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Abstract—Simulations of acoustic wavefields in inhomogeneous
media are always performed on finite numerical domains. If
contrasts in reality extend over the domain boundaries of
the numerical volume, unwanted, unphysical reflections off the
boundaries will occur. One technique to suppress these reflectisn
is to attenuate them in a locally and reflectionless absorbing
boundary layer enclosing the spatial computational domain, a VRN - VR
Perfectly Matched Layer (PML). This technique is commonly Uncorrected Corrected for reflections
applied in time-domain simulation methods like FEM and FDTD,
but has not been applied to the integral equation method. In this
paper, a PML formulation for the three-dimensional frequency
domain integral equation based acoustic scattering problem is
derived. Three-dimensional acoustic scattering configurationare
used to test the PML formulation. The results demonstrate that
strong attenuation (a factor of 200 in amplitude) of the scattered Sound velocity model
pressure field is achieved for thin layers with a thickness of less
than a wavelength, and that the PMLs themselves are virtually
reflectionless. In addition, it is shown that the integral equation Fig. 1. Time frames of a wave field propagating in a three-dinueasi
method, both with and without PMLs, accurately reproduces breast model. The bottom left figure shows the sound velocitp ofathe

: ; ; ; ; corresponding slice. The velocities range, from blue to fienin 1478 — 1610
Eg)eljtsig:]es fields by comparing the obtained results with analytical m/s and the background medium is water=€ 1524 m/s). The source is

located outside the numerical domain. The top left figure shbesvave field,
Index Terms—Acoustics, Integral equations, Diffraction, Re- including the unwanted additional reflections off the domagundaries. In

flection, Refraction, Scattering, Propagation the top right figure the spurious reflections are suppresgedthin absorbing
’ ’ ’ layer enclosing the domain. The inner boundary of this lagendicated by

the black line. Color version can be found onliféedia-color 1

$1t=— Source

I. INTRODUCTION

Numerical acoustic simulations can roughly be divided into The spatial numerical domain is required to be finite due to
three categories. First, there are computationally -efficiehardware restrictions. This requirement, however, inioes a
methods operating within the Born approximation, as usetfnificant problem if the acoustical contrast extends dlrer
in e.g. the Field Il software [1]. However, due to strondpoundary of the spatial numerical domain. In these sitnatio
assumptions, the Born approximation yields incomplete atiie acoustic waves propagating through the contrast t@vard
inaccurate results [2]. the domain boundary will experience a sharp change in
The second category is composed of time domain tectentrast at the edge of the numerical domain. This leads to
niques which operate beyond the Born approximation. Egdditional, unwanted reflections off the boundaries in the s
amples are finite difference time domain (FDTD) [3] andlated wave fields, which need to be removed or suppressed.
finite element methods (FEM) [4]. Although these methods This problem is clearly visible in Figure 1. Both top figures
in general yield better results, as they include e.g. mleltipshow the same time frame of the wave field propagating
scattering, they require a dense spatial sampling of ug0to through a three-dimensional breast model with water as-back
elements per wavelength, especially in the contrast regioground medium, see bottom left figure. For both cases the
and thus large amounts of memory. volume is insonified by a Gaussian ultrasonic pulse which
The third category consists of methods which simula@opagates through the breast and is scattered by the inho-
acoustic scattering in the frequency domain by solving theogeneities in the breast. The simulations are based on the
scatter integral equation [5], [6], [7] by means of an ini@ns scatter integral equation discussed later on in this paper.
scheme. If treated carefully, these methods require afsigni In the top left figure, in addition to the scattered field a
cantly coarser grid than FEM or FDTD and hence a reduceeflection off the domain boundary is clearly visible. This
memory load. One such approach will be used in the remaindeflection is due to the finiteness of the spatial numerical
of this paper. domain. In the top right figure, this reflection is suppressed



and only scattering due to contrassidethe spatial numerical
domain is modelled. Note that inhomogeneities outside the
numerical domain cannot be taken into account using a finite
domain, regardless of which simulation technique is used.

