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Abstract

In this thesis, we study how to enhance current cryptanalytic techniques,

especially in Differential Cryptanalysis (DC) and to some degree in Al-

gebraic Cryptanalysis (AC), by considering and solving some underlying

optimization problems based on the general structure of the algorithm.

In the first part, we study techniques for optimizing arbitrary algebraic

computations in the general non-commutative setting with respect to sev-

eral metrics [42, 44]. We apply our techniques to combinatorial circuit op-

timization and Matrix Multiplication (MM) problems [30, 44]. Obtaining

exact bounds for such problems is very challenging. We have developed a 2-

step technique, where firstly we algebraically encode the problem and then

we solve the corresponding CNF-SAT problem using a SAT solver. We ap-

ply this methodology to optimize small circuits such as S-boxes with respect

to a given metric and to discover new bilinear algorithms for multiplying

sufficiently small matrices. We have obtained the best bit-slice implementa-

tion of PRESENT S-box currently known [6]. Furthermore, this technique

allows us to compute the Multiplicative Complexity (MC) of whole ciphers

[23], a very important measure of the non-linearity of a cipher [20, 44].

Another major theme in this thesis is the study of advanced differential

attacks on block ciphers. We suggest a general framework, which enhances

current differential cryptanalytic techniques and we apply it to evaluate the

security of GOST block cipher [63, 102, 107].



We introduce a new type of differential sets based on the connections be-

tween the S-boxes, named “general open sets” [50, 51], which can be seen

as a refinement of Knudsen’s truncated differentials [84]. Using this notion,

we construct 20-round statistical distinguishers and then based on this con-

struction we develop attacks against full 32-rounds. Our attacks are in

the form of Depth-First key search with many technical steps subject to

optimization. We validate and analyze in detail each of these steps in an

attempt to provide a solid formulation for our advanced differential attacks.
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1

The Science of Cryptology

The word cryptology comes from the combination of the ancient Greek words “κϱυπτ óς”,

which means secret, and “λóγoς” which means word. Cryptology as a science is very

multi-disciplinary and combines techniques from a variety of different scientific fields,

such as pure mathematics, computer science and electrical engineering.

Cryptology is an umbrella term that encompasses cryptography and cryptanalysis.

Cryptography comes from the combination of Greek words “κϱυπτ óς” (secret) and

“γράϕϵιν”, which means write or study, while cryptanalysis comes from the words

“κϱυπτ óς” and “αναλύειν”, which means to loosen or to untie.

Traditionally, cryptographic techniques were widely used in order to establish secure

communication between two (or more) parties in the presence of unauthorized third

parties. We know several examples from history, as we are going to briefly discuss in

the next section where that simple forms of encryption were applied to messages for

preventing unauthorized parties to read these messages, especially in the area of military

operations. Thus, the main objective was confidentiality. Nowadays, due to the great

development of telecommunication systems and digital information, there is a greater

need for cryptography. Cryptographic mechanisms are employed to fulfill additional

security requirements than merely providing confidentiality, such as authenticity, data

integrity, non-repudiation and anonymity. Below we summarize some of these security

requirements and the reader is referred to [110, 86] for more information.
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1. THE SCIENCE OF CRYPTOLOGY

1. Confidentiality: An unauthorized third party must not be able to get any

information related to the original content of the communication by eavesdropping

the messages while in transit. Additionally, stored data should be protected

against unauthorized access.

2. Authenticity: The receiver of a message wants to verify the origin. Thus, the

receiver wants to make sure that the message is originated from the expected

source.

3. Data Integrity: The receiver would like to verify that the content of the data

was not modified while in transit. Such modification can be either accidental or

on purpose.

4. Non-Repudiation: The sender should not be able later to deny that he sent a

message.

5. Anonymity: Another security goal is anonymous communication which allows

users to send messages to each other without revealing their identity. An example

where anonymity is needed is in electronic-voting schemes [60].

In general, cryptography is related to the design of mechanisms which need to

fulfill certain security objectives. On the other hand, cryptanalysis aims to defeat the

security objectives and identify potential weaknesses and flaws in the system, which

when exploited may compromise its security. In cryptanalysis we need to take into

account different scenarios and make several assumptions, for example the adversary’s

goal, the available resources and the type of access to the system.

For example, if some cryptographic techniques are used to ensure confidentiality,

then cryptanalysis focuses on techniques related to recovering either the original content

of an encrypted message or some partial information about the initial message from the

encrypted message, (without necessarily the knowledge of the secret key) or recovering

the secret key. William Friedman was the first who used the word cryptanalysis and

formally described it in a series of technical monographs that he wrote starting from

1918 [78]. We discuss more details regarding cryptanalysis in Chapter 3. In what

follows, we provide a historical overview regarding cryptology and we discuss how it

evolved since antiquity.

4



1.1 The Evolution of Cryptology

1.1 The Evolution of Cryptology

It is believed that cryptography was developed immediately after the writing was in-

vented. Several examples in the history provide strong evidence that cryptography was

used since ancient years, even if it did not exist as a formal science. It seems that many

cryptography-related techniques were widely used for the transmission of confidential

information, especially during military operations [78].

The earliest known use of cryptography is dated back to 1900 BC and found in non-

standard hieroglyphs appearing in Egyptian monuments [78]. However, it is not known

if that was an attempt for secret communication. An attempt to use cryptography

during military operations was attempted by the ancient Greek Spartan army [81].

Spartans were using a scytale transposition cipher, where each unit or character of the

message was shifted to another place.

The Roman emperor Gaius Julius Caesar (100BC-44BC) developed a simple trans-

position cipher, named “Caesar cipher” to be used for secret communication. This

was developed in order to protect the content of the messages which included highly

classified information regarding military operations and strategic plans. The main idea

was that the messages were written with an alphabet shifted by three positions to the

right. For example, he wrote a “D” instead of an “A”. Since knowledge related to

cryptanalysis was very limited, enemies were prevented in this way to interpret the

content of the message.

Cryptographic techniques started becoming more popular in the area of military

operations, due to the invention of the radio. In 1895, the first wireless radio was in-

vented. Radio provided greater flexibility by eliminating the need to run wires between

camps and headquarters. Radio technology was widely used during military operations

and without cryptography, messages transmitted to or from the front lines could easily

be intercepted by the enemy since radio is public. For example, someone could easily

use a radio receiver and listen to the communication. During World War I, radio was

extensively used for communication and thus major world powers have developed and

used cryptographic techniques.

During World War II (1939-1945), cryptographic mechanisms were widely used and

considered as essential weapons for the operations of both Allies and the German Axis.

Simple mathematical rules for encryption were substituted by electro-mechanical rotor
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cipher machines [78]. For example, the Germans were using a rotor machine called

Enigma, which was invented by the end of World War I and a rotor stream cipher

machine called Lorenz cipher, for secret communication [78]. The use of advanced forms

of encryption pushed the need for the enhancement of current cryptanalytic techniques.

The Polish Cipher Bureau was the first to break military texts enciphered on the

Enigma cipher in December 1932, using theoretical mathematics and material supplied

by French military intelligence. During the war, British cryptologists decrypted a vast

number of messages enciphered on Enigma and these messages were a substantial aid to

the Allies [78]. Additionally, British cryptographers at Bletchley Park had deduced the

operation of the Lorenz machine without ever having seen such machine, by exploiting

a mistake made by a German operator who has sent same massage twice (actually

with some small alterations, such as abbreviations) encrypted with the same key. The

recovering of such high-level information contributed to the end of the war quicker and

at a lower cost.

Nowadays, cryptology is one of the most fundamental tools that underpins the world

of information security and the digital economy. The development of telecommunica-

tion systems and digital information opened a wider range of new possibilities for the

application of cryptographic primitives and made them essential for our security. Its

range of applicability is very wide and has many applications such as, in E-commerce,

Digital Rights Management (DRM), electronic voting, access control, cloud computing,

ATM cards, computer passwords and many other. Billions of people are connected in

the Internet and exchange data throughout their networks on a daily basis. Such data

may contain personal information, billing account information, confidential business

operations and any leakage regarding this information may be very harmful for the

parties concerned.
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1.2 Symmetric and Asymmetric Cryptography

The general setting is that we have two parties, the sender S and the receiver R, who

would like to communicate over an insecure channel, without allowing an eavesdropper

to obtain any information about the content of the communication. We assume that

this channel allows the eavesdropper to capture the raw data exchanged during their

conversation and S and R are assumed to exchange a small amount of information

beforehand, over a secure channel, called the secret key.

The purpose of the encryption algorithms is to protect unauthorized third parties

to reveal the content of an encrypted message transmitted over an insecure channel.

Generally, a cryptosystem is a collection of algorithms: the encryption and the decryp-

tion algorithms (and the key generation algorithm). The encryption function Ek, takes

as inputs a plaintext p and a secret key k and outputs a ciphertext c = Ek(p), and the

decryption function Dk′ (inverse of Ek), takes as input the ciphertext c and the secret

key k′ and recovers the initial plaintext p. Thus, we have that Dk′(c) = p.

The encryption function should be designed in a way such that an unauthorized

third party cannot deduce information about the initial plaintext by intercepting the

ciphertext. In addition, only the authorized receiver must be able to decrypt the cipher-

text and thus the decryption algorithm must be secret. In many cases, encryption and

decryption functions are related and thus both functions need to be secret. However,

it is very impractical to keep secret the algorithms, since it means several algorithms

are needed for different communication parties. The idea to overcome this problem is

to consider parametrized encryption algorithms depending on the secret key k.

If the same secret key (i.e. k = k′) is used in both encryption and decryption, then

the cryptosystem is called symmetric cryptosystem (cf. Definition 1 and Figure 1.1).

In general, symmetric encryption algorithms are divided into two categories: block

ciphers and stream ciphers. A block cipher is a deterministic algorithm which encrypts

fixed-length groups of bits, called blocks, using the same key, while in a stream cipher

the input is a continuous stream of plaintext bits, which is encrypted according to an

internal state. This internal state is initialized by the secret key and an initial value

and it is updated during the encryption process independently of the message. We

study block ciphers in details in next chapter, while the study of stream ciphers is out

of the scope of this thesis and more details can be found in [110, 80].

7



1. THE SCIENCE OF CRYPTOLOGY

Definition 1. (Deterministic Symmetric cryptosystem)

Let P be the set of plaintexts (which we assume to be finite) and C the finite set

of ciphertexts. Let K be the finite key space, such that ∀k ∈ K there is an encryption

function Ek with respect to k, which is efficiently computable ∀k ∈ K, ∀x ∈ P and given

by,

Ek : P→ C.

The corresponding decryption function Dk is,

Dk : C→ P ∪ ⊥,

such that Dk(Ek(p)) = p for all plaintexts p ∈ P (⊥ means invalid).

We assume that the key k is generated by an algorithm Gen which takes as input a

security parameter 1n and outputs a key k.

Remark 1. Efficiently computable means computable in polynomial time in the size of

the input.

Using a symmetric cryptosystem we have the drawback that the two parties who

would like to communicate over an insecure channel have to exchange a secret key

over a secure channel beforehand. In 1970 Diffie and Hellman solved this problem by

considering cryptosystems which do not necessarily need the encryption function to be

secret for being secure, which are known as Public-Key or asymmetric cryptosystems

(cf. Definition 2, Figure 1.1). Such cryptosystems are based on functions called trap-

door one-way functions which are easy to evaluate but hard to invert unless some extra

information is known. This extra information is called the private or secret key. The

basic idea is that we have a pair of keys, the private key which defines the decryption

function and the public key, which is publicly available, and defines the encryption

function. Then, for communication one party can request the public key of the other

party from a trusted source (often known as certificate authority or trusted authority).

Definition 2. (Asymmetric cryptosystem)

Let P be the set of plaintexts (which we assume to be finite) and C the finite set

of ciphertexts. Let K the finite key space, such that ∀pk ∈ K and x ∈ P there is an

efficiently computable encryption function Epk , with respect to pk, Epk : P → C and a

sk ∈ K corresponding to a decryption function Dsk ,
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Dsk : C→ P ∪ ⊥,

such that Dsk(Epk(p)) = p for all plaintexts p ∈ P.

We refer to pk as the public key and to sk as the secret key and we assume that they

are generated by an algorithm Gen which takes as input a security parameter 1n and

outputs the pair (pk, sk).

Figure 1.1: Symmetric and Asymmetric Cryptosystems - In a symmetric cryp-

tosystem same key K is used for both encryption and decryption, while in asymmetric we

have pk for encryption and sk for decryption

If a cryptosystem always outputs the same ciphertext for a given plaintext and

key, then it is called deterministic cryptosystem. Deterministic encryption can leak

information to an unauthorized third party because for example he can recognize that

a given ciphertext corresponds to some interesting message and then he might be able

to deduce more information about other ciphertexts when this message is transmitted.

To counter this problem, we consider the notion of probabilistic encryption, where

randomness is used during encryption such that when encrypting the same message

several times it will yield different ciphertexts. The notion of probabilistic encryption is

very important, especially in an asymmetric cryptosystem where everyone can encrypt

using the public key. For example, suppose we know that the plaintext is either “1”

or “0” and a deterministic algorithm is used for encryption. Then, an adversary can

encrypt both plaintexts using the public key and compare each result to the target

ciphertext.
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1.3 Hybrid Encryption

The main advantage of asymmetric cryptosystems is that they solve some crucial prob-

lems regarding key distribution and key management problems. In case of a symmetric

cryptosystem, if the key is compromised, then an adversary gains total control over

the system. Another drawback of symmetric cryptosystems is that a network requires

a great number of keys to be used for communications among several parties and the

keys must be distributed in secret. On the other hand, existing asymmetric schemes are

slower (∼1000 times slower than the symmetric ones on average [110]) and thus they

are not very efficient for the encryption of long messages. Hence, we need to combine

both cryptosystems to build a cryptographic scheme which exploits the advantages of

both.

Combining both types of cryptosystems results in hybrid encryption, which com-

bines the efficiency of a symmetric-key cryptosystem and the ability of an asymmetric-

key cryptosystem to establish a secret key for the symmetric encryption [116]. In a

hybrid construction, a symmetric cryptosystem is used for the encryption of a message,

while an ephemeral secret key is generated using a protocol which is based on public-

key cryptography. Assuming two parties S and R, the protocol for sharing the secret

keys proceeds as follows,

1. S receives R’s public key pk from a trusted source, often referred to as certificate

authority or trusted authority.

2. S generates a random session key K and computes c = Epk(K)

3. R uses his private key sk to decrypt c and reveal the session key K

4. K is used to encrypt (and possibly authenticate) all the subsequent communica-

tions.

The authenticity of the public key is very important. If the public key is not

obtained from a trusted source then Man-In-The-Middle (MITM) attacks are possible.

MITM attacks require an attacker to have the ability to both monitor and alter or

inject messages into a communication channel [110]. A Public Key Infrastructure is

an arrangement that is used to bind public keys with respective user identities and

another way is by digital signatures. On the other hand, proving the authenticity of
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a symmetric key is a bit more complex. We need a way for nodes over a non-secure

network to prove their identity in a secure manner and one example of such protocol

is Kerberos [110].

1.4 Security Considerations

In the previous section we discussed the purpose of encryption and the two types of

cryptosystems which are used for secure communication between two or more parties

over an insecure channel. However, one very important consideration is what does

“secure” means. Security is a multi-dimensional notion and depends on different pa-

rameters such as the goal, the abilities of an attacker and the available resources.

A major concern regarding the security of a cryptosystem is whether its security

is enhanced by keeping the exact specifications of the algorithms used secret or make

them publicly available. On one hand, we have security through obscurity, where the

design or implementation is kept secret. A system relying on security through obscu-

rity might proved in the future to have theoretical or implementation vulnerabilities.

Thus, it is not recommended by standard bodies. On the contrary, we have Kerckhoff’s

principle [82] (cf. Theorem 1), which states that the security of a cryptosystem should

solely depend on the secret key only. In case of keeping secret the underlying algo-

rithm this automatically implies that several algorithms would be needed for different

communication parties and this is not practical.

Theorem 1. (Kerckhoffs’ principle)

A cryptosystem should remain secure even if everything about the cipher, except the

secret key, is made public

Some of the advantages of this open cryptographic design are [80]:

1. The public design enables the establishments of standards

2. If the security relies on the secrecy of the algorithm, then reverse engineering the

algorithm poses a threat against the system.

3. If the algorithm is public, then all researchers (including ethical hackers), will

find and reveal any flaws in the design of the algorithm. This will improve the

security of the algorithm.

11



1. THE SCIENCE OF CRYPTOLOGY

4. It enhances the knowledge regarding cryptography and especially cryptanalysis.

However, we know several examples from history where Kerckhoff’s principle was

not followed. Suppose that the exact specifications of the “Caesar” cipher were leaked.

Then, this would be fatal for the Romans as the enemies could easily decrypt all the

messages. Another example is the German Enigma system in which the un-keyed

mapping between keyboard keys and the input to the rotor array were kept secret and

that was actually a big obstacle for the British cryptologists. Another example is the

Russian encryption standard GOST (developed in the 1970s by the Soviets) which was

kept secret until the dissolution of the USSR and finally released in 1994 [63]. It is

claimed that GOST was used for the encryption of highly classified information and

was not only a commercial block cipher [110]. Interestingly, there is a speculation that

the Russian government would supply weak GOST S-boxes for those it would like to

spy [110]. We will refer explicitly to GOST in the latter chapters.

Generally, there are several approaches to evaluate the security that a cryptosystems

offers. In the rest of this section we consider two different concepts: unconditional and

computational security.

A cryptosystem is unconditionally secure if it cannot be broken even with unlimited

computational resources. However, this strongly depends on the attack scenario (cf.

Chapter 3). A more formal definition is given by Shannon in his fundamental paper

“Communication Theory of Secrecy systems” [113] under the name of perfect secrecy

(Definition 3).

Definition 3. (Perfect Secrecy)

A cryptosystem has perfect secrecy if,

P (P = p|C = c) = P (P = p),

for all p ∈ P and c ∈ C, where P and C the plaintext and ciphertext space respectively.

Perfect secrecy requires that the key is random and uniformly distributed and has

the same size as the plaintext. In contrast, the message should not be assumed to be

random. Informally, a cryptosystem has perfect secrecy, if an adversary cannot obtain

any information about the plaintext by observing the ciphertext. An example of a

symmetric cryptosystem, which has perfect secrecy is the One-Time pad (Definition

4).
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Definition 4. (One-Time pad, Frank Miller 1882)

Let n > 1 be the length of the message, P = K = C = Fn
2 . Then, the encryption and

decryption are given as follows,

Ek(p) = (p1 ⊕ k1, .., pn ⊕ kn),

Dk(c) = (c1 ⊕ k1, .., cn ⊕ kn),

where pi the i-th component of P and ⊕ the bitwise exlusive-or.

One-time pad is perfectly-secure if the key K = (k1, k2, ..., kn) is chosen uniformly

at random from K. However, unfortunately it has a number of drawbacks. Firstly,

a long key must be securely stored and this is already highly problematic. Secondly,

this limits the applicability of the scheme if we would like to send very long messages

or if we do not know in advance an upper bound on the length of the messages that

we would like to send. Lastly, if two distinct plaintexts p1, p2 are encrypted under

the same key k, then the XOR of the resulting ciphertexts equals to p1 ⊕ p2. By

obtaining the ciphertexts we simultaneously obtain information regarding the XOR of

the plaintexts. If the messages correspond to English-language text, then given the

XOR of two sufficiently long messages, it is possible to perform frequency analysis and

recover the messages themselves [80].

Note that unconditional security and perfect secrecy are not equivalent definitions.

For example, a cipher which has perfect secrecy is unconditional secure against a ci-

phertext only attack scenario but might not be unconditionally secure in any other

attack scenario (cf. Chapter 3). Perfect secrecy can be achieved only when the length

of the key equals or exceeds the length of the message. Thus, it is not very practical

to be implemented in real-life applications since real-time environments are subject to

hardware constraints and efficiency in both software and hardware implementation is

of great importance.

Additionally, assuming that an adversary has unlimited computational resources

is a very unrealistic scenario and thus a more flexible model of security is required.

This idea is captured by the notion of computational security (cf. Definition 6), which

guarantees security up to a desired level.

Definition 5. (Exhaustive Search)

Exhaustive search (or brute force) is the method of trying all possible elements in

the search space until the correct one is found.
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Definition 6. (Computational Security)

A cryptosystem provides n bits of security, if the most efficient attack requires a

computational effort equivalent to an exhaustive search (cf. Definition 5) on the set of

all possible assignments on n bits.

Definition 6 implies that a cryptosystem is computationally secure and provides n

bits of security if 2n operations are computationally infeasible with the resources that

are currently available or that will be in the near future. However, the parameter n is

not clearly specified yet. The first who attempted to specify such a security parameter

was John Nash in 1955. In a letter he sent to NSA, he mentioned that the security of

any enciphering process, equivalently the effort in terms of computations to recover the

key, should increase with increasing length of the key. The best would be that security

grows exponentially with some parameter n, which is the length of the key [97].

However, the parameter n does not need to be the length of the key in all cases.

For example, in the case of RSA we get approximately 80 bits security using a 1024-bit

key [19]. Practical block ciphers used in symmetric encryption, as we will study in

Chapter 2, have an iterative structure and make use of many iterations of substitution

and permutation functions to obtain enough security. This iterative structure can be

exploited by MITM attacks to break the cipher faster than 2k, where k the length of

the key. A recent paper claims, that the time complexity for breaking more or less any

practical block cipher, can be written as 2k.(1 − ϵ), for some ϵ > 0 and thus there is

always inevitable key bits loss [74].

In general, the aim of crypto designers is to design a cryptographic primitive which

fulfills certain security objectives and is sufficiently secure related to the available com-

puting power. However, the security level is quantified under several attack models and

scenarios (cf. Chapter 3). Simultaneously, cryptographic primitives should be efficient

enough to be implemented in both software and hardware. In the next chapter, we

study the main paradigms followed in the area of design of block ciphers.
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1.5 Structure of Thesis

The rest of the thesis consists of 8 different chapters. The content of each chapter is as

follows.

• Chapter 2: We discuss the two basic design paradigms for block ciphers; the

Feistel Network and the Substitution-Permutation Network (SPN). For each de-

sign paradigm, we study examples of such ciphers such as GOST and DES for

Feistel and CTC2 for SPN. In addition, we discuss the Merkle-Damg̊ard design

paradigm for hash functions [59] and we study in details the GOST hash function

which deviates from this most widely used design principle. Lastly, we present a

black-box linear attack on the compression function of the GOST hash function.

• Chapter 3: We discuss the most important probabilistic cryptanalytic attacks and

their variants. We focus on Differential Cryptanalysis (DC) and Linear Crypt-

analysis (LC).

• Chapter 4: We briefly study algebraic attacks and automated software cryptanal-

ysis. The basic idea behind such attacks is to derive the key by considering the

underlying multivariate system of equations which describes the cipher and in-

volves the plaintext, key, ciphertext and internal variables bits. In automated

software cryptanalysis, we study automation of this process by converting it to

different representations such that available software can derive the key. In this

thesis we use SAT solvers at solving stage.

• Chapter 5: A basic requirement for a cipher to be secure is that it is distant

enough from linear. In most block ciphers, the S-boxes are the only non-linear

parts. Thus, the selection of S-boxes is a very crucial task for the designers. In

this section, we provide a brief introduction to the theory of Boolean functions

and discuss the four known measures of non-linearity, with more emphasis towards

the notion of Multiplicative Complexity (MC) [20].

• Chapter 6: We study two fundamental NP-hard problems, the problem of Ma-

trix Multiplication (MM) and the problem of combinatorial circuit optimization.

We discuss a 2-step methodology based on SAT-solvers, which can solve small
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instances of such problems. We construct new formulas for efficient MM of (suf-

ficiently small) matrices and construct more efficient circuit representations for

S-boxes used in prominent ciphers with respect to any meaningful metric related

to cryptography and cryptanalysis.

• Chapters 7: We study DC with statistical distinguishers. We reduce the problem

of recovering bits of the key to the problem of distinguishing two distributions,

one corresponding to the right key and one corresponding to a wrong key.

• Chapters 8: An advanced form of DC is discussed and applied to GOST block

cipher. Due to the key insertion via modulo 232 addition the transitional proba-

bilities between single differences are zero frequently for the majority of the keys.

For this reason naive DC fails. We suggest a form of DC based on specific sets of

differences constructed based on the connections between S-boxes from round to

round, named general open sets. General open sets can be seen as a refinement

of truncated differentials proposed by Knudsen [84]. We discuss a framework for

construction of reduced-round distinguishers based on such sets and apply it to

GOST.

• Chapters 9: We present a generic parametric framework of attacks, which can be

used to attack GOST and some of its variants faster than brute force. This is

achieved by exploiting the self-similarity property due to the weak key schedule

and the poor diffusion inside the cipher.

Some of the results presented in this thesis were published in the following confer-

ences, journals and book chapters:

1. Nicolas T. Courtois, Theodosis Mourouzis: Advanced Differential Cryptanalysis

and GOST Cipher. Accepted for a 30 minute oral presentation and 6-pages paper

in CD-ROM and web-proceedings at the 3rd IMA Conference on Mathematics in

Defence, 2013.

2. Nicolas T. Courtois, Theodosis Mourouzis: Enhanced Truncated Differential Crypt-

analysis of GOST. In SECRYPT 2013, 10th International Conference on Security

and Cryptography.
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3. Nicolas T. Courtois, Theodosis Mourouzis: Propagation of Truncated Differen-

tials in GOST. In SECURWARE 2013, The Seventh International Conference on

Emerging Security Information, Systems and Technologies.

4. Nicolas T. Courtois, Daniel Hulme, Theodosis Mourouzis: Multiplicative Com-

plexity and Solving Generalized Brent Equations With SAT Solvers. In COMPU-

TATION TOOLS 2012, The Third International Conference on Computational

Logics, Algebras, Programming, Tools, and Benchmarking. (Best Paper Award).

5. Nicolas T. Courtois, Daniel Hulme, Theodosis Mourouzis: Solving Circuit Opti-

misation Problems in Cryptography and Cryptanalysis. In SHARCS 2012.

6. Nicolas T. Courtois, Daniel Hulme and Theodosis Mourouzis: Solving Circuit

Optimisation Problems in Cryptography and Cryptanalysis. Appears in electronic

proceedings of 2nd IMA Conference Mathematics in Defence 2011. A longer

version is available at eprint: eprint/2011/475/.

7. Nicolas Courtois, Theodosis Mourouzis: Black-Box Collision Attacks on the Com-

pression Function of the GOST Hash Function. In SECRYPT 2011, the 6th

International Conference on Security and Cryptography.

8. Nicolas Courtois, Theodosis Mourouzis, Michal Misztal, Jean-Jacques Quisquater

and Guangyan Song: Can GOST Be Made Secure Against Differential Cryptanal-

ysis ? To appear in journal Cryptologia 2014.

9. Nicolas Courtois, Theodosis Mourouzis and Daniel Hulme : Exact Logic Mini-

mization and Multiplicative Complexity of Concrete Algebraic and Cryptographic

Circuits. Submitted to International Journal On Advances in Intelligent Systems,

v 6 n 3&4 2013.

10. Theodosis Mourouzis and Nicolas Courtois : Advanced Truncated Differential

Attacks Against GOST Block Cipher and its Variants. To appear in Springer

Book entitled as Computation, Cryptography and Network Security 2015.
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2

Symmetric Cryptography

In general, the designers of cryptographic primitives follow certain design principles

that allow them to derive lower bounds on the complexities of successful attacks under

some studied attack models. In this chapter, we study specific architectures and design

criteria for symmetric primitives applied to block ciphers and hash functions. We study

the two main design paradigms in the area of block ciphers; Feistel Networks and

Substitution Permutation Networks (SPN) and we present one example of such a block

cipher. In particular, we study the GOST block cipher [90], which follows the Feistel

Network paradigm and the CTC/CTC2 [32] cipher, which follows the SPN paradigm.

Furthermore, we briefly discuss the Data Encryption Standard (DES) in comparison

with GOST since GOST was considered as the Soviet alternative of DES [28]. Lastly,

we discuss the GOST hash function and we study the underlying compression function

in terms of collision resistance properties.

2.1 Block Ciphers

Block ciphers (cf. Figure 2.1) are deterministic algorithms, that operate on fixed-length

groups of bits, called blocks, with a bijective transformation specified by a symmet-

ric key. In modern cryptographic primitives, such blocks typically have length 64 or

128 bits. Block ciphers are fundamental cryptographic primitives used for constructing

other important cryptographic primitives, such as one-way functions, hash functions,

message authentication codes, pseudorandom number generators and even stream ci-

phers [85].
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Block ciphers mainly consists of two algorithms, the encryption algorithm denoted

by Enc(K,P ) and the decryption algorithm denoted by Dec(K,C) (the inverse of

E(K,P )). They both accept as inputs n-bit data and a k-bit key K. More formally,

these algorithms are defined in the following way.

Enc(K,P ) : {0, 1}k × {0, 1}n → {0, 1}n,

Dec(K,C) : {0, 1}k × {0, 1}n → {0, 1}n,

Correctness: Dec(K,Enc(K,P )) = P , ∀K ∈ {0, 1}k, ∀P ∈ {0, 1}n

Figure 2.1: Block Cipher - A block cipher is used to encrypt blocks of n bits using a

k-bit key K and its output is a n-bit ciphertext.

Generally, a block cipher which operates on n-bit blocks is a permutation of the

form {0, 1}n → {0, 1}n. We have in total 2n! w 2(n−1)2n permutations (obtained by

Stirling’s approximation). A block cipher which operates on n-bit blocks and uses

k-bit keys, corresponds to 2k distinct permutations on n bits. Informally, the design

aim is to choose the 2k permutations more or less uniformly at random from the set

of all 2n! permutations, i.e under a secret randomly chosen key it is computationally

indistinguishable from a randomly chosen n-bit permutation (cf. Figure 2.1).

More formally, we think of a blockcipher E with a k-bit key and a n-bit blocksize as

being uniformly chosen from the set of all possible permutations. For each key, there

are 2n! permutations and since any permutation may be assigned to a given key, there

are (2n!)2
k
possible blockciphers. This is known as the Ideal-Cipher model [80].

Our basic intuitive understanding of block ciphers is due to the work of Claude

Shannon. In his landmark paper “Communication Theory of Secrecy Systems” [113],

he introduced the fundamental concepts of confusion and diffusion, which are still

considered as the most widely used design principles in the design of ciphers.
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Confusion refers to making the ciphertext dependent on the plaintext in a complex

and unpredictable way due to the key insertion [86]. The aim is to make very hard for an

attacker to find the symmetric key even if a large amount of known plaintext-ciphertext

pairs obtained under the same key is available. Confusion is usually interpreted as local

substitution, where certain groups of bits are replaced by other group of bits, following

certain rules. Examples of such functions are integer addition, integer multiplication

and S-boxes.

Diffusion refers to making each bit of the ciphertext dependent on the initial data

in a complex and unpredictable way [86]. The main aim is to dissipate the statistical

structure of the plaintext over the bulk of the ciphertext. Diffusion is realized by permu-

tations, which means change of the order of the bits according to some algorithm. Any

non-uniformity of plaintext bits must be redistributed across much larger structures in

the ciphertext, making it in this way hard to detect non-uniformity.

In general, there are no formal definitions for confusion and diffusion and they are

not absolutely quantifiable concepts. A very good description of these properties is

provided by Massey [91]:

Confusion: The ciphertext should depend on the plaintext statistics in a manner

too complicated to be exploited by the cryptanalyst.

Diffusion: Each digit of the plaintext and each digit of the secret key should

influence many digits of the ciphetext.

Another important notion which is directly related to both confusion and diffusion

is that of the avalanche effect. Informally, the avalanche effect is evident if when

a slight change in the inputs causes a significant change in the output. For example,

flipping a single bit in the output makes half of the output bits to flip. We refer to

more details to this effect in Chapter 5.

Block ciphers are designed based on these twin principles. There are no formal rules

for achieving these properties. It is in the tasks of the designer to use the appropriate

combination of components that will result in a “secure” cipher. An important class of

such ciphers based on these concepts is that of SPN, which we study in a later section.
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2.1.1 Feistel Ciphers

Feistel cipher (cf. Definition 7) is a symmetric structure used in the design of block

ciphers. It is named after the German physicist and cryptographer Horst Feistel. He

(joint work with Don Coppersmith) introduced the concept of Feistel networks, while

working on IBM’s “Lucifer” cipher on 1973 [67]. Their work gained the respect of the

U.S Federal Government, who adopted it to become the Data Encryption standard

(DES). DES is based on Lucifer project with some changes made by the NSA [100].

Definition 7. (Feistel Network)

A Feistel cipher is an iterated cipher, which maps a 2n-bit plaintext block denoted

by (L0, R0), where L0, R0 the left and right n-bit halves respectively, to a 2n-bit block

(Lr, Rr) after r-rounds of encryption.

The two halves of the encrypted data after i-rounds (1 ≤ i < r − 1) are given by,

Li = Ri−1 (2.1)

Ri = Li−1 ⊕ f(Ri−1,Ki−1) (2.2)

where Ki is the i-th subkey derived from the secret key K and f a round function used

for mapping n bits to n bits (cf. Figure 2.2). Key in normally introduced via the XOR

operation and XORed with either the right or left half depending on the design. A

separate Key Schedule Algorithm is used to derived round keys from the initial keying

material.

Figure 2.2: Feistel Network - The Feistel network design paradigm
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In the last round there is no swap between the two halves Li−1, Ri−1 and the final

output is given by,

Lr = Lr−1 ⊕ f(Rr−1,Kr−1) (2.3)

Rr = Rr−1 (2.4)

The round function f does not need to be invertible, in contrast to SPN as we will

see later. In many cases, a cryptographically weaker round function is used in order

to decrease the cost of both software and hardware implementations. Intuitively, we

expect this weakness to be compensated by increasing the number of iterations.

By construction, assuming that round keys are used in the reverse order, then the

decryption process is exactly the same as the encryption process. This is an advantage

in both software and hardware implementations, as the code or circuitry required for

implementation is nearly halved.

2.1.2 Substitution-Permutation Network (SPN)

In an SPN (Definition 8, Figure 2.3) the round function is a combination of invertible

functions, mainly substitutions and permutations. As a result of this the round function

is invertible.

The substitution layer realizes the non-linear part of the cipher and usually consists

of a parallel application of substitution tables (S-boxes), which operate on smaller

blocks of data. Substitution layer introduces confusion. We also have a permutation

layer which is a transformation that operates on the full block and is used for diffusion.

Definition 8. An SPN is an iterated cipher, where the round function consists of three

layers; the substitution layer, the permutation layer and the subkey application.

In many cases, the only non-linear part of the cipher is the substitution layer.

Informally, non-linearity means how distant a function is from being linear [89, 20].

Four measures of non-linearity are discussed in [20]. Non-linearity is a major theme in

this thesis and it is studied separately in Chapter 4.
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Figure 2.3: SPN - Substitution-Permutation Network design paradigm
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For introducing non-linearity we usually employ S-boxes which are functions of the

form

S : {0, 1}s → {0, 1}s′ . (2.5)

Usually s, s′ take small values for efficient implementation purposes (like around

3-8). Another reason for selecting small values is to make feasible the study of all such

functions in this space with respect to their cryptographic properties. This will alow us

to exhaustively search space and select to implement the ones which are optimal with

respect to certain cryptographic criteria [89]. They can be implemented as look-up

tables with 2s entries.

