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Abstract

NV T ensemble simulations have been conducted for pure hydrogen and H-He mixtures at

primordial concentrations (0.09 helium number fraction) by using the vdW-DF2 exchange-

correlation functional for comparison to PBE results. These results show helium to di-

minish the first-order behaviour of the phase transition observed in pure hydrogen at 1000

K. Phase transitions are shifted to higher densities and pressures with the inclusion of he-

lium and further by the use of the vdW-DF2 functional. Thermodynamic and transport

properties reported of hydrogen give the super-critical extension of the liquid-liquid phase

transition known as the Widom and Frenkel lines. Excellent agreement is shown with

experimental data for pressure, conductivity and reflectivity along the principal Hugoniot

as calculated with vdW-DF2. NPT ensemble simulations are conducted on the solubility

of helium in hydrogen having significant implications for the interiors of gas giant planets.

VdW-DF2 results show helium to be soluble in hydrogen to much lower temperatures than

predicted by PBE due to the favouring of molecular hydrogen which allows for helium to

be soluble in hydrogen. This implies that helium falling under gravity and producing

latent heat will likely not occur within the interiors of Jupiter and Saturn.
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Chapter 1

Introduction

1.1 Giant Planet Interiors

Understanding high pressure hydrogen has significant importance for astrophysics as it

makes up most of the matter in the universe, and is also the main constituent of the inte-

riors of gas giants such as Jupiter. To better understand the interior and exterior properties

of such planets, study of the atomic properties and dynamic behaviour of hydrogen and

other major elements, in particular helium, is required. Accurately determining the equa-

tion of state is important for correctly modelling the structure origin, and evolution of

planets [1].

From early theoretical work there have been many questions raised regarding hydrogen.

A possible insulator-to-metal transition is expected and, in the solid phase, is yet to be

observed [2]. The relationship between the insulator-to-metallic and the molecular-to-

atomic transition is an important problem for Jovian interiors and for the understanding

of elemental hydrogen.

Observational constraints such as the total mass, radius, rotational rate, and gravitational

moments must be combined with the equation of state to determine planetary interior
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Chapter 1 1.1 Giant Planet Interiors

Figure 1.1: Results of various equations of state used for Jupiter yielding a range of
possible core sizes. Cores predicted are from using SCvH-i (SG04) and Sesame-p assume
Z1=Z2 (index 1 refers to the outer envelope and 2 refers to the inner envelope) [6], SCvH-i
(G99) for Z1 6= Z2 [7], and Sesame-K04 model using Z1 < Z2 [8] as well as the LM-REOS
models (altered in [9]). DFT models for a two layer model [10]. Modified from [11].

structure. Hydrogen and helium are both significant: the estimated protosolar helium

mass fraction is Y ∼ 0.27 [3]. Jupiter has Y ∼ 0.234 ± 0.005 [4], and Saturn Y ∼ 0.18

− 0.25 [5].

Precise knowledge of the equation of state is important, small differences can lead to

greatly altered results such as the size and even existence of a heavy element core fig. 1.1.

Understanding the existence and mass of a core is critical to understanding how the Jovian

planets formed.

Planetary magnetic fields are created by convective motion of a large body of rotating con-

ductive liquid [12]. It is therefore necessary to have knowledge of the mass and electronic

transport properties such as diffusion rates and electrical conductivity.

It is well known that as giant planets evolve they contract and cool, releasing more heat
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Chapter 1 1.2 Experimental Methods

then what they receive from the Sun [12]. From simple thermodynamic arguments the

cooling rate, luminosity and temperature, at a given age, can be estimated for Saturn. This

shows Saturn to have a higher luminosity for its current age. A proposed explanation of this

excess in luminosity can be from the helium separation in the interior. If helium exsolves

on cooling, helium sinks towards the core; the gravitational energy released contributes to

the known excess in luminosity of Saturn [13–16]. Helium rain has been predicted to slow

the cooling of Jovian planets by several hundreds of millions of years [7, 17].

Another important feature affecting the thermal evolution of the planet is core erosion.

Depending on the rates of erosion of the rock-metal core with the surrounding H-He

envelope substantial amounts of heavy elements have been added to the envelope over

time [18].

1.2 Experimental Methods

Dynamic shock compression experiments produce pressure-temperature paths closest to

those of planetary interiors fig. 1.2. The principal Hugoniot rapidly becomes too hot on

compression, motivating techniques such as ramp compression, second shocks and rever-

beration to produce pressure-temperature paths more similar to planetary interiors [19–26].

The primary limitations of shock wave experiments is the difficulty in measuring state- and

material-specific properties. For example, many experiments measure only the pressure,

and not the density or temperature (these are calculated from an assumed EOS) while

others measure the shock velocity giving the pressure and density from an EOS. Detecting

atomic structure is very challenging which means that liquid-liquid phase transitions or

helium exsolution are difficult to detect. The standard method to measure density used

in Hugoniot experiments is impedance matching [27] based on the equation of state of

a standard (Al or silica). Work by Hicks et al. [26] show typical errors in these anal-

yses fig. 1.3. Reflectivity can be measured in laser-driven shock wave experiments [28]

using a velocity interferometer system. Other properties that can be measured include the
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Chapter 1 1.2 Experimental Methods

Figure 1.2: Phase diagram of hydrogen. Static experiments limit shown by green bounds
[2, 30]. Solid black line shows principal Hugoniot (shock experiments) [25] and double
shock experiments are shown branching from it [31]. The melting line of hydrogen shown
as a solid black line within the static limit region. Jupiter, Saturn [6] and HD 209458b [32]
isentropes are blue, red dash-dotted and blue dotted respectively and the model of brown
dwarf (G1 229B) are red dotted [33]. From [34].

electrical conductivity [29] by measuring the voltage across the sample.

These experiments produce a shock wave propagating into the sample material. Techniques

are then used to measure the shock wave velocity and the particle velocity behind the

shock front. Many methods to produce these shocks exist such as gas gun experiments

[31, 35], laser driven compression [26, 36–39], magnetically driven flyers [23, 40, 41] and

hemispherically converging explosions [42].

These experiments are capable of achieving higher temperatures and pressures than static

compression experiments - up to ∼500 GPa and 50 kK. Early shock wave experiments of

hydrogen and deuterium [43,44] (where a gas-gun compression method was used) achieved

up to 20 GPa in the first shock, followed by the reflected shock at 90 GPa. Laser-driven

single shock experiments have achieved pressures of up to ∼ 200 GPa [45].
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Chapter 1 1.2 Experimental Methods

Reverberating shock experiments on hydrogen by Weir et al. [19] have shown a rapid

change in conductivity at ∼140 GPa. Experimental reverberating shocks [19, 46] com-

pressed hydrogen showing the resistivity decreases by ∼4 orders of magnitude [47] between

93-140 GPa reaching a plateau of 500 µΩ after 140 GPa. They obtain the temperature by

fitting to a model at 140 GPa, which gives an approximation of ∼ 3000 K where the system

is still found to be largely molecular (only ∼ 5 % dissociated). More recent experiments

by high-explosive driven generators [24], found a density increase at the same location as

the conductivity increase.

Higher pressure, lower temperature conditions can be reached by performing shock exper-

iments on precompressed samples or with double shock experiments. These experiments

open up a wider range and are more applicable to Jovian interiors, as shown in fig. 1.2,

with experiments reaching 55 GPa [31, 35, 39, 48]. Conductivity can also be measured in

these experiments [49] giving insight into the onset of conductivity in the fluid phase.

Static compression experiments [55, 56] allow for more complete characterisation of the

sample but are limited in the pressures and temperatures they can reach. Here measure-

ments are made using e.g. X-ray scattering, and IR and Raman spectroscopy. Improve-

ments on diamond anvil cells use gold liners to prevent reaction of the sample with the

gasket used to hold the sample in place. These experiments can reach ∼1500 K [57].

Further experiments using diamond anvil cell pre-compression and laser driven shock on

helium [58] show the insulator-to-metallic transition. Helium is shown to become metallic

at ∼1900 kg m−3 at ∼20 kK with higher temperatures giving rise to an earlier onset of

conductivity than expected, but still well within the conditions of Jupiter’s interior and

past the onset of metallisation of pure hydrogen. The experimental results agree with

theoretical predictions [59].
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Chapter 1 1.2 Experimental Methods

Figure 1.3: Hugoniot measurements, Pressure vs normalised compression (ρ00 = 0.174
g/cm3) for single shock measurements of deuterium Hugoniot [26]. Knudson et al. [23,
40]are red triangles. Belov et al., Boriskov et al. [21, 50] inverted black solid triangles.
Boriskov et al. [42] inverted black open triangles and Grishechkin et al. [51] open green
squares. Hicks et al. [26] open blue circles. Model curves are from Sesame72 [52] dashed
red line, Kerley03 [53] dotted blue line, and Ross equation of state [54] solid green line.
With Hicks et al. blue open circles [26]. From [26].
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Chapter 1 1.3 Theoretical Methods

1.3 Theoretical Methods

Various semi-empirical thermodynamic and chemical models (aka plasma models) have

been applied to the interiors of gas giants, mainly Jupiter and Saturn [9]. These treat nuclei

and electrons as classical particles, or treat the electronic structure as that of a perturbed

uniform electron gas [15, 60, 61]. The model proposed by Saumon, Chabrier and van

Horn [62] (SCVH) has been widely used in modelling applications for gas giant interiors.

Though this model reproduces many experimental results (at low temperature and high

pressure, and at high temperature and high pressure), there are still large uncertainties

particularly in the vicinity of the liquid-liquid phase transition.

Chemical models predicted that hydrogen will become atomic after a first-order phase

transition with increasing pressure [48, 63–71]. It is now understood that these chemical

models predict a pronounced phase transition as an artificial property of the underly-

ing physical approximations [72]. Therefore, the transition is now smoothed out of the

equation of state [73] when using these chemical models in planetary applications.

Due to the success of density functional theory (DFT) in accurately describing atoms and

complex materials it is used for many scientific applications, including in geophysics for

understanding iron at Earth’s core conditions [74] and many others [72, 75, 76]. Progress

has been made in using DFT to understand the interior of gaseous planets [11] with results

often quite different from earlier semi-classical approximations.

A number of important features of pure hydrogen have been discovered through the use

of DFT. DFT based molecular dynamics was used in predicting a negative slope for the

melting line in temperature-pressure space brought on by the liquid-liquid phase transition

[77]. Further work showed, using solid and liquid phases [78], a maximum of the melting

line at 1000 K with a negative slope extrapolating to 0 K and 400 GPa. The Gibbs

energy of the liquid and solid phases, from DFT simulations, was also used to analyse the

melting line [79]. Results of diamond anvil cell experiments [80] agree with the theoretical
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melting line, and are in further agreement with the experimental determinations of [81]

and [57]. Additional diamond anvil cell experiments [80] have also shown a negative slope.

These results are shown in fig. 1.4 alongside other experimental determinations of Datchi

et al. [82] and Gregoryanz et al. [83] showing the melting line. Below the melting line in

fig. 1.4 the solid structures at low temperatures, determined experimentally, are shown.

Solid structures are labelled as phases I, II, III and IV.

Likely candidates for the low pressure solid structures are as follows. For phase I the

parahydrogen (p-H2) at low temperature crystallises in a close-packed hcp structure [84].

Phase II suggested from PIMC calculations is Pa3-type ordering on hcp lattice (molecules

along the body diagonals) [85]. The phase III structure predicted by [86] consists of

molecules packed in ring like structures with rings being made up of three molecules.

Finally, phase IV structure is suggested by [87] consisting of alternating atomic graphene-

like and molecular layers.

An early DFT molecular dynamics study found a large density fluctuation signalling a

first-order phase transition at 1500 K and P = 125 GPa [77]. They also observed a

molecular dissociation and at this location the system became metallic as the closure of

the gap was seen. These results require a critical temperature between 1500 and 3000 K

to agree with the above experimental work. Further DFT work by Bonev et al. [78, 88]

found a first-order phase transition at 200 GPa and 900 - 1000 K.

A more thorough analysis of the transition region using DFT by sampling the region at

a higher resolution [79] was carried out with 432 atoms and reported a first-order phase

transition occurring at 1000 K. Coupled Electronic-Ionic Monte Carlo (CEIMC) was used

similarly and found a first-order phase transition [89].

A previous study has been carried out on hydrogen and helium mixtures for implications

to Jupiter [90], using up to 250 atoms with a proportion of helium atoms equivalent to that

of Jovian planet interiors. They report properties such as the radial distribution function

of the hydrogen and helium mixtures, and how the pressure changes with temperature for
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various helium number fractions. These results show that the inclusion of helium ’washes

out’ the first-order nature of the liquid-liquid phase transition in liquid hydrogen. They

show a method of counting the atomic particles in the simulation [91], compared to the

molecular contribution, allowing a more thorough description of the liquid-liquid phase

transition.

As well as equation of state studies from first-principles methods, extensive work on the op-

tical properties has come from using the Kubo-Greenwood formula. Studies such as [92–94]

used this method to calculate the direct current (DC) conductivity, thermal conductivity

and reflectivity in the latter, the results were compared to experiments [95], showing good

agreement and a dependence on the functional used in DFT.

One of the main problems with DFT is known as the band gap problem. DFT is known to

underestimate the band gap [96, 97] therefore the insulator-to-metallic transition density

will likely be underestimated. Improvements on the band gap have been seen by quasipar-

ticle methods [98], using exact exchange methods [99] or many-body GW methods [100].

Extensive tests, performed by Clay et al. [101], using new exchange-correlation functions

has shown that van der Waals density functionals vdW-DF and vdW-DF2 (non-local

functionals) outperforms Perdew, Burke and Ernzerhof (PBE) [102] and in some cases

Heyd, Scuseria and Ernzerhof (HSE) [103], predicting improved band gaps, bond lengths

and energetics in the liquid phase close to metallisation. The authors consider vdW-DF

and vdW-DF2 superior in terms of local energy differences in the potential energy surface.

VdW-DF2 improvements can be expected as the exchange term used is tuned to exact

exchange [104] and because it includes dispersion forces. This thesis tests vdW-DF2 and

as such should provide a more accurate equation of state (relative to PBE and chemical

model EOS) for hydrogen and helium and provide new insights into Jovian interiors. A

study by Morales et al. [95], using the vdW-DF2 functional, has shown the occurrence

of the liquid-liquid phase transition at a higher density and pressure than predicted with

PBE. They showed liquid hydrogen remaining molecular well into the phase transition
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Figure 1.4: Solid to liquid melting line of hydrogen. Various DFT results and experi-
mental data. Experimental data: red crosses [82], left triangles [83], blue crosses [80], up
triangles [81] and circles [57]. Theoretical results: BOMD down triangles [78], free-energy
calculations solid black line [79]. Dashed black line is a fit to a Kechin equation at low
temperature using data from Datchi et al. and at high temperature from results of Morales
et al.. Green square is MD using QMC forces [105]. Experimental solid phases with IM
transition from [106] are shown below the melting line. From [34].

reported by DFT-PBE.

