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Introduction

More than half of the world’s population today relies on rice as its main staple food, and the

expansion of rice farming has had a major impact on Asian environments. The trajectories

from wild to cultivated to domesticated rice and the development of more intensive arable

systems, provided a basis for the development of social complexity in China, mainland

Southeast Asia and parts of India (Glover and Higham 1996; Fuller and Qin 2009; 2010). The

spread of wet rice agriculture has also been linked to methane expansion and global warming

(Ruddiman et al. 2008; Ruddiman 2013; Fuller et al. 2011). Distinguishing between wet and

dry farmed rice in archaeological contexts is key to understanding developing rice systems

and their role in both socioeconomic change and environmental impacts. One method of

determining changes in arable system is to analyse ecological community groupings in the

weed assemblages, which has long been applied in Europe (e.g. Jones 1995; Charles et al.

2003), and more recently to rice cultivation (Fuller & Qin 2009; Weisskopf et al. 2014). In

the present contribution we present a new method and illustrate it by application to sites from

a sequence in the Lower Yangtze region of China.

In this paper we use differing ratios of phytolith morphotypes that are divided into those that

are genetically predisposed to produce silica bodies in grasses (fixed) and those morphotypes



that are formed only when there is sufficient uptake of water (sensitive). Madella et al. (2009)

developed this model using ratios of short to long cell phytoliths from the leaves of grasses

from the Triticaceae family to understand winter cereal irrigation (of wheat or barley) in arid

zones in the Near East. Jenkins et al. (2011) expanded this, also using Triticaceae, with

experimental work in Jordan to further interpret Near Eastern water management. Here, this

model is taken a step further and, using ratios of fixed and sensitive cells from all available

Poaceae in the phytolith assemblages, applied to ethnographic rice field samples from India

and Chinese archaeological sites that provide a sequence of change from ca. 5000 BC to 2300

BC (Figure 1

Methodology

This approach is based on phytoliths extracted from sediment samples from early rice

cultivating sites, including both typical settlement waste samples and some palaeosols from

rice cultivation areas. First it was determined that phytolith samples contained substantial

proportions of rice (between 6900 rice phytoliths per gram to 6,000,000 rice phytoliths per

gram), and thus it is assumed that a substantial contribution of the phytolith inputs come from

rice fields, including rice crop-processing waste and weeds co-harvested with rice. The use of

phytolith assemblages to identify rice crop-processing has been demonstrated elsewhere

(Harvey & Fuller 2005; Zheng et al. 2009; Weisskopf et al. 2014; Weisskopf, 2014). In the

case of the three sites considered here, each has also had macro-botanical analyses of

archaeological flotation samples that indicate the prominence or dominance of rice in

subsistence (Fuller & Qin 2010; Fuller & Weisskopf 2012; Gao, 2012). Thus the presence of

rice cultivation is taken as a given and instead the relative signal for wetter or drier grass

ecology is assessed.

Samples are processed and counted following standard procedures for phytolith analysis. For

this study phytoliths were extracted from 800 mg of sediment per samples following the

protocol of Rosen (1999). Between 300 and 400 single cells were counted at 400x

magnification for each slide. Then counts are grouped for morphotypes based on whether

these are defined as sensitive versus fixed cell types following the definitions of Madella et

al. (2009): Table 1.

Table 1. Phytolith morphotypes from grasses classified into fixed and sensitive morphotypes.