2.1.3 CTC/CTC2

Courtois Toy Cipher (CTC) is a block cipher designed by Courtois, as a research tool

cipher for performing experiments with algebraic attacks using a PC with a reasonable

quantity of RAM [32]. Algebraic attacks is the class of attacks which aim to derive bits

of the secret key or the full secret key by solving the underlying multivariate system of

equations which involves bits of the plaintext, the ciphertext, the intermediate states

and the key. We refer explicitly to algebraic attacks in Chapter 4.

The reason we describe the CTC cipher and not AES for example, is because of its

small in size S-box (3-bits to 3-bits) which is selected at random and has no special

algebraic structure. This makes it an ideal candidate for applying the circuit complexity

algorithms described in Chapter 6. The motivation behind the design of CTC is to

demonstrate that it is possible to break a cipher with sufficiently good diffusion using

a small number of known (or chosen) plaintexts. Intuitively, if the input parameters

(e.g. number of rounds Nr, number of S-boxes in each round denoted by B) are large

enough, then the cipher is expected to be more secure.

CTC follows the SPN paradigm, where we have in each round a substitution layer

followed by a diffusion layer. The S-boxes used in the substitution layer are random

permutations on three bits with no special structure (cf. Table 2.1). From now on, for

abbreviation we denote an S-box by {7, 6, 0, 4, 2, 5, 1, 3}.
As a result of its small size, this S-box is considered as “algebraically weak”, in a

sense that it can be described by a small system of multivariate non-linear equations.
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Table 2.1: CTC 3-bit to 3-bit S-box

Input 0 1 2 3 4 5 6 7

Output 7 6 0 4 2 5 1 3

It particular it can be described by 14 quadratic equations in 22 monomials [32]. It is

conjectured in [54] that all ciphers with low I/O degree (cf. Definition 9) and described

by sufficiently many I/O relations might be easier to be broken by algebraic attacks.

However, this is just a speculations based on experimental results and further analysis

is out of the scope of this thesis. More details can be found in [54] about the importance

of I/O degree and the relation with algebraic attacks.

Definition 9. (I/O Degree, Courtois, [32, 54])

The I/O degree of a vectorial Boolean function f : Fn
2 → Fm

2 , f(x) = y, with

x = (x0, ..., xn−1), y = (y0, ..., ym−1) is defined as the smallest degree of any algebraic

relation

g(x0, .., xn−1, y0, ..., ym−1) = 0,

that holds for every pair (x, y) such that y = f(x).

Full avalanche effect is achieved after approximately 3-4 rounds, but at the same

time the linear parts of the cipher are described by linear equations that are still quite

sparse. Any algebraic attack against the cipher should be practically implemented and

successful using a standard PC and only a few plaintext-ciphertext pairs.

Figure 2.4 illustrates the structure of the cipher for Nr rounds and with 2 S-boxes

in each round (B = 2). The bits of the block size are ordered as 0, .., Bs − 1 and bits

in position 0,1,2 enter the first S-box, 3,4,5 the second S-box and so on. Each round i

consists of the XOR with the derived key Ki−1, a parallel application of the B S-boxes

and a linear diffusion layer D. The key size equals the block size. Thus, on average

one known plaintext-ciphetext pair should be sufficient to recover the secret key.

We denote by Xi(j) (for i = 1, ..., Nr, j = 1, .., Bs−1 the input bits to the i-th round

after XORing with the derived key, while we denote by Zi(j) the corresponding output
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Figure 2.4: CTC Cipher - A toy cipher with B=2 S-boxes per round.

bits. The derived key Ki (in round i) is obtained from the secret key K0 by a simple

permutation of wires as follows,

Ki(j) = K0(j+i mod Bs) (2.6)

The diffusion part D of the cipher is as follows:

Zi(j.1987+257 mod Bs) = Yi(j), ∀i = 1..Nr, j = 0 (2.7)

Zi(j.1987+257 mod Bs) = Yi(j) ⊕ Yi(j+137 mod Bs), j ̸= 0, ∀i (2.8)

Dunkelman and Keller [64] have shown that using LC one can recover a few bits

of the key. This does not really compromise the security of a large key. Courtois

suggested a tweaked version of CTC, named CTC2, which is expected to be more

secure and flexible [33]. The main difference is that the key schedule of CTC2 has been

extended to use keys of any size, independently of the block size.

In CTC2, the key size of key K, denoted by Hk, is not necessarily equal to the block

size B.s and it is computed in the following way.

Ki(j) = K(j+i.509 mod (Hk)) (2.9)

The diffusion part D of the cipher CTC2 is defined as follows:

Zi(j.1987+257 mod Bs) = Yi(j)⊕Yi(j+137 mod Bs)⊕Yi(j+274 mod Bs), j = 257 mod (B∗s)
(2.10)
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Zi(j.1987+257 mod Bs) = Yi(j) ⊕ Yi(j+137 mod Bs) (2.11)

As we have already mentioned, the reason we describe this cipher is because of its

small S-box which we try to optimize with respect to several meaningful metrics in

cryptanalysis in Chapter 6. It is a good example to illustrate the provable optimal

aspects of the methodology presented in Chapter 6, which allows to compute exact

bounds on the complexity of different circuit representations with respect to a given

metric.

2.1.4 Data Encryption Standard (DES)

In 1972, the US Standards body National Bureau of Standards (NBS) (now known

as National Institute of Standards and Technology (NIST)) identified the need for

an encryption standard to be used for the encryption of unclassified and sensitive

information. Until 1973, many designs were proposed, which were all rejected by NIST

in collaboration with NSA. However, in a second round of the competition, the IBM

proposal was finally accepted to be used by the government. The IBM research team

proposed a block cipher based on a previous cipher, called Lucifer.

DES is a block-cipher based on the Feistel Network iterative structure. It maps 64

bits to 64 bits using keys of 56 bits and consists of 16 rounds. The key is actually 64

bits but only 56 are used. The remaining 8 bits are used for checking parity and they

can be discarded.

In addition, we have an initial and final permutation, IP and FP respectively, which

are such that IP ◦ FP = FP ◦ IP = Id. These permutations are of no cryptographic

significance and they are used for facilitating loading blocks in and out of mid-1970s

8-bit based hardware [110].

The operations involved in the round function are as follows:

1. Expansion: The Expansion function takes as input a 32-bit half block and ex-

pands it into a 48-bit block by repetition of certain bits.

2. Key Addition: The key schedule of DES derives 16 48-bit sub-keys from the

initial 56-bit key and each key is introduced in a different round via XOR opera-

tion.
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3. Substitution Table: After expansion and key addition take place, the 48-bit

vector is split in 8 consecutive 6-bit sub-vectors x1, x2, ..., x6. Then, each xi is

given as input to a (6-bit to 4-bit) S-box giving a 4-bit output yi.

4. Permutation: A permutation of bits is applied to the 32-bit output y1||y2||...||y6.
The permutation is such that each set of S-box’s output bits are spread across 4

different S-boxes in the next round.

Remark 2. (Key-Schedule) Given the initial 64-bit key, the function Permuted

Choice 1 (PC-1) derives 56 bits. The remaining eight bits are either discarded or

used as parity check bits. The selected 56 bits are split in two 28-bit halves and each

half is treated separately. In each round, both halves are rotated to the left by one or

two bits specified for each round and then 48 bits are derived by Permuted Choice 2

(PC-2) function (24 bits from each half). More details are found in [100].

Nowadays, DES is considered insecure to be used for many applications since brute

force attack is possible due to the 56-bit key size being too small. In January 1999,

distributed.net in collaboration with the Electronic Frontier Foundation broke a DES

key in 22 hours and 15 minutes. In addition, many other theoretical weaknesses were

revealed. Even though DES is insecure, an extension of DES named Triple-DES is

considered practically secure [110]. Finally, after all these results, NIST withdrew DES

from being the encryption standard and it was replaced by the Advanced Encryption

Standard (AES) [56]. The security requirement for AES was that it must be at least

as secure as 2-key 3-DES.

2.1.5 GOST Block Cipher

GOST is a 256-bit symmetric-key block cipher that operates on 64-bit designed by

the former Soviet Union [122]. It is an acronym for “Gosudarstvennyi Standard” or

Government Standard, as translated in English [90]. This standard was given the

number 28147-89 by the Government Committee for Standards of the USSR [63].

GOST was developed in the 1970’s and was classified as “Top Secret”. In 1989,

it was standardized for being used as an official standard for the protection of confi-

dential information, but its specification remained confidential [122]. In 1990, it was

downgraded to “Secret” and it was finally declassified and published in 1994, a short
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period after the dissolution of the USSR. Then, the standard was published and trans-

lated to English [122, 90].

According to the Russian standard, GOST is safe to be used for the encryption of

secret and classified information, without any security limitation. At the beginning of

the standard it states that, “GOST satisfies all cryptographic requirements and does

not limit the grade of security of information to be protected”. There are some claims

which state that it was initially used for high-grade communication, including military

communications [110].

It seems that GOST was considered by the Soviets as an alternative to DES but

also as a replacement of the rotor encryption machine FIALKA which was successfully

cryptanalyzed by the Americans [110]. At the end of this chapter, we make an exten-

sive comparative study between GOST and DES. Schneier states that the designers of

GOST tried to achieve a balance between efficiency and security and thus they modified

the existing US DES to design an algorithm, which has a better software implementa-

tion. The same source states that the designers were not so sure of their algorithm’s

security and they have tried to ensure high-level security by using a large key, keeping

the set of S-boxes secret and doubling the number of rounds from 16 to 32. However, it

is not true that GOST was just a Soviet alternative to DES since DES is a commercial

algorithm used for short-term security for, while GOST has a very long 256-bit key

which offers military-grade security. According to Moore’s law, computing power dou-

bles every 18-24 months, thus a 256-bit key cipher will remain secure for many years if

no other shortcut attacks could be found (assuming computing power allows to recover

approximately 80-bit keys at the moment). Additionally, GOST has been shown to

have a very efficient hardware implementation and this makes it a plausible alternative

for AES-256 and triple DES [102].

A comparison among several versions of GOST and other industrial ciphers in terms

of Gate Equivalence (GE) (cf. Definition 10) is presented in [102] and in Table 2.2.

Definition 10. ([Informal], More details in [102]) One Gate Equivalent (GE) is equiv-

alent to the silicon area of a 2-input NAND gate.

From Table 2.2 we observe that the variant of GOST called GOST-PS, a fully Rus-

sian standard compliant variant (where the S-boxes of PRESENT are used) requires
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only 651 GE. Additionally, the Russian Central Bank version, named GOST-FB, re-

quires 800GE. AES-128 and DES require 3400 and 4000 GE respectively. These fact

illustrate that GOST has a very efficient implementations and it is no surprise that it

is implemented in many standard crypto libraries such as, OpenSSL, Crypto++, RSA

security products and in many recent Internet Standards [63, 101].

Table 2.2: The GE required for the implementation of different block ciphers

Set Name Gate Equivalent

GOST-PS 651

GOST-FB 800

DES 4000

AES-128 3400

PRESENT-128 1900

GOST was studied by many cryptographers such as Schneier, Biham, Biryukov,

Dunkelman, Wagner and ISO cryptography experts [102, 110, 62]. All researchers

always seemed to agree that it could be or should be secure, since no better way to break

it than brute force was discovered. As a result of consensus among the cryptographic

community, GOST was submitted to ISO 18033-3 in 2010 to become an international

standard. Until 2010, all researchers in the cryptographic community claimed that

“Despite considerable cryptanalytic efforts spent in the past 20 years, GOST is still not

broken” [102].

Shortly after the submission, two attacks were published. One single-key attack

against the full GOST block cipher was presented by Takanori Isobe at FSE 2011

[75]. Then, Courtois then suggested a new general paradigm for effective symmetric

cryptanalysis called Algebraic Complexity Reduction [35]. Using this methodology, he

constructed many more efficient attacks against GOST by reducing the problem of

attacking the full 32 rounds to the problem of attacking 8 rounds, where a dedicated

solver such as a SAT solver can be employed to derive the secret key.

2.1.5.1 Structure of GOST

The GOST block cipher is a 32-round Feistel structure of 256-bit level security. It uses

its 256-bit key to encrypt 64-bit blocks (cf. Figure 2.5).
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Figure 2.5: GOST Cipher - 32-rounds of a Feistel network to encrypt a 64-bit plaintext

using a 256-bit key
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A given 64-bit block P is split into its left and right halves PL, PR respectively.

Given the key ki for round i, the plaintext P is mapped to

(PL, PR)→ (PR, PL ⊕ Fi(PR)), (2.12)

where Fi is the GOST round function. Given the round key ki, the round function

consists of the following sub-functions (cf. Figure 2.6).

Figure 2.6: GOST’s Round Function - Round function Fi

Firstly, the 32-bit right half is added with ki (modulo 232). Then, the result is

divided into eight 4-bit consecutive blocks and each block is given as input to a different

S-box. The first 4 bits go into the first S-box S1, bits 5-8 go into S2 and so on. Then,

the 32-bit output undergoes a 11-bit left circular shift and finally the result is xored to

the left 32-bit half of the data.

Remark 3. (Internal Connections in GOST) Let Si for i = 1, 2, ..., 8 be the i-th S-

box used in each round. Then, we can number the inputs of the S-box Si by integers

from 4i+1 to 4i+4 out of 1, .., 32 and its outputs are numbered according to their final

positions after the rotation by 11 positions: for example the inputs of S6 are 20,21,22,23

and the outputs are 32,1,2,3. We refer explicitly to internal connections since we use

them to define sets of differentials that are suitable in DC as we will study in Chapter

8.
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2.1.5.2 Key Schedule

GOST has a relatively simple key schedule and this is exploited in several cryptanalytic

attacks like in [34]. Its 256-bit key K is divided into eight consecutive 32-bit words

k0, k1, .., k7. These subkeys are used in this order for the first 24 rounds, while for the

rounds 24-32 they are used in the reverse order (Table 2.3). Note that decryption is

the same as encryption but with keys ki used in the reverse order.

Rounds 1-8 Rounds 9-16

k0, k1, k2, k3, k4, k5, k6, k7 k0, k1, k2, k3, k4, k5, k6, k7

Rounds 17-24 Rounds 25-32

k0, k1, k2, k3, k4, k5, k6, k7 k7, k6, k5, k4, k3, k2, k1, k0

Table 2.3: GOST: Key Schedule Algorithm

2.1.5.3 S-boxes

The Russian standard GOST 28147-89 does not give any recommendation regarding

the generation of the S-boxes [63]. On the one hand, the fact that the S-boxes can be

kept secret adds an extra security layer with approximately 354 extra bits of security

(cf. Lemma 1). On the other hand, some problems might arise if the set of S-boxes

is kept secret. For example, the generation and implementation of a set of S-boxes

which is not cryptographically good would make the cipher less secure. Additionally,

different algorithm implementations can use different set of S-boxes and thus can be

incompatible with each other.

Even though the set of S-boxes can be kept secret, there are techniques to extract

them from a chip very efficiently. We can reveal the values of the secret S-boxes by

a simple black-box chosen-key attack with approximately 232 encryptions [108, 70].

Informally, a black-box chosen-key technique is the technique where we are allowed

to make queries to a given function using different keys but we are not aware of the

internal structure of the function [108]. In all of the attacks we describe, we assume

that the S-boxes are known to the attacker.
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Table 2.4: Gost-R-3411-94-TestParamSet

S-boxes GostR3411-94-TestParamSet

S1 4,10,9,2,13,8,0,14,6,11,1,12,7,15,5,3

S2 14,11,4,12,6,13,15,10,2,3,8,1,0,7,5,9

S3 5,8,1,13,10,3,4,2,14,15,12,7,6,0,9,11

S4 7,13,10,1,0,8,9,15,14,4,6,12,11,2,5,3

S5 6,12,7,1,5,15,13,8,4,10,9,14,0,3,11,2

S6 4,11,10,0,7,2,1,13,3,6,8,5,9,12,15,14

S7 13,11,4,1,3,15,5,9,0,10,14,7,6,8,2,12

S8 1,15,13,0,5,7,10,4,9,2,3,14,6,11,8,12

Lemma 1. Suppose that the 8 4-bit to 4-bit S-boxes in GOST block cipher are kept

secret. Then, the effective key size becomes 610 bits.

Proof. Each S-box is a bijective Boolean function S of the form

S : F4
2 → F4

2.

Thus, each function S is a permutation on the set {0, 1, 2, 3, ..., 15}.
There are in total 16! such permutations.

If all 8 S-boxes are kept secret, this is equivalent of log2(2
8.16!) = 354 bits of secret

information. Thus, the effective key size is increased to 610 bits from 256.

One set of S-boxes called “id-GostR3411-94-CryptoProParamSet”, was published

in 1994, as part of the Russian standard hash function specification GOST R 34.11-94.

Schneier claims that this set of S-boxes is used by the Central Bank of the Russian

Federation [110]. At least two sets of S-boxes have been identified as being used by two

major Russian banks and institutions [110].

We are aware of the following sets of S-boxes,

1. Gost-R-3411-94-TestParamSet : (Table 2.4) This set is used by the Central Bank

of the Russian Federation [110].

2. Gost28147-TestParamSet : (cf. Appendix A.3, Table A.2) This set is used when

GOST is used to process large amounts of data, e.g. in CBC Mode [101].
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3. GostR3411-94-SberbankHashParamset : (cf. Appendix A.3, Table A.3) This set

was used by a large bank, as part of the Russian standard hash function specification

GOST R 34.11-94.

4. GostR3411-94-CryptoProParamSet : (cf. Appendix A.3, Table A.4) As appearing

in RFC4357, this set was published in 1994 as a part of the Russian standard hash

function specification GOST R 34.11-94 [63]. It has another four versions: A,B,C,D.

5. GOST ISO 18033-3 : This set is specified in 1WD ISO/IEC 18033-3/Amd1 and

was submitted for standardization [107]. This is claimed by Russian cryptologists to

be the most secure version to use [107]. However, in the last chapter we show that

an attack faster than brute-force can be also applied to this version and there is no

evidence that it is more secure.

2.1.5.4 Addition Modulo 232

In addition to S-boxes, the GOST cipher uses addition modulo 232 for key insertion.

Modular addition is another source of introducing non-linearity in the cipher. There are

ciphers which do not have S-boxes and the only non-linearity is via modular additions,

like ARX ciphers [83]. The modular addition of two n-bit words x, y is algebraically

described as follows,

(x, y) 7→ z = x+ y mod 2n (2.13)

The resulting n-bit word (zn−1, .., z0) is given by,

z0 = x0 + y0

z1 = x1 + y1 + c1

z2 = x2 + y2 + c2

.

.

zi = xi + yi + ci

.

.

zn−1 = xn−1 + yn−1 + cn−1
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where,



c1 = x0.y0

c2 = x1.y1 + c1.(x1 + y1)

.

.

ci = xi−1.yi−1 + ci−1(xi−1 + yi−1)

.

.

cn−1 = xn−2.yn−2 + cn−2(xn−2 + yn−2)

As we will explain in a later section, Multiplicative Complexity (MC), or equiva-

lently the required number of multiplications, can be seen as a measure for the non-

linearity of the cipher. The importance of MC is also discussed in [20]. The MC of the

addition modulo 232 is computer in Theorem 2.

Theorem 2. (MC(�), [42])

The modular 2n addition can be computed using at least n − 1 multiplications. In

other words its Multiplicative Complexity is n− 1.

Proof. In characteristic 2 we have that

xy + (x+ y)c = (x+ c)(y + c) + c

Thus, we can compute the variables ci, 1 ≤ i ≤ n using 1 multiplication for each,

so n− 1 in total.

On the other hand, each ci contains a multiplication of two new variables so at least

one multiplication is needed per ci.

Thus, the multiplicative complexity of this operation is exactly n− 1.

The existence of modular addition 232 makes the study of the cipher with respect

to known forms of cryptanalytic attacks such as LC and DC much more complex. We

refer explicitly to DC in a later chapter.

2.1.5.5 Comparative Study between GOST and DES

The designers of GOST block cipher aimed to achieve a balance between efficiency and

security. One the one hand, they aimed to design a cipher which has very efficient soft-

ware and hardware implementation and this was achieved by the very simple structure

of its round function and the very simple key schedule. On the other hand, they wanted

to achieve a high level security using a large number of rounds and a large key.
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The main aim was the design of an algorithm which can be considered as a plausible

alternative for existing industrial symmetric block ciphers like DES. GOST and DES

have a very similar structure and they follow the Feistel Network design paradigm.

Below we mention all major differences between GOST and DES.

1. GOST has 32 rounds, while DES has 16.

2. GOST has a 256-bit key, while DES has a 56-bit key. The secret key of GOST

can be increased to 610 bits, if the S-boxes are kept secret.

3. GOST is cheaper than DES in software implementation since it has a simpler

round function and a simpler key schedule algorithm.

4. GOST is cheaper to implement in hardware. One reason is due to its very sim-

ple round function. The DES round function has the substitution layer (which

consists of 8 6-bit to 4-bit S-boxes) and it employs an expansion function and a

permutation at the end of the round function. The substitution layer of GOST

is the one-fourth in size of the substitution layer in DES.

5. The presence of modular addition 232 makes the transitional probability in DC

vary not only with the value of the input-output difference, but also with the

value of the sub-key. Thus, as we will see in later sections GOST is not a Markov

cipher. On the other hand, in DES we have a simple bitwise XOR, which makes

the differential probability independent of the plaintext itself and thus DES is a

Markov cipher [88]. We study Markov ciphers in Chapter 4.

6. The avalanche effect is slower to occur in GOST than in DES. In GOST, a change

in one bit of input affects sometimes only one S-box after one round, which then

affects two S-boxes in the next round and so on. Thus, a single bit change in

the input affects the whole output after exactly 8 rounds, while in DES only 5

rounds are needed. This is due to the fact that in the DES round function we

have an expansion permutation from 32 bits to 48 bits at the beginning and a

very complex and carefully designed final permutation. In the case of GOST, we

only have an 11-bit left circular shift and thus the diffusion is poor.
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7. In GOST, each round function uses 32 out of 256 bits of the key, while in DES

48 out of 56 bits are used. That implies only approximately 12.5% of the key bits

are used in one round in the case of GOST, while 86% in DES. In addition, due

to the very simple key schedule in GOST, one can remove two rounds by guessing

only 32 bits. This simplicity implies that GOST may not encrypt equally well, if

the key has lots of zeros or large blocks of many consecutive zeroes. Thus, it may

be possible to construct distinguishers for distinguishing keys of small Hamming

weight.

2.2 Hash Functions

A one-way hash function H(M) is a function which operates on a message M of arbi-

trary, but finite length and maps it to a fixed-length value h, called the hash value (cf.

Figure 2.7).

Figure 2.7: Hash Function - Hash function’s operation

Formally, we will deal with a family of hash functions indexed by a “key” k. Thus,

H is a 2-input function that takes as inputs a key k and a string M , and outputs a

string Hk(M) = H(k,M) (cf. Definition 11).

Definition 11. (Hash function,[13])

A hash function is a family of functions H : K × D → R, where D,R are the

domain and the range of H and if k ∈ K is a particular key, then Hk : D → R is an

efficiently computable function defined for all M ∈ D by Hk(M) = H(k,M). This is

the instance of H defined by k.

For a hash function H : K × D → R and for any k ∈ K and y ∈ R, we call as

the pre-image of y under Hk, any element contained in the set (Hk)−1(y) = {x ∈ D :

Hk(x) = y}. Note that the key is not a usual cryptographic key and there are two main

differences. Firstly, this key is not kept secret and secondly not all strings k correspond

to valid keys and thus the key k is not chosen uniformly at random.
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Hash functions are used in cryptography for ensuring certain security objectives

such as integrity. However, they have to fulfill certain properties in order to be cryp-

tographically good. For example, it should be computationally hard to find collisions

(cf. Definition 12).

Definition 12. (Collision)

A pair x1, x2 ∈ D with x1 ̸= x2, such that Hk(x1) = Hk(x2) for some k is said to

be a collision.

A hash function for which it is difficult to find collisions, is called collision-resistant.

Except of collision-resistance properties, a cryptographically good hash function needs

also to satisfy the following security notions.

Definition 13. (Security notions, [80])

Given a key k (generated by a probabilistic algorithm), then for an instance Hk(M)

of H : K ×D → R for k ∈ K, we have the three main security notions that we would

like to hold,

1.(Collision resistance): It is computationally hard to find distinct points x1, x2 ∈ D
with x1 ̸= x2, such that Hk(x1) = Hk(x2). In the absence of analytical weakness, the

birthday paradox [110] means that the effort to compromise collision resistance expected

to be no less than 2
|D|
2 operations.

2.(Pre-image resistance): Given y ∈ Image(Hk), it is computationally hard to find

x ∈ D, such that Hk(x) = y. In the absence of analytical weakness, the effort required

to compromise this property is expected to be 2|D| operations.

3.(Second pre-image resistance) Given x1 ∈ D and y ∈ Image(Hk), such that

Hk(x1) = y it is computationally hard to find x2 ∈ D, such that x2 ̸= x1 and Hk(x2) =

y. In the absence of analytical weakness, the effort required to compromise this property

is expected to be 2|D| operations.

In the rest of this section, we treat hash functions as keyless and we study the main

design paradigm for hash functions, named Merkle-Damg̊ard transform [59].

2.2.1 How to Build a Hash Function

In this section we present an important methodology called the Merkle-Damg̊ard trans-

form (cf. Figure 2.8, [59]), that is widely used for constructing collision-resistant hash

functions in practise. This methodology allows the conversion from any fixed-length
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hash function to a hash function which can handle inputs of arbitrary length and on

the same time preserves the collision resistance property of the former.

Informally, the methodology goes as follows. Firstly, we construct a one-way com-

pression function f , which is used as an underlying component in the general architec-

ture. A one-way compression function is a function that transforms a fixed-length input

into a fixed-length output. Given the inputs, it is computationally easy to compute the

image, however given an output it is computationally hard to invert.

A common way to build one-way compression function is from block-ciphers and

several methods were suggested for such constructions [103]. There are two main rea-

sons why we use block ciphers for constructing hash functions. Firstly, if we intent

to implement both a block cipher and a hash function in an application, then in this

way we save both space and implementation by reusing some components that we must

anyway implement. Secondly, if we already have a deployed block cipher then it would

be handy to construct a hash function out of this block cipher and then we might be

able to leverage trust in the block cipher to make claims about the security of the hash

function.

The Merkle-Damg̊ard Construction Paradigm works as follows. Given a fixed-length

compression function f for two inputs of length λ and with output of length λ, then

we construct a variable length hash function H as follows:

• H : on string x ∈ {0, 1}∗ of length L, do the following

1. Set B := ⌈Lλ ⌉ (number of blocks in x). Pad x with zeroes so its length

is a multiple of λ. Consider the sequence of λ-bit blocks x1, .., xB. Set

xB+1 := L, where L is encoded using exactly λ bits.

2. Set z0 = IV := 0λ (This is called the initialization vector and is arbitrary

and can be replaced by any constant)

3. For i = 1, ..., B + 1, compute zi := f(zi−1, xi)

4. Output zB+1

If the underlying compression function is collision-free, then it is proved that the

Merkle-Damg̊ard construction is collision-free [80]. This property makes the job of

designing practical collision-resistant hash functions much easier. In the next section,
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Figure 2.8: Merkle-Damg̊ard Construction Paradigm - General design of a hash

function which follows Merkle-Damg̊ard paradigm improved with padding and length

we study the GOST hash function [2], a hash function which deviates from this widely-

used and accepted design paradigm. A collision on the compression function of GOST

hash function is also presented.

2.2.2 GOST Hash Function

The GOST hash function, defined in the Russian government standard GOST R 34.11-

94 is a cryptographic hash function, which processes message blocks of size 256 bits

and outputs 256-bit hash values. If the number of bits of the entire message is not a

multiple of 256, then the message is padded by appending as many zeroes to it as are

required to bring the length of the message up to a multiple of 256 bits [2].

The high level structure of the GOST hash function is more complex than the other

common hash functions, such as MD5 and SHA-1, which follow the Merkle-Damg̊ard

design principles. In addition, GOST has an extra checksum, which is computed over

all input message blocks and is given as input to the last compression function. In

Figure 2.9 we recall the structure of the GOST hash function. Note that f stands for

the compression function F256+256
2 → F256

2 .

Figure 2.9: GOST Hash Function - High-level description of GOST hash function

The hash value h = H(M) is computed recursively by the following equations:

H0 = IV (2.14)
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Hi = f(Hi−1,Mi) (2.15)

Ht+1 = f(Ht, |M |) (2.16)

h = f(Ht+1,Σ), (2.17)

where Σ is the sum of all the message blocksMi computed modulo 2256. IV is the fixed

initial vector given to the compression function and |M | is the size in bits of the entire

message.

The compression function f of the GOST hash function consists of three basic

sub-algorithms; the Key Generation, the State Update Function and the Output Trans-

formation (Figure 2.10).

Figure 2.10: GOST Hash Function Main Components - The three different com-

ponents of the compression function

2.2.2.1 State Update Transformation (SUT)

The State Update Transformation (Figure 2.11), is the “four encryptions in parallel”

component of the underlying compression function f . The 256-bit intermediate hash

value Hi−1 is written as the concatenation of four 64-bit words in the form h3||h2||h1||h0
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and each 64-bit word is encrypted under the GOST block cipher (E). This results in

the 256-bit value S = s3||s2||s1||s0, where si ∈ {0, 1}64 for 0 ≤ i ≤ 3 as described below,

si = E(ki, hi). (2.18)

Figure 2.11: GOST’s Compression Function - The compression function of GOST

[95]

Here E(K,P ) stands for the encryption of the given 64-bit plaintext P with a

256-bit key K. The complexity of the evaluation of the compression function depends

strongly on the cost of evaluating the “four parallel encryptions”. As we will see in our

analysis later, all the other components involved in computing the hash values are very

inexpensive to implement since they are all linear.

2.2.2.2 Key Generation (KG)

The Key Generation sub-procedure of GOST combines the intermediate hash value

Hi−1 and the message block Mi, using simple linear transformations to output a 1024-

bit key K = k3||k2||k1||k0.
The 256-bit subcomponents k0, k1, k2, k3 are computed using the following formulas,

where A and P are linear transformations and α is a constant given by

44



2.2 Hash Functions

18||08||116||024||116||08||(08||18)2||18||08||(08||18)4||(18||08)4.

k0 = P (Hi−1 ⊕Mi) (2.19)

k1 = P (A(Hi−1)⊕A2(Mi)) (2.20)

k2 = P (A2(Hi−1)⊕ α⊕A4(Mi)) (2.21)

k3 = P (A(A2(Hi−1)⊕ α)⊕A6(Mi)) (2.22)

For the definition of the linear transformation A and P , we refer to [2], since they

are not needed in the scope of this thesis.

2.2.2.3 Output Transformation (OT)

The Output Transformation is the final transformation, which is applied in order to

produce the value Hi. The final value Hi is computed using the linear and invertible

transformation ψ : {0, 1}256 → {0, 1}256 given by,

Hi = ψ61(Hi−1 ⊕ ψ(Mi ⊕ ψ12(S))) (2.23)

The explicit representation of the transformation ψ is the following:

ψ(X) = (x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x12 ⊕ x15)||x15||x14||...||x1, (2.24)

where the vector X ∈ {0, 1}256 is written as x15||x14||....||x0 with each xi ∈ {0, 1}16.
As we discussed, GOST except for its iterative structure which follows precisely

the Merkle-Damg̊ard construction, employs an extra modular addition over all the

message inputs and thus it differs from traditional hash functions. Wagner proved that

a generalized form of the birthday paradox can be applied and then collision attack

can also be extended with this sum [119]. Thus, this sum does not really enhance the

security of the hash function.

Another important observation, is that in the compression function of GOST hash

function we have four parallel encryptions and the final output is used to mix the
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four results of the encryptions. However, since there are many linear dependencies

this degrades the security of the underlying compression function. We study collision-

resistance property of this compression function in the next section.

Remark 4. Usually we have single-block-length compression functions and the hash

function outputs the same number of bits as processed by the underlying block cipher

and double-length hash functions which output twice the number of bits processed by

the underlying block cipher. The main motivation behind double-length constructions is

inspired by the fact that given two hash functions h1, h2, if either h1 or h2 is a collision

resistant hash function, then h(x) = h1(x)||h2(x) is a collision resistant hash function

and thus if h1 and h2 are applied independently then one could hope finding a collision

for h(x) requires twice the effort to find a collision for one of them [86].

2.2.3 Attacks on the Compression Function of GOST

Regarding the security analysis of GOST hash function with respect to collision, pre-

image and 2nd pre-image attacks, most important attempts are by Mendel et al [95].

They present attacks against full hash function as extensions of attacks on the under-

lying compression function. The attacks they have presented lie in the area of specific

or structural attacks, as they exploit the efficiency of constructing fixed points in the

GOST block cipher, which is the major non-linear component inside the compression

function. At first stage, they construct a collision attack on the underlying compression

function of complexity 296 evaluations of the compression function, which is extended

to a collision attack against full hash function with complexity 2105 evaluations of the

compression function. The extension is achieved using multi-collisions [77] and a gen-

eralization of the birthday paradox [119].

In this section, we study the underlying compression function. We study how to

obtain collisions for the compression function using black-box algebraic techniques. A

black-box technique was also presented by Mendel et al [94], however our technique is

fundamentally different. Unfortunately, an extension of such an attack to the full hash

is not always guaranteed and despite our efforts we have not achieved it so far.

Following the description of GOST Hash function, the high-level description of the

compression function f can be schematically represented as in Figure 2.12.

The most important thing to note which we exploit in our attacks is that the trans-

formation L is a linear transformation on the 512-dimensional space Mi ×Hi−1 and it
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Figure 2.12: GOST Hash Function: Compression Function - A schematic repre-

sentation of the compression function f in GOST Hash Function

outputs 1024+256 bits. In addition, we have at the end a bijective linear transformation

K on the 256 bits resulting from the XOR of the two 256-bit vectors S = s3||s2||s1||s0
and C as depicted in Figure 2.12. The two 256-bit vectors C ′

2, C
′
3 are just affine con-

stants.

The main idea of our attacks follows the paradigm of Constrained Inputs Con-

strainted Outputs (CICO) which is a method of solving an equation f(x) = y for x ∈ X
and y ∈ Y , for certain subspaces X and Y . This term was invented by the designers of

Keccak SHA-3 [14].

The key idea in such attacks is the construction of a restriction of a given function on

a proper subspace of the input spaceMi×Hi−1, which induces a smaller linear-subspace

on the 256-dimensional output space. For example, if we select a 192-dimensional linear

subspace of the 512-dimensional input space, such that the output space is still large

enough, then we have managed to construct a proper restriction of the compression

function f , say f |res. Hence, any collision for f |res is also a collision for f . This is a

form of Affine Reduction Property. Specifically, for the case of GOST hash function,

an affine reduction property can be found as follows (cf. Definition 14).

Definition 14. (Affine Reduction Property)

1. Consider 384 linear equations on the 512-dimensional input spaceMi×Hi−1. This

corresponds to selecting a proper 128-dimensional proper subspace V inMi×Hi−1.
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2. Consider the image of f |res on the reduced space V and call it W ⊂ Hi. The

main aim is that the selection of the inputs results in additional linear equations

on the output space. If 64 such linear equations are obtained, then we have a

restricted version of f as follows:

f |res: V →W,dimV = 128, dimW = 192(= 256− 64), (2.25)

where each time the input is a member of a reduced linear space of 2128 inputs.

Remark 5. In order for collisions to exist for f |res, we need that the inequality

dimV > dimW
2 is satisfied. If this inequality does not hold, then f |res might have no

collisions, as it might be injective.

In the next subsection we study two ways to achieve this affine reduction property

and leading to collision attacks on the compression function.