A problem in current knowledge on the properties of Joivian interiors is the immisci-

bility of helium with hydrogen [90]. Initial studies used perturbative treatments of the

H-He mixture with assumed interactions between chemical species [107–111]. These stud-

ies generally found the critical temperature of immiscibility too low to affect the Jovian

interior [112]. First principles was first used within the Local Density Approximation

(LDA) [113]. They calculated the enthalpy of mixing on static structures and as such

neglected the relaxation of the structure as helium is added to the system as well as the
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disorder of the liquid state. A DFT molecular dynamics study [114] estimated the free

energy of mixing, neglecting thermal effects of the enthalpy of mixing. They find a mixing

temperature too low to allow de-mixing within Jupiter and Saturn.

Recent simulations calculating the Gibbs energy via thermodynamic integration showed

that large portions of Saturn could have phase separations between hydrogen and helium

with Jupiter's interior being fully mixed throughout. Morales et al. [115] show that in-

creasing the helium fraction alters the preferred pairing of hydrogen in favour of being

molecular. This is because the inert helium inhibits the delocalisation of the hydrogenic

electrons, enhancing the formation of molecular hydrogen.

Solubility of other noble gases in helium have been studied within Jupiter and Saturn by

Wilson et al. [116] providing a possible explanation for the observed neon depletion and

the lack of argon depletion in Jupiter, provided that helium rainout occurs in the interior.
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Chapter 2

Density Functional Theory

2.1 Introduction

With the founding work on Density Functional Theory (DFT) in the early 60s [117,118],

the properties of materials could, for the first time, be relatively easily calculated. With

growing publications DFT has become an important theory in understanding materials

from simple molecules [119,120] to deep Earth processes [74,121].

DFT is an electronic structure theory where the electronic ground state density n0(r) is

shown to be of great importance to the system being studied and it is from this density

that all other properties depend, hence the so called density functional theory. DFT can be

used to calculate a number of chemical properties such as atomic structures, atomization

and ionization energies, electric and magnetic properties and many more.

The initial findings by Hohenberg and Kohn [117] were fundamental but did not show

how one could evaluate the functional. The next step in DFT came with Kohn and

Sham [118]. In the Kohn-Sham formulation the full many body problem is replaced by

a set of non interacting free electrons with the additional exchange-correlation functional

which contains the many-body complexities. This approach allows for the approximation

18



Chapter 2 2.2 Thomas-Fermi theory

of a ground state functional for the many electron system. Within these methods an

exchange-correlation functional is introduced which contains the interacting particle terms.

After the initial interest in the 60s it became later clear that even simple approximations

for the exchange-correlation Local Density Approximation (LDA) can give reasonably good

results that combined with techniques to accelerate the calculations saw a rapid increase

of its usage from the 80s to the 90s. Many subject fields use DFT principles for solutions

to various systems across physics [122,123], chemistry [124,125] and biology [126,127].

From the literature it is clear that DFT is required for an accurate analysis of hydrogen

and helium simulations providing much more reliable predictions than previous classical

approaches. With experimental data DFT can be assessed and can be taken beyond the

regions attainable by experiment. DFT being a essentially exact quantum mechanical

method can also be used to check the validity of past theoretical calculations and evaluate

the precision of such calculations.

2.2 Thomas-Fermi theory

An important initial step was made toward DFT by the Sommerfeld theory of an ideal

gas of fermions [128, 129]. Here we have a cubic box of particles, volume L3, containing

a uniform non-interacting electron-gas also known as jellium. The electron density is

n = N/L3 where N is the number of electrons. These electrons are within a uniform

potential V0. This is a first step in DFT as we now require the ground state energy of

the system. Here we require the solution to the time-independent Schrödinger equation,

eq. (2.1).

[
− h̄2

2m
∇2 + V0

]
ψ(r) = Eψ(r) (2.1)

Using periodic boundary conditions to account for a finite cubic cell (simulation “box”),
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Chapter 2 2.2 Thomas-Fermi theory

the solution to eq. (2.1) is the set of plane waves: ψ(x) ∝ eik·x with wavevector k = 2π
L n.

We then can relate the energy to the wavevector through applying the de Broglie relation,

p = h̄k, giving E = p2

2m for the energy of each state of the electrons. Note that throughout

this chapter spin is considered with the density with n(r) = n(r, ↑) + n(r, ↓), where the

first term is the spin up density and the second term is spin down density.

The Schrödinger equation of a many-body system contains 3N degrees of freedom for N

electrons and is too complex for practical use. Thomas and Fermi separately developed a

simpler method [130, 131] which brings forward the notion that the ground state density

determines all parameters. The nonrelativistic Hamiltonian for electrons and ions are

used as in eq. (2.2) to obtain the energy functional ETF [n] for the electrons in an external

potential Vext(r).

Ĥ = T̂n + Ĥel = T̂ + V̂ ,

Ĥel = T̂e + V̂n−n + V̂int + V̂ext, T̂ = T̂n + T̂e,

T̂n =

Nn∑
I=1

−λI5̂
2

I , T̂e = −λe
Ne∑
i=1

5̂2

i ,

V̂ = V̂n−n + V̂int + V̂ext, V̂n−n =
∑
I<J

zIzJ∣∣∣~RI − ~RJ

∣∣∣ ,
V̂int =

∑
i<j

1

|~ri − ~rj |
, V̂ext = −

∑
i,I

zI∣∣∣~ri − ~RI

∣∣∣ (2.2)

In eq. (2.2) symbols H and Hel are the total Hamiltonian and the electron Hamiltonian,

T denotes the kinetic energy, V the potential energy. We also have the number of ions

Nn and electrons Ne. Also λe = 1/2, λI = 1/(2MI) and MI and zI are the mass and

charge of the nucleus I (in units of the electron mass me and charge e). Subscripts ‘ext’

and ‘int’ refer to the electron-nucleus and the electron-electron interactions respectively

and position vectors ~ri for electrons and ~RI for ions.
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Due to Thomas and Fermi neglecting exchange and correlation of the electrons, the exten-

sion by Dirac [132] was made including the local approximation of the exchange giving,

ETF [n] = A

∫
d3r n(r)5/3 +

∫
d3r V̂ext n(r)

+B

∫
d3r n(r)4/3 +

1

2

∫
d3rd3R

n(r)n(R)

|r −R|
, (2.3)

where A = 3
10(3π2)2/3 and B = −3

4( 3
π )1/3. The terms in eq. (2.3) are as follows, first term:

local approximation of the kinetic energy, second term: interaction of potential with the

electrons, third term: local exchange and the last term: classical electrostatic Hartree

energy.

The ground state density and energy in a system containing Ne electrons are obtained

by a minimization of the Thomas-Fermi energy functional ETF [n] for all possible n(r)

where
∫
d3rn(r) = N . Even though the Thomas-Fermi approach has been applied to

the elements [133] the approximations are too crude and do not consider some necessary

physics contributing to many body systems. We thus need a more exact many-body theory.

For a more thorough account of the Thomas-Fermi theory the reader is referred to [134].

2.3 Hohenberg-Kohn Theorems

Hohenberg and Kohn proved in 1964 [117] that the many body system problem can be

reformulated in terms of a functional which is dependent on the ground state density. We

start with the Hamiltonian, Ĥ of a system of interacting electrons in an external potential,

Vext(ri) produced by the nuclei,
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Ĥ = − h̄2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj |

Ĥ = T̂e + V̂ext + V̂int (2.4)

Hohenberg and Kohn formulated the basic results which set the start of the DFT founda-

tion, where the theorems are as follows:

• Theorem 1: The external potential Vext(r), encompassing a system of interacting

particles, is uniquely determined by the ground state particle density n0(r) (to within

an additive constant).

Corollary 1: Thus the ground state density uniquely determines the Hamiltonian

operator eq. (2.4). From this we also have that the many-body wavefunctions Ψ for

all states are determined and from this all material properties can be computed.

• Theorem 2: A universally valid functional of the energy E[n] in terms of the density

n(r) is defined, for any external potential Vext(r). For any Vext(r), the ground state

energy of the system is the global minimum value of this energy functional. The

density that minimizes this functional is the exact ground state density n0(r).

Corollary 2: The functional E[n] is sufficient to determine the exact ground state

energy and density.

2.3.1 Proof of Theorem 1

This proof requires the use of a possible system with two different external potentials,

Vext(r) and V ′ext(r) leading to the same ground state n(r). These potentials have different

Hamiltonians Ĥ and Ĥ ′, having different ground state wavefunctions Ψ and Ψ′ which in

this fictional system have the same ground state density n0(r). We therefore have our two

Hamiltonians, Ĥ = T̂e + V̂int + V̂ext and Ĥ ′ = T̂e + V̂int + V̂ ′ext. Since Ψ′ is not the ground
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state of Ĥ it follows that:

E =
〈

Ψ
∣∣∣Ĥ∣∣∣Ψ〉 < 〈Ψ′

∣∣∣Ĥ∣∣∣Ψ′〉 (2.5)

Considering each term separately from eq. (2.5) using the relations from eq. (2.4) as T̂e

and V̂int are the same for both Hamiltonians, we can rewrite the third term as:

〈
Ψ′
∣∣∣Ĥ∣∣∣Ψ′〉 =

〈
Ψ′
∣∣∣Ĥ ′∣∣∣Ψ′〉+

〈
Ψ′
∣∣∣Ĥ − Ĥ ′∣∣∣Ψ′〉

= E′ +
〈

Ψ′
∣∣∣V̂ ′ext(r)− V̂ext(r)∣∣∣Ψ′〉

= E′ +

∫
d3r[V̂ ′ext(r)− V̂ext(r)]n0(r) (2.6)

giving from eq. (2.5):

E < E′ +

∫
d3r[V̂ ′ext(r)− V̂ext(r)]n0(r) (2.7)

and equally for the second term we get:

E′ < E +

∫
d3r[V̂ext(r)− V̂ ′ext(r)]n0(r) (2.8)

and adding eq. (2.7) and eq. (2.8) together we get the inequality:

E + E′ < E + E′ (2.9)

Clearly showing we can’t have two external potentials giving the same ground state density

n0(r), therefore n0(r) must uniquely determine Vext(r).
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2.3.2 Proof of Theorem 2

As each property is determined from the density alone then they are all functionals of the

density n(r) giving the Hohenberg-Kohn (HK) energy functional,

EHK [n] = T [n] + Eint[n] +

∫
d3rVext(r)n(r) + Enn (2.10)

where Enn is the internal interaction energy of the nuclei. Here we define FHK [n] =

T [n] + Eint[n] which contains details of the interacting electron system alone.

Consider now a system with ground state density n0(r) corresponding to an external po-

tential Vext(r) and further, we have a second density, n′(r) corresponding to a wavefunction

of Ψ′ and a wavefunction of Ψ for n0(r).

We know the Hohenberg-Kohn functional is equal to the expectation value of the Hamil-

tonian at the ground state, giving:

E = EHK [n0(r)] =
〈

Ψ
∣∣∣Ĥ∣∣∣Ψ〉 (2.11)

and we know that E′ must be greater than E, giving:

E =
〈

Ψ
∣∣∣Ĥ∣∣∣Ψ〉 < 〈Ψ′

∣∣∣Ĥ∣∣∣Ψ′〉 = E′ (2.12)

Thus, it is shown that the HK functional at the ground state density n0(r) is lower than any

other energy state with an alternate density n(r). In order to find the exact ground state

density and energy one has to minimise the energy functional with respect to variations

in the density functional n(r). To do this the functional FHK [n] must be known.

Note this only determines the ground state properties. The excited states are accounted

for by Mermin’s [135] work on finite temperature extensions to DFT. Here it is shown
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that thermal equilibrium properties can be determined by the free-energy functional of

the density. Mermin showed that for each Hohenberg and Kohn result for the ground

state there is a corresponding theorem for a system in thermal equilibrium with a heat

bath. For further reading on HK DFT methods the reader is referred to [134,136,137].

2.4 Kohn-Sham Theory

After the initial formulation by HK, Kohn and Sham proposed their ansatz which is to re-

place the interacting many-body system of Hohenberg-Kohn with an auxiliary independent-

particle system. This auxiliary system is used as it can be solved more easily with an

assumption that the ground state density of the interacting system is equal to the ground

state density of the new non-interacting system. Here we now get independent particle

equations for the non-interacting system with all the many-body terms held inside the

exchange-correlation functional of the density. The solutions to these equations give the

ground state density and energy of the many-body system but accuracy is determined by

one’s approximations in determining the exchange-correlation functional.

The Kohn-Sham theorem is developed on two assumptions:

1. The exact ground state density of the interacting system is represented by the ground

state density of the non-interacting system, ”non-interacting-V-representability”.

2. The Hamiltonian of the non-interacting system is chosen to have a kinetic operator

and an effective local potential V σ
eff (r) acting on an electron of spin σ at point r.

Then we can write, for a system of Nσ particles, the energy functional in terms of the

single-body orbitals of the non-interacting system, eq. (2.13), where the ground state has

one electron in each N orbitals ψσi (r) with the lowest eigenvalues εσi of the Hamiltonian.
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Ts[n] = −1

2

∑
σ

N∑
i=1

∫
d3r |5ψσi (r)|2 ,

EH [n] =
1

2

∫
d3rd3r′

n(r)n(r′)

|r − r′|
,

n(r) =
∑
σ

n(r, σ) =
∑
σ

N∑
i=1

|ψσi (r)|2 ,

EKS [n] = Ts[n] +

∫
d3rn(r)Vext(r) + EH [n] + Enn + Exc[n] (2.13)

EH [n] is the classical Coulomb interaction energy of the electron density n(r) interacting

with itself (or the Hartree energy) and Ts[n] is the independent particle kinetic energy.

Seen in eq. (2.13) is that the density of the non-interacting system, n(r, σ) is the sum

of squares of the orbitals for each spin. We end up with the Kohn-Sham (KS) approach

giving the energy functional EKS [n], eq. (2.13). Vext(r) is the external potential due to

the nuclei and any other external field and is independent of spin and finally Enn is the

interaction between nuclei. Note that all many-body effects of exchange and correlation

are within the Exc term.

We can compare energy functionals from Kohn-Sham and Hohenberg-Kohn to give a Exc[n]

term, giving:

Exc[n] = FHK [n]− (Ts[n] + EH [n])

Exc[n] = T [n] + Eint[n]− (Ts[n] + EH [n]) (2.14)

From eq. (2.14) we can see that Exc[n] must be a functional since the terms on the right

hand side of the equation are functionals. We also see that Exc[n] is just the difference

of the kinetic and internal interaction energies between the true interacting many-body

system and the non-interacting particle system with electron-electron interactions replaced
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by the Hartree energy.

If we place the terms EH [n], Enn and Exc[n] from eq. (2.13), into a new term G[n], we

get: EKS [n] = Ts[n] +
∫
d3rn(r, σ)Vext(r) +G[n] and applying the variational principle we

get:

0 = δE =

∫
d3r[Vext(r) +

δTs
δn(r, σ)

+
δG

δn(r, σ)
]δn(r, σ) (2.15)

As we have an unchanging particle number we set
∫
d3rδn(r, σ) = 0, and we now write:

Vext(r) +
δTs

δn(r, σ)
+

δG

δn(r, σ)
= µ (2.16)

where µ is the chemical potential (or a Lagrange undetermined multiplier).

