiescent desynchronized state is the relevant desynchronized

state for sensory computations. In our experiments, this state produced highly

reliable and sparse neural responses and encoded external stimuli flexibly, and

with high fidelity.

In order to capture these experimental findings we used a simple network simu-

lation of excitatory and inhibitory populations to show that increased inhibition
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produces the transition from the classical balanced regimes to the new inhibition-

dominated regimes we have observed experimentally and describe here. Our

model simulations suggest that network stabilization is state-dependent: classi-

cal states operate in a depression-stabilized regime, and desynchronized quiescent

cortex is stabilized by inhibition.

Further, we describe a qualitatively different synchronized state, which we refer

to as bumpy. This is because ”up” states in such brain states are composed of

multiple short and consecutive synchronized periods of population spiking for

durations of 30-100ms (Fig. 5.1c). Bumps tended to come together in packets

of 2 or 3, and in some recordings even more. They contain significant power at

theta frequencies of about 10Hz, in addition to still having power at 1-2Hz, like

classical UP/DOWN states.

1.4 Multi-purpose dynamical models

Although network simulations may suffice to capture particular aspects of neural

activity, they are often insufficiently constrained by experimental data. Due to

this lack of experimental constraints, most network simulation studies assume a

random connectivity pattern between neurons ([Renart et al., 2010]). More re-

cently, it has been shown that structured connectivity can generate qualitatively

different patterns of neural activity [Litwin-Kumar and Doiron, 2012], but the

connectivity pattern used is mostly biologically unsupported for principal exci-

tatory neurons. While connectivity is highly-structured and clustered in cortex

among different cell classes, there has been little information about specific con-

nectivity between groups of pyramidal neurons.

Here we argue that the architecture of dynamical models should be inferred

directly from datasets of multi-neuron recordings. The Hidden Markov Model

(HMM) dynamical framework allows the fitting of a parametric dynamical sys-

tem to data, and constitutes the basis for much of the work presented here.

To allow for an intuitive and biologically-relevant understanding of the HMM

framework, consider a simplified scenario in which neurons are clustered into
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Figure 1.1: Models can recover underlying dynamics from data.

tightly-connected groups with weaker across-group connections, as assumed by

Litwin-Kumar and Doiron. Barring any additional structure, all the neurons be-

longing to a single group will respond with relatively similar firing rates, both in

spontaneous and in stimulus-driven activity, so that the mean firing rate of a sin-

gle group of neurons constitutes a good description of the activity of all neurons

in that group. We can thus describe the activity of all the neurons in the network

in terms of just the mean firing rate of the respective groups and how these groups

interact through the weak lateral connections. In the data analyzed here we never

encountered a situation where neurons clearly clustered based on their response

patterns, so that neurons in the same cluster respond much more similarly than

neurons in different clusters. Instead, many neurons shared features of their re-

sponses and appeared to encode a weighted sum of some underlying fundamental

responses. This situation can still be visualized in the simple clustered-network

description above if, following Litwin-Kumar and Doiron we allow neurons to not

belong exclusively to one cluster, but gather almost equal inputs from each clus-

ter (see schematic in Fig. 1.1). In such a situation, due to the roughly-clustered

structure of the network, neural dynamics may still be described in terms of a

few underlying cluster firing rates, but each neuron would be responding as a

weighted combination of these mean firing rates. In terms of the connectivity

matrix, this model implies a soft-clustering of the connections as opposed to a

hard-clustering (where each neuron in the same cluster has exactly the same in-

coming and outgoing connectivity structure). Soft-clustering implies that the

connections of each neuron to the rest of the network are a weighted combination

of a few prototypical patterns. Such a connectivity pattern generally corresponds

to a low-dimensional recurrent matrix.
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More formally, the neural model we will assume throughout this work is one where

the matrix of recurrent connectivity effectively has a low-rank component. The

simplest example can be understood with linear dynamics

yt+1 = Myt

where yt is the vector of firing in bin t and M is the matrix of recurrent con-

nections. Suppose the matrix M can be well described by a reduced-dimensional

representation M = CACT , where C has a small number of columns and is or-

thonormal CTC = I. A clustered matrix of connections can be put into this form,

but so can a soft-clustering matrix like that described in the previous paragraph.

In general, all low-rank matrices M can be put into this form as can be easily

derived from the singular value decomposition.

If we define xt = CTyt, it follows from our simple linear dynamics that xt+1 =

CTyt+1 = CTMyt = (CTC)A(CTyt) = Axt. We thus have an equivalent set

of linear dynamics that describe the evolution of xt by xt+1 = Axt, and these

dynamics are now low-dimensional. The individual neuron firing rates can now

be determined as yt+1 = Myt = CA(CTyt) = C(Axt) = Cxt+1. We say that

the dynamics of xt are latent and unobserved, while in typical neural recordings

we only observe the spiking of individual neurons in the population yt. If we

can recover or infer xt from the observed yt, then we will have a good picture of

the dynamics of the entire (unrecorded) local population. This toy linear model

exemplifies very well the types of analysis we will do in the rest of the thesis, but

nonlinearities will have to be added for us to be able to model strictly positive

firing rates and spiking point processes (see chapter 2).

The statistical models we develop here attempt to recover the underlying low-

dimensional dynamics that are sufficient to predict with good accuracy the spike

times of recorded neurons (Fig. 1.1). Because the network structure generates

the observed responses, we may thus be able to understand connectivity patterns

in cortex, purely from the statistical patterns of multi-neuron recordings. A

graphical summary of the procedure for recovering HMMs is shown in figure
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Figure 1.2: Multi-purpose dynamical models. a) Intrinsic dynamics in neu-
ral recordings. b) Dynamical encoding of feedforward inputs. c) Dynamical
decoding of brain activity.
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1.2a, and will be detailed in the next chapter. In summary, we use the neural

activities up to time t to track the underlying dynamics, and use these dynamics

to predict neural firing at time t+1. Such tracking algorithms as we develop here

have a long history, going all the way back to the Kalman filter [Kalman, 1960].

In the picture provided by figure 1.1, other uses for dynamical models can be

devised. For example, we may want to study how a neural population collectively

encodes an external stimulus, that arrives as inputs to each neuron in the network.

In such a situation, the reduced-dimensional dynamics can still help, because

the network contribution to each neuron’s response will still be low-dimensional

following the low dimensional structure. If the recurrent contribution dominates

the feedforward inputs, then neurons in the network will essentially still respond

as weighted combinations of the stimulus-driven underlying dynamics, such as

described in the graph of figure 1.2b. The parameters of such a transformation

can still be recovered directly from data, provided we have access to the stimulus.

We describe the feedforward model in the simple linear toy model presented above.

Suppose now the dynamical evolution of the neural activities proceeds as

yt+1 = Myt + Tst

where st is the vector of external stimuli and T is a projection matrix from the

stimuli to the neurons. Following a similar derivation as before, the activities of

the low-rank dynamics xt now proceeds as

xt+1 = Axt + (CTT )st

and we can rewrite yt+1 = Cxt+1 + ((Id − CCT )T )st, where Id is the identity

matrix. So we see the activity of each neuron can still be represented in terms

of the low-dimensional stimulus-driven network activity, together with a purely

feedforward component. Depending on the modelling scenario, we will either ig-

nore the feedforward component (we assume it is small compared to the recurrent

drive, see chapter 4) or model it explicitly (chapter 5).
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Finally, a third use for dynamical models is in decoding information from multi-

unit recordings. In motor cortex, the population activity of neurons drives mus-

cles and produces movements. Thus, a relationship exists between neural activity

and movements, which we may be able to capture by driving a dynamical system

with inputs from the recorded neural activity (Figure 1.2c). Good performance

in capturing such transformations may eventually enable good brain machine

interfaces of the kind useful in medical prosthetic applications.

Using the toy linear model we have used above, we assume that kinematic vari-

ables zt (position, velocity etc.) are driven linearly by the network state such

that zt = Qxt, a direct projection from the latent dynamics xt. Thus we get the

picture presented in figure 1.2c, where we use the recorded neural activity yt to

estimate xt, and in turn use xt to estimate the kinematic variables zt. Again we

emphasize that the toy linear model is a simplification and nonlinearities need

to be added to this simplified picture. For the decoder, a nonlinearity g was

necessary to transform signals from the latent space to the physical space of the

kinematic variables.

Examples of each of these three uses of our dynamical systems framework can

be found throughout this work. Chapters 2, 3 and 5 use the intrinsic dynamics

recovery model (Fig. 1.2a), chapters 4 and 5 use the stimulus-driven models of

dynamics (Fig. 1.2b), and chapter 3 also uses the dynamical decoder of neural

activity (Fig. 1.2c).



II

Recurrent linear models of

simultaneously-recorded

neural populations

Outline
Population recordings of neurons with a temporal structure that occurs on
long timescales are often best understood in terms of a shared underlying low-
dimensional dynamical process. Advances in recording technology provide access
to an ever larger fraction of the neural population, but the standard compu-
tational approaches available to identify the collective dynamics scale poorly
with the increasing sizes of these datasets. Here we describe a new, scalable
approach to discovering the low-dimensional dynamics that underlie simultane-
ously recorded spike trains from neural populations. Our method is based on
recurrent linear models (RLMs) and relates closely to timeseries models based
on recurrent neural networks. We formulate RLMs for neural data by general-
ising the Kalman-filter-based likelihood calculation for latent linear dynamical
systems (LDS) models to incorporate a generalised-linear observation process.
We show that RLMs describe motor-cortical population data better than either
directly-coupled generalised-linear models or latent linear dynamical system mod-
els with generalised-linear observations. We also introduce the cascaded linear
model (CLM) to capture low-dimensional instantaneous correlations in neural
populations. The CLM describes the cortical recordings better than either Ising
or Gaussian models and, like the RLM, can be fit exactly and quickly. The CLM
can also be seen as a generalization of a low-rank Gaussian model, in this case
factor analysis. The computational tractability of the RLM and CLM allow both
to scale to very high-dimensional neural data.
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2.1 Introduction

1 Many essential neural computations are implemented by large popula-

tions of neurons working in concert, and recent studies have sought both

to monitor increasingly large groups of neurons [Schneidman et al., 2005,

Buzsaki, 2004] and to characterise their collective behaviour [Pillow et al., 2008,

Churchland et al., 2007]. Here we introduce a new computational tool to model

coordinated behaviour in very large neural data sets. While we explicitly con-

sider only multi-electrode array recordings of spiking neurons, the same model

can be readily used to characterise data generated by the two-photon imaging of

population activity using calcium-sensitive indicators, EEG, fMRI or even large

scale biologically-faithful simulations.

The activity of neural populations may be represented at each time point by a vec-

tor yt with as many dimensions as neurons, and as many indices t as time points

in the experiment. For spiking neurons, yt will have positive integer elements cor-

responding to the number of spikes fired by each neuron in the time interval corre-

sponding to the t-th bin. As others before [Yu et al., 2006, Macke et al., 2011], we

assume that the coordinated activity reflected in the measurement yt arises from

a low-dimensional set of processes, collected into a vector xt, which is not directly

observed. However, unlike previous studies, we construct a recurrent model in

which the hidden processes xt are driven directly and explicitly by the measured

neural signals y1 . . .yt−1. This assumption simplifies the estimation process: we

assume for simplicity that xt evolves with linear dynamics, and affects the fu-

ture state of the neural signal yt in a generalised-linear manner, although both

assumptions may be relaxed. As in the latent LDS, the resulting model enforces

a “bottleneck”, whereby predictions of yt based on y1 . . .yt−1 must be carried by

the low-dimensional xt.

State prediction in the RLM is related to the Kalman filter [Kalman, 1960] and

we show in the next section a formal equivalence between the likelihoods of the
1The data used in this chapter has been generously made available by Krishna Shenoy and

was recorded in his laboratory by Mark Churchland.
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RLM and a latent LDS model when observation noise is normally distributed.

However, spiking data is not well modelled as Gaussian, and the generalisation of

our approach to Poisson noise leads to a departure from the latent LDS approach.

Unlike LDS models with conditionally Poisson observations, the parameters of our

model can be estimated efficiently and without approximation. We show that,

perhaps in consequence, the RLM can provide superior descriptions of neural

population data.

2.2 From Kalman filters to recurrent linear mod-

els

Consider a latent LDS model with linear-Gaussian observations (which we will

abbreviate as GLDS). Its graphical model is shown in Fig. 2.1 (top). The latent

dynamics are parametrised by a dynamics matrix A and innovations covariance

Q that describe the evolution of the latent state xt:

P (xt|xt−1) = N (xt|Axt−1, Q) ,

where N (x|µ,Σ) represents a normal distribution on x with mean µ and

(co)variance Σ. For brevity, we omit here and below the special case of the

first time-step, in which x1 is drawn from a multivariate Gaussian. The output

distribution involves an observation loading matrix C and a noise covariance R

often taken to be diagonal so that all covariance is modelled by the latent process:

P (yt|xt) = N (yt|Cxt, R) .

In this GLDS, the joint likelihood of the observations {yt} can be written as the

product:

P (y1 . . .yT ) = P (y1)
T∏
t=2

P (yt|y1 . . .yt−1)

and can be computed using the usual Kalman filter approach to find the condi-
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tional distribution at time t iteratively:

P (yt+1|y1 . . .yt) =
∫
dxt+1 P (yt+1|xt+1)P (xt+1|y1 . . .yt)

=
∫
dxt+1 N (yt+1|Cxt+1, R) N (xt+1|Ax̂t, Vt+1)

= N (yt+1|CAx̂t, CVt+1C
> +R) ,

where we have introduced the (filtered) state estimate x̂t = E [xt|y1 . . .yt] and

(predictive) uncertainty Vt+1 = E
[
(xt+1 −Ax̂t)2|y1 . . .yt

]
. Both quantities are

computed recursively using the Kalman gain Kt = VtC
>(CVtC> + R)−1, giving

the following recursive recipe to calculate the conditional likelihood of yt+1:

x̂t = Ax̂t−1 +Kt(yt − ŷt)

Vt+1 = A(I −KtC)VtA> +Q

ŷt+1 = CAx̂t

P (yt+1|y1 . . .yt) = N (yt+1|ŷt+1, CVt+1C
> +R)

For the GLDS, the Kalman gain Kt and state uncertainty Vt+1 (and thus the

output covariance CVt+1C
> + R) depend on the model parameters (A,C,R,Q)

and on the time step—although as time grows they both converge to stationary

values. Neither depends on the observations.

Thus, we might consider a relaxation of the GLDS model in which these matrices

are taken to be stationary from the outset, and are parametrised independently so

that they are no longer constrained to take on the “correct” values as computed

for Kalman inference. Let us call this parametric form of the Kalman gain W and

the parametric form of the output covariance S. Then the conditional likelihood

iteration becomes

x̂t = Ax̂t−1 +W (yt − ŷt)

ŷt+1 = CAx̂t

P (yt+1|y1 . . .yt) = N (yt+1|ŷt+1, S) .
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Figure 2.1: Graphical model representations of linear dynamical systems (top,
middle) and recurrent linear models (bottom). Shaded variables are observed,
non-shaded circles are latent random variables and squares are variables that
depend deterministically on their parents. The middle graph redraws the LDS
in terms of the innovations ηt = xt − Axt−1 to facilitate the transition towards
the RLM. The RLM model is then obtained by replacing ηt (middle) with a
deterministic prediction W (yt − ŷt).

The parameters of this new model are A,C,W and S. This is a relaxation of

the latent GLDS model because W has more degrees of freedom than Q, as does

S than R (at least if R is constrained to be diagonal). The new model has a

recurrent linear structure in that the random observation yt is fed back linearly

to perturb the otherwise deterministic evolution of the state x̂t. We call it a

Gaussian Recurrent Linear Model (GRLM).

A graphical representation of this model is shown in Fig. 2.1 (bottom), along

with a redrawn graph of the LDS model (middle). The RLM can be viewed as

replacing the random innovation variables ηt = xt − Axt−1 with data-derived

estimates W (yt − ŷt); estimates which are made possible by the fact that ηt
contributes to the variability of yt around ŷt.
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2.3 Recurrent linear models with Poisson observa-

tions

The discussion above has transformed a stochastic latent LDS model with Gaus-

sian output to an RLM with deterministic latent, but still with Gaussian output.

Our goal, however, is to fit a model with an output distribution more suitable

for modelling the binned point-processes that characterise neural spiking. Both

linear Kalman-filtering steps above and the eventual stationarity of the infer-

ence parameters depend on the joint Gaussian structure of the GLDS model.

They would not apply if we were to begin a similar derivation from an LDS

with Poisson output. However, a tractable approach to modelling point-process

data with low-dimensional temporal structure may be provided by introducing a

generalised-linear output stage directly to the RLM (a model we call a gl-RLM).

This model is given by:

x̂t = Ax̂t−1 +W (yt − ŷt)

g(ŷt+1) = CAx̂t (2.1)

P (yt+1|y1 . . .yt) = ExpFam(yt+1|ŷt+1)

where ExpFam is an exponential-family distribution such as Poisson, and the

element-wise link function g allows for a nonlinear mapping from xt to the pre-

dicted mean ŷt+1. In the following, we will write f for the inverse-link as is more

common for neural models, so that ŷt+1 = f(CAx̂t).

The simplest Poisson-based gl-RLM might take as its output distribution

P (yt|ŷt) =
∏
i

Poisson(yti|ŷti); ŷt = f(CAx̂t−1)) ,

where yti is the spike count of the ith cell in bin t and the (inverse) link f is

non-negative. However, comparison with the output distribution derived for the

GRLM suggests that this choice would fail to capture the instantaneous covari-

ance that the LDS formulation transfers to the output distribution (and which
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appears in the low-rank structure of S above). We can address this concern in two

ways. One option is to bin the data more finely, thus diminishing the influence

of the instantaneous covariance. The alternative is to replace the independent

Poissons with a correlated output distribution on spike counts. The cascaded

generalized-linear model introduced below is a natural choice, and we show that

it captures instantaneous correlations faithfully with very few hidden dimensions.

In practice, we also sometimes add a fixed input µt to equation 2.1 that varies in

time and determines the average behavior of the population or the peri-stimulus

time histogram (PSTH).

ŷt+1 = f (µt + CAxt)

Note that the matrices A and C retain their interpretation from the LDS mod-

els. The matrix A controls the evolution of the dynamical process xt. The

phenomenology of its dynamics is determined by the complex eigenvalues of A.

Eigenvalues with moduli close to 1 correspond to long timescales of fluctuation

around the PSTH. Eigenvalues with non-zero imaginary part correspond to os-

cillatory components. Finally, the dynamics will be stable if and only if all the

eigenvalues lie within the unit disc. The matrix C describes the dependence

of the high-dimensional neural signals on the low-dimensional latent processes

xt. In particular, equation 2.2 determines the firing rate of the neurons. This

generalized-linear stage ensures that the firing rates are positive through the link

function f, and the observation process is Poisson. For other types of data, the

generalized-linear stage might be replaced by other appropriate link functions

and output distributions.

2.3.1 Relationship to other models

RLMs are also related to recurrent neural networks (RNN) [Elman, 1990].

An RNN can be obtained from the RLM by replacing the innovation term

W (yt−1 − ŷt) with Wyt−1 and adding a nonlinearity in the hidden process

xt = h (Axt−1 +Wyt−1). We found that using sigmoidal or threshold-linear
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functions h resulted in models as good as the linear version of the model for

the dataset used in this paper and so we restrict our attention to simple linear

dynamics. We also found that using the full prediction error term W (yt−1 − ŷt)

resulted in better models than the simple RNN formulation, and we attribute

this difference to the similarity of the RLM to Kalman filter models.

We might also consider a more straightforward generalization of the LDS to

generalized-linear observations, recently proposed as the Poisson-LDS model

[Macke et al., 2011], which directly replaces the Gaussian output distribution of

the LDS with a Poisson output. The main difficulty with such models is the

intractability of the estimation procedure. For an unobserved latent process xt,

an inference procedure needs to be devised to estimate the posterior distribution

on the entire sequence x1 . . .xt. For linear-Gaussian observations, this inference

procedure is tractable and corresponds to the Kalman smoother. However, with

generalized-linear observations the inference becomes intractable and approxima-

tions need to be devised like those of [Macke et al., 2011]. These approximations

are computationally intense and can jeopardize the quality of the fitted models.

In contrast, in our model xt is a deterministic function of the data. In other

words, the Kalman filter has been built into the model as the accurate estima-

tion procedure and fitting the model can be done efficiently by standard gradient

ascent on the log-likelihood of the model. Empirically we did not encounter local

minima issues during optimization, as reported for LDS type models fitted with

an EM algorithm [Buesing et al., 2012]. Multiple restarts from different random

values of the parameters always led to models with similar likelihoods.

Notice that in order to estimate the matrices A and W the gradient needs to

be backpropagated through successive iterations of equation 2.1. This technique

is known as backpropagation-through-time (BPTT) and has been initially de-

scribed by [Rumelhart et al., 1986] as a technique to fit recurrent neural network

models. More recent implementations have proved to be state-of-the-art language

models [Mikolov et al., 2011]. BPTT is thought to be inherently unstable when

propagated past many timesteps and often the gradient is truncated after several

time steps [Mikolov et al., 2011]. We found that using large values of momentum
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in the gradient ascent alleviates these instabilities and allowed us to use BPTT

without the truncation.

2.4 Cascaded linear models

Our derivation of RLMs from LDS models has motivated us to search for similar

extensions of Gaussian models to describe correlated distributions on simulta-

neous spike counts. Such distributions are useful in modelling neural activity

when we ignore the temporal structure of the dynamics. We can instead de-

scribe solely the distribution of spike counts y recorded during brief temporal

windows [Schneidman et al., 2005] (note that we have dropped the time index

t). By describing the distribution of y we can determine what parts of the large

N -dimensional space are visited by the neural activity. What types of models

should we use to describe the distribution of y? The simplest perhaps is a Gaus-

sian model which can accurately capture the full covariance structure of y. The

weakness of the Gaussian model is that it assumes continuous-valued vectors y,

which spike counts obviously are not.

As with the derivation of the RLM from the Kalman filter, we obtain a new

generalization of a Gaussian model to spike count data. The distribution of a

multivariate variable y can be factorized as a product of multiple one-dimensional

distributions:

P (y) =
N∏
n=1

P (yn|y<n) . (2.2)

Here n indexes the neurons up to the last neuron N . For a Gaussian distributed

y, the conditionals P (yn|y<n) are linear-Gaussian but we can change these one-

dimensional distributions to generalized-linear observations just like we did for

the RLM

ŷn = f
(
µn + STn y<n

)
(2.3)

P (yn|y<n) = Poisson (ŷn) . (2.4)
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The prediction for neuron n must be based only on the activities of the neurons

with indices up to n − 1 (written y<n). When f is linear and the Poisson con-

ditionals are replaced with Gaussians, equations 2.3 and 2.4 describe exactly all

full-covariance Gaussians. If the covariance of the Gaussian model is Σ, a simple

calculation shows that

Sn = 1
(Σ−1)n,n

(Σ<n,<n)−1
n,<n . (2.5)

Our goal however was to define a low-dimensional model on instantaneous spike

count data. This can be achieved for linear-Gaussian observations if instead of

starting from any full-covariance Gaussian model, we start from a factor analysis

model [Bishop, 2006]. Factor analysis assumes the data is generated from a low-

dimensional latent process x ∼ N (0, I), where I is the identity matrix. y is

then obtained such that P (y|x) = N (Λx,Ψ) with Ψ a diagonal matrix and Λ a

loading matrix. In factor analysis, the covariance of y is Ψ + ΛΛT . If we repeat

the derivation of equations 2.3, 2.4 and 2.5 for this covariance matrix, we obtain

an expression for Sn via the matrix inversion lemma:

Sn = 1
(Σ−1)n,n

(
Ψ<n,<n + Λ<nΛT<n

)−1

n,<n

= 1
(Σ−1)n,n

(
Ψ−1
<n,<n + Ψ−1

<n,<nΛ<n + · · ·
)
n,<n

,

where the dots omit further factors in the inverse matrix expansion. Taking into

account that Ψ is diagonal, we see that Sn is a linear combination of the columns

of Ψ−1Λ for all n, followed by a truncation to the first n − 1 elements. If we

arrange all Sn as upper columns of an N by N matrix S, then we can write

S = upper
(
zwT

)
for some low-dimensional matrices z = Ψ−1Λ and w, where the

operation upper extracts the strictly upper triangular part of a matrix. Finally,

we can easily impose this constraint on S even for generalized-linear observations.