2.2.3.1 Black-Box Collision Attacks

Algorithm 1 describes the attack on the compression by Mendel et al. [95]. This attack

is also a black-box attack, however it is not clear that it can be extended to the full

hash [95].

Algorithm 1 Mendel et al ’s Attack against f

1. Fix k0 for the first instance of the GOST cipher E (cf. Figure 2.12).

2. Fix the input Hi−1 of the first instance of the cipher GOST, denoted by h0 (cf.

Figure 2.12).

3. Fix c0 = s0 (cf. Figure 2.12).

Analysis of Algorithm 1: Step 1 corresponds to 256 linear equations inMi×Hi−1,

since k0 = P (Hi−1 ⊕Mi), where P is a linear transformation. Steps 2 and 3 induce

another 64+64 linear equations on the input space. Once k0 and h0 are fixed, then

s0 = E(k0, h0) is also fixed. Let x be the result of xoring vectors c and vector s. Based

on the selection of our parameters we have that x0 = 0 and this leads to 64 linear

equations on the output space Hi. Hence, we have constructed a restriction of the

compression function f which follows the affine reduction property.

Next, we describe a different black-box attack which results again in the construction

of a restriction of the function f , which allows collisions to be found.
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Algorithm 2 Our Black-Box Algebraic Collision Attack against f

1. Fix the keys k0 and k1 for the first two instances of the cipher GOST.

2. Fix the inputs h0 and h1 for the first two instances of the cipher GOST.

3. Fix c0 = c1 (cf. Figure 2.12).

Analysis of Algorithm 2: Step 1 corresponds to 256 linear equations on the

space Mi ×Hi−1. Steps 2 and 3 induce another 64+64 linear equations. Let x be the

result of xoring the vectors c and s. Based on the selection of our parameters we have

that x0 = x1 and this leads to 64 linear equations on the output space Hi. Hence, we

have constructed again a restriction of the compression function f , which follows the

affine reduction property.

In both attacks we constructed a restriction of f , such that its output space has 2192

elements. By applying the birthday paradox we can find a collision with complexity

296 evaluations of the compression function. Since our input space is greater than 296,

then this method is sufficient for finding a colliding input pair. However, extension of

this technique does not allow for constructing a collision for the full hash.
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3

Probabilistic Methods in

Cryptanalysis

“History has taught us: never underestimate the amount of money, time, and effort someone

will expend to thwart a security system. It’s always better to assume the worst. Assume your

adversaries are better than they are. Assume science and technology will soon be able to do

things they cannot yet. Give yourself a margin for error. Give yourself more security than you

need today. When the unexpected happens, you’ll be glad you did.” Bruce Schneier

Cryptanalytic techniques are very important and continuously used to evaluate the

security of cryptographic primitives. Such techniques are used to derive some bounds

with respect to the security of a cryptographic primitive under different settings and

scenarios such as,

1. The goal of the attacker. For example, an adversary may want to break the full

scheme by recovering the secret key K or he may want to recover the plaintexts

of some ciphertexts.

2. Allocated resources, like money and computing power

3. The amount of information available to the adversary, like the number of available

plaintext-ciphertext pairs (P,C) and the type of access that an adversary has to

the system, for instance wiretapping.

In this chapter, we provide a brief introduction to the area of cryptanalysis. Initially,

we discuss a classification of the attacks based on the motivation of the attacker, as well
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on the amount and type of available data. Then, we discuss brute-force cryptanalysis,

which is a form of a generic attack.

In the rest of this chapter, we discuss more advanced cryptanalytic techniques. In-

formally, cryptanalysis can be seen as two separate worlds; the world of approximation

cryptanalysis and the world of exact algebraic cryptanalysis. In approximation crypt-

analysis, we search for special events occurring perhaps due to unexpected structure

(like propagation of specific input-output differences), which occur with relatively high

probability and we exploit them in order to derive some key bits or any other infor-

mation. On the other hand, in exact algebraic cryptanalysis, we exploit the algebraic

description of the primitive, like in algebraic attacks which we describe in Chapter 4. In

this section, we are mainly interested in cryptanalysis of block ciphers and we discuss

LC and DC, which are the most powerful cryptanalytic techniques. In addition, we

discuss some enhancements of DC, which is a major theme for this thesis.

3.1 Classification of Attacks

So far we have investigated the role of a cryptographer. Answering the following ques-

tions, we get important insights regarding the capabilities of a cryptanalyst.

1. What are the aims of an attacker?

2. What are the attacker’s available resources?

3. What type of access does an attacker have to the system?

The most extreme scenario is that the cryptanalyst would like to recover all bits of

the secret key. Knudsen classifies the aim of an attacker in the following way [85]:

1. Total break: The attacker recovers the secret key k.

2. Global deduction: The attacker finds an algorithm A, which is equivalent to

either EncK(.) or DecK(.), without the need to know the secret key k (can be

seen as an equivalent key).

3. Local deduction: Generating the message (or ciphertext) corresponding to a

previously unseen ciphertext (or message).
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4. Information deduction: Obtaining some non-negligible quantity or relation

regarding the key bits, which is true in general.

5. Distinguishing Algorithm: Distinguishing a given cipher from a random per-

mutation. This notion is applied only to block ciphers. In most cases, we con-

struct a distinguisher for distinguishing a reduced-round version of the cipher

from a random permutation. In practice, it is frequently possible to extend a

distinguishing algorithm to a key recovery attack against the full block cipher,

however it is not trivial at all.

Regarding the access to the system, Schneier classifies the attacks in the following

way [110]:

1. Ciphertext-only attack: The adversary is assumed to have access to observe

the ciphertext(s) corresponding to several plaintext(s), which are encrypted under

the same cryptosystem and the same secret key. For such an attack to succeed,

we need to have enough redundancy in the plaintext.

2. Known-plaintext attack: The adversary has access to see some plaintexts

together with the corresponding ciphertexts.

3. Chosen-plaintext attack: A type of known-plaintext attack but with the flex-

ibility that the adversary has the ability to encrypt plaintexts of his choice.

4. Adaptive-chosen-plaintext attack: A special case of chosen-plaintext attack,

where an adversary can additionally modify his choice based on the results of

previous encryptions.

5. Chosen-ciphertext attack: The attacker can select different ciphertexts to be

decrypted.

A cipher which is vulnerable to ciphertext-only attacks is very weak. Known-

plaintext and chosen-plaintext attacks are realistic scenarios, as in most applications it

is feasible to make conclusions about the structure of a plaintext for a given ciphertext.

For example, encrypted source code and executable code are very vulnerable, since

some words such as {define, struct, if, else, for} are repeated many times. However,

some countermeasures can be employed in this direction, such that the encryption of
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plaintexts which have some specific structure is avoided. A common countermeasure is

to compress before we encrypt. The compressed file has a uniform distribution of char-

acters. Moreover, compression results in shorter plaintexts and thus the time needed to

encrypt and decrypt is reduced and in addition the reduced redundancy in the plaintext

can potentially hinder certain cryptanalytic attacks.

Another scenario is that the adversary can obtain the encryptions of a plaintext

under two or more keys which are linked via some mathematical relationship known to

the attacker. For example the encryption of the plaintext can be done under two keys

which share the same 20 last bits. These attacks are called related-key attacks [15].

The success of a cryptanalytic attack is measured based on the required resources

needed. In addition to the amount and type of available data, the following resources

are fundamental to be considered,

1. TIME: The time needed to launch an attack. Potentially it is the most important

requirement considered.

2. MEMORY: The amount of memory or storage needed during an attack. An

example is the meet-in-the-middle attack, where intermediate states resulting

from the encryption of plaintexts for a limited number of rounds need to be

stored.

3. DATA: We have already discussed that the amount and type of data is very

important.

The data types and available resources are very important to be considered, when

evaluating the security of a cryptographic primitive in isolation. However, if the primi-

tive is used in real-life applications, then the implementation of it must be studied also.

For example, a primitive may seem to be secure against such mathematical attacks but

some flaws in its implementation might make it insecure. There are attacks which ex-

ploit the leakage of physical information or power consumption or time required during

encryption, such as side-channel and timing attacks [110].
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3.2 Brute-force Attack

Brute-force attack or exhaustive key search, is the most general attack that can be

applied to any encryption algorithm. It is applied in cases where no weaknesses of the

scheme are known and they do not exploit any structural properties. It is often used

in a known-plaintext or ciphertext-only attack scenario.

A brute-force attack works in the following way. Assume that a plaintext P is

encrypted to a ciphertext C by an encryption scheme (K,E,D), where k ∈ K is the

secret key. Then, an adversary given a (P,C) pair, encrypts P under all possible keys

ki ∈ K, until he finds a key kj such that Ekj (P ) = C. If the block size equals to key

size, then on average one pair is enough. In the worst case, the adversary needs to

exhaustively search the entire key space. Thus, the length of the key determines the

practical feasibility of performing a brute-force attack.

Exhaustive key search is always possible in theory but computationally infeasible

in practice. A cipher with key length |K| bits can be broken in a worst-case time 2|K|

encryptions and on average in time of 2|K|−1. In symmetric cryptography |K| = 128 is

considered good enough for commercial applications, while for military-grade security

we need at least |K| = 256.

However, as we have already mentioned in the introductory section this level of se-

curity can never be reached due to inevitable key bits loss. A MITM of time complexity

2|K|(1− ϵ), where ϵ > 0, is always achievable for practical ciphers [74].

Lastly, brute force attack is possible in a ciphertext-only setting. This could be

successful provided that there is enough redundancy in the plaintext (e.g. the plaintext

is in English alphabet). Under this assumption, the attacker decrypts the ciphertext

under all key guesses, until a meaningful plaintext is obtained. We assume that there

exists an efficiently computable procedure which allows us to decide if the plaintext is

valid.
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3.3 Linear Cryptanalysis (LC)

Linear cryptanalysis (LC) is a known plaintext attack on block ciphers discovered by

Corfdir and Gilbert [9]. Firstly, it was successfully applied to the FEAL cipher in

1993 by Matsui [93] and a year later to DES [92]. Despite the fact that the published

attack on DES was not very practical (as it requires 243 known plaintexts), it led to

the development of further academic cryptanalysis. Since then, LC is considered as one

of the most important cryptanalytic techniques and evidence of security against it is

expected in all new block cipher designs, as well as stream ciphers.

LC is based on finding affine approximations to the action of a cipher, which hold

with relatively high probability. The main idea is to find affine relations between bits of

the plaintext, the ciphertext and the key (which hold with relatively high probability)

such that we can deduce information about some key bits.

Let (K,E,D) be an encryption scheme, which encrypts a given plaintext P ∈ {0, 1}n

to a ciphertext C ∈ {0, 1}n, using a key k ∈ {0, 1}K . The main aim is to find binary vec-

tors (or linear masks) α, β ∈ {0, 1}n and γ ∈ {0, 1}K , such that linear approximations

of the form

α.P ⊕ β.C = γ.K, (3.1)

hold with relatively high probability. The RHS of Equation 3.1 depends only on key

bits. Assuming that the RHS is constant and equal to some value b, the main aim is

to find linear masks (α, β) for which the LHS equals to some value b more frequently.

Thus, we aim to maximize the following probability,

pα,β = Pr(α.P ⊕ β.C = b).

In an ideal cipher, we expect such relation to hold with probability 1
2 for both b = 0

and b = 1. Thus, we are interested in finding such approximations which hold with

probability pα,β, such that the correlation or imbalance of linear approximation given

by,

cα,β = 2pα,β − 1 ∈ [−1, 1],
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is either relatively high or low. Then, for all values of the key bits on the RHS of

Equation 3.1, we count how many times the approximation is true over all known

(P,C) pairs. By construction, we expect the choice of the set of key bits which result

to the greatest absolute difference from half of the number of pairs which satisfy this

equation to be the most likely set.

The most important task involved in LC is the discovery of such linear masks.

All linear functions of a cipher can be trivially described by linear equations. The

tricky part is to find linear approximations for the non-linear components, which hold

with a comparatively good probability. S-boxes and modular additions are examples

of non-linear functions.

In general, in case of an iterated cipher we work in the following way,

1. Consider the linear equations that describe linear components which hold with

probability 1.

2. For any non-linear component of the form S : {0, 1}n → {0, 1}m, find vectors

α ∈ {0, 1}n, β ∈ {0, 1}m, such that for all inputs X and corresponding output Y ,

the equation αX ⊕ βY = b holds with sufficiently high probability.

3. Combine them to get a linear approximation of the round function.

4. Concatenate to get linear approximations over more rounds.

For each non-linear component, we compute its corresponding linear approximation

table, which is a table that contains all possibly input and output masks (α, β), together

with the the associated bias given by,

ϵ = Pr(α.X ⊕ β.Y = 0)− 1
2 .

After obtaining linear approximations of the round function, we join them to get a

linear approximation for several rounds. If this linear approximation covers s rounds

of the cipher, it is a called a s-round characteristic (cf. Definition 15).

Definition 15. (Linear Characteristic)

An s-round linear characteristic of probability p = 1
2+ϵ, is an (s+1)-tuple (α0, ..., αs),

where αi is the input mask to the i-th round and ϵ > 0 the bias.
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3.3.1 Key Recovery using LC

In this section, we discuss how we obtain some information regarding the secret key

using LC. Assuming a linear equation of the form α.P ⊕β.C = γ.K, of bias |ϵ|, we can
recover one key bit information in the following way (cf. Algorithm 3).

Algorithm 3 Recovering one-bit of secret key via LC

1. Encrypt N distinct plaintexts P1, ..., PN and get the corresponding ciphertexts

C1, .., CN

2. Initialize counters T0, T1

3. Increment Ti when α.Pj ⊕ β.Cj = i

4. Identify T = maxi=0,1 Ti (if the bias is positive)

5. Return i

The above attack returns one bit of key information. The RHS of the above equation

involves only key bits, while the LHS involves only plaintext and ciphertext bits. Thus,

we expect the RHS of the above equation to be equal to a fixed value (either 0 or 1) for

approximately p.N pairs. By construction, we expect the counter with the maximum

value to suggest the correct equation involving only key bits.

However, using partial decryption of the last round, we can obtain more than just

one linear equation. We apply this to a r-round iterated block cipher. Suppose we

have constructed a (r − 1)-round linear characteristic. This corresponds to a linear

approximation of the form,

α0.m⊕ αr−1xr−1 = α0.k0 ⊕ ...⊕ αr−1kr−1, (3.2)

where xr−1 is the input to the last round and of bias |ϵ|. Algorithm 4 can recover more

key bits in the following way.
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Algorithm 4 Linear Cryptanalysis using partial decryption of last round

1. Create a list of key guesses kG for the last round key (or the partial last round

key) and consider counters TG
0 and TG

1

2. For all N known (P,C) pairs and k ∈ kG, compute the partial decryption to the

last round of xr−1 under k.

3. If α0.m⊕ αr−1.xr−1 = i increase TG
i , for i = 0, 1

4. Identify the correct TG
j with the maximum value and take kG as the correct round

key. (The maximum is taken when ϵ is positive, otherwise the minimum)

For a wrong key guess we expect the counter to be around N
2 because in a random

permutation we expect such linear equation to hold with probability exactly 1
2 . This is

called the wrong-key randomization assumption [86].

Remark 6. It is very important to note that in Algorithm 4 we do not need to guess

the full last round key. We only need to guess a few key bits which allow us to obtain

by decrypting the ciphertext, all bits of the last round input appearing in the linear

characteristic.

To determine the complexity of a linear cryptanalytic attack, it is sufficient to

estimate the probability of a linear characteristic. If such a linear characteristic holds

with bias ϵ, then approximately c
ϵ2

of known (P,C) pairs are needed, where c is a small

constant [86]. A linear characteristic is the XOR of several random variables and thus

the corresponding probability can be computed by the Piling-Up Lemma (cf. Lemma

2).

Lemma 2. (Piling-up Lemma)

Let Xi for 1 ≤ i ≤ n be n independent binary random variables such that

P (Xi = 0) = pi ∀1 ≤ i ≤ n

Then,

P (X1 ⊕ ...⊕Xn = 0) = 1
2 + 2n−1

∏
1≤i≤n(pi −

1
2).

Proof. The proof can be found in standard textbooks about symmetric cryptanalysis

such as [86]. More details are out of the scope of this thesis.

The Piling-up lemma can be used under the assumption that the random variables

or the linear approximations are independent. This brings the notion of Markov cipher

with respect to LC but this is out of our scope and more details are found in [86].
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3.4 Differential Cryptanalysis (DC)

Differential cryptanalysis is a chosen plaintext attack. Its discovery was attributed to

Eli Biham and Adi Shamir in the later 1980’s, who were the first to publish a differential

attack against DES [16, 17].

However, around 1994, Don Coppersmith as a member of the original IBM DES

team, confirmed that the technique of DC was known to IBM, as early as 1974. He

mentioned that, one of the criteria used in the design of DES was the resistance against

this attack [28]. IBM decided after discussion with NSA to keep confidential the design

criteria used for DES, as such a publication would reveal this technique which could be

used against many other ciphers and cryptographic primitives.

In DC, the main task is to study the propagation of differences from round to round

inside the cipher, and find specific differences (cf. Definition 16), which propagate with

relatively high probability. Such pairs of input-output differences can be used to recover

some bits of the secret key. Generally, it exposes the non-uniform distribution of the

output differences given one or several input differences.

Definition 16. (Difference)

Let (G,⊗) be a finite abelian group with respect to the operator ⊗ and x1, x2 ∈ G be

two elements of the group. The difference between x1, x2 w.r.t operator ⊗ is defined as

∆x = ∆(x1, x2) = x1 ⊗ x−1
2 ,

where x−1
2 is the inverse of x2 with respect to ⊗.

Usually, the operator ⊗ considered is the exclusive-or operator ⊕. This is due to the

fact that in many ciphers the key application in the round function is a simple XOR. An

element x with respect to XOR is self-inverse. Thus, (x1⊕k)⊕(x2⊕k) = x1⊕x2 = ∆x,

which means that the key addition preserves the difference. Generally, the selection of

the operator depends on the way the round subkeys are introduced. DC is easier to be

performed in cases where the output difference depends only on the input and output

differences and does not depend on the round subkeys. Thus, the main aim is to choose

a notion of difference that allows us to ignore the action of the key for at least part of

the analysis.

In the rest of this section we analyze how DC can be used to obtain key bits for it-

erated block ciphers. Given an iterated cipher, we study the propagation of differences
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though different number of rounds. Then, individual differences are joined to form

a differential characteristic for a larger number of rounds (cf. Definition 17). Con-

structing the best possible differential characteristic by combining several one-round

characteristics is a non-trivial optimization task.

Definition 17. (Differential Characteristic, Figure 3.1)

An s-round characteristic is an (s+ 1)-tuple of differences (α0, ..., αs), where αi is

the anticipated difference ∆ci after i rounds of encryption. The initial input difference

∆m = ∆c0, is denoted by α0.

Figure 3.1: A Differential Characteristic and a Differential over r rounds - The

diagram on the left illustrates the propagation of differences α(0), α(1), ..., α(r) through

different rounds, which is called differential characteristic. The diagram on the right il-

lustrates a differential, where only input-output differences are considered, while middle

differences are ignored.

3.4.1 Computing the Probability of a Differential Characteristic

In differential attacks, the first task is to find series of input and output differences

over several rounds, which appear with relatively high probability. For each pair of

input-output difference, we need to determine the probability of propagation for each
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round individually. For the linear components, we can predict the propagation of the

difference with probability one. However, in non-linear components, such as S-boxes, a

probabilistic analysis is needed. This is a very similar task as in LC.

We call an S-box active if its input difference is non-zero, while we call it inactive

or passive if the input difference is zero. Clearly, a zero input difference gives a zero

output difference for an inactive S-box with probability 1. In the substitution layer

of a cipher, S-boxes are applied in parallel to different chunks of data and thus they

are independent and hence corresponding probabilities are multiplied. Another, non-

trivial optimization task for the attacker is to carefully select which S-boxes are taken

as active in each round such that the overall differential characteristic has a relatively

good probability of propagation. Many ad-hoc heuristics can be discovered by studying

the structure of the round function of a cipher which might suggest how to select which

differences are interesting to study.

In the rest of this section, we study how we can compute the probability of a differ-

ential characteristic for an iterated block cipher. Given an (s+ 1)-round characteristic

(α0...αs), the probability of propagation over all keys and plaintexts is given by,

PK,P(∆c
s = αs,∆c

s−1 = αs−1, ...,∆c
1 = α1|∆c0 = α0)

Thus, we need to compute it on average over all keys and plaintexts. This is difficult

to determine for a certain class of ciphers since the model of computation does depend

on the cipher. For example, in some ciphers it may be infeasible to compute it since it

may depends on the key and the plaintext in a very complex way, while on some other

ciphers this dependency may not be so complex and thus we may be able to enumerate

all possible differential attacks. However, for the class of Markov ciphers (cf. Definition

18), this can be computed by simply computing transitional probabilities for each round

and then multiplying them. The notion of a Markov cipher simplifies a lot the model

of computation.

Definition 18. (Markov cipher, [88])

An iterated cipher round function Y = f(X,Z) is a Markov cipher, if there is a

group operation ⊗ for defining differences such that, for all choices of α (α ̸= e) and

(β ̸= e),

P (∆Y = β|∆X = α,X = γ),
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is independent of γ when the subkey Z is uniformly random.

For a Markov cipher, the probability of an one-round characteristic taken over all

keys and plaintexts is independent of the plaintext and thus it can be computed over

the key space only.

Moreover, for an iterated r-round Markov cipher with r independent round keys

chosen uniformly at random, the sequence of differences ∆c0, ..,∆cr forms a homoge-

neous Markov chain (Definition 19).

Definition 19. (Markov Chain, [88])

A sequence of r random variables X0, X1, .., Xr, is called a Markov chain if

P (Xi+1 = βi+1|Xi = βi, .., X0 = β0) = P (Xi+1 = βi+1|Xi = βi),

for all 0 ≤ i ≤ r.

Such a Markov chain is homogeneous, if

P (Xi+1 = β|Xi = α) = P (Xi = β|Xi−1 = α)

Thus, the probability of an s-round characteristic for a Markov cipher with inde-

pendent round keys can be computed as follows [86].

P (∆cs = αs, ...,∆c
1 = α1|∆c0 = α0) =

∏
1≤i≤s

P (∆ci = αi,∆c
i−1 = αi−1) (3.3)

3.4.2 Differentials vs. Differential Characteristics

An adversary does not have so much freedom to determine if the input difference

follows a given differential characteristic in each step. However, he can choose the input

difference and may be able to check the corresponding output difference after s rounds.

An s-round characteristic is constructed by concatenating s one-round differentials.

In practice, it is very time consuming to find a really good differential characteristic

over a sufficient number of rounds. The collection of all s-round characteristics with

input α0 and output difference αs is called a differential (Definition 20).

Definition 20. (Differential, [86])

An s-round differential is a pair of differences (α0, αs), also denoted as α0 → αs,

where α0 is the chosen input difference and αs the expected output difference ∆cs
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Given an s-round differential (α0, αs), the probability of such differential on average

over key space and all plaintexts is given by,

PK,P(∆c
s = αs|∆c0 = α0) = Σα1 ...Σas−1PK,P(∆c

s = αs, ...,∆c
1 = α1|∆c0 = α0)

In an attack the key is fixed and only the plaintext can vary. Thus, in practice we

may need to compute it over a fixed key which is not known to the attacker. Computing

the following probability is enough to mount many cryptographic attacks:

PP(∆c
i = αi|∆ci−1 = α0,K = k).

However, the key is unknown, and thus we cannot compute this probability unless

we consider the assumption of stochastic equivalence (Assumption 1).

Assumption 1. (Hypothesis of stochastic equivalence)

Consider an r-round iterated cipher, then for all highly probable differentials, s ≤ r,
(α, β),

PP(∆c
s = β|∆c0 = α,K = k) = PP,K(∆c

s = β|∆c0 = α),

holds for a substantial fraction of the key space K.

Remark 7. In practice, we expect that the probability of a differential does not really

depend on the key or the plaintext. It is assumed that such probability is close to the

expected probability on average over all plaintexts and key.

3.4.3 Key Recovery Attacks

In this section, we describe how to derive some key bits using differential attacks.

Consider a differential (α, β) over r − 1 rounds, which holds with probability p for a

r-round iterated block cipher. By partial decryption of the last round, we can recover

some bits of the last key faster than brute-force.

Firstly, we encrypt N pairs of plaintexts (P, P ′), such that ∆P = α and get the

corresponding ciphertext pairs (C,C ′). Given these pairs, we guess some bits of the last

round key and we partially decrypt the last round. Then, we check if the the difference

after r−1 rounds is obtained. If this difference is obtained we say that (P, P ′) suggests

a candidate kG. We expect approximately p.N pairs to result in pairs with difference

β in the round before the last round. Such pairs are called right pairs (cf. Definition

21).
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Definition 21. (Right Pair)

A pair (P, P ′) with ∆P = α and associated ciphertexts (C,C ′) is called a right pair

with respect to the (r−1)-round differential (α, β) if ∆cr−1 = β. Otherwise, it is called

a wrong pair.

In order to launch a successful differential attack, we need at least one right pair.

First, in an attack we want to identify a right pair. However, we have also wrong pairs

that do not follow our constructed characteristic and this is referred to as noise, while

right pairs are the signal. Thus, wrong pairs should be filtered in a very early stage

of our attack if it is possible. Often wrong pairs can be eliminated by considering the

associated ciphertexts. This process is called filtering. Note that there are no general

rules how to perform the filtering step and it depends on the cipher.

Algorithm 5 describes an attack on an r-round iterated block cipher using an (r−1)

differential characteristic. This attack can be used to obtain some bits of the last

round key using a differential characteristic of the form (α0, ..., αr−1), which holds with

probability p.

Algorithm 5 Differential Attack against r-round iterated cipher

1. Let Tj a counter for (parts of) possible last round key guesses kj

2. For i = 1, ..N do

(a) Choose Pi at random and compute P ′
i = Pi ⊕ α0. Obtain the corresponding

ciphertexts (Ci, C
′
i).

(b) Use filtering. If (Pi, P
′
i ) is a wrong pair, discard it and continue with the next

iteration. Otherwise do the following.

(c) For each key guess kj , partly decrypt the last round and get (c
(r−1)
i , c

′(r−1)
i ).

Increase Tj , if c
(r−1)
i ⊕ c

′(r−1)
i = αr−1

3. Find l, such that Tl = maxi(Ti)

4. Return kl as the guess for the correct key

Remark 8. In general, we can have some early rejection on some key bits by computing

certain bits of the ciphertexts. This is due to the structure of ciphers and their key

schedule, which make certain bits depend only on a few key bits.

In most cases after applying the method of DC, one pair might suggest several key

candidates {k1, k2, ..., kl}. On the contrary, a wrong pair is expected to suggest a set

of candidates which do not include the correct key. The attack is successful, if the
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correct key value is suggested significantly more often than the other candidates. This

is expected for a differential of probability p if approximately c
p plaintexts are selected

uniformly at random, where c a small constant depending on the cipher [86]. In the

rest of this section, we discuss some advanced forms of DC, such as truncated and

impossible differentials.

3.5 Advanced Differential Cryptanalysis

3.5.1 Truncated Differentials

Truncated Differential Cryptanalysis is a generalization of differential cryptanalysis

developed by Lars Knudsen [84]. Usually, in DC we study the propagation of single

differences between two plaintexts, while in truncated DC we consider differences that

are partially determined (i.e we are interested only in some parts of the difference).

This technique has been successfully applied to many block ciphers such as SAFER,

IDEA, Skipjack, Twofish and many others. We define the truncation TRUNC(a) of a

n-bit string a as in Definition 22.

Definition 22. (Truncation, [84])

Let a = a0a1...an−1 be an n-bit string, then its truncation is the n-bit string b

given by b0b1..bn−1 = TRUNC(a0a1..an−1), where either bi = ai or bi = ∗, for all

0 ≤ i ≤ n− 1 and ∗ is an unknown value

The notion of truncated differentials (cf. Definition 23) extends naturally to differ-

ences.

Definition 23. (Truncated Differentials, [84])

Let (α, β) be an i-round differential, then if α′ and β′ are truncations of α and β

respectively, then (α′, β′) is an i-round truncated differential.

Remark 9. Note that we need to exclude the zero difference from our set.

Example 1. The truncated differential on 8 bytes of the form 0000000000 ∗ 00000 (in

hexadecimal representation), where ∗ = x1x2x3x4, is a set of differences of size 16− 1

(excluding the zero difference).

Given an s-round characteristic ∆0 → ∆1 → ...→ ∆s, then ∆′
0 → ∆′

1 → ...→ ∆′
s is

a truncated characteristic, if ∆′
i = TRUNC(∆i) for 0 ≤ i ≤ s. A truncated character-

istic predicts only part of the difference in a pair of texts after each round of encryption.
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A truncated differential is a collection of truncated characteristics. Truncated differen-

tials proved to be a very useful cryptanalytic tool against many block ciphers which at

first glance seem secure against basic differential cryptanalysis.

In the rest of this subsection we apply the technique of truncated differential crypt-

analysis to the 5-round CIPHERFOUR block cipher shown in Figure 3.2. CIPHER-

FOUR is an SPN with S-box given by {64C5072E1F3d8A9B} and permutation func-

tion given by {0481215913261014371115},
We study Knudsen’s example as described in [86] against truncated DC. We observe

that an input bits difference 0010 to the second S-box leads to the following output

differences after one round

(0000000000100000)→


(0000000000100000)

(0000000000000010)

(0010000000100000)

(0010000000000010)

Note that * means 1-bit difference, including zero difference. However, we need

to exclude the case where the difference is identical to zero. Then, we study the

propagation of each of these differences after an additional round. We obtain the

following the differences,

(0000000000100000)→ (00 ∗ 0000000 ∗ 000 ∗ 0)

(0000000000000010)→ (000 ∗ 0000000 ∗ 000∗)

(0010000000100000)→ (∗0 ∗ 00000 ∗ 0 ∗ 0 ∗ 0 ∗ 0)

(0010000000000010)→ (∗00 ∗ 0000 ∗ 00 ∗ ∗00∗)

All these differences can be denoted by a truncated differential of the form (∗0 ∗
∗0000 ∗ 0 ∗ ∗ ∗ 0 ∗ ∗). If we continue for another round we get

(∗0 ∗ ∗0000 ∗ 0 ∗ ∗ ∗ 0 ∗ ∗)→ (∗0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗)

which results in the 3-round truncated differential,

(0000000000100000)→ (∗0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗),
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Figure 3.2: DC: Truncated Differentials - The truncated differential attack on five-

round CIPHERFOUR proposed by Lars Knudsen, where * implies difference on 4 bits

[86]
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which holds with probability 1.

Using this truncated differential we can recover bits from the secret keys of the

first and last round of the 5-round CIPHERFOUR. If the difference 0000000000100000

occurs at the beginning of the second round then we have the truncated differential

(0000000000100000)→ (∗0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗)

with probability 1.

We launch a differential attack using this truncated differential using a structure of

16 distinct messages of the form mi = t0||t1||i||t2, where t0, t1, t2 are randomly selected

constants and i = 0, .., 15 [86]. Any two different messages lead to difference of the

following form,

t0 ⊕ t0||t1 ⊕ t1||i⊕ j||t2 ⊕ t2 = 00000000 ∗ ∗ ∗ ∗0000.

For any value of the four key bits affecting the third S-box, we can find 16 pairs of

messages (mi,mj) such that the difference in the outputs from the first round S-boxes

is (0000000000100000). Once this difference is obtained, then the truncated differential

property holds with probability 1. Thus, assuming the four bits of k0 are correct, our

message pairs will give a four-round truncated differential property with probability 1.

Then, the partially-encrypted pairs that result will have a difference 0 in the positions

as indicated in Figure 3.2 and this property can be used to identify the key bits of k5.

For the purposes of our attack we suppose that for each possible value of k0 we

use s message pairs (mi,mj) that yield the required difference after one round. Then,

these pairs can be used to recover four bits of k0 and all key bits of k5. Thus, the

attack has the potential to find in total 20 bits of the secret key. It is possible that the

pairs obtained from the structure of 16 messages are insufficient to uniquely determine

the secret key and if this happens one can simply generate another structure by using

different constant values for t0, t1 and/or t2. More details can be found in [86].

3.5.2 Impossible Differentials

Impossible differential cryptanalysis is a form of cryptanalysis that studies propagation

of differentials which are impossible, i.e they have probability 0 to propagate at some

intermediate state of the cipher. Such events can be used to deduce some key bits and

such an example is discussed below.
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Consider a 6-round Feistel network (Figure 3.3), where the round function f is a

bijection for any fixed key. Suppose we have a pair of input messages X = xL||xR and

X ′ = x′L||x′R, such that xR = x′R and xL ⊕ x′L = a, where a ̸= 0.

Figure 3.3: DC: Impossible Differentials - A 6-round Feistel network without final

swap where the round function f is bijective for any fixed key. The five-round differential

(a, 0)→ (0, a) (a ̸= 0) can never occur due to a contradiction in the third round
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Assume that the output difference after 5-rounds is 0||a. Then, by construction the

input difference at both the second and fourth round are of the form 0||a. The input

difference in round 2 is 0||a so the input difference in round 3 is a||b where b ̸= 0. The

input difference in round 4 is 0||a and since f is bijective it implies the input difference

in round 3 is a||0, which gives a contradiction in round 3.

This implies that a||0 → 0||a is an impossible 5-round differential as it holds with

probability 0. This fact can be exploited in order to derive the last round key k6 in the

following way [86].

1. Consider plaintexts of the form mi = mL
i ||mR

i , where m
L
i = i for i = 0, ..., 2

n
2
−1

and mR
i = c, where c is a random and fixed n

2 -bit value.

2. Let ci = cLi ||cRi be the corresponding encryptions

3. Find all pairs (mi,mj) such that mL
i ⊕ mL

j = cRi ⊕ cRj = αi,j , where αi,j ̸= 0.

(2
n
2
−1 such pairs are expected)

4. Decrypt all pairs for one round for all possible values of k6.

5. If the input difference in round 6 is 0||αi,j , then reject this value of k6

If the obtained input difference in round 6 is 0||αi,j , then this value of k6 must be

wrong as it gives an impossible differential for five rounds. For wrong values of k6, we

expect this with probability 2−
n
2 for each pair. Thus, for 2

n
2
−1 pairs around half of the

candidates for k6 are discarded. For each different value of c that is tried, the key space

is halved and eventually only a few values for k6 will remain. More details regarding

this attack are out of the scope of this thesis and can be found in [86].
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Software Algebraic Cryptanalysis

[Breaking a good cipher should require] as much work as solving a system of simultaneous

equations in a large number of unknowns of a complex type” (Claude Elwood Shannon, 1949,

[113])

In general, the security of a given block cipher will grow exponentially with the

number of rounds and so does the number of required (P,C) pairs which are needed

in a linear or differential attack. However, in most cases only a few (P,C) pairs are

available and as a result many standard cryptanalytic techniques are not expected to

succeed. Thus, different techniques are needed when only very limited information

is available. This is the point exactly at which algebraic cryptanalysis comes to our

attention.

Claude Shannon once advised that the security of a cipher should be related to the

difficulty of solving the underlying system of equations which describes it [113]. This is

the core concept behind algebraic attacks. An algebraic attack can be a form of known

plaintext attack and consists of the following two basic steps:

1. Modelling Step: Describe the cipher as a multivariate system of polynomial

equations over any well-chosen field in terms of the secret key K, the plaintext P

and the ciphertext C.