Using the Kohn-Sham theory we define an effective potential V σ
eff (r) as,

V σ
eff (r) = Vext(r) +

δG

δn(r, σ)
(2.17)

we can now use for an interacting system the same equation as for the non-interacting

system plus this effective potential contribution, giving:

δTs
δn(r, σ)

+ V σ
eff (r) = µ (2.18)

This equation now allows us to rewrite our Schrödinger equation giving the Kohn-Sham

equation and it’s corresponding Kohn-Sham orbitals Ψ(r),

− h̄2

2m
∇2Ψσ

i (r) + V σ
eff (r)Ψσ

i (r) = εσi (r)Ψσ
j (r) (2.19)
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where the effective Hamiltonian HKS is, (with eigenvalues εσi );

Hσ
KS(r) = − h̄2

2m
∇2 + V σ

KS(r) (2.20)

and the Kohn-Sham potential associated with any interacting electron system is VKS ;

V σ
KS(r) ≡ V σ

eff (r) |min= Vext(r) + VHartree(r) + V σ
xc(r) (2.21)

and the density is given by

n(r) =
∑
σ

N∑
i=1

|ψσi (r)|2 (2.22)

2.4.1 Solving the Kohn-Sham Equations

We now look at methods used to solve the KS equations and minimisations implemented

within the calculations to obtain self-consistency.

Equation (2.19) is now used in an iterative manner to solve for the system in question.

With an appropriate approximation to G[n] we,

1. Make the initial guess at the density n(r).

2. Calculate Veff (r) with eq. (2.17).

3. Solve the KS equation and the KS orbitals through eq. (2.19).

4. From this we can obtain a new electron density n′(r) using eq. (2.22).

5. Now with the new density we go back and repeat until convergence is found. The

approach by VASP in obtaining self-consistency is further explained below.

At step 4, a new electron density n′(r) is obtained through a linear mixing approach to

determine a more appropriate value rather than simply the outcome given from eq. (2.22).
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Examples of methods for calculating n′(r) include a linear mixing iterative matrix diago-

nalisation scheme (RMM-DIIS [138] and/or blocked Davidson [139–143]) algorithm giving

the new input density (nini+1) which includes the previous iteration density (nini ) and the

density obtained in step 4 (nouti ) in a linear mixing combination (α) giving eq. (2.23),

nini+1 = nini + α(nouti − nini ). (2.23)

Once we have the wavefunctions (obtained from the density through eq. (2.22)) the energy

is calculated, E = 〈Ψ|H|Ψ〉, this is now minimized until a user defined accuracy is reached.

2.4.2 Born-Oppenheimer Molecular Dynamics

In 1927 Born and Oppenheimer [144] recognised the fact that nuclei are much slower than

electrons and electrons can be assumed to instantaneously and adiabatically relax to the

nuclei positions due to their differences in mass. This approximation is used when we

conduct Born-Oppenheimer molecular dynamics (BOMD) where we evaluate the forces

acting on the nuclei at every MD time step [145,146]. The forces on the ions are obtained

from the Hellman-Feynman theorem by eq. (2.24) [147,148].

Fn = − ∂E

∂Rn
= −

∫
drn(r)

∂Vext(r)

∂Rn
− ∂Enn

∂Rn
(2.24)

Which comes from the HK expression for the total energy eq. (2.10) since the terms of

the nuclei interaction Enn and the external potential Vext(r) are the only terms which

depend on the position R of the nuclei, and eq. (2.24) is the ’electrostatic theorem’ for the

forces [148].

The validity of using this theorem at this point in the simulation relies on the DFT

calculation being well converged so that the KS energy functional is at its variational
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minimum.

2.5 Exchange and Correlation

By separating out the independent-particle kinetic energy and the long-ranged Hartree

terms, the exchange-correlation functional, Exc can be approximated by a local or semi-

local functional of the density. In this section I will review some important aspects of the

exchange-correlation energy highlighting the two versions used within this thesis.

We need to approximate the exchange-correlation functional of a many-body interact-

ing electron system as a local or nearly local functional of the density. Kohn and Sham

proposed alongside their work on the non-interacting system ansatz that solids can be

considered approximately equal to the homogeneous electron gas limit. The exchange

and correlation effects are local in nature in this limit, giving the Local Spin Density Ap-

proximation (LSDA). Here Exc is an integral over all space with the exchange-correlation

energy density at each point assumed to be equal to the homogeneous electron gas with

that density, meaning we can write the energy as Exc[n] =
∫
d3rn(r)εjelliumxc (n, r), where

the functional εxc(n, r) is the energy per electron at a point r depending only on the den-

sity n(r, σ) in the local area of point r and can be expressed in separate terms for exchange

εx and correlation εc.

The homogeneous electron gas exchange-correlation as a function of density is now needed.

The exchange energy of the homogeneous gas is obtained from a simple analytical expres-

sion from Hartree-Fock methods [149], and the correlation energy has been calculated from

highly accurate Monte Carlo methods, [150].
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2.5.1 Generalised Gradient Approximation

To move forward from a fully local approximation the semilocal Generalised Gradient

Approximation (GGA) is introduced, where we define a factor Fxc to account for a gradient

of the density | ∇n(r) |. Giving,

EGGA[n] =

∫
d3rεjelliumxc (n, r)Fxc(n(r), | ∇n(r) |) (2.25)

Different versions of GGA are set up to modify the behaviour of the function Fx at large

gradients (as at small gradients most functions are equal, this is also true for the correla-

tion energy term, Fc) in an attempt to reproduce desired properties of a system. The most

widely used version, and used within some results of this thesis, is the method by Perdew,

Burke and Ernzerhof (PBE) [102]. Generally most GGA’s have the condition Fx ≥ 1,

where by comparison LDA has the equivalent value of FLDAx = 1, (Note, PBE-GGA uses

a value of Fx ∼ const). This leads to a lower GGA exchange energy relative to LDA. As

there are likely to be more varying density regions in atoms than in condensed matter,

giving a lowered exchange energy in atoms than in solids or molecules, resulting in a reduc-

tion of binding energy (correcting LDA’s overbinding) generally improving experimental

agreement for GGA’s.

Correlation terms, Fc are much smaller compared to the exchange energy and vanishes at

large gradients as large gradients correspond to strong confining potentials that increase

level spacings and reduce interaction effects relative to independent-electron terms.

2.5.2 Van der Waals Density Functionals

As nonlocal, long-ranged interactions such as van der Waals (vdW) forces are also im-

portant for many particle systems, including hydrogen [151, 152] we turn our attention

to the van der Waals - Density Functionals, (vdW-DF and more importantly vdW-DF2
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which is used in this thesis). These functionals are derived in detail in the papers of

Dion et al. [153] and Lee et al. [104] showing the correct 1/r6 asymptotic limit between

molecular dimers. Here I will write about the vdW-DF2 functional as this is used rather

than vdW-DF due to better agreement with experimental results such as the adsorption

energy and optimal separation [154–156]. Initially the correlation energy is separated into

two parts, Enewc [n] = E0
c [n] + Enlc [n] where both terms are to be treated with different

approximations. First, the local term E0
c for both vdW-DF and vdW-DF2 is treated in

LDA due to all non-local effects occurring within Enlc .

Second, a new non-local correlation energy, Enlc , is defined,

Enlc =

∫
d3r

∫
d3r′n(r)φ(r, r′)n(r′) (2.26)

where φ(r, r′) is some functional depending on r − r′ and f(r) which is a function of n(r)

and its gradient. In the methods of vdW-DF2 the f(r) functional is derived with the

large-N asymptote [157] and the exchange energy asymptote series for neutral atoms.

We therefore have a new exchange correlation Exc, giving, Exc = EGGAx +Enewc = EGGAx +

ELDAc + Enlc . vdW-DF chooses a GGA exchange from the revPBE [158, 159] functional

and vdW-DF2 chooses the PW86R [160, 161] functional due to being a more accurate

semilocal exchange functional [160,161].

Other methods know as Hybrid-functionals are also in use where a Hartree-Fock term is

used to describe some exchange, EHFx , and the rest describing exchange and correlation

is from either LDA or GGA. This gives the expression Exc = 1
2(EHFx + Exc). Different

versions of Hybrid functionals can take on slightly different appearances but generally

follow this formulation.

It is briefly noted here that the exchange-correlation potential, Vxc(r) is the functional

derivative of Exc, which is written as,
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Vxc(r) = εxc(n, r) + n(r)
δεxc(n, r)

δn(r)
(2.27)

For methods on efficiently obtaining the exchange-correlation potential from eq. (2.27) the

reader is referred to the appropriate chapter in [134].

2.6 Plane Wave to Projector Augmented Wave method

2.6.1 Plane Wave Basis Function

Now we need to choose the representation of the orbitals, the basis sets. Plane waves and

a linear combination of localized functionals are usually used. We represent the wave-

function ψn(r) from the Kohn-Sham equation using the basis set eik·r and obeying the

Bloch’s theorem [162] due to periodicity of the simulations, allowing,

ψn(r) = u(r)eik·r (2.28)

where u(r) is represented by Fourier series,

u(r) =
∑
G

cGe
iG·r (2.29)

Here the G term belong to reciprocal space of the simulation cell (periodic cells from a

Bravais lattice) and the sum extends over all vectors such that |G|2 /2 < Ecut, where Ecut

is the cut-off parameter on the accuracy of the expansion. The value of Ecut depends on

the pseudopotential and the nature of the electronic states. The value of Ecut is chosen

such that the total energy is converged.
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2.6.2 Pseudopotentials

These plane waves require a dense grid to represent localized or highly oscillatory orbitals

presenting a problem for core states that are localised in the core regions. We therefore

require ’pseudopotentials’ to replace the true potential where the Kohn-Sham eigenvalues

remain unaffected. Pseudopotentials are renormalised electron nuclei potentials for va-

lence states that include both coulomb attraction of nuclei and screening effects from the

presence of core electrons. Pseudopotentials greatly reduce computational demand and

have the effect of removing core states from calculations to obtain smooth valence states in

core regions, made possible since the tightly bound core electrons don’t contribute greatly

to the intermolecular bonding [163].

2.6.3 Projector Augmented Wave method, PAW

The Projector Augmented Wave method (PAW) [164–166] allows the calculation of all-

electron observables from the pseudo wavefunction |Ψ̃〉 through a linear transformation

operator T through eq. (2.31),

|Ψn〉 = T̂ |Ψ̃n〉 (2.30)

where

T̂ = 1 +
∑
a

T̂ a (2.31)

where T a is non-zero within the radial grid surrounding each atom Ωa enclosing atom a,

where T̂ a = T̂ a(r − Ra) = 0 for |r − Ra| > rac where rac is the cut-off radii and is chosen

with no overlap of augmentation spheres. We next expand the pseudo wavefunction into

pseudo partial waves φ̃i,

|Ψ̃n〉 =
∑
i

|φ̃i〉 ci within Ωa (2.32)
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The coefficients ci can be written in relation to ‘projector functions’ |pai 〉, as ci = 〈pai |Ψ̃〉

where we have,

〈pai |φ̃j〉 = δij , δij =


0 if i 6= j

1 if i = j

(2.33)

where δij is the Kronecker delta.

At this point the Kohn-Sham Schrödinger equation for an isolated system gives the all-

electron partial waves |φi〉 = T |φ̃i〉. Inserting ci into eq. (2.32) gives,

T̂ =
∑
a

∑
i

(
|φai 〉 − |φ̃ai 〉

)
〈p̃ai | (2.34)

From eq. (2.34) we can get the Kohn-Sham wavefunctions, Ψn(r) = 〈r|Ψn〉 giving,

Ψn(r) = Ψ̃n(r) +
∑
a

∑
i

(φai (r)− φ̃ai (r)) 〈p̃ai |ψ̃n〉 (2.35)

We therefore have three properties defining the PAW transformation, they are:

1. Partial waves φai from solutions of the Schrödinger equation for the isolated atom.

2. Pseudo partial waves φ̃ai , smoothed within the augmentation sphere and are the true

partial waves outside.

3. Pseudo projector functions p̃ai for each partial wave, obeying eq. (2.33).

PAW assumes reliability of the Frozen-core approximation implying the core states are

localised in the augmentation spheres and that the core states are not affected by their

chemical environment.

Even though hydrogen and helium, both of which are studied in this thesis, have no

core electrons it is still preferable to use pseudopotentials because the alternative in us-
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ing the Coulomb potential 1/r requires a large Ecut which in turn greatly increases the

computational demands. The reader is referred to [134] for a more in-depth account of

pseudopotentials and PAW methods.

2.7 Molecular dynamics simulations

The motion of the ions are calculated using classical mechanics forces where the force on

an ion, ~FA, is

~FA = MA~a = − dE

d ~RA
= MA

d2 ~RA
dt2

(2.36)

giving the equation of motion of the ions, where the ion mass is MA, ~a is the (acceleration)

second derivative of the position with respect to time d2 ~RA/dt
2. To propagate the atoms

and obtain the trajectories the equation of motion is integrated with the Verlet algorithm

[167] and the forces are calculated from the Hellmann-Feynman theorem as shown above

in section 2.4.2 and is calculated after the electronic self-consistency is found. Note that in

variable cell shape dynamics there is also another force due to the derivative of the basis

set with respect to ~RA [168]. The pulay stress on the unit cell can be non-zero if the total

energy is not well converged.

Most of the MD simulations in this thesis are done using the (NV T ) canonical ensemble

meaning the number of atoms (N) the volume (V ) and the temperature (T ) are kept

constant. The system is assumed isolated and in contact with a heat bath which is

controlled with a Nosé-Hoover thermostat [169,170], where the work of Nosé and Hoover

shows the algorithms used to keep the kinetic-energy constant within MD simulations.

For calculating the Gibbs energy of mixing of H-He mixtures I use the Isothermal-isobaric

ensemble (NPT ), where I now keep atoms (N) pressure (P ) and temperature (T ) con-

stant where I use the Souza-Martins barostat (keeping pressure constant) as implemented

36



Chapter 2 2.8 K-Points

by Hernandez [171, 172] with a fictitious mass of 1 × 10−4 amu where a Nosé-Poincaré

thermostat [173] is used in keeping temperature constant.

2.8 K-Points

To deal with size effects and the periodic nature of the problem we integrate over the first

Brillouin-zone. One sufficiently dense mesh is proposed by Monkhorst and Pack [174], and

is uniformly distributed over the Brillouin zone (obtaining a measure of the periodic nature

of the system), with sampled k-points parallel to reciprocal lattice vectors. Therefore the

Brillouin zone is divided into equally sized small cells with their corners being the k-points

of the sampling mesh. I use in all MD simulations the Γ point as all tests show this to

be adequate for convergence of thermodynamic properties. For calculations involving the

Kubo-Greenwood formula, eq. (3.13) as described below in section 3.2.2, a (2 × 2 × 2)

k-points sampling is used for convergence of the electrical and thermal conductivity.
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Theory and Simulation Methods

3.1 Introduction

I explain the theory and calculations behind work conducted in this thesis. Thermody-

namic quantities are explained and how convergence is seen in simulations. The prop-

erties calculated through DFT-MD methods are explained with further insight into the

Kubo-Greenwood theory and the properties this gives. Calculated compression paths are

explained allowing for comparison to experiment. Testing and simulation input are ex-

plained describing ensembles used and the various molecular dynamics input parameters.