In order to suppress the unwanted reflections off the spatial
domain boundaries, several techniques have been devised. T
conceptually easiest technique is tapering: graduallyaied
the contrast functions towards the domain boundaries.isf th
reduction is gradual enough with respect to wavelength, B, 2. The unbounded acoustic scattering doniaifit with the spatial
reflection will occur as no discontinuities are present.dgnf domainsD, DPME, prum pseat | gprum, and gpPME,
tunately, this requires thick layers which significantlgriease
the memory load and the computational time. ) ) o

A different technique, commonly found in FDTD, is based !N the remainder of this document the symbahdicates
on the absorbing boundary condition (ABC) [8]. A majo,that quantities are defined in the temporal Fourier domain.
problem with this technique, however, is that the atteuaits
strongly angle dependent. Consequently, the boundarytis #o Scattering Theory

reflectionless for most angles. o _ Consider a volumé*®* with homogeneous acoustic material
Instead of using tapering or ABCs, in this work we will rey,gherties. In the absence of contrast, the actual presswe
search the application of bounddayerswith absorbing (ma- fie|q jtot () is referred to as the incident pressure wave field

terial) properties to the integral equation method. Thishoe 5inc (7). However, if on top of the homogeneous background
has the advantages that the angular dependence problem ofﬁgdium inhomogeneities are present, scattering will oaodr
ABC is reduced and, if applied properly, a significantly then  i,4 total field equals

layer as compared to tapering can be used. However, care has _

to be taken that no reflections occur off the boundaries of PUF) = p™C(F) + P (P), (1)
the absorbing layer instead. A technique with strong atitenuwhere the difference between the total and incident pressur

tion and guaranteed reflectionless absorption is the Fttgrfec\;N ave field is referred to as the scattered wave et (7).

Matched Layer (PMI__). This technique was originally devel- It can be shown (e.g. [5]) that** () satisfies the inho-
oped for two dimensional electromagnetic wave problems [9 .
ogeneous Helmholtz equation

and later on expanded to three dimensional problems [10],
[11]. Others have applied the method to elastodynamic wave V2p*at (7) 4+ k2>t (7) = —S(7) 2
fields [12], [13], [14] and acoustic wave fields [15], [16]. ,

To the best of our knowledge, the PML formulation haith
never been applied to integral equation methods for acousti I%2X"”(f’)ﬁt°t(?) et
scattgrmg problems. In this paper we Qerlve a PML_ fOI’-S(f’) — +V- Xp(f,‘)ﬁﬁtot(f‘) VieD 3)
mulation for the integral equation and implement this to
show its effectiveness for acoustic scattering integralkéqn

problems. where V indicates the gradient operatorindicates an inner

Note that PMLs are not applied to account for the scatterirrgoduct,;; is the wavenumber in the background medium,
occurring outside the spatial numerical domain, but Oan(,r _ n“‘"“(i)fn"g is the contrast in compressibility, and

to allow for truncation of the domain without introducing ,’;»g 7 . .
additional, unwanted reflections. Truncation of the s;batiéi (7) e 1S t.he contrast in volume dgnsﬂy of
numerical domain will omit all the acoustic contrast ougsid'2>>" Superscripbg indicates the background mediuseat

. : ol the additional inhomogeneities.
the numerical domain and hence yield incomplete results. X ; . . .
y P A solution for Equation (2-3) is obtained by convolving

Il. THEORY S(7) with G(7,#), the Green’s function for the homoge-
rLeous background medium. This function is the solution of

Before we derive a PML formulation of the scatter mtegrl e Helmholtz equation for a three-dimensional Dirac seurc

equation, first the non-PML version will be d|§cussed [E.’ istribution and satisfies the radiation condition. Usirgu&-
followed by the PML theory based on [17]. This theory I%on (1) this yields

then applied to the scatter integral equation.
.In figure 2 the.various spatial domains _used _thr'oyghout PO(F) = p(F) + [G *Dtor 5} ("), (4)

this paper are defined. Letdenote a vector in the infinitely

extended spatial domaift°t. Domain D is the domain of in which *pw: is a spatial convolution ovebt°t. Due to

interest DPM the PML domain enclosing) andD"™™" is the the appearance gi*°*(7) in the contrast source terti(7),

union of D andD™M™, which is the complete numerical spatiaEquation (4) represents an integral equation of the seciord k

domain in which acoustic wavefields are modelled. Scagerifor known p'"(7), X*(7) and X*(7) and unknownp®°®(7).

occurs due to the presence of a contrast in the refitit.  In literature this is referred to as the forward problem.