{f1(K,P,C) = 0, f2(K,P,C) = 0, ..., fr(K,P,C) = 0⇐⇒ E(K,P ) = C}

2. Solving Stage: Solve the underlying multivariate system of equations and obtain

the secret key. In order to reduce the complexity of solving the system, we
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substitute to the system one or several (P,C) pairs. The more pairs, the more

equations we obtain involving the key bits.

One exploits the fact that many cryptographic primitives can be described by a

sparse multivariate non-linear system of equations over a binary field or any other

algebraic system. Efficient implementations of ultra-lightweight ciphers suggest low

gate equivalent count which means that the system of equations describing it is very

sparse. Generally, solving a system of multivariate non-linear Boolean equations is

an NP-complete problem [68]. Even solving Multivariate Quadratic (MQ) systems is

proved to be NP-hard [45].

Given an iterated block cipher, we start by obtaining algebraic representations of

each individual component for each round. Then we join them together to get an

algebraic description for the whole system. Linear components are trivial to describe.

Examples are bit-wise permutation layers and key additions. Describing non-linear

components is the hardest task as there is no straightforward and efficient method to

obtain such representations.

With respect to the solving stage, several techniques have been developed. A first

attempt was to use techniques from algebraic geometry and especially Gröbner bases

algorithms [66]. However, most of the times they do not lead to solutions in practice

due to their extremely high memory requirements.

Thereinafter, some heuristic techniques were developed as the method of lineariza-

tion, where all the non-linear terms are replaced by an independent variable and the

resulting linear system can be solved using Gaussian elimination in some cases [112].

However, it requires that there are enough linearly independent equations and the initial

system is highly over-determined. Then, the XL algorithm was developed to make the

system over-determined, by addition of new equations to the current system. Such new

equations are generated by multiplying the initial set of equations with all monomials

up to certain degree [45].

Additionally, a very powerful algorithm named ElimLin was developed by Nicolas

Courtois for solving such systems [55], specifically in the context of algebraic attacks

of ciphers. Elimlin exploits the linear equations in the linear span of all polynomial

equations. It is a mixture of linear algebra and substitution and we refer to it explicitly

in the next section.
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4.1 ElimLin Algorithm and Multiplicative Complexity (MC)

The ElimLin algorithm was designed by Nicolas T. Courtois and appeared firstly in

[39]. It is an iterated 2-step simple algorithm used for solving multivariate systems of

polynomial equations over any field and it is based on Gaussian Elimination on sparse

systems.

Given a system of multivariate polynomial equations {f1, f2, ..., fm} ∈ K[x1, x2, .., xn],

ElimLin firstly computes affine equations of the form l =
∑

0≤i≤n aixi, ai ∈ K, which

lie in the linear span L =<
∑

1≤j≤m bjfj(x) >. This is done by performing Gaussian

Elimination on the matrix which represents the m polynomial equations and includes

the coefficients of all monomials. Then, given an affine equation l, we re-write a vari-

able xi that appears in this equation as a linear combination (+ an affine constant a0)

of the other variables involved and then eliminate xi from all other equations in the

initial system. This results in a system with less variables. We keep iterating the same

procedure until the system does not output any new linear equations, hoping that at

this point the system is simple enough to be solved. ElimLin is formally described in

Algorithm 6 given below.

Algorithm 6 ElimLin Algorithm

Input: S0 = {f1, f2, ..., fm} ∈ F2[x1, x2, .., xn]

Output: An updated system of equations ST and a system of linear equations SL

1. Set SL ← Ø and ST ← S0 and k ← 1

2. Repeat

For some ordering of equations and monomials perform Gauss(ST ) to eliminate non-

linear monomials

Set SL′ ← Linear Equations from Gauss(ST )

Set ST ← Gauss(ST )\SL′

Let l ∈ SL′ , l non-trivial (if unsolvable then terminate)

Let xik a monomial in l

Substitute xik in ST and SL′ using l

Insert l in SL

k ← k + 1

Suppose that the total number of monomials is N and the rank of the matrix

representation of the system has rank r. Then, using the echelon form of the matrix
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after Gaussian Elimination we observe that a sufficient condition for a linear equation

to exist is that

r > N − 1− n, (4.1)

and this is called the sufficient rank condition. It is trivial to see that all the linear

equations are found in the first iteration of the algorithm, since the rank of the matrix

is invariant and all monomials are assumed to be linearly independent.

ElimLin algorithm and Multiplicative Complexity, which is a major topic in this

thesis, seems to be closely related. The basic idea in ElimLin is to exploit hidden linear

equations that lie in the linear span of the polynomials. The reduction methods with

respect to MC aim to minimize the number of AND gates used in the system by allowing

unlimited number of XOR gates. Thus, by considering the straight line program of a

circuit is like aiming to compute the same circuit using as few as possible steps which

include multiplications. Our method of reducing MC (which we study extensively in a

later section) aims at linearizing the system as much as possible.

In the next sections of this chapter, we describe an automated software methodology

based on SAT solvers used for algebraic cryptanalysis. The method we describe consists

of two main steps; the conversion and the solving steps where a dedicated software is

used in the second step.

4.2 Representations and Conversion Techniques

As we have mentioned above, an algebraic attack is a 2-step methodology. Firstly, we

need to obtain the representation of the cipher over a well chosen field and then we try

to solve this system to obtain the secret key.

The most tricky part is the modelling-step. We need to find a compact representa-

tion over a field which is convenient for expressing the majority of the components of

the cipher. For example, in AES we have a mixture of operations from F2 and F28 .

The following definitions describe several representations that can be used to de-

scribe any given system of Boolean equations over F2. For example, CNF (Definition

24) is a very important form of logical description of a set of a equations. We can

translate any given set of algebraic equations into this language and then try to solve

this problem using state-of-art algorithms such as SAT solvers [71].
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Definition 24. (Conjunctive Normal Form)

A Boolean function f is said to be in conjunctive normal form, if it is a conjunction

of clauses, where each clause is a disjunction of literals, i.e f can be expressed in the

form

∧I⊆M (∨i∈Ixi),M = {1, .., n} (4.2)

Definition 25. (Disjunctive Normal Form)

A Boolean function f is said to be in disjunctive normal form, if it is a disjunction

of clauses, where each clause is a conjunction of literals, i.e f can be expressed in the

form

∨I⊆M (∧i∈Ixi),M = {1, .., n} (4.3)

Definition 26. (Algebraic Normal Form)

A Boolean function f is said to be in algebraic normal form, if it is an XOR of

clauses, where each clause is a conjunction of literals,

⊕I⊆MaI ∧ (
∧
i∈I

xi),M = {1, .., n}, aI ∈ {T, F} (4.4)

The existence of the ANF of each Boolean function is explained according to the

Universal Mapping Theorem.

Theorem 3. (Universal Mapping Theorem)

For any q, any map from a finite field GF (q) to itself can be written as a polynomial

system of equations over GF (q).

Theorem 3 gives us an explicit method for algebraic encoding of components of

ciphers and therefore also for the whole ciphers.

4.3 SAT-solvers in Cryptanalysis

The problems of solving multivariate systems of quadratic equations over the Galois

Field with two elements F2 and that of finding a satisfying assignment for a logical

expression are both NP-hard. The fact that all NP-complete problems are polynomially

equivalent, combined with the extensive research on algorithms for solving CNF-SAT

problems motivated the authors in [11, 10] to study algorithms for converting the first

problem into the second one.
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Thus, if any SAT solver software could be able to determine a logic assignment for a

CNF-SAT problem this could be translated into a solution to the corresponding system

of equations in polynomial time. This leads to an automated algorithmic procedure

for solving such systems of equations. The methodology can be summarized as follows

(more details in [11, 10]),

• We assume that the given cryptographic primitive can be described as a logical

circuit

• Write it as a degree 2, 3 or 4 system,

f1(x1, ..., xn) = y1, f2(x1, ..., xn) = y2, ..., fm(x1, ..., xn) = ym

It is possible to see that this can always be done if we add variables in the previous

step.

• Convert it to a CNF-SAT using polynomial time conversion techniques

• Solve this problem using SAT solver software [71]

In general, CNF expressions describe instances of SAT problems, thus we need to

obtain the CNF of this multivariate system of quadratic equations. This conversion

proceeds by three major steps. Firstly, some preprocessing needs to be done in order

to make the system amenable to this conversion, then the system of polynomials will

be converted to a linear system and a set of CNF clauses that describe each monomial

equivalent to a variable in the system. Lastly, the linear system is converted to a set

of clauses. This methodology is described precisely in [11].

Regarding SAT solvers, we use them as black-box algorithms and all technicalities

behind them are not in the scope of this thesis. SAT solvers are sophisticated algorithms

which allow us to solve NP-complete problems by mapping these problems to CNF. At

first glance, this seems to be inefficient since a lot of structure of the original problem

is lost during conversion but this is offset by the performance of SAT solvers. In this

thesis, we make extensive use of SAT solvers such as MiniSAT and CryptoMiniSAT

[96].

Courtois was the first to successfully break ciphers using SAT solvers in the area of

symmetric cryptanalysis. He suggested two main approaches in SAT cryptanalysis for
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breaking a cipher with a SAT solver [40]. The first approach is called the SAT method

and according to this method an attacker after finding a proper algebraic description

of the cipher, he fixes X bits of the secret key. Provided that the assumption on

X bits is correct, it takes T time to output SAT and a solution. Thus, we need in

total 2X .T time. This is very similar to guess-then-determine strategy and leads to a

combinatorial-optimization problem as follows,

Optimization problem: Find the number of bits X such that f(X) = 2X .T is

optimal, where T is the time taken to output SAT.

There are two main approaches in cryptanalysis of blocks ciphers based on SAT

solvers. We have the SAT Method and the UNSAT Method [40].

1. The SAT Method: GuessX bits and run a SAT solver. Then, if the assumption

on the X bits is correct, it takes time T to output SAT and a solution. Abort all

other computations at time T . The total time complexity is about 2X .T

2. The UNSAT Method: Guess X bits and run a SAT solver which, if the as-

sumption is incorrect, it finds a contradiction in time T with large probability

1− P , say 99%.

Then, with a small probability P > 0, we can guess more key bits and thus either

find additional contradictions or find solution. If P is small enough, then the complexity

of these additional steps can be less than the 2X .T spent in the initial UNSAT step.

However, if P is not as small as we would like to be, therefore we may have a mix of

both methods, where the final complexity will be a sum of two terms none of which

can be neglected. This is called a Mixed UNSAT/SAT Attack [40].

4.4 Combined Algebraic-Differential Attacks

Albrecht et al. suggested a simple way to expand the multivariate system of equa-

tions that describe a given block cipher by adding linear equations between inputs

and outputs arising from highly likely differentials for some reduced number of rounds

[3, 4, 5].

Given two pairs (P ′, C ′), (P ′′, C ′′) under the same key K, we can write two systems

of equations F ′, F ′′, which share the key and key schedule variables but do not share
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most of the state variables. We can expand this system by considering a differential

characteristic ∆ = (δ0, δ1, ..., δr) for a number of rounds, where δi−1 → δi is a one-round

differential, which propagates with probability pi.

Then, considering the j-th bit of the inputs denoted by X ′
i,j , X

′′
i,j to the i-th round

and assuming that X ′
i+1,j , X

′′
i+1,j are the corresponding output bits we have the addi-

tional expressions,

X ′
i,j ⊕X ′′

i,j = ∆Xi,j ,

where ∆Xi,j are known values predicted by the characteristic and valid with some

non-negligible probability for bits of active S-boxes. In addition, we have the following

relations for the non-active S-boxes given by,

X ′
i,j ⊕X ′′

i,j = 0 (4.5)

Denote as SL the of set all these linear constraints, we can expand the initial system

F ′∪F ′′ which holds with probability 1 to a larger system F ′∪F ′′∪SL which holds with

probability p =
∏

i pi, assuming statistical independence of one-round differences. If

we attempt to solve this system for 1
p pairs, we expect at least one consistent solution,

which should yield the encryption key. The augmented system is expected to be easier

to solve as we add only new linear constraints without adding new variables. In practice,

one can reduce the number of variables since all the X ′′
i,j variables can be replaced either

by X ′
i,j or X ′

i+1,j

In a very similar way, we can extend this combined algebraic-differential attack,

if truncated differentials exist in the block cipher which hold with sufficiently high

probability. Truncated differentials are expected to hold with much higher probability

than single differences and thus the time complexity of recovering the secret key is

expected to be significantly reduced.

Let X ′
i, X

′′
i the inputs to round i of the block cipher and X ′

i+1, X
′′
i+1 the corre-

sponding outputs. Given truncated differentials, we know that if X ′
i ⊕X ′′

i ∈ ∆X, then

X ′
i+1⊕X ′′

i+1 ∈ ∆Y , where ∆X,∆Y are sets of differences. Then, we have the following

sets of equations that could be added to initial system of equations

X ′
i,j ⊕X ′′

i,j = I(∆X)j , X
′
i+1,j ⊕X ′′

i+1,j = I(∆Y )j , (4.6)

80



4.4 Combined Algebraic-Differential Attacks

where I(∆X)j is either 1 or 0. Otherwise no equation is added if the difference is free

(i.e ∆j = ∗). Equations are added only for inactive bits.

The existence of such differentials implies that the solution of the system F ′ ∪ F ′′

lies in a reduced version of this system where input-output bits are constrained by some

linear relations given by the mask of differentials. Intuitively, we believe that if such

truncated differentials exist, then the performance of many ad-hoc heuristic algorithms

for solving systems of equations like ElimLin is improved. It is also possible to see

that SAT based algorithms, as well as Gröbner Basis based techniques are improved by

adding such simple linear equations. We have managed to break 10 (out of 44) rounds

of the SIMON cipher with 128-bit key and 64-bit block [12] using this technique which

combines truncated differentials with algebraic techniques. It is very interesting that

we broke 10 rounds without the need to guess any key bits in advance. More details

can be found in [53] and are out of the scope of this thesis.
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Boolean Functions and Measures

of Non-Linearity

In cryptography, the are two main philosophies for the design of block ciphers. One

philosophy, which is the most widely adopted, studies the cryptographic properties

of the underlying non-linear components, such as S-boxes, in isolation. The other

philosophy is based on the diffusion criteria of the round function and the security of

the full block cipher relies on the adoption of many number of rounds [106].

The first philosophy is widely used and as a result of this, very strict criteria that

these S-boxes need to satisfy were formulated and followed by the designers starting

from around 1994 [99]. More precisely with Multipermutations [118] and the Wide Trail

Strategy (WTS) [106], we can have strict lower bounds on how many S-boxes in the

next round are affected by a difference on few bits.

Following the first design paradigm, the appropriate selection for the S-boxes is

a very important task. It is believed that the cipher can be secure against classical

attacks by a good choice of a S-box which fulfills the desired criteria. The designers

must choose the S-boxes that provide little advantage to the attacker and design the

diffusive components of the cipher in such a way such that the number of S-boxes that

a cryptanalyst would need to deal with in some attack is maximal. Thus, the designers

need to solve the underlying optimization problem and find the optimal S-box which

offers the desired level of security.

Current cryptographic standards or prominent block ciphers make use of functions

which are simple to compute and efficient with respect to some criteria such as software
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and hardware implementation. At the same time, they must be sufficiently “distant”

from linear functions. Intuitively, if the function has a good approximation by a linear

function, then it is going to be vulnerable against a range of cryptographic attacks.

This is exactly the point where the notion of non-linearity comes.

Non-linearity is one of the most fundamental requirements for a given cryptographic

function and many attempts have been made in order to define an appropriate metric

for it. In a very recent paper, Boyar et al studied different well-known measures for the

non-linearity of Boolean functions such as: non-linearity, algebraic degree, annihilator

immunity and multiplicative complexity [20]. All these measures do reflect the nonlin-

earity of the function but are incomparable, in a sense that a function may offer a high

level of non-linearity with respect to one metric but very low with respect to another.

In an earlier paper, Courtois et al have already introduced the notion of MC and

showed (heuristically) that functions with low MC are less resistant against algebraic

attacks [42, 44]. The notion of MC is a core point for this thesis and it is proved to be

another measure of non-linearity for cryptographic primitives. In modern cryptographic

implementations, S-boxes are the main components used to enhance the non-linearity

of the primitive. S-boxes of small dimensions (such as 4-bit to 4-bit) are preferred in

lightweight implementations.

In this section, we make an introduction to the area of Boolean functions and

introduce all known measures of nonlinearity. In particular, we discuss the four notions

of non-linearity as recently introduced by Boyar et al and highlight the relation between

MC and non-linearity [20, 42, 44]. At the end of this section, we discuss a complete

classification of all optimal 4-bit to 4-bit S-boxes with respect to cryptography-related

metrics as proposed by Leander et al [89].

5.1 Boolean Functions

A Boolean function is a function of the form f : Fn
2 → F2, where n is called the arity of

the function. We denote by Bn = {f |f : Fn
2 → F2} the set of all n-dimensional Boolean

functions. Clearly, Bn is a vector space over F2 of dimension 2n.

The cardinality of the set is 22
n
and its size increases doubly exponentially as n

increases. For example, if n = 6, then we have that the size is 264, which is feasible to

study. However, for n = 8, we have that the size equals to 2256, which is approximately
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the total number of the atoms in the universe. Any Boolean function can be represented

(uniquely) via the following representation forms (cf. Definition 27).

Definition 27. (Boolean Functions Representations)

A given Boolean function of the form f : Fn
2 → F2 can be represented by:

1) Truth Table: The output vector of the form (f(0), f(1), .., f(2n − 1)) ∈ Fn
2

2) Polarity Truth Table: The truth table of the function f̂(x) = 1 − 2f(x) or

(−1)f(x). A vector of 2n elements, where each element belongs to the set {−1, 1}
3) Algebraic Normal Form (ANF): The ANF of an n-dimensional Boolean

function f is written as:

f(x) = a0 ⊕ a1x1 ⊕ ...⊕ anxn ⊕ a12x1x2 ⊕ ...⊕ a(n−1)nxn−1xn ⊕ ...⊕ a12..nx1...xn ,

where ai ∈ {0, 1}

Using Theorem 4, the computation of the ANF of a given Boolean function can be

computed using the Möbius transform as defined below.

Theorem 4. Each Boolean function f : Fn
2 → F2 has a unique polynomial representa-

tion in

F2[x1, ..., xn]/(x
2
1 + x1, ..., x

2
n + xn)

According to Theorem 4, any function f can be written as,

f(x) =
∑

u∈Fn
2
λu.x

u,

where xu = xu1
1 x

u2
2 ...x

un
n . It is easy to see that the coefficients are given by

λu =
∑
x≤u

f(x), (5.1)

where x ≤ u means ui = 0 ⇒ xi = 0. This is also known as the Möbius transform.

From the ANF of a function we can compute its algebraic degree deg(f) (cf. Definition

28).

Definition 28. The algebraic degree deg(f) of a function is defined as the number of

variables in the highest order term with non-zero coefficient in the ANF representation.

Intuitively, the higher the algebraic degree, the higher the resistance of the func-

tion against algebraic attacks. The optimal value for algebraic degree is n and some

examples are presented below.
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Example 2. S1(x1, ..., x4) = x1x3x4 + x1 + x2 + 1 has algebraic degree 3

Example 3. S2(x1, ..., x4) = x1x2x3x4 + x1x3 + x4 + 1 has algebraic degree 4

Example 4. MAJ(x1, x2, x3) = x1x2 + x1x3 + x2x3 has algebraic degree 2

Example 5. CTC2(1,0,0)(x1, x2, x3) = 1 + x0 + x1 + x0x1 + x0x2 + x1x2 has algebraic

degree 2

As the set of all n-dimensional Boolean functions is a vector space, it is reasonable

to define a measure on this space. A measure on each element, is given by its Hamming

weight,

HW (f) =
∑2n−1

x=0 f(x),

where the sum is taken over the integers.

The distance between two Boolean function f, g is given by the Hamming distance

HD(f, g) =
∑2n−1

x=0 (f(x)⊕ g(x)).

The degree of similarity between two functions f, g is given by the correlation coef-

ficient cc(f, g) (cf. Definition 29), which is a real number between -1 and 1.

Definition 29. (Correlation Coefficient)

Let f, g two Boolean functions of the form f, g : Fn
2 → F2. Then the correlation

coefficient is given by

cc(f, g) = 2P (f(x) = g(x))− 1 = 1− HD(f,g)
2n−1

Definition 29 implies that if the evaluations of the two functions differ in all points

x ∈ Fn
2 , then cc(f, g) = −1, i.e f(x) = 1−g(x). If they are identical, we have cc(f, g) =

1. The correlation coefficient is a method of evaluating how one function contributes

towards the approximation of another. In general, two functions are correlated if and

only if cc(f, g) ̸= 0, otherwise they are said to be uncorrelated.
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5.1.1 Affine Boolean Functions

The subspace of Bn which contains all n-dimensional functions of algebraic degree 1 (i.e

of all affine functions) is called the affine subspace. An affine function is any function

of the form

lα = α0 ⊕ α1x1 ⊕ α2x2...⊕ αn−1xn−1,

where α = (αn−1, ..., α0) ∈ {0, 1}n. If α0 = 0 then the function is linear.

Under the action of affine transformations, two functions f, g are said to belong to

the same affine equivalence class if and only if there exist c ∈ F2, a, b ∈ Fn
2 and a square

non-singular n−dimensional matrix A such that g(x) = f(Ax ⊕ a) ⊕ b · x⊕ c, where ·
denotes the inner product.

Many cryptanalytic attacks exploit the existence of linear relations between inputs

and outputs which hold with high probability. Hence, it is necessary to define a measure

of linearity of a given function. (cf. Definition 30)

Definition 30. (Linearity of a function)

The linearity of a function f : Fn
2 → F2 is defined by

L(f) = maxa∈F2n
|fW (a)|,

where fW (a) is the Walsh Coefficient of f at a given by∑
x∈Fn

2
(−1)f(x)+a.x

The maximal value of L(f) is 2n and is obtained iff f is an affine or linear function.

As we will see in a later section, the notion of nonlinearity of a Boolean function

is extensible to the notion of nonlinearity of multi-dimensional Boolean functions (or

S-boxes). Table 5.1 presents the linearity of several Boolean functions.

87



5. BOOLEAN FUNCTIONS AND MEASURES OF NON-LINEARITY

Table 5.1: The linearity of several Boolean functions

Boolean Function f L(f)

f(x1, x2) = x1 + x2 4

f(x1, x2) = x1x2 + x1 2

MAJ(x1, x2, x3) = x1x2 + x1x3 + x2x3 4

CTC2 S(1,0,0)(x1, x2, x3) = 1 + x0 + x1 + x0x1 + x0x2 + x1x2 4

5.2 Measures of Nonlinearity

The non-linearity of a Boolean function is a notion which is invariant under affine

transformations and can be computed using the Walsh coefficient and it is defined as

the Hamming distance to the closest affine function. The linearity defined in Definition

30 gives us an insight on the linear sections of the given Boolean function and it is very

important to be as low as possible since the more the linearity the higher the chances to

make a conclusion about the input given the output by using especially linear algebra

tools.

In addition, the algebraic degree is another notion for measuring the security of a

primitive against algebraic attacks. It was shown that algebraic degree can give insights

regarding the non-linearity of the function by comparing the two notions with respect

to other measures such as algebraic thickness and non-normality [27]. However, this is

out of the scope of this thesis.

Recently, Boyar et al discussed in their paper four measures of non-linearity [20].

In addition to the usual notion of non-linearity and of algebraic degree, which we have

already discussed, they study the important and well-known notions of annihilator

immunity (cf. Definition 31) and multiplicative complexity (cf. Definition 32).

Definition 31. (Annihilator Immunity)

Let f a Boolean function on n inputs. Then, the annihilator immunity is given by,

AI(f) = ming(deg(g)),

such that either fg = 0 or (f + 1)g = 0. The function g is called an annihilator.

The annihilator immunity is closely related to the algebraic degree of the function.

Attempts have been made to find bounds for this measure [31].
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Theorem 5. (Courtois-Meier 2003, [31])

Let f a Boolean function on n inputs. Then the annihilator immunity satisfies the

following inequality,

0 ≤ AI(f) ≤ ⌈n2 ⌉

Functions that attain such bounds are known [58].

Definition 32. (Multiplicative Complexity)

Multiplicative Complexity of a function is the smallest number of AND gates neces-

sary and sufficient to compute the function using a circuit over the basis (XOR,AND,NOT ).

These notions worth studying since they are related to the non-linearity of a cryp-

tographic primitive and they all need to be taken into account individually for the eval-

uation of the security of a given cryptographic primitive. This is due to the fact that

all these measures are incomparable, as shown recently by Boyar et al [20]. This implies

that for each pair of measures µ1, µ2, there exist functions f1, f2 with µ1(f1) < µ1(f2)

but µ2(f2) < µ2(f1). The incomparability is explained in the same paper by providing

explicit examples based on constructions using the majority function and symmetric

polynomials [20].

The most important result of the same paper, which has direct connection with

this thesis, is the connection between MC and non-linearity. Boyar et al proved that

if a function has low non-linearity, this gives a bound on its MC. Conversely, they

prove that if a Boolean function on n inputs has MC < n
2 , then it has non-linearity

at most 2n−1 − 2n−MC−1 [20]. Thus, MC can be seen as a new notion of measuring

the non-linearity of a given cryptographic primitive and as an extension it can be seen

as a measure of security against known attacks. In addition, they prove that MC is

related to the one-wayness of a hash function and they provide a lower bound on the

MC of collision-free functions. Thus, the notion of MC is a new fundamental notion

which needs to be considered in the security analysis of a given primitive and Chapter

6 is devoted to introducing methods for optimizing small components used in block

ciphers such as S-boxes, as well as arbitrary algebraic computations over the general

non-commutative rings.
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5.3 Substitution Boxes

Substitution Boxes are vectorial Boolean functions of the form S : Fn
2 → Fm

2 . We

denote as Bn,m = {S|S : Fn
2 → Fm

2 }, the set of all Boolean functions which take as

input n bits and output m bits. The cardinality of this set is (2)m2n , which makes the

exhaustive study of all Boolean function a highly intractable problem.

Each S-box can be written as S = (S1(x), S2(x), .., Sm(x)), where Si(x) are the

coordinate (or component) functions of S (cf. Definition 33). The dimension of an

S-box is strongly related to the properties of the S-box.

• If n < m and S(x1) ̸= S(x2) ∀x1, x2 ∈ Fm
2 , then the S-box is injective

• If n > m and ∀y ∈ Fm
2 ∃x ∈ Fn

2 , then we say that the S-box is surjective

• If n = m and both assumptions above hold then we say that S-box is bijective

Definition 33. A component function Sβ(x) (β ∈ Fm
2 , β ̸= 0) for an S-box S is given

by

Sβ(x) =
∑

1≤i≤m βi · Si(x)

5.3.1 Cryptographic Properties of S-boxes

S-boxes play a fundamental role for the security of nearly all modern block ciphers.

In many block ciphers, S-boxes are the only non-linear part of the block cipher. Each

S-box can be implemented as a look-up table with 2n words of m bits each. In general

there are two ways of generating cryptographically good S-boxes,

1. Select a large S-box randomly from the set of all S-boxes. This results in

inefficient software and especially hardware implementations due to its enormous

circuit representation. Another way to implement S-box efficiently is by the so

called bit-slice methods.

2. Generate S-boxes of small dimensions which fulfil certain properties,

like high resistance against linear and differential cryptanalysis and each of its

components Sβ(x) has high algebraic degree and it has an efficient implementa-

tion.
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However, it is not trivial to find such S-boxes which are optimal with respect to these

properties since the systematic exploration of the space of all permutations from n bits

to m bits is a computationally hard problem. We can restrict the number of S-boxes

to be studied by considering their equivalence classes under a given relation. Following

this idea, the study is restricted to the study of the properties of the representative of

each class.

Another very important notion in cryptography is that of balancedness (cf. Defini-

tion 34).

Definition 34. (Balance) An N variable boolean function f(x) is said to be balanced

if |{x|f(x) = 0}| =|{x|f(x) = 1}|

Clearly for a balanced function we have HW (f) = 2n−1 and a function which is not

balanced is called unbalanced.

Another very important measure which quantifies resistance of a given S-box against

LC is the notion of Linearity (cf. Definition 35) which is a simple extension of non-

linearity of Boolean functions.

Definition 35. (Linearity)

Given an S-box S : Fn
2 → Fm

2 the linearity denoted by

L(S) = maxa∈Fn,b∈Fm−{0} |SW
b (a)|,

is the maximum linearity value obtained among all the linear combinations of the out-

put components. SW
b (a) is the Walsh coefficient of Boolean function Sb as defined in

Definition 30.

Another important concept is the notion of Avalanche effect introduced firstly by

Feistel [67]. Avalanche effect is the spreading of the input bits throughout a process

so that will result in a likely uniform distribution in the number of 0 and 1 bits in the

output. Firstly, we need to define a measure of the effect on the output of a function

when there is a change in the input in a given direction a (cf. Definition 36).

Definition 36. (Discrete Derivative) The discrete derivative of a function f in the

direction of the vector a ∈ Fn
2 and it is given by

daf(x) = f(x)⊕ f(x⊕ a)
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A function f is said to satisfy the Strict Avalanche Criterion (SAC) if it satisfies

the following property in Definition 37

Definition 37. (Strict Avalanche Criterion (SAC))

Let f : Fn
2 → F2. Then, f satisfies strict avalanche criterion if ∀a ∈ Fn

2 such that

HW (a) = 1, daf(x) is balanced.

If a function f satisfies the strict avalanche criterion it means that the derivative of

the function over all inputs and in all directions a with Hamming weight 1, is balanced.

Thus, the output difference for all single bit changes to the input must be uniformly

distributed.

S-boxes are the main non-linear components in many prominent block ciphers, thus

properties such as strict avalanche criterion for S-boxes individually are well studied.

For an S-box S, denote by ∆S,a(b) := {x ∈ Fn
2 |daS(x) = b}. By computing |∆S,a(b)|,

we find the number of input pairs (x, x + a) that result in an output difference b. A

strong S-box against differential cryptanalysis means that the distribution of output

differences is approximately uniformly distributed.

Thus, the value Diff(S) := maxa̸=0,b∈Fn |∆S,a(b)|, which is related to the maximal

probability that any fixed non-zero input difference causes any fixed output difference

after applying the S-box, is a good indicator of how strong the S-box is against differ-

ential cryptanalysis. The resistance of a given S-box can be formally measured using

the branch number as defined in Definition 38. The larger the branch number is, the

stronger the avalanche effect should be.

Definition 38. (Branch number)

Given an S-box S : Fn
2 → Fn

2 its branch number is denoted by

BN(S) = mina,b̸=a∈Fn
2
(HW (a⊕ b) +HW (S(a)⊕ S(b)))

5.3.2 Classification of Small (4×4) S-boxes

Designers of block ciphers usually use small S-boxes with good cryptographic properties

due to their efficient implementation in hardware. Common choices of (n,m) for an

S-box are n = m = 8 and n = m = 4. Table 5.2 presents the dimensions of input and

output for S-boxes used in several prominent block ciphers.

Generally, 4-bit to 4-bit S-boxes are used in many important ciphers such as GOST

and PRESENT. An essential requirement is that the S-boxes selected are optimal
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Table 5.2: S-boxes used in several prominent block ciphers

Cipher n m

AES 8 8

DES 6 4

GOST 4 4

PRESENT 4 4

CTC2 3 3

against linear and differential cryptanalysis and in addition have some desirable al-

gebraic properties. Definition 39 lists the properties that a 4-bit to 4-bit S-box needs

to fulfill in order to be cryptographically good. Proof of this can be found in [89].

Definition 39. Let S : F4
2 → F4

2 be a bijective S-box. Then S is an optimal S-box w.r.t

linear and differential cryptanalysis if:

1. L(S) = 8

2. Diff(S) = 4

Diff(S) is a measure of resistance against DC as it is related to the maximal

probability that any fixed non-zero input difference causes any fixed output difference

after applying the S-box. By optimality we mean that S has as low as possible linearity

L(S) and Diff(S). However, finding optimal 4-bit to 4-bit S-boxes is a very hard

computational task, as there are roughly 16! ≃ 244 such permutations. Considering

the action of a set of transformations on the set of S-boxes which do not alter these

properties partitions the space into distinct equivalence classes. Thus, the study of

each representative is sufficient.

We say that two S-boxes S, S′ are affine equivalent and denoted by S ∼ S′, if there

exist bijective linear mappings A,B and constants a, b ∈ F4
2, such that

S′(x) = B(S(A(x) + a)) + b

Under this equivalence relation the study can be reduced to the study of only

11! ≃ 225 permutations which are then tested if they satisfy the definition of optimality

[89]. This reduction can be done by observing that for a bijection S : Fn
2 → Fn

2 , we can

always find bases B,B′ ∈ Fn
2 such that S(B) = B′. Using this equivalence relation,
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Leander discovered that there exist only 16 such equivalence classes, (cf. Table A.1,

Appendix A.1).

The notion of Affine Equivalence (AE) (cf. Figure 5.1) does not alter any of the

cryptographic properties and especially the nonlinearity of the cipher and especially for

the n-bit to n-bit optimal S-boxes this is proved in Theorem 6.

Theorem 6. (Affine Equivalence (AE), [89])

Let A,B ∈ GL(n,F2) be two invertible n× n matrices and a, b,∈ Fn
2 . Let S : Fn

2 →
Fn
2 be an optimal S-box. Then the S-box S′ given by

S′(x) = B(S(A(x) + a)) + b,

is an optimal S-box as well.

Figure 5.1: Affine Equivalence Relation between two S-boxes - A,B boxes denote

multiplication by matrices in GL(4,F2).

However, for members of an AE class there is no guarantee that a single bit difference

in the input will not cause a single bit output difference. This implies that only a single

S-box is activated in the next round of a substitution permutation network and it is

equivalent to branch number equal to 2. Considering equivalence classes with respect

to linear equivalence does not ensure that avalanche effect is the same for all elements

within the same equivalence class. A classification of 4-bit to 4-bit S-boxes with respect

to permutation equivalence (PE) (Definition 40) was studied by Saarinen [109].

Definition 40. (Permutation-XOR Equivalence , [109])

Let Pi, Po be two bit permutation matrices and ci, co two vectors. Then the S-box S′

given by S′(x) = PoS(Pi(x⊕ ci))⊕ co belongs to the permutation-xor equivalence class

as S.

In [109] there is a more general study of S-boxes with respect the Permutation-XOR

equivalence which guarantees also the same avalanche effect within the same classes.

After exhaustive search on the set of 16! S-boxes using some short-cuts, 142,090,700
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different PE classes were found. Members of a PE class (not permutation-xor) are

usually equivalent with respect to their bit-slicing implementations meaning that they

have equivalent circuit complexity. This is very interesting from a cryptanalytic point

of view as it implies that multiplicative complexity is still the same.

Remark 10. In the next chapter, we study the bit-slice implementation of the PRESENT

S-box. Using a SAT-solver based technique, we obtain the best current bit-slice imple-

mentation.

In Chapter 6, we study methods for computing the MC of a given cryptographic

primitive and we successfully compute it for small enough circuits such as 4-bit to

4-bit S-boxes. The method we employ is based on conversion and SAT solver tech-

niques. However, we also use classification of 4-bit to 4-bit S-boxes for speeding up our

algorithm.
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Part II

On the Matrix Multiplication

and Circuit Complexity
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6

Optimizations of Algebraic

Computations

Finding shortcuts to the problems of Matrix Multiplication (MM) and Circuit Com-

plexity (CC) are among the most important NP -hard problems in the area of compu-

tational complexity [117, 29, 26, 25, 44]. Many attempts have been made for reducing

the number of multiplications needed for computing the product of two matrices, as

well as for constructing optimal circuits under almost any meaningful metric, such as

gate count, depth, energy consumption etc.