3.2 Theory

3.2.1 Thermodynamic Properties

Simulations are done giving microscopic detail of a system at each time step (atomic

momenta, positions and more). Statistical mechanics is used to obtain the macroscopic

observables (pressure, internal energy and more). In the 6N dimensional phase space of a

system with N atoms, and a particular point ~R(t) we have at time t observable A(~R). The
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microscopic observable A(~R) varies with time and by the ergodic hypothesis the average

of A(~R) over a sufficiently long time is the macroscopic observable Aobs,

Aobs =
〈
A(~R(t))

〉
= lim

tobs→∞

1

tobs

∫ tobs

0
A(~R(t))dt (3.1)

Machine limitations do not allow an infinite time interval and as such molecular dynamics

simulations use a long finite time. Uncertainties in A are computed accounting for the

appropriate non-Gaussian statistics [175].

Fluctuations in A as measured by the mean square deviation

σ2
A =

〈
δA2

〉
=
〈
A2
〉
− 〈A〉2 (3.2)

also contain useful information. Thermodynamic derivative quantities can be calculated,

by using eq. (3.2). For example the heat capacity (CV ), is calculated from the fluctuations

of the electronic free energy (U),

σ2
U =

〈
U2
〉
− 〈U〉2 =

∑
j

U2
j Pj − 〈U〉

2 (3.3)

where,

Pj =
e−βUj

Q(N,V, β)
(3.4)

Pj is the probability that the system is in the j th quantum state and Q(N,V, β) =∑
j e
−βUj(N,V ) in the canonical ensemble and β = 1/kBT ,

∑
j

U2
j Pj =

1

Q

∑
j

U2
j e
−βUj = − 1

Q

∂

∂β

∑
j

Uje
−βUj

= − 1

Q

∂

∂β
(〈U〉Q) = −∂ 〈U〉

∂β
− 〈U〉 ∂lnQ

∂β

= kBT
2∂ 〈U〉
∂T

+ 〈U〉2 (3.5)

As U = E − TSel, where E is the internal energy, T is the electronic temperature and Sel
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is the electronic entropy giving,

(
∂ 〈U〉
∂T

)
V

=

〈
U2
〉
− 〈U〉2

kBT 2
=
∂ 〈E〉
∂T

− Sel (3.6)

giving,

CV =
σ2
U

kBT 2
+ Sel (3.7)

where kB is the Boltzmann constant and T is the temperature at constant volume (V ).

We can similarly calculate the Grüneisen parameter (γ),

γ = V

(
∂P

∂E

)
V

= V

(
∂P

∂T

)
V

/

(
∂E

∂T

)
V

= V

(
〈PE〉 − 〈P 〉 〈E〉

kBT 2CV

)
(3.8)

Errors are calculated on CV and γ from the propagation of the errors in E and P . For

further information of thermodynamic properties and fluctuations the reader is referred

to [176,177].

The chemical potential (µi) of a species (in a two component system) is the slope of the

Gibbs energy, G, with respect to the number of atoms Ni of species i, eq. (3.9).

µi =

(
∂G

∂Ni

)
P,T,Nj 6=i

(3.9)

Depending on the shape of G(Ni) it is possible for the Gibbs energy to be lowered by sep-

aration into two phases of different composition and equal chemical potential, for example

a hydrogen-rich and a helium-rich phase, fig. 3.1.

To evaluate this possibility, we perform simulations in the NPT ensemble which yield the

enthalpy,

H = E + PV (3.10)

40



Chapter 3 3.2 Theory

Figure 3.1: Gibbs Energy Curve and Phase Diagram. Top: Example Gibbs energy curve
of composition α where species fraction c is shown to be unstable and will decompose into
a lower Gibbs energy mixture of phases a and b along the common tangent construction.
Bottom: Phase diagram from example Gibbs energy curve where conditions below state α
is in a two-phase state of some fraction of a and b. Above the α the system is in equilibrium
and homogeneous.
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The Gibbs energy is,

G = H − TS (3.11)

where H is the enthalpy, E is the internal energy, T is the temperature, S is the entropy,

G is the Gibbs energy, P is the pressure and V is the volume. I obtain the entropy in the

linear mixing approximation estimate,

∆SLM (x) = xlnx+ (1− x)ln(1− x) (3.12)

where x is the helium number fraction, and ∆S = S(x)− xS(1)− (1− x)S(0).

3.2.2 Electronic Transport Properties

The Kubo-Greenwood formula for electrical conductivity σ(ω) [178,179] is as follows,

σ(ω) =
2πe2h̄2

3m2ωΩ

∑
α

∑
k

W (k)
∑
ij

Fij |〈Ψj ,k | 5α |Ψi ,k 〉|2δ(εi ,k − εj ,k − ω) (3.13)

where terms e and m are the electron charge and its mass. Summations over i and j

are over discrete energy bands, α averages the three spatial directions and Ω is the cubic

supercell volume. The Fermi weight Fi,j = F (εi ,k )−F (εj ,k ) is the difference in occupation

of the ith and j th electronic energy bands and 5α is the momentum operator acting on

the wavefunctions Ψi,k. δ is a Dirac delta function. The summation over k-points includes

the weight W (k). The static frequency value of ω → 0 gives the Direct Current (DC)

conductivity on a free charge moving freely over arbitrary distance in response to this DC

field.

The electrical thermal conductivities by the Chester-Thellung formulation of the Kubo-

Greenwood formula [180] is given by
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κ(ω) =
1

e2T

(
L22(ω)− L12(ω)2

L11(ω)

)
(3.14)

where the coefficients Llm are the Onsager coefficients [181] which through linear response

theory describe the transport behaviour of a system in an electric field defined as,

Llm(ω) = (−1)l+m
2πe2h̄2

3m2ωΩ

n∑
i,j=1

3∑
α=1

[F (εi,k)− F (εj,k)] (3.15)

× |〈Ψj,k |5α|Ψi,k〉|2 [εj,k − µ]l−1[εi,k − µ]m−lδ(εj,k − εi,k − h̄ω)

where µ is the chemical potential.

The link between the electrical conductivity and electrical thermal conductivity (both

at ω = 0) discovered by G. Wiedemann and R. Franz in 1853 [182] is known as the

Wiedemann-Franz law. For a metal κ(0)/σ(0) = LT where the Lorenz ratio, L0 ≈ 2.44×

10−8 WΩK−2. Note: the Lorenz number (L) is not to be confused with the Onsager

coefficients (Llm).

The Wiedemann-Franz relation is due to the heat and electrical transport both depending

on the free electrons in the material. In a metal the thermal conductivity will increase

with increasing temperature but electrical conductivity decreases with increasing particle

velocity (brought on by increased temperature). Therefore, a departure from the expected

L0 value is either due to phonons also being significant in heat transport (where this will

not effect our Kubo-Greenwood calculation as it only takes the electronic contributions) or

inelastic scattering effecting the particle velocities and energy losses of order kBT during

collisions thus affecting both thermal and electrical conductivities.

From the electrical conductivity, as given by the Kubo-Greenwood formula (eq. (3.13)),

the real and imaginary part of the dielectric constant can be calculated. The imaginary
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Figure 3.2: Real and imaginary parts of the dielectric constant as a function of frequency
(eV). Results shown are for pure hydrogen at a density of 1500 kg m−3 at T = 1000 K and
P = 611 GPa. The real part of the dielectric constant is shown as the black line and the
imaginary part of the dielectric constant is shown as the red line as used in the calculation
of the reflectivity.

part of the dielectric constant (shown in fig. 3.2 as the red line) is calculated from the

relation given in [183, p. 776] eq. (3.16),

ε2(ω) =
σ1(ω)

ε0ω
, (3.16)

where σ1(ω) is the real part of the conductivity and ε0 is the permittivity of free space =

8.854187e-12 F/m. Next, using the Kramers-Kronig transformation, eq. (3.17), the real

part of the dielectric constant (shown in fig. 3.2 as the black line) is calculated,

ε1(ω) = 1 +
1

π
P

∫ ∞
0

ε2(ω′)ω′

ω′2 − ω2
dω′ (3.17)

where P denotes the Cauchy Principal Value of the integral allowing the evaluation of the

improper integral.
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The vacuum reflectivity, r, is calculated from the dielectric constant as follows, eq. (3.18),

r =
(1− n)2 + k2

(1 + n)2 + k2
(3.18)

where n is the real part of the square root of the dielectric constant and k is the imaginary

part of the square root of the dielectric constant, ie κd =
√
ε, n = Reκd, k = Imκd, where

κd is the total dielectric constant.

We gain additional insight into ab initio calculations of electrical conductivity via the

approximate Mott-Ziman theory [184, 185]. The Ziman resistivity 1/σz at ω = 0 is given

by,

1/σz =
a0h̄

e2

k2
TF

64ZE2
F

∫ 2kF

0
q3S(q)ν2(q)dq, (3.19)

ν(q) ≈ −4πZe2

q2 + k2
S

(3.20)

where S(q) is the structure factor with wave vector q, kF is the Fermi wavevector and m is

the electron mass. Using eq. (3.20) the effective ion-electron interaction ν(q) canonically

includes a screening term (kS), which we take to be zero as for the bare nuclear potential.

The Ziman resistivity is then calculated by eq. (3.19), where a0h̄/e
2 = 0.217µΩm is used,

and EF and kF are the free-electron Fermi energy and wave vector respectively.

The Ziman theory assumes the free electron system. The influence of a pseudogap is

included by means of eq. (3.21) [186], where N0(EF ) is the free-electron value of the

density of states at the Fermi level, (the density of states being the number of states per

unit cell volume Ω per unit energy E). Here N is the temperature-smoothed density of

states at the chemical potential µ in eq. (3.22). Finally equation eq. (3.23) is used in

calculating the electrical conductivity.
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g =
N(µ)

N0(EF )
(3.21)

N(µ) =

∫
N(ε)∂f∂ε dε∫ ∂f

∂ε dε
(3.22)

σcorrected = g2σz (3.23)

3.2.3 Self-Diffusion Coefficient

The mean square displacement is calculated as fig. 3.3,

M(∆t) ≡
〈

(x (t)− x(t0))2
〉

(3.24)

where x(t) is the particle position at time t and angled brackets denote an ensemble average

over all particles and over time origins t0 and ∆t = t− t0.

From the mean square displacement we can see when the system has reached dynamical

convergence. Once this is achieved the mean square displacement will be linear in time.

The self-diffusion coefficient can be calculated by taking the gradient of the linear part of

the mean square displacement and dividing by 6, as in the relation determined by Einstein,

eq. (3.25),

D =
1

2d
lim

∆t→∞

M(∆t)

∆t
(3.25)

where D is the self-diffusion coefficient and, d is the dimensionality of the system (where

d=3 for our three dimensional space).
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Figure 3.3: Mean Square Displacement showing convergence through MD simulation.
Results are for pure hydrogen at a density of 1500 kg m−3 at T = 1000 K and P = 611
GPa. The red line shows the mean square displacement taken over all time origins and
the black line indicates the unit slope expected of the diffusive process at long duration.

3.2.4 Structure

The atomic structure is analysed by the radial distribution function

g(r) =
1

4πr2

1

Naρ

Na∑
i=1

Na∑
k 6=i
〈δ(r − |rk − ri|)〉 (3.26)

where ρ is the number density (ρ = Na/V ), r is the particle distance in angstroms and

subscripts i and k refer to individual atomic species. This gives the probability of finding

one particle a distance r from a central particle.

We also consider the structure factors (S(k)) of the system by taking density fluctuations

at k, k = (2π/L)(kx, ky, kz) where L is the box length and kx,y,z are integers. Then the

Fourier transform of the number density is ρ(k) =
∑Na

i=1 exp(ik · xi), where Na is the

number of atoms and xi is the atom coordinate. From ρ we can calculate S(k)
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S(k) = N−1
a 〈ρ(k)ρ(−k)〉 (3.27)

Of particular interest in hydrogen-rich systems at high pressure is the transition from

dominantly molecular (H2) structure at low pressure to a dominantly atomic (H) structure

at high pressure. I measure the progress of this structural change via the dissociation

fraction,

β =
Na − 2n2

Na
(3.28)

where n2 is the number of dimers. A completely atomic system corresponds to β = 1

and β = 0 to a completely molecular system. I use the nearest neighbour approach of

only counting a molecule when two atoms are both mutual nearest neighbours of each

other. Moreover I only count molecules that survive for a certain number of time steps.

I take this to be equal to 10 vibrational periods where the H2 vibrational frequency is

4161 cm−1 [187] giving ∼ 80 fs (800 time steps) as the necessary interval for a molecule to

be counted.

3.2.5 Compression Paths

Along the principal Hugoniot of a material the sample starts from an initially unshocked

state of initial pressure P0, internal energy E0, initial density ρ0. A shock wave of velocity

Us accelerates the material to velocity up. The final state has a pressure of P1, internal

energy E1, and density ρ. From the conservation of mass, momentum and energy the

above terms are related by the Rankine-Hugoniot equations ( [188] and [189,190] translated

in [191])
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mass conservation: ρ1(Us − up) = Usρ0 (3.29)

momentum conservation: Usupρ0 = P1 − P0 (3.30)

energy conservation: P1up = ρ2Us(
1

2
u2
p + E1 − E0) (3.31)

Eliminating the two velocities gives the Hugoniot relation eq. (3.32),

E1 − E0 =
1

2
(P1 + P0)

(
1

ρ0
− 1

ρ1

)
=

1

2
(P1 + P0)(V0 − V1) (3.32)

where V1 and V0 are respectively the final and initial specific volumes per unit mass.

Because the unshocked state is typically at very low temperature (room temperature or

below) and DFT does not account for quantum effects we must make a correction to the

internal energy as computed in our molecular dynamics simulations by the addition of the

quantum harmonic oscillator and subtract the classical vibrational energy per molecule

giving,

∆E = β
1

2
kB

[
Θvib

(
1

2
+

1

exp(Θvib/T )− 1

)
− T

]
(3.33)

where β is the dissociation fraction, eq. (3.28), Θvib is the vibrational temperature given

the value 4307 K for deuterium [187], T is the temperature and kB is the Boltzmann

constant.

An isentropic process is one in which the entropy is constant. From the definition of the

Grüneisen parameter (γ) the temperature profile (T ) is given by

∂T

∂ρ
=
T

ρ
γ(ρ, T ) (3.34)
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where ρ is the density. This ordinary differential equation may be solved by standard

numerical techniques once γ(ρ, T ) is known.