The resulting cascaded linear model (CLM) is shown to provide better fits to

binarized neural data than standard Ising models (see the Results section), even

with as few as three dimensions of common input.
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Another strong property of the CLM is that it allows stimulus-dependent inputs

in equation 2.3. The CLM can also be used in combination with the RLM, where

the CLM replaces the observation model of the RLM. This approach can be useful

when large bins are used to discretize spike trains. In both cases the model can

be estimated quickly with standard gradient ascent techniques.

2.5 Alternative models

2.5.1 Alternative for temporal interactions: causally-

coupled generalized linear model

One popular and simple model of simultaneously recorded neuronal populations

[Pillow et al., 2008] constructs temporal dependencies between units by directly

coupling a neuron’s probability to fire with the histories of all other neurons and

its own history as described by the following equation:

yt ∝ Poisson(f(µt +
Nt∑
i=1

Bi (hi ? yt)))

hi ? yt are convolutions of the spike trains with a set of basis functions hi and

Bi are the pairwise interaction terms. Each matrix Bi has N2 parameters where

N is the number of neurons, so the number of parameters grows quadratically

with the population size. This type of scaling makes the model prohibitive to

use with large-scale array recordings. Even with aggressive regularization tech-

niques, the model’s parameters are difficult to identify with limited amounts of

data. Perhaps more importantly, the model does not have a physical interpre-

tation. Neurons recorded in cortex are rarely directly connected, and retinal

ganglion cells almost never directly connect to each other. Instead, such directly

coupled GLMs are used to describe so-called functional interactions between neu-

rons [Pillow et al., 2008]. We believe a much better interpretation for the corre-

lations observed between pairs of neurons is that they are caused by common

and low-dimensional inputs to these neurons and the models we propose here,

the RLM and the CLM, are aimed at discovering these inputs.
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2.5.2 Alternative for instantaneous interactions: the Ising

model

For instantaneous interactions, a model from statistical physics is available that

can also capture the full covariance structure of y if we assume that each entry

in y is either 0 or 1 [Schneidman et al., 2005]. This is called the Ising model and

is given by equation

P (y) = 1
Z

eyT Jy. (2.6)

where J is a pairwise interaction matrix and Z is the partition function, or the

normalization constant of the model. The model’s attractiveness is that for a

given covariance structure it makes the least assumptions about the distribution

of y, or in other words has the largest entropy. However, the Ising model and the

so-called functional interactions J have no physical interpretation when applied

to data recorded in the brain. Furthermore, Ising models are difficult to fit as

they require estimates of the gradients of the partition function Z. The models

become much more difficult to estimate with an increasing number of neurons

as the number of parameters grows quadratically with the number of neurons.

Ising models are even harder to estimate when stimulus-dependent inputs are

added in equation 2.6. For datasets collected in the retina or other sensory

areas [Schneidman et al., 2005], much of the covariability in y is expected to be

due to a common stimulus input. Another short coming of the Ising model is

that it can only model binarized data and cannot be normalized for integer y’s

[Macke et al., 2011], so either the time bins need to be reduced to ensure no

neuron fires more than one spike in a single bin or the spike counts must be

capped at 1.
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a

b

Figure 2.2: Experiments on simulated data. a) Shows a schematic of generat-
ing pseudo-data from diverse generative models, including a ground truth PLDS
model, ground truth RLM model and a realistic PLDS model fit to array record-
ings. b) Shows the performance of the models at recovering eigenvalues of dy-
namics and underlying subspaces.
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2.6 Results

2.6.1 Simulated data

We began by evaluating RLM models fit to simulated data where the true gen-

erative parameters were known. Two aspects of the estimated models were of

particular interest: the phenomenology of the dynamics (captured by the eigen-

values of the dynamics matrix A) and the relationship between the dynamical

subspace and measured neural activity (captured by the output matrix C). We

evaluated the agreement between the estimated and generative output matrices

by measuring the principal angles between the corresponding subspaces. These

report, in succession, the smallest angle achievable between a line in one subspace

and a line in the second subspace, once all previous such vectors of maximal agree-

ment have been projected out. Exactly aligned n-dimensional subspaces have all

n principal angles equal to 0◦. Unrelated low-dimensional subspaces embedded

in high dimensions are close to orthogonal and so have principal angles near 90◦.

We first verified the robustness of maximisation of the gl-RLM likelihood by fitting

models to data that were themselves generated by a known gl-RLM. Fig. 2.2b

shows eigenvalues from several simulated RLMs and the eigenvalues recovered

by fitting parameters to simulated data. The agreement is generally good. In

particular, the qualitative aspects of the dynamics reflected in the absolute values

and imaginary parts of the eigenvalues are well characterised. Fig. 2.2b shows

that the RLM fits also recover the subspace defined by the loading matrix C, and

do so substantially more accurately than either principal components analysis

(PCA) or GLDS models. It is important to note that the likelihoods of LDS

models with Poisson observations are difficult to optimise, and so may yield poor

results even when fit to within-class data. In practice we did not observe local

optima with the RLM or CLM.

We also asked whether the RLM could recover the dynamical properties and

latent subspace of data generated by a latent LDS model with Poisson observa-

tions (PLDS). Fig. 2.2b shows that the dynamical eigenvalues of the maximum-
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Figure 2.3: a) Perfomance on test data of the models that we evaluated (higher
is better). GLM type models are helped greatly by self-coupling filters (which
the other models do not have). The best model is an RLM with three latent
dimensions and with a low-rank model µ of the PSTH. Adding self-coupling
filters to this model further increases its predictive performance by 5 (not shown).
b) The likelihood per spike of Ising models as well as CLM models with small
numbers of hidden dimensions. The CLM saturates at three dimensions and
performs better than Ising models.

likelihood RLM are close to the eigenvalues of generative PLDS dynamics, whilst

Fig. 2.2b shows that the dynamical subspace is also correctly recovered. Param-

eters for these simulations were chosen randomly. We then asked whether the

quality of parameter identification extended to PLDS models with realistic pa-

rameters, by generating data from a PLDS model that had been fit to a neural

recording. As seen in figs. 2.2b the RLM fits remain accurate in this regime,

yielding better subspace estimates than either PCA or GLDS.

2.6.2 Array recorded data

In this section we show that the two proposed models, RLM and CLM, better

capture the statistical structure of spike trains than previous models. In partic-

ular, we compare the RLM to the GLM, LDS and PLDS and the CLM to the

Ising model.
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We used a dataset of 92 neurons recorded with a Utah array implanted in the

premotor and motor cortices of a rhesus macaque monkey performing a delayed

center-out reach task. For all comparisons below we use datasets of 108 trials in

which the monkey is making movements to the same target.

We discretized spike trains in time bins of 10ms as the GLM has too many

parameters and needs to be regularized in order to make good predictions on

held-out test data. Figure 2.3a shows only the best cross-validation result for

the GLM and the results without regularization for models with low-dimensional

parametrization. The measure of performance we show in figure 2.3a is a causal

mean squared error prediction subtracted from the error which a good model of

the PSTH makes. We obtain the PSTH model by truncating at five dimensions

an SVD decomposition of the individual trial-averaged PSTHs which have been

smoothed with a Gaussian filter of standard deviation 20ms. The number of

dimensions kept and the standard deviation of the Gaussian filter have themselves

been cross-validated to find the best performance. In other words, we are assessing

the model’s ability to predict spikes on a trial by trial basis.

As another measure of performance for the RLM, we evaluated the quality of

probabilistic samples obtained from the fully fitted model. Figure 2.5 shows

averaged noise cross-correlograms obtained from a large set of samples. Note

that the PSTHs have been subtracted out from each trial to reveal only the extra

correlation structure that is not repeatable from trial-to-trial. Even with very few

hidden dimensions, the model captures the full temporal structure of the noise

correlations very well.

Since the Ising model requires binarized data, we replace all spike counts larger

than 1 with 1. The log-likelihood of the Ising model can only be estimated

for a small number of neurons, so for comparison we only consider the 30 most

active neurons. The measure of performance reported in figure 2.3b is the extra

log-likelihood per spike compared to a model that makes constant predictions

equal to the mean firing rate of each neuron. The CLM model with only three

hidden dimensions achieves the best generalization performance and surpasses the
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Figure 2.4: Samples from cascaded linear model with 3 latent dimensions
match the correlation structure of the real data. a) Shows the true data
pairwise correlations b) Shows pairwise correlations of samples drawn from the
model distribution after fitting to the data.

Ising model. Similar results for the performance of the CLM can be seen on the

full dataset of 92 neurons with non-binarized data, indicating that three latent

dimensions suffice to describe the full space visited by the neuronal population

on a trial-by-trial basis. Finally, figure 2.4 shows that samples drawn from a

CLM model with only three dimensions almost perfectly captures the structure

of pairwise noise correlations in the data.

2.7 Discussion

The gl-RLM model, while motivated similarly to the latent LDS model, can

be fit more efficiently and without approximation to non-Gaussian data. We

have shown that it yields superior performance on simulated data, as well as

population recordings from the motor cortex of behaving monkeys. The model

is easily extended to other output distributions (such as Bernoulli or negative

binomial), to mixed continuous and discrete data, to nonlinear outputs, and to

nonlinear dynamics. For the motor data considered here, the generalised-linear

model performed as well as more completely non-linear versions.
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averaging over many pairs of neurons and trials, the error bars on the cross-
correlograms were very small and are not shown.
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Figure 2.6: When a low-dimensional PSTH model (µ) is added to the RLM,
log-likelihood saturates at a very small number of latent dimensions (three) and
performs better than RLM and LDS models without PSTH terms. Without the
PSTH model, we needed to use as many as ten or twenty latent dimensions to
capture the full aspects of the data. Figure b) shows the magnitudes of the
eigenvalues obtained with RLM3+PSTH. Most of the trial-by-trial variability is
thus explained with timescales of 100 and 200 ms.



III

Recurrent linear analysis of

multi-neuron recordings

from motor cortex

Outline
We find two new single-trial correlates of hand movements in the motor cortex of
primates. First, we show that trial-by-trial fluctuations in population responses
during the delay period follow similar dynamics as those followed during actual
movements. These fluctuations are concentrated in 100-200ms long dynamical
events which activate the entire population. In one monkey, many of the fluc-
tuations were associated with short movements that were very quickly stopped.
Second, using a novel decoder of population activity, we find that one axis of
neural dynamics controls the progression of movement. The neural activity along
this axis correlated not only with reaction times but also with the fine details of
movements like the shape of the speed profile. Our findings were made possible
by new statistical and dynamical models of population neural activity which we
developed, and their associated dynamics-based decoders of hand position. Us-
ing a model-derived estimate, we show that the redundant information due to
correlated fluctuations across neurons drops by a factor of 50 to almost 0 during
movements, indicating an almost complete lack of correlated fluctuations and a
high degree of desynchronization in the responses. Such a desynchronized regime
of neural dynamics might help cortex generate reliable and robust motor signals.
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3.1 Neural dynamics in motor cortex

1 In this chapter we analyze the dynamics of cortical populations recorded from

motor cortex. Utah arrays were implanted into the motor cortices (primary M1
1The data used in this chapter has been generously made available by Krishna Shenoy and

was recorded in his laboratory by Mark Churchland.
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Figure 3.1: (Caption next page.)
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Figure 3.1: Example multi-neuron recording in motor cortex of pri-
mates. a) Picture of the kind of Utah array implanted in motor cortex. b)
Schematic of the delayed reach task to one of eight locations. c) Example array
recording from a single trial of the task. Vertical bars indicate target onset and
go cue onset. Rasters of 97 simultaneously-recorded neurons from a Utah-array
implanted in the motor cortex of a rhesus macaque. d) Mean-subtracted firing
rates over 108 repetitions of the same stimulus. Stimulus-onset at time 0 is fol-
lowed by the delay period of one second. e) Singular value decomposition of
PSTHs recover the principal temporal dynamics. The spectrum contains several
singular values significantly large. The spectrum of white noise with equivalent
power is also shown. f) The six temporal projections with largest singular values
are shown. Together these account for over 95% of the variance of the population
PSTHs.

and premotor dorsal PMd) of rhesus macaque monkeys (Fig. 3.1a). Animals

were first trained to perform a delayed center-out task on a computer screen

and became experts. Subsequent to array implantation, both neural activity

and hand position were monitored during performance of the task. The task

structure was designed to provide a number of advantages for neural recordings

(Fig. 3.1b). First, the monkey had to initiate trials itself by holding its hand

in the center of the screen and fixating on this center point. Following fixation,

a target appeared while the monkey had to continue holding and fixating for a

delay period. After this delay period, a go cue was displayed in the center and

the monkey was allowed to move its hand to the target. Neural activity from a

single trial (shown in figure 3.1c) corresponds to a target onset at time 0 and an

ensuing delay period of one second. The Go cue appeared at time 1000ms and

the monkey executed the reach with typical reaction times of ∼ 200ms. Neurons

can be seen to have strong responses around stimulus onset (0 ms) and during

movements (after 1000ms) but there is also ongoing activity during the delay

period (0-1000ms). The peri-stimulus time histogram represents the stimulus-

locked mean firing rates of neurons (Fig. 3.1d). It is already obvious from figure

3.1d that the major response features of neurons can be summarized succinctly

from the PSTHs. Neurons that respond show firing rate increases at stimulus

onset, after which they either get inhibited below their baseline, or start slowly

ramping up their firing rates until the end of the trial. Although some variability
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exists in the dynamic shape of the stimulus-response, such PSTHs can typically

be explained with very few dynamical modes. This would have not been the

case for example if each neuron had their maximal firing rates at a different time

during the trial, or if the increases and decreases in firing rates were less smooth

in time and more temporally jagged.

We can decompose the dynamics of the PSTH using a singular value decompo-

sition (SVD). Assume the firing rates of the neurons are represented in an array

PSTH(nn, t) with nn the neuron number and t the time bin number. An SVD

decomposition simply decomposes this matrix into PSTH = USV , with S a di-

agonal matrix of real singular values, U a matrix of orthogonal subspaces and V

a matrix of orthogonal temporal trajectories. The singular values of S are sorted

in order of their absolute magnitude, hence one can plot them as in figure 3.1,

which shows that for this dataset, most of the variance in the PSTHs lies in the

top two components, with perhaps additional significant variance in the next few

components. Inspecting the timecourses of these dynamical modes in figure 3.1f

reveals that indeed they mostly capture the patterns we have already pointed out

in the previous paragraph.

This simplistic description of neural responses may be sufficient for some purposes,

but ignores most of the recorded data. Our motivation in much of the work

described here is to perform such low-dimensional analysis on single trials, and

thus capture more detailed aspects of the neural responses.

3.2 Statistical models of delay-period activity ex-

tract consistent single-trial patterns

The peristimulus time histogram (PSTH) is useful for understanding neural re-

sponses under repeatable experimental conditions. However, the PSTH loses all

single-trial information that might correlate with behavioral or perceptual vari-

ability. We would like to understand the trial-to-trial variability either as a con-

sequence of different internal states, such as attentional states in sensory cortices,
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Figure 3.2: Model structure. a) Modelling framework for capturing trial-
by-trial fluctuations in neural activity not controlled by the experimenter. The
shading of the yt nodes indicates that these are observed variables, while the
underlying sources of fluctuations xt are unobserved but we make the modelling
assumption that they evolve with simple linear dynamics. This model is evaluated
using a Kalman filter optimized for Poisson spike counts. b) Second modelling
framework for capturing the dependence of hand position on spiking activity in
M1. We use a decoder that incorporates low dimensional dynamics as before,
but is driven exclusively by the observed data. The hand position zt depends
on the hidden states through a nonlinear function g that maps into the two-
dimensional space of the hand location. The nonlinearity was parametrized as a
one layer neural network with rectified linear units. The model parameters are
fit from pairs (yt, zt). On test data, the performance of the model is evaluated
by computing the root mean squared error between the model’s predictions and
the actual reach trajectories.

or as a direct determinant of variable behavior, such as we might expect in mo-

tor cortex, where activity drives muscles and consequently enacts action. Such

variability however is by definition not linked to the experimental conditions,

therefore averaging over trials will cancel out the variability in neural responses.

Hence, we need to analyze single-trial relationships between neural variability and

behavioral events. Single-neuron recordings do not contain sufficient information

to make single trial analysis feasible. Fortunately, large-scale recordings have

recently made it possible to monitor the activity of sufficiently many neurons

in motor cortex, that we might in principle understand the patterns of neural

covariability from the single-trial population response.

In this work we focused on understanding and interpreting a reduced-

dimensionality representation of the full array recordings (Fig. 3.2a). Our di-
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mensionality reduction techniques are motivated from multiple observations.

First, we observed that a three-dimensional model of the shared covariability was

sufficient to explain the patterns in the data. Models with higher dimensionality

over-fitted to the training data, and did not increase the likelihood of the held-out

data.

Second, concentrating all covariability into a small number of dimensions might

allow us to track the typically small number of behavioral variables represented by

motor cortex. In fact, we observed that most of the covariability in motor cortex

in the delay period of the reach task could be accounted for by a single underlying

trajectory that tracked the overall level of activation of the neural population

(Fig. 3.3e). The main trajectory clustered neural single-trial fluctuations into

events extended in time about 100 to 300ms (Fig. 3.3abc). The second and third

trajectories tracked additional details of the spatial structure of these events and

contained significant power (Fig. 3.3d). One might hypothesize that such large

single-trial events would correlate with movements, and we show in the next

section that, somewhat surprisingly, this was indeed the case in one monkey.

3.3 Delay period shared fluctuations are associ-

ated with micro-movements

Although the monkey was required to hold its hand in the center of the screen

during the delay period, the effective allowed holding area was relatively large

(Fig. 3.4d). Although typical movements required of the monkeys were about 10

cm, we found that during delay period activity the hand position shifted slightly

in very brief hand drifts less than 1mm long that we call micro-movements (Fig.

3.4ef).

The micro-movements had a very stereotyped direction of drift towards the lower

left direction for a monkey using its right hand. We found that these micro-

movements were associated with large increases in the total activity of M1 neu-

rons.
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Furthermore, the micro-movements aligned in typical duration and onset with

the events captured by our low-dimensional trajectories extracted from the array

data. The micro-movement triggered multi-unit activity (MUA) had a prominent

peak at a timelag of -30 ms (Fig. 3.4g).

We compared the population vector activated by the micro-movements to the

population vectors of neural activity during distinct phases of the reaches. We

found that the population vector activated during micromovements correlated

highly to the population vector in M1 at the end of reaches (Fig. 3.4c).

This analysis suggests that the observed neural activity in M1 during micro-

movements may either be of a sensory feedback origin, or sending a stopping

signal to the arm to maintain fixation.

3.4 Fluctuations in M1 activity align with popula-

tion patterns during movement

While we found a potential role for one of the three underlying trajectories, the

question remains what the other two trajectories might be representing. We did

a similar comparison as before with the population vectors during actual move-

ments, but this time we compared them with the subspaces of neural covariability

corresponding to the trajectories.

Like before, we found that one of the trajectories correlated strongly with the

population vector at the end of movements. The other two also correlated with

population activity during movements, but had maximal correlation at the onset

and during movements respectively (Fig. 3.4ab). Together the three trajectories

seemed to tile the temporal sequence activated during movements, suggesting

that trial-to-trial covariability during the delay period actually activates the same

subspaces of activity as those activated during movements.

This observation may be contrasted with recent reports by [Kaufman et al., 2014]

showing that the PSTHs during the delay period activity actually span subspaces

orthogonal to the movement subspaces. Note that the two observations are not



3 Stimulus and movement onset drastically reduce mutual information in M148

incompatible: the average delay-period activity might be mostly tuned to the

stimulus and/or showing an average preparatory activity.

However, responses varied significantly from trial to trial, and the PSTHs do

not include information about this coordinated activity. We showed that the

subspaces accounting for the variability on single trials do align with movement-

related subspaces. In addition, sometimes the large single-trial neural events were

associated with actual micro-movements of the arm, although many neural events

did not result in movements.

3.5 Stimulus and movement onset drastically re-

duce mutual information in M1

It has been previously reported that stimulus and movement onsets in M1 re-

duce both single neuron variability across trials as well as noise correlations

between pairs of neurons ([Churchland et al., 2010]). While the analysis of

[Churchland et al., 2010] is suggestive of pervasive effects across cortex, the mag-

nitude of the reduction has not been quantified in terms of the shared variability

between neurons.

Our model provides an estimate of the redundant or mutual information in the

population responses, as explained below, and we will use this quantity to track

the total mutual information of neurons during the timecourse of the trial. Under

the fully independent model of activity, all neurons would be spiking indepen-

dently with firing rates determined completely by their baseline firing rate and

self-coupling or refractory terms. At the other extreme, a fully-correlated model

would have all neurons spiking at precisely the same times. In practice, as it

can be seen in Fig. 3.1c, neurons tend to fire together a lot more than expected

by chance from an independent model. Neurons tend to fire together during the

brief 100-200ms events.

Given these correlations in firing, observing the activity of a subset of neurons

provides information about the activities of the other neurons. This quantity is



3 Stimulus and movement onset drastically reduce mutual information in M149

called mutual information and for high-dimensional variables it cannot be esti-

mated exactly. However, an estimate can be achieved by computing the joint

entropy of the distribution of neuron responses using a model. Since the true

mutual information (MI) computation is intractable, we use the best available

model (the RLM) to get a good lower bound. If a population of neurons is how-

ever driven by the same stimulus, then some of the mutual information between

neurons will be information about the stimulus.

In analogy to noise and signal correlations, we define the noise MI as that portion

of the mutual information between neurons that cannot be explained by time-

locked responses to the stimulus MI s = MI(x1,x2,s) - MI(x1,s) - MI(x2,s). The

noise MI cannot be tractably estimated for large populations either, but model-

based estimates can be obtained.

A lower bound of MI(x1,x2,s) can be obtained using an RLM model with driving

inputs, such that each neuron receives an additional input that is a function only

of time in the stimulus. We optimize these additional parameters to obtain our

best estimate of MI(x1, x2, s). The RLM model performs best at estimating the

noise MI, because it has the highest likelihoods on held-out data. The estimates

of the mutual information between the neurons and the stimulus/movements are

easier to compute since they can be estimated simply from smoothed PSTHs.