Despite the fact that a lot of research has been carried out in these areas, both

problems are still intractable and existing techniques are subject to more improvements.

A small improvement in the existing algorithms for solving such problems has the

potential to result in huge improvements in many other algorithms and applications.

Most of the existing algorithms for solving such problems, are based on well-chosen

ad-hoc heuristics. However, there is no formal proof that such techniques yield optimal

solutions and many of these heuristics have exponential time complexity. As a result

of this, they can only be applied to optimize very small instances of the problems.

Surprisingly, obtaining optimal representations for smaller instances may lead to sig-

nificant improvements in general. For example, this happens in MM problems, where

the multiplication of two matrices can be decomposed into multiplication of smaller

sub-matrices.

Recently, Boyar and Peralta presented new techniques for obtaining more efficient

implementations of arbitrary digital circuits with repsect to Boolean complexity based
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on the notion of Multiplicative Complexity (MC) [23]. They suggest a 2-step method,

where initially the circuit is optimized with respect to its number of non-linear (AND)

gates and then it is optimized with respect to linear (XOR) gates independently. The

key idea behind this heuristic is that if we optimize a circuit with respect to AND gates,

then we just need to work to optimize the circuit with respect to linear gates locally

and this technique will sometimes give very good results. The problem of optimization

the total number of additions needed for computing linear forms is well-studied and

there are several good techniques that can be applied [21, 69].

There is no formal proof (and it seems unlikely to be true in general) that opti-

mization with respect to AND gates yields circuits with optimal Boolean complexity.

However, this heuristic technique yields circuits implementations which are sometimes

the best known compared to available implementations [23, 69].

In this chapter, we propose a fully automated 2-step methodology based on SAT-

solvers for optimizing digital circuits with respect to their MC, but also with respect to

other metrics meaningful in cryptography and cryptanalysis. In our method, firstly we

describe algebraically the problem by a multivariate system of equations or by another

formal method of encoding. Then, we convert it to a CNF-SAT problem using the

Courtois-Bard-Jefferson tool [11] and finally we attempt to solve this problem using a

SAT solver [42].

Importantly, using this methodology we have been able to obtain circuit representa-

tions of optimal circuit complexity for sufficiently small circuits, with respect to several

metrics we have tried. Using our technique we have been able to optimize the S-boxes

of widely used ciphers such as GOST [63] and PRESENT [18] with respect to MC and

prove that it cannot be reduced anymore. Optimization with respect to MC is very

important since it is one of the major countermeasures against Side Channel Attacks

(SCA) on smart cards [104]. We also optimize the 3-bit to 3-bit S-box of CTC cipher

[32] with respect to several metrics in order to illustrate that our technique is capable

of discovering optimal circuit representations under different metrics.

Moreover, using Brent’s equations [26] as a method of formal encoding for the MM

problem and following similar methodology as in circuit’s optimization, we have been

able to obtain new bilinear non-commutative algorithms of optimal bilinear complexity

for the computation of the product matrix of two sufficiently small matrices. Such
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solutions to smaller instances can be used recursively to obtain solutions for the more

general case using the Divide-and-Conquer paradigm [61].

Remark 11. It is worth noticing that SAT solvers are subject almost every year to

improvements since there is a very active academic community in this area. We can

hope this will give us the opportunity to discover much more interesting bilinear non-

commutative algorithms especially for the MM problem in the future and manage to

discover optimal circuit representations for bigger circuits.

6.1 Divide-and-Conquer Paradigm

In computer algebra, a main strategy for designing more efficient algorithms for solving

computationally hard problems is by solving smaller (fixed-size) problems and then

applying the solution obtained recursively. This paradigm is known as Divide-and-

Conquer [61]. Many attempts of solving the MM problem have been made based on

this strategy [26]. The paradigm of Divide-and-Conquer works as follows [61]:

1. Partition the given problem into subproblems, that are themselves smaller in-

stances of the same type of problem

2. Solve these smaller instances

3. Combine the solutions obtained for the smaller instances

4. Apply recursively at the lower levels

The complexity of solving the main problem is determined by the complexity of com-

pleting the above steps. As an introductory example, we will study how this technique

can be applied to the Integer Multiplication problem and how it yields a new algorithm,

which is more efficient than the naive one. Later, we study how this paradigm can be

applied to the MM problem.
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6.1.1 Integer Multiplication

Suppose x, y are two n-bit integers, where n is a power of 2. (The general case is treated

in a quite similar way). In the first place, we split each of these integers into their n
2 -bit

left and right halves, resulting in the following representations,

x = 2n/2xL + xR (6.1)

y = 2n/2yL + yR (6.2)

The product xy can be written as follows,

xy = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR (6.3)

Thus, computing the product xy requires the same effort as the effort needed for

computing the RHS of Equation 6.3. The operations involved in the RHS are additions,

multiplications by powers of 2 and multiplications of n
2 -bit integers. Additions take lin-

ear time, as well as multiplications by powers of 2 since they are just left-shifts. Hence,

the operations of highest cost involved in the above expression are the multiplications

of the four n/2-bit integers,

xLyL, xLyR, xRyL, xRyR.

Using this reduction, the problem of computing the multiplication of two n-bit

integers is reduced to the problem of computing four multiplications of n
2 -bit integers

combined with 3 additions and left-shifts.

Let T (n) denote the overall running time for computing the product of two n-bit

integers using this method. The following recurrence relation holds

T (n) = 4T (n/2) + O(n). (6.4)

Working out this recurrence relation the complexity is still O(n2) [61]. Thus, no im-

provement so far. However, Carl Friedrich Gauss (1777-1855) proved that the product

of two complex numbers

(a+ bi)(c+ di) = (ac− bd) + (bc+ ad)i
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can be computed with three multiplications instead of four. In particular we have,

bc+ ad = (a+ b)(c+ d)− (ac+ bd).

Applying Gauss’ trick to Equation 6.3 we obtain,

xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR,

Hence, 3 out of 4 products are sufficient to compute the initial expression. The recur-

rence relation describing the overall time complexity is now given by,

T (n) = 3T (n/2) + O(n). (6.5)

Thus, at every level of the recursion, we have a constant factor improvement. We

can compute the running time of the algorithm by studying the algorithm’s pattern of

recursive calls. This is a form of a tree structure, similar to the shape of the tree shown

in Figure 6.1. In the associated tree structure of this particular problem, every problem

is split in three subproblems of halved size. Starting with the problem of multiplying

n-bit integers, we expect the subproblems to have size 1 at the log2(n)-th level of the

tree. Precisely at this point, the problem becomes straightforward to solve and hence

the recursion ends. Hence, the height of the tree is log2(n).

At depth k of this tree, there are exactly 3k subproblems of size n
2k
. From depth

k to identify problems at size k + 1, the total time spent is 3k × O( n
2k
), which equals

to (32)
k × O(n). At top level, this quantity equals to O(n), while at log2(n)-th level,

equals to O(nlog2(3)). At each level, the time spent increases geometrically by a factor

3
2 and by summing over all levels, the overall running time complexity turns out to be

upper bounded by O(nlog23) ≈ O(n1.59), which is a substantial improvement over the

naive algorithm [61].

6.1.2 The Divide-and-Conquer Master Theorem

Formally, the Divide-and-Conquer paradigm can be seen as follows: Given a problem

of size n, we split this problem into a subproblems of size n/b. Then, we solve these

smaller instances of the same problem and finally we combine all these partial answers

in O(nd) time, for some a, b, d > 0 (cf. Figure 6.1).
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Figure 6.1: Divide and Conquer Paradigm - Recursive calls to an algorithm of size

n using a branching factor a [61]

Figure 6.1 suggests that the overall running time complexity T (n) for obtaining a

solution to the initial problem can be obtained by adding the running time for obtaining

solutions to the smaller instances. In particular we have that

T (n) = aT (⌈n/b⌉) + O(nd) (6.6)

where a is called the branching factor.

The very generic structure of these algorithms allows us to compute precisely the

running time T (n) according to the exponent d (Theorem 7).

Theorem 7. (Divide and Conquer Master Theorem, [61])

Let T (n) the complexity function for solving a given problem on n inputs. Suppose

that this problem can be partitioned into a sub-problems on n/b inputs and the partial

answers to these smaller instances can be combined together in O(nd) time, for some

a > 0, b > 1, d ≥ 0 Then,

T (n) = aT (⌈n
b
⌉) + O(nd) (6.7)

The following cases hold
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T (n) =



O(nlogb(a)), d < logb(a)

O(ndlog(n)), d = logb(a)

O(nd), d > logb(a)

Proof. More details about this proof can be found in standard textbooks about com-

putational complexity and algorithms such as in [61]

This paradigm is very important and widely used in the area of computational

algebra and was applied in MM problem. In the subsequent section, we outline how

we can use this technique for solving problems in MM by solving smaller instances and

combining them recursively.

6.2 Matrix Multiplication (MM)

The problem of Matrix Multiplication (MM) (Definition 41) is one of the most im-

portant problems in the area of mathematics and have been studied by many famous

Mathematicians. Until 1968, the only known method for multiplying two matrices was

the Naive Multiplication algorithm simply arising from the definition of the problem

(cf. Definition 41).

Definition 41. ([MM])

Let A and B two n × n matrices, n ∈ N, with entries in a (not necessarily) com-

mutative ring R having the following form

An,n =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n

 and Bn,n =


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n

,

Then, the entries of the product matrix C = AB are given by

Cp,q = [AB]p,q =
n∑

i=1

ap,ibi,q, (6.8)

where multiplication is defined over R.
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Based on the above definition, we observe that the naive multiplication algorithm

requires 2n3 − n2 operations (in total) over R for computing the product matrix C.

More precisely, n3 − n2 additions and n3 multiplications are required.

However, the expansion of computer technology in the late 20th century brought

back to the surface the problem of (more) efficient matrix multiplication. Nowadays,

algorithms for MM are widely used and a speed-up in MM will automatically result

in a speed up in many other important algorithms. Below we mention some areas

which would immediately benefit from fast linear algebra [65]. Note that this list is not

exhaustive.

Applications of MM:

1. Commercial software, such as MATLAB, MATHEMATICA and GAUSS

2. Economic modeling

3. Weather prediction

4. Signal processing

5. Gauss Elimination algorithm for solving a system of linear polynomial equations

6. Algorithms for solving non-linear polynomial equations

7. Recognizing if a word of length n belongs to a contextfree language

8. Transitive closure of a graph or a relation on a finite set

9. Statistical analysis of large data sets

10. Integer factorization

11. Cryptanalysis

12. Computer graphics, e.g. games

Definition 41 can be extended to multiplication of non-square matrices. The prob-

lem of multiplying a m× p matrix A by a p× n matrix is equivalent to computing the

mn bilinear forms Ci,l =
∑p

j=1 ai,jbj,l for 1 ≤ i ≤ m and 1 ≤ l ≤ n (cf. Definition 42).
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Definition 42. (Bilinear Non-commutative Algorithm)

Let R a non-commutative ring and consider the two sets of variables A = {a1, a2, ..., ar}
and B = {b1, b2, ..., bs}. Then, a bilinear algorithm over A,B and ring R is an algo-

rithm which computes products of the form

(
∑r

i=1 α
t
iai)(

∑s
j=1 β

t
jbj)

in the variables in the sets A,B using coefficients αt
i, β

t
j ∈ R, where t = 1, 2, ..., d and

d is the number of required products we need to compute.

The number d of multiplications is called the bilinear complexity of the algorithm.

A bilinear algorithm over a ring R calculates a set of bilinear forms. One way of solving

MM problems is to search for bilinear algorithms over the set of the entries of the

matrices A,B which have minimal bilinear complexity. Note that in case of MM, the

algorithm is actually trilinear since in first place we use a bilinear algorithm to compute

some products and then we combine these products linearly to compute the entries of

the product matrix C = AB. In the next section, we provide a historical overview

regarding the bilinear complexity of the MM problem and the progress up to date.

6.2.1 On the Exact Bilinear Complexity of MM

As we have already mentioned, the time complexity of multiplying two n× n matrices

using the naive multiplication algorithm is O(n3). Let MR(n) the total number of

operations required for the multiplication of two n × n matrices over the ring R. The

exponent of MM is defined as follows (Definition 43).

Definition 43. The exponent of MM over a general non-commutative ring R is defined

as

ω(R) := inf{τ ∈ R|MR(n) = O(nτ )}

An upper bound for ω(R) is 3 (by naive multiplication algorithm). The output of

the multiplication of two n×nmatrices is an n×nmatrix and thus it contains n2 entries.

This implies at least n2 operations are needed to compute it. Thus, ω(R) ∈ [2, 3].

Since 1968, many mathematicians tried to improve the upper bound of ω(R) and

some researchers have conjectured that MM complexity could be nearly quadratic, for

example like O(n2(log(n))α). In Figure 6.2 we show the progress up to date.
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Figure 6.2: On the Complexity of MM - Bound ω in MM over time [1]

The first attempt to improve the exponent ω(R) was by Winograd [121]. He com-

puted the inner product of two n-dimensional vectors using fewer multiplications but

more additions. As MM can be seen as a computation of many different inner products,

this technique can slightly improve the number of operations needed. This technique

resulted in a slight improvement in the exponent ω. More details are found in [121].

Within the same year, Strassen discovered a non-commutative bilinear algorithm

for multiplying two 2 × 2 matrices using 7 multiplications instead of 8 (cf. Algorithm

7).

108



6.2 Matrix Multiplication (MM)

Algorithm 7 Strassen’s Non-Commutative Bilinear Algorithm using 7 Multiplications

Given two 2 × 2 matrices A,B over a ring R, with entries ai,j , bi,j ∈ R 1 ≤ i, j ≤ 2,

then the entries ci,j of the product matrix C = AB can be computed by the following

formulas,

P1 = (a1,1 + a2,2)(b1,1 + b2,2)

P2 = (a2,1 + a2,2)b1,1

P3 = a1,1(b1,2 + b2,2)

P4 = a2,2(−b1,1 + b2,1)

P5 = (a1,1 + a1,2)b2,2

P6 = (−a1,1 + a2,1)(b1,1 + b1,2)

P7 = (a1,2 − a2,2)(b2,1 + b2,2),

c1,1 = P1 + P4 − P5 + P7

c1,2 = P2 + P4

c2,1 = P3 + P5

c2,2 = P1 + P3 − P2 + P6

Algorithm 7 can be extended recursively to an algorithm for multiplying two n× n
matrices with ω ≤ log2(7) using the Divide-and-Conquer paradigm (cf. Lemma 3).

Lemma 3. Let A,B two n × n matrices over a ring R. Then, the application of

Strassen’s algorithm gives an improved algorithm for multiplying A and B in time

O(nlog27) ≈ O(n2.81)

Proof. Write the matrices A,B in the following way,

A =

(
A1 A2

A3 A4

)
and B =

(
B1 B2

B3 B4

)
,

where Ai, Bi for 1 ≤ i ≤ 4 are n
2 ×

n
2 square matrices over R.

Then, the product matrix AB is given by,

AB =

(
A1B1 +A2B3 A1B2 +A2B4

A3B1 +A4B3 A3B2 +A4B4

)
Therefore, using the Divide-and-Conquer algorithm, we can compute the product

of size n by computing eight products of size n
2 . In particular, we need to compute the

following products.

{A1B1, A2B3, A1B2, A2B4, A3B1, A4B3, A3B2, A4B4},
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Then, the total running time for computing the product AB is given by,

T (n) = 8T (
n

2
) + O(n2). (6.9)

Strassen’s algorithm hold in general over any non-commutative ring and thus using

Algorithm 7 we can rewrite the product AB in the following way,

AB =

(
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P1 + P5 − P3 − P7

)
.

The new running time is improved and given by

T (n) = 7T (n2 ) + O(n2),

which by Theorem 7 works out to be O(nlog27) ≈ O(n2.81)

Since then, many substantial improvements have been conducted in this area. Cop-

persmith and Winograd in 1987 improved the bound to ω ≤ 2.3755 [29]. Stothers

improved the bound to ω ≤ 2.3737 [117] and the final successful attempt was in 2011

by Williams, who improved the bound to ω ≤ 2.3727 [120]. Amazingly enough, many

scientists conjecture that it could by nearly quadratic like O(n2(log2(n)
α)) for some α.

In the next section, we present an automated discovery methodology for searching for

bilinear algorithms of reduced bilinear complexity based on SAT solvers.

6.2.2 Encoding of MM and the Brent Equations

Richard Brent (in his thesis) developed non-commutative bilinear algorithms for the

MM problem [26]. His main objective was to obtain an algebraic description of the

problem of multiplying two matrices using a fixed number of multiplications. By an

algebraic description, we mean a system of equations with variables the entries of the

matrices and the number of multiplications that we would like to use.

Importantly, this implies that if this system has a solution, then there exists a

non-commutative bilinear algorithm of desired bilinear complexity, which computes

the product matrix. Otherwise, no such algorithm exists. Theorem 8 describes this

technique [26].
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Theorem 8. (Brent Equations)

The entries of a n × n product matrix C = AB are to be constructed from linear

equations of κ products, in which the operands are linear combinations of the elements

of A and B respectively.

Specifically, given κ triples of constant n× n matrices, ((α
(u)
mk), (β

(u)
li ), (γ

(u)
js ), where

1 ≤ u ≤ κ, if

Cjs =

κ∑
u=1

(
∑
m,k

Akmα
(u)
mk)(

∑
l,i

Bilβ
(u)
li )γ

(u)
js , (6.10)

for all j, s ∈ [0, n), then the 3n2κ elements of the 3κ constant matrices satisfy Brent’s

set of n6 equations, ∑κ
u=1 γ

(u)
js β

(u)
li α

(u)
mk = δlsδmiδjk,

for all i, j, k, l,m, s ∈ [0, n), where δxy = 1 if x = y and 0 otherwise.

Proof. The proof follows by equating coefficients AkmBil in the first equation with those

in Cjs =
∑

r AjrBrs

The above reformulation implies the existence of a bilinear algorithm of bilinear

complexity κ, provided that the associated system of Brent Equations has a solution

over the ring R in some cases.

Importantly, this reformulation of MM problem using Brent Equations provides a

tool for formal encoding of the problem and it can be used in an automated procedure

for discovery of bilinear algorithms of pre-specified bilinear complexity.

Given a formal algebraic encoding of the problem and considering it over the Galois

Field of two elements F2, we then compute the associated CNF-SAT form [11] and

finally we search for a solution over F2 using SAT solvers. This leads to an automated

discovery of new solutions to the MM problem over F2, which can heuristically be

extended to general rings R [43].
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Algorithm 8 Automated Solutions for MM problem via SAT solver

1. Form the Brent Equations of the corresponding MM problem

2. Convert it to CNF using the Courtois-Bard-Jefferson Method [11].

3. Search for solutions valid mod 2.

4. The SAT-solver terminates either with SAT and a solution or with UNSAT mean-

ing there is no solution.

5. Lift the solution to a general ring R by another constraint satisfaction algorithm.

6.2.3 On the Equivalence of Bilinear Algorithms for MM

Given two solutions obtained by Algorithm 8, how do we know if these two solutions

are non-isomorphic or non-equivalent (cf. Definition 44)?. Two solutions are considered

isomorphic if one solution can be transformed into the other solution using a group of

transformations. Such transformations for the isomorphism of bilinear algorithms used

for solving MM problem were studied extensively in [76].

Definition 44. (Equivalence of Solutions [76])

Let A(u), B(u),Γ(u) (1 ≤ u ≤ κ) the matrices as defined in Theorem 8. The following

transformations map a given solution to another (isomorphic) solution,

1. Permuting the κ indexes u

2. Cyclic shift of the three set of matrices A(u), B(u),Γ(u), ∀1 ≤ u ≤ κ

3. Change of order followed by transposition. Replace {A(u), B(u),Γ(u)} by

{(Γ(u))T , (B(u))T , (A(u))T }, ∀1 ≤ u ≤ κ

4. Replace {A(u), B(u),Γ(u)} by {auA(u), buB
(u), γuΓ

(u)}, where au, bu, γu ∈ Q such

that aubuγu = 1, ∀1 ≤ u ≤ κ

5. Replace {A(u), B(u),Γ(u)} by {UA(u)V −1, V B(u)W−1,WΓ(u)U−1}, where U, V,W
are arbitrary invertible matrices

The transformations described above can be used to check if two bilinear algorithms

of the same bilinear complexity are isomorphic. As we will see later, we will use these

transformations to check if the bilinear algorithm for computing two 3× 3 matrices of

bilinear complexity 23 which we have obtained by our methodology is isomorphic to

Laderman’s algorithm [87].
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6.3 Circuit Complexity (CC)

6.3 Circuit Complexity (CC)

The problem of CC is considered as one of the very hard problems in mathematics

and computer science. In particular, obtaining an optimal circuit representation un-

der almost any meaningful metric (gate count, depth, energy consumption, etc.) is a

hard computational problem. For example, there is no known provably optimal circuit

representation with respect to Boolean complexity for a Boolean function of the form

F8
2 → F2 [25, 22].

None of the existing algorithms is able to synthesize small and compact imple-

mentations for the greater majority of circuits. In practice, there are no analytical

techniques yielding optimal representations and most of them rely on a variety of well-

chosen ad-hoc heuristics. Unfortunately, many of these heuristics have exponentially

large running time complexity and as a result they can be applied for the optimization

of very small circuits only.

However, given a large enough circuit, optimizing its smaller sub-circuits yields

a very efficient (but not proven optimal) circuit. This technique can be applied to

functions that naturally decompose into repeated use of smaller subcomponents. For

example, as we have seen for the MM problem, as well as directly in cryptography.

Most of the cryptographic functions are based on design architectures, which can be

seen as multiple iterations of a cryptographically weaker function f which contains

several linear steps and a few non-linear (e.g. S-boxes). Thus, optimizing this round

function yields an improved implementation of the whole cipher. Below we discuss

some immediate benefits arising from such optimal circuit representations [42, 39].

Applications of CC:

1. Develop certain “Bitslice” parallel-SIMD software implementations of block ci-

phers such as in [6].

2. Lower the hardware implementation cost of encryption algorithms in silicon. Such

implementations are particularly important in smart cards and RFID, where cryp-

tographic algorithms are the main computationally costly components.

3. Optimizing a circuit with respect to its MC is a countermeasure against Side

Channel Attacks (SCA) on smarts cards, such as Differential Power Analysis

113



6. OPTIMIZATIONS OF ALGEBRAIC COMPUTATIONS

(DPA) [104]. This is simply because ⊕ gates are easier to protect against side-

channel attacks.

4. Cryptanalysis based on SAT-solver techniques benefits immediately from such

improved implementations, as the time taken for a SAT solver to find a solution

depends on the compactness of the circuit. Low-data complexity attacks such as

algebraic attacks might be improved if a more compact and efficient representa-

tion of a cipher is found [42, 45].

5. Direct application in numerical algebra and symbolic computing. Such optimiza-

tions can be applied recursively for improving other algorithms such as, Gaussian

reduction and MM.

We have developed a 2-step method based on formal coding and SAT solvers for

searching for optimal circuit representations with respect to meaningful metrics to

cryptology and it is very similar to the previous methodology used for the MM problem.

We view the problem as a constraint satisfaction problem. We apply this methodology

to optimize a given circuit with respect to a given metric, which is dependent on its

application. For example the notion of MC (cf. Definition 45) is very important for

numerical algorithms and software that employ routines for multiplying matrices of

large dimensions.

Definition 45. Multiplicative Complexity (MC): The minimum number of AND

gates required to compute a given circuit if we allow an unlimited number of NOT and

XOR gates.

Moreover, the notion of bitslice complexity (cf. Definition 46) is precisely relevant

in bitslice implementations of block ciphers on standard CPUs.

Definition 46. Bitslice Gate Complexity (BGC): The minimum number of 2-

input gates of type XOR,OR,AND,NOT needed to compute a given circuit.

In addition, the notion of Gate Complexity (Definition 47) is very useful for silicon

optimization. It is the most general notion implemented by designers of digital circuits.

This model is relevant in so called bitslice parallel-SIMD implementations of block

ciphers [6].
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Definition 47. Gate Complexity (GC): The minimum number of 2-input gates of

type XOR,AND,OR,NAND,NOR,NXOR needed to compute a given circuit.

Lastly, we provide optimizations with respect to the NAND complexity (Definition

48), which are important for cryptanalysis.

Definition 48. NAND Complexity (NC): The minimum number of 2-input NAND

gates needed to compute a given circuit.

6.4 Combinatorial Circuit Optimization

In 2008, Boyar and Peralta developed a 2-step (heuristic) methodology based on the

notion of MC. This methodology was applied to the S-box of AES and the small-

est circuit known is due to this methodology, which consists of 32 AND gates and

83 XOR/XNOR gates, for a total of 115 gates [24]. This heuristic methodology for

designing gate-efficient implementations is as follows,

• STEP 1: Compute the Multiplicative Complexity.

• STEP 2: Optimize the number of XORs separately.

• STEP 3(optional): Perform additional optimizations to decrease the circuit depth,

possible gate count, power consumption, etc.

This is a completely heuristic methodology and there is no way of proving that

it outputs optimal results. However, it depends on a key observation that circuits

with low MC will naturally have large sections which contain only ⊕ gates and thus

we can further optimize the circuits locally. The first step of this technique considers

identifying nonlinear components and optimize the given circuit representation with

respect to AND gates. However, finding circuits with minimal MC is still a highly

intractable problem [25]. This step depends on the structure of the given circuit and

the selection of ad-hoc heuristics is essential. However, this reduction is not trivial to

do. For example, the two circuits shown in Figure 6.3, both compute the function

MAJ(a, b, c) = ⌊1
2
+
a+ b+ c− 1/2

3
⌋, (6.11)
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which is true if and only if more than half of its inputs are true. This is the Majority

function on three inputs, which we study in a latter subsection. However, it is not easy

to algorithmically transform one circuit into the other.

Figure 6.3: MAJ(a, b, c) Circuit Representation - Two different circuit representa-

tions computing the same function. The circuit on the left has 2 AND and 2 XOR gates,

while the other on the right has 3 XOR and only 1 AND gate

We have developed a simple tool for computing the MC of a given circuit (cf. Algo-

rithm 9) [42]. The Brent-like approach which we used in the MM problem could lead

to a very large problem to solve and thus this method is very different. In MC opti-

mizations, we can say that each variable is an affine or linear combination of previous

variables.

Given a circuit representation, we firstly encode the circuit as a straight-line op-

timization problem and then we encode it as a system of multivariate equations with

variables which can be either 0 or 1. In our encoding we use four distinct sorts of

variables. We denote the input bits to the truth table as xi, the output bits to the

truth table as yi, the input and each output of each gate as zi and finally we use the

variables ai to express some intermediate states as an affine combination of previous

variables. Algorithm 9 describes precisely the procedure how to obtain the system of

multivariate equations which express the problem of our interest.

Algorithm 9 can be used to compute the MC of a given circuit. If the integers

MINSAT and MAXUNSAT satisfy MINSAT − MAXSAT = 1, then it means the

MC of the circuit is MINSAT . There are some cases where the SAT solver does not

terminate and we output −1 or whether no SAT was obtained in an output and we

output ∞. In the cases we study, we deal up with circuits of small size and thus we

test small integers α and β and a timeout T of about 1000 seconds.
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Algorithm 9 Method of computation of MC of a given circuit

INPUT: Truth Table of a vectorial Boolean function f : Fn
2 → Fm

2 , an interval [α, β]

where α, β are positive integers and a timeout bound T (in seconds)

1. For all integers M such that α ≤M ≤ β, Do Steps 2-10

2. We define by Z a working set of internal variables and let |Z| be its cardinality

3. We create a test file called Prototype as follows (Steps 3a-4)

3a. Let κ =M

3b. Initially Z = {x1, x2, ..., xn} which corresponds to the input bits and |Z| = n

3c. While κ > 0, Do

3d. Set r = 1

3e. Write zr as the product of the following two terms a
(r)
|Z|t|Z| + ...+ a

(r)
1 t1 + a

(r)
0 with

a
(r)
j ∈ F2 (1 ≤ j ≤ |Z|) and a′(r)|Z| t|Z| + ... + a

′(r)
1 t1 + a

′(r)
0 with a′j

(r) ∈ F2 (1 ≤ j ≤ |Z|)
and ti ∈ Z for all 1 ≤ i ≤ |Z|
3c. Insert zr in Z

3d. Set κ = κ− 1 and r = r + 1

4. Write affine equations which make each output yi (1 ≤ i ≤ m) an affine combination

of variables from Z, with coefficients being some other ai ∈ F2.

5. Convert this Prototype system of equations over F2 to SAT with the Courtois-Bard-

Jefferson tool. Now all variables that appear in the Prototype are replaced by unique

positive integers via the mapping π : Z ′ → Z, where Z ′ is the set of all variables of the

form xi, yi, zi, ti, a
(j)
i , a

′(j)
i , and π maps the variables to their corresponding number.

6. Produce 2n copies of this SAT problem. In each instance, renumber all the π(zi)

variables to distinct numbers using new unused integers and keep all the π(ai) the same.

7. For each copy substitute the xi and yi with the input and output values respectively.

This corresponds to all possible evaluations of the same circuit.

8. Concatenate the 2n copies of the SAT problem.

9. Attempt to solve using a SAT solver and abort after T seconds

10. Convert back from CNF to circuit representation. Replace in the Prototype all the

ai found by their values 0(false) or 1 (true) using the mapping π.

Output: Two integer values;MINSAT : the smallest value such that SAT was obtained

(∞ if no SAT was obtained) and MAXUNSAT : the biggest value such that UNSAT

was obtained (−1 if no UNSAT was obtained)
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In the Boyar and Peralta methodology, after the computation of the MC, we opti-

mize the number of XORs separately [21, 69]. Optimizing the number of XORs in a

given circuit is an intractable problem and has been proven to be NP-hard [21]. This

can be proved over F2 by reducing it to the Vertex Cover problem, which is already

proven to be NP-hard [21]. Boyar et al proved in the same paper, that the problem

does not have ϵ-approximation schemes, unless P = NP . That implies there is no

method of obtaining a solution close to the optimal solution (up to a small error ϵ) and

thus the only chance of getting a better solution is by improving existing approximation

techniques based on a variety of heuristics.

Algorithm 9 can be used for computing the MC of a given circuit only. In case, we

would like to compute the complexity of a given circuit with respect to a different metric

we need a different methodology. Algorithm 10 is designed to address optimizations

with respect to a more complex metric. For this problem, we consider six sorts of

variables of the following form,

• x: Inputs of the truth table

• y: Outputs of the truth table

• q, q′: Inputs of gates

• t: Outputs of gates

• b: Variables which define the function of each gate (e.g. one gate could be AND,

OR, XOR and the model is b(uv) + b′(u+ v), and when b = 1, b′ = 0 this will be

AND gate)

• a: Variables which will be the unknown connections between different gates

The motivation behind this algorithm is that not every circuit is very algebraic and

thus it cannot be efficiently described by sparse multivariate polynomial expressions.

This is quite usual in industrial implementations, where circuits of low gate count are

preferred for efficient hardware implementations. Precisely for this reason, using Brent-

like equations could lead to very huge problem to solve. However, we can describe the

initial problem as a substitution box with a truth table and proceed as described in

Algorithm 10.
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Algorithm 10 General method of computation of exact complexity of a given circuit

wrt a given metric

INPUT: Truth Table of a vectorial Boolean function f : Fn
2 → Fm

2 , an interval [α, β]

where α, β are positive integers and a timeout bound T (in seconds)

1. For all integers M such that α ≤M ≤ β, Do Steps 2-10

2. We define by Z a working set of internal variables and let |Z| be its cardinality

3. We create a test file called Prototype as follows (Steps 3a-4)

3a. Let κ =M

3b. Initially Z = {x1, x2, ..., xn} which corresponds to the input bits and |Z| = n

3c. While κ > 0, Do

3d. Set r = 1

3e. Write qr = a
(r)
|Z|z|Z|+ ...+a

(r)
1 z1+a

(r)
0 and q′r = a

′(r)
|Z| z|Z|+ ...+a

′(r)
1 z1+a

′(r)
0 , where

only one a(r) is allowed to be 1 and only one a′(r) is allowed to be 1 (This is achieved

by adding all the quadratic equations of the form a(i).a(j) = 0 and a(i).a(j) = 0 for

all 1 ≤ i, j ≤ |Z| with i ̸= j in our system).

3f. Write tr in the form br(qrq
′
r) + b′r(qr + q′r) + b′′r where br, b

′
r, b

′′
r ∈ F2

3g. Insert tr in Z

3h. Set κ = κ− 1 and r = r + 1

4. Set each output yi (1 ≤ i ≤ m) to be equal to one of the previous variables in Z

5. Make several copies of the same problem, renaming all x, y, q, q′, t variables but

leaving a, b the same.

6. Consider all these copies together and form a large system of multivariate equations

7. Convert this to SAT using Courtois-Jefferson-Bard software [11]. Now all

variables that appear in the Prototype are replaced by unique positive integers

via the mapping π : Z ′ → Z, where Z ′ is the set of all variables of the form

xi, yi, qi, q
′
i, a

(j)
i , a

′(j)
i , ti, bi, b

′
i, b

′′
i , and π maps the variables to their number

8. Substitute the known pairs (x, y) and solve for a, b

9. Substitute the values ai, bj obtained by SAT solver to the Prototype using the

mapping π

Output: Two integer values; MINSAT : the smallest value such that SAT was

obtained (∞ if no SAT was obtained) and MAXUNSAT : the biggest value such that

UNSAT was obtained (−1 if no UNSAT was obtained)
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A very important task involved in Algorithm 10 is how to describe the connections

between gates. The idea is that each variable t is some combination of previous variables

of type x, t, q, q′ and the variables a are used to encode all the unknown connections

between different gates, their inputs and outputs, and the pairs of inputs-outputs (x, y).

For example, in MC optimizations we can say that each variable is an affine (or linear)

combination of past variables. In other optimizations we can add constraints of type

aiaj = 0, which says that in a certain set of ai only at most one of these variables is at

1.

6.4.1 Provable Optimality in Complexity Theory

The described methodology based on SAT solvers is a very powerful technique, as it

can be used for discovering bilinear algorithms of least bilinear complexity for MM, as

well as for constructing optimal circuits with respect to several meaningful metrics.

Given a CNF-SAT problem, a SAT solver either terminates in reasonable time or

not. In the first case, it will output either SAT with a satisfying logical assignment

to the problem or UNSAT, which means no solution exists. In the second case, the

SAT solver does not terminate on the given problem in reasonable time and thus no

conclusions can be drawn. However, in all cases we describe in this thesis are related

to the first case.

In particular, in MM we can apply this methodology to prove for example if the

multiplication of two matrices can be done with exactly κ multiplications. In SAT

solvers language, this is translated to SAT in κ multiplications and to UNSAT in κ− 1

or fewer multiplications. Similarly, for obtaining optimal circuit representations for

sufficiently small circuits.

Using this methodology we are able to find solutions which are optimal and proven

to be impossible to further improve. However, we are not able to provide provably

optimal results since we lack of a proof of correctness of the SAT solver software and

there is the possibility of a bug in a SAT solver. A bug means that maybe a problem

which is SAT is claimed to be UNSAT by another solver. However, we can minimize

this problem by using different SAT-solvers and checking if the results obtained are

indeed consistent.

We have obtained a new bilinear algorithm of bilinear complexity 23 for the problem

of multiplying two square 3 × 3 matrices. Moreover, we have been able to prove that
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the product matrix of two matrices A ∈ M2×2(R) and A ∈ M2×3(R) requires exactly

11 multiplications. Lastly, we applied this methodology for optimizing the S-boxes of

the ciphers GOST, PRESENT and CTC2 with respect to their MC.