The outer and inner boundaries of the numerical and the PMLProblems arise when the spatial domain is limited to the

domain aredD**™ and ODFME, respectively. finite numerical domainD™"™, while the contrast extends

=

0 otherwise

scat
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to regions outsidéD™™, as additional, unwanted reflectionsn(z) > 0, in coordinate stretching which causes evanescent
originating from the boundargD™"= N D2t appear in the waves to experience a spatial extent larger than it actislly
results. These additional reflections will be suppressed bgd hence an increase in decay per unit distance. Hence, the
applying PMLs as discussed in the next subsection. solution to the analytically continued Helmholtz equatien

AN —i&l(m) —Em(T) i(l%a;—wt) 11
) =e e e ,
B. PML Theory 9(@) (11)

The previous theory was given for real coordinatesrom a (for imaginary wavenumbek = ik) and for propagating

mathematical point of view, however, nothing restrict® be waves coay ki) i(Wawt) 12
real, and it turns out to be advantageous to allow for complex g(@) =e ¢ ’ (12)
coordinates, a choice which automatically leads to PMLSs. @ith real valued wavenumbet’ = (1 + m.(w) k. Thus, for

xT

éoositivel(x) andm(x) both evanescent and propagating waves
are damped in the PML.
Unfortunately, coordinate stretching leads to an effectiv

good overview of the theory on PMLs is presented in [17].
To explain the theory behind PMLs, we start with the on
dimensional homogeneous Helmholtz equation

9% o wavenumber’ > k and thus to waves of shorter wavelength,
o2 (@) + k7 f(2) =0 ©) which are less accurately represented on the discrete@uiel.
with plane wave solutions to this loss of accuracy, coordinate stretching will causeom
. reflections off the PMLs as explained in the next subsection.
f(a) = o) (6)
for real z. These solutions are analytic functions. C. PML Implementation

By allowingz = xz+ih(x) to become complex, the so-calledSolving integral equations along complex contours is less
analytically continued one-dimensional Helmholtz equrati  convenient than along real contours. Therefore, it is dbr

9 R to rewrite Equation (7) back to real coordinates. Startirip w
5=20(E) + 29(2) =0 (7) & =x+i h(z) and setting?2 ™) = 7 with o (z) # iw, the
. ) oo ) spatial derivative with respect to can be written as
is obtained which has as solution
o X - J 1 J 1 a o 0 13
g(i,) _ ez(km—wt) _ e—kh,(m)ez(kw—wt). (8) % - 14 Z-ah(z) % = 1t ZM % = ((L’)% ( )
R ox w
Note that for realkh(x) > 0 this function is exponentially Note thato () = iw is a particular case of pure coordinate
decaying. stretching that would not attenuate propagating waves. For

An important observation is that the unicity [18] of themedia that are-invariant inDFME, the above substitution is
analytic continuation guarantees that solving §0f) on any the only alteration necessary to yield a Helmholtz equation on
domain wheré:(z) = 0 yields f(x). This guarantees thatZ) real coordinates. Hence, from here on we assume the medium
is only absorbed whereh(z) > 0. Consequently, a convenientto be invariant in the direction the PML works on. The divisio

choice forkh(z) is by angular frequency appears in order to obtain frequency-
R >0 Ve DPML independent attenuation.
kh(z) { 0 VzeD (9)  Applying the above substitution to the one-dimensional

X homogeneous Helmholtz equation (7) yields, do¢ 0,
In this way,§(z) is equal tof (z) for = € D and exponentially 9 5o .
decaying forz € DPML. Thus, one can arrange for a finite gi(f) + B (2)g(x) = —— L 0X7(x) 94(z)
layer with absorbing properties which itself is reflectiess Ox Xo(z) Ov  Ox
as plane waves propagating frdinto D" are not reflected \;here the appearance of a complex wavenumibéir) —

back tol); a PML is obtained. o(@) 7 , .
: . . . 1+4:¢=* ) k is equivalent to assuming a locally complex-
Analytical continuation of the Helmholtz equation from w . )
lossy medium. The source term on the right-hand

to £ = x + i h(xz) whereh(z) is a real function led to local vglued,

attenuation of propagating waves. However, for evanescésr"ﬂe of Equation (14) appears to cancel out any reflections of
waves with imaginary wavenumber — ik ,in which i waves propagating from real to complex media. Note that the

is positive real, the solution to the analytically contidueampIItUde of this source is frequency dependent and ineseas

Helmholtz equation reads for decreasmg frequency.
In three dimensions, the PML has to be formulated sep-

9(z) = cilkd—wt) _ o —ikh(x) i(kz—wt) (10) arately for each component of the gradient operator. Thus,
contrast functionX” becomes a diagonal matrix with diag-
Thus, a PML does not attenuate evanescent waves for rgal elementsX? (z), X¢(y) and X7(=). Consequently, the