3.3 Methods: Electronic Structure

MD simulations are conducted within the Vienna Ab initio Simulation Package (VASP)

[192]. The Projected Augmented Wave method (PAW) is used as the solution to the

electronic structure and calculates the total energy, forces and stresses. In calculating

the exchange and correlation I use the van-der Waals Density Functional 2 (vdW-DF2)

[104, 153, 193, 194] functional and I also use the Generalised Gradient Approximation,

GGA [195], with the form of Perdew, Burke and Ernzerhof, PBE [102] to compare to

vdW-DF2 results.

A plane wave cut-off energy of 1200 eV is used as per necessary for convergence of energies,

a core radii of 0.80 Å is used for the hydrogen atoms and 1.1 Å for the helium atoms.

A time step interval of 0.1 fs is used to capture the motion of the light hydrogen atoms

through the simulation, with simulations requiring as much as 20 000 ionic steps (2 ps). A

value of 1×10−6 eV (vdW-DF2) and 1×10−4 eV (PBE) is used for the break condition in

the electronic self-consistency loop within VASP, and the Brillouin zone is sampled at zero

wave vector (k = 0 Γ point) as, from testing, a higher number of k-points are unnecessary

to meet convergence when using 1024 atoms (cubic shape), where I find convergence of

the internal energy at ∼ 0.2 meV/atom and ∼ 0.6 kbar for the pressure.

The Kubo-Greenwood formulation, eq. (3.13), [178, 179] is implemented in VASP, and

in doing this calculation I take 10 statistically spaced snap shots from the MD run. The

snapshots are taken from the converged segment at spacings large enough to be considered

statistically separated. Tests of k-points convergence found a 2 × 2 × 2 k-point sampling

was required for all temperatures and densities. A Dirac delta function broadening term

δ is used within eq. (3.13) since we have a discrete energy spectrum resulting from the
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finite simulation volume. The width of this broadening term is defined as the average

electronic spacing between energy levels. Note, that the number of energy bands sampled

is increased to make sure that there are plenty of unoccupied states available, which the

Kubo-Greenwood method requires. Required values for the number of electronic bands

range from 1000 for non-metallic systems to 2000+ for metallic systems when using 1024

atoms (for simulations of 256 atoms the number of electronic bands required range from

512 to 1000+ as required below for the calculation of the principal Hugoniot section 3.2.5).

Electronic temperatures are chosen to be equal to nuclei temperatures.

3.4 Methods: Molecular Dynamics

A Nosé-Hoover thermostat is used to control the temperature oscillations with the Nosé-

mass fixing the frequency of the temperature oscillations to a period of 40 time steps. An

NV T ensemble is used where the number of atoms, N , the volume, V and the temperature,

T , are constant throughout the MD run and electronic temperatures are set to equal the

ionic temperature.

I also use in some H-He simulations the NPT ensemble simulations where some parameters

are identical to that used for the NV T ensemble simulations with a plane wave cut-off

energy equal to 1200 eV, a value of 1×10−6 eV as the break condition in the electronic self-

consistency loop and a sampling of the Brillouin zone at zero wave vector (k = 0, Γ point).

The chosen barostat is the Souza-Martins barostat as implemented by Hernandez [171,172]

with a fictitious mass of 1 × 10−4 amu where the Nosé-Poincaré thermostat of Bond et

al. [173] is now used.

3.4.1 Initial Conditions and Convergence Tests

Initial ion positions are chosen from previously converged simulations (i.e. a statistically

uncorrelated liquid structure) of pure hydrogen at temperatures, T ≥ 1000 K depending
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Figure 3.4: Internal energy fluctuations in pure hydrogen. Results are shown for 1000 K
where the top figure shows the density of 1300 kg m−3 at P = 456 GPa (on the Widom
line) and the bottom figure shows the density of 1250 kg m−3 at P = 439 GPa (just off
the Widom line).

on the temperature of the current simulation. In the case of H-He mixtures the initial

structure is taken from a pure hydrogen run and the helium ions are randomly populated,

replacing the desired number of hydrogen ions with helium ions.

Simulations are allowed to continue for a minimum of 1000 time steps until convergence

is met for the thermodynamic averages for pressure and internal energy (fig. 3.4). These

quantities are monitored through the simulation until there is no significant change in the

running average. The initial transient (20% of the total simulation) is discarded in the

computation of averages.
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3.4.2 Atom Number Conductivity Convergence

Electrical conductivity (σ) results are shown in fig. 3.5 showing the DC conductivities

for different atom number simulations at 1000 K at the liquid-liquid phase transition

of hydrogen using the PBE exchange correlation functional. General agreement is seen

with the 512-atom simulations to that of Morales et al [79] which used 432 atoms. As

previously shown for pressure in fig. 4.2 1024 atoms in the simulation cell is shown to

correctly converge the DC conductivity in comparison to using 2048 atoms.

The inset shows the electrical conductivity as a function of photon frequency (eV) of three

densities at the phase transition. Due to the finite sampling of the eigenvalue spectrum

the conductivity non-physically falls to zero at zero frequency (not shown). I therefore

extrapolate the conductivity to ω = 0 using a Drude model when an increasing AC con-

ductivity is observed going to lower frequencies, using σ(ω) = σ0/(1 + ω2τ2), as in [120],

where τ is the relaxation time used to fit to the data. Alternatively a linear fit is used

when a decreasing AC conductivity is observed as ω → 0.
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Figure 3.5: 1000 K DC conductivity vs density. Plot shows the dependence on the number
of atoms with the PBE functional. Results are of 2048-atoms (red squares), 1024-atoms
(purple circles, solid line), 512-atoms (green squares) and 432-atoms from Morales et
al. [79] (open black triangles). Inset: PBE electrical conductivity as a function of energy
for 1000 K at 1107 (black), 992 (red) and 830 (blue) kg m−3 showing initial electrical
conductivity results calculated by the Kubo-Greenwood method.
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Hydrogen Thermodynamic

Properties

I explore hydrogen at conditions of giant planet interiors with ab initio molecular dynam-

ics. Hydrogen undergoes a first-order phase transition from a molecular to atomic liquid at

high pressure. I find the super-critical extension of this transition to higher temperatures

through anomalies in the Grüneisen parameter, heat capacity and dissociation fraction. I

use the van der Waals exchange-correlation functional which is shown to produce a phase

transition at much higher pressures and densities than does the generalised gradient ap-

proximation [95]. I find excellent agreement with the experimental deuterium principal

Hugoniot.

4.1 Introduction

Hydrogen is the most abundant element in the universe, and it makes up the bulk content

of giant planetary interiors, stars, stellar nebulae and more. This gives importance to

understanding how it behaves under a large range of conditions. Knowledge of hydrogen
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at the high densities and high temperatures found in giant planets is required, but is

currently only adequately achievable through simulations. Experimental work has probed

part of the pressure-temperature range of the Jovian interior [19,20,39,80].

One of the most important questions concerning the interior of giant planets is the exis-

tence of a first-order liquid-liquid phase transition from a molecular to atomic hydrogen

state. It is thought that this transition, if present, could produce a barrier to convection

within Jupiter and other giant planets [9, 12,196].

Hydrogen has been researched for many years. Early studies on its properties using clas-

sical and semi-classical models [16] at high pressures made some important predictions

concerning the behaviour of hydrogen in the interior of gas giants. Among these was that

hydrogen should become metallic at the liquid-liquid phase transition (LLPT). DFT has

been used to calculate hydrogen properties more accurately [75, 79] and has shown some

of these original predictions to be accurate. The specific exchange-correlation functional

used within DFT has been shown to be important and can have large effects on prop-

erties such as the pressure and structure of the hydrogen atoms [95], with the location

of the phase transition depending on the functional used. Models of planetary interi-

ors depend sensitively on uncertainties associated with the choice of exchange-correlation

functional [11].

Van der Waals (vdW) forces are commonly ignored in first principles calculations of hy-

drogen due to the difficulty in including non-local effects within the exchange-correlation

functional of DFT. The non-local nature comes from eq. (2.26) showing the dependence

on the point r to r′. The importance of the vdW-DF2 functional [104] on hydrogen is ex-

pected to decrease with increasing temperature and pressure due to greater kinetic forces

masking the relatively weak vdW forces. Recent results comparing vdW-DF2 to the es-

sentially exact Quantum Monte Carlo (QMC) simulations [101] shows more favourable

results than PBE. Another possible explanation for this functional’s improved results is

that it is tuned towards exact-exchange [159]. Further, the LLPT location in pressure is

56



Chapter 4 4.2 Methods

tested in [101] and shows vdW-DF2 agreeing with error bars with HSE. This gives further

motivation to using vdW-DF2 in the simulations of hydrogen.

4.2 Methods

I have tested differences in various thermodynamic properties predicted between the vdW-

DF2 [104, 194] and the GGA-PBE [195] functionals as implemented in VASP (Vienna

Ab initio Simulation Package) [192]. First principles simulations are conducted for pure

hydrogen within DFT where the Projected Augmented Wave method (PAW) [165,197] is

used as the solution to the electronic structure and calculates the total energy, forces and

stresses.

After a simulation is converged, the radial distribution function g(r) can be calculated,

giving the proton-proton correlation function,

g(r) =
1

4πr2

1

Naρ

Na∑
i=1

Na∑
k 6=i
〈δ(r − |rk − ri|)〉 (4.1)

where ρ is the number density (ρ = Na/V ), r is the particle distance in angstroms and

subscripts i and k refer to individual atomic species.

The principal Hugoniot is calculated from my simulations for comparison to experimental

Hugoniot data for deuterium. Conservation of energy, mass and momentum give the

Rankine-Hugoniot equation, eq. (3.32).

From experimental data on deuterium an initial density of 85.5 kg m−3 [23] at 20 K

is used. The initial internal energy is calculated by a conjugate-gradient relaxation on

a final state from a MD simulation conducted at the initial density at 1000 K giving

E0 = −3.799 eV/atom. As DFT does not account for quantum effects the internal energy

is corrected by adding the quantum-mechanical harmonic oscillator and subtracting the
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classical vibrational energy per atom eq. (3.33).

Comparisons between simulations using different numbers of k-points show no change from

a sampling of the Brillouin zone at zero wave vector (k = 0, Γ point) to any higher order

k-point sampling. I therefore chose a Γ point sampling as sufficient for hydrogen. Tests

were also carried out for the plane-wave cut-off within VASP. Convergence of the internal

energy was found at 1200 eV to within ∼ 0.2 meV/atom and is used throughout these

results.

4.3 Results

4.3.1 Equation of State

All simulated temperatures and densities conducted for pure hydrogen are shown in fig. 4.1.

The inset in fig. 4.1 shows vdW-DF2 and PBE results at the highest density conducted

(9000 kg m−3) at 1000 K, 2000 K and 5000 K showing pressure increasing with temperature

also at higher densities. This behaviour is followed at all densities except at 1000 - 2000

K. At 2000 K just after its gradual (second-order) phase transition where the pressures

here are below that of 1000 K until 1000 K reaches its first-order phase transition, fig. 4.2.

PBE pressures are shown to be smaller than vdW-DF2 with results of 2000 K and 5000

K having significant differences. At the higher temperatures of 10 kK and above results

show identical pressure. This shows the effect of these functionals on the pressures to be

negligible for temperatures at and above 10 kK

The phase transition is first-order in character at 1000 K showing a van der Waals loop

in pressure-density space (fig. 4.2). The properties of the first-order phase transition

extracted via the Maxwell equal area construction converge at 1024 atoms as there are

insignificant differences to 2048-atom simulations and thus I use a 1024-atom system for

analysis of the phase transition. The vdW-DF2 phase transition results are shown in
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Figure 4.1: Pressure as a function of density for different isotherms of hydrogen. vdW-
DF2 functional (open symbols): 1000 K (purple), 2000 K (blue), 5000 K (light green), 10
kK (green), 20 kK (orange) and 50 kK (red). For comparison, PBE (dashed line, closed
symbols) at 2000 K, 5000 K and 10 kK. Inset: Highest density simulated at 9000 kg m−3

of all temperatures 1000 K to 50 kK. Also showing 10 kK PBE.
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(fig. 4.2 Lower inset) showing a significant shift in the phase transition from ∼900 kg m−3

and 181 GPa for PBE to ∼1270 kg m−3 and 449 GPa for vdW-DF2.

The constant volume heat capacity (CV /NkB) is shown in fig. 4.3. The heat capacity

shows the effect of the phase transition at 1000 K producing a relatively sudden change

(sharp increase) at the phase transition density ∼1300 kg m−3 and this feature is shown to

continue to higher temperatures of 5000 K at ∼340 kg m−3. I also see this discontinuity in

the 256 atom simulations of 3000 K at ∼700 kg m−3. PBE results show the discontinuity

feature in CV at the phase transition location predicted by PBE simulations occurring at

∼900 kg m−3. For the higher temperatures reported (T ≥ 10 kK) the heat capacity shows

a non-ideal behaviour (where CidealV /NkB = 1.5), where no further discontinuity due to

phase transitions are seen. CV is shown here to decrease with increasing temperature

beyond the density of ∼ 2500 kg m−3 where below this density results of CV increase with

increasing temperature.

Anomalies in the Grüneisen parameter (γ) occur at the same density-temperature regions

as those in CV (fig. 4.3). The Grüneisen parameter is seen to increase with increasing

temperature at 1000 K to 5000 K the opposite to the trend seen in CV . At higher tem-

peratures (T ≥ 10 kK) the Grüneisen parameter is shown to decrease with increasing

density and decrease with increasing temperature. A cross over of temperature effects

occurs at ∼ 600 kg m−3 for the higher temperatures where the lower temperatures show

an increase in Grüneisen parameter with increasing temperature throughout the densities

sampled. Results show a tendency towards an ideal value of the Grüneisen parameter

(2/3) as temperature and density are increased.