Remark 12. All results that are presented in the next section were obtained using a

PC having an Intel i7 1.73 GHz processor and 4.00 GB RAM.

6.4.2 Application of Our Method to MM problems

As a proof of concept, we have applied our methodology to multiply two 2 × 2 matri-

ces using 7 multiplications. We have converted the total of 64 equations over F2 to a

CNF-SAT problem using the Courtois-Bard-Jefferson software and then we solved this

problem using CryptoMiniSat in approximately 0.10s. In order to prove that 7 is the

exact number of required multiplications, we have encoded the problem for 6 multipli-

cations and we have obtained UNSAT after 524.41s=0.146h. This is a complete proof

that the bilinear complexity of this problem is exactly 7 over F2.

However, the solutions obtained are valid only over F2. Our aim is to find solutions

over any ring R. Given a solution we proceed step by step by lifting the solution to

larger and larger rings. We have developed a heuristic methodology for lifting a solution

over F2 to a solution over Z/4Z and then progressively proceed to Z/4Z and so on. Our

Heuristic Lifting Technique works as follows.

Heuristic Lifting to Larger Rings

The map Z/2Z → Z/8Z given by 0 → {0, 2} and 1 → {1,−1} is an embedding of

the first field to the latter ring. Given an element α over F2, we map it firstly to 0 if

it is 0 and firstly to 1 and then to -1 if it is equal to 1. Then, we map 0 to 2 and 1 is

mapped firstly to 1 and then to -1. We use this heuristic to map a given solution of

Brent Equations over F2 to a solution over Z/4Z.

Remark 13. Based on observations, most of the times 0 is mapped to 0. In addition,

for the majority of the cases we have tried, lifting to Z/4Z was enough since the solution

was already true in general.

Applying the Lifting (heuristic) methodology to the solutions over F2 for the prob-

lem of multiplying two 2×2 matrices using 7 multiplications yields the following result.

Application of Heuristic Technique: Given two 2×2 matrices, we consider the

corresponding MM problem with 7 multiplications over F2. Using MiniSat we obtained
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solutions for the variables a, b, c involved to the total of 64 Brent Equations over F2.

Then, we lifted these equations (and the solutions) over Z/4Z. We have obtained

solutions (cf. Appendix A.2), which are also true over a general ring R.

Moreover, we have been able to obtain solutions to other MM problems, such as

the multiplication of a 2 × 2 matrix by a 2 × 3 matrix using 11 multiplications and

the problem of multiplying two 3× 3 matrices. The following theorems summarize the

results we have obtained.

Theorem 9. Given two matrices A ∈M2×2(R) and B ∈M2×3(R), where R is an arbi-

trary (not necessarily) commutative ring, the product matrix C = A.B can be computed

using exactly 11 multiplications. Similarly multiplying a 3× 2 matrix by a 2× 2 matrix

requires precisely 11 multiplications.

Proof. An upper bound for solving this problem is by naive matrix multiplication algo-

rithm and it is 12 multiplications in total over a general (not necessarily) commutative

ring R.

Firstly, we consider the Brent Equations corresponding to 11 multiplications. Thus,

we obtain 144 equations in 176 unknowns (12098 right clauses). Then, we convert

it to a CNF-SAT problem, which we solve using CryptoMiniSat in approximately

474.54s=0.132h. We have obtained the following bilinear algorithm.

P01 := (−a11 − a12 + a21 + a22) ∗ (b23);
P02 := (−a11 − a12 + a21) ∗ (b12 − b23);
P03 := (a11 − a21) ∗ (−b13 + b23);

P04 := (a11) ∗ (b11);
P05 := (a22) ∗ (−b21 + b23);

P06 := (−a11 − a12) ∗ (b12);
P07 := (a21) ∗ (b12 − b13);
P08 := (a22) ∗ (b21 − b22);
P09 := (a12) ∗ (−b12 + b22);

P10 := (a21) ∗ (−b11 + b12);

P11 := (a12) ∗ (b21);
c11 = (P04 + P11);

c12 = (−P06 + P09);

c13 = (P02− P03− P06− P07);
c21 = (P01 + P02− P05− P06− P10);
c22 = (P01 + P02− P05− P06− P08);
c23 = (P01 + P02− P06− P07);
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Initially, only 117 out of 144 equations were also true over Z/4Z. Applying the

above heuristic lifting technique, we have lifted all solutions over Z/4Z. The solution

was also true for an arbitrary ring. Then, we have obtained the corresponding Brent

Equations for 10 multiplications (144 equations in 160 unknowns). The output of the

SAT-solver was UNSAT, implying that there is no solution. Hence, 11 multiplications

is the minimum number of required multiplications.

Note: It is easy to see that, if the number of multiplications required to multiply

a m × p matrix A by a p × n matrix B is κ, then the same number of multiplications

is required to multiply (BT )(AT ) [73].

Theorem 10. Given two square matrices A,B ∈M(R, 3), where R an arbitrary non-

commutative ring, we can compute the product matrix C = A.B using at most 23

multiplications

Proof. An upper bound for solving this problem is 27 (naive algorithm). Firstly, we

consider the Brent Equations corresponding to 23 multiplications (729 equations in 621

unknowns). Then, we convert it to a SAT problem, which we solve using CryptoMiniSat

and we obtain the following solution following precisely the same methodology described

in the previous theorem.

P01 := (a23) ∗ (−b12 + b13 − b32 + b33);

P02 := (−a11 + a13 + a31 + a32) ∗ (b21 + b22);

P03 := (a13 + a23 − a33) ∗ (b31 + b32 − b33);
P04 := (−a11 + a13) ∗ (−b21 − b22 + b31);

P05 := (a11 − a13 + a33) ∗ (b31);
P06 := (−a21 + a23 + a31) ∗ (b12 − b13);
P07 := (−a31 − a32) ∗ (b22);
P08 := (a31) ∗ (b11 − b21);
P09 := (−a21 − a22 + a23) ∗ (b33);
P10 := (a11 + a21 − a31) ∗ (b11 + b12 + b33);

P11 := (−a12 − a22 + a32) ∗ (−b22 + b23);

P12 := (a33) ∗ (b32);
P13 := (a22) ∗ (b13 − b23);
P14 := (a21 + a22) ∗ (b13 + b33);

P15 := (a11) ∗ (−b11 + b21 − b31);
P16 := (a31) ∗ (b12 − b22);
P17 := (a12) ∗ (−b22 + b23 − b33);
P18 := (−a11 + a12 + a13 + a22 + a31) ∗ (b21 + b22 + b33);
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P19 := (−a11 + a22 + a31) ∗ (b13 + b21 + b33);

P20 := (−a12 + a21 + a22 − a23 − a33) ∗ (−b33);
P21 := (−a22 − a31) ∗ (b13 − b22);
P22 := (−a11 − a12 + a31 + a32) ∗ (b21);
P23 := (a11 + a23) ∗ (b12 − b13 − b31);

c11 = P02 + P04 + P07− P15− P22;
c12 = P01− P02 + P03 + P05− P07 + P09 + P12

+P18− P19− P20− P21 + P22 + P23;

c13 = −P02− P07 + P17 + P18− P19− P21 + P22;

c21 = P06 + P08 + P10− P14 + P15 + P19− P23;
c22 = −P01− P06 + P09 + P14 + P16 + P21;

c23 = P09− P13 + P14;

c31 = P02 + P04 + P05 + P07 + P08;

c32 = −P07 + P12 + P16;

c33 = −P07− P09 + P11− P13 + P17 + P20− P21;

A lot of research was carried out in order to multiply two 3 × 3 matrices using 23

multiplications. Even though we have obtained another solution using 23 multiplica-

tions, our achievement is still important as the solution obtained is not isomorphic to

the first solution found by Laderman [87]. This suggests that the space of solutions to

Laderman’s problem is probably larger than expected.

In a previous subsection, we have discussed a complete characterization of trans-

formations, which yield to isomorphic bilinear algorithms for the MM problem (cf.

Theorem 11). In Theorem 12 we prove that the solution found is not isomorphic to

Laderman’s solution.

Theorem 11. (Invariant for Equivalent Solutions)

All transformations described in Definition 44 leave the distribution of ranks of 3×r
matrices unchanged, except that these integers can be permuted.

Proof. See [76] for further analysis.

Theorem 12. The solution obtained above is not isomorphic to Laderman’s Solution

(Appendix A.2)

Proof. Laderman’s solution has exactly 6 matrices of rank 3 which occur in products

P1, P3, P6, P10, P11, P14.
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As proved in [76] in the space of solutions of this problem at most 1 matrix will

have rank 3. However, the above solution has exactly 2 matrices of rank 3 which occurs

in products P18 and P20. Thus the solutions are not isomorphic.

Despite the fact that our methodology involves complex encoding procedures of the

problem, when this encoding is completed successfully the only thing that does matter

is the number of CPUs available for running the SAT solver and more importantly the

quality of the SAT solver. A lot of research is carried every year on improving SAT

solvers’ performance.

6.4.3 Application of Our Method to CC problems

6.4.3.1 Bit-Slice Implementation: PRESENT S-box

We apply our methodology for optimizing the PRESENT S-box given by,

{12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2} [18].

Using our methodology, we have obtained that its MC is 4. Lemma 4 is a proof

of this bound based on SAT solvers. A similar result was obtained for AES S-box by

similar methodology [24].

Lemma 4. The Multiplicative Complexity of the PRESENT S-box is 4 (cf. Figure

6.4).

Proof. Initially, we encoded the problem using 3 AND gates and all the SAT solvers

we have tried output UNSAT. This could be converted to a formal proof that the MC

is at least 3. For 4 AND gates, our system outputs SAT and a solution.

Further optimization of the linear part (which is also optimal as we also obtained

UNSAT for smaller numbers) allowed us to minimize the number of XORs to the strict

minimum possible (proved by additional UNSAT results). As a result, we have obtained

an implementation of the PRESENT S-box with 25 gates in total: 4 AND, 20 XOR, 1

NOT.

A better result in terms of gate complexity can be achieved by observing that AND

gates and OR gates are affine equivalents since we have that OR(x, y) = AND(x +

1, y+1)+ 1. Thus, it is likely that if we implement certain AND gates with OR gates,

we might be able to reduce even more the overall complexity of the linear parts. We

try all possible 24 cases, where some AND gates are implemented with OR gates.
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Starting with the right optimization with MC=4 (as several such optimizations may

exist), we obtain the following implementation of the PRESENT S-box, which requires

only 14 gates total,

T1=X2^X1; T2=X1&T1; T3=X0^T2; Y3=X3^T3; T2=T1&T3; T1^=Y3;

T2^=X1; T4=X3|T2; Y2=T1^T4; T2^=~X3; Y0=Y2^T2; T2|=T1; Y1=T3^T2;

Figure 6.4: PRESENT S-box Best Known Implementation - Our bit-slice type

implementation of PRESENT S-box with 14 gates
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Remark 14. Applications: This implementation is used in a recent bit-slice imple-

mentation of PRESENT [6]. In addition we postulate that this implementation of the

PRESENT S-box is in certain sense optimal for DPA-protected hardware implementa-

tions with linear masking, as it minimizes the number of non-linear gates (there are

only 4 such gates). One method of protection against DPA is to randomize sensitive

data like internal states by XORing them with a randomly generated mask [104].

6.4.3.2 Multiplicative Complexity (MC): GOST S-boxes

In this section, we apply our automated methodology for constructing optimal circuit

representations of the 8 S-boxes S1-S8 of GOST block cipher with respect to their MC.

Lemma 5. The MC of each of the 8 S-boxes of GOST cipher as specified in OpenSSL

is equal to the values given in Table 6.1.

Table 6.1: MC of the 8 principal GOST S-Boxes

S-box Set S1 S2 S3 S4 S5 S6 S7 S8

TestParamSet 4 5 5 5 5 5 4 5

CryptoProParamSet 4 5 5 4 5 5 4 5

CryptoProParamSetA 5 4 5 4 4 4 5 5

CryptoProParamSetB 5 5 5 5 4 5 5 5

CryptoProParamSetC 5 5 5 5 5 5 5 5

CryptoProParamSetD 5 5 5 5 5 5 5 5

SberbankHashParamset 4 4 4 5 5 4 4 4

ISO 5 5 5 5 5 5 5 5

6.4.3.3 Optimization of CTC2 S-box

We applied same methodology for optimizing the S-box of CTC2 cipher. The S-box of

CTC2 cipher is {7, 6, 0, 4, 2, 5, 1, 3}.

Moreover, this S-box gives 14 fully quadratic equations with 22 terms of the type,

∑
αijxixj +

∑
βijyiyj +

∑
γijxiyj +

∑
δixi +

∑
ϵiyi + η = 0 (6.12)
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This S-box is a very good example, which can be used to illustrate the provable

optimal aspects of our methodology. Using the famous Berkeley’s software Logic Friday

we have obtained a circuit representation with 14 gates in total [105].

Since CTC2 is small enough, we achieved in obtaining optimal circuit representa-

tions (and proving that no better can be done) with respect to all circuit complexity

metrics we have introduced in the introductory section. The Lemmas below summarize

all the results, which can be found also in [42, 44].

Lemma 6. The MC of CTC S-box is 3 (we allow 3 AND gates and an unlimited

number of XOR gates, cf. Figure 6.5)

Figure 6.5: MC Optimization: CTC2 - Our provably optimal implementation of

CTC2 S-box with MC 3

Lemma 7. The Bitslice Gate Complexity (BGC) of CTC S-box is 8 (allowed gates are

XOR,OR,AND,NOT, cf. Figure 6.6)

Lemma 8. The Gate Complexity (GC) of CTC S-box is 6

(allowing XOR,OR,AND,NOT,NAND,NOR,NXOR, cf. Figure 6.7)

Lemma 9. The NAND Complexity (NC) of CTC S-box is 12 (only NAND gates and

constants, cf. Figure 6.8)
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Figure 6.6: Optimal BGC: CTC2 - Our provably optimal implementation of CTC2

S-box with Bitslice Gate Complexity 8

Figure 6.7: Optimal GC: CTC2 - Our provably optimal implementation of CTC2

S-box with Gate Complexity 6.

Figure 6.8: Optimal NAND: CTC2 - Our provably optimal implementation of CTC2

S-box with NAND Complexity 12
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6.4.3.4 The Majority Function

We also apply our methodology to obtain circuits of optimal MC for the circuit repre-

sentation of the majority function on small number of inputs. The majority function is

of great interest and it is used in many cryptographic applications, such as electronic

voting. However, exact bounds on its MC are not known. Using our SAT-solver based

methodology we have been able to obtain optimal circuit representations with respect

to MC for the majority function with 3, 5 and 7 inputs.

The MC of majority function on 3 inputs was proven to be 1 using our methodology

(cf. Figure 6.9). Using same methodology as before, we solved the problem forMC = 1

in 5.0s.

Figure 6.9: Majority function on 3 inputs - Optimal circuit representation of a 3

input Majority function with 1 AND gate

For the case of majority function on 5 inputs, we have obtained that the optimal

value for MC is 3. We obtained SAT and the circuit representation shown in Figure

6.10 in 8.1s for MC = 3 and UNSAT for MC < 3.

Figure 6.10: Majority function on 5 inputs - Optimal circuit representation of a 5

input Majority function with 3 AND gate

Moreover, we have been able to obtain the optimal representation with respect to
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MC for the majority function on up to 7 inputs. The following circuit representation

illustrated in Figure 6.11 was obtained with a SAT solver in 16s.

Figure 6.11: Majority function on 7 inputs - Optimal circuit representation of a 7

input Majority function with 4 AND gate
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6.5 MC and Cryptanalysis

In general, more efficient circuit representations especially with respect to their MC

produce very compact algebraic representations, which are suitable in algebraic crypt-

analysis. Using our methodology, we can optimize and obtain optimal representations

for sufficiently small circuits. Based on this idea we are able to minimize the number

of non-linear gates in a whole cipher possibly to a proven lower bound. We apply our

methodology based on optimization of MC to encode GOST cipher, as follows:

1. We write all the equations in their Algebraic Normal Form (ANF).

2. For the S-boxes we use the representations obtained by our method which are

optimized with respect to MC. For the modular 232 addition we use the algebraic

description studied in Chapter 2.

3. For each input of each each multiplication (AND gate) we add one new variable.

All the other gates which are XORs and NORs their corresponding ANFs give

linear equations over F2.

4. The above steps result in a system of quadratic multivariate equations over F2

which describe the whole cipher.

Next we convert the above system of multivariate quadratic equations over F2 to a

CNF-SAT problem using the Courtois-Bard-Jefferson software [11]. Finally, we attempt

to solve this system using the well-known open-source SAT solver MiniSat 2.06 for

random choices of key and assuming some plaintext-ciphertext pairs are available. We

derived the key using MiniSat 2.06 all random instances we have tried in approximately

10 seconds on a modern CPU.

Remark 15. Being able to solve for the key for small number of rounds is very im-

portant since in many attacks there are always some steps which reduce the problem

of attacking the full cipher to a problem of attacking a reduced version of the same

cipher. Such reductions can be done for example using fixed points or reflection prop-

erties, depending on the structure of the Key Schedule of each algorithm. This idea is

summarized in [34] and called “Algebraic Complexity Reduction”.
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Based on our optimization techniques the following facts were obtained and found

in (Table 1, page 25, [34]) and [37, 38].

Fact 1. Given 2 plaintext-ciphertext pairs for 4 rounds of GOST, we can recover the

128-bit key in time equivalent to 224 GOST encryptions and with very limited memory

requirements.

Similarly, using the guess-then-determine strategy the following result is obtained

by Courtois, which works also for random sets of S-boxes [34].

Fact 2. Given 3 plaintext-ciphertext pairs for 6 rounds of GOST, we can recover the

192-bit key in time equivalent to 256 GOST encryptions and with very limited memory

requirements.

The hard problem in such strategies is to determine which bits to guess. Bits which

are repeated frequently are preferred as they lead to substantial improvements in the

resulting system. For example, in DES, the best choice is to fix the first 20 variables

and determine the others [39]. This is because such variables repeat quite uniformly at

random inside the algorithm.

As we have mentioned, algebraic attacks are based on solving for the key a large

sparse system of multivariate equations using only a few plaintext-ciphertext pairs. At

the moment, there is no algebraic attack that can break a full cipher directly. In this

section we have (heuristically) observed that MC reductions could speed up algebraic

attacks and might be able to increase the number of rounds we can break. However,

we do not have strong evidence that this hold in general and it is a speculation arising

from our experimentation with algebraic attacks using MC reduction as preprocessing

and applied particularly to GOST block cipher.
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7

Differential Cryptanalysis and

Gaussian Distributions

In cryptography, we often study the problem of distinguishing distributions. One distri-

bution that describes the number of certain events which occur at random and another

that describes the same variable but due to propagation inside the cipher. In this sec-

tion, we study this hypothesis testing problem applied to DC. The observed variable is

the expected number of pairs which have a particular output difference in a set ∆Y

after some number of rounds, given that they satisfy some input difference in a set ∆X.

This can be realized as a hypothesis testing problem. Suppose that a source is used

to generate independent random samples in some given finite set with some distribution

P, which is either P = P0 or P = P1. The task of the attacker (or the distinguisher) is to

determine which one is most likely the one which was used to generate the sample. Thus,

we either have a null hypothesis H0 : P = P0 or an alternative hypothesis H1 : P = P1.

.

7.1 Gaussian Distributions as a Tool in Cryptanalysis

Let Rk : Fn
2 → Fn

2 denote the round function of an iterated block cipher with round-key

k. We assume that each round key k is applied via the group operation ⊗ at the input

of each round. Additionally, suppose that a block cipher EK : Fn
2 → Fn

2 consists of r

iterations of the round function Rk, where K = (k0, k1, ..., kr−1) is the vector consisting

of all round keys. Then, the functional decomposition of EK is given by

137



7. DIFFERENTIAL CRYPTANALYSIS AND GAUSSIAN
DISTRIBUTIONS

EK(x) = Rkr−1 ◦Rkr−1 ◦ · · · ◦Rk0(x).

For a fixed choice of K, an input difference α ∈ A (where A is a set of size |A|) and
an output difference β ∈ B (where B is a set of size |B|), the probability PEK

(A,B) of

a differential of the form (α ∈ A)→ (β ∈ B) is defined by,

PEK
(A,B) = 1

|A|
∑

α∈A P (EK(x)⊕ EK(x⊕ α) ∈ B).

for randomly uniformly chosen x.

Given N pairs of inputs (xi, x
′
i) such that their difference lies in the set A, we

denote as E
(N)
EK

(A,B) the number of pairs following the given differential of the form

(α ∈ A)→ (β ∈ B).

The expected value of E
(N)
EK

(A,B) is N.PEK
(A,B) and we are interested in the

distribution of E
(N)
EK

(A,B). In the rest of this section we use N to be 2n−1× |A|, where
n is the block size of the cipher of our interest and |A| is the size of the set of input

differences. Note that for |A| > 2 this corresponds to all possible samples for a given

key.

Computing this probability over the right key is not feasible as the key is unknown

during the attack. However, as we have already mentioned in Chapter 3, if the output

difference in round r only depends on the output difference one round before and not

on the individual inputs xi, x
′
i, then the cipher is said to have the Markov property and

the average value of

P̃EK
(A,B)

over all possible keys is given by

P̃E(A,B) = 1
#K

∑
K(PEK

(A,B))

According to hypothesis of stochastic equivalence [88, 7, 86], we have

PEK
(A,B) = P̃E(A,B)

for almost all keys K and hence the expected number of E
(N)
EK

(A,B) is given by

N.P̃E(A,B). This simplifies our model a lot, since in an attack we do not know the

key but according to this assumption we can compute the expected number of events

by computing it on average over all the keys.
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For our purpose, we are interested in the distribution of E
(N)
EK

(A,B). This was

analyzed in [57, 7] and it turns out that considering E
(N)
EK

(A,B) as the result of N

independent Bernoulli trials with success probability P̃E(A,B) is a reasonable approx-

imation for the distribution of E
(N)
EK

(A,B) .

Assumption 2. (cf. Theorem 14 in [57])

The random variable E
(N)
EK

(A,B) follows a Binomial distribution B(N, P̃E(A,B)),

that is

P
(
E
(N)
EK

(A,B) = c
)
=

(
N

c

)
P̃E(A,B)c

(
1− P̃E(A,B)

)N−c

for a fixed value c and over random keys K.

On the other hand, according to the wrong-key randomization hypothesis (cf. As-

sumption 3), for a wrong-key guess we expect the variable E
(N)
EK

(A,B) to be distributed

as follows.

Assumption 3. (Wrong-Key Randomization Hypothesis)

For K ′ ̸= K

E
(N)
EK′ (α, β) ∼ B(N, q),

where q a constant probability depending on the size of the input and output sets of

differences and K is the right key.

In standard DC, we assume that the counter follows the distribution B(N, p) for

the right key, while it follows the distribution B(N, q) for the wrong keys. The aim is

to distinguish these two distributions.

Moreover, if the term Np is large enough, then a Binomial distribution given by

B(N, p) can be approximated by a Poisson distribution Pois(λ), with mean and vari-

ance equal to λ, where λ = Np. A rule of thumb for such approximation is that N ≥ 20

and p ≤ 2−4.3 or N ≥ 100 and Np ≤ 10 [98]. Thus, Poisson distribution turns out to

be a good approximation to the distribution of the number of events of our interest.

Considering n independent observations Xi = E
(N)
EK

(A,B) ∼ Pois(λ), the sample

mean

Sn =
X1 +X2 + ...+Xn

n
(7.1)

has (approximately) Gaussian Distribution due to Central Limit Theorem (CLT) (cf.

Theorem 13) given by N(λ, λ).
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Theorem 13. (Central Limit Theorem)

Let {X1, .., Xn} a sequence of independent and identically distributed random vari-

ables sampled randomly from distributions of expected values µ and finite variances σ2.

Let Sn = X1+..+Xn
n . Then, the following limit holds,

limn→∞ P (
√
n.(Sn − µ) ≤ σ.x) = Φ(x),

where Φ(x) is the probability that a standard normal variable is less than x

This theorem is very useful in cryptanalysis as we will see in the next section.

7.2 Distinguishers in Differential Cryptanalysis

Let R andW denote two random variables with expected mean and variance (E(R), V (R))

and (E(W ), V (W )) respectively which are described by Gaussian distributions.

In DC, we assume that R is the expected number of specific events that occur for

the cipher that we study, while W is the expected number of such events in case of

a random permutation. We assume that the right key value corresponds to R and if

the key is wrong then the variable of the number of events has distribution according

to W. The validity of this assumption is not granted, however it is a very common

assumption in cryptography. In the rest of this section, given independent samples

either from distribution W or R, we study the following hypothesis testing problem.

H0 : P = W

H1 : P = R,

where W corresponds to the wrong key and R to the right key. The probability density

function of W is given by

fW(x) =
1√

2πV ar(W )
exp

− 1
2V ar(W )

(x−E(W ))2
(7.2)

Figure 7.1 represents the probability distributions of the two Gaussian distributions,

one corresponding to the wrong key and one corresponding to the right key. The

variable x denotes the number of pairs satisfying a given differential. In our statistical

hypothesis we set a threshold E(R) and we make conclusions based on the distance

of the observed variable from this mean. If x exceeds E(R) then we assume that the
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sample data we observe corresponds to the Gaussian distribution which corresponds to

the right key. However, there is a probability that we reject H0, while it is actually

true (Type I error, red-shaded region Figure 7.1). In our applications this means

accepting a wrong key as correct and this probability is given by,

P (W ≥ E(R)) =
∫∞
E(R) fW(x)dx = 1

2(1− erf(
E(R)−E(W )√

2V ar(W )
)),

where erf(x) is the Gaussian error function given by erf(x) = 2√
π

∫ x
0 exp−t2 dt.

Figure 7.1: Computation of Advantage - Red-Shaded area represents the probability

of Type I error

Moreover, there is also the possibility of accepting H0, while it is false (Type II error)

and this corresponds to right key rejection. This is fixed to 1
2 as we see from Figure

7.1. We apply this methodology to mount attacks against the full GOST cipher which

we describe in the following chapters.
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8

Cryptanalysis of GOST Block

Cipher

GOST is a block cipher that encrypts 64-bit blocks using a 256-bit secret key. In

spite of considerable cryptanalytic effort over the past 20 years, no key recovery attack

against the full cipher (faster than brute-force) was discovered, without any additional

key assumptions and relaxations such as related keys.

Moreover, its small block size and the very simple key schedule influence the size

of the required circuit size and thus make it suitable to be implemented even in very

small devices. As a result of these, GOST became an Internet standard implemented

in many libraries and it was submitted to ISO 18033-3 to be an international standard.

Immediately after the submission, many attacks were discovered [75, 35]. In the

following chapters, we describe advanced differential attacks against many variants of

GOST. Our attacks are truncated differential attacks of Depth-First search style based

on the construction of a statistical distinguisher. In this chapter, we describe a method-

ology for the construction of distinguishers based on our notion of general open sets

[50]. These sets can be seen as a refinement of Knudsen’s truncated differentials and

are based on the connections between S-boxes from round to round in GOST. The

exploration of this space yields differentials that propagate with sufficiently good prob-

ability and can be composed efficiently resulting in the construction of distinguishers

with sufficiently large advantage.
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8.1 Brute-Force Attack on 256-bit GOST Keys

Brute-force attack is a non-trivial attack when the length of the key exceeds the size of

the block since many false positives are expected when trying to recover the key. For

example in GOST, given one (P,C) pair, we expect that 2256−64 = 2192 keys (out of

the total 2256) will satisfy Ek(P ) = C. We can apply brute-force attack in GOST using

the Depth-First search approach as follows.

Given a pair (P1, C1), we start testing keys k ∈ K if they satisfy Ek(P1) = C1.

During this stage, we discard a key k if it does not satisfy this relation and try a different

key, otherwise we keep testing the same key k by requesting a new pair (P2, C2). Given

this new pair, we check again if k satisfies Ek(P2) = C2. If the answer is positive we

request another distinct pair, otherwise we discard it and go again to the first stage

of the attack. The first pair will reduce the space to 2192 possible key candidates, the

second one to 2128 and the third one to 264. Using the first pair, we expect that we will

go through 2255 encryptions on average, then with the second pair we will go through

2127 encryptions on average and finally with the third one we will go through 263 on

average. Finally, a fourth pair is used to determine the key. Figure 8.1 illustrates this

technique.

Figure 8.1: Brute Force Attack on GOST - Exhaustive-search against GOST

The expected (average) for the total time complexity in terms of GOST encryptions

is given by 2255 + 2191 + 2127 + 263 + 1 ≃ 2255.
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8.2 Existing Attacks on Full GOST

Gabidulin et al were the first to conduct a basic assessment of the security of GOST

against linear and differential cryptanalysis [114, 115]. As they claim, 5 rounds are

sufficient to secure GOST against LC at the security level of 2256, while only 6 are

enough even if the S-boxes are replaced by the Identity map. Additionally, they claim

that 7 rounds are sufficient for a 128-bit security level against naive DC.

Before the submission to ISO, no attack which was disputing the 256-bit level

security was known. In the same year of the submission, many attacks faster than

brute force were developed; we now have reflection attacks, attacks based on double

reflections, related-key attacks and advanced differential attacks [111, 62, 48, 35, 34, 36].

Ten years earlier, the Japanese researchers Seki and Kaneko developed an attack

on 13 rounds of GOST using 251 chosen plaintexts based on truncated differentials

[111]. The notion of truncated differentials (partitioning type) allows us to reduce the

influence of the round keys on the transitional probabilities and it thus simplifies a

lot the analysis. In the same paper, they have proved that naive DC always fails in

GOST. This is because propagation of single differences for one round occurs with very

low probability for the majority of the keys and as the number of rounds increases we

expect this probability to vanish for most keys.

Isobe presented at FSE 2011 the first single-key attack against the full 32 rounds by

developing a new attack framework called Reflection-Meet-in-the-Middle (RMITM) at-

tack [75]. His method combines techniques of the reflection and the Meet-in-the-Middle

attack in an optimized way. This attack has time complexity 2225 GOST encryptions

and requires 232 known plaintexts.

In parallel, many other attacks based on different frameworks were developed. Cour-

tois presented attacks based on the notion of algebraic complexity reduction, which al-

lows one to reduce the problem of attacking the full cipher to a problem of attacking

a reduced version of the same cipher [34]. This reduction takes into account many

algebraic and structural properties of the cipher, such as the weak key schedule and

the poor diffusion for limited number of rounds. It makes use of software such as SAT

solvers at the final solving stage for solving for they key a system that describes a

reduced version of the cipher [35, 34, 47].
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In addition, advanced differential attacks were developed and successfully applied

against the full block cipher. The first differential attack against full 32-rounds of

GOST was developed by Courtois and Misztal [46]. The most complex task involved

in this attack is the construction of a 20-round distinguisher. By the same year, an

improved differential attack with complexity 2179 GOST encryptions was presented by

Courtois [36].

Furthermore, Courtois studied the multiple-key scenario, where (P,C) pairs from

randomly selected keys are available. This scenario is very realistic, as in real-life

applications we expect encryptions with random keys rather than a fixed key. He

proved that one such key can be revealed in approximately 2101 encryptions, provided

that approximately 232 pairs are available for each key.

Table 8.1 summarizes the state-of-art regarding cryptanalysis of full GOST for both

single and multiple key scenarios. The reference point for the time complexity is the

number of GOST encryptions required.

Table 8.1: State-of-art in cryptanalysis of GOST

Author Type Time Data Scenario

Isobe [75] RMITM 2224 264 single key

Dinur et al [62] 2DMITM,Fixed Points 2192 264 single key

Courtois [34] 2DMITM,Fixed Points 2191 264 single key

Courtois [36] Differential 2179 264 single key

Kara et al [79] 2DMITM 2130 264 mutiple key

Courtois [34] Algebraic-Differential 2101 232 per key mutiple key

All the attacks presented so far are based on the most popular implementation

of GOST, which uses the set of S-boxes GostR3411-94-TestParamSet. There was no

attempt so far to find an attack against any other variant of GOST and no attempt to

provide a general methodology which would work in all cases. The first who introduced

such a method are Courtois and Mourouzis [50]. They introduced the fundamental

notion of general open sets, which are special forms of sets of differentials dictated by

the structure of GOST. This notion allows one to explore efficiently this space and

obtain surprisingly good truncated differential properties which can be used in some
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cases to mount differential attacks against the full cipher. We introduce this notion in

the next section.

8.3 General Open Sets

In this section, we introduce a new type of sets of differences, which we name general

open sets. They can be seen as a refinement of Knudsen’s truncated differentials [84].

The main difficulty in attacks using truncated differentials is the exploration of the

exponentially large space of possible sets of differences and how to discover interesting

truncated differential properties.

However, if we consider special sets which are dictated by the structure of the

encryption algorithm that might allows us to explore this subspace and discover inter-

esting properties. We follow this idea in the case of GOST and we consider some special

sets, which we name general open sets (cf. Definition 49). These sets are constructed

based on the connections between the S-boxes from round to round.

Definition 49. (General Open Sets, [50])

We define a General Open Set X as a set of differences on 64 bits with additional

constraints as follows. A General Open Set is represented by a string Q of 16 characters

on the alphabet {0, 7, 8, F} in the following way:

1. Differences in X are “under” Q, by which we mean that for all x ∈ X Sup(x) ⊆
Sup(Q), where Sup(x) is the set of bits at 1 in x, Sup(x) ⊂ {0, 1, ...., 63}.

2. In each of the up to 16 non-zero characters in string Q which may be any of

7,8,F, there is at least one “active” bit at 1 in x for all x ∈ X.

3. In the case of F the most significant bit is always active for each x ∈ X and for

each position in Q which is at F .

The main reason why we have this very special alphabet {0, 7, 8, F} is the internal

connections of the GOST cipher and in particular the 11-bit rotation to the left after the

substitution layer. Informally, we can say that we group together bits which are likely

to be flipped together. F is used to make the sets disjoint such that each difference x

belongs to only one general open set.

Given a general open set represented by the string Q, we define the closure of this

set as in Definition 50.
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Definition 50. (Closure of Differential Sets )

The closure of a differential set Q is denoted by [Q] and it is the set that contains

all the differences that are under the string Q with the only rule to exclude the zero

difference on the 64 bits. A set P such that P = [Q] will be called a closed set.

Remark 16. It is possible to see that closed sets corresponds to truncated differentials

as defined by Knudsen and open sets corresponds to a particular way of partitioning

truncated differential sets (or closed sets which we have defined in Definition 50)

Consider the general open set represented by 8070070080700700. Then, this sets

contains in total (23−1)4. The closure of Q, denoted by [Q], contains 214−1 elements.

This is because due to Definitions 49 and 50, in general open set 8 can be only 1000

and 7 any difference in the set {0111, 0100, 0010, 0001, 0110, 0101, 0011}, while in case

of a closed set 8 can be any element in the set {0000, 1000} and the character 7 can be

any element in the set {0000, 0111, 0100, 0010, 0001, 0110, 0101, 0011} provided that the

zero difference on 64-bits is excluded.

For example, in Figure 8.2, we illustrate the connections for the study of truncated

differential or closed set [8070070080700700]. We observe that the 3 least significant

bits from S3 are entering S6 and this is denoted by 7 in the differential, while the most

significant bit from S6 is entering S8 and this is denoted by 8.