Tracking the noise MI over the timecourse of the trial shows that indeed stimulus

and movement onsets reduced the amount of mutual information in the popula-

tion (Fig. 3.3f), or at least our best estimate of it.

The shared covariability is reduced by a factor of 3 by stimulus onset, and by

a factor of 50 by movement onset. Indeed, neural covariability is very small

and close to 0 during the movements. This indicates all the inputs to the neu-

rons are time-locked to the movements and no fluctuations in activity exist from

other sources of input. The spatiotemporal patterns of neural responses during

movements are thus reproducible from trial to trial, and much more so than the

activity during the delay period of the task.

This is especially surprising since we do know some of the sources of neural
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covariability in M1 during movements: on every trial, the monkey performs the

same reach with slightly different reaction times and speed profiles, which should

be reflected in the neural responses.

Indeed we find that information does exist in the M1 responses that can be used to

predict with high fidelity the trial-by-trial variations in hand trajectories (shown

in the following section). The mutual information analysis suggests that this

trial-by-trial covariability is in fact very small compared to that generated in the

delay period of the task, where co-fluctuations dominate responses.

3.6 Comparison with noise correlation analysis

One might ask why we do not use noise correlations to describe population co-

variability over-and-above the PSTH instead of the noise MI. One advantage in

using the noise MI is that it accounts for the shared mutual information between

neurons over all timescales of activity, not just the arbitrarily defined temporal

binning at which noise correlations are computed.

In addition noise correlations are always non-zero because they are estimated

from finite data, even when the true noise correlations should be 0. The model-

based noise MI can however be computed on test data not used for fitting the

model and if the true noise MI is 0, then the model-based estimate cannot be

significantly different from zero. As a note of caution, the noise MI will in general

underestimate the true mutual information, as we discussed before. By using well-

performing models we can attempt to bridge the gap between the estimate and

the true value.

A further disadvantage of using the noise correlations is that all pairs of neurons

are considered equal in the histogram. However, the low-firing neurons will have

poorly estimated noise correlations. Even if the noise correlations were estimated

perfectly, for an equal noise correlation, high-firing pairs of neurons will have

large mutual information while low-firing neurons will have a small amount of

mutual information, simply because high-firing neurons have larger information



3 The fine details of movements are encoded by motor cortex 51

capacity in their spike trains. Large amounts of mutual information will in turn

better reflect the underlying unobserved processes that correlate neurons.

3.7 The fine details of movements are encoded by

motor cortex

Although the amount of noise mutual information between neurons is small during

movements, we found that covariability in responses can be used to predict hand

position on a trial-by-trial basis.

To capture the transformation between motor cortex and hand position we trained

a decoder that accumulated information from the spikes into a hidden dynamical

system that evolved with linear dynamics (Fig. 3.2b).

The hidden dynamical system representation was then used to predict hand po-

sition within the same time step, via a nonlinear one-layer neural network. The

nonlinearity was necessary to convert the representation from a linear represen-

tation of M1 activity to the highly nonlinear mapping of space implicit in the

muscles and joints of the arm. We fit this transformation model using standard

backpropagation through time techniques.

The resulting model captured the relevant information from the M1 spikes into

its low-dimensional internal representation. Further below we study this internal

representation in order to understand what the relevant M1 information is, but

first we show that the decoder captured trial-by-trial variability in movements.

We studied the performance of the decoder on held-out data (Fig. 3.5a). The

decoder with 10 hidden states achieved an average root mean squared error of

6.5mm during movements. The decoder was able to perfectly predict the reach

direction from M1 activity. However, an error of 12mm was achieved by a decoder

that only perfectly predicted reach direction and then predicted the average path

from the training set for that reach. It follows that our decoder must be capturing

additional trial-by-trial variability over-and-above the reach direction.
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To further show this point, we shuffled the held-out data such that the reach

condition remained the same but the hand trajectory was chosen from another

trial of the same reach randomly. The trained decoder only achieved 13.9mm

error on the shuffled set.

One primary determinant of root mean squared (rms) error on the test trials was

reaction time. To see if the decoder predicted features of movement beyond just

the reaction time, we shuffled the data again but aligned the randomly drawn

reach path so that its reaction time was equal to the reaction time of the trial

from which neural data was used in the decoder. The decoder only achieved

8.75mm rms error on this shuffled dataset. It follows that while reaction time is

an important factor for good decoding from M1, additional single-trial movement

features were also captured by the decoder.

Inspecting the reaches on the test set we were able to find another major contrib-

utor to movement variability, namely the speed profile of the reach (Fig. 3.5C).

Various features of the speed profiles are captured by the decoder, for example

some reaches have narrow peaks around the maximum speed of the reach and the

decoder captures these peaks, while other reaches have more flat and constant

maximum speed.

3.8 What information from the population spiking

does the decoder use?

Next we analyzed the hidden trajectories computed by the decoder in order to

understand what features of the spiking were important to drive good motor

predictions.

Although we trained a 10 dimensional decoder, we found that most of the variance

of the hidden space was concentrated in only 3 components (Fig. 3.5e). 3D

plots of this three-dimensional subspace gave us an understanding of the model’s

internal representation.

Two of these three dimensions had very long integration timescales (>1s) and
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effectively accumulated information about the two-dimensional direction of the

reach (Fig. 3.5d). The two-dimensional plane also encoded significant lateral

deviations from the desired reach direction. To our knowledge, such a simple two-

dimensional representation of reach direction has not been shown before in M1.

It is especially noteworthy to mention that the same two-dimensional projection

encoded the same reach direction before and after movement onset.

To directly test the influence of neural spiking on the decoded movements, we

added perturbations in the two dimensional hidden space along two orthogonal di-

rections (Fig. 3.6ab). The perturbations biased the reaches significantly towards

the direction represented by the perturbations, but left relatively unaffected the

other details of the movements, like end point of the trajectory and the speed

profile. What then stopped the hidden trajectories from generating movements

before movement onset? In fact, the third dimension of the hidden state did not

evolve at all before movement onset, and grew monotonically after onset (Fig.

3.5e). This dimension had a much shorter timescale of 200ms, on the order of the

duration of the movement.

We hypothesized that this dimension controlled not only movement onset, but

also the overall progression of movement during reach. Faster rates of increase in

the latent trajectory would correspond to faster progression in movement space.

To test this hypothesis directly, we added small positive perturbations in the la-

tent trajectory at various times during the movement, and analyzed the resulting

direction of the perturbation in movement space (Fig. 3.6c).

Depending on the reach direction and hand position in space, positive pertur-

bations in the third trajectory always advanced the hand position towards the

correct target, resulting in a radial pattern of perturbations in movement space.

To our knowledge, this is the first evidence that motor cortex tracks the progres-

sion of movement and does so in a relatively straightforward fashion, controlled

only by the cumulative projection of M1 spiking onto a single linear subspace.
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Figure 3.3: Trial-by-trial variability in the delay period. abc) Three ex-
amples of noise residuals in the delay period. For each neuron at each time point
we plot the increase or decrease in probability of firing compared to the PSTH,
predicted by the model based on past spiking. Neurons are sorted by their mean
firing rates. d) Computing the SVD decomposition of all residuals, we see that
most variability is in the first three dimensions of population activity. e) The
singular vector associated with the largest singular value shows that most of the
variability comes from correlated increases and decreases in the firing of most neu-
rons. Furthermore, these increases tend to be proportional to firing rate (neurons
are sorted by mean firing rate on the x-axis). f) Model-based estimate of the
noise mutual information at each timepoint. This quantity is a measure of how
much neurons co-fluctuate over-and-above the PSTH. There are sharp drops in
the mutual information just after stimulus and movement onsets. Notice that the
estimated mutual information during movements is very close to 0.
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Figure 3.4: Movement slips in the delay period correlate with neural
events. abc) All three dimensions of covariability in the delay period correlate
with the population vectors during movements, at different delays. Third dimen-
sion of covariability correlates with the population vector during stopping at the
end of the reaches. d) Subsets of movements to the eight targets. e) Zoom in
of the center holding area and movements restricted to the delay period. Stereo-
typical small drifts in the south-west direction are now apparent during holding.
f) (X,Y) position as a function of time for several delay periods. g) Averaged
MUA aligned to the micro-movements. Rise in neural activity 50ms before a
micromovement could imply a causal relationship between neural activity and
behavior. h) Histogram of micro-movement times. Most micro-movements are
triggered by the stimulus. The rate of micro-movement occurrence decays during
the delay.
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Figure 3.5: Single-trial decoding during reaches. a) Root mean squared
error results compared to previous state-of-the-art decoders on the same dataset,
as well as results under various shuffling manipulations. b) Example decoded
trajectories on held-out data, one for each direction of movement. Note the
initial downward direction of the orange trajectory is decoded successfully. c)
Examples of speed profiles of actual and decoded movements, one for each reach
direction. Note the decoder captures not only reaction time variability, but also
other shapes of the speed profile like the peakiness/flatness of the profile. d) Top
view of the three-dimensional manifold tracked by the decoder during reaches.
Colors like before. e) Side view of the same manifold.
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a b c

Figure 3.6: Effect of perturbations on decoder. Example perturbations at
the onset of movements, in the two-dimensional plane that controls movement
direction. a) Partial rightward perturbation. b) Upward perturbation. c, Per-
turbations in the third/oblique plane of the side view. At various points during
movement the perturbation always has the effect of advancing the decoded tra-
jectory forwards. Notice this is a highly nonlinear effect enabled by the nonlinear
decoding step in the one-layer neural network represented by the function g.



IV

Quiescence in neural circuits

enhances coding of

continuous sensory streams

Outline
Animals immersed in their natural environments receive a continuous stream of
sensory inputs. In passive animals, the sensory stream is corrupted by intrinsic
large-scale fluctuations in neuronal activity. In the presence of ongoing fluctu-
ations, neural responses to isolated sounds can still be robustly-triggered, but
during continuous streaming stimulus information is lost. Here we identify and
characterize a cortical state termed quiescent in which ongoing fluctuating ac-
tivity is much reduced, while neural responses to continuously streaming stimuli
are sparse, stable and high-dimensional. Putative inhibitory cells had two-fold
activity increases relative to putative pyramidal in quiescent when compared to
fluctuating states. We show that models of inhibition-dominated networks of neu-
rons reproduce the coding benefits of quiescent states. However, when such model
networks are insufficiently stabilized by negative feedback, they develop macro-
scopic chaotic behavior that we show is similar to the patterns of population-wide
fluctuations present in fluctuating neural activity. Quiescent brain states are es-
pecially well-suited to encoding the fine patterns of sounds during continuous
sensory stimulation and can encode tens of thousands of auditory stimuli. Re-
cent experimental evidence suggests that the inhibition-dominated coding regime
we analyze here may be employed in active and task-engaged animals.
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4.1 Fluctuations exist and can be quenched in ac-

tive states

1 Population-wide fluctuations in neural excitability on multiple timescales

are widely documented in neural recordings ranging from intracellular record-

ings to large-scale imaging[Constantinople and Bruno, 2011, Okun et al., 2012,

Atencio and Schreiner, 2013, Beltramo et al., 2013b]. Intracellularly, fluctua-

tions resemble spontaneous transitions from resting to hyperpolarized membrane

potentials for durations of a few hundred milliseconds. In sensory areas, they

give rise to positive noise correlations which impair coding[Luczak et al., 2009,

Rothschild et al., 2010b, Sakata and Harris, 2009]. However, correlations are re-

duced when animals engage in tasks[Cohen and Maunsell, 2009, Gu et al., 2011].

Similarly reduced is the overall rate of ongoing activity in auditory cortex when

animals are performing a task using that sensory modality. Ongoing fluctuations

and overall firing rates are also reduced in auditory cortex when animals are

running or vocalizing[Schneider et al., 2014, Eliades and Wang, 2008]. Enhance-

ments of intracortical inhibition have been shown to improve coding of stimuli

in anesthetized animals[Cardin et al., 2009, Hamilton et al., 2013]. Interestingly,

it has been shown recently that awake and active states are characterized by

significantly increased inhibitory conductances, which we propose here are an ac-

tive network mechanism for quenching network excitability[Schneider et al., 2014,

Haider et al., 2013, Kimura et al., 2014].

4.1.1 Hypothesis of unstable network activity

We hypothesized that random population fluctuations are caused by unstable

recurrent network activity. The dynamics of neurons in unstable networks can

amplify small perturbations exponentially and thus cause the whole network to

activate spontaneously. Precise stimulus responses in unstable networks are not
1The work described in this chapter has been done in collaboration with Nicholas Lesica,

Carsen Stringer, Jose Garcia-Lazaro and Dmitry Lyamzin. Nick, Jose an Dmitry expertly
performed all experiments analyzed here. Carsen helped to develop and implement the network
simulations.
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possible, because a single exponentially amplified mode of network activity domi-

nates the spatio-temporal structure of population responses. Stimulus-selectivity

of ascending thalamic fibers is thus lost because neurons tuned to the stimulus

activate many other neurons with no direct thalamic inputs.
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Figure 4.1: Quiescent states respond reliably to continuous streams of
sound. Population rasters of recordings during stimulus presentations of either
isolated sounds or a continuous stream of speech in either (a)) spontaneously
fluctuating states or (b)) quiescent states. c) Decoding accuracy for both states
for different types of stimuli. d) Mean firing rates of recorded neurons in both
states and for different stimuli and during spontaneous activity. e) Pairwise
noise correlations in stimulus responses or spontaneous correlations. f) The Fano
Factor (variance divided by mean) of the multi-unit activity (MUA).

Unstable population activity can particularly hurt coding under the demands of

active ecological behavior in a continuously streaming sensory environment. Intu-

itively, errors in neural responses to stimuli can accumulate over time, especially

in areas such as auditory cortex where synaptic depression is known to signifi-

cantly affect neural responses for hundreds of milliseconds.To test our predictions

and further characterize the stability of neural network dynamics, we recorded

spiking neural activity from auditory cortex under a fluctuating brain state and a

quiescent brain state. The quiescent state was characterized by not only reduced



4 Fluctuations exist and can be quenched in active states 61

mean firing rates both in spontaneous activity and in response to sounds, but

also the complete abolishment of population-wide fluctuations during auditory

stimulus presentation.

4.1.2 Fluctuating states do not code well in ongoing stimu-

lation, but quiescent states do

Tones preceded by silence typically elicited responses from neurons in sponta-

neously fluctuating populations (Fig. 4.1a). However, responses failed to timelock

to auditory events when tones were presented in quick succession every 150ms, or

when a continuous stream of speech was played. Decoding accuracy in fluctuating

states dropped as the complexity of the sound stream increased and the mean

firing rates were also reduced (Fig. 4.1c and 4.1d). Pairwise noise correlations in

response to stimuli progressively increased from 0.02 for isolated tones to 0.07 for

streaming tones and 0.11 for ongoing speech, almost reaching the level of sponta-

neous correlations of 0.16 (Fig. 4.1e). The Fano Factor of the summed multi-unit

activity showed a similar progression, indicating a large amount of variability in

trial-to-trial evoked activity during ongoing stimulation (Fig. 4.1f). Neurons in

quiescent populations also showed robust responses to tones preceded by silence,

but in this case the spontaneous activity preceding the evoked response was also

much reduced (Fig. 4.1b,d). Quiescent states also responded reliably and re-

producibly to continuously streaming sounds (Fig. 4.1b). Coding capabilities

were much enhanced overall when compared to the fluctuating populations and

the drop in response reliability from isolated tones to continuous sounds was less

pronounced (Fig. 4.1c,e,f) .

4.1.3 Possible mechanisms underlying quiescent states

What might produce the large discrepancies in stimulus responses between the

two states? We hypothesized that the quiescent state was dominated by stabiliz-

ing negative feedback, both in the form of inhibition and short-term adaptation.

The spike shapes of electrically recorded action potentials were clearly varying in
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spike width, and the trough-to-peak duration showed a clear bimodal distribu-

tion on the basis of which we classified cells as fast-spiking FS and regular-spiking

RS (Fig. 4.3a). We found that the number of recorded FS units in the quiescent

state doubled when compared to the fluctuating state, presumably reflecting their

enhanced activity and increased detection rates with extracellular array record-

ings (Fig. 4.3b). The overall ratio of mean FS to mean RS activity correlated

negatively with the level of mean noise correlations, such that populations with

relatively more FS activity showed the least variability in responses (Fig. 4.3c).
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Figure 4.2: (Caption next page.)
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Figure 4.3: (Previous page.) Potential mechanisms for quiescent states:
inhibition, adaptation and EPSP amplitude. a) Putative inhibitory cells
are classified based on their narrow spike waveforms. Spike width was measured
as the trough-to-peak duration.b) The fraction of detected FS cells was twice
greater in quiescent states. c) Ratio of FS to RS activity correlates negatively
with the mean noise correlations. d) Example tone responses in quiescent and
fluctuating states. e) Ratios of firing rates between FS and RS cells at stimulus-
onset are greatly amplified in quiescent states. f) Spontaneous firing rates in
quiescent states are suppressed for 500ms after stimulus presentation compared
to mean rates in ongoing silence. g) Autocorrelation of the (PSTH-subtracted)
MUA in (driven) and spontaneous activity. h) The firing rate in 500ms windows
before stimulus onset affected the magnitude of stimulus responses in fluctuating
but not in quiescent states. ij) Intracellular voltages in quiescent and fluctuating
states. k) Trial-averaged voltages in fluctuating and quiescent states. k) Stan-
dard deviation of trial-averaged voltage plotted as a function of the similarity
between continuous trials for 8 cells recorded in fluctuating states and 7 cells
recorded in quiescent states.

Tones preceded by silence evoked large responses in FS and RS cells in both

quiescent and fluctuating states, but the onset of the responses showed much

larger activity in FS cells in quiescent state (Fig. 4.3d and e). The onset FS

activity appears to be optimized to activate at very short latencies, perhaps by

direct thalamic drive, and might thus serve to stabilize and sparsify the rest of

the sensory-evoked response in the local neural population.

A second source of stabilizing negative feedback that has been docu-

mented in auditory cortex is short-term adaptation[Wehr and Zador, 2005,

Destexhe et al., 2003]. We observed that firing rates in quiescent states were

suppressed relative to spontaneous rates for hundreds of milliseconds after the

stimulus was turned off (Fig. 4.3f). Similarly, the temporal autocorrelation of

the spontaneous multi-unit activity showed oscillatory activity at typical delta

band frequencies 1-2Hz but these were time-locked to the ongoing stimulation in

quiescent states (Fig. 4.3g). In fluctuating states, the level of activity preceding

a stimulus correlated negatively with the number of evoked spikes, showing that

ongoing activity can suppress the sensory response over hundreds of milliseconds

(Fig. 4.3h). The relationship did not hold in quiescent states, which had very

low levels of ongoing activity, thus insufficient to cause depression (Fig. 4.3h).
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4.1.4 Intracellular voltages

We performed in vivo intracellular recordings to better understand the underlying

variability in membrane potential dynamics. We found that in both types of states

the membrane potential underwent large excursions between hyperpolarized and

depolarized levels, but in quiescent states these excursions were tightly locked to

the ongoing stimulation (Fig. 4.3i, j). The trial-averaged membrane potential

was modulated far more by the stimulus in quiescent compared to fluctuating

states and upward stimulus transients were also larger (Fig. 4.3k). The temporal

responses were similar in consecutive trials in quiescent states but quite dissimilar

during ongoing fluctuations (Fig. 4.3l).

4.2 Deterministic network model reproduces the

inherent randomness of fluctuations

We proceeded to verify in a neuronal network model that increased negative

feedback can stabilize intrinsically fluctuating activity. The architecture of the

model is described in Fig. 4.4a. Despite the wealth of studies of oscillatory

and fluctuating networks, typical models do not capture the intrinsically random

aspect of fluctuations. Even though on average population events last 200-300ms,

the duration of an event can last anywhere from 50 to 1000 ms (Fig. 4.4b).

Similarly the quiet periods between events can last for a variable interval of

time, and these durations cannot be predicted on the basis of previous neural

activity (Fig. 4.4c). To further exemplify the randomness of the fluctuations,

we found matched segments of neural activity that underwent similar patterns of

fluctuations for at least 3 seconds (Fig. 4.4f). The dynamics of these matched

segments quickly diverged after the 3 matched seconds, indicating a high-degree

of variability and potentially chaos in the timecourse of the fluctuations.

We constructed a network model with strong recurrent excitation, but relatively

weak inhibition, which reproduced the spontaneous patterns of network fluctua-

tions we observed in the data (Fig. 4.4a). The network exhibited long timescales
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Figure 4.4: Increased inhibition reproduces transition from fluctuating
to quiescent states in network simulation. a) Schematic of network archi-
tecture used throughout. b) Example distribution of up vs down state durations
measured from the multi-unit activity. c) Down state duration plotted as a func-
tion of previous up state duration. de), Same as (bc)) but for data simulated
from the model. f) Two example periods of spontaneous activity matched for
the first two seconds of the rasters. g) Adding a single spike during a simulation
completely changes the future behavior of the network. h) Example simulation
of the membrane voltage with added spike. i) Trial-averaged firing rates of neu-
rons in the network after adding one spike to ongoing spontaneous fluctuations.
jk) Population rasters for fluctuating and quiescent simulations in response to
stimulus inputs. l) Noise correlations in simulations with isolated and streaming
sounds.

of fluctuations, owing to adaptation currents in single neurons, but importantly

these fluctuations came at random intervals, despite the lack of external sources of

variability (Fig. 4.4d,e). In other words, the network produced its own variability

through deterministic chaotic behavior, and such a behavior was unavoidable in

networks with weak feedback inhibition. A single spike added randomly during

ongoing spontaneous activity almost always changed the time course of the fluc-

tuations, in some cases triggering population-wide events (Fig. 4.4g). Replicating

a recent in vivo experiment[London et al., 2010], a single inserted spike was am-

plified into many more network spikes before the recurrent activity was shut off

(Fig. 4.4i). Responses to stimuli were not reliable across repeated presentations,
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but were more reliable when stimuli were presented after prolonged silence (Fig.

4.4j,l).

4.2.1 Inhibition stabilizes network activity

We were able to stabilize the fluctuations in network activity by increasing in-

hibitory feedback, such that the spontaneous activity was much reduced but

stimulus-driven activity was time-locked to the auditory stream and exhibited

near-zero trial-to-trial noise correlations (Fig. 4.4k). We could stabilize the net-

work either by increasing the inhibitory feedback gain or by adding tonic inputs

to inhibitory neurons. The network responded with equal reliability to isolated

sounds and to ongoing continuous streams of inputs (Fig. 4.4l). Adding a single

spike during evoked activity did not cause an outburst of spikes in the rest of

the network, but instead slightly inhibited network activity. Adding sufficiently

many spikes eventually shut down activity briefly due to the strong non-selective

feedback inhibition.