(14)

h(z). _ gradient operator is replaced by
Even though evanscent waves are exponentially decaying 5
without a PML, PMLs can be used to increase their decay ratef X7(z) 0 0 o L
by allowing h(z) to become complex(x) = I(z) — i m(z). 0 Xy (y) 0 @ = X°(#)V. (15)

Sincez = x +i h(x) = = + m(x) + i I(z), this results, for 0 0 X%(2) o

z
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Convergence of iterative scheme for PMLs acting on p® or p equation which reads

e e — [é _— ginc} (7) =
] P — |G o 8] (), (16)
35, ______________ where
§"(r) = X7V - X7 - V) @)
and
! I S — SPUR) = B2 X5 (F)p(7) — V2PN ()

Number of iterations

+ X7V - [X7@) (X7 + 1) V)] (18)

Fig. 3. Convergence of the iterative solver of three-dimemsi simulations Note that the incident field is corrected by an additional
with PMLs acting onpsc@t or pt°t enclosing the numerical volume. The Ginc but that the right hand sid il onl
simulated situation is discussed in section IV-B, the soureesmitted a SOUrCe terms™e(), but that the right hand side still only
continuous wave ai.5 MHz. The normalizedLo-norm of the residuak ~contains one convolution. As the incident field is corrected
is a measure of how far the iterative solver is from solving sgstem. It pefore the iterative scheme commences. this means that the
is obvious that the situation where ondy°®! is attenuated requires far less . . . . o .
iterations than whept° is attenuated. Color version can be found onlineCOMpUtational load per iteration is not significantly irased
Media-color 3 as compared to the non-PML version.

The contrasts in compressibility and density are requioed t

be spatially invariant insid®"™ in the direction the PML

The latter shorthand notation will be used throughout tise ré2Cts on. Spatial ir;\i/:[iLriance in thedirection Fi)fﬂ?btained by
of this paper for better readability. setting X" (z € D™, y,2) to X"(z € ID""*,y,z) and
XP(x € DPME g 2) to XP(z € ODPML g, 2). Invariance in

the y- and z-directions are obtained in an identical way.

D. PML Formulation of the scatter integral equation [1l. I MPLEMENTATION
_ _ . For known incident field and contrasts, integral Equatio (1

Two different PML formulations for the scatter integral @gu 18) is solved onD™™ for unknown p®*(7) by inverting the
tion can be derived, one suppressing only the scattered figlgegral equation. As analytic inversion is not possiblee t
p***(r) inside the PML and one where the total figld"() problem will be solved numerically on a discretized grid.
is suppressed. The latter approach seems more natural singgfter discretization, the resulting integral Equation 18)
the PML operates as a regular absorbing layer, whereas in #¢ be represented as a matrix-vector equation of the form
former case only selective absorption is achieved. Agtot e 19

However, the scatter integral equation (4) is inverted by po=P (19)
means of an iterative scheme as explained later on. Thitere pi"® is the vector containing the known values of
implies that if the total field, and hence the incident fieldinc () [(; — ginc] (7) on the points in the discrete grid,
is attenuated inside the PML, the iterative scheme also has: is the vector containing the unknown valuespé (7) on

to account for the change in incident field. If instead onl e grid andA is the known matrix governing the integral
the scattered field is attenuated, the incident field remaigauation including the PMLs

unchanged and therefore a faster convergence of the vierati Direct inversion of this matrix is not possible due to

f°“°"’?r is expected. That .th'.s is indeed the case 1s Sh? mory and computation time restrictions. Therefore, the
in Figure 3, from W_h'ch_ It 1 clea_r t_hat the difference Ir1ntegral equation will be solved iteratively using a Bi-CGB
convergence rate |s.S|gn|f|cant. In this flguretheLQ—nprm of scheme [19] because of its fast convergence and simplicity.
the residual normalized by thie,-norm of the known incident  p;q o otization of Equation (16-18) is not trivial. Firstly
field, is shown as a function of the number of iterations. to overcome problems associated with the singularity of the

Furthermore, in acoustical simulations it is sufficient tﬂ'}o Greens function we use its weak form [20] Second|y’ Spatia|
attenuate the scattered field, as this is the only componggtivatives have to be taken of discontinuous functions, an
of the total field Containing the erroneous reflections. sin@herefore cannot be taken in the Spatia| Lap|ace domain. To
simulations with PMLs acting on only**** have a much improve on accuracy, rather than the common symmetric three
higher convergence rate, only this case will be studied.  point stencil, a symmetric 17-point stencil is used. Thyjirthe