Figure 8.2: S-boxes Connections in GOST cipher - Connections between S-boxes

for the study of the truncated differential [8070070080700700]

It is a non-trivial task to define such sets in general since some heuristics suggested

by the structure of the algorithm need to be discovered. Note that the same idea can be

applied to any cipher. In the next section, we study the diffusion inside GOST aiming

to illustrate that in particular for the first 8 rounds the diffusion is really poor.
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8.3.1 Propagation of Differentials

In this subsection, we study diffusion in GOST up to 8 rounds. In particular, we study

propagation of two different sets of differences. Firstly, we study the propagation of a

one-bit difference of the form 8000000000000000 and then we study the propagation of

a closed set with 14 active bits of the form [8070070080700700]. The aim is to show

that in GOST we have very poor diffusion, especially in the first 8 rounds and that

differences lie in some specific sets with a very high probability. In our simulations we

used the most popular version of GOST, which uses the set of S-boxes “GostR3411-94-

TestParamSet”.

Remark 17. In case of the special set [8070070080700700] (cf. Definition 50), we

denote it for abbreviation as [877877] and we consider all 26 − 1 underlying general

open sets which are explicitly enumerated in Figure 8.3. For example, 870877 or also

denoted as 87 877 in one subset of the closed set which is general open set.

In order to compute the probability of a transition we use the simple Algorithm

11. We assume that the distribution of the number of events of our interest follows

(approximately) a Poisson distribution (cf. Chapter 7). We use this distribution as we

have experimentally observed that for all cases we have tried,

• We have a discrete distribution of small integers

• In all cases we have tried and are included in this thesis the variance is relatively

close to the mean.

Thus, for a sample of size N if x denotes the number of events that were observed

(approximated by Poisson with parameter Poisson mean Np where p is the true mean),

then the approximated Standard Deviation (SD’) of the variable x
N , where N is assumed

to be constant and p′ the observed mean, is given by
√
Np′

N =
√

p′

N . This is because the

variance equals to the mean in case of a Poisson distribution.

Denote by p′ the approximated mean, then SD′ =
√

p′

N . Then, for example with

about 99% confidence interval, the true mean is within ±3.
√

p′

N of the observed mean.

Let I1 be the interval [p′ − t
√

p′

N , p
′ + t

√
p′

N ]. In our simulations we would like this

interval I1 to be contained in the interval I2 = [p′.2−a, p′.2a], where a is an error we

allow in the exponent of the mean as a power of 2.

We assume that the true mean that we are aiming to approximate by simulations is

bigger than some probability value p0 (for example like 2−26.0) in order to ensure that
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Algorithm 11 terminates in reasonable time. The inclusion of sets I1 ⊆ I2 implies that

we need to run about N > N0 simulations, where N0 is given by

N0 =

(
(2a)t

(2a − 1)

)2

.
1

p0
(8.1)

in order to compute an approximated mean with the desired precision. For smaller

values of probabilities we need to use different values for parameters a, t such that it is

computationally feasible to run beyond this bound. Most of the later results which are

less than approximately 2−26.0 are inexact results and were taken by setting a = 0.3 and

t = 5 in most cases.

On an Intel i7 1.73 GHz PC with 4.00 GB RAM computer, we can run around 222

full GOST encryptions per second per CPU. For probabilities above 2−26.0 we set t = 3

and a = 0.1, while for smaller probabilities we allow a to be around 0.3 or even higher

and it thus the results are inexact. In Table 8.2 we present the time taken to compute

some probabilities that are presented in this thesis with some precision a = 0.1 and

t = 3.

Table 8.2: Time taken to compute the mean of a Poisson process for a = 1

Probability Number of Rounds Time Taken

2−13.8 4 2 seconds

2−16.5 6 15 seconds

2−24.0 8 2.3 hours

2−24.0 10 2.8 hours

2−25.0 8 2.3 hours

2−25.0 10 2.8 hours
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Algorithm 11 Measuring the limit of a transitional probability up to some precision

Input: Sets of differences A,B, r the number of rounds

1. Initiate counter T and set it at 0

2. Let N be a large integer (around N0 is the bound derived before)

3. For all 1 ≤ i ≤ N , Do

3a. Randomly generate a plaintext Pi and a key Ki

3b. Select at random a single difference α ∈ A
3c. Compute P ′

i = Pi ⊕ α
3d. Compute Ci, C

′
i, the encryptions of Pi, P

′
i after r rounds

3e. If Ci ⊕ C ′
i ∈ B increase T by 1

4. Return − log2(T/N)

8.3.1.1 Case Study A: 8000000000000000

We study the propagation of the 1-bit input difference 8000000000000000 over the first

8 rounds. We compute by simulations the probability of the output difference to lie

in some general open sets within the closed set [8070070080700700]. This closed set

contains 26 − 1 disjoint general open sets, excluding the zero differential.

Using computer simulations we have computed the probability of a transition with

input difference 8000000000000000 and an output difference in any of the 64-1 disjoint

open sets over random plaintexts and keys. The 64-1 boxes in Figure 8.3 represent the

64-1 non-empty disjoint classes and the way they are ordered is not for any particular

reason. The width of each box is proportional to the probability (using a logarithmic

scale) for the output differential to lie within a specific general open set.

From Figure 8.3 we observe that the output difference of the resulting encrypted

plaintexts after 1 round is 00000000800000000 with probability 1. This, allows to gain

one round in an attack, as we know exactly the previous state. For the first 5 rounds,

we observe that the diffusion is very poor since the output difference is still contained

within the set [8070070080700700] with very high probability.

However, after 8 rounds the diffusion is improved and the probability distribution of

the output differences will tend to a uniform distribution. From Figure 8.4 and Table

8.4, we observe that the entropy of the distribution of the output difference is initially

low as expected for small number of rounds and then it increases reaching the value of

12.31 (approximately) after 7 rounds. However, for 8 rounds and more we expect the

entropy to be close to 14 as the number of active bits in the truncated differential we

study.
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Figure 8.3: Propagation in GOST - Propagation of 8000000000000000 for 1R-4R
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Table 8.3: Entropy’s estimation after 7 rounds in GOST

Round Entropy

0 0.0

1 0.0

2 2.81

3 5.61

4 5.72

5 8.19

6 10.92

7 12.31

Figure 8.4: Graph of Entropy for GOST - The entropy of the distribution of the

output difference with input difference 8000000000000000 against first 7 rounds of GOST

[50] (cf. Table 8.4)

8.3.1.2 Case Study B: [8070070080700700]

We study the propagation of the closed set [8070070080700700] through different number

of rounds of GOST. As before, we are interested in output differences which lie within

the mask of the truncated differential [8070070080700700]. In Figure 8.5, 8.6 and 8.7,

we illustrate the propagation of this difference after 1,4 and 8 rounds respectively.
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Figure 8.5: Study of Propagation in GOST(1R) - Propagation of [8070070080700700]

after 1R of GOST with GostR3411-94-TestParamSet set of S-boxes

In this case, diffusion is much stronger even after 4 rounds of GOST as expected.

After 8 rounds, we have that all the differences which lie in [8070070080700700] are

uniformly distributed as expected (Figure 8.7).

154



8.4 Truncated Differentials and Markov Ciphers

Figure 8.6: Study of Propagation in GOST (4R) - Propagation of

[8070070080700700] after 4R of GOST with GostR3411-94-TestParamSet set of S-boxes

8.4 Truncated Differentials and Markov Ciphers

The insertion of the round-key via modulo 232 addition, makes GOST deviate from

the classical notion of Markov ciphers. The study of propagation of differences in a

non-Markov cipher is much more complex and difficult, since there are no adequate

mathematical methods accounting for the structure of such ciphers.

Additionally, the hypothesis of stochastic equivalence does not hold in a non-Markov

cipher and what we really aim to do is to consider DC in special sets of differences such

that Markov cipher theory is directly applied and give sufficiently good results up to a

small margin of error. This is very important from a cryptanalytic point of view. As

we will see GOST behaves approximately as a Markov cipher if we consider particular

sets of differences. To recall, an iterated block cipher with round function Y = f(X,Z)

is a Markov cipher if

PZ(∆Y = β|∆X = α,X = x0) (8.2)

is independent of x0 for all choices α, β ̸= e, where Z is the key space.

In Theorem 15 we prove that GOST is not a Markov cipher. Actually this is due
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Figure 8.7: Study of Propagation in GOST (8R) - Propagation of

[8070070080700700] after 8R of GOST with GostR3411-94-TestParamSet set of S-boxes
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to the modular 232 addition in the round function, which makes the propagation of

differences to be dependent on the values of the sub-key (cf. Theorem 14).

Theorem 14. GOST is a Markov cipher with respect to bitwise XOR operation ⊕ if

the modulo 232 addition � is replaced by the bitwise XOR operation ⊕

Proof. Let P,C ∈ {0, 1}64 and K ∈ {0, 1}256 denote the plaintext, the ciphertext and

the key space respectively.

Fix X ∈ P and consider x, x′ ∈ P such that x ⊕ x′ = X. As shown in Figure 8.8

the first operation involved is a bitwise XOR of x and x′ with the round 32-bit sub-key

k. The difference X = x⊕ x′ is mapped to Z = (x⊕ k)⊕ (x′ ⊕ k) = x⊕ x′ and thus is

independent of the sub-key k.

Suppose that there exist exactly N pairs {(zi, z′i)}1≤i≤N , such that S(zi)⊕S(z′i) = Y

with zi ⊕ z′i = X, where S the substitution layer as shown in Figure 8.8.

Figure 8.8: Modified GOST - Modified round function in GOST

For a fixed pair (x, x′) with x ⊕ x′ = X we can find a unique key k such that

x⊕ k = zi for each i ∈ {1, .., N} and x′ ⊕ k = z′i.

By construction S(zi) ⊕ S(z′i) = Y . Thus, for a fixed pair of inputs (x, x′) with

x ⊕ x′ = X, we can find exactly N keys such that the output difference is Y . Thus,

modified GOST is a Markov cipher with respect to bitwise XOR.
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Theorem 15. GOST is not a Markov cipher

Proof. (Sketch of Proof) The main reason is the key insertion via modulo addition 232.

The number of non-zero components of the difference at the input of the key adder is

not equal to the number of non-zero components of the difference at the output of the

key adder in the case of modular addition. More details about this proof can be found

in [8].

In addition, we present below some heuristic evidence by computer simulations that

GOST is not a Markov cipher. During our experimentations, we have computed many

specific counterexamples to show that GOST is NOT a Markov cipher. We provide

counterexamples for the GOST cipher which uses the set of S-boxes “GostR3411-94-

TestParamSet”.

Using simulations we have obtained the following probability after 1 round of the

following transition

P (∆Y ∈ [8070070080700700]|∆X ∈ [8070070080700700]) = 2−3.73.

However, we have computed the same transition but for fixed plaintexts and we have

obtained that

P (∆Y ∈ [8070070080700700]|∆X ∈ [8070070080700700], X = X0)

is not exactly equal to 2−3.73 for different choices of X0. We present two such

examples below,

• For X0 = 000031A90F4A3312, we get 2−3.61

• For X ′
0 = 0000001000000010, we get 2−3.89.

On one hand, we proved that GOST is not a Markov cipher. On the other hand,

it seems that the probabilities obtained over different plaintexts in case of truncated

differentials, even if they are not exactly equal, are very close. From these observations,

it seems that GOST exhibits some Markov structure and it is an ϵ-approximate Markov

cipher (cf. Definition 51). However, this is an observation due to simulations and it is

not formally proved.

Definition 51. (ϵ- approximate Markov cipher).

An iterated cipher round function Y = f(X,Z) is an ϵ- approximate Markov cipher

if there is a group operation ⊗ for defining differences, such that for all choices of α

(α ̸= e) and (β ̸= e) and subkey Z chosen uniformly at random, then for all γ we have,
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log2(PZ(∆Y = β|∆X = α,X = γ)) = (1 + ϵ). log2(PZ,X(∆Y = β|∆X = α)),

for some small constant ϵ

We have computed the probability for truncated differentials after one round of the

form

p = P (∆Y ∈ [8070070080700700]|∆X ∈ [8070070080700700], X = X0)

for some structure of plaintexts of the form X0 = (X0)L||(X0)R, where (X0)L is fixed

and (X0)R takes all possible 232 values. There is some evidence that this value is

bounded above and below by 2−3.6 and 2−3.9 respectively.

In particular, we have that |pmax− pmin| ≃ |2−3.6− 2−3.9| ≃ 2−6.01, where pmin and

pmax are the minimum and maximum probabilities obtained by computer simulations.

Hence, for this specific set of input-output differences, we expect GOST to behave like

a Markov cipher with a margin of error only about approximately 2−7. In the next

chapter, we are going to introduce a heuristic black-box discovery method for finding

transitions in GOST which hold with sufficiently high probability.
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8.5 A Discovery Method for Finding Differential Proper-

ties

Algorithm 12 describes a heuristic methodology for the discovery of good sets of differ-

entials in GOST. This algorithm can be used to obtain sufficiently good characteristics,

which can be composed efficiently for constructing a distinguisher.

We do not claim that it outputs the best possible transitions that can be found within

the space of differentials of our interest. However, the results obtained are sufficiently

good for cryptanalytic purposes. All the steps are based on ad-hoc heuristics we have

discovered during our analysis. It is an evolutionary black-box algorithm.

Algorithm 12 Heuristic Black-Box Discovery Algorithm for Transitions [52, 51]

Input: Random number X, 1 ≤ X ≤ 64 (Number of active bits)

1. Select at random a set of X bits from a 64-bit vector

2. Consider all plaintexts P with corresponding 64−X bits fixed to 0 or 1

3. Repeat the following computation for at least 2 different numbers of rounds (e.g

8 and 12)

4. Check how many of the resulting ciphertexts share the same 64 − X bits by

encrypting the plaintexts with random keys.

5. Keep a population of some 1000 best sets (in terms of transitional probability)

and mix new sets of X bits generated with older sets of X in which we flip a few

bits.

In Step 1, we have (heuristically) discovered that suitable selections are 14 or 19

bits. However, as we will see in the end of this section we have some heuristic evidence

obtained by computer simulations that 14 bits is the optimal choice. Steps 2 and 3 are

based on the method called Structures by Biham and Shamir and it provides a quadratic

speedup in measuring the probability [16].

Step 3 is a heuristic which improves the transitional probabilities. It is used to

ensure that the transitional probability is not only good locally for some number of

rounds, but it is also good enough for more rounds.

For example, the truncated differential [7800007807070780] with uniform sampling

over all possible input differences, produces an element of the same differential set after

4 or 8 rounds with the following probabilities on average over all possible keys:

1. For 4 rounds of GOST with probability P4 = 2−13.8. This is NOT as good as

P4 = 2−13.6 for the previous set [8070070080700700], however for 8 rounds it will

be otherwise
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2. After 8 rounds of GOST we obtain probability P8 = 2−24.0 on average over

all possible keys which is strictly better than P8 = 2−25.0 for the previous set

[8070070080700700]

3. This however does NOT mean that it will be better for 10 rounds. In fact for 10

rounds we obtain less than 2−35 which is not as good as P10 = 2−31.0 with the

previous set [0x8070070080700700] (Note that the result is very inexact).

We see that discovery of interesting iterative invariant attacks on 8 rounds of GOST

cannot rely on heuristic combination of 8 = 4 + 4 rounds, and that our new result is

not very good for 4 rounds yet, now becomes the best ever found for 8 rounds which

however does NOT guarantee it is the best for 10 rounds. This justifies our black-box

methodology but also shows that it is difficult to find a solution which works for various

numbers of rounds.

Using this simple algorithm, we have obtained the following results (Table 8.4) which

appear also in [51, 52]. We observe that for each set of S-boxes we can find truncated

differentials which occur with very similar probability. This suggests that possible exten-

sions of attacks against full 32 rounds may be feasible for all versions of GOST using

similar ideas as in [36, 48].

Table 8.4: New invariant truncated differential attacks with sets of 19 bits and their

propagation probabilities for 8.

S-box Set Name Best Set S P (8R)[S]→ [S]

TestParamSet 78001078 07070780 2−24.9

CryptoProParamSet 08070780 78788030 2−24.4

CryptoProParamSetA 78780820 00070707 2−25.2

CryptoProParamSetB 80707820 07000787 2−25.9

CryptoProParamSetC 78780080 80070707 2−25.5

CryptoProParamSetD 84000787 70707800 2−25.4

SberbankHash 90000607 D4787800 2−24.9

ISO 18033-3 80000707 F0787800 2−23.8

GOST-P F0707000 07000707 2−27.0
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8.6 Towards Optimal Size for Truncated Differentials

Using computer simulations we have (heuristically) shown that sets of differences with

nearly 14 active bits give the best possible propagation for 8 rounds for at least two

variants of GOST which uses the S-boxes TestParamSet and CryptoProParamSetA. In

addition, a truncated differential of the same size is used later to break a simplified

version of GOST with S-boxes replaced by the Identity Map. It seems that for each

specific structure of a cipher there is an optimal size of truncated differentials property,

which can be used to extend to a full attack.

This is a very important result since among all possible sets we tried for constructing

a distinguisher and then extend to an attack, it seems that the choice of sets with 14

active bits is the best one. The results are presented in Figure 8.9 and Table 8.5.

Table 8.5: Best arbitrary invariant sets for some values of 9 ≤ a ≤ 24 bits for closed to

closed propagation for 8 rounds found by our discovery method.

S-box Set Name Size [S] P8R([S]→ [S])

TestParamSet 24 F0780780 F0070781 2−28.3

TestParamSet 21 78780000 F0070783 2−26.6

TestParamSet 19 78001078 07070780 2−24.9

TestParamSet 17 D0707000 80000787 2−23.7

TestParamSet 14 80707800 80000307 2−22.6

TestParamSet 12 80707800 80000007 2−22.8

TestParamSet 9 80700780 80000000 2−25.2

CryptoProParamSetA 24 F0770700 F0700708 2−31.0

CryptoProParamSetA 21 78780060 80070787 2−25.4

CryptoProParamSetA 19 78780820 00070707 2−25.2

CryptoProParamSetA 17 03070780 78008070 2−24.2

CryptoProParamSetA 14 70780000 80030780 2−23.8

CryptoProParamSetA 12 70780000 80080700 2−26.7

The curve illustrated in Figure 8.9 suggests that there exist truncated differentials

of optimal size which can be used in a possible attack against the full block cipher and

as we have discussed later this can lead to a new security notion against DC based on

truncated differentials.
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Figure 8.9: Sets of Bits vs Probability of Propagation - The variation of probability

of transition for different sizes of sets of active bits for two variants of GOST for 8 rounds

8.7 GOST S-boxes

DC since its invention is considered as a guide for the design of block ciphers and de-

signers concentrated on the establishment of criteria and design principles that make

ciphers resistant against DC. All optimal 4-bit to 4-bit S-boxes against linear and dif-

ferential cryptanalysis are known and classified up to affine equivalence [89].

There are in total 16 disjoint equivalence classes for 4-bit to 4-bit optimal S-boxes

with respect to affine equivalence. Following [89] we denote by Gi the representative of

i-th class out of 16 total classes and then for each variant of GOST we have computed

the equivalence class in which each S-box lies. Other notations in Table A.5 such as

Lu1 or 36 are purely conventional and have no other meaning than show that certain

S-boxes are Affine Equivalents of some other known S-boxes.

Using a simple constraint satisfaction algorithm as in [89] and then a SAT solver,

we have obtained the results shown on Table A.5 [52] (cf. Appendix A.3). From Table

A.5, we conclude that GOST designers followed exactly this design principles based

on optimality of S-boxes with respect to DC. We observe that most S-boxes in GOST

are affine equivalents of their own inverses. In addition, 9 out of 16 different class

representatives appear in our table, which gives us some insights about the designers of

GOST that they have followed precisely this theory about optimality of S-boxes.

163



8. CRYPTANALYSIS OF GOST BLOCK CIPHER

8.8 Construction of Reduced Round Distinguishers

A distinguisher is an algorithmic construction which allows us to distinguish a given

block cipher from a random permutation [72, 50]. The existence of a distinguisher

does not always imply that an attack is feasible against a cryptographic primitive since

such an extension is not straightforward. However, it means that the primitive is in

question weak and it is not sufficiently secure to be used for encryption of top classified

documents.

In this section, we describe a general methodology for the construction of efficient

distinguishers for reduced versions of GOST, which is based on propagations of well-

chosen general open sets and truncated differentials related to the variant of GOST we

study [50, 51, 52, 49].

This methodology is heuristic, in a sense that it does not prove that the best dis-

tinguisher is obtained. However, the results obtained are sufficiently good for mounting

attacks against full block cipher and the best we could find so far. Our construction al-

lows us to distinguish a 20-round version of GOST from a random permutation. Similar

construction has been found and successfully applied to obtain full differential attacks

in [47, 46, 36].

Our construction works as follows. Using the discovery method we obtain general

open sets X1, X2, ..., Xr which propagate with sufficiently high probability for m rounds

of GOST (cf. Figure 8.10). Then, we compute the cumulative probability of a transition

from any difference in {X1, X2, ..., Xr} to itself for the middle n−2m rounds. We select

Xi, Xj as the input and output differences, which maximize the cumulative probability

of the distinguisher.

The aim is to distinguish a reduced version of GOST from a random permutation on

64 bits. We exploit the propagation of differences to build such distinguisher. Firstly,

we study the statistical properties of a random permutation. For a random permutation

on 64 bits we compute the transitional probability Xi → Xj, where Xi and Xj are open

sets with sizes |Xi| and |Xj | respectively, as follows (cf. Lemma 10).

Lemma 10. (Random Permutation Property on 64 bits for sets)

Let P : {0, 1}64 → {0, 1}64 be a uniformly random permutation. Given all pairs

of inputs (Pi, Pj) with Pi ⊕ Pj ∈ Xi, where Xi is a set of non-zero differences, then

the average number of resulting pairs (P (Pi), P (Pj)) that satisfy P (Pi) ⊕ P (Pj) ∈ Xj,

denoted by Eref , where Xj is a set of non-zero differences, is given by,

Eref =
|Xi|.|Xj |

2
(8.3)

164



8.8 Construction of Reduced Round Distinguishers

Figure 8.10: Distinguisher Construction - General construction of a distinguisher

based on individual transitional probabilities of general open sets

Proof. For a random permutation P we have that every single combination of an input

differential on 64 bits, and of an output differential on 64 bits, is expected to occur

about 1
2 times on average.

We have in total 2127 pairs of inputs and about 2128 possible sets of two differentials.

In a pair of input output differences Xi,Xj we have |Xi|.|Xj | possibilities.
Overall, we expect to obtain 1

2 .|Xi|.|Xj | pairs of inputs (Pi, Pj) with Pi ⊕ Pj ∈ Xi

such that P (Pi)⊕ P (Pj) ∈ Xj .

In the rest of this section, we study the properties of the distinguishers of the form

shown in Figure 8.10 based on the notion of general open sets and their closure.

Lemma 11. (Size of General Open Set)

Let Xbe a general open set on the alphabet 0, 7, 8, F and let N7(X), NF (X) and

N8(X) denote the number of 7s, F s and 8s respectively. Then, the cardinality of X is

given by

|X| = 7N7(X)+NF (X)

Proof. If X contains either 0 or 8, then these entries do no alter its size since they are

fixed bytes to 0000 and 1000 respectively.

165



8. CRYPTANALYSIS OF GOST BLOCK CIPHER

The entries 7 and F correspond to bytes of the form 0x1x2x3 and 1x1x2x3 respec-

tively, such that not all x1, x2, x3 can be zero simultaneously. Thus, each byte of this

type corresponds to 23 − 1 = 7 different options.

The general open set consists of 16 bytes on the alphabet {0, 7, 8, F}, then it contains

precisely 7#(7′s)+#(F ′s) elements.

Lemma 12. (Size of the Closure of Closed Sets)

Given a general open set X on the alphabet 0, 7, 8, F . Then, the cardinality of its

closure set [X] is given by

|[X]| = 2N8(X).8N7(X).16NF (X) − 1

Proof. By definition of the closure of the set we allow all possible differences except

the zero difference. Thus, a byte 8 allows for 2 cases, a byte 7 allows for 8 cases and a

byte F allows for 16 cases.

Next we compute the number of expected pairs with this input and output difference

but only due to propagation inside the cipher. By the term propagation we mean also a

transition which also has the middle difference specified by the distinguisher.

Lemma 13. (Cumulative Probability of Distinguisher)

The expected number of pairs (Pi, Pj) with input difference in Xi which follow the

differential characteristic shown in Figure 8.10 is approximately given by:

Eij = 263.|Xi|.
∑
m,n

(P (Xi → Xm).P (Xm → Xn).P (Xn → Xj)) (8.4)

Proof. The expected number of pairs (Pi, Pj) with Pi ⊕ Pj in open set Xi is given by

264.|Xi|.12 . Any difference in the set Xi is mapped to any difference in Xj over random

key with probability,

pij =
∑

m′,n′(P (Xi → Xm′).P (Xm′ → Xn′).P (Xn′ → Xj))

Then, the expected number of output pairs is given by,

Eij = 263.|Xi|.pij (8.5)
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The aim of the distinguisher shown in Figure 8.10 is to distinguish the distribu-

tions of the number of pairs which have the input-output difference as specified by the

distinguisher (naturally) and the number of pairs which additionally have the middle

differences (propagation).

In the first case, we expect on average Eref pairs, while in the second case we expect

Ei,j + Eref − Einter pairs, where Einter is the number of pairs which occur naturally

but also have this middle difference property. If this number is non-negligible, then the

analysis becomes more complex. However, we can use middle difference which have the

property to make the two sets to be entirely disjoint. Due to our freedom in the selection

of middle sets we can assume that Einter is negligible and this argument is described in

details later.

Assuming that the sets are entirely disjoint, the distributions of the sample means

Eref and Ei,j +Eref can be approximated by Gaussian Distributions X ∼ N(Eref , Eref )

and Y ∼ N(Ei,j +Eref , Ei,j +Eref ) respectively. In our case, since we use intermediate

difference we can assume that the intersection of the two sets is negligible. The variance

in both cases equals the mean since we approximate the distributions of the variable of

number of pairs by Poisson distribution.

In Chapter 7, we have studied the problem of distinguishing two Gaussian Distri-

butions. We define the advantage of the distinguisher as a measure of expressing the

number of standard deviations that the mean of distribution X deviates from that of Y.

Definition 52. (Advantage of Distinguisher)

The advantage of a distinguisher A for distinguishing X ∼ N(µ1, σ
2
1) over Y ∼

N(µ2, σ
2
2) is given by

ADV =
(µ2 − µ1)

σ1
(8.6)

We know that by CLT the sample mean distribution will be approximately Gaussian

with mean equal to the variance. Thus, the advantage is given by
Ei,j√
Eref

. Then, we make

a standard hypothesis test as described in Chapter 7 to distinguish the two cases. We ap-

ply this methodology for constructing efficient distinguishers for three different versions

of GOST; GostR3411-94-TestParamSet, Gost28147-CryptoProParamSetA and GOST

ISO 1803-3.
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Theorem 16. (20-Round Distinguisher on GOSTR3411-94-TestParamSet)

8780070780707000

↓(10R)
[8070070080700700]

↓ (10R)
80707000087800707

is a 20 rounds distinguisher where [8070070080700700] is a closed set, and satisfies the

following properties,

1. If the 20 rounds are replaced by a random permutation, then out of the total of

277 pairs of plaintexts (Pi, Pj) such that Pi ⊕ Pj ∈ 8780070780707000, we expect

on average 227.1 to satisfy also the output difference at the end of the 20 rounds.

2. Among all input pairs with input difference in the set 8780070780707000, we ex-

pect on average 218.1+227.1 after 20 rounds to follow the differential characteristic

10+10 shown above.

3. The advantage of the distinguisher is 25.8 standard deviations

Proof. For a typical permutation on 64 bits (which does not have to be a random

permutation, it can be GOST with more rounds) out of total 277 plaintext pairs (Pi, Pj)

which satisfy the specified input difference, we expect on average 227.10 such pairs to

satisfy also the output difference after 20 rounds (cf. Lemma 10). The distribution

of the expected number of pairs which satisfy both input and output difference is

approximated by a Normal distribution N(227.10, 213.55).

For 20 rounds of GOST and for a given random key, we expect such pairs to occur

both by accident (naturally occurring as in a random permutation) and due to prop-

agation in GOST. This is because the length of the key is larger than the size of the

block.

Let X denote the distribution of expected number of pairs occurring naturally and

Z the distribution of expected number of pairs occurring due to propagation. By

computer simulations, we have obtained the probability of the following transition

8780070780707000→ [8070070080700700]

after 10 rounds of GOST and was found approximately equal to 2−29.4. That implies

that the mean of the distribution Z is 218.2.

In case of a random permutation, the expected number of pairs which have this

additional middle difference is 227.1−29.4−29.4 = 2−31.7 (no pairs in practise). Thus, this
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middle difference property can be seen as an artificial assumption which separates the

two sets.

Hence, the distribution Y = X+ Z has mean approximately 227.1 + 218.2. Thus, the

advantage of the distinguisher is given by 218.2

213.55
, which is approximately 25.8 standard

deviations.

Remark 18. If we set 227.1 + 218.2 as a threshold to accept the key as correct, then

the guess is correct with probability set at 1
2 . The probability of a false positive (Type I

error) is given by,

P (Y > 227.1 + 218.1) = 1
2(1− erf(

25.8√
2
)) ≃ 2−485

Theorem 17. (20-Round Distinguisher on GOST28147-CryptoProParamSetA )

0770070077777770

↓(10R)
[7007070070070700]

↓ (10R)
7777777007700700

is a 20 rounds distinguisher where [7007070070070700] is a closed set, and satisfies the

following properties,

1. If 20 rounds are replaced by a random permutation, we expect on average 255.1 to

satisfy both input-output differences after 20 rounds.

2. Among all input pairs with input difference in the set 0770070077777770, we ex-

pect on average 233.0+255.1 after 20 rounds to follow the differential characteristic

3. The advantage of the distinguisher is 42.2 standard deviations

Proof. For a typical permutation on 64 bits out of the total plaintext pairs (Pi, Pj)

with this input difference we expect 255.10 such pairs to satisfy also the desired out-

put difference (cf. Lemma 10). The distribution of the expected number of pairs is

approximated by a Normal distribution of the form N(255.10, 227.55).

We have computed the probability of transition

[7007070070070700]→ 7777777007700700
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and found to be approximately equal to 2−24.01 after 10 rounds.

Again the two sets are entirely disjoint for same reasons explained in the previous

theorem.

Thus, the distribution Y = X + Z has mean 255.10 + 233.0. The advantage of the

distinguisher is approximately 42.24 standard deviations and corresponds to Type I

error 2−1290.

Theorem 18. (20-Round Distinguisher on GOST ISO 18033-3)

8000070770700000

↓(6R)
[7078000070000700]

↓ (8R)
[7000070070780000]

↓ (6R)
7070000080000707

is a 20 rounds distinguisher where [7000070070780000] is a closed set, and satisfies the

following properties,

1. If 20 rounds are replaced by a random permutation, we expect on average 221.5 to

satisfy both input-output differences after 20 rounds.

2. Among all input pairs with input difference in the set 8000070770700000, we ex-

pect on average 215.9+221.5 after 20 rounds to follow the differential characteristic

3. The advantage of the distinguisher is 35.09 standard deviations

Proof. For a typical permutation on 64 bits, we have the distribution N(221.5, 210.75)

(cf. Lemma 10). By computer simulations we have obtained the following transitional

probabilities after 6 and 8 rounds respectively,

P ([7078000070000700]→ 8000070770700000) = 2−16.47

P ([7007070070070700]→ [7000070070780000]) = 2−27.20

Hence, out of the total 277 pairs with the input difference as specified in the 20-

round construction, we expect approximately 277−17.47−27.20−16.47 = 215.90 (The size of

the set 8000070770700000 is half the size of the set [7078000070000700] and thus we

can assume that the probability is halved in the reverse direction). Thus, the mean of

the distribution Z (due to propagation) is 215.90.
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In case of a random permutation, the expected number of pairs which have in ad-

dition this specific middle difference is 221.5−17.47−16.47 = 2−12.44 (no pairs in practise).

Thus, the distribution Y = X + Z has mean 215.90 + 221.50. The advantage of the

distinguisher is given by 215.90

210.75
, which is approximately 35.09 standard deviations and

this corresponds to Type I error 2−894.

8.9 Validation: Open to Open Transitions

The distinguishers presented in the previous section consist of combining transitions

from open to open set after 20 rounds, but with some middle differences which are closed

sets. We have re-done all the computations of transitional probabilities on entirely

general open sets and for different partitions of the 20 rounds and we have obtained in

all cases roughly about the same results. That implies that estimation based on closed

sets is reliable enough. Transitional probabilities based on open sets give more reliable

and robust results.

As a proof of concept, we include in the thesis a distinguisher on 20 rounds for

the GostR3411-94-TestParamSet, which is based entirely on general open sets and the

partition of the 20 rounds is of the form 6+4+4+6. The input and output of the 20R

distinguisher are 8780070780707000 and 8070700087800707 respectively.

In Table 8.6 some of the dominating paths inside the full construction are listed.

The probabilities described are all of the form 2−x (only −x is shown) and are ranked

in decreasing order. Note that in this construction the expected mean of the distribution

due to propagation is approximately 217.6 events and this number can be improved even

more in the future by running more simulations and aggregating the results. The sets

Oi and probabilities pj shown on Table 8.6 are associated with the following diagram.
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8780070780707000

↓ p0
O1

↓ p1
O2

↓ p2
O3

↓ p3
8070700087800707

Table 8.6: Transitional Probabilities for 20 round distinguisher for GOST with set of

s-boxes TestParamSet

O1 O2 O3 p0 p1 p2 p3 Total

000800 807807 800000 -22.4 -11.1 -16.7 -9.4 -59.6

007870 077077 870007 -22.6 -16.9 -22.3 -14.2 -75.9

807877 870870 877807 -23.0 -22.3 -21.3 -17.4 -83.9

877077 877077 077877 -25.6 -21.7 -18.7 -23.5 -89.5

877077 007877 077877 -25.6 -19.6 -20.9 -23.5 -89.6

877077 077077 077877 -25.6 -20.4 -20.1 -23.5 -89.7

877077 077077 077877 -25.6 -20.7 -20.7 -23.5 -90.5

877077 807877 077877 -25.6 -21.3 -20.5 -23.5 -90.8

877077 877077 077877 -25.6 -23.3 -18.7 -23.5 -91.1

877077 800877 077877 -25.6 -23.4 -20.7 -23.5 -93.1

Using the results shown on Table 8.6 and given 277 pairs of plaintext (Pi, Pj), such

that Pi ⊕ Pj ∈ 8780070780707000, we expect on average 277.2−59.6 = 217.4 pairs to

follow the differential characteristic shown on the first row of the table. Using the most

dominant transitions shown in the same table we finally obtain approximately,

277.(2−59.6 + 2−75.9 + 2−83.9 + 2−89.5) = 217.4

such pairs. Note that all such results are subject to further improvements, if more

simulations are performed. However, the aim is to validate that the results obtained

based on closed sets in the middle are reliable enough.
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Attacks on Full GOST Block

Cipher
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9

Parametric Attacks on Full

GOST

In Chapter 8, we discussed a framework for the construction of reduced round distin-

guishers for GOST block cipher based on special sets of truncated differentials dictated

by the structure of GOST. This concept allowed us to narrow down the exponentially

large space of truncated differentials and restrict the study to a smaller subspace, where

interesting differential properties can be discovered. We used a heuristic technique for

the discovery of good truncated differential properties that combines several steps like

random guessing and there are several learning loops implemented, which perform oper-

ations like flip few bits, extend size of the set (number of active bits), decrease the size

of the set or use repeated patterns in order to obtain a sufficiently good truncated dif-

ferential property. It is a sort of an evolutionary black-box algorithm. Note that due to

the heuristic nature of this algorithm, not the best differential properties are guaranteed

to be found.