4.3 Quiescence enables sharp tuning, high-

dimensional stimulus response and temporal

integration

Tuning curves to sound frequency in quiescent states had on average half the

width of the tuning curves in fluctuating states and these were reproduced in

our network simulations of the two states (Fig. 4.5a). The more precisely tuned

neural responses in quiescent states enabled high decoding accuracy in a decoding

task with 29,040 different stimuli, where we pooled the responses of all neurons

recorded in quiescent states (Fig. 4.5b). To achieve good decoding accuracy

in this task at least 10-20 neural dimensions of activity were needed, indicat-

ing that the high-dimensional population activity can encode high-dimensional

stimuli (Fig. 4.5c).
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Figure 4.5: Quiescent states enable network to use high dimensions for
coding. a) Aligned and population-averaged tuning curves to sound frequency
in data and simulations. b) Decoding accuracy of up to 29040 stimuli. Training
stimuli were selected as continuous 250ms long periods during a long ongoing
speech stimulus. Test stimuli were selected from a second repetition of the speech
stimulus. c) Decoding accuracy with 29040 stimuli as a function of dimensions
of population responses retained. d) Schematic of a statistical model capturing
the transformation of subcortical spiking inputs into cortical spikes. e) Percent
variance explained of the PSTH by RLM transformation in a test dataset. f)
Absolute variance captured by identified components of RLM transformation.
g) PSTH of MUA of the inferior colliculus and auditory cortex in response to
sounds without temporal structure. h) Autocorrelation of MUA in response to
180 seconds of ongoing sounds without temporal structure.

We related evoked cortical responses to long segments of ongoing speech to evoked

responses to the same stimulus in the subcortical auditory pathway in the inferior

colliculus. We used a statistical modelling approach which can fit dynamical mod-

els directly to data (Fig. 4.5d). We assumed the feedforward projection from the

level of IC and through thalamus becomes input to a set of reduced-dimensionality

neural network dynamics in cortex, from which the recorded cortical neurons are
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sampled sparsely. This model was fit directly to the data using the statistical

framework we developed in the previous chapters (the recurrent linear model,

RLM). The RLM accounted for more variance of the responses compared to a di-

rect feedforward model, and also accounted for more variance compared to a more

classical spectrotemporal model based on the frequency content of the stimulus.

In fluctuating network states, an RLM with a single underlying dynamical mode

performed almost as well as the best RLM we could train on that dataset (Fig.

4.5e). In contrast it took up to 10-20 dimensions to maximize the performance of

the model in predicting the activities of neurons in quiescent states, and the single

top dynamical mode explained only about a third of all the explained variance.

This shows that sensory-driven responses in fluctuating states are largely one-

dimensional, while a higher-dimensional response can be encoded by quiescent

states. The absolute variance of the responses predicted from subcortical inputs

was three times higher in quiescent states compared to fluctuating, and dropped

off more slowly with dimension (Fig. 4.5f).

We observed that statistical models with recurrent dynamics were able to take

advantage of their long timescales to better predict neural activity, which suggests

that cortical dynamics are integrating and transforming inputs over hundreds of

milliseconds. To test this hypothesis directly, we presented stimuli which, un-

like speech, had very short autocorrelation timescales. In every 10ms interval a

different randomly chosen frequency-modulated sweep was presented . Subcorti-

cal responses in the IC followed these sweeps faithfully, modulating their firing

rates on the same timescales as the stimulus, but cortical responses in quiescent

states were more sluggish, and instead integrated the stimuli with an autocorre-

lation timescale of 100ms followed by a negative autocorrelation at long delays,

presumably from short-term adaptation (Fig. 4.5g,h).

4.4 Conclusion

Our analysis suggests quiescent states are ideally suited to encoding sensory stim-

uli in the face of two sources of ongoing noise: the external world with its vast
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amount of information bombarding the senses, and the internal world of the

brain’s own internal dynamics. Although evidence for quiescent states already

exists in active animals, more in-depth characterization of neural activity in awake

behaving animals is required to further our understanding of computations in the

engaged brain. Across brain area comparisons would also be informative. Al-

though quiescent states have been reported in auditory and barrel cortex, the

opposite has been reported in engaged visual cortex, where firing rates increase

in attentive animals. Understanding the different computational advantages of

quiescent and depolarized states might thus pave a way for understanding why

they are differentially preferred by brain areas corresponding to different senses.

4.5 Methods

4.5.1 Integrate-and-Fire Network

The results in figure 4.4 were generated through numerical simulation of a net-

work of conductance-based leaky integrate and fire neurons. There are three

currents in the model: an excitatory, an inhibitory and an adaptation current.

The subthreshold membrane potential for a single neuron i obeys the equation

τm
dVi
dt = −(Vi − EL)− gEi(Vi − EE)− gIi(Vi − EI) +−gDi(Vi − ED).

When V > Vth, a spike is recorded in the neuron and the neuron’s voltage is

reset to Vreset = 0.9Vth. For simplicity, we set Vth = 1 and the leak voltage

EL = 0. The excitatory voltage EE = 2Vth and EI = ED = −0.5Vth. Each of

the conductances has a representative differential equation which is dependent on

the spiking of the neurons in the network at the previous time step, st−1. The

excitatory conductance obeys

τE
dgE
dt = −gE +Ast−1 + b.
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where A is the matrix of excitatory connectivity and b is the vector of tonic inputs

to the neurons. The matrix of connectivity is all-to-all for the network of 128

neurons and their connectivities are randomly chosen from a uniform distribution

between 0 and wE . The tonic inputs b are uniformly distributed between 0 and

bmax. The inhibitory conductance obeys

τI
dgI
dt = −gI +

(
c+

∑
st−1

)p
.

The adaptation conductance obeys

τE
dgD
dt = −gD + wDst−1.

For all the simulations in figure 2, τm = 26 ms, τE = 44 ms, τI = 39 ms, τD = 261

ms, wE = 0.15, bmax = 0.025, and p = 1.25. For the spontaneous fluctuations

simulations (parts d, e, g, h, i, j and l), wD = 0.09, wI = 0.047, c = 0. For the

quiescent simulations shown in part k and l, wD = 0.1, wI = 0.07, and c = 0.02.

Part a shows example currents from a spontaneous fluctuation simulations. Parts

d and e were produced from 8 minute simulations of the spontaneous fluctuations

state not driven by stimulus. For parts g, h, and i, single spikes were inserted

into the spontaneous fluctuations state. Part h is the membrane potential trace

for the neuron in part g which has an added spike. Part i is the average firing

rate of the network in 256 trials of 3 seconds each with a spike added in the

middle. Parts j and k are driven by a stimulus of magnitude 0.06 distributed

across 3 frequencies at a given time out of 20 possible frequencies. The tuning

of the input to each cell has a standard deviation of 4 frequencies. The tones in

silence are 100 ms long and separated by 1 s. The tones in silence were used to

compute the tuning curves in figure 4 part a.
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In this section we further investigate the dynamical properties of neural responses
in different brain states. We make a finer distinction between different types
of multi-neuron patterns and reproduce them in network simulations. We use
our statistical modelling framework to directly characterize dynamics in anes-
thetized recordings, awake-passive recordings as well as network simulations of
these recordings. We introduce a reduced population model with four variables
corresponding to excitation, inhibition, adaptation and facilitation and use it to
show that changes in inhibitory strength can drive state-transitions in the system.
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5.1 Cortical states

1 Cortical state varied throughout the experiments and substantially affected the

multi-neuron patterns recorded. Although typically distinguished into synchro-

nized and desynchronized, we found there was a more fine distinction between

different types of synchronized and desynchronized states. The state we referred

to as fluctuating in the previous chapter would typically subsume most synchro-

nized states, but the state we referred to as quiescent is only a particular subtype

of the desynchronized states. In the previous chapter we referred to states as

fluctuating and quiescent in order to refer directly to their phenomenology, but

in this chapter and the next we situate cortical states into the existing literature

and thus refer to states as different types of synchronized and desynchronized.

We recorded neural activity under a few different anesthetics and observed at

least four qualitatively different patterns of multi-neuron responses. A single

anesthetic typically only induced one or two different states.

The desynchronized depolarized state is characterized by an ongoing high spon-

taneous firing rate without fluctuations (Fig. 5.1a). Stimulus responses occur

reliably on every presentation. Such states have been described in Urethane anes-

thetized, sleeping and passive animals and modelled by Renart et al as a classical

balanced excitatory-inhibitory network ([Renart et al., 2010]). With appropriate

choices of parameters, such networks can cancel out correlations in inputs, at

the expense of introducing chaotic behavior and responding more to the onsets

and offsets of stimuli. The more tame version of balanced network originally

described by van Vreeswijk and Sompolinsky, has a slightly different computa-

tional role and faithfully tracks inputs instead of responding only at onsets and

offsets ([van Vreewijk and Sompolinsky, 1996]). Later on we will show that our

data favors the second version. In addition, recent results in subcortical areas

suggest there are no correlations in inputs to be cancelled out by a balanced
1The work described in this chapter has been done in collaboration with Nicholas Lesica and

Carsen Stringer. Nick expertly performed all anesthetized experiments analyzed here. Carsen
helped to develop and implement the network simulations. Awake passive data was generously
provided by Peter Bartho.
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Figure 5.1: Cortical state varies throughout experiments and substan-
tially affects the multi-neuron patterns recorded. a) The desynchronized
depolarized state. b) The classical UP and DOWN states. c) Bumpy UP states.
d) The quiescent states.

network, so the primary motivation of Renart et al has little actual relevance

([Renart et al., 2010]).

The classical UP and DOWN states have been described as ongoing transitions

between hyperpolarized and depolarized states (Fig. 5.1b). These transitions

occur randomly and stimuli presented on DOWN states may fail to elicit a re-

sponse. They contain significant power at frequencies of 1-2Hz, owing to the slow

alternations between UP and DOWN states. Such states have been described

broadly in anesthetized animals, as well as in passive animals, though they are



5 Model performance 74

not usually distinguished from the bumpy UP states we describe next. Most

classical anesthetics based on urethane, isoflurane or ketamine induce such up

states.

Bumpy UP states are relatively short, synchronized periods of population spiking

for durations of 30-100ms (Fig. 5.1c). We observed that they tend to come

together in packets of 2 or 3, and in this particular dataset even six. They contain

significant power at theta frequencies of about 10Hz, in addition to still having

power at 1-2Hz, like classical UP/DOWN states. It is possible the up states

described by Hromadka et al, 2013 in awake animals are bumpy, because the

authors of the study describe them as short and rare ([Hromadka et al., 2013]).

We only saw these types of UP states in ketamine anesthesia.

The desynchronized quiescent states are more suppressed than the other states

in both spontaneous activity and stimulus responses (Fig. 5.1d). Like depolar-

ized states they have zero pairwise noise correlations, and significantly increased

activity in fast-spiking cells. We only saw such states in Fentanyl-based anesthe-

sia, but they might have been described in previous studies of awake and active

animals (see previous section). These states code stimuli very sparsely, efficiently

and reliably.

5.2 Model performance

We applied the model of dynamics we described in chapter 2 to the state-

dependent data to analyze the nature of the statistical patterns encountered.

Most of our data was obtained with either ketamine-based or fentanyl-based

anesthesia, so we will focus our analysis on these. Ketamine-based anesthesia

induces fluctuations in neural activity, while fentanyl-based anesthesia induces a

stable, desynchronized regime of activity.

Figure 5.2 shows the performance of the RLM at capturing the multi-neuron

patterns of spikes present in the datasets. The performance of the model varies

as a function of the number of underlying trajectories. A single dimension of
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Figure 5.2: Recurrent linear model predictive performance, compared
with GLMs. a) Model likelihoods as a function of dimensionality of underlying
dynamics. Data was recorded in complete silence. b) Likelihood advantage of
RLM models over the popular GLM framework. cd) Same as (a),(b) for contin-
uous stimulus-driven activity.

dynamics already accounts for a large portion of the shared population variability,

but the higher dimensions also contain information. We compared our framework

with the popular generalized linear models (described in section 2), and found

that the RLM offered vast improvements in prediction performance (Fig. 5.2).

5.3 The phenomenology of dynamics

In most datasets recorded, underlying dynamical trajectories were clearly orga-

nized into slow (>500ms autocorrelation) and fast trajectories (30-100ms auto-

correlation). Examples are shown in figure 5.3a. The slow trajectories controlled

the periodicity of the UP and DOWN states, while the fast trajectories controlled

fast fluctuations within UP states. The eigenvalues of the dynamics matrix in

spontaneous activity of both Fentanyl and Ketamine anesthesia were used to di-

vide trajectories into a pair of fast and a pair of slow dynamics (Fig. 5.3b). The
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Figure 5.3: Example trajectories in spontaneous activity. a) Slow (>500ms
autocorrelation) and fast trajectories (30-100ms autocorrelation). b) Eigenvalues
of the dynamics matrix. c) Peaks in the autocorrelation function of the multi-unit
activity.

pairing was obtained because each eigenvalue occurred together with its complex-

conjugate eigenvalue. The slow and fast trajectories sometimes (but not always)

corresponded to peaks in the autocorrelation function of the multi-unit activity

(Fig. 5.3c). Even when the peak at 50-100ms lag was absent, the statistical

model typically still found trajectories in that frequency range. We believe the

underlying randomness of the fluctuations dissipates their power across many fre-

quency bands thus making them hard to pick out from autocorrelation functions

of power spectra. However, the RLM can still find such underlying temporal

patterns because it relies on other sources of information, for example the spatial

distribution over neurons of the 10Hz oscillation. We will add more details below

on the underlying spatial distribution of the fast oscillation.
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The time-lagged cross-correlation functions between the activity of a single cell

and the summed activities of all the other cells can be organized in order of their

temporal center of mass (Fig. 5.4a). Neurons with negative (positive) centers of

mass tend to spike earlier (later) than the rest of the network. Such represen-

tations have been used to describe spike sequence patterns in hippocampus as

well as in auditory cortex. In figure 5.4 the first row shows the spike sequence

patterns for synchronized and desynchronized populations in response to a par-

ticular stimulus (a speech phone). The second row of cross-correlograms uses the

sorting derived from the first row to show the spike sequence patterns in response

to a second stimulus (a different speech phone). In synchronized states, the spikes

sequences on different phones are largely similar, while in desynchronized states

they are quite dissimilar.

The average MUA cross-correlogram latencies are similar between spontaneous

and driven activity in both states (Fig. 5.4b). Importantly, the latencies com-

puted in figure 5.4b represent the mean activities of responses to a large number

of stimuli. The specific latency changes observed in figure 5.4(a) for desynchro-

nized populations average out in figure 5.4b revealing a latency ordering much

more similar to that observed in spontaneous activity.

The model-derived trajectories capture these spike sequences in the pair of fast

complex-conjugate trajectories (Fig. 5.4c). We noticed that the fast trajectories

were out-of-phase with each other during neural responses. Neurons represented

by the first trajectory thus had an overall earlier latency on each short population

UP state. In fact, there was a continuum of phases of alignment between single

units and the trajectories, such that most neurons responded as a positively-

weighted combination of the two (Fig. 5.4d). Figure 5.4d represents each neuron’s

pair of coefficients, projected onto the unit circle, and slightly perturbed off the

circle for visualization purposes.

Latencies extracted from the cross-correlograms were well correlated with the

phases derived from the model (5.4e). Figure 5.4f shows example cross-

correlograms sorted by MUA cross-correlation latencies, while figure 5.4g shows
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Figure 5.4: Spike sequences. a) The time-lagged cross-correlation between the
activity of a single cell and the summed activities of all the other cells (more
description in the main text). b) The average MUA cross-correlogram latencies
in spontaneous and driven activity in both states. c) The model-derived trajec-
tories capture spike sequences. d) Phases of alignment between single units and
the trajectories. e) Latencies extracted from the cross-correlograms were well
correlated with the phases computed in (d). f) Example cross-correlogram sorted
by MUA cross-correlation latencies. g) The same cross-correlogram sorted by de-
rived model phases.h) Explained latency variance was high for both spontaneous
and average driven activity, but low for each individual phone.

the same cross-correlogram sorted by derived model phases. In desynchronized

states, the R2 value betwen latencies and model phases was high for both sponta-

neous and average driven activity, but low for each individual phone (figure 5.4f).

This suggests that although the fast trajectories describe the average responses

of the network to stimuli, each individual phone powerfully further modulates the

temporal patterns of responses with additional population dimensions of varia-

tion. This is unlike the synchronized state, where each phone’s cross-correlograms

mostly look similar.
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Figure 5.5: Dynamical models capture fluctuating states and their peri-
odicity. a) Schematic of RLM model of population activity. bcd) Example of
rasters and trajectories extracted from the corresponding populations.

5.4 Fluctuating states in awake-passive recordings

We used the RLM to analyze a dataset of multi-neuron recordings from the

auditory cortex of awake-passive rats and compared it with the fluctuating anes-
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thetized recordings. In addition, we used the RLM to analyze spike patterns from

network simulations which we built to model the fluctuations in both anesthesia

and awake states. The RLM methodology allows us to directly validate our net-

work simulations by analyzing the underlying dynamics in both simulations and

data.

Figure 5.5a shows a simplified schematic of the RLM model of population activity,

while figures 5.5b-d show examples of rasters and trajectories extracted from four

populations: anesthesia, simulations of anesthesia patterns, awake and simula-

tions of awake patterns. Trajectories were divided into slow and fast on the basis

of their associated eigenvalues. The main difference between the anesthetized

and awake recordings was the complete absence of long timescale trajectories

in the awake data. This seems to agree with the effect of wakefulness-inducing

agents like acetylcholine, which are known to block long timescale adaptation

processes. Similarly, it was observed that adaptation processes were absent in

engaged rodents while they were learning a discrimination task, but returned

once the animals became skilled and performed the task with less engagement.

However, the fast-timescale trajectories were still present in awake states and had

similar temporal timecourses on the order of 30-50 ms. Although more analysis

is required, we postulate that these fast timescales are generated by excitatory-

inhibitory dynamics. In fact, we used this idea to generate awake-like fluctuating

states, by greatly reducing adaptation in our network simulation (see previous

section), while retaining a balance of excitation and inhibition. Note that the

awake-passive state still shows ongoing fluctuations and responds unreliably to

stimuli (not shown). Only when we also increased inhibition in the network simu-

lation were we able to stabilize the responses and get near-zero noise correlations

in stimulus responses. The state with decreased adaptation and increased in-

hibition thus resembled the urethane-anesthetized desynchronized state shown

in figure 5.1a. Further increasing inhibition put the network simulation into a

quiescent-like state, with little spontaneous activity (5.1).

To further verify our understanding of cortical states, we hypothesized that we
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Figure 5.6: Fentanyl to Urethane transitions. a) Spontaneous firing rates
of both FS and RS cells gradually recovered during the course of several hours.
b-g) Multi-neuron rasters of spontaneous activity during the entire experimental
session.

might observe all the brain states in the same cortical population if we gradually

change the anesthetic during a long experimental session. An experiment was

started with Fentanyl anesthesia (used during surgery) and continued with Ure-

thane anesthesia. As the Urethane anesthetic started having a stronger effect and

the Fentanyl anesthetic wore off, the patterns of spontaneous multi-unit activ-
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Figure 5.7: Schematic of the sources of positive and negative feedback, divided
into fast and slow-acting mechanisms. While excitation and inhibition act and
recover quickly, facilitation and adaptation operate on longer timescales.

ity transitioned through all the cortical states described, as shown in figure 5.6.

Spontaneous firing rates of both FS and RS cells gradually recovered during the

course of the experiment (Fig. 5.6a). In the beginning of the experiment firing

was extremely sparse, but as neurons started to fire, they did so in synchronous

short bursts. As the spontaneous activity further recovered, the bursts started

coming in pairs separated by 100-200ms. For a short period of time, a state was

observed in which neurons fired regularly in short bursts that followed each other

with significant regularity about every 500ms. Eventually UP states became more

extended in time and their onsets became random and apparently chaotic. Later

on, the continuously depolarized state started replacing the fluctuating states.

5.5 Four-dimensional reduced simulation of net-

work states

To gain an intuitive understanding of the RLM trajectories and the full net-

work behavior, we constructed a four-dimensional reduced rate-based model of

dynamics. This required both slow and fast terms in the differential equations
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to capture the two timescales of dynamics recognized by the RLM (Fig. 5.7).

The fast dynamics arise from an excitatory and an inhibitory population of cells

which are each represented by the rates of their populations. The rate of the ex-

citatory population νE is controlled by the inhibitory population rate νI and the

slow timescale variables, depression d and facilitation f , which represent intrinsic

properties of the excitatory cells. The change in νE over time is

τE
dνE
dt = −νE + g(ZE)

where

g(x) = log(1 + x)

and

ZE = [aEEνE + aEIνI − aDd+ aF f + tonic input]+.

The nonlinearity in g is necessary to obtain hysteresis in the nullclines of the

system to produce the synchronized classical up and down states (Fig 5.9a). The

inhibitory population differential equation takes the form

τI
dνI
dt = −νI + [aIEνE + aIIνI ]+.

The facilitation and depression terms are dependent on only the excitatory rate:

dd
dt = −d/τD + νE

df
dt = −f/τF + νE .

The timescales are set such that τD > τF � τI , τE . For figure 5.8, the different

states are produced by increasing the feedback from the inhibitory population

onto the excitatory population, constant aEI . In part (d), the inhibitory popu-

lation also receives increased thalamic input. External noise is introduced to the

excitatory population in order to produce trial-to-trial variability in the responses.
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The same magnitude of noise and stimulus drive the excitatory population in each

simulation.

The example nullclines in figure 5.9 explain how the system can exhibit these

diverse patterns of activity. Part (a) qualitatively describes the behavior of the

system in the synchronized classical state in the phase space of the excitatory rate

νE and the inhibitory rate νI . When the system is in a down state (not firing),

it is at the stable fixed point of the system at the origin. As the slow depression

variable recovers, the excitatory nullcline moves upwards and the unstable fixed

point of the system approaches the origin (#1). When it reaches the origin, the

system undergoes a saddle node bifurcation and the two fixed points annihilate

each other (#2), leaving only a single positive stable fixed point. The system

approaches that fixed point and remains there until the depression variable builds

up sufficiently to push the nullcline downwards (#3-4). Again, a saddle node

bifurcation occurs with the upper stable fixed point disappearing and the system

returning to the stable fixed point at the origin (#5-6).

Part (b) of figure 5.9 explains how the system can produce bumpy up states when

slightly more inhibition is introduced to the system. The slope of the excitatory

nullcline is reduced, and the excitatory and inhibitory nullclines only intersect

at a single unstable fixed point. The system oscillates around this fixed point

when the fixed point sits above zero (the trajectories are bounded in space and

thus a limit cycle exists). However, when depression increases sufficiently and

overcomes the facilitation variable, the excitatory nullcline is pushed downwards

and the limit cycle is abolished. The system then sits at the stable fixed point at

the origin until the depression variable recovers.

Figure 5.10 shows that the reduced system with external noise can reproduce

the trial-to-trial variability observed in the synchronized datasets. The model

reproduces both qualitative and quantitative features of the data.