The principal Hugoniot of Deuterium (D2) using vdW-DF2 is shown in fig. 4.4, calculated

from the experimental D2 initial condition of 85.5 kg m−3 at 20 K and initial internal en-

ergy -3.799 eV/atom, and using eq. (3.32). Principal Hugoniot simulations are conducted

with 256 atoms as agreement in pressures and internal energies is seen with 1024 atoms

at the lower densities simulated here, well below the phase transition. Good agreement
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Figure 4.2: Pressure as a function of density for 1000 K (purple), 2000 K (blue) and 5000
K (light-green) isotherms of hydrogen (Temperatures are coloured equally for main and
inset plots). VdW-DF2 (open circles) and PBE (closed circles). Upper inset: PBE phase
transition showing dependence on atom number used. Phase transition marked with black
dashed lines. Simulations of 1024 atoms are purple circles, 2048 atoms are red squares,
512 atoms are green squares and 2000 K PBE are closed circles. Results of Morales et
al. [79] using PBE with 432 atoms shown as black triangles. Lower inset: vdW-DF2 phase
transition with black dashed lines marking phase transition area. Errors are smaller than
symbol sizes typically < 0.17 GPa (Root mean square deviation error).
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Figure 4.3: top panel: Heat capacity (CV /NKB) and bottom panel: Grüneisen parameter
both as a function of density. VdW-DF2 (solid lines, open symbols) from fluctuation
methods at 1000 K (purple), 2000 K (blue), 3000 K (cyan, 256-atoms), 5000 K (light-
green), 10 kK (green), 20 kK (orange) and 50 kK (red). PBE results (dotted line, closed
circles) are shown for 1000 K (purple) only.
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Figure 4.4: Deuterium principal Hugoniot. Results are shown for our 256 atom simulations
on a comparison to deuterium initial density of 85.5 kg m−3 (blue solid line). Data from
shock experiments are shown for laser-driven shock of Hicks et al. [26] (blue circles),
impedance-match method of Knudson et al. [23, 40] (orange triangles), explosive shock
Grishechkin et al. [51] (green diamonds), Boriskov et al. [50] (green circles) and Belov et
al. [21] (green squares). Results from various chemical models: Ross [54] (black dashed
line), Kerley et al. [53] (green dashed). From FVT: from Juranek et al. [198] (purple
dashed line). From PBE: Holst et al. [199] (black solid line), Caillabet et al. [200] (red
dashed line), Desjarlais [201] (purple stars). RPIMC: Militzer et al. [202] (orange stars).
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Figure 4.5: Temperature as a function of pressure through the principal Hugoniot of deu-
terium. Comparison of the D2 Hugoniot from various theoretical studies and experimental
data in the P-T diagram. Z machine experiments of Bailey et al. [203] are red diamonds,
laser experiments of Collins et al. [92] are green squares. Dashed line results (green, red
and black dashed lines) are as in fig. 4.4 with the inclusion of the liquid hydrogen principal
Hugoniot laser-driven shock data of Sano et al. [39] are black open circles.

is seen with Knudson et al. [23, 40] and with PBE results at high pressure from Holst et

al., Caillabet et al. and Desjarlais [199–201] though showing disagreement for the location

of maximum compression. There is generally good agreement at lower pressures with the

slope matching experimental results of Knudson et al..

Temperature against pressure along the principal Hugoniot is shown in fig. 4.5. Experi-

mental data of Bailey et al. show large discrepancies at high pressures and temperatures

but good agreement is seen due to the scatter of their data. Excellent agreement is seen

below 50 GPa and 10 K between all work shown.

4.3.2 Structure

I now analyse the atomic structure of the system by means of the radial distribution

function to gain further insight into the change in structure through the phase transition

as molecular hydrogen becomes atomic. Figure 4.6 shows the vdW-DF2 radial distribution
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Figure 4.6: 1000 K Radial Distribution Functions of hydrogen. vdW-DF2 results through
a range of densities going through the liquid-liquid phase transition. Densities shown:
1500 kg m−3 red line, 1325 kg m−3 blue line, 1265 kg m−3 green line, 1107 kg m−3 orange
line and 902 kg m−3 black line.

function evolution at 1000 K. A gradual change from molecular, at lower densities, to a

more atomic system at higher densities is seen. The first (molecular) peak eventually fades

and the peak position shifts to larger distances, indicating the nuclei are separating as the

density is increased.

The dissociation fraction (β) calculated using eq. (3.28) is shown in fig. 4.7. The molecular

to atomic transition occurs over a broader range as density and temperature increases.

Nevertheless the transition is well defined even at 5000 K. The structural transition occurs

at higher densities in vdW-DF2 as compared with PBE: the hydrogen atoms are kept in

the molecular state to higher densities.

Interpolated pressures at β = 0.5 are shown in fig. 4.8 (i.e. half atomic and half molecular)

for vdW-DF2 and are compared with my PBE and PBE from Tamblyn et al. [204]. This

can be seen as the phase diagram boundary for a molecular to atomic state for liquid

hydrogen where vdW-DF2 is predicting a shifted boundary to higher pressures. Results

are also shown here of the pressures of the anomalies in heat capacity and Grüneisen
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Figure 4.7: Dissociation fraction as a function of density. Values are from taking bond
lifetime as ∼ 80 fs shown as solid lines. VdW-DF2 1000 K (purple, open circles) showing
the location and range of the liquid-liquid phase transition in density with black arrow
markers, PBE 1000 K (purple, closed circles). VdW-DF2 2000 K (blue, open circles), PBE
(blue, closed circles). 3000 K vdW-DF2 (cyan, open circles). 5000 K vdW-DF2 (light-
green, open circles), PBE (light-green, closed circles). 10 kK vdW-DF2 (green, open
square) showing a slightly lower than fully atomic value at 405 kg m−3 (PBE completely
atomic at this condition). Vorberger et al. [91] PBE results using 128 atoms are shown as
closed triangles for 2000 K and 5000 K.
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Figure 4.8: Pressures at predicted phase transition. Values are interpolated for disso-
ciation fraction β = 0.5 with vdW-DF2 (blue open circles) showing densities from (all
densities shown here are reported left to right): 371, 723, 921 and 1284 kg m−3 and PBE
(purple closed circles, solid line) showing densities: 264, 670 and 912 kg m−3 shown with
PBE results of Tamblyn et al. [204] (orange crosses, dashed line). Results are shown for
the phase transition predicted by the heat capacity (CV ) and Grüneisen parameter (γ)
with vdW-DF2 (red open circles, solid line) showing densities: 368, 719, 912, and 1300
kg m−3 and for PBE (red closed circles, dashed line) at densities: 659 and 923 kg m−3.
Results are also shown for the predicted phase transition from the self-diffusion coefficient
(shown in chapter 5) for vdW-DF2 (green open circles, solid line) with densities: 405, 900
and 1265 kg m−3 and for PBE (green closed circles, dashed line) at densities: 301, 593 and
301 kg m−3. Comparisons are made of the pressures and temperatures at a conductivity of
0.2 ×106 S m−1 from this work DFT vdW-DF2 (open orange circles, dotted-dashed line)
to Path Integral Molecular Dyanmics (PIMD) simulations also using the vdW-DF2 func-
tional [95] (black open diamonds). The solid to liquid melt line of hydrogen as calculated
from first principles Bonev et al. [78] (light-green dashed line) and the solid hydrogen ex-
trapolated band gap closure in diamond anvil cell experiments of Loubeyre et al. [2] (black
square). Jovian isentropes are from French et al. [205] (black solid line), Nettelmann et
al. [206] (black dotted line) and as shown in Bagenal et al. [12] both the Jovian isentrope
(black dashed line) and the Saturnian isentrope (black dashed dotted line).
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parameter from vdW-DF2 and PBE showing good agreement with the β = 0.5 curves.

Isentropes show these gas giant planets should pass the phase transition at 5000 K where

no first-order behaviour is present.
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4.4 Discussion and Conclusions

VdW-DF2 is shown to predict a first-order phase transition in hydrogen at 1000 K at the

pressure of 449 GPa. The density contrast is 22 kg m−3. The phase transition is shown

to persist to higher temperatures (shown up to 5000 K) but it is no longer a first order

phase transition (no van der Waals loop). The phase transition occurs at progressively

lower densities with increasing temperature giving the phase diagram shown in fig. 4.8

marking the molecular to atomic line. This figure shows the phase transition pressures as

predicted from the dissociation fractions, the heat capacity (and γ) and the self-diffusion

coefficient (chapter 5) showing all these properties producing the same line up to 5000 K.

The similarities of the phase transition properties predicted by both functionals are also

seen in the dissociation fraction (fig. 4.7). While there is a density shift for the phase

transition, the gradients of the dissociation fraction (at the phase transition) is similar for

both functionals. Results for both functionals show the first-order behaviour vanishing

after 1000 K with 2000 K showing a second-order phase transition. Similarities are also

seen in both functionals with the CV and γ results with the anomalies showing equal

magnitude but with the shifted density location.

The higher temperatures of 10 - 50 kK (fig. 4.1) show differences in pressure between both

functionals to be minimal at all densities shown. The agreement is shown to occur at 10

kK with vdW-DF2 and PBE results being approximately identical. Other properties are

also equal at these higher temperatures such as the CV and γ showing vdW-DF2 effects

to only be important below a temperature of 10 kK.

We expect the vdW-DF2 results presented here to be more accurate than earlier PBE

results on the basis of comparison with essentially exact calculations based on Quantum

Monte Carlo (QMC). Comparison of test sets of condensed periodic molecular and atomic

structures show that vdW-DF2 agrees better with QMC energetics than does PBE [101].

QMC molecular dynamics simulations show a much higher molecular to atomic transition
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pressure than does PBE [207]. We also find a much higher transition pressure with vdW-

DF2, although not nearly so high as the QMC molecular dynamics study. Some caution

should be applied to the QMC molecular dynamics results however, as they are based

on much smaller systems than we have featured here (256 atoms vs. our 1024 atoms).

Further, as shown in fig. 4.8 DFT vdW-DF2 results agree well with PIMD vdW-DF2

results of [95], showing nuclear quantum effects described in the PIMD approach to have

negligible effect above 2000 K.

The differences between vdW-DF2 and PBE are largest in the vicinity of the phase trans-

formation. The vdW-DF2 functional in addition to predicting a higher pressure for the

molecular to atomic transition also predicts a much smaller density contrast across the

transition. The density in vdW-DF2 is lower than that in PBE over a wide pressure

interval in the temperature range 1000-5000 K. Differences between the two functionals

however diminish at high temperatures, and at densities both higher and lower than the

liquid-liquid phase transition. The higher temperatures of 10 - 50 kK (fig. 4.1) show dif-

ferences in pressure between both functionals to be minimal at all densities shown. The

agreement is shown to occur at 10 kK with vdW-DF2 and PBE results being approxi-

mately identical. Other properties are also equal at these higher temperatures such as the

CV and γ showing vdW-DF2 effects to only be important below a temperature of 10 kK.

Because the difference between vdW-DF2 and PBE becomes small at temperatures greater

than 5000 K, we expect the impact of the newer exchange-correlation functional on models

of the giant planetary structure to be most significant for planets older and colder than

Jupiter or Saturn. The reason is that the Jovian and Saturnian interiors intersect the

structural transition at relatively high temperature (5000 K) and relatively low pressure,

affecting little of the planet’s mass.

We find that vdW-DF2 agrees reasonably well, within large experimental uncertainties,

with the experimental principal Hugoniot at least up to 100 GPa and that the agreement

is comparable to previous PBE calculations. Serious disagreement among different ex-
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periments at high pressure make comparison difficult. Our results lie within and towards

the lower density side of existing experimental Hugoniot points with the maximum com-

pression at ρ/ρ0 = 4.32 as compared with ρ/ρ0 = 4.46 from PBE. Among the sources

of experimental uncertainty that have been discussed are uncertainties in the equation

of state of the standard in impedance matching experiments [26], and the quality of the

sample-standard interface in the case of absolute density measurements at the NOVA

laser [28].

Hydrogen shows an exceptionally clear example of the Widom line: a continuation of

the first order phase transition into the super-critical regime as defined by extrema in

thermodynamic properties. Indeed, the location of anomalies in the compressibility, heat

capacity, and Grüneisen parameter all coincide in pressure-temperature space to within

the resolution of our simulation over the entire extent of the Widom line. Moreover

the Widom line in hydrogen is closely linked to changes in the underlying microscopic

physics: thermodynamic anomalies coincide with the change in structure from molecular

to atomic at β = 0.5, and with a rapid increase in the electrical conductivity and self-

diffusion coefficient (chapter 5). The situation contrasts with that of the Lennard-Jones

system in which the structural change across the Widom line is subtle and anomalies in

different thermodynamic properties follow different paths in pressure-temperature space,

converging only at the critical point [208].
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Hydrogen Transport Properties

Ab initio molecular dynamics simulations are conducted on hydrogen at conditions of gi-

ant planet interiors. Transport properties are calculated such as the self-diffusion and

electrical conductivity where these properties are shown to have anomalies at the pre-

dicted phase transition. Conductivity is shown through the phase transition boundary in

a comparison between exchange-correlation used showing larger differences at lower tem-

perature. Finally, conductivity and reflectivity are calculated along the principal Hugoniot

and compared with experimental data showing excellent agreement. Analysis of the under-

lying properties that affect the conductivity show structural properties to be of significant

importance in explaining its change with temperature and density.

5.1 Introduction

The onset of metallic conductivity in hydrogen and its subsequent change with temper-

ature and density has been of great interest to scientists and has been studied through

various theoretical methods such as semi-classical models [67, 209], ab-initio first prin-

ciples using DFT [79, 210] and experimental methods [20, 29]. Experimental methods

have had important advancements in measuring conductivity at the extreme conditions
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required for hydrogen metallisation. Single shock experiments [19, 29] and double shock

experiments [20] show evidence for hydrogen becoming conductive at extreme conditions.

Theoretical studies have also shown metallisation in hydrogen and its change with increas-

ing pressure and temperature [79,210,211]. There are still many questions as to the exact

characteristics of hydrogen conductivity and what factors are involved in its onset and

change.

Here I will show the importance of which functional is used and how this changes the

onset of electrical conductivity in hydrogen. Mott-Ziman methods are shown and give

insight to the mechanism responsible for electrical conductivity at these conditions where

this method has shown good agreement in describing conductivity against experiment for

alkali metals [212,213] and for some other materials [214–216]. An interesting point shown

here is the maximum electrical conductivity reached at various densities with increasing

temperature and the comparison between the Kubo-Greenwood and Mott-Ziman methods

of the onset in conductivity. Reflectivity is shown next with emphasis on comparison to

experimental work.

5.2 Results

Results of the self-diffusion coefficient, calculated from the Mean Square Displacement

using the relation determined by Einstein (eq. (3.25)), in fig. 5.1 show a large difference

with functional used. Here I compare to the self-diffusion coefficient of Stevenson et al. [16]

obtained from their hard sphere model. Contrary to the DFT results the hard sphere model

shows a decrease in self-diffusion coefficient from molecular to atomic phases.

The electrical conductivity from Kubo-Greenwood calculations are shown in fig. 5.2. Re-

sults show the conductivity increasing rapidly with compression and temperature in the

vicinity of the liquid-liquid phase transition. VdW-DF2 shows a lower conductivity than

PBE due to the shift to higher pressure and density of the phase transition. At higher
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Figure 5.1: Hydrogen self-diffusion coefficient against density. VdW-DF2 results are shown
as open circles from 1000 K (purple), 2000 K (blue) to 5000 K (light-green) and open
squares from 10 kK (green), 20 kK (orange) to 50 kK (red), where closed circles and
squares are of PBE results. From the hard sphere model of Stevenson et al. [16] dotted
lines refer to metallic state and at the temperatures of 1000 K and 2000 K dashed lines
(with shaded region) show molecular state diffusions.

densities the conductivity continues to increase on compression but more gradually. On

heating at high density the conductivity decreases with maxima in conductivity shifting

to lower pressures at higher temperatures, where at the highest pressure the maximum is

seen at 2000 K. Good agreement is seen with Path integral Molecular Dynamics (PIMD)

results at 3000 K and 5000 K. The minimum metallic conductivity, as calculated from

Mott [217] is shown as the grey line from 0.03e2/h̄2a, where a is the Wigner-Seitz radius,

e is the electron charge and h̄ = h/2π where h is the Planck constant. DC conductivity

is plotted along the principal Hugoniot of deuterium in fig. 5.3 showing good agreement

with experimental single shock data of Nellis et al. [29].