A PML formulation for the inhomogeneous Helmholtzspatial convolution is a computationally expensive operaio
equation (2-3) is obtained by)(analytically continuing Equa- reduce the computational load, the convolution is compirted
tion (2-3) by using Equation (15),if rewriting the result the spatial Fourier domain using FFTs, at the expense of an
into an inhomogeneous Helmholtz equatioiii,) (convolving increase in memory load.
the source term with the Green’s function and) (using Unfortunately, PMLs are only guaranteed to be reflection-
Equation (1). In this way we obtain a PML corrected integraéss in the analytical case. Thus, the source term in equatio



Analytic vs numerical results with or without PML

(14) can only completely cancel out the reflections caused by 01,
a space-variant” () if it is analytically convolved with the Incident field —Analyic
Green’s function. However, on a discrete grid the convohuti ot PML
and the Green'’s function are only approximations, hencemin _
reflections off the PML for discontinuous(x) are expected. g . .

IV. EXPERIMENTS g ‘

. . . o Reflection Reflection

In order to investigate the performance of the PML we will interface domain boundary
first test the accuracy of the method, followed by tests on the
effectiveness of PMLs, both in terms of achieved attennatio

and reflectionlessness, and by experiments on the convergen ) 05
of the iterative scheme. Finally the effects of allowing for
complex or smooth PML contrast functier() are studied.

1 15
Time (us)

Fig. 4. Comparison of the analytical solution to the scattebfem for plane
waves reflecting under normal incidence with simulations waittd without
A. Validation of the Integral Equation Method PMLs. To improve clarity,the pressure axis is clipped. Botmugations

. . . . reproduce accurate amplitudes and travel times of both thieent field
The simplest scattering problem for which an analytical s@nd the reflection off the interface, but the non-PML reshtives additional

lution exists [21] is the one-dimensional case of a planeflections off the domain boundaries which are effectivelgmessed in the
wave reflecting off a single interface between the backgliouﬁ’ML result. Color version can be found onlindedia-color 4
medium and the contrast at normal incidence.

To validate the integral equation method, both with and
without PML, a three-dimensional volume d024 pm x
1024 pm x 1024 pm of blood ("¢ = 1050 kg m™?,
kP& = 3.91-10719 Pa~') is simulated using elements of

Size 8 pm x 8 pm x 8 pm. Half of the volume, starting at introducing only a very weak reflection off the PML itself.

zo = 512 pm, is modelled to mimic fat4°** = 960 kg m >, . .
K5t — 4,82 .10-10 Pa-1). The transient plane wave has ar_I]:urthermore, the scattering occuring off the modelled remit

amplitude 4; = 0.25 MPa, a center frequency @ MHz, a is in agreement with the analytical solution of the full plerh.

bandwidth 0f$3%, and has zero phaseat 0 m. The point As the distal half of the sphere is absent_, naturally thig hal
S does not contribute to the total pressure field.
of observation ig7,,s = (375 pm, 512 pm, 512 um).

The resulting total fieldg'°t(7,,s) for the analytic case,
and from simulations with and without PML are shown irB. PML Effectiveness

Figure 4. Both the PML and non-PML simulations accurate

reproduce the amplitudes and travel times of the inciden? test the effectiveness of the PML formulation in Equa-

pulse and the reflection off the contrast interface. The nofion (_16'18)' we c_onSIder the S|tuat|or_1 sketched m.F'gl.Jm 6
onsists of a cubic contrast @60 pm in all three directions

PML result contains additional reflections off the domaiff . . .
ﬁntered in a volume of dimensiofd2 pm x 512 pm x

boundaries, which are effectively suppressed in the res§12 Aaain blood is ch h back d
obtained by simulations including PMLs. Hm. Again blood IS chosen as homogeneous backgroun

medium, while the contrast is modelled to mimic fat.