Finally, figure 5.11 shows simulated rasters of networks with sufficient inhibitory

feedback. Responses to step inputs are reliable on each trial despite external

noise.
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Figure 5.8: Population dynamics simulated from the model resemble the states
observed in the data. Access to the simulated variables allows us to understand
the phenomenology of dynamics. a-d) were obtained by successively increasing
the inhibitory feedback to the excitatory population. a) Simulation of the de-
polarized desynchronized state. b) Simulation of the classical UP/DOWN state
fluctuations. c, Simulation of the bumpy UP states. d) Simulation of the quies-
cent network state.
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VI

State-dependent population

coding in primary auditory

cortex

Outline
Sensory function is mediated by interactions between external stimuli and intrin-
sic cortical dynamics that are evident in the modulation of evoked responses by
cortical state. A number of recent studies across different modalities have demon-
strated that the patterns of activity in neuronal populations can vary strongly
between synchronized and desynchronized cortical states, i.e. in the presence or
absence of intrinsically generated up and down states. Here we investigated the
impact of cortical state on the population coding of speech in the primary audi-
tory cortex (A1) of gerbils, and found that responses were qualitatively different
in synchronized and desynchronized cortical states. Activity in synchronized A1
was only weakly modulated by sensory input, and the spike patterns evoked by
speech were unreliable and constrained to a small range of patterns. In contrast,
responses to speech in desynchronized A1 were temporally precise and reliable
across trials, and different speech tokens evoked diverse spike patterns with ex-
tremely weak noise correlations, allowing responses to be decoded with nearly
perfect accuracy. Restricting the analysis of synchronized A1 to activity within
up states yielded similar results, suggesting that up states are not equivalent to
brief periods of desynchronization. These findings demonstrate that the repre-
sentational capacity of A1 depends strongly on cortical state, and suggest that
cortical state should be considered as an explicit variable in all studies of sensory
processing.
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6.1 Introduction

1 The representation of sensory inputs in the activity of primary cortical

areas provides the basis for higher level processing. Characterizing this

primary representation is critical for understanding sensory function, as its

nature determines the suitability of different strategies for subsequent com-

putations, and its fidelity constrains behavioral performance. The study of

sensory representations is complicated by the fact that neuronal activity is

determined not only by external inputs, but also by other sources that are

internal to the brain. In cortex, the processing of incoming stimuli can depend

strongly on brain state ([Steriade et al., 2001]; [Castro-Alamancos, 2004b];

[Haider and McCormick, 2009]; [Harris and Thiele, 2011]). In asleep, anes-

thetized, and awake animals, the state of the cortex can vary along a continuum

of synchronized and desynchronized states with different population dynamics.

When the cortex is in a synchronized state (also known as an inactivated state),

activity is characterized by slow fluctuations between intrinsically generated

up and down states, corresponding to periods of concerted spiking and silence

across large areas, and these up and down states play a major role in shaping

activity patterns ([Marguet and Harris, 2011]; [Okun et al., 2012]). Synchro-

nized states are commonly observed during slow-wave sleep and under certain

anesthetics, but recent studies have shown that the cortex can also be in a

synchronized state when animals are awake ([Crochet and Petersen, 2006];

[Greenberg et al., 2008];[Poulet and Petersen, 2008];

[Xu et al., 2012];[Luczak et al., 2013]; [Polack et al., 2013];

[Sachidhanandam et al., 2013]; [Tan et al., 2014];[Zhou et al., 2014a]).

During active sensory processing in awake animals, the cortex often tran-

sitions to a desynchronized (or activated) state in which up and down

states are suppressed and activity is strongly modulated by sensory in-

puts. Studies in the visual and somatosensory systems have observed dra-
1The work described in this chapter has been done in collaboration with Nicholas Lesica.

Nick performed all experiments analyzed here. The analysis was developed jointly with Nick
and Nick wrote the text.
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matic differences between responses in synchronized and desynchronized states

([Castro-Alamancos, 2004a]; [Hasenstaub et al., 2007]; [Goard and Dan, 2009];

[Hirata and Castro-Alamancos, 2011]), and there are indications that such differ-

ences may also be present in A1 ([Ter-Mikaelian et al., 2007]; [Otazu et al., 2009];

[Marguet and Harris, 2011];[Guo et al., 2012];[Zhou et al., 2014a]). In this study,

we measured the activity of populations of single units in gerbil A1 in synchro-

nized and desynchronized states under different anesthetics and observed strong

effects that were evident at both the single cell and population level. We found

that cortical state modulated the selectivity, reliability, and diversity of spike

patterns, as well as the strength of noise correlations, in a manner that greatly

impacted the fidelity of the population code.

6.2 Synchronized and desynchronized states in A1

To study the impact of cortical state on the population coding of speech, we com-

pared activity recorded with a multi-tetrode array in gerbil A1 (Fig.6.1a) under

several different anesthetics. The cortical states imposed by anesthesia may, of

course, differ from those that occur naturally. However, comparisons of sponta-

neous and evoked activity in rodent A1 have revealed similar dynamical proper-

ties in the synchronized and desynchronized states observed under anesthesia and

those in awake animals ([Bermudez Contreras et al., 2013]; [Luczak et al., 2013]).

Furthermore, the use of anesthesia enabled us to control synchronization and

desynchronization without additional influences related to the particular task in

which an animal is engaged, thus allowing us to perform a general comparison of

A1 responses in the presence or absence of intrinsically generated up and down

states.

To achieve a stable and consistent synchronized or desynchronized state through-

out an entire experiment, we recorded activity under either ketamine/xylazine

(KX) or fentanyl/medetomidine/midazolam (FMM). The up and down states

that are typical of a synchronized cortical state were always evident in the pop-

ulations recorded under KX, but were largely absent in those recorded under
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Figure 6.1: Synchronized and desynchronized states in A1 a) A schematic
diagram of the multi-tetrode array used to record A1 activity. b) Examples of
a short segment of activity recorded in synchronized (under ketamine/xylazine)
and desynchronized (under fentanyl/medetomidine/midazolam) A1. The top row
shows the local field potential (LFP; 0.1-100 Hz) recorded on each of the 8 tetrodes
with the signal for each tetrode shown in a different color. Each tetrode signal
is the sum across its four electrodes. The middle row shows a raster plot of the
spiking of all of the single units in the population. Each row shows the spike times
for one cell. The bottom row shows the multi-unit activity (MUA; the sum of the
activity of all isolated single units after smoothing with a Gaussian window with
a width of 50 ms). c) A scatter plot showing the low frequency LFP power (1-20
Hz) and average correlation between the MUA and spiking of each single unit for
all of the synchronized (green) and desynchronized (blue) populations that were
analyzed.

FMM. Short segments of the spontaneous local field potential (LFP), single-unit

spiking, and multi-unit activity (MUA) for two example populations are shown

in Fig. 6.1b. To determine the cortical state for each population, we assessed the

strength of up and down states by measuring the low frequency power in the LFP

and the degree to which the spiking of individual cells was similar to the MUA, as

shown in Fig. 6.1c. The majority of our analysis (all figures but the last) is based

on the sound-evoked responses of 7 populations recorded under KX (245 cells in

total) and 8 populations recorded under FMM (284 cells in total) that exhibited

stable synchronized and desynchronized states, respectively. To confirm that the

state-dependent effects that we observed when comparing different populations
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were also evident when comparing synchronized and desynchronized states within

the same population, we also recorded from 3 populations (131 cells in total) under

urethane in which A1 exhibited spontaneous fluctuations between synchronized

and desynchronized states ([Curto et al., 2009]; [Marguet and Harris, 2011];

[Okun et al., 2012]; [Bermudez Contreras et al., 2013]). Our analysis of these

populations is summarized in the final figure.

6.3 The impact of cortical state on responses to

tones

We began by examining A1 responses to tones. While, on average, the spike

rates evoked by tones were higher than spontaneous rates in both states (median

increase: 0.68 spikes/s for synchronized, n =251, 1.24 spikes/s for desynchronized,

n = 224), the relative increase was much higher in the desynchronized state, as

illustrated in the frequency responses areas (FRAs) for two example populations

shown in Fig. 6.2a. For tones presented at 56 dB SPL, we measured the fraction

of cells in each population that responded significantly above their spontaneous

rate to the best frequency for that population (i.e. the frequency that evoked

a significant response from the largest fraction of cells), as well as the fraction

of cells that responded significantly to at least one of the frequencies tested. As

shown in Fig. 6.2b, only a small fraction of cells in synchronized A1 responded

significantly above their spontaneous rate (median values: 13% for best tone,

18% for any tone, n = 6 populations), consistent with previous studies, but in

desynchronized A1, nearly all cells responded significantly in some populations

(median values: 83% for best tone, 93% for any tone, n = 8 populations). These

differences in population medians between synchronized and desynchronized A1,

as well as all of the other differences in population medians between synchronized

and desynchronized A1 reported in figures 1 through 5, were significant with p <

0.001 (Wilcoxon rank-sum test).

It is possible that increased responsiveness in desynchronized A1 could be ac-

companied by a loss of selectivity, but this was not the case. As shown in Fig.
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6.2c, frequency tuning (width of spike rate tuning at half max for tones at 56 dB

SPL) was much sharper in desynchronized A1 (median value: 1 octave, n = 224

cells) than in synchronized A1 (median value: 2.4 octaves, n = 251 cells). For

some populations, we also examined the selectivity to the speed and direction of

frequency modulations (FMs). The responses of example cells from synchronized

and desynchronized A1 to FM tones are shown in Fig. 6.2d. We quantified selec-

tivity for speed (or direction) based on the maximum and minimum spike rates

observed across all speeds (or directions) as (max rate - min rate) / (max rate
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Figure 6.2: (Caption next page.)
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Figure 6.2: (Previous Page). The impact of cortical state on responses
to tones. a) Frequency response areas (FRAs) for example populations in syn-
chronized and desynchronized A1. Each image shows the average spike rate of
responses to tones of different frequencies and intensities for one cell. Cells were
ordered according to how strongly their activity was modulated by the tones as
measured by the variance in their average spike rates across all frequencies and
intensities. The two cells that were most weakly modulated in the synchronized
population and the one cell that was most weakly modulated in the desynchro-
nized population are not shown. b) A scatter plot showing the percentage of
cells in each synchronized (green) and desynchronized (blue) population that re-
sponded to the best frequency for that population (i.e. the frequency that evoked
a significant response from the largest fraction of cells) and the fraction of cells
that responded significantly to at least one of the frequencies tested. A response
was considered significant if the average spike rate was more than 2 standard
deviations above the average spontaneous rate. The median values are indicated
by the arrows. c) The distribution of the frequency tuning widths for cells in
synchronized (green) and desynchronized (blue) A1. Tuning width was measured
as the range of frequencies for which the average spike rate was at least half of
its maximum value for tones at 56 dB SPL. The median values are indicated by
the arrows. d)Responses of example cells from synchronized and desynchronized
A1 to repeated presentations of frequency-modulated (FM) tones. The top row
shows the spectrogram of the sounds, the bottom rows show raster plots for in-
dividual cells. Each row in the raster plots shows the spike times for one trial.
e) Distributions of the speed selectivity index and direction selectivity index for
responses of individual cells in synchronized and desynchronized A1 to FM tones,
plotted as in C.

+ min rate). Cells in synchronized A1 were generally either non-responsive or

weakly selective (median selectivity index: 0.14 for direction, 0.36 for speed, n =

108 cells), while cells in desynchronized A1 were highly selective for both speed

and direction (median selectivity index: 0.7 for direction, 0.91 for speed, n = 175

cells), as shown in Fig. 6.2e.

6.4 The impact of cortical state on the temporal

precision and reliability of responses to speech

The fidelity of the A1 representation depends on the degree to which responses

to any given sound are reliable across repeated trials. We found that responses

in synchronized A1 were highly variable, while responses in desynchronized A1
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Figure 6.3: The impact of cortical state on the temporal precision and
reliability of responses to speech. a) Responses of example cells from syn-
chronized and desynchronized A1 to repeated presentations of speech. The top
row shows the spectrogram of the sound, the bottom rows show raster plots for
individual cells. Each row in the raster plots shows the spike times for one trial.
b-d)Distributions of the temporal precision, reliability, information throughput,
and information efficiency of responses of individual cells in synchronized and
desynchronized A1 to speech, plotted as in figure 2.

contained temporally precise firing events that were reliable across trials. The

responses of two example cells from synchronized and desynchronized A1 to a

short segment of speech are shown in Fig. 6.3a. To quantify the temporal preci-

sion of the responses, we measured the timescale at which spike timing needs to

be considered to capture the information in single spikes (i.e. the information in

the PSTH) from each cell. We defined the precision for each cell by jittering the

spike times with successively larger amounts of noise until the information in the

responses decreased to 95% of its original value ([Garcia-Lazaro et al., 2013]). As

shown in Fig. 6.3b, the median precision was 31 ms in synchronized A1 (n = 245

cells) and 13 ms in desynchronized A1 (n = 284 cells).

To quantify the reliability of the responses across trials, we measured the signal

to noise ratio (SNR) defined as the ratio of unbiased estimates of the signal (re-
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peatable) and noise (not repeatable) response power ([Sahani and Linden, 2003]),

with responses represented as binary vectors with 2 ms bins. As shown

in Fig. 6.3c, cells in desynchronized A1 were, on average, six times more

reliable than those in synchronized A1 (median values: 0.005 for synchro-

nized, 0.029 for desynchronized), with the SNR of the most reliable cells in

desynchronized A1 approaching values typically observed in sub-cortical areas

([Horvath and Lesica, 2011]). Finally, to quantify the overall fidelity of A1 re-

sponses in a manner that combines precision and reliability, we measured the

throughput and the efficiency of the single spike information for each cell. The

information throughput (bits/s) in desynchronized A1 cells was three times higher

than that in synchronized A1 cells (median values: 1.2 bits/s for synchronized, 3.8

bits/s for desynchronized) and the information efficiency (bits/spike) in desyn-

chronized A1 cells was 5 times higher than that in synchronized A1 cells (median

values: 0.5 bits/spike for synchronized, 2.6 bits/spike for desynchronized), as

shown in Fig. 6.3d.

6.5 The impact of cortical state on the similarity

of spike patterns evoked by different speech

tokens

The above results demonstrate that individual cells in desynchronized A1 respond

reliably to repeated presentations of the same sound. However, the representa-

tion in A1 depends not only on the fidelity of individual cells, but also on the

extent to which different sounds evoke different spike patterns across the popu-

lation. Previous studies in rodent A1 have shown that responses can be highly

constrained, with different sounds evoking spike patterns that are remarkably

similar ([Luczak et al., 2009];[Bathellier et al., 2012]). We examined the similar-

ity of responses evoked by different segments of speech and found that, while there

was a high degree of similarity between responses in synchronized A1, responses

in desynchronized A1 were much more diverse.
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Figure 6.4: (Caption next page.)

We represented population spike patterns as binary matrices (see Fig. 6.4a) and

measured the average similarity between both the single-trial and trial-averaged

patterns evoked by different speech tokens. The spike patterns in synchronized
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Figure 6.4: (Previous page.) The impact of cortical state on the similarity
of spike patterns evoked by different speech tokens. a) The responses
of each population to each trial of each token were represented as binary matri-
ces with rows corresponding to cells and columns corresponding to 10 ms time
bins. b) A scatter plot showing the similarity of the spike patterns across speech
tokens for each synchronized (green) and desynchronized (blue) population for
both single trial responses and responses averaged across trials. For trial average
similarity, values are the average correlation between the average spike patterns
evoked by each pair of tokens. For single trial similarity, values are the average
fractional increase in the distance between spike patterns evoked by each pair
of tokens relative to the average distance between patterns evoked by the same
token. For those populations for which responses were recorded for more than
one set of tokens, multiple symbols are shown (circles for token set 1, squares for
token set 2, and triangles for token set 3). The median values (with each token
set for each population treated as a separate measurement) are indicated by the
arrows. c) The pairwise correlations for the responses of example synchronized
and desynchronized A1 populations to different speech tokens. Each square in
each image shows the correlation for one pair of cells. The images in the top row
show the correlations for the first token and the images in the bottom row show
the correlations for the second token. The similarity of the correlations for token
1 and token 2 are shown. Similarity was measured as the correlation between the
set of pairwise correlations for each token. d) A scatter plot showing the simi-
larity of the spatial pattern and temporal order of spiking across speech tokens
for each synchronized (green) and desynchronized (blue) population, plotted as
in B. e) The correlation function between the spiking of individual cells and the
multi-unit activity for the responses of example synchronized and desynchronized
A1 populations to different speech tokens. Each row in each image shows the cor-
relation function for one cell. For plotting, the correlation functions for all cells
were scaled to have the same maximum and minimum values, and the cells were
ordered according to their latency with respect to the MUA for the first token.
The latency was measured as the center of mass of the correlation function. The
ordering of the images was the same for the first and second tokens. The simi-
larity of the latencies for token 1 and token 2 is shown. Similarity was measured
as the correlation between the set of latencies for each token.

A1 were much more similar across tokens than those in desynchronized A1, both

for the average patterns evoked by each token across trials and for the patterns

evoked on single trials. As shown in Fig. 6.4b, the median correlation between

average patterns for each pair of tokens was 0.51 for synchronized A1 (7 pop-

ulations each with between 1 and 3 sets of 7 different tokens for total n = 12)

and 0.19 for desynchronized A1 (8 populations for total n = 14). This result

indicates a qualitative difference between synchronized and desynchronized A1:
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if the intrinsic dynamics in synchronized A1 simply added ’noise’ to the responses

observed in desynchronized A1, the similarity between the trial-averaged patterns

in the two states would be the same. The difference between synchronized and

desynchronized A1 was also evident when comparing the spike patterns evoked on

single trials. As shown in Fig 6.4b, the median fractional increase in the average

distance between single trial patterns for each pair of tokens relative to the aver-

age distance between patterns for the same token was 4% for synchronized A1 and

20% for desynchronized A1 (note that while the distances may seem small even

for desynchronized A1, they are sufficient to support nearly perfect classification

in the high dimensional response space, as shown below).

To examine the similarity of spike patterns in more detail, we followed the ap-

proaches of previous studies for comparing patterns based on their spatial and

temporal structure ([Luczak et al., 2009]; [Luczak et al., 2013]). We represented

the spatial structure of spiking for each token by the set of correlations between

the spike patterns of each pair of cells in the population (i.e. the correlations

between the rows of the binary spike pattern matrices). Fig 6.4c shows the set of

pairwise correlations for two example populations for two different speech tokens

(each square in each image shows the correlation between one pair of cells for

a given token). In synchronized A1, the spatial structure of spiking was largely

preserved across tokens, while in desynchronized A1, the spatial structure varied

from token to token. To quantify the degree to which the spatial structure of

spiking for each population was similar across tokens, we measured the correla-

tion between the spatial structures for each pair of tokens and averaged across

all pairs of tokens. As shown in Fig. 6.4d, the spatial structure of spiking in

synchronized A1 was twice as similar across tokens as that in desynchronized A1

(median values: 0.83 for synchronized, 0.42 for desynchronized).

We also examined the degree to which the temporal order of spiking for each

population was similar across tokens. We represented the temporal order of

spiking for each token by the set of latencies measured from the center of mass

of the correlation function between the spiking of each cell in the population and

the MUA (i.e. the correlation function between each row of the binary spike
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pattern matrices and the sum of all rows). Fig. 6.4e shows the set of correlation

functions for two example populations for two different speech tokens (each row

in each image shows the correlation function between one cell and the MUA).

In synchronized A1, the temporal order of spiking was largely preserved across

tokens, while in desynchronized A1, the temporal order varied from token to

token (for the images in Fig. 6.4e, the cells in each population were ordered

according to their latency for the first token and plotted in the same order for the

second token). To quantify the degree to which the temporal order of spiking for

each population was similar across tokens, we measured the correlation between

the latencies for each pair of tokens and averaged across all pairs of tokens. As

shown in Fig. 6.4d, the temporal order of spiking was much more similar across

tokens in synchronized A1 than in desynchronized A1 (median values: 0.7 for

synchronized, 0.43 for desynchronized).

6.6 The impact of cortical state on noise correla-

tions and population decoding

The above results demonstrate that the degree of similarity in the spike patterns

evoked by different sounds differs strongly between synchronized and desynchro-

nized A1. However, the extent to which A1 can support discrimination of dif-

ferent sounds depends not only on the range of evoked patterns, but also on

the strength of the correlations in the trial-to-trial variability in these patterns

across the population. Fig. 6.5a shows the distributions of pairwise noise cor-

relations in responses to speech for each population (i.e. the difference in the

correlations between the rows of the binary spike pattern matrices before and

after shuffling the trial order). While noise correlations in synchronized A1 were

relatively strong (median value: 0.07, n = 6451 pairs), those in desynchronized

A1 were extremely weak (median value: 0.002, n = 6101 pairs). These results

were consistent across a wide range of time scales (see Fig. 6.5b). To quantify

how the differences between spike patterns in synchronized and desynchronized

A1 impact the representation of speech, we trained a support vector machine to
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Figure 6.5: The impact of cortical state on noise correlations and popu-
lation decoding a) Box and whisker plots showing the distribution of pairwise
noise correlations for each synchronized (green) and desynchronized (blue) pop-
ulation. The box spans the 25th to 75th percentiles, and the whiskers span the
5th to 95th percentiles. For those populations for which responses were recorded
for more than one segment of speech, multiple distributions are shown (darkest
color for token set 1, middle color for token set 2, and lightest color for token set
3). The median values for all pairs across all populations are indicated by the
arrows. b) The median pairwise noise correlations in responses to speech for each
synchronized (green) and desynchronized (blue) population. The response of each
cell to each trial was represented as a binary vector with a range of time bins as
indicated on the horizontal axis. c) A scatter plot showing the performance of a
support vector machine in decoding the responses of each synchronized (green)
and desynchronized (blue) population to different speech tokens with and without
noise correlations, plotted as in figure 4B.

predict which speech token evoked a given single trial response. As shown in Fig.

6.5c, decoding of population spike patterns from desynchronized A1 was highly

accurate (median performance: 99% correct), while decoding of patterns from

synchronized A1 was substantially worse (median performance: 62% correct).

Decoding of synchronized A1 responses was also impacted by noise correlations;

when noise correlations were removed by shuffling the trial order before training

the classifier and decoding, median performance increased from 62% correct to

82% correct (p < 0.001, Wilcoxon signed-rank test).
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6.7 Spike patterns evoked by different speech

tokens in synchronized A1 are similar and

have strong noise correlations even within up

states

It has been hypothesized that up states in synchronized cortex may

be equivalent to brief periods of desynchronization ([Destexhe et al., 2007];

[Castro-Alamancos, 2009]). This implies that the differences in the spike pat-

terns in synchronized and desynchronized A1 that we have observed can be ac-

counted for by the global dynamics of up and down states in synchronized A1,

and that if only the activity within up states is considered, the differences be-

tween synchronized and desynchronized A1 should be small. We found, however,

that restricting the analysis of synchronized A1 to activity within up states had

little impact on our results.

Fig. 6.6a shows the probability of being in an up state for an example population

from synchronized A1 during repeated presentations of a short segment of speech.

The timing of up and down states in this population was strongly modulated

by the sound, and this effect was consistent across all of the populations that

we studied in synchronized A1; the reliability of the timing of up and down

states across trials measured as the SNR for binary vectors specifying whether

the population was in an up or down state in 10 ms time bins was 0.17?0.09 (7

populations each with between 1 and 3 different speech segments for total n =

12). Fig. 6.6b shows the MUA for an example population from synchronized

A1 across repeated presentations of two different speech tokens. Each row of the

image shows the MUA for one trial, and the trials are ordered by the time of

the earliest activity. There were very few trials in which the tokens evoked no

response (median value: 4% of trials across 7 populations each with between 12

and 18 different tokens for total n = 96). In most trials, either the response to

the onset of the token occurred during an ongoing up state (median value: 43%

of trials) or the onset of the token triggered an up state (median value: 50% of
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trials).