Reflectivity calculated from the electrical conductivity from the Kubo-Greenwood formula,

is shown in figs. 5.4 and 5.5. General agreement is seen for vdW-DF2 and precompressed

experimental data of Loubeyre et al. [22], where the highest reflectivities reported are at

a temperature of ∼ 5000 K giving good agreement to the vdW-DF2 5000 K. PBE results

show a large shift to higher reflectivities. The reflectivity along the principal Hugoniot

74



Chapter 5 5.2 Results

Figure 5.2: DC conductivities of hydrogen at 1000 K (purple), 2000 K (blue), 5000 K
(light-green), 10 kK (green), 20 kK (orange) and 50 kK (red) with vdW-DF2 (solid lines,
open circles). PIMD results using vdW-DF2 functional (triangles) [95] at 3000 K (cyan)
and 5000 K (light-green). Note: all are 1024 atoms except the 3000 K (cyan open circles)
which are 256 atoms simulations showing good agreement with PIMD (triangles). PBE
are dashed lines with closed circles. The Mott minimum conductivity is shown as the solid
grey line [217].

Figure 5.3: DC conductivity along the principal Hugoniot of deuterium (coloured line indi-
cating temperature). Experimental results (squares) are light-gas gun shock experiments
of Nellis et al. [29] coloured for temperature as in scale. PBE principal Hugoniot results
are from Holst et al. [199] (black).
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Figure 5.4: Reflectivity at 532 nm against pressure. Results are from vdW-DF2 (open
symbols) at temperatures of 1000 K (purple), 2000 K (blue), 5000 K (light-green), 10 kK
(red), 20 kK (blue), 50 kK (green). PBE (closed circles and squares) shown at 1000 K,
2000 K, 5000 K and 20 kK. Errors are approximately the size of symbols. Loubeyre et
al. [22] precompressed experiments from 3500 - 4300 K (up triangles) and 4600 - 5200 K
(down triangles) coloured for temperature as in legend.

agrees within experimental scatter with the results of Loubeyre et al. [28] and Celliers et

al. [218].

The electrical thermal conductivity (κ) is shown in fig. 5.6 as calculated by the Chester-

Thellung formulation of the Kubo-Greenwood formula (eq. (3.15)). Thermal conductivity

is seen to increase with increasing temperature and density at all conditions. The Lorenz

number (L) is shown in the inset of fig. 5.6 calculated with the thermal conductivity and

electrical conductivity giving the expected free-electron value in the atomic phase showing

the behaviour of a metal. The Lorenz number is seen to differ from this value in the

molecular state at all temperatures. Hydrogen therefore does not follow the Wiedemann-

Franz Law at pressure < 400 GPa. This indicates the importance of inelastic scattering

of electrons.

DC conductivity results are shown at 0.5 dissociation in fig. 5.7. Conductivity increases

on compression and cooling along the Widom line in both vdW-DF2 and PBE results.
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Figure 5.5: Reflectivity at 808 nm and 532 nm along the principal Hugoniot of deuterium
(multi-coloured line indicating temperatures as in legend). Laser-driven shock experiments
by Loubeyre et al. [28] at 532 nm with multicoloured triangles showing temperatures
and the red solid line is a guide to the eye. Shock compression experiments of Celliers
et al. [218] at 808 nm shown along experimental principal Hugoniot (green) and PBE
principal Hugoniot results from Holst et al. [199] (black) also at 808 nm. FVT results [219]
are shown as dashed orange line.

The conductivity from vdW-DF2 is lower than that from PBE at β = 0.5 indicating that

vdW-DF2 has a larger pseudogap for similar underlying ionic arrangement.

Mott-Ziman calculation results are shown with conductivity from the Kubo-Greenwood

method in fig. 5.8 showing remarkably good agreement in the onset of metallisation oc-

curring at the phase transition of hydrogen.

Figure 5.9 shows the local maximum in the conductivity on heating which occurs over a

wide range of density in both Kubo-Greenwood and Mott-Ziman methods. The maxima

occur at approximately 2000 K at 9000 kg m−3, 5000 K at 1037 kg m−3 and 50 kK at 405

kg m−3.

To gain further insight into the origin of metallisation we examine the two factors that

limit conductivity: the structure factor and the pseudogap. Structure factors of vdW-

DF2 results are shown varying with density at 1000 K (top fig. 5.10) and varying with
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Figure 5.6: Thermal Conductivity as a function of pressure (vdW-DF2). 1000 K (purple),
2000 K (blue), 5000 K (light-green), 10 kK (green), 20 kK (orange) and 50 kK (red). Inset:
Results of Lorenz number (L/L0) against pressure, with vdW-DF2, showing differences
to the proportionality constant L. The constant value expected of L is marked as a solid
black line falling behind 5000 K results.

Figure 5.7: DC conductivity at the predicted phase transition at the pressures as in fig. 4.8.
Pressure increases with decreasing temperature. Values are interpolated for β = 0.5 from
vdW-DF2 (blue open circles, solid line) and PBE (purple closed circles, solid line). The
Mott minimum conductivity is shown as the solid grey line [220].
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Figure 5.8: DC conductivities as a function of pressure. Showing Mott-Ziman method for
comparison to Kubo-Greenwood method. Results are of vdW-DF2 at 1000 K (purple),
2000 K (blue), 5000 K (light-green), 10 kK (green), 20 kK (orange) and 50 kK (red) from
the Kubo-Greenwood method (solid lines) and Mott-Ziman method (dashed lines).

Figure 5.9: Maximum conductivity of hydrogen from the Kubo-Greenwood and Mott-
Ziman methods for 9000 kg m−3 (green), 1037 kg m−3 (red) and 405 kg m−3 (orange).
Conductivities from the Mott-Ziman method (dashed-lines).
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temperature at a constant density of 1037 kg m3 (bottom fig. 5.10) where the density of

states at this density is also shown in fig. 5.11. These figures illustrate the contribution to

the integral (2kF ) of the structure factor (S(q)) in the Mott-Ziman formulation, eq. (3.19),

for conductivity, showing the expected increase with temperature and density up to 5000

K and the decrease in conductivity from 10 - 50 kK. Also shown in fig. 5.11 (inset) is the

g factor as in eq. (3.21) showing the influence of the pseudogap on the non interacting

conductivity.
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Figure 5.10: Structure Factors of hydrogen. top: 1000 K vdW-DF2 structure factor
evolution through densities as in figure 4.6. Triangles mark location of 2kF for evaluation
of conductivity from the Mott-Ziman formalism as in equation (3.19). Bottom: Structure
factor dependence with temperatures 1000 K - 50 kK at the density 1037 kg m−3 where
the dashed line marks the 2kF location.
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Figure 5.11: Density of States of hydrogen at the Fermi level of ρ =1037 kg m−3 at
all temperatures. Colours referring to temperatures as in bottom fig. 5.10. Fermi-Dirac
distributions are shown for 1000 K and 50 kK (dashed lines). Inset: g factor from the
Mott-Ziman formula eq. (3.21) for this density.
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5.3 Discussion and Conclusions

Anomalies in transport properties closely follow the Widom line defined by anomalies in

thermodynamic properties. Therefore the Widom line is not only defined by the thermo-

dynamics of the system but also the underlying atomic structure and dynamics. Super-

critical anomalies in the dynamics mark the Frenkel line. The Frenkel line and Widom

line are not coincident in general. However in hydrogen they are providing a remarkably

clear connection between the dynamical properties and underlying microscopic processes.

VdW-DF2 partially corrects the band gap problem in DFT as shown by better agreement

with experimental Hugoniot conductivity, where PBE is shown to over-estimate the con-

ductivities particularly at low values of conductivity and reflectivity (figs. 5.3 and 5.5).

This overestimation is also shown in the dissociation fraction conductivities where vdW-

DF2 predicts a lower conductivity at equal pressures. VdW-DF2 shows a smaller con-

ductivity than PBE when compared at similar structural states, i.e. half dissociation

(fig. 5.7).

The conductivity from the Mott-Ziman method is in remarkably good agreement with the

Kubo-Greenwood method (fig. 5.8). The agreement points towards the ionic structure

playing a significant role in electron transport.

Analysis of the structure shows it’s importance in the description of the conductivity. From

the structure factor in fig. 5.10 it is clear that the increase in conductivity with temperature

is initially expected due to the initial decrease in scattering associated with the decrease

in the first peak in the structure factor. Diminished scattering also lifts the pseudogap

(fig. 5.11). The pseudogap is shown to sharply vanish with increasing temperature.

The conductivity decreases with increasing temperature, at high temperature. This is due

to changes in the structure factor as the area involved in the Mott-Ziman calculation is

shown (fig. 5.10) to increase, as after the peak disappears the low wavevector (q) structure

begins to increase and would increase scattering and hence decrease the conductivity.
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Planetary Applications of

Hydrogen Helium Simulations

I perform ab initio molecular dynamics simulations of hydrogen-helium fluids giving insight

into giant planetary interiors. Addition of helium increases the pressure-temperature range

over which H2 molecules are stable. The molecular to atomic transition is shifted to higher

pressure as compared with pure hydrogen, as are anomalies in the heat capacity, Grüneisen

parameter, self-diffusion coefficient, and electrical conductivity that are associated with

the transition. Simulations in the NPT ensemble with varying helium number fractions

show that vdW-DF2 predicts much lower de-mixing temperatures than PBE, predicting

complete solubility throughout the interiors of Jupiter and Saturn contrary to recent PBE

results [115].

6.1 Introduction

The modelling of gas giant interiors requires accurate equation of state data: results are

sensitive to small uncertainties [6]. Correctly modelling the interior of Jupiter and Saturn
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with constraints set by observation (with more in the near future from the upcoming NASA

Juno mission) will become more challenging. This requires a more accurate equation of

state and will lead to a better understanding of the interior structure, evolution and

origin. An increased accuracy in available results for hydrogen and helium will lead to

improved models, which in turn will lead to improved understanding of internal fluid

dynamics, magnetic field generation, the evolution of the planet [112] and the size or even

the existence of a rocky core [221,222].

Jupiter and Saturn are generally accepted to have been formed at the same time as the

Sun, being composed equally from the surrounding molecular cloud constituents [223].

A large number of gas giant exoplanets have been discovered through ever improving

observational techniques [224]. This has sparked new found interest in high pressure

hydrogen and helium to better understand these exoplanets, ranging from Jupiter like in

mass (MJ) to much larger ∼ 10MJ .

The interesting problem with current understanding is that Saturn and Jupiter both have

an excess in luminosity, where they emit more heat than which they receive from the

Sun. One possible explanation for this excess is release of latent heat by the fall of

helium under gravity as it de-mixes from the hydrogen interior, termed helium rain. This

feature requires that the helium become immiscible in hydrogen at the extreme conditions

present. Recent PBE simulations in the NV T ensemble using thermodynamic integration

to obtain non-ideal entropies have placed helium de-mixing within the outer region of

the interior of Saturn [115]. Differences in de-mixing temperatures depend on theoretical

methods implemented where Pfaffenzeller et al. [114] using structural minimisation, find

systematically lower de-mixing temperatures and Lorenzen et al. [225] using PBE, with

ideal entropy of mixing, show similar results to those of Morales et al. [115], who used full

thermodynamic integration within PBE.
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6.2 Methods

Simulations are conducted with vdW-DF2 and PBE. I carry out simulations as in previous

chapters but with the inclusion of helium to the cell at the primordial composition where

XHe = 0.09 is the helium number fraction giving 934 hydrogen and 90 helium atoms

(1024 atoms in total). In starting the hydrogen-helium (H-He) simulations I take the

final snap shot from a pure hydrogen system and make a random selection of 90 particles

to be helium particles. I compare properties to the pure hydrogen system. Properties

calculated are as before with the electrical conductivity being calculated from the Kubo-

Greenwood formula. The equation of state is obtained in the NV T ensemble through

Born-Oppenheimer Molecular Dynamic (MD) simulations which give the pressure and

internal energy at given density and temperature. NV T settings are as per the pure

hydrogen case using a Nosé-Hoover thermostat.

I also conduct NPT ensemble calculations, with vdW-DF2, for a range of hydrogen-

helium fractions at 1000 GPa and temperatures of 5000 K and 10 kK. NPT simulations

are performed with a total of 1024 atoms but with varying XHe from 0.0 (pure hydrogen)

to 1.0 (pure helium). Settings used for NPT ensemble simulations are identical to that

used for the NV T ensemble simulations with a plane wave cut-off energy equal to 1200 eV,

a value of 1× 10−6 eV as the break condition in the electronic self-consistency loop and a

sampling of the Brillouin zone at zero wave vector (k = 0, Γ point). For NPT simulations

the inclusion of the Souza-Martins barostat as implemented by Hernandez [171,172] with

a fictitious mass of 1× 10−4 amu where the Nosé-Poincaré thermostat of Bond et al. [173]

is used.

From the NPT results I calculate the Gibbs energy of mixing (∆G = ∆H − T∆S) and

estimate the de-mixing temperature when hydrogen and helium become immiscible to see

whether helium rainout occurs within the interiors of Jupiter and Saturn. Entropy, S, is

calculated in the ideal mixing limit as ∆SLM (x) = xlnx+ (1− x)ln(1− x), where x is the

helium number fraction.
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The isentrope is calculated via eq. (3.34) from the Grüneisen parameter (γ) giving the

temperature through a series of densities. With this, comparisons are made to previous

estimates of the Jovian isentrope. For Jovian interiors the initial condition is taken as

a pressure of 1 bar, a temperature of 170 K [12, 226], a primordial helium abundance

and an initial density of 0.164 kg m−3. Also I calculate the Saturnian isentrope from an

initial temperature of 134 K [227] and a density of 0.21 kg m−3 at 1 bar pressure. Jupiter

contains a helium abundance by mass of YHe = 0.231 as reported from the Galileo entry

probe [228]. For both planets I have chosen a primordial value as to apply to a more

general giant exoplanet, using a value of YHe = 0.278 by mass [3].

6.3 Results

The full equation of state, as calculated with vdW-DF2, is shown for the primordial H-He

mixture in fig. 6.1. Pressure is shown to increase with increasing density and temperature.

An increase in pressure is seen at 2000 K from PBE to vdW-DF2. The differences in

functional used are negligible at 10 kK and above.

Comparison of pure hydrogen and the primordial H-He mixture at 1000 K (fig. 6.2) shows

that when helium is added to hydrogen the first-order phase transition is washed out.

A higher order anomaly remains (change in compressibility) and this is shifted to higher

pressures in H-He.

Comparisons are made at 2000 K in fig. 6.3 showing vdW-DF2 and PBE for pure hydrogen,

primordial H-He mixture and pure helium simulations. VdW-DF2 systematically predicts

higher pressures than PBE in the H-He mixture. For pure helium, vdW-DF2 and PBE

yield identical results.