Dry or fixed, passive (Short grass cells) Wet or sensitive, active (Long grass cells and

stomata)

Rondel Long smooth

Round rondel (Stipa type) Long sinuate

Saddle Long polyhedral

Bilobate Long echinate

Scooped bilobate Stomata

Square bilobate (Setaria type)

Cross

Collapsed saddle

Phytolith production and the sensitive versus fixed model

Phytoliths are bio-mineralised particles formed within the intra and extra-cellular space of

living cells in the culms, leaves, roots and inflorescences of higher plants (Figure 2). Silica is

an abundant element and a constituent of many mineral soils (Hodson & Evans 1995: Prychid

et al, 2004). Soluble silica is released into sediments and soils by the weathering of silicate

minerals (Piperno 1988, Prychid et al, 2004). Monosilicic acid (H4SiO4) is soluble in water

and is absorbed into the plant with other minerals in the groundwater through the roots and

carried in the xylem sap (Hodson & Evans, 1995, Prychid et al. 2004, Piperno 2006). As the

monosilicic acid is transported in the transpiration stream it moves through the permeable

plant membranes becoming polymerised as solid amorphous silicon dioxide (SiO2) in the

plant tissues where it is deposited within the cell lumen and intercellular spaces, often taking

on their form, as well as forming external layers on the cell walls (Piperno 2006; Carnelli et

al. 2001). Silica may be found in all plant parts, including the roots, but most of the silica is

laid down in the aerial structures both vegetative and reproductive (Piperno 2006; Prychid et

al. 2004). In grasses most phytoliths are commonly found in the epidermis. Among these

many mechanisms affecting phytolith formation are two principal factors; genetically and

environmentally controlled silicification. The first originates in the plant’s own genetic and

physiological mechanisms and relates to phytolith production in designated cells and tissues.

Some cells actively accumulate silica and will produce phytoliths under any hydrological

conditions (Madella et al. 2009; Hodson et al. 2005). The second is associated with outside



factors of the local environment, including climate, soil type, soil hydration, age and type of

plant (Piperno 2006; Madella et al. 2011).

Grasses have high production rates of silica bodies (phytoliths) both in and between the cell

walls (Madella et al. 2009; Piperno 2006; Metcalfe 1960). There is variation between

silicification in specific cells in different parts of the plant (Webb & Longstaffe 2000; Perry

et al. 1984). More importantly for the purposes of this study there is variation according to

the environment where the plant is grown (Tsartsidou et al. 2007; Epstein 1999). Blackman

and Parry (1968) suggest short cells have a genetic control over silica deposition in their

lumen so produce silica bodies regardless of water availability. Others, such as epidermal

long cells, have no genetic control so silica deposition is influenced by external factors such

as local environment and water availability (Piperno 1988; Blackman & Parry 1968). Greater

transpiration through the plant can mean more silica deposited in cells that are not designed

for this purpose. Looking at these cells is particularly appropriate for understanding rice

agriculture as wild rice is a wetland plant growing in warm marshy areas so high transpiration

should be expected. When people started cultivating rice it is likely they husbanded wild rice

stands at lake and river edges, as reconstructed at Tianluoshan (Fuller & Qin 2010; Fuller et

al. 2011). However, once farming rice in small fields, such as those at Caoxieshan (4000-

3800 BC) developed, the fields may have been drier than the wild and early cultivated rice

stands. After the development of paddy fields with irrigation systems, we would expect to see

a return to higher ratios of phytoliths from environmentally controlled silicification.

However, there are several potential issues; one is that rice generally grows in much more

humid conditions than the Southwest Asian winter cereals previous considered (Madella et al

2009; Jenkins et al 2010). More water and greater transvaporation are likely to cause higher

phytolith production overall. This means the grasses in the rice fields may produce too many

environmentally sensitive morphotypes (Table 1) to make changes in arable systems

definable. As we demonstrate, this is not the case and our results show the applicability of

this method outside arid and semi-arid regions. Another potential problem is that while the

model may be applicable to phytolith assemblages collected from sediments from specific

fields, the phytoliths from the archaeological samples analysed here derive from a variety of

contexts and have mostly been deposited as part of crop processing activities. This may skew

the results somewhat. However, the crop processing residues should reflect the plants in the

field system from which they were harvested, and this is suggested by patterns in previous



analyses (Weisskopf et al. 2014; Weisskopf 2014). It should also be noted the modern fields

are in India while the archaeological samples come from the Lower Yangtze Valley in China

so biogeographical factors may come into play when comparing modern and ancient samples,

but the responses of plant physiology to local environmental conditions, such as the silica

deposition in relation to water availability, are expected to outweigh biogeography. The

modern fields we sampled in China unfortunately produced few weeds or phytoliths, which

we attribute to treatment with herbicides. Nevertheless, we find interpretable contrasts in both

ancient and modern samples that reflect relative wetness of fields.