We repeated the analyses of population spike patterns described in the previous

section after separating trials in which the response to a token occurred during an

ongoing up state from those in which the token triggered an up state. Whether

considering the similarity in the spike patterns evoked by different sounds (Fig.

6.6c), noise correlations (Fig. 6.6d), or decoding performance (Fig. 6.6e), the

differences between different classes of responses in synchronized A1 were small,

and the differences between synchronized and desynchronized A1 were large. Sur-

prisingly, although the differences between the different classes of responses in

synchronized A1 were small, the responses on trials in which an up state was
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Figure 6.6: (Caption next page.)
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Figure 6.6: (Previous page.) Spike patterns evoked by different speech to-
kens in synchronized A1 are similar and have strong noise correlations
even within up states a) The probability of being in an up state in 10 ms time
bins for an example population from synchronized A1 during repeated presenta-
tions of a short segment of speech. The dark line shows the probabilities for the
actual responses. The light line shows the probability computed after shuffling
the order of time bins on each trial and indicates the overall probability of being
in an up state. The thickness of lines indicate 95b) The MUA for an example
population from synchronized A1 across repeated presentations of two different
speech tokens. Each row of the image shows the MUA for one trial, and the trials
are ordered by the time of the earliest activity. Trials were separated into those
with no response, those in which the response occurred during an ongoing up
state, and those in which the token triggered an up state. c) Plots showing the
similarity of the spike patterns across speech tokens for each synchronized (green)
and desynchronized (blue) population for both responses averaged across trials
(left) and single trial responses (right). For trial average similarity, values are
the average correlation between the average spike patterns evoked by each pair
of tokens. For single trial similarity, values are the average fractional increase in
the distance between spike patterns evoked by each pair of tokens relative to the
average distance between patterns evoked by the same token. For those popula-
tions for which responses were recorded for more than one set of tokens, multiple
symbols are shown (darkest color for token set 1, middle color for token set 2, and
lightest color for token set 3). The symbols indicate the median value for each
population across all pairs of tokens. The median values across all populations
are noted on the figure (with each token set for each population treated as a sepa-
rate measurement). Responses from synchronized A1 were analyzed for all trials
(All), trials in which the response occurred during an ongoing up state (OG),
and those in which the token triggered an up state (UT). de) Plots showing the
pairwise noise correlations and the performance of a support vector machine in
decoding responses, plotted as in C.

triggered were more like desynchronized responses (i.e. had more diverse spike

patterns, weaker noise correlations, and allowed for better decoding performance)

than those that occurred during ongoing up states (see figure for population me-

dians, all differences were significant with p < 0.001, Wilcoxon signed-rank test).
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6.8 Differences between synchronized and desyn-

chronized states in the same population

All of the above results are based on comparing synchronized and desyn-

chronized states in different populations. To confirm that the same

state-dependent effects on population coding were also evident when com-

paring synchronized and desynchronized states within the same popula-

tion, we recorded from 3 populations under urethane in which A1 ex-

hibited spontaneous fluctuations between synchronized and desynchronized

states ([Curto et al., 2009]; [Marguet and Harris, 2011]; [Okun et al., 2012];

[Bermudez Contreras et al., 2013]). Fig. 6.8a shows the spontaneous MUA for an

example population over a period of approximately 1 hour (each 10 second trial
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Figure 6.7: (Caption next page.)
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Figure 6.8: (Previous page.) Differences between synchronized and desyn-
chronized states in the same population a) The spontaneous MUA for an
example A1 population under urethane over a period of approximately 1 hour.
Each 10 second trial of spontaneous activity was followed by 40 seconds of speech.
The MUA was defined as the sum of the activity of all of the individual cells in the
population. b) The median value of correlation between the spiking of each cell
in the population and the MUA for each 10 second trial of spontaneous activity
shown in A. The activity of each cell was represented as a spike count vector with
50 ms bins. During periods when the value was less than 0.25, the cortex was
classified as desynchronized, and during periods when the value was greater than
0.4, the cortex was classified as synchronized. c) Responses of an example cell
to repeated presentations of speech in synchronized and desynchronized states.
Each row in the raster plots shows the spike times for one trial. The periods
during which the cortex was classified as synchronized and desynchronized are
indicated by the shading. Only every tenth trial is shown. d) Plots showing the
similarity of the spike patterns across speech tokens for each of the 3 populations
recorded under urethane in synchronized and desynchronized states. For trial
average similarity, values are the average correlation between the average spike
patterns evoked by each pair of tokens. For single trial similarity, values are the
average fractional increase in the distance between spike patterns evoked by each
pair of tokens relative to the average distance between patterns evoked by the
same token. The median values for each population across all pairs of tokens are
shown. ef) Plots showing the pairwise noise correlations and the performance of
a support vector machine in decoding responses, plotted as in D.

of spontaneous activity was followed by 40 seconds of speech). The transitions

between synchronized and desynchronized states for this population were clearly

evident in the correlation between the spiking of each cell in the population and

the MUA (Fig. 6.8b). We classified the cortical states during each block of speech

trials as synchronized or desynchronized based on the surrounding spontaneous

activity and repeated the analyses of population spike patterns described above.

With respect to the similarity in the spike patterns evoked by different sounds

(Fig. 6.8d), noise correlations (Fig. 6.8e), and decoding performance (Fig. 6.8f),

the differences between responses in synchronized and desynchronized states for

these three populations mirrored those that we observed when comparing states

across different populations above.
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6.9 Discussion

We have shown that the population coding of speech in A1 depends strongly

on cortical state. We found that responses to speech in desynchronized A1 were

temporally precise and reliable across trials, with median precision that was three

times higher than in synchronized A1. While different speech tokens evoked simi-

lar spike patterns in synchronized A1, we found that responses in desynchronized

A1 were much more diverse, with similarity in both the spatial structure and

the temporal order of spiking across tokens that was approximately half that in

synchronized A1. This diversity of spike patterns, together with extremely weak

noise correlations, allowed us to decode responses to different speech tokens from

desynchronized A1 with nearly perfect performance. These state-dependent dif-

ferences in the population coding of speech were evident in comparisons both

across different populations, as well between synchronized and desynchronized

states within the same populations.

Our finding that gerbil A1 has the capacity to represent sounds with

high fidelity in the desynchronized state is consistent with behavioral stud-

ies in rodents that have demonstrated the essential role of A1 in auditory

processing ([Wetzel et al., 1998]; [Cooke et al., 2007]; [Porter et al., 2011]) and

learning ([Bao et al., 2004]; [Reed et al., 2011]; [Aizenberg and Geffen, 2013];

[Banerjee and Liu, 2013]). Several previous studies of synchronized and desyn-

chronized rodent A1 have reported differences that are qualitatively consistent

with our results. In rats anesthetized with urethane, the change from synchro-

nized to desynchronized states was accompanied by a decrease in the trial-to-

trial variability of A1 responses to clicks ([Curto et al., 2009]) and amplitude-

modulated noise ([Marguet and Harris, 2011]), as well as a decrease in noise cor-

relations ([Renart et al., 2010]). A study in awake rats found that the temporal

order of population spiking was conserved across synchronized and desynchro-

nized states ([Luczak et al., 2013]), which may seem inconsistent with our finding

that the temporal order of spiking was similar across different sounds in synchro-

nized A1, but not in desynchronized A1. However, the comparison by Luzcak
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et al. was based on the average temporal order across all sounds tested in the

two states, rather than on the order for individual sounds as in our study. We

also observed a consistent temporal order in desynchronized A1 when averaging

across two separate 5 minute segments on ongoing speech (data not shown), but

our results show that the intrinsic factors that impose this consistency across

sounds provide only a weak constraint on the temporal order in responses to any

particular sound.

Another study in awake rats found that A1 responses in engaged animals were

suppressed relative to those in passive animals ([Otazu et al., 2009]). While

this study did not explicitly measure cortical state, the results of previous

studies suggest that engaged and passive behavioral conditions in rodents are

typically associated with desynchronized and synchronized states, respectively

([Harris and Thiele, 2011]). Our data are consistent with the results of Otazu et

al.; the average spike rates in responses to speech were lower in desynchronized

A1 than in synchronized A1 (median values: 5.2 spikes/s for synchronized, n =

245, 3.3 spikes/s for desynchronized, n = 284).

Our results differ from those of previous studies with respect to differences

between activity in desynchronized cortex and activity during up states in

synchronized cortex. Previous studies have shown that membrane poten-

tial dynamics during up states in anesthetized animals are similar to those

during prolonged periods of desynchronization in awake animals, suggest-

ing that up states may be equivalent to brief periods of desynchronization

([Destexhe et al., 2007];[Castro-Alamancos, 2009]). Our results argue against

this hypothesis, at least at the level of population spike patterns, as restrict-

ing our analysis of synchronized A1 to activity within up states had little impact

on our results. Our finding that noise correlations in synchronized A1 persist even

when only up states are considered also differ from those of recent studies that

have shown that noise correlations within up states in synchronized cortex are

weak ([Renart et al., 2010]; [Ecker et al., 2014]). The anesthetic used to achieve

a synchronized state in our study (ketamine/xylazine) differed from those used

in the other studies (sufentanil and urethane) and, while the dynamics of up and
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down states induced by these different anesthetics appear to be similar, there may

be other, more subtle differences in their effects on network dynamics that impact

noise correlations. To resolve these discrepancies, further studies of population

activity across different synchronized states are required.

Our results add to a growing body of evidence demonstrating the im-

portance of cortical state for sensory processing ([Harris and Thiele, 2011]).

Early evidence suggested that the interactions between spontaneous and

evoked activity in the synchronized state were additive ([Arieli et al., 1996];

[Azouz and Gray, 2003]; [Ringach, 2009]), but recent studies have shown that

these interactions can be much more complex, with sensory inputs causing tran-

sitions between up and down states and intrinsic dynamics placing strong con-

straints on activity patterns ([MacLean et al., 2005]; [Hasenstaub et al., 2007];

[Rigas and Castro-Alamancos, 2007]; [Curto et al., 2009]; [Luczak et al., 2009];

[Luczak et al., 2013]; [Bathellier et al., 2012]). The ability of stimulus onsets to

trigger an up state may facilitate the detection of stimulus onsets; indeed, in

our sample of populations in synchronized A1, trials in which the onset of a

speech token triggered an up state contained an average of 18% more spikes

than those in which responses occurred during an ongoing upstate (p < 0.001,

Wilcoxon signed-rank test). Recent studies have also provided evidence that net-

work dynamics can aid in the processing of ongoing stimuli. For example, the

entrainment of slow rhythms in A1 has been shown to facilitate the process-

ing complex sound streams ([Kayser et al., 2009]; [Giraud and Poeppel, 2012];

[Lakatos et al., 2013]; [Zion Golumbic et al., 2013]) and our finding that the dy-

namics of up and down states in synchronized A1 are entrained by speech are

consistent with these results. Thus, rather than simply reflecting a general sup-

pression of network dynamics, the high fidelity representation of sounds that we

observed in desynchronized A1 may result from network dynamics being strongly

driven by sound rather than by intrinsic sources. Elucidating the role of network

dynamics in desynchronized cortex and characterizing how they interact with

sensory inputs are challenges for future studies.
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6.10 Materials and Methods

Low frequency local field potential power : The low frequency power in the LFP

for each population was measured from spontaneous activity (sound 1 described

above). For each tetrode on the array, the voltage signals were averaged across the

4 channels. For each of these tetrode signals, the power spectrum was computed

using Welch’s averaged, modified periodogram method for 6 s segments with 50

% overlap. The low frequency power was measured as the sum of the power

between 1 and 20 Hz. The values reported for each population are the average

across the 8 tetrodes on the array. The units associated with the reported values

are arbitrary, but are the same for all populations.

Correlation between single-unit spiking and multi-unit activity in spontaneous ac-

tivity: The degree of concerted spiking in each population was measured from

spontaneous activity (sound 1 described above) as the average value of the cor-

relation between spiking of each cell and the MUA. The activity of each cell

was represented as a spike count vector with 50 ms bins. The MUA for each

population was defined as the sum of the activity of all of the individual cells

in the population. The correlation between the single-unit spiking and MUA in

spontaneous activity was used to classify the cortical state as synchronized or

desynchronized for urethane experiments: during periods when the value was less

than 0.25, the cortex was classified as desynchronized, and during periods when

the value was greater than 0.4, the cortex was classified as synchronized.

Tone responsiveness: Responses to tone set 2 (sound 3 described above) were

evaluated in two ways: 1) the fraction of cells in each population that responded

significantly (average spike rate more than 2 standard deviations above average

spontaneous rate) to the best frequency for that population (i.e. the frequency

that evoked a significant response from the largest fraction of cells), and 2) the

fraction of cells that responded significantly to at least one of the frequencies

tested.

Frequency tuning width: The width of the frequency tuning curve for each cell was
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measured from responses to tone set 1 (sound 2 described above) at 56 dB SPL

as the range of frequencies for which the spike rate averaged over all trials was

at least half of its maximum value. Spontaneous spike rates were not subtracted

before measurement.

Direction selectivity: The direction selectivity index (DSI) for each cell was mea-

sured from responses to FM tones (sound 4 described above). For each of the six

FM speeds, the direction selectivity index was measured from the average spike

rate of responses to the six speeds as (highest rate - lowest rate) / (highest rate

+ lowest rate). The DSI reported for each cell is the higher of the values mea-

sured for the two directions. Spontaneous spike rates were not subtracted before

measurement.

Speed selectivity: The speed selectivity index (SSI) for each cell was measured

from responses to FM tones (sound 4 described above). For each of the two FM

directions, the speed selectivity index was measured from the average spike rate of

responses to the two directions as (higher rate - lower rate) / (higher rate + lower

rate). The SSI reported for each cell is the highest that was measured for the two

directions. Spontaneous spike rates were not subtracted before measurement.

Temporal precision: The critical level of spike timing precision for each cell was

measured from responses to speech (sound 5 described above) using a method

that we have described previously (Garcia-Lazaro et al., 2013). The responses

for each cell were represented as binary vectors with 2 ms bins and the single

spike information (Brenner et al., 2000) was measured as described below. The

original spike times were then jittered by adding noise drawn from a uniform

distribution and the information was recomputed. The critical level of precision

was defined as the amount of jitter (i.e. the width of the noise distribution) that

reduced the information in the responses to 95% of its original value.

Reliability: The reliability of responses across trials for each cell was measured

from responses to speech (sound 5 described above) using a method that we

have described previously (Sahani and Linden, 2003). To quantify reliability,

we measured the signal to noise ratio (SNR) defined as the ratio of unbiased
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estimates of the signal (repeatable) and noise (not repeatable) response power

with responses represented as binary vectors with 2 ms bins.

Information throughput and efficiency: The mutual information between the stim-

ulus and the responses of each cell was measured from responses to speech (sound

5 described above). The mutual information between two variables measures how

much the uncertainty about the value of one variable is reduced by knowing the

value of the other. The mutual information between a sensory stimulus and a

neural response can be computed as the difference between the entropy of the

response before and after conditioning on the stimulus:

I(r; s) = H(r)−H(rs) = −
∑
r p(r) log2 p(r) +

∑
s p(s)

∑
r p(r) log2 p(r)

To measure the information that is carried by spike trains about speech without

having to specify which features of the speech were relevant, we used the approach

pioneered by Strong et al. (Strong et al., 1998) of discretizing a continuous

stimulus into separate ’stimuli’ in time. To measure information, the total entropy

of the response is compared to the average entropy of the response in each time

bin (the ’noise’ entropy):

I(r; s) = H(r)−H(rt) = −
∑
r p(r) log2 p(r) + 〈

∑
r p(r(t)) log2 p(r(t))〉t

We measured the single spike information for each cell, which is equivalent to

the information in the PSTH (Brenner et al., 2000), by representing responses

as binary vectors with 2 ms bins and computing the information in single bin

’words’. All information calculations were performed using the Direct Method via

infoToolbox for Matlab (Magri et al., 2009) with bias correction via the shuffling

method and quadratic extrapolation (Panzeri et al., 2007). The stability of all

calculations was verified by ensuring that the values obtained using only half of

the recorded trials differed from those obtained using all trials by less than 5%.

Spike pattern similarity: The similarity of the spike patterns evoked by different

speech tokens for each population was measured from responses to speech (sound

5 described above). From each 2.5 s segment of speech, responses to seven 0.25

s tokens were extracted. The responses of each population to each trial of each
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token were represented as binary matrices with rows corresponding to cells and

columns corresponding to 10 ms time bins (see figure 4A). The similarity of trial-

averaged spike patterns was measured as the average value of the correlation

between the average responses across all pairs of tokens. The similarity of single

trial spike patterns was measured as the fractional increase in the average value

of the Euclidean distance between the responses across all pairs of tokens relative

to the average value of the Euclidean distance between spike patterns evoked by

the same token.

The similarity of the spatial structure of the spike patterns was measured follow-

ing the approach of Luczak et al. (Luczak et al., 2009). The spatial structure

of spiking for each token was measured as the set of correlations between the

responses of each pair of cells (i.e. the correlations between the rows of the bi-

nary response matrices). The similarity of the spatial structure across tokens

was measured as the average value of the correlation between the set of pairwise

correlations for all pairs of tokens.

The similarity of the temporal order of the spike patterns was measured following

the approach of Luczak et al. (Luczak et al., 2009). The responses of each cell

to each trial of each token were represented as binary vectors with 1 ms bins.

The MUA for each population was defined as the sum of the activity of all of the

individual cells in the population. The temporal order of spiking for each token

was measured as the set of latencies obtained by taking the center of mass of

the correlation function between each cell and the MUA (after smoothing with

a Gaussian window with a width of 8 ms). The similarity of the temporal order

was measured as the average value of the correlation between the sets of latencies

for all pairs of tokens.

Noise correlations: The noise correlations between each pair of cells in each pop-

ulation were measured from responses to speech (sound 5 described above). The

response of each cell to each trial was represented as a binary vector with 10 ms

time bins. The total correlation for each pair of cells was obtained by computing

the correlation coefficient between the actual responses. The signal correlation
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was computed after shuffling the order of repeated trials for each time bin. The

noise correlation was obtained by subtracting the signal correlation from the total

correlation.

Population decoding: A support vector machine was trained (using the LIBSVM

package from http://www.csie.ntu.edu.tw/c̃jlin/libsvm with default parameters)

to decode the single trial responses of each population to speech (sound 5 de-

scribed above). From each 2.5 s segment of speech, responses to seven 0.25 s

tokens were extracted. The responses of each population to each trial of each

token were represented as binary matrices with rows corresponding to cells and

columns corresponding to 10 ms time bins (see figure 4A). The classifier was

trained on responses to 75% of trials and used to predict which token evoked the

responses on other 25% of trials. The values reported for each population are

the average performance obtained using 10 different subsets of trials for training

and prediction. To test the effects of noise correlations on decoding, the order of

repeated trials for each cell for each time bin were shuffled before training and

prediction.

Classification of up and down states: To classify up and down states in synchro-

nized A1, the MUA was computed as described above and represented as a spike

count vector with 10 ms time bins. The MUA was filtered with a 10 bin median

filter and the population was considered to be in an up state in any bin in which

the filtered MUA was greater than zero.

Separation of trials in which the response to a speech token occurred during

an ongoing up state from those in which the token triggered an up state: For

responses to speech in synchronized A1, the MUA was computed as described

above and represented as a spike count vector with 5 ms time bins. The MUA

was filtered with a 3 bin median filter and, for each token, the time of the first

peak in the mean MUA across trials that was a least 75% as large as the maximum

overall value was determined. Trials in which there was no activity within ?25

ms of this peak were ignored. For the remaining trials, if there was any activity

in the period from 75 ms to 25 ms before this peak, the response was classified as
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having occurred during an ongoing up state; otherwise, the response was classified

as having triggered an up state.



VII

Learning visual motion in

recurrent neural networks

Outline
We present a dynamic nonlinear generative model for visual motion based on a
latent representation of binary-gated Gaussian variables. Trained on sequences of
images, the model learns to represent different movement directions in different
variables. We use an online approximate inference scheme that can be mapped
to the dynamics of networks of neurons. Probed with drifting grating stimuli and
moving bars of light, neurons in the model show patterns of responses analogous
to those of direction-selective simple cells in primary visual cortex. Most model
neurons also show speed tuning and respond equally well to a range of motion
directions and speeds aligned to the constraint line of their respective preferred
speed. We show how these computations are enabled by a specific pattern of
recurrent connections learned by the model.
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7.1 Introduction

Perhaps the most striking property of biological visual systems is their ability

to efficiently cope with the high bandwidth data streams received from the eyes.

Continuous sequences of images represent complex trajectories through the high

dimensional and nonlinear space of two dimensional images. The survival of an-

imal species depends on their ability to represent these trajectories efficiently

and to distinguish visual motion on a fast time scale. Neurophysiological experi-

ments have revealed complicated neural machinery dedicated to the computation

of motion [Mikami et al., 1986]. In primates, the classical picture of the visual

system distinguishes between an object-recognition-focused ventral pathway and

an equally large dorsal pathway for object localization and visual motion. Here we

propose a model for the very first cortical computation in the dorsal pathway: that

of direction-selective simple cells in primary visual cortex [Livingstone, 1998]. We

continue a line of models which treats visual motion as a general sequence learn-

ing problem and proposes asymmetric Hebbian rules for learning such sequences

[Abbott and Blum, 1996, Rao and Sejnowski, 2000]. We reformulate these earlier

models in a generative probabilistic framework which allows us to train them on

sequences of natural images. For inference we use an online approximate filtering

method which resembles the dynamics of recurrently-connected neural networks.

Many previous low-level generative models of image sequences have treated time

as a third dimension in a sparse coding problem [Olshausen, 2003]. These ap-

proaches have thus far been difficult to map to neural architecture as they have

been implemented with noncausal inference algorithms. Furthermore, the spa-

tiotemporal sensitivity of each learned variable is determined by a separate three-

dimensional basis function, requiring very many variables to encode all possi-

ble orientations, directions of motion and speeds. Cortical architecture points

to a more distributed formation of motion representation, with temporal sensi-

tivity determined by the interaction of neurons with different spatial receptive

fields. Another major line of models of video analyzes the slowly changing fea-

tures of visual input and proposes complex cells as such slow feature learners
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[Berkes et al., 2009], [Wiskott and Sejnowski, 2002]. However, these models are

not expressive enough to encode visual motion and are more specifically designed

to encode image dimensions invariant in time.

A recent hierarchical generative model for mid-level visual motion separates the

phases and amplitudes of complex coefficients applied to complex spatial basis

functions [Cadieu and Olshausen, 2009]. This separation makes it possible to

build a second layer of variables that specifies a distribution on the phase coef-

ficients alone. This second layer learns to pool together first layer neurons with

similar preferred directions. The introduction of real and imaginary parts in the

basis functions is inspired by older energy-based approaches where pairs of neu-

rons with receptive fields in quadrature phase feed their outputs with different

time delays to a higher-order neuron which thus acquires direction selectivity.