Dissociation of H-H in the primordial fraction H-He mixture simulations are shown in

fig. 6.4. Hydrogen in the H-He mixtures remains in the molecular phase to larger densities

relative to the hydrogen dissociation in pure hydrogen. The influence of helium on the
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Figure 6.1: H-He mixture of 0.09 helium number fraction. VdW-DF2 (open circles, solid
lines) pressures of 2000 K (blue), 5000 K (light-green), 10 kK (green), 20 kK (orange) and
50 kK (red). For comparison PBE H-He (dashed lines) simulations at 2000 K (blue closed
circles, dashed lines) and 20 kK (orange closed squares, dashed line). Inset: Pressures
at the highest density simulated showing ρ =11 373 kg m−3 at the lower temperatures of
2000 K and 5000 K for vdW-DF2 (open circles). The other results are as in main plot.

Figure 6.2: 1000 K PBE pure hydrogen (purple dashed line, open circles) and H-He mixture
of 0.09 helium number fraction (purple solid line, open circles).

88



Chapter 6 6.3 Results

Figure 6.3: Pressure density at 2000 K. Results are of vdW-DF2 (open circles) and PBE
(closed circles). Pure H (blue), H-He at 0.09 helium number fraction (red) and pure He
(green).

Figure 6.4: H-H dissociation fraction from H-He simulations at 0.09 helium number frac-
tion. Temperatures shown of 2000 K (blue) and 5000 K (light-green). Open circles with
solid lines are vdW-DF2, and closed circles are PBE (2000 K). Also shown for compari-
son is the vdW-DF2 pure hydrogen (open circles, dashed lines) dissociation along 1000 K
(purple), 2000 K (blue) and 5000 K (light-green). Dissociation fraction using the bond life
time method with PBE using 64 hydrogen and 64 helium (XHe = 0.5) atoms of Vorberger
et al. [91] are shown as closed triangles for 5000 K and 2000 K.
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location of the dissociation lessens on heating and has nearly vanished by 5000 K. PBE

predicts dissociation at lower density than vdW-DF2.

The radial distribution function also shows the influence of helium on the H2 molecular

fraction (fig. 6.5). The H-H radial distribution function shows that hydrogen becomes

increasingly molecular with increasing helium fraction. VdW-DF2 predicts greater molec-

ular fraction than PBE at similar pressure, temperature and composition.

The molecular to atomic transition (fig. 6.6) occurs at higher pressure in the H-He pri-

mordial mixture as compared with pure hydrogen for the vdW-DF2 functional at all tem-

peratures. The difference is minimal at 5000 K close to where giant planetary isentropes

cross the structural transition.

The heat capacity (CV ), (fig. 6.7) also reflects the shift of the phase transition from pure

hydrogen to H-He primordial mixture simulations. The effects of the phase transition are

seen up to the 5000 K with a small discontinuity at a density of ρ ∼636 kg m−3. Heat

capacity at higher temperatures T ≥ 10 kK for vdW-DF2 and pure hydrogen of vdW-

DF2 are very similar, showing that helium has little effect on the heat capacity. Previous

results from French et al. show a value of the heat capacity that is systematically lower

than mine. The difference cannot be attributed to the exchange-correlation functional

(vdW-DF2 vs PBE) I note that the difference is comparable to the electronic contribution

to CV and speculate that the contribution was neglected in the earlier results.

The Grüneisen parameter (γ), is shown for vdW-DF2. Small differences between pure

hydrogen and primordial H-He are still present at 5000 K (not shown) and are still smaller

at higher densities.

Isentropes are shown in fig. 6.8 comparing vdW-DF2 H-He to the Jovian interior modelling

of Nettelmann et al. [206] where they use PBE for the H-He equation of state. My results

show the cooling anomaly associated with the molecular to atomic transition shifted to

higher density as compared with PBE. This produces somewhat colder temperatures at
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Figure 6.5: H-H radial distribution function against helium number fractions. Results are
from vdW-DF2 NPT simulations at 10 kK (Top figure) and 5 kK (Bottom figure) both
at 1000 GPa. H-He fractions shown are 0.9 (purple), 0.7 (light-blue), 0.5 (dark-yellow),
0.3 (orange), 0.2 (green) and 0.0 (black). Morales et al. [115] PBE NV T simulations are
shown at 10 kK and electronic density rS = 0.66 Å (Top figure) and at 8 kK and rs = 0.56
Å (Bottom figure) as squares for helium number fraction 0.9 (black), 0.6 (blue) and 0.0
(red).
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Figure 6.6: H-He at 0.09 helium number fraction mixture pressure and temperature at
half dissociation fraction. Results are of vdW-DF2 (blue open circles, solid lines) and PBE
(purple open circles, solid lines) where lines are a guide to the eye. Pure hydrogen results
as in fig. 4.8 are shown for vdW-DF2 (blue open circles, dashed lines) and PBE (purple
open circles, dashed lines). The solid to liquid melt line of hydrogen as calculated from first
principles Bonev et al. [78] (light-green dashed line) and the solid hydrogen extrapolated
band gap closure in diamond anvil cell experiments of Loubeyre et al. [2] (black square).
Jovian isentropes are from French et al. [205] (black solid line), Nettelmann et al. [206]
(black dotted line) and as shown in Bagenal et al. [12] both the Jovian isentrope (black
dashed line) and the Saturnian isentrope (black dashed-dotted line).
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Figure 6.7: Top panel: H-He Heat capacity (CV /NKB), bottom panel: H-He Grüneisen
parameter both as a function of density and of XHe = 0.09. Results are shown from
the fluctuation method: vdW-DF2 H-He (solid lines, open symbols) and PBE H-He for
2000 K (blue closed circles,dashed line). Results are shown of pure hydrogen vdW-DF2
(blue open circles, dash-dotted line) at 2000 K. Jovian Isentropes are from vdW-DF2
(solid multicoloured line indicating temperature as in scale) and PBE results of French et
al. [205] (dashed multicoloured line indicating temperatures as in scale).
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Figure 6.8: Temperature against density of gas giant isentropic trajectories. VdW-DF2
isentrope for H-He Jupiter (red) by using a primordial helium abundance YHe = 0.278
giving an initial density of 0.164 kg m−3 and a temperature of 170 K at a pressure of 1
bar. Also shown is the Saturnian isentrope (green) with initial conditions of density 0.21
kg m−3 at 134 K and 1 bar pressure. Results are shown for the Jovian isentrope from PBE
results of Nettelmann et al. [206] (black line). Further theoretical results for the Jovian
isentrope using PBE French et al. [205] (purple line) and Becker et al. [229] (orange line)
and the chemical model of Saumon et al. [62] (dashed black line). The Frenkel line from
the β = 0.5 vdW-DF2 results as in fig. 4.8 are shown (blue open circles). Black arrow on
x-axis shows the location of French et al. core-mantle boundary.
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Figure 6.9: DC conductivity comparing pure and mixed (XHe = 0.09) H-He systems.
Conductivities from the Kubo-Greenwood method are shown of 50 kK (red) and 20 kK
(orange). VdW-DF2 results are pure hydrogen (open squares, dashed line) and H-He
mixture (open squares, solid line). Results of Stixrude et al. [59] for pure helium (triangles,
solid line) using Mott-Ziman method.

greater depth. Small differences at low density (ρ < 100 kg m−3) are due to differing

assumptions in the nearly ideal gas regime that lies below that of DFT calculations.

Figure 6.9, shows the comparison of DC conductivities for pure hydrogen, mixed H-He

and the pure helium [59] at 20 kK and 50 kK. As expected our H-He mixture values fall in

between those of pure hydrogen and pure helium. The dependence of σ on helium fraction

is non-linear with a small helium fraction causing a large decrease in σ.

Comparing the vdW-DF2 pure hydrogen and primordial H-He mixture DC conductivities

of 2000 - 50 kK in fig. 6.10, results show a shift in the 2000 K onset of metallisation. The

electrical conductivity of primordial H-He exceeds the minimum metallic value at very low

pressure (50 GPa) along giant planetary isentropes. This pressure corresponds to 90 % at

Jupiter’s radius: nearly all of the Jovian envelope is metallic. VdW-DF2 conductivities are

systematically lower than those of PBE everywhere, due to the larger molecular fraction.

The self-diffusion coefficient of hydrogen in the primordial H-He mixture is smaller than

in pure hydrogen (fig. 6.11). This is attributed to the larger effective size of the helium
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Figure 6.10: H-He mixture (XHe = 0.09) DC conductivities against pressure. VdW-DF2
H-He (open symbols, solid lines) are shown for 2000 K (blue), 5000 K (light-green), 10
kK (green), 20 kK (orange) and 50 kK (red). Additionally pure hydrogen simulations
with vdW-DF2 (open circles, dashed lines) are shown for 2000 K (blue) and 5000 K
(light-green). PBE H-He simulations (closed circles, dashed lines) at 2000 K and 20 kK
are shown for comparison. Jovian Isentropes are from vdW-DF2 (solid multicoloured line)
and PBE results of French et al. [205] (dashed multicoloured line). Also shown is the vdW-
DF2 Saturnian isentrope (dashed-dotted multicoloured line). All isentropes are coloured
by temperature as in scale. The Mott minimum conductivity is shown as the solid grey
line [220].
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Figure 6.11: Self-Diffusion coefficient of hydrogen in H-He (XHe = 0.09) simulations.
VdW-DF2 (open circles and squares) are shown at 2000 K (blue), 5000 K (light-green),
10 kK (green), 20 kK (orange) and 50 kK (red). PBE H-He simulations (dashed lines,
closed symbols) for 2000 K, 5000 K and 20 kK and pure H vdW-DF2 at 2000 K (open
circles, dashed line) is shown for comparison. Jovian Isentropes are from vdW-DF2 (solid
multicoloured line) and PBE results of French et al. [205] (dashed multicoloured line).
Also shown is the vdW-DF2 Saturnian isentrope (dashed-dotted multicoloured line). All
isentropes are coloured by temperature as in scale.
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Figure 6.12: Thermodynamic functions of mixing per atom against helium number frac-
tion. Results are for 5000 K (red) and 10 kK (black). Enthalpy of mixing from NPT
ensemble simulations (open circles, solid lines) at a pressure of 1000 GPa. The ideal
entropy of mixing (TS) for both temperatures (open squares, solid lines).

atoms, reducing the free volume available for diffusive motion. VdW-DF2 produces smaller

self-diffusion coefficients as compared with PBE, although the difference is large only in

the vicinity of the structural transition.

The enthalpy of mixing increases with increasing temperature (fig. 6.12). The enthalpy of

mixing is positive except at very low helium fractions.

The Gibbs energy of mixing ∆G is shown in fig. 6.13. Results show the Gibbs energy

of mixing at 5000 K reported in Morales et al. giving all positive values where vdW-

DF2 Gibbs energies at 5000 K still show negative values indicating H-He solutions are

energetically more favourable in vdW-DF2 as compared with PBE.
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Figure 6.13: Gibbs energy per atom against helium number fraction (XHe = 0.09). 5000
K (red) and 10 kK (black). Results are shown for the Gibbs energy calculated with NPT
vdW-DF2 ∆H results and using the ideal entropy (open squares, solid lines) at P = 1000
GPa. NV T ensemble results are shown Morales et al. [115] using PBE (open diamonds,
solid lines) for temperatures 5000 K (blue) and 10 kK (green) both at a pressure of P =
1000 GPa.
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6.4 Discussion and conclusions

Hydrogen is seen to become more molecular with the inclusion of helium as shown in the

partial radial distribution functions in fig. 6.5 and by the shift in the phase transition

to higher densities in the dissociation fraction (fig. 6.4). This effect is greater for vdW-

DF2 over PBE due to the preferred molecular state in vdW-DF2 for the hydrogen ions.

The partial radial distribution functions in fig. 6.5 also show helium making the H-H pair

more molecular-like with increasing helium number fraction. This effect is shown to be

greater for vdW-DF2 over PBE [115] as vdW-DF2 favours molecular hydrogen. Helium

making hydrogen more molecular is also shown in the Gibbs energy results. Where this

is shown to persist to higher temperatures. Consequences of the increased molecular

nature in hydrogen, from the vdW-DF2 functional, is the onset of conductivity in Jovian

planets at greater depths relative to that predicted by PBE results. Other effects are that

isentropes will be cooler and interiors are more dense than previously thought, indicating

the requirement of smaller core masses for matching observations when modelling interiors.

Recently Gonzalez-Cataldo et al. [230] has shown that minor constituents of gas giant

planets (MgO, SiO2, Fe etc.) dissolve in hydrogen at pressure-temperature conditions

typical of the bottom of giant planetary envelopes. This presents the possibility that for

initially formed rocky cores, when the envelope is formed (from gravitational capture)

the core has been dissolving into the envelope ever since. Estimations can be made for

the core erosion from the primordial core radius, assuming that this process is diffusion

limited, using the diffusion length, L =
√
Dt, where L is the depth of erosion, D is the

self-diffusion at the core-envelope boundary and t is the time from the planets formation

(t=4.5 Gyr). From vdW-DF2 using a core temperature at 20 kK for Jupiter where self-

diffusion is 3.8 × 10−3 cm2 s−1 giving an erosion depth of L = 233 km. Assuming a core

mass of 10 Earth masses, the diffusion length corresponds to approximately 1 Earth mass

dissolved into the envelope.

NPT ensemble simulations of the Gibbs energy of mixing shown in fig. 6.13, using vdW-
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DF2, show significant differences to the PBE simulations of Morales et al. [115]. VdW-DF2

results show helium to be soluble in hydrogen to lower temperatures due to values being

negative for all XHe with one minimum. Results of the Gibbs energy show no evidence for

H-He phase separation within the interiors of Jupiter or Saturn. I attribute the difference

between vdW-DF2 and PBE results to be structure: vdW-DF2 stabilises molecules which

have a similar effective size to helium allowing for more energetically favourable mixing.
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Conclusions

From all thermodynamic and transport properties we see the existence of the molecular to

atomic phase transition from 1000 K being first-order with the critical point between 2000

K and 1000 K. The phase transition is seen to persist to higher temperatures as defined

by Widom and Frenkel lines up to at least 5000 K where anomalies are still seen in the

heat capacity and the Grüneisen parameter.

The inclusion of helium with hydrogen at 0.09 number fraction allows for more appropriate

predictions on gas giant interiors due to their interiors containing a small fraction of helium

approximately of primordial composition. This small amount of helium is shown to have

significant effects on the location of the phase transition and on various thermodynamic

and transport properties. I have shown the importance of using the vdW-DF2 functional

due to improved agreement with experiment in conductivity and reflectivity. The vdW-

DF2 functional shows a shift to higher densities of the phase transition at all temperatures

where the transition exists as compared with PBE. The functional is shown to favour the

molecular state. Contrary to results using PBE [115] predicting de-mixing to occur within

the Jovian interior, the vdW-DF2 results show helium to be soluble throughout the Jovian

and Saturnian interiors as helium is more soluble with molecular hydrogen likely due to

comparable radii.
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