The modern rice fields

Sediment samples for phytoliths were collected from traditionally farmed modern rice fields

in the Western Ghats and Orissa, India in order to create modern analogues to test the

archaeological samples (Weisskopf et al. 2014; Fuller & Weisskopf 2012). Fields

represented a range of arable field types; lowland rain-fed, upland rain-fed and decrue, as

well as wild rice (Figure 3). Wild rice was further divided into perennial (O.rufipogon) and

annual (O.nivara). Soil samples were processed for phytoliths as a representation of the

diversity of the weed flora. For the purposes of the present study these analogue fields were

grouped based on broad variation of soil moisture level inferred throughout the growing

season, as dry (rainfed and margin of wetlands), very wet (in standing water throughout most

of the growing season, as typical of either deep water rices, irrigated paddies or wild rices), or

intermediate (Table 2).

Table 2. Modern rice stands in India (I#) sampled for phytoliths and grouped based on relative

degrees of wetness (further details of sites in Weisskopf et al 2014)

Dry rice Intermediate Wet rice

Wild I5 (O. nivara

I10 (O. rufipogon)

Cultivated I2 & I3

(upland rainfed)

I1,I4 & I6

(lowland rainfed),

I7 & I8 (decrue)



The archaeological rice and weeds

The archaeological samples come from three Neolithic sites in the Lower Yangtze,

Tianluoshan (4800-4300BC), Caoxieshan (3950-3700BC) and Maoshan (3000-2300BC)

(Figure 4). Tianluoshan (Fig. 4A), Zhejiang province, is a Neolithic Hemudu culture site with

evidence for pre-domestication rice cultivation as well as later levels producing the remains

of more domesticated rice (Fuller et al. 2009). Excavations between 2004 and 2007 by the

Zhejiang Province Institute of Archaeology, have produced important archaeobotanical and

dating evidence on the Hemudu Neolithic culture (Sun 2013). Direct AMS radiocarbon dates

on nuts and grains show a sequence between ~ 6900 and 6300 years BP covering three

distinct phases; K3 midden, layers 8 and 7, and layers 6 and 5, layers 4 and 3 (Fuller et al.

2009). The 14 phytolith samples analysed here are from the second (Layers 8-7) and third

(Layers 6-5) phase as well as a later fourth phase (Layers 4-3). All samples are from cultural

contexts within the settlement area, although in Layer 8 these are at the edge of stream the

settlement abuts, while the others are from within and around areas of buildings (houses)

indicated by preserved wooden posts. The data from the macro-remains suggest a growing

dependence on rice over time (Fuller et al. 2009; Fuller & Qin 2010). The phytolith samples

from the ancient river’s edge and those from the cultural contexts yielded rice remains

suggesting an important input into the phytolith assemblage from rice cultivation and rice

processing.

Caoxieshan, Jiangsu province (4000-3800BC) is a later Lower Yangtze site. Excavations in

the later 1990s revealed small shallow fields often 20-50 cm deep, all less than 10 square

meters (Zou et al. 2000), and more recently in 2008, such fields and associated cultural layers

and house-related midden were sampled for flotation and phytoliths (Figure 4B, 4C). Our

working hypothesis is that these fields functioned to allow tight control of water and

especially the draining of water to drought-stress the rice plants (Fuller & Qin 2009). These

small fields would have also allowed fertilization of the soil, likely through the addition of

settlement midden material, judging by the presence of ceramics and charred plant remains.

Although the rice here is domesticated in terms of non-