However, the model of Cadieu and Olshausen, and models based on motion en-

ergy in general, do not reproduce direction-selective simple cells. Here we propose

a network in which local-motion computation is calculated in a more distributed

fashion than is postulated by feedforward implementations of energy models.

7.1.1 Recurrent Network Models for Neural Sequence

Learning.

Another view of the development of visual motion processing sees it as a spe-

cial case of the general problem of sequence learning [Dayan and Abbott, 2001].

Many structures in the brain seem to show various forms of sequence learning, and

recurrent networks of neurons can naturally produce learned sequences through

their dynamics [Barber, 2002, Brea et al., 2011]. Indeed, it has been suggested

that the reproduction of remembered sequences within the hippocampus has an

important navigational role. Similarly, motor systems must be able to gener-

ate the sequences of control signals that drive appropriate muscle activity. Thus

many neural sequence models are fundamentally generative. By contrast, it is not

evident that V1 should need to reproduce the learned sequences of retinal input

that represent visual motion. Although generative modelling provides a powerful
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mathematical device for the construction of inferential sensory representations,

the role of actual generation has been debated. Is there really a potential con-

nection then, to the generative sequence reproduction models developed for other

areas?

One possible role for explicit sequence generation in a sensory system is for pre-

diction. Predictive coding has indeed been proposed as a central mechanism

to visual processing [Rao and DH, 1999] and even as a more general theory of

cortical responses [Friston, 1999]. More specifically, as a visual motion learning

mechanism, sequence learning forms the basis of an earlier simple toy but bio-

physically realistic model based on STDP at the lateral synapses in a recurrently

connected network [Rao and Sejnowski, 2000]. In another biophysically realistic

model, recurrent connections are set by hand rather than learned, but they pro-

duce direction selectivity and speed tuning in simulations of cat primary visual

cortex [Douglas et al., 1995]. Thus, the recurrent mechanisms of sequence learn-

ing may indeed be important. In the next section, we give a short demonstration

of the history-dependent dynamical computations which can be implemented by

a network of linear neurons with instantaneous feedforward visual input. The rest

of the paper will elaborate the learning mechanisms that might lead to such rep-

resentations. We will mathematically define a probabilistic sequence modelling

network which can learn patterns of visual motion in an unsupervised manner

from 16 by 16 patches with 512 latent variables connected densely to each other

in a nonlinear dynamical system.

7.2 Linear neurons with recurrent connectivity

enable history-dependent computations

Figure 7.2a shows examples of typical spatiotemporal receptive fields used to

model the responses of cortical visual neurons. They consist of an independent

filter estimated for each of a number of timelags between a presented stimulus and

the neural response. Because neurons respond to specific spatiotemporal features

of visual images, stimuli presented tens and up to hundreds of milliseconds in the
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Figure 7.1: Toy sequence learning model with biophysically realistic neurons
(from [Rao and Sejnowski, 2000]). Neurons N1 and N2 have the same RF as
indicated by the dotted line, but after STDP learning of the recurrent connec-
tions with other neurons in the chain, N1 and N2 learn to fire only for rightward
and leftward motion.

past can affect their activity. The filters shown in figure 7.2a have been obtained

from the Gabor function, a well-known parametric model of spatial receptive

fields, which has been shifted spatially at constant speeds in fixed directions.

They can be used to compute a receptive field’s response to an external stimulus

in a similar dot-product computation represented graphically in figure 7.2b.

Although spatiotemporal filters are popular representations of V1 neuron recep-

tive fields, such representations have little computational appeal, as well as little

documented biophysical evidence. Firstly, spatiotemporal receptive fields require

the specification of a different filter for every timelag in the past a neuron wants

to consider, which results in an unnecessarily large number of feedforward con-

nections that have to be learned or specified. Secondly, the computation requires

lagged copies of inputs to be kept available for durations of up to hundreds of

milliseconds. Although it has been suggested that these lagged inputs are relayed

by the LGN ([]), lagged LGN neurons have proved to be elusive and not very

well represented. In addition, lagged LGN cells would be a poor choice of storage

location for the lagged stimulus copies, as the LGN has few neurons available and

the optical radiation already presents a bottleneck of information transmission,

before and after the thalamus. No evidence of true delay lines has been found in

cortex yet.
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Figure 7.2: Conversion from a bank of spatio-temporal receptive fields
to a recurrent network with instantaneous inputs. a) Five filters out of a
bank of 1,024 randomly-drawn Gabor spatio-temporal filters. The spatial param-
eters of the Gabors were chosen randomly from distributions that qualitatively
match reported simple cell receptive fields, while the speeds of movements were
also drawn independently from a kurtotic distribution with many receptive fields
moving relatively slowly, also in agreement with the relative preference of simple
cells to slow motion. b) Schematic of the feedforward computation where the
variable xt represents the output of a simple cell at time t that receives feedfor-
ward input from lagged retinal/LGN cells at many previous temporal lags. c)
Schematic of a computation performed intrinsically by the network. The activity
of a population of neurons xt depends not only on the instantaneous input, but
also on the recent activities of the population xt−1.



7 Linear neurons with recurrent connectivity enable history-dependent
computations 122

However, an alternative computation that produces the same output can be de-

vised, as represented graphically in figure 7.2c. Since neurons are recurrently

highly inter-connected in cortex, it is possible to use the dynamics they create

to store the relevant information required to estimate the same spatiotemporal

patterns. Intuitively, if we discretize time in 10 ms bins, the activity of neurons

at time t is available for computations at time t + 1. If at time t the activity

of neurons represents a function of the stimulus many timepoints in the past, by

propagation the activity of neurons at time t+1 will also represent the past stim-

ulus. In addition, the instantaneous thalamic input will bring new information

about the current spatial stimulus which can be integrated with the old infor-

mation to produce an estimate of the linear spatiotemporal receptive field. Such

a solution to history-dependent computations in visual cortex does not require

lagged copies of the input, has fewer parameters than the purely feedforward

filters, can integrate inputs over long periods of time and actually has reduced

computational complexity, in terms of how many addition/multiplication opera-

tions have to be executed per second (flops). At the end of this section we will

give a back of the envelope calculation of the orders of magnitude complexity of

the two proposed computations.

The equations below show a simple derivation that can reparametrize any given

set of spatiotemporal basis functions (such as those shown in 7.2) to a set of

parameters used in a linear recurrent neural network with instantaneous input

filters W0 and recurrent pairwise connections R. Although the transformation

is not biophysically motivated, it serves to show a mathematical correspondence

between the two solutions to visual-history dependence discussed above.

Consider parametrizing the a full set of 1,024 spatiotemporal receptive fields

by their spatial receptive fields (2-dimensional, npix by npix) at all timelags (a

3rd dimension). We can vectorize the 2-dimensional filters into a single one-

dimensional vector with npix ∗ npix entries and cumulate all filters at time t from

the entire population of 1,024 neurons into a matrix of size n2
pix by 1,024 and call

this matrix Wt. Similarly we obtained [W1, W2,...Wt...]. The linear response of

the population of 1,024 neurons can be represented by a 1,024-dimensional vector
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xt that is computed as the following sum

xt =
∞∑
τ=0

Wτ y
t−τ

We make the following ansatz: each of these timelagged matrices Wt can be

rewritten in terms of single recurrent matrix R and the initial feedforward matrix

at instantaneous timelag W0.

Wτ = (R)τ W0

The sum computed in variable xt can now be rewritten as follows

xt = W0 y
t +R

∞∑
τ=0

(R)τ W0 y
t−1−τ

xt = W0 y
t +R xt−1

The last equation exactly represents a linear recurrent neural network, with in-

stantaneous feedforward input W0yt and recurrent matrix connectivity R. Al-

though we have made the ansatz such that each Wt should be rewritten as

Wτ = (R)τ W0, such a matrix R may not generally exist. However, under

mild assumptions it can be shown that any finite set of sufficiently many spa-

tiotemporal receptive fields can be reparametrized with a matrix R. Instead of

showing the proof, below we show that the reparametrization is easy to obtain

under more practical concerns of a finite and relatively small number of spa-

tiotemporal filters (1024). Under such conditions the reparametrization will not

be perfect, but the representation error is sufficiently small to be negligible.

Specifically, we can solve for R by linear regression

W1 ≈ R W0

W2 ≈ R W1

...

+ L1-regularization
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a b

Figure 7.3: Spatial reconstructions of the bank of filters with intrinsic
representations of the recurrent dynamics. a) The reconstructed spatial fil-
ters at short timelags (10 frames into the past) are exact. b) The reconstructions
at longer timelags (20 frames into the past) are relatively more noisy and begin
developing ripples. In general, the quality of the reconstructions is a function of
the number of recurrent connections in the network that can store information.

Already this offers sufficiently exact matrices R to reconstruct the entire spa-

tiotemporal profiles of the population at all timelags starting just with the feed-

forward filter W0, but it does not maximize the representational capacity of the

network because approximation errors from each independent linear regression

add up over each consecutive application of the matrix R to the ongoing product

RtWt−1. A more exact solution can be obtained by solving the complete linear

regression equations

W1 ≈ R W0

W2 ≈ R ∗R W0

W3 ≈ R ∗R ∗R W0

...

+ L1-regularization

We won’t detail or emphasize here the nature of the fitting procedure, except

to say that it resembles closely the backpropagation through time optimization

procedure used to fit recurrent linear models to neural population data in an

earlier section. Figures 7.3a and b show the reconstructed spatial filters for a few

selected neurons at timelags of 10 and 20 frames. Note that the reconstruction is

perfect at 10 frames in the past, but begins to degrade at 20 frames, with some
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a b

Figure 7.4: Properties of recurrent connections. a) The eigenvalue decom-
position of the recurrent matrix shows a large number of eigenvalues close to 1,
which result in long timescales in spatiotemporal filters. Such long timescales can
generate spatial selectivity of a target cell at timelags of 10-20 frames and thus
maintain stimulus-information for extended periods of time.b) We can directly
inspect what pairs of neurons wire together by looking at their spatiotemporal
receptive fields. Neurons with similar preferred directions and orientations wired
together preferentially. The figure shows only the instantaneous receptive fields
of 9 groups of neurons with the strongest connections to 9 target neurons (always
shown as the first neuron in the group). All neurons in the same group have simi-
lar receptive field properties, and the target receptive field is a linear combination
of their receptive fields.

obvious rippling introduced into the filters. Eventually, the filters at long time-

lags degrade even more, but they do so in a relatively smooth manner, eventually

degrading to 0 because we have penalized the magnitude of the connections R.

We should also emphasize the particular fits shown in 7.3 have been performed

with large L1 regularization penalties on the parameters, for the purpose of ob-

taining a sparse R matrix with less than 5% overall connectivity (which may

more faithfully represent the regime of computation by realistic neural networks

in the cortex). Allowing full and unpenalized connectivity with as little as 1,024

neurons allowed the 1,024 by 1,024 matrix R to reconstruct almost any basis of

spatiotemporal filters we empirically tried. Can we learn anything from the ma-

trix of pairwise connections R determined in this fashion? Figure 7.4a shows the

eigenvalue spectrum of a typical matrix R fit with the optimization procedure
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detailed above. Most eigenvalues are relatively close to 1, which indicates long

timescales present in the dynamics of the linear recurrent network. The complex

parts of the eigenvalues show that the dynamics are not merely relaxing over time

but in fact gradually shifting the stimulus representation from one eigenvector to

its pair. Direction-selective simple cells have previously been proposed and im-

plemented with complex-valued basis functions by [Cadieu and Olshausen, 2009]

specifically to allow responses to rotate across the support vectors provided by the

instantaneous receptive field and its 90◦ phase-shifted pair. Our implementation

provides a more realistic representation in terms of scalar real-valued quantities

that can in fact be represented by the brain.

Figure 7.4b illustrates the types of neurons with large recurrent connections in the

matrix R. Each of the 9 groups of neurons shown represents the most strongly-

connected neurons to a target randomly chosen neuron (always shown as the

first neuron in the group). The figure shows only the spatial profiles of the con-

nected neurons, but a video of the timecourse of the receptive fields is available

at www.gatsby.ucl.ac.uk/marius. The video shows that not only neurons that

wire together have similar spatial receptive fields, but they also prefer similar

directions of motion. Intuitively, a Hebbian learning rule would account for such

connectivity patterns in cortex, although the rest of the paper shows that the

details of the connectivity patterns need to be slightly more complicated to allow

visual motion direction estimation. Neurons connecting strongly need to prefer

similar directions of motion, and to be spatially aligned in the direction of pre-

ferred motion of the presynaptic neuron. More details will be provided towards

the end of this chapter.

7.2.1 Complexity order for recurrent networks versus feed-

forward filters

Floating point operations per second (FLOPS) are an objective measure of the

efficiency of an algorithm. We use a similar measure to estimate the efficiency

of computing spatiotemporal neural responses from spatiotemporal visual stim-



7 Linear neurons with recurrent connectivity enable history-dependent
computations 127

uli. Note that matters of efficiency are extremelly important in vision. The raw

amount of visual information available to the senses far exceeds even the compu-

tational capacity of the brain and only by selective attention (not discussed in this

thesis) can it be well encoded by the brain. Neurons in the fovea and up to 5◦ of

the visual field represent less than 1◦ portions of visual space, and many columns

of neurons need to be replicated throughout striate visual cortex to cover the

entire visual space. Finally, direction-selectivity is just one of the many functions

of V1 neurons. Orientation selectivity, color processing and spatial invariance are

also qualities of images that are important for visual perception.

Suppose the spatiotemporal filters are lx by ly by nt in size (space x space x

time, a typical example would be 12 x 12 x 30). A full V1 column may employ

a number on the order of N = 1,024 spatiotemporal filters. The number of

feedforward operations necessary to compute the dot-product between the filters

and the feedfoward input is thus 2Nl2xl2ynt. In contrast, the number of recurrent

operations necessary for the same computation is 2N2 + 2Nl2xl2y. The second

term in this sum is smaller than the number of feedforward operations by a

factor of nt, which could be up to 30 (assuming 5ms bins and history-dependence

for up to 150ms in the past). The first term may in principle be large, but

as discussed above recurrent connectivity in cortex is sparse, hence the total

number of non-zero connections in the matrix R may be a small fraction of all

possible connections, reducing 2N2 to 2pN2 with p the probability of connection

between all pairs of neurons. Sparse connectivity does not impair the quality of

the representation, because only neurons with similar spatio-temporal receptive

fields need to be wired together.

We thus see that the computational complexity of recurrent neural networks is

much reduced compared to simple linear spatiotemporal filters. This advantage

mimics the advantage offered by so-called IIR (infinite impulse response) filters

over FIR (finite impulse response) filters well-known in the signal processing

literature.

The second efficiency concern to any algorithm is its memory requirement. Mod-
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ern computational hardware improves primarily by making memory access more

efficient, and the brain’s parallel computational hardware has often been thought

to be efficient mostly through its distributed memory systems and the band-

width of information that travels within and across brain areas continuously. A

quick calculation shows that that the memory requirements of recurrent networks

are straightforwardly nt times less than feedforward algorithms, simply because

lagged copies of stimulus inputs need to be stored at all.

Another algorithmic advantage to the recurrent network is its relatively small

number of parameters. If these parameters are indeed learned or optimized to the

statistics of the natural world, then an algorithm with the fewest free parameters

would be optimized most quickly and efficiently, and would be able to generalize

better to never-before-seen images and sequences of images.

Given the significant computational advantages of using a recurrent network to

compute visual motion properties, and given that the brain already has the neces-

sary hardware to implement it (i.e. recurrent connections), it would be surprising

if such a solution was not implemented in the brain.

7.3 Probabilistic Recurrent Neural Networks

In this section we introduce the binary-gated Gaussian recurrent neural network

as a generative model of sequences of images. This model belongs to the class

of nonlinear dynamical systems. Inference methods in such models typically

require expensive variational [Minka, 2001] or sampling based approximations

[Doucet et al., 2000], but we found that a low cost online filtering method works

sufficiently well to learn an interesting model. We begin with a description of

binary-gated Gaussian sparse coding for still images and then describe how to

define the dependencies in time between variables.
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Figure 7.5: The relationships between variables (neural activities, im-
ages/retinal activities) in the graphical models used. a) Graphical model
representation of the generative model of still images. b) Graphical model rep-
resentation of the bgG-RNN with two consecutive time slices. The square box
represents that the variable zt is not random, but is given by zt = xt ◦ ht. The
parameters describe mean activities and connectivity parameters.

7.3.1 Binary Gated Gaussian Sparse Coding (bgG-SC).

Binary-gated Gaussian sparse coding (also called spike-and-slab sparse coding

[Goodfellow et al., 2012] may be seen as a limit of sparse coding with a mixture

of Gaussians priors [Olshausen and Millman, 2000] where one mixture compo-

nent has zero variance. Mathematically, the data yt is obtained by multiplying

together a matrix W of basis filters with a vector ht ◦ xt, where ◦ denotes the

operation of Hadamard or element-wise product, xt ∈ RN is Gaussian and spher-

ically distributed with standard deviation τx and ht ∈ {0, 1}N is a vector of

independent Bernoulli-distributed elements with success probabilities p. Finally,

small amounts of isotropic Gaussian noise with standard deviation τy are added

to produce yt.

For notational consistency with the dynamic version of this model, the t super-

script indexes time. The joint log-likelihood is

LtSC =− ‖yt −W · (ht ◦ xt)‖2/2τ2
y − ‖xt‖2/2τ2

x+

+
N∑
j=1

(
htj log pj + (1− htj) log (1− pj)

)
+ const, (7.1)
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where N is the number of basis filters in the model. By using appropriately

small activation probabilities p, the effective prior on ht ◦ xt can be made arbi-

trarily sparse. Probabilistic inference in sparse coding is intractable but efficient

variational approximation methods exist. We use a very fast approximation to

MAP inference, the matching pursuit algorithm (MP) [Mallat and Zhang, 1993].

Instead of using MP to extract a fixed number of coefficients per patch as usual,

we extract coefficients for as long as the joint log-likelihood increases. Patches

with more complicated structure will naturally require more coefficients to code.

Once values for xt and ht are filled in, the gradient of the joint log likelihood with

respect to the parameters is easy to derive. Note that xtk for which htk = 0 can

be integrated out in the likelihood, as they receive no contribution from the data

term in 7.1. Due to the MAP approximation, only the W can be learned. There-

fore, we set τ2
x , τ

2
y to reasonable values, both on the order of the data variance.

We also adapted pk during learning so that each filter was selected by the MP

process a roughly equal number of times. This helped stabilise learning, avoiding

a tendency to very unequal convergence rates.

When applied to whitened small patches from images, the algorithm produced

localized Gabor-like receptive fields as usual for sparse coding, with a range of

frequencies, phases, widths and aspect ratios. We found that when we varied

the average number of coefficients recruited per image, the receptive fields of the

learned filters varied in size. For example with only one coefficient per image,

a large number of filters represented edges extending from one end of the patch

to the other. With a large number of coefficients, the filters concentrated their

mass around just a few pixels. With even more coefficients, the learned filters

gradually became Fourier-like.

During learning, we gradually adapted the average activation of each variable htk
by changing the prior activation probabilities pk. For 16x16 patches in a twice

overcomplete SC model (number of filters = twice the number of pixels), we

found that learning with 10-50 coefficients on average prevented the filters from

becoming too much or too little localized in space.
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7.3.2 Binary-Gated Gaussian Recurrent Neural Network

(bgG-RNN).

To obtain a dynamic hidden model for sequences of images {yt} we specify the

following conditional probabilities between hidden chains of variables ht,xt:

P
(
xt+1,ht+1|xt,ht

)
= P

(
xt+1

)
P
(
ht+1|ht ◦ xt

)
P
(
xt+1

)
= N

(
0, τ2

x I
)

P
(
ht+1|ht ◦ xt

)
= σ

(
R ·

(
ht ◦ xt

)
+ b

)
, (7.2)

where R is a matrix of recurrent connections, b is a vector of biases and σ is

the standard sigmoid function σ(a) = 1/(1 + exp(−a)). Note how the xt are

always drawn independently while the conditional probability for ht+1 depends

only on ht ◦ xt. We arrived at these designs based on a few observations. First,

similar to inference in SC, the conditional dependence on ht ◦ xt, allows us to

integrate out variables xt,xt+1 for which the respective gates in ht,ht+1 are 0.

Second, we observed that adding Gaussian linear dependencies between xt+1

and xt ◦ ht did not modify qualitatively the results reported here. However,

dropping P
(
ht+1|ht ◦ xt

)
in favor of P

(
xt+1|ht ◦ xt

)
resulted in a model which

could no longer learn a direction-selective representation. For simplicity we chose

the minimal model specified by 7.2. The full log likelihood for the bgG-RNN is

LbgG-RNN =
∑
t

LtbgG-RNN where

LtbgG-RNN = const− ‖yt −W(xt ◦ ht)‖2/2τ2
y − ‖xt‖2/2τ2

x+

+
N∑
j=1

htj log σ
(
R
(
ht−1 ◦ xt−1

)
+ b

)
j

+ (1− htj) log (1− σ
(
R
(
ht−1 ◦ xt−1

)
+ b

)
j
), (7.3)

where x0 = 0 and h0 = 0 are both defined to be vectors of zeros.
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7.3.3 Inference and learning of bgG-RNN.

The goal of inference is to set the values of x̂t, ĥt for all t in such a way as to

minimize the objective set by 7.3. Assuming we have already set x̂t, ĥt for t = 1 to

T , we propose to obtain x̂T+1, ĥT+1 exclusively from x̂T , ĥT . This scheme might

be called greedy filtering. In greedy filtering, inference is causal and Markov with

respect to time. At step T + 1 we only need to solve a simple SC problem given

by the slice LT+1
bgG-RNN of the likelihood 7.3, where xT ,hT have been replaced

with the estimates x̂T , ĥT . The greedy filtering algorithm proposed here scales

linearly with the number of time steps considered and is well suited for online

inference. The algorithm may not produce very accurate estimates of the global

MAP settings of the hidden variables, but we found it was sufficient for learning

a complex bgG-RNN model. In addition, its simplicity coupled with the fast MP

algorithm in each LtbgG-RNN slice, resulted in very fast inference and consequently

fast learning. In most scenarios we learned models in under 30 minutes on a

standard quad core workstation.

Due to our approximate inference scheme, some parameters in the model had

to be set manually. These are τ2
x and τ2

y , which control the relative strengths

in the likelihood of three terms: the data likelihood, the smallness prior on the

Gaussian variables and the interaction between sets of xt,ht consecutive in time.

In our experiments we set τ2
y equal to the data variance and τ2

x = 2τ2
y . We found

that such large levels of expected observation noise were necessary to drive robust

learning in R.

For learning we initialized parameters randomly to small values and first learned

W exclusively. Once the filters converge, we turn on learning for R. W does

not change very much beyond this point. We found learning of R was sensitive

to learning rate. We set the learning rate to 0.05 per batch, used a momentum

term of 0.75 and batches of 30 sets of 100 frame sequences. We whitened images

with a center-surround filter and normalized the mean and variance of whitened

pixel values in the training images to 0 and 1 respectively.

Gradients required for learning R show similarities to the STDP learning rule
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used in [Abbott and Blum, 1996] and [Rao and Sejnowski, 2000].