The integral equation method, both in- and excluding PMLs, Outside the modelled cube a transducer with radiating

is also tested against the three-dimensional analytictiealu sur_face of areaAO()_ um > 27 pm is placed to generate an

for a plane wave scattering off a soft homogeneous spheril4fident pressure field at a frequency 16f MHz. The spatial

contrast [22]. As in the situation above, a volumd 024 pm x domain is divided into64 cu_blc glement§ Off jun x 8

1024 pm x 1024 pm of blood is simulated. In this case, al™ * 8 p;n.each. The same d|_scret|zat|on Is used throughout

sphere of radiug56 pm mimicking fat is located centrally in the remaining pgrt Qf th|.s section.

the cube, and the volume is divided in elementsigim x Note that in 'thIS situation there would be no need fqr PMLs

4 pm X 4 pm. as no cqntrgst is present at any of the doma_ln b_ounda_nes_-. How
In Figure 5, the analytic solution is shown together witVer this situation al_lows for easy determ|nat|o_n_ of _nexr:ltj

the solution obtained by solving the scatter integral equat scattered and total fields and thus easy quantification of the

for the complete sphere. The incident field propagates, qienuation achieved in the scattered field by applying PMLs
this figure, from left to right with increasing time. The two For simplicity, in this situation the PML contrast function

In the bottom row of Figure 5, time slices of the truncated
situation, including a PML of a thickness of approximatgly

wavelengths, are shown. From these images it is clear that th
PML suppresses the reflection off the domain boundary while

solutions show excellent agreement. o(r) is chosen to be a step function, i.e.
In addition, in this figure the case of a truncated sphere is constant V7€ DPML
shown, first for the case where the contrast is simply cut off, o(r) = { 0 vV FeD (20)

i.e. without applying a PML. Although the early time slice at

t = 0.74 us agrees with the full and analytic solutions, it iShe PML thicknessd is equal for all three dimensions as
clear from the slice at = 1.04 ps that truncating the contrastindicated in Figure 6. More elaborate PML contrast function
introduces a reflection off the domain boundary. will be studied lateron.
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Fig. 7. Normalized sum of the remaining scatter figfd*t at oD""™ as a
function of ¢ and o after applying a PML. Simulations are performed at a
frequency of10 MHz in the domain depicted in Figure 6. Color version can
be found online Media-color 7

Ideally, a PML attenuates strongly enough so that pressure
fields scattered off the contrast block are fully attenuated
before reachinggD™™. In order to quantify the attenuation
of the PML, the normalized sun® (¢,o) of the remaining
scatter pressure field apiD™"™ is computed as a function of

-

d .
5 ando, i.e.
b 5 2
1 0 x0<r?.m) 1 0 . ?mm) 1 Z i pscat |
d um
R < o) =2" (21)
Fig. 5. Timeslices of the analytic solution (top row) of a @amave scattering A Z ipmc i
off a soft homogeneous sphere, together with the solutioaindéd by solving Spmam

the scatter integral equation described in this work (seécow). Observe that
the two results show excellent agreement, both in amplitudepaase. In the The results are shown in Figure 7. It can be seen that

bottom two rows, the cubic volume is cut in half, thereby tating the . . Its i hd fth d
spherical contrast. If no PML is applied, a strong reflectighthe domain increasingd or o results in a smooth decrease of the scattere

boundary is observed (third row from the top), demonstratimg need for field. Also note the sharp change R starting directly at

careful treatment of contrast truncation. Observe that tagteying presentin d _— indicating that even thin |ayers of much less than
the first timeslice agrees with the analytic solution for thiésphere. If a PML A 'i h thick Iti . Th ..
is applied (bottom row), the unphysical reflection off thendon boundary a wavelength thick result in strong attenuation. € remgin

is removed and only a very weak reflection off the PML is introetli Al Scatter fieldp*at is decreased by a factor of more tham0

twelve images use the same colorbar which has been clipped agta of o |arge% ando.

ten to increase visibility of the scattered fields. High htigess means high A . .
pressure. The dotted circles indicate the location of thesn and the dashed ~ N€Xt, it is tested whether the PMLs are indeed reflectionless

lines indicate where, in the bottom two rows, domairhas been truncated. To this aim, we have used the situation sketched in Figure 8.
All images shown are at a height 662 pm, and the incident plane wave |t consists of the same cubic domain as in the previous
propagates from left to right with increasing timdedia-color 5 . . . .
experiment, though in this case no contrast is present and th
source is placed at the center of the cube. Ideally, bothavith
without PMLs, the total field should equal the incident field
as no contrast is present. So to quantify the reflectionésssn
of the PML, the same sum of Equation (21) is used. However,
in this case the summations run ovBF"™ instead of just
Contrast oD™™ hence

|

Source | / scat |2
p
N i oo (d ) DZ{ |
um R|=.0 . (22)

PML

A’ - Z | inc |2
P
<N—> Dnum
Vv 512 ym . . . .
,«512 um Intuitively, it seems more logical to sum ov&ronly, as it

is of no relevance what the scattered pressure field insile th
PML is. However, the size db varies withd, so quantitative
comparison between different situations is less straigiveird
due to normalization. Fortunately, experiments (not &éat
here) show that the amplitude @f°a* is roughly constant

Fig. 6. Sketch of the situation used to evaluate the PML &ffexcess.
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Fig. 8. Sketch of the situation used to evaluate PML refle@gsness.