Based on this methodology, we constructed distinguishers (up to 20-rounds) for three

different variants of GOST; TestParamSet, CryptoProParamSet and ISO 18033-3. All

these sets are of major importance since they are implemented in many standards and

used by many organizations. The first one appears as the default set of S-boxes used

in all available implementations. The second one is used in the hash function imple-

mentation and by many large bank organizations, while the last one is the one which

is believed to be the strongest and was suggested in the ISO standardization process to

become a global industrial standard [107].

In this chapter, we study advanced differential attacks on full 32-rounds of GOST

based on a statistical distinguisher. In particular, we apply our techniques to evaluate
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the security of the three variants of GOST for which we have constructed 20-round

distinguishers. In our attack, we split GOST into three parts with 6 + 20 + 6 rounds,

where the middle 20 rounds can be 20 rounds of GOST, more rounds of GOST, or

maybe a random permutation. Our attack is generic and it is a Depth-first search like

approach where some key bits for several outer rounds are guessed and then confirmed

or rejected by the differential properties of our distinguisher. Note that in all the attacks

that we describe, we assume that the set of S-boxes is known to the attacker. Lastly, we

describe an attack against a simplified version of GOST with S-boxes replaced by the

Identity map (abbreviated as GOST-ID) based on a 26-round statistical distinguisher

and following precisely the same methodology.

9.1 On the Type I Error of the 20-round Distinguishers

We recall that Type I error is about accepting wrong keys (false positives). The core

idea of our attack is that we initially set a threshold for the expected number of pairs

which satisfy both input and output differences as specified by a 20-round distinguisher.

During the attack if the number of such events observed exceeds this pre-specified thresh-

old, then we accept a given key assumption as correct.

For example, if we set the threshold to be Eref +Eij (cf. Chapter 8), then we accept

the correct key assumption. This implies that the probability of rejecting the correct

key assumption during the attack (false negative) is set at 1
2 . On the other hand, the

probability of accepting such a key assumption, while it is indeed false is predicted by

the Gaussian error function. The corresponding values for the three different variants

of GOST which we study are summarized in Table 9.1.
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Table 9.1: The Type I error related to the three variants of GOST which use the three

different sets of S-boxes as shown. All these values were obtained using MAPLE software

by typing log[2.](erfc(X/sqrt(2.)));, where X is the associated advantage of the statistical

distinguisher

S-box Set Name Adv PI =Type I Error

TestParamSet 25.8 2−485

CryptoProParamSetA 42.2 2−1290

ISO 18033-3 35.1 2−894

Assume that in an attack, we need to guess k key bits in order to compute the number

of events of our interest, which in this case are pairs which follow certain differential

properties. If the number of observed events exceeds the pre-specified threshold, then we

accept the corresponding key assumption as correct. Thus, at the end of the attack we

end up with 2k.PI key candidates and with probability 1
2 the correct key lies in this set.

Since −log2PI > 256, where 256 is the length of the key in GOST, then the probability

of accepting a wrong key assumption as correct is practically zero for the three cases of

our interest.

Additionally, low values of Type I error correspond to large advantages for the sta-

tistical distinguishers and thus possible extension of the distinguisher to more rounds is

worth studying. For example, we can gain a total of two rounds by extending a distin-

guisher on 20 rounds to a “weaker” distinguisher on 22 rounds. In the next section, we

study possible extensions of our distinguishers to more rounds and in the other sections

we study attacks against full 32-rounds of GOST for the three variants of our interest.
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9.2 Extension of Statistical Distinguishers to More Rounds

In this section, we discuss possible extensions of our statistical distinguishers to more

rounds. In particular, we study if an extension of a 20-round distinguisher to 20 + 2r

rounds is feasible. Suppose we are given a 20-round distinguisher with input differential

set Xi = (X,Y ) and output differential set Xj = (Y,X) which holds with probability pij

in case of GOST. Then, we consider external transitions of the form X ′
i → Xi (with

probability of transition p′) and Xj → X ′
j (with probability of transition p) as shown

below. Note that the notation (A,B) is a set of differences on 64 bits and A,B are the

differences on the left and right 32-bit halves respectively.

X ′
i = (Z,Z ′)

(r rounds)↓ p′

Xi = (X,Y )

(20 rounds)↓ pij
Xj = (Y,X)

(r rounds)↓ p
X ′

j = (Z ′, Z)

Recall that in case of a 20-round distinguisher we have the following two Gaussian

distributions to distinguish.

1. Random Permutation: µ1 =
|Xi|.|Xj |

2 , σ1 =

√
|Xi|.|Xj |

2

2. GOST Propagation: µ2 =
|Xi|.|Xj |

2 + 263.|Xi|.pij , σ22 = µ2

Considering the (20+ 2r)-round construction and assuming that middle differences

in 20 rounds are according to the previous construction, then we have the following

Gaussian Distributions to distinguish.

1. D1: µ1 =
|X′

i|.|X′
j |

2 , σ21 = µ1

2. D2: µ2 =
|X′

i|.|X′
j |

2 + 263.|X ′
i|.p′.pij .p, σ22 = µ2

We assume that two sets of events are disjoint, otherwise we would have to subtract

their intersection (cf. Chapter 8, Section 8.10).
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The value of
ADV(20+2r)R√

2
is now given by

263.pij .p.p
′.

√
|X′

i|
|X′

j |

Assuming that Xi is the symmetric set of Xj and X ′
i the symmetric set of X ′

j, we

have that p′ = p. |Xi|
|X′

i|
. By symmetric set we mean that one set is obtained by exchanging

the right and left halves of the other set.

Thus, the value of
ADV(20+2r)R√

2
now becomes,

263.pij .p
2. |Xi|

|X′
i|

Denote by ADV20R the advantage of the distinguisher on the 20 rounds. Then, the

new construction has advantage given by

ADV(20+2r)R = ADV20R.p
2.
|Xi|
|X ′

i|
(9.1)

We need to solve an optimization problem in order to find the best possible sets

X ′
i, X

′
j that give the highest possible advantage for ADV(20+2r)R. We observe that the

advantage of the new distinguisher is expected to decrease and thus the new extended

distinguisher would be less effective. However, the decrease will be very rapid from

what we have observed by trying to extend for 1 or 2 rounds more. Even though our

distinguishers are very efficient for 20 rounds there is no way so far found by our

searches to extend them to more rounds. Using computer simulations we have obtained

some “weak” distinguishers which are presented below. By weak we mean that the

corresponding Type I error is nearly 0.5 and thus cannot be exploited by our attack.
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Result 1. (22-R distinguisher for GOST with TestParamSet set of S-boxes)

The following construction is a 22-round distinguisher with ADV = 4.6.10−6.

8078777787800707

(1−R) ↓
8780070780707000

(20−R) ↓
80707000087800707

(1−R) ↓
8780070780787777

Result 2. (22-R distinguisher for GOST with CryptoProParamSetA set of S-boxes)

The following construction is a 22-round distinguisher with ADV = 0.03.

F77F777707700700

(1−R) ↓
0770070077777770

(20−R) ↓
7777777007700700

(1−R) ↓
07700700F77F7777

Result 3. (22-R distinguisher for GOST with ISO 18033-3 set of S-boxes)

The following construction is a weak 22 round distinguisher with ADV = 0.01.

7078778080000707

(1−R) ↓
8000070770700000

(20−R) ↓
7070000080000707

(1−R) ↓
8000070770787780

Remark 19. Note that none of the above three 22-R distinguishers is suitable to be

used in our attacks since they have very small Advantage (cf. Chapter 8) and hence

very large Type I error.
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9.3 From Distinguishers to Filters

The main idea behind our attack is to guess a few key bits for some outer rounds and

then by encrypting and decrypting the 264 (P,C) pairs given for the full 32 rounds of

GOST, we get pairs (P ′, C ′) for the middle 20 rounds. Then, we can either discard

the initial key assumptions or proceed to the next stage of our attack by guessing the

remaining key bits. This number has to exceed a pre-specified threshold depending on

the 20-round statistical distinguisher in order to proceed to the next stage of the attack.

The most costly part is the encryption and decryption of these pairs and then deter-

mine how many pairs satisfy the required properties. Guessing 192 bits of the key and

then determining the Eref + Eij is very costly. For example, given the entire codebook

264 (P,C) pairs and a 20-round distinguisher, in order to count the number of events

of our interest, we need to guess 192 key bits for the 6+6 outer rounds and encrypt the

entire codebook. This step already has time complexity (in terms of GOST encryptions)

given by,

2192.264.
12

32
≃ 2254.6 (9.2)

Since our attack needs approximately 2 iterations (due to Type II error)to succeed,

this means that the complexity is 2255.6 which is very close to the brute-force attack.

However, we can decrease the time complexity by exploiting the poor diffusion for limited

number of rounds in GOST so that we have to guess keys for less outer rounds. This

is due to very poor diffusion for limited number of rounds which allows us to guess

the certain difference bits with sufficiently high probability. We can improve this by

progressive filtering, where we guess less key bits, determine more pairs and then guess

a few more key bits but work with less data (pairs).

By exploiting the poor diffusion inside GOST for limited number of rounds, we can

guess less key bits instead of the full 6+6 rounds by guessing some external transitions

which take place with sufficiently high probability. Then, instead of computing pairs for

the middle 20 rounds, we compute pairs for some outer rounds but by computing less

key bits.

By exploiting the poor diffusion for limited number of rounds, we can find outer

differences X ′
i some rounds before the input differences in the 20-round distinguisher

and Xi some rounds after the output differences which are “provoked” by the middle

20-round distinguisher. Since we have constructed symmetric distinguishers, we can

assume that Xi is obtained from X ′
i by exchanging the left and right half. If the tran-

sition Xj → X ′
j occurs with probability p, then we have the following two Gaussian
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distributions to distinguish.

1. D1: p
2.

|Xi|.|Xj |
2

2. D2: p
2.

|Xi|.|Xj |
2 + 263.|Xi|.pij .p2

Thus, the advantage of the filter now becomes,

ADVfilter = ADV20R.p (9.3)

Thus, in case of filtering we are interested in finding external differences which

propagate with probability as large as possible and have the output differences specified

in the input and the output of the 20 round distinguisher.

Thus, now our threshold c is set to

c = p2.

(
|Xi|.|Xj |

2

)
+ 263.|Xi|.pij (9.4)

and we accept a given key assumption as correct if the average number of events of

our interest observed exceeds this value c. The Type I error is computed using the value

of ADVfilter, while the Type II error is set at 1
2 .
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9.4 Attacks Against Full GOST

In this section, we describe attacks against full 32 rounds of GOST for three variants

of GOST using 20-round distinguishers and extra filtering steps as explained precisely

in the previous section. Our attack is a Depth-first search approach (cf. Fig. 9.1),

where we initially guess some key bits for some outer rounds in order to determine the

number of pairs which satisfy some constraints imposed by the filtering step and then

guess more key bits and check the number of pairs which satisfy the constraints imposed

by the middle 20-round distinguisher.

We use a partition of the 32 rounds as x + (6 − x) + 20 + (6 − x) + x, where x

is any number of rounds less or equal to 5. In the filtering step, we use transitions

of differences of the form X ′
i → Xi and Xj → X ′

j which hold with sufficiently high

probability for 6−x rounds (natural events ”provoked” by the middle 20-R event). The

following diagram represents the way we split the full 32 rounds.

Plaintext Pairs

(x rounds)↓
X ′

i = (Z,Z ′)

(6− x rounds)↓ p′

Xi = (X,Y )

(20 rounds)↓ pij
Xj = (Y,X)

(6− x rounds)↓ p
X ′

j = (Z ′, Z)

(x rounds)↓
Ciphertext Pairs
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Attack 1 describes the steps of our attacks with the required complexity.

Attack 1. (20-R Distinguisher Xi → Xj, Transitions X
′
i → Xi and Xj → X ′

j for 6−x
rounds)

1. For each guess of the k key bits for the first x (x ≤ 5) rounds, do the following

steps.

1a. For all 264 pairs (Pl, Cl) (full 32-R):

Compute P ′
l = Gx,k(Pl) and C

′
l = Gx,k(Cl), where Gx,k is the encryption for the first

x rounds using key k (which is the same for the last x rounds due to the Key Schedule).

At this step we have computed all the (P ′
l , C

′
l) for the middle 32− 2x rounds.

Store a list of (32− 2x)-round (P ′
l , C

′
l) pairs in a hash table, sorted by their 128−

log2(|X ′
i|) − log2(|X ′

j |) inactive bits. While we are computing a (P ′, C ′) pair for the

middle (32−2x) rounds, we check if for a new pair computed we have a collision on the

inactive bits. If such a collision is found, this corresponds to pair of plaintexts (P ′
l , P

′
m)

such that P ′
l ⊕ P ′

m ∈ X ′
i and C ′

l ⊕ C ′
m ∈ X ′

j after (32 − 2x) rounds (Because we do it

for fixed number of rounds which is 20 rounds we assume the complexity of hash table

construction is constant).

This list requires memory of about 264.64 = 270 bits.

The time complexity of this step in terms of GOST encryptions is

T1(x) = 232x.264.
2x

32
≃ 260+32x+log2(x) (9.5)

and it returns about
|X′

i|.|X′
j |

2 triples (k, (P ′
i , C

′
i), (P

′
j , Cj)).

1b. For the total of
|X′

i|.|X′
j |

2 collisions of the form ((P ′
m, C

′
m), (P ′

n, C
′
n)) which have

been computed in the previous step, we want to count the number of pairs, which satisfy

both input and output difference as specified by the middle 20-R distinguisher. Let T the

number of such pairs which satisfy the required constrained imposed by the distinguisher.

We compute T by guessing the remaining 192 − 32x bits for the remaining 6 − x
rounds and each time the new pair ((P ′′

m, C
′′
m), (P ′′

n , C
′′
n)) for the middle 20 rounds satisfy

the required property we increase the counter by 1. This has time complexity in terms

of GOST encryptions given by,

T2(x) = 232x.232(6−x).
|X ′

i|.|X ′
j |

2
.
12− 2x

32
≃ 2187+log2(6−x)+log2|X′

i|+log2|X′
j | (9.6)

If the counter T > c then we accept the 192-bit key assumption as correct, otherwise

we reject it.
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2. If the Type I error equals to 2−y, this implies that we are left with approximately

2192−y possible key candidates on the 192 bits of the key. The remaining 256−192 = 64

can be found using additional pairs for the full 32-rounds.

The complexity of this step is given by,

T3(y) = 2192−y+64 = 2256−y (9.7)

The overall time complexity CT (in terms of GOST encryptions) is given by,

CT = 2.(T1(x) + T2(x) + T3(y)) (9.8)

since the Type II error is set to 1
2 .

In the rest of this section we study the three variants of GOST of our interest. Using

computer simulations we have computed some sufficiently good propagations which can

be used in the filtering step for extending the 20-round distinguisher to a 22-round

filter. Filtering which will allow us to gain 4 rounds was not achieved so far by our

methodology. Table 9.2 presents our best results found so far by our heuristic discovery

method.

Table 9.2: Best 1-round transitions in absolute value between general open sets for the

the three variants of GOST of our interest

Set Xj X ′
j p(Xj → X ′

j) ADVfilter

TestParamSet 8070700087800707 8780070780787777 2−5.34 0.6

CryptoParamSet 7777777007700700 07700700F77F7777 2−3.73 3.2

ISO 7070000080000707 8000070770787780 2−3.27 3.6

Based on these transitions we have computed the associated Type I error for each

of the three cases and they are found to be 2−0.9, 2−9.51 and 2−11.62 respectively. Table

9.3 presents the complexity for each step of our attack and the complexity of the overall

attack for each variant of GOST.

As we observe from Table 9.3, the attack is not good against the GOST variant which

uses the set of S-boxes TestParamSet, since its complexity exceeds brute-force. However,

there are already plenty of attacks on this variant [37, 34, 36]. Using our technique,

we can break the other two variants of GOST which use the sets CryptoParamSet and

ISO in time complexity approximately 2253.2 (slightly faster than brute-force but not

significantly) and 2245.4 GOST encryptions respectively. The ISO version was supposed

to be the strongest one and was proposed for standardization.
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Figure 9.1: Parametric Attack on Full GOST - A parametric attack against full

GOST which is essentially a Depth-first search approach combined with an additional

filtering step
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Table 9.3: T1, T2, T3, CT values in terms of GOST encryptions

Set x T1 T2 T3 CT

TestParamSet 5 2222.3 2231.9 2255.1 2256.1

CryptoParamSet 5 2222.3 2248.8 2252.2 2253.2

ISO 5 2222.3 2220.7 2244.4 2245.4

Lastly, we would like to emphasize that the most important fact about our attack is

its parametric nature, in terms that if better distinguishers or outer transitions for the

filtering step are discovered this might lead to significant improvements in the complexity

of the attack. In addition, it is a new method for evaluating the security of a cipher

against advanced differential attacks. In the next section, we follow exactly the same

methodology to develop an attack against a simplified version of GOST with S-boxes

replaced by the identity map (abbreviated as GOST-ID).

9.5 Cryptanalysis of GOST-ID

According to Shorin et al, if the S-boxes are replaced by identity, then GOST is still

secure after 6 rounds against LC at a prescribed 256-bit level security [115, 114]. More-

over, in the same paper the authors have claimed that 7 rounds are sufficient to protect

GOST against DC at 128-bit level security.

In this section, we study this simplified version of GOST with its S-boxes replaced

by the identity. Using our discovery method, we discovered a good set of differences

with 14 active bits (cf. Result 4), which we later use to construct a distinguisher on

more number of rounds and finally convert it to an attack against the full 32 rounds.

Result 4. The truncated differential [A0100700C0700700] with uniform sampling of all

differences it allows, produces an element of the same truncated differential set after 8

rounds of GOST with probability about 2−13.7 on average over all possible keys (Sample

size used is approximately 223).

Remark 20. The best differential property obtained for GOST-ID has 14 active bits

again.

Following the same methodology as before, we have constructed a distinguisher on

26 rounds (Theorem 19), which we use to construct an attack against full 32 rounds

(Theorem 20).
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Theorem 19. (26-Round Distinguisher on GOST-ID)

The following construction

[A0100700C0700700]

↓(8R)
[A0100700C0700700]

↓ (10R)
[A0100700C0700700]

↓ (8R)
[A0100700C0700700]

is a 26-round differential property which satisfies the following properties,

1. If the 26 rounds are replaced by a random permutation, then out of the total 277

pairs of plaintexts (Pi, Pj) such that Pi⊕Pj ∈ [A0100700C0700700], we expect on

average 227 to satisfy also the output difference after 26 rounds.

2. Among all input pairs with input difference in the set [A0100700C0700700], we

expect on average 230.6+227 to have output difference in the same set and satisfy

also the intermediate differences due to propagation

3. The advantage of the distinguisher is 217.1 standard deviations

Proof. Suppose that the 26 rounds of GOST are replaced by a random permutation on

64 bits. The size of the set [A0100700C0700700] is 214.0 − 1 (excluding the zero differ-

ence). Hence, we expect that given 263.214 = 277 pairs (Pi, Pj) with XOR difference in

this set, then approximately 277.2
14

264
= 227 such pairs will have this output difference at

the end of the 26 rounds by accident.

Based on computer simulations we have obtained the following transitional proba-

bility for 10 rounds,

P (x ∈ [A0100700C0700700]→ y ∈ [A0100700C0700700]) = 2−19.0

The sample size used is approximately 228.

In case of the model of propagation we obtain approximately 230.6 such output

pairs. This is because out of all 277 pairs which have this input difference, only

277−13.7−19.0−13.7 will have such output difference after 26 rounds of GOST and sat-

isfy simultaneously the intermediate differences.

Assume that the middle 10 rounds are replaced by a random permutation, while the

first and last 8 rounds are still GOST. Then, we expect approximately 227−13.7−13.7 =
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2−0.4 pairs to have this middle-difference property. Thus, in practice the intersection

is negligible..

Thus, the number of pairs due to propagation follows a (approximately) Gaussian

distribution with mean µ1 = 230.6 + 227, while in a random permutation we have a

Gaussian with mean µ2 = 227 and standard deviation σ2 = 213.5. This corresponds to

an advantage of about 217.1.

The 26-round distinguisher described above can be extended to an attack against full

GOST-ID as presented in Theorem 20.

Theorem 20. (A Differential Attack against full GOST-ID)

The distinguisher construction in Theorem 19 can be extended to an attack against

full 32 rounds with time complexity approximately 2160 GOST encryptions given 264

known pairs and memory 264.

Proof. We can attack the full 32 rounds of GOST using the entire codebook as follows.

For all 264 pairs (P,C) and all 296 values of the first three round keys, obtain pairs

for the middle 26 rounds P ′ = G3,k(P ), C
′ = G3,k(C).

For each key out of the 296 candidates we guess, we encrypt and decrypt for the first

and last 3 rounds and we count the number of pairs which have both input and output

difference as specified by the middle 26 round distinguisher. If the key assumption on

96 bits is wrong we expect approximately 227 pairs, while if it is correct we expect

230.6 + 227 pairs. Using this threshold, the probability to reject the correct key is 1
2 .

The associated Type I error is lower than 2−256, which means that with one iteration

we are approximately left with one choice for the right key. Thus, either the right key

is found or no key is found and the attack has to be repeated for another one time since

the Type II error is set at 1
2 .

The computational cost is given by

296.264. 632 ≃ 2157.6 GOST encryptions.

Thus, 96 bits are found in this way and rest 256 − 96 = 160 by brute force attack

which gives complexity 2160. Thus, the overall attack has time complexity approxi-

mately about 2161 GOST encryptions.
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Conclusion and Further Research

The objective of this thesis is to enhance current advanced differential and to some ex-

tent algebraic techniques. The frameworks we suggest involve considering and solving

some underlying combinatorial and optimization problems based on the special con-

figurations of each different algorithm. Such optimization problems may arise either

from the general structural properties of the cipher or from the specific properties of its

underlying components such as the S-boxes.

In the first part, we study computationally hard problems such as efficient MM and

combinatorial circuit optimization with respect to several metrics related to cryptology

[117, 29, 26, 25, 44]. No analytic algorithms which solve efficiently such problems are

known and most of the existing techniques are based on well-chosen ad-hoc heuristics

[23]. We propose a 2-step methodology for solving such problems [41, 44]. In the

first step, we algebraically encode the problem, then we convert it to its corresponding

CNF-SAT form and finally we solve it using dedicated SAT solver software [11]. This

SAT-solver based methodology can sometimes lead to provably optimal exact results.

Following this methodology, we have been able to discover new bilinear algorithms

for multiplying two matrices of sufficiently small dimensions over the general non-

commutative setting [43]. Additionally, we have been able to obtain provably optimal

circuit representations with respect to several metrics for the S-boxes of prominent ci-

phers such as PRESENT and GOST. We have obtained the best known bit-slice type

implementation of PRESENT S-box with 14 gates [42, 6]. Our technique can be used

to compute the MC of whole ciphers, which is one of the four main measures of non-

linearity of a cipher [20]. Moreover, we show a proof of concept that MC can be reduced

in a cryptanalysis setting. This leads to a new method for algebraic cryptanalysis of

ciphers in general which we have tentatively proposed.
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A major theme in this thesis is the study of advanced differential attacks on block

ciphers based on the construction of reduced-round distinguishers [50]. The construction

of such distinguishers is a highly non-trivial optimization problem. We apply advanced

DC on GOST [122]. GOST is a special cipher due to the presence of modulo 232

addition, which makes the transitional probability to depend also on the sub-key values

and thus naive DC fails. However, advanced DC techniques, such as truncated DC were

successfully applied and broke ciphers which were believed to be secure against naive DC

[84].

Discovering sufficiently good truncated differential properties is a very complex task

since the space of differences is exponentially large. Thus, some ad-hoc heuristics are

needed in order speed-up the process [51]. We introduce specific sets of differences, which

we name general open sets and can be seen as a refinement of truncated differentials

[51, 50]. General Open Sets (partitioning type) are dictated by the internal structure

of GOST and especially the connections between its S-boxes. Based on these sets, we

construct distinguishers for up to 20 rounds for different variants of GOST and we

discuss a general framework of parametric attacks faster than brute-force against full

GOST. All these attacks exploit both poor diffusion for limited number of rounds and

the self-similarity of the cipher due to its weak key schedule. In order to achieve the best

possible extensions, a series of optimization problems are solved related to the special

configurations of each cipher. We present attacks faster than brute force against 4

variants of GOST, including the latest GOST-ISO [107]. A lot of effort was spent on

making all the steps of these attacks as rigorous as possible and to quantify how much

the practise differs from the theory. Improving the complexity of such attacks is a future

work, as well as the application of similar attacks to other ciphers, such as PRESENT

or SIMON [18, 12].
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APPENDIX

A.1 Classification of S-boxes Based on Affine Equivalence

(AE)

Table A.1: The 16 generators Gi (1 ≤ i ≤ 16) for each class under AE [89]

G0 0,1,2,13,4,7,15,6,8,11,12,9,3,14,10,5

G1 0,1,2,13,4,7,15,6,8,11,14,3,5,9,10,12

G2 0,1,2,13,4,7,15,6,8,11,14,3,10,12,5,9

G3 0,1,2,13,4,7,15,6,8,12,5,3,10,14,11,9

G4 0,1,2,13,4,7,15,6,8,12,9,11,10,14,5,3

G5 0,1,2,13,4,7,15,6,8,12,11,9,19,14,3,5

G6 0,1,2,13,4,7,15,6,8,12,11,9,10,14,5,3

G7 0,1,2,13,4,7,15,6,8,12,14,11,10,9,3,5

G8 0,1,2,13,4,7,15,6,8,14,9,5,10,11,3,12

G9 0,1,2,13,4,7,15,6,8,14,11,3,5,9,10,12

G10 0,1,2,13,4,7,15,6,8,14,11,5,10,9,3,12

G11 0,1,2,13,4,7,15,6,8,14,11,10,5,9,12,3

G12 0,1,2,13,4,7,15,6,8,14,11,10,9,3,12,5

G13 0,1,2,13,4,7,15,6,8,14,12,9,5,11,10,3

G14 0,1,2,13,4,7,15,6,8,14,12,11,3,9,5,10

G15 0,1,2,13,4,7,15,6,8,14,12,11,9,3,10,5
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A.2 MM Problem and SAT-solvers

P01 := (a_1_1-a_1_2-a_1_3+a_2_1-a_2_2-a_3_2-a_3_3) * (-b_2_2);

P02 := (a_1_1+a_2_1) * (b_1_2+b_2_2);

P03 := (a_2_2) * (b_1_1-b_1_2+b_2_1-b_2_2-b_2_3+b_3_1-b_3_3);

P04 := (-a_1_1-a_2_1+a_2_2) * (-b_1_1+b_1_2+b_2_2);

P05 := (-a_2_1+a_2_2) * (-b_1_1+b_1_2);

P06 := (a_1_1) * (-b_1_1);

P07 := (a_1_1+a_3_1+a_3_2) * (b_1_1-b_1_3+b_2_3);

P08 := (a_1_1+a_3_1) * (-b_1_3+b_2_3);

P09 := (a_3_1+a_3_2) * (b_1_1-b_1_3);

P10 := (a_1_1+a_1_2-a_1_3-a_2_2+a_2_3+a_3_1+a_3_2) * (b_2_3);

P11 := (a_3_2) * (-b_1_1+b_1_3+b_2_1-b_2_2-b_2_3-b_3_1+b_3_2);

P12 := (a_1_3+a_3_2+a_3_3) * (b_2_2+b_3_1-b_3_2);

P13 := (a_1_3+a_3_3) * (-b_2_2+b_3_2);

P14 := (a_1_3) * (b_3_1);

P15 := (-a_3_2-a_3_3) * (-b_3_1+b_3_2);

P16 := (a_1_3+a_2_2-a_2_3) * (b_2_3-b_3_1+b_3_3);

P17 := (-a_1_3+a_2_3) * (b_2_3+b_3_3);

P18 := (a_2_2-a_2_3) * (b_3_1-b_3_3);

P19 := (a_1_2) * (b_2_1);

P20 := (a_2_3) * (b_3_2);

P21 := (a_2_1) * (b_1_3);

P22 := (a_3_1) * (b_1_2);

P23 := (a_3_3) * (b_3_3);

expand(-P06+P14+P19-a_1_1*b_1_1-a_1_2*b_2_1-a_1_3*b_3_1);

expand(P01-P04+P05-P06-P12+P14+P15-a_1_1*b_1_2-a_1_2*b_2_2-a_1_3*b_3_2);

expand(-P06-P07+P09+P10+P14+P16+P18-a_1_1*b_1_3-a_1_2*b_2_3-a_1_3*b_3_3);

expand(P02+P03+P04+P06+P14+P16+P17-a_2_1*b_1_1-a_2_2*b_2_1-a_2_3*b_3_1);

expand(P02+P04-P05+P06+P20-a_2_1*b_1_2-a_2_2*b_2_2-a_2_3*b_3_2);

expand(P14+P16+P17+P18+P21-a_2_1*b_1_3-a_2_2*b_2_3-a_2_3*b_3_3);

expand(P06+P07-P08+P11+P12+P13-P14-a_3_1*b_1_1-a_3_2*b_2_1-a_3_3*b_3_1);

expand(P12+P13-P14-P15+P22-a_3_1*b_1_2-a_3_2*b_2_2-a_3_3*b_3_2);

expand(P06+P07-P08-P09+P23-a_3_1*b_1_3-a_3_2*b_2_3-a_3_3*b_3_3);

Figure A.1: Laderman’s Tri-Linear algorithm for MM of two 3× 3 matrices [87]
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a_1_1_01=0 b_1_1_01=0 c_1_1_01=0

a_1_1_02=1 b_1_1_02=1 c_1_1_02=1

a_1_1_03=0 b_1_1_03=1 c_1_1_03=0

a_1_1_04=0 b_1_1_04=0 c_1_1_04=-1

a_1_1_05=-1 b_1_1_05=0 c_1_1_05=0

a_1_1_06=0 b_1_1_06=0 c_1_1_06=0

a_1_1_07=0 b_1_1_07=0 c_1_1_07=0

a_1_2_01=1 b_1_2_01=1 c_1_2_01=0

a_1_2_02=0 b_1_2_02=0 c_1_2_02=0

a_1_2_03=0 b_1_2_03=1 c_1_2_03=0

a_1_2_04=1 b_1_2_04=0 c_1_2_04=1

a_1_2_05=1 b_1_2_05=1 c_1_2_05=-1

a_1_2_06=0 b_1_2_06=0 c_1_2_06=-1

a_1_2_07=-1 b_1_2_07=1 c_1_2_07=-1

a_2_1_01=0 b_2_1_01=0 c_2_1_01=-1

a_2_1_02=0 b_2_1_02=0 c_2_1_02=0

a_2_1_03=1 b_2_1_03=1 c_2_1_03=1

a_2_1_04=0 b_2_1_04=-1 c_2_1_04=1

a_2_1_05=-1 b_2_1_05=0 c_2_1_05=0

a_2_1_06=-1 b_2_1_06=1 c_2_1_06=0

a_2_1_07=1 b_2_1_07=1 c_2_1_07=-1

a_2_2_01=1 b_2_2_01=1 c_2_2_01=1

a_2_2_02=0 b_2_2_02=0 c_2_2_02=0

a_2_2_03=0 b_2_2_03=1 c_2_2_03=0

a_2_2_04=0 b_2_2_04=0 c_2_2_04=-1

a_2_2_05=1 b_2_2_05=0 c_2_2_05=0

a_2_2_06=1 b_2_2_06=1 c_2_2_06=1

a_2_2_07=-1 b_2_2_07=1 c_2_2_07=1

Figure A.2: (Heuristic) Lifting from F2 to F4 for MM of two 2× 2 matrices
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A. APPENDIX

A.3 GOST’s Sets of S-boxes

Table A.2: Gost28147-TestParamSet set of S-boxes

S-boxes Gost28147-TestParamSet

1 12,6,5,2,11,0,9,13,3,14,7,10,15,4,1,8

2 9,11,12,0,3,6,7,5,4,8,14,15,1,10,2,13

3 8,15,6,11,1,9,12,5,13,3,7,10,0,14,2,4

4 3,14,5,9,6,8,0,13,10,11,7,12,2,1,15,4

5 14,9,11,2,5,15,7,1,0,13,12,6,10,4,3,8

6 13,8,14,12,7,3,9,10,1,5,2,4,6,15,0,11

7 12,9,15,14,8,1,3,10,2,7,4,13,6,0,11,5

8 4,2,15,5,9,1,0,8,14,3,11,12,13,7,10,6

Table A.3: GostR3411-94-SberbankHashParamset set of S-boxes

S-boxes GostR3411-94-SberbankHashParamset

1 8,7,3,12,14,13,2,0,11,10,4,1,5,15,9,6

2 12,8,9,13,3,4,1,5,7,6,2,15,10,0,11,14

3 10,5,12,8,13,2,1,9,11,7,14,15,0,3,6,4

4 10,12,11,0,6,2,14,8,15,5,7,13,3,9,4,1

5 5,3,15,14,10,0,11,8,7,1,13,9,2,4,12,6

6 3,9,4,0,14,7,8,15,5,13,6,10,11,2,1,12

7 9,4,0,15,7,13,10,11,2,3,5,6,14,1,12,8

8 3,6,10,14,2,11,1,9,13,12,8,15,4,5,0,7
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A.3 GOST’s Sets of S-boxes

Table A.4: CryptoProParamSet set of S-boxes

S-boxes GostR3411-94-CryptoProParamSet

1 10,4,5,6,8,1,3,7,13,12,14,0,9,2,11,15

2 5,15,4,0,2,13,11,9,1,7,6,3,12,14,10,8

3 7,15,12,14,9,4,1,0,3,11,5,2,6,10,8,13

4 4,10,7,12,0,15,2,8,14,1,6,5,13,11,9,3

5 7,6,4,11,9,12,2,10,1,8,0,14,15,13,3,5

6 7,6,2,4,13,9,15,0,10,1,5,11,8,14,12,3

7 13,14,4,1,7,0,5,10,3,12,8,15,6,2,9,11

8 1,3,10,9,5,11,4,15,8,6,7,14,13,0,2,12

Table A.5: Affine equivalence (AE) of all known GOST S-Boxes (and their inverses) [52]

S-box Set Name S1 S2 S3 S4 S5 S6 S7 S8

GostR3411-94-TestParamSet 36 02 03 04 06 08

-inverses 02 03 04 06 08

GostR3411-94-CryptoProParamSet Lu1 14 G10 G8

-inverses Lu1 14 G10 G8

Gost28147-TestParamSet 21 21 25 28

-inverses 21 21 25 28

Gost28147-CryptoProParamSetA 31 32 33 G8 35 36 37 38

-inverses 31 32 33 G8 37 38

Gost28147-CryptoProParamSetB G13 G13 G13 G11 G7 G7 G11 G6

-inverses G13 G13 G13 G11 G7 G7 G11 G6

Gost28147-CryptoProParamSetC G7 G4 G6 G13 G13 G6 G11 G13

-inverses G7 G4 G6 G13 G13 G6 G11 G13

Gost28147-CryptoProParamSetD G13 G13 G13 G4 G12 G4 G13 G7

-inverses G13 G13 G13 G4 G12 G4 G13 G7

GostR3411-94-SberbankHash 74 75 76 78

-inverses 74 75 76 76

GOST ISO 18033-3 proposal G9 G9 G9 G9 G9 G9 G9 G9

-inverses G9 G9 G9 G9 G9 G9 G9 G9
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