∂LtbgG-RNN
∂Rjk

=
(
ht−1
k xt−1

k

)
·
(
htj − σ

(
R
(
ht ◦ xt

)
+ b

)
j

)
. (7.4)

We will assume for neural interpretation that the positive and negative values

of xt ◦ ht are encoded by different neurons. If for a given neuron xt−1
j is always

positive, then the gradient 7.4 is only positive when ht−1
j = 1 and hti = 1 and

negative when ht−1
j = 1 and hti = 0. In other words, the connection Rij is

strengthened when neuron j appears to cause neuron k to activate and inhibited

if neuron j fails to activate neuron k. A similar effect can be observed for the

negative part of xt−1
j . This kind of Hebbian rule is widespread in cortex for long

term learning and is used in previous computational models of neural sequence

learning that partly motivated our work [Rao and Sejnowski, 2000].

7.4 Results

For data, we selected 100 short 100 frame long clips from a high resolution BBC

wildlife documentary. Clips were chosen only if they seemed on visual inspection

to have sufficient motion energy over the 100 frames. The clips chosen ended

up being mostly panning shots and close-ups of animals in their natural habitats

(the closer the camera is to a moving object, the faster it appears to move).

The results presented below measure the ability of the model to produce responses

similar to those of neurons recorded in primate experiments. The stimuli used in

these experiments are typically of two kinds: drifting gratings presented inside

circular or square apertures or translating bars of various lengths. These two

kinds of stimuli produce very clear motion signals, unlike motion produced by

natural movies. In fact, most patches we used in training contained a wide range

of spatial orientations, most of which were not orthogonal to the direction of local

translation. After comparing model responses to neural data, we finish with an

analysis of the connectivity pattern between model neurons that underlies their

responses.
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a b

Figure 7.6: a) Snapshot of nature documentary used for learning the statistics of
natural movies. b) Four samples of the sequences of patches extracted from the
documentary.

7.4.1 Measuring responses in the model.

We first had to deal with the potential negativity of the variables in the model,

since neural responses are always positive quantities. We decided to separate

the positive and negative parts of the Gaussian variables into two distinct sets

of responses. This interpretation is relatively common for sparse coding models

and we also found that in many units direction selectivity was enhanced when

the positive and negative parts of xt were separated (as opposed to taking the

absolute value for example). The enhancement was supported by a particular

pattern of network connectivity which we describe in a later subsection.

Additionally, since our inference procedure is deterministic, it will produce the

exact same response to the same stimulus every time. We added Gaussian noise

to the spatially whitened test image sequences, partly to capture the noisy envi-

ronments in cortex and partly to show robustness of direction selectivity to noise.

The amount of noise added was about half the expected variance of the stimulus.

7.4.2 Direction selectivity and speed tuning.

Direction selectivity is measured with the following index: DI = 1−Ropp/Rmax.

Here Rmax represents the response of a neuron in its preferred direction, while
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Ropp is the response in the direction opposite to that preferred. This selectivity in-

dex is commonly used to characterize neural data. To define a neuron’s preferred

direction, we inferred latent coefficients over many repetitions of square gratings

drifting in 24 directions, at speeds ranging from 0 to 3 pixels/frame in 0.25 steps.

The periodicity of the stimulus was twice the patch size, so that motion locally

appeared as an advancing long edge. The neuron’s preferred direction was the

direction in which it responded most strongly, averaged over all speeds. Once a

preferred direction was established, we defined the neuron’s preferred speed, as

the speed at which it responded most strongly in its preferred direction. Finally,

at this preferred speed and direction, we calculated the DI of the neuron. Similar

results were obtained if we averaged over all speed conditions.

We found that most neurons in the model had sharp tuning curves and direction-

selective responses. We cross validated the value of the direction index with a

new set of responses to obtain an average DI of 0.65, with many neurons having

a DI close to 1 (see figure 7.7c). 714 of 1,024 neurons were classified as direction-

selective on the basis of having DI > 0.5. Distributions of direction indices

and optimal speeds are shown in figure 7.7c. A neuron’s preferred direction was

always close to orthogonal to the axis of its Gabor receptive field, except for a few

degenerate cases around the edges of the patch. We defined the population tuning

curve as the average of the tuning curves of individual neurons, each aligned by

their preferred direction of motion. The DI of the population was 0.66. Neurons

were also speed tuned, in that responses could vary greatly and systematically as

a function of speed and DI was non-constant as a function of speed (see figure

7.7b). Usually at low and high speeds the DI was 0, but in between a variety

of responses were observed. Speed tuning is also present in recorded V1 neurons

[Orban et al., 1986], and could form the basis for global motion computation

based on the intersection of constraints method [Simoncelli and Heeger, 1998].



7 Results 136

a b

Speed (pix/frame)0 3
R

es
po

ns
e

preferred non-preferred

c

0 1 2 3
0

50

100

150

N
um

be
r 

of
 u

ni
ts

Preferred Speed (pix/frame)

0 0.5 1
0

100

200

N
um

be
r 

of
 u

ni
ts

Direction Index

d

Figure 7.7: Properties of the learned representations: static receptive
fields, speed tuning, direction index and pairwise connectivities. a)
Population of static filters derived by the model. b) Speed tuning of 16 randomly
chosen neurons. Note that some neurons only respond weakly without motion,
some are inhibited in the non-preferred direction compared to static responses
and most have a clear peak in the preferred direction at specific speeds. c)
Top: Histogram of direction selectivity indices. Bottom: Histogram of preferred
speeds. d) For each of the 10 strongest excitatory connections per neuron we plot
an asterisk indicating the orientation selectivity of pre and post-synaptic units.
Note that most of the points are within π/4 from the diagonal, an area marked
by the black lines. Note also the relatively increased frequency of horizontal and
vertical edges.
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7.4.3 Vector velocity tuning

To get a more detailed description of single-neuron tuning, we investigated re-

sponses to different stimulus velocities. Since drifting gratings only contain mo-

tion orthogonal to their orientation, we switched to small (1.25pix x 2pix) drifting

Gabors for these experiments. We tested the network’s behavior with a full set

of 24 Gabor orientations, drifting in a full set of 24 directions with speeds rang-

ing from 0.25 pixels/frame to 3 pixels/frame, for a total of 6912 = 24 x 24 x 12

conditions with hundreds of repetitions of each condition. For each neuron we

isolated its responses to drifting Gabors of the same orientation travelling at the

12 different speeds in the 24 different directions. We present these for several

neurons in polar plots in figure 7.8c. Note responses tend to be high to vector

velocities lying on a particular line. In the next section we show that these are

the so called constraint lines.

7.4.4 Connectomics in silico

We had anticipated that the network would learn direction selectivity via specific

patterns of recurrent connection, in a fashion similar to the toy model studied in

Rao and Sejnowski [Rao and Sejnowski, 2000]. We now show that the pattern of

connectivity indeed supports this computation.

The most obvious connectivity pattern, clearly visible for single neurons in figure

7.8b, shows that neurons in the model excite other neurons in their preferred

direction and inhibit neurons in the opposite direction. This asymmetric wiring

naturally supports direction selectivity in combination with the second pattern

described below. This connectivity pattern emerges gradually during learning,

as shown in figure 7.9, a feature apparent in snapshots of the connectivity at the

beginning, middle and end of learning.

We find that asymmetry is not sufficient for direction selectivity to emerge —

strong excitatory projections also have to connect neurons with similar preferred

orientations and similar preferred directions. Only then will direction information



7 Results 138

propagate in the network in the identities of the active variables. We considered

the 10 strongest excitatory outputs for each neuron and calculated the expected

deviation between the orientation of these outputs and the orientation of the root

neuron. The average deviation was 23o, half the expected deviation if connections

were random. Figure 7.7d shows a raster plot of the pairs of orientations. The

same pattern held when we considered the strongest excitatory inputs to a given

neuron with an expected deviation of orientations of 24o. We could not directly

measure if neurons connected together according to direction selectivity because

of the sign ambiguity of xt variables. One can visually assess in figure 7.8b that

neurons connected asymmetrically with respect to their RF axis, but did they

also respond to motion primarily in that direction? As can be seen in figure 7.8c,

they did indeed. Since direction tuning is a measure of the incoming connections

to the neuron, we can qualitatively assess recurrence primarily connected together

neurons with similar direction preferences.

We also observed that neurons mostly projected strong excitatory outputs to

other neurons that were aligned parallel to the root neuron’s main axis (visible in

figures 7.8b). This is reminiscent of the aperture problem: locally all edges appear

to translate parallel to themselves. A neuron X with a preferred direction v and

preferred speed s has a so-called constraint line (CL), parallel to the Gabor’s

axis. When the neuron is activated by an edge E, the constraint line is formed

by all possible future locations of edge E that are consistent with global motion

in the direction v with speed s. Due to the presence of long contours in natural

scenes, the activation of X can predict at the next time step the activations of

other neurons with RFs aligned on the CL. Our likelihood function encourages

the model to learn to make such predictions as well as it can, and it indeed

discovers to use the constraint line solution. To quantify the degree to which

connections were made along a CL, for each neuron we fit a 2D Gaussian to

the distribution of RF positions of the 20 most strongly connected neurons, each

further weighted by its strength (the filled red circles in figure 7.8b). The major

axis of the Gaussians represent the constraint lines of the root neuron and are

in 862 out of 1024 neurons less than 15o away from perfectly parallel to the root
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neurons’ axis. The distance of each neuron to their constraint line was on average

1.68 pixels.

Yet perhaps the strongest manifestation of the CL tuning property of neurons in

the model can be seen in their responses to small stimuli drifting with different

vector velocities. Many of the neurons in figure 7.8c respond best when the

velocity vector ends on the constraint line and a similar trend holds for the aligned

population average.

It is already known from experiments of axon mappings simultaneous with dye-

sensitive imaging that neurons in V1 are more likely to connect with neurons

of similar orientations situated as far away as 4 mm / 4-8 minicolumns away

[Skaggs and McNaughton, 1997]. The model presented here makes three further

predictions: that neurons connect more strongly to neurons in their preferred

direction, that connected neurons lie on the constraint line and that they have

similar preferred directions to the root neuron.

7.5 Discussion

We have shown that a network of recurrently-connected neurons can learn to

discriminate motion direction at the level of individual neurons. Online greedy

filtering in the model is a sufficient approximate-inference method to produce

direction-selective responses. Fast, causal and online inference is a necessary

requirement for practical vision systems (such as the brain) but previous visual-

motion models did not provide such an implementation of their inference al-

gorithms. Another shortcoming of these previous models is that they obtain

direction selectivity by having variables with different RFs at different time lags,

effectively treating time as a third spatial dimension. A dynamic generative model

may be more suited for online inference with such methods such as particle filter-

ing, assumed density filtering, or the far cheaper method employed here of greedy

filtering.

The model neurons can be interpreted as predicting the motion of the stimulus.
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The lateral inputs they receive are however not sufficient in themselves to produce

a response, the prediction also has to be consistent with the bottom-up input.

When the two sources of information disagree, the network compromises but not

always in favor of the bottom-up input, as this source of information might be

noisy. This is reflected by the decrease in reconstruction accuracy from 80%

to 60% after learning the recurrent connections. It is tempting to think of V1

direction selective neurons as not only edge detectors and contour predictors

(through the nonclassical RF) but also predictors of future edge locations, through

their specific patterns of connectivity.

The source of direction selectivity in cortex is still an unresolved question, but

note that in the retina of non-primate mammals it is known with some certainty

that recurrent inhibition in the non preferred direction is largely responsible for

the direction selectivity of retinal ganglion cells [Fried et al., 2005]. It is also

known that, unlike orientation and ocular dominance, direction selectivity re-

quires visual experience to develop [Li et al., 2006], perhaps because direction

selectivity depends on a specific pattern of lateral connectivity unlike the largely

feedforward orientation and binocular tuning. Another experiment showed that

after many exposures to the same moving stimulus, the sequence of spikes trig-

gered in different neurons along the motion trajectory was also triggered in the

complete absence of motion, again indicating that motion signals in cortex may

be generated from lateral connections [Xu et al., 2012].

Thus, we see a number of reasons to propose that direction selectivity in the

cortex may indeed develop and be computed through a mechanism analagous to

the one we have developed here. If so, then experimental tests of the various

predictions developed above should prove to be revealing.
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a
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Figure 7.8: Connectivity patterns between neurons enable selective re-
sponses to moving bars. a) Test stimuli used to map direction selectivity.
Dark bars were moving on a gray background in either of 24 random directions
with one of 12 speeds. b) Each plot is based on the outgoing connections of a
random set of direction-selective neurons. The centers of the Gabor fits to the
neurons’ receptive fields are shown as circles on a 16 by 16 square representing the
image patch. The root neurons are shown as filled black circles. Filled red/black
circles show neurons to which the root neurons have strong positive/negative con-
nections, with a cutoff at one fourth of the maximal absolute connection. The
width of the connecting lines and the area of the filled circles are proportional to
the strength of the connection. A dynamic version of this plot during learning is
shown as a movie in the supplementary material. c) The polar plots show the
responses of neurons presented in a to small, drifting Gabors that match their
respective orientations. Neurons are aligned in exactly the same manner on the 4
by 4 grid. Every disc in every polar plot represents one combination of speed and
direction and the color of the disc represents the magnitude of the response, with
intense red being maximal and dark blue minimal. The vector from the center
of the polar plot to the center of each disc is proportional to the vector displace-
ment of each consecutive frame in the stimulus sequence. Increasing disc sizes at
faster speeds are used for display purposes. The very last polar plot shows the
average of the responses of the entire population, when each neuron is aligned by
its preferred direction.
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a b c

Figure 7.9: Connectivity changes during learning. a) We initialized the
network with random connections between neurons. bc) During learning, con-
nections gradually sparsify and become asymmetric between the two sides of the
receptive fields of each cell.



VIII

Conclusion

We have developed statistical models that incorporate notions of dynamics and

fitted these models directly to recorded multi-neuron data from motor and sen-

sory cortices. Our approach bridges two existing computational methods in neu-

roscience: the relatively old tradition of computer simulations of networks and

the newer model-based data fitting techniques.

Computer simulations are essential exploratory tools in neuroscience but they

are often not well constrained by data. Simulation studies usually show that

networks of neurons can reproduce certain properties reported in the literature,

but many choices of parameters and network structure can also reproduce those

same properties. With the recent advent of large-scale simulation studies, it

seems the space of possible network parameters can increase in an unconstrained

fashion.

We reason that the only way to meaningfully develop large-scale simulations of

networks will be to directly fit all aspects of existing neurophysiological record-

ings. Much information about cortical networks is transparent in the temporal

timecourses of different neural classes to varied inputs. While these details of

the dynamics or of the receptive fields might be hard to describe explicitly and
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quantitatively, they can nonetheless be crucial information for statistically iden-

tifying the underlying network structure that generated them. The approach we

suggest in this work uses all available data to fit network models that capture

the statistical structure of the data, which in turn has been generated by real

neuronal networks in the brain.

Note that other data fitting techniques have been developed to capture the shared

variability in multi-neuron recordings ([Pillow et al., 2008]). However, the ap-

proach of [Pillow et al., 2008] as well as those of [Schneidman et al., 2005] and

[Machens et al., 2010] lack the necessary network structure which allows us to

interpret the fitted models and simulate them as dynamical networks. Most

existing techniques for this purpose assume direct connections or interactions be-

tween neurons, yet most pairs of neurons in any brain area are not connected,

and the functional connectivity between cell pairs is an indirect consequence of

their participation in coordinated local network dynamics. Furthermore, fully

pairwise-connected approaches to data modelling quickly run into the curse of

dimensionality. The number of pairwise functional interactions scales quadrati-

cally with the number of recorded neurons, however the recording times usually

remain the same, being typically constrained by the qualities of the biological

preparation or the motivation of the animals.

We used the statistical network models to extract the underlying dynamical pat-

terns of cortical responses in auditory cortex and formulated hypothesis about

the cortical regimes of computation based on the inferred dynamics. Cortical net-

works in the synchronized state appear to be depression-stabilized, while network

responses in the desynchronized state are consistent with an inhibition-stabilized

regime. Previous work has studied such networks and showed that depression-

stabilized networks agree with many observations of auditory cortex structure,

while inhibition-stabilized networks may capture properties of the visual cor-

tex ([Loebel et al., 2007], [Murphy and Miller, 2009]). We found that these two

regimes can be exhibited by the same brain area in the same species in responses

to the same stimuli, but under different brain states. It is thus possible that neu-

ral networks are more heterogeneous than thought across brain areas and species,
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but dynamical properties differ much more depending on brain state.

Indeed, in our respective preparations of the synchronized and desynchronized

states in auditory cortex, we find strong evidence that the networks are sta-

bilized by depression and inhibition respectively. Furthermore, we showed that

depression-stabilized networks are inherently unstable to small perturbations. De-

pression is simply too slow to act as an effective negative feedback loop and an

activated state can only be reset to quiescence by quick depletion of all the vesicles

in the network. The dynamics of depression-stabilized networks are dominated by

a single runaway excitatory mode which activates the entire population regardless

of the qualities of the external stimulus and indeed even spontaneously.

Our statistical model fits identified the runaway excitatory mode of the network

and also recovered a second excitatory mode closely-aligned with the first one and

paired with it dynamically. The two trajectories together account for the stereo-

typical sequence of firing observed in the synchronized state. Activity packets,

sometimes called population spikes, were shown to evolve dynamically and reli-

ably across a two-dimensional space of tightly-aligned eigenvectors.

Such dynamics have been described in the past to explain large transient re-

sponses at stimulus onsets, but these studies have suggested the non-normal

dynamics to be generated in a pair of excitatory and inhibitory populations

([Murphy and Miller, 2009]). Our model fits to the synchronized state suggests

instead that both response modes or populations have excitatory effects on the

network. Fast-spiking putative inhibitory neurons did not align with the late

mode of dynamics; in fact their activity slightly preceded the average RS ac-

tivity. Inhibitory interactions are still required for non-normal dynamics such

that the second excitatory mode can inhibit the first one. A candidate class of

interneurons for such interactions, likely not recorded in our experiments, are

somatostatin-positive neurons, which have been shown before to have late onsets

to auditory stimuli. In contrast, parvalbumin-positive neurons (likely FS cells in

our dataset) have faster onsets to external stimuli than RS cells.

These two-dimensional dynamics dominate the statistical response properties of
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the network, greatly restricting the network capacity to encode stimuli. In con-

trast, the desynchronized network state appears to have much more flexible and

high-dimensional response properties and can thus encode sensory stimuli more

reliably. This is likely due to an overall increased ratio of inhibition to excitation,

which was also observed in awake rodents ([Haider et al., 2013]). The ratio of

recorded spikes of FS neurons to spikes of RS neurons was much greater in the

desynchronized brain state than in the synchronized.

We showed in simulations that increased inhibitory neuron activity can tran-

sition a network state from synchronized to desynchronised, or equivalently,

from depression-stabilized to inhibition-stabilized. Furthermore, in inhibitory-

stabilized networks we reproduced a key property of the desynchronized state,

namely that there are almost no noise correlations or trial-to-trial shared vari-

ability. Unlike depression-stabilized networks, an inhibition-stabilized network is

robust to small perturbations due to the very fast negative feedback loop pro-

vided by inhibition, and the effect of small perturbations decays exponentially

with the timescale of the excitatory and inhibitory conductances. Inhibition-

stabilized networks clearly provide better coding properties not only due to the

lack of trial-to-trial variability, but also because the inhibition balances the domi-

nant excitatory response mode of the network, allowing other dynamical response

modes to activate.

But are there any dynamics at all in the desynchronized state? To show that there

are intracortical dynamics in the desynchronized state, we analyzed the dynamics

of the neural responses to sustained tones and to random frequency-modulated

noise sweeps with very short temporal autocorrelation. Neural responses had

different properties in the desynchronized state, indicative of specific interactions

between the FS and RS populations. The early transients to tone onsets were

restricted to the FS population, suggesting that the increased effectiveness of

the inhibitory neurons shuts off the early sensory responses of the much slower

to respond putative excitatory neurons (RS). Late onset peaks in the sustained

responses of both FS and RS neurons are consistent with an intra-cortical or

local network origin of these responses. The late peak of the FS neurons was not
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present in the synchronized state, consistent with a lack of effective inhibition

30ms after stimulus onset.

Neural responses to random FM sweeps had long (50-100ms) autocorrelation

properties despite stimuli being temporally uncorrelated at time lags of 10 ms or

more. In contrast, subcortical responses did not have such long temporal autocor-

relation. Having argued for the presence of dynamics in the desynchronized state,

we fitted statistical dynamical models to speech-evoked responses. We found that

the dimensionality of the fitted models was relatively high, and patterns of re-

sponses in spontaneous activity explained little of the response properties of the

network to stimulation.

8.1 Emerging technologies for large-scale

recordings

Over the past several decades, neural recording technologies have improved dra-

matically. In particular, the ability to monitor large, even complete populations

with single neuron resolution is now becoming a reality with techniques like high-

density electrophysiological probes and optical imaging. What challenges do the

new recordings pose from a data analysis point of view and more importantly

what new science can be conducted using them? While these questions may be

best answered in practice, for the rest of this thesis we speculate and suggest

possible applications.

Our analysis of chapter 4 suggested that animals in desynchronized brain states

may encode relatively high-dimensional stimulus inputs. However many of the

higher dimensions were very small compared to leading stimulus-encoding pro-

jections. Recording a larger number of neurons would allow a better ability to

look at the small-variance signals in the brain, because these signals are dis-

tributed over the population and can be demixed from the multi-neuron activity

with hidden Markov models such as the ones we have described here. Nothing

so far suggests that the relevant brain computations are performed at a large,
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clearly-visible scale. In fact, the most large-scale signals that we currently see

in recordings are synchronized periods of whole-population activity that are not

linked to stimulus parameters or even to behavior (the animals are asleep).

Recording a large number of neurons simultaneously while animals are behav-

ing would also enable more efficient single-trial analysis. Most electrophysiology

studies still rely on averaging neural activity over trials, even when it is clear that

a large amount of variability exists from trial to trial and is lost in the average.

Instead, we suggest that in the future single trials of behavior will already be

analyzed for important information by effectively averaging the neural activity

over neurons instead of over trials. Neurons recorded often respond with similar

spiking to other neurons, hence averaging the activity of a population would al-

low tracking their collective behavior closely. However, no neuron performs the

exact same computation as another neuron. The underlying neural dynamics

are distributed across the population and mixed together. The role of statistical

models is then to demix the different sources of inputs and variability so as to

find the weighted projections with most relevant information about the stimulus,

the network computation or the behavior.

Another benefit of large-scale recordings may be to shed light on the noise that

has been assumed to be overly-present in the brain. Single spikes are thought to

occur with noisy timing and often be missed completely, but it may be possible

to explain single spikes from the activity of all the other neurons in the local

population. For example, recording all presynaptic sources of a neuron’s dendritic

input should in principle allow much better spike-level prediction than currently

possible and may reveal computations that single neurons are performing.

Continuing the line of thought of the previous paragraph, recording the activity

of a complete neural population may allow us to recover the actual connectome

of pairwise connectivity. Currently the recovered functional connectivity from

population recordings does not capture actual physical connections but only the

distributions of common inputs that most pairs of neurons receive. Recovering

physical connectivity from spiking responses will require recording an entire pop-
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ulation with spike-level accuracy, so that no external common inputs can alter the

correlation structure, because all the common inputs are within the recordings.
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