Fig. 10. Number of iterations required for variom%sanda at 20 MHz to
8 reach a normalized errar= 1 - 10—8. Color version can be found online.
Media-color 10
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Fig. 9. Normalized sum of the PML-generated scatter figfd® overpnu™

as a function of% ando. Simulations are performed in the domain depicted
in Figure 8 at a frequency a0 MHz. Color version can be found online.
Media-color 9

throughoutD™™, which means that the summations can be

performed ovei™™ W'thOUt prqblems. . . Fig. 11. Number of iterations required for variot%sanda at 10 MHz to
The sumR (%’ U) is shown in Figure 9 for simulations reach a normalized errar = 1 - 10~5. Color version can be found online.

performed at a frequency @) MHz. In general,R increases Media-color 11

with increasing% or o whereas for a reflectionless PMR

should equab, indicating that more and more of the incident ) . .

pressure field is scattered by the PML. However, the amplituf€r9ence rate decreases as more iterations are required for

of the scattered pressure field generated by the PMLs is mgfPnger or thicker PMLs. For this frequency, the number of

than100 times smaller than that of a field scattered off typicaﬂer"’lt'ons increases fro in the absence of PMLs 1 for

contrasts. Thus, the PMLs are virtually reflectionless. the str-ongest PML used in th|§ expe_nment.
In Figure 11 the same experiment is repeated for a frequency

C. Convergence lIterative Scheme of 10 MHz. Here we observe that for decreasing frequency the
. ) . deterioration of the convergence rate due to PMLs increases
As can be observed from Equation (16-18), introducing PMlsg,is effect was already predicted in subsection II-C.
results in adding contrasts to the problem under investigat  Ap important observation to be made is that, especially for
It is therefore expected that the convergence of the By er frequencies, the PML contrast amplitudéras a much
CGSTAB scheme is decreased by incorporating the PMlgeater impact on the convergence rate than the thickiiess
To test the influence of the applied PML on the convergengs suggests that, in relation to convergence, thick PMLs
of the iterative inversion scheme, the situation as depitte 4re preferred over strong PMLs. This fits with the theory; in
Figure 6 is modelled. o _ the case of an infinitely extended PML with zero strength no
In Figure 10 the number of iterations required to reach gygitional contrast is introduced & 0) and yet no additional

. " e ) _ : _
maximum retaining error level.. = 1-10" is plotted as a refiections will occur as no domain boundary is present.
function of { ando. This error level is defined as

3 [pie - Aptet|? D. Smooth PML Contrast Function
e =20 — (23) In subsection II-C it was shown that changing”) from the
Z |p™ step function in Equation (20) to a smoother function would
Drum reduce the reflections ofD"ML. Even though in the above

In this case the problem was solved for a frequency ekperiments these reflections were found to be negligibly
20 MHz. It is clear from this figure that indeed the consmall, i.e. more thari00 times smaller than fields scattered
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Fig. 12. Normalized sum of scatter pressure figtd2* over D™ and Fig. 13. Normalized sum of scatter pressure figfd** at oD™™ as a
number of iterations required for variows. Simulations are performed over function of% and o after applying a PML with complex contrast function
the domain depicted in Figure 8 at a frequencyl6fMHz. Only a marginal (o0 = 50 MHz) for attenuative waves. Simulations are performed in the
decrease in reflection off the PML is achieved by smoothingPkié contrast domain depicted in Figure 6 at a frequency Iof MHz. The figure shows
function, at the cost of a significant increase in computatiome. Color that strong attenuation is achieved for a real valued csnftaction. Color
version can be found onlinéledia-color 12 version can be found onlinéledia-color 13

off typical contrasts, in this section we will attempt tother found in previous experiments to yield strong damping of
diminish them. propagating waves, and and% are varied. The source is
In order to diminish these reflections a smooth transition af transducer with a radiating surface ok 8 pm?.
the PML contrast function betweed and DPML should be  The attenuative waves are generated by using complex
achieved. Therefore, in the one-dimensional case we nltipmedium parameters for the background medium, mathemat-
in the transition regiony (x) of Equation (20) with a smoothly ically represented by taking the wavenumiein the Green's
function ¢(z'): function complex and equal to(1 + i3). In this experiment,
1 1 J—; B = 0.1 which amounts to much stronger attenuation than
¢(z') = = — = cos () , 0<a' <w (24) typically found in biomedical tissue. This ensures that any
2 2 w - ) .
effects found here will be much less pronounced in practical
wherew is the width of the transition region. biomedical applications.

To determine the effect of smoothing on the reflection-  The normalized sum of Equation (21) is computed over
lessness of the PML, the situation depicted in Figure 8 islusgp»um and shown, as a function of and %y in Figure 13. It
At 10 MHz, a PML of fixed thicknes_s‘%_ = 1.56 and PML s clear from this figure that strong damping is achieved for
contrast amplitude = 50 MHz is multiplied with smoothing g purely realo’ () = o(7) as the remaining scatter pressure
function ¢(2’) for varyingw, and weighted to achieve similarfie|d at D™ is low(est) in that case.

attenuation for alkv. The normalized sum of Equation (21) |n experiments not treated here it was found that conver-
is computed ove™™™ and shown, as a function ab, in gence for alla # 0 was much slower than for = 0.
Figure 12. In the same figure, also the number of iterationsis is explained by the fact that allowing(z) to become

required to reach a set error level is plotted. complex introduces more contrast, see Equation (14), @imil
This figure shows that smoothing only marginally de- to increasing the magnitude of

creasesl? while the number of iterations required to solve |n subsection II-B it was predicted that allowing for a
the problem increases. The increase in number of iteratiqmmpbxg(f) might lead to more energy being reflected off
can be explained by the fact thatis increased so that thegpPML  |n the final experiment we use the configuration
smooth PML contrast function achieves the same attenuati@picted in Figure 8 to compute, in the case of attenuative
as the step function PML contrast function, and thus thatmagaves, the ratid? of Equation (22) by summing the scattered

contrast is present. field overD™™ for variousa and %, again at a frequency of
10 MHz. The results are shown in Figure 14.
E. Complex PML Contrast Function It is obvious from this figure that indeed for all # 0 the

Evanescent and attenuative waves were shown in subsRer9y reflected off the PML is larger than far= 0. Thus,
tion 11-B to be unaffected by PMLs it-(7) is real valued. considering damping, reflectionlessness and convergextege r

Even though such waves are attenuated without the need%‘? best results are obtained by using a purely o&a).

PMLs, in this experiment we try to increase their attenumatio

by applying PMLs with complex’ () = (1 — i) o (7). For V. CONCLUSION

o(7) a step function is used. In this paper, Perfectly Matched Layers (PMLs) have been ap-
The modelled situation is that of Figure 6, and simulatiorgied to frequency domain acoustic scattering integrabéquo

are performed at a frequency o MHz. The real part of the problems. It is demonstrated that strong attenuation (ebiffac

PML contrast amplitude is fixed at = 50 MHz, a value of 200 in amplitude) of scatter pressure fields is achieved in
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Fig. 14. Normalized sum of scatter pressure figfd>* over D*"™ as a
function of%\ anda. Simulations are performed for attenuative waves in the[7]
domain depicted in Figure 8 at a frequency 16f MHz. The figure shows
that the smallest reflection off the PMLs, with complex cortrasction
(o = 50 MHz), is achieved for a real valued contrast function. Colosiar
can be found onlineMedia-color 14

(8]

[9]
layers with a thickness of less than a wavelength, and tleat ﬁno]
PMLs themselves are virtually reflectionless. Thus, addél
reflections introduced by truncating the computational diom
in the presence of contrast at the domain boundary ch!
effectively be suppressed by PMLs.

In this work it is also shown that the frequency domain intd12]
gral equation method, both with and without PMLs, accuyatel
reproduces pressure fields by comparing results to anallytic
solutions. We have shown and explained that applying PMLis]
deteriorates the convergence of the applied inversionnsehe
and that this deterioration is strongly frequency depetden [14]

Furthermore, we have shown that using a smooth varying
PML contrast function yields similar amplitudes for refiects
off the PML as compared to a step function, and that conver-
gence of the iterative scheme is faster using a step function
The slight reduction of the reflection generated by the PMLSE
does not justify the cost of a lower convergence rate, herece w
conclude that using a step function for the PML is sufficient.

Finally we found that allowing a complex valued PM [}g]
contrast function did not further reduce attenuative waves
whereas convergence is slower and more energy reflects [&%
the PML itself. This implies that a purely real valued PML
contrast function should be used. [20]

(21]

[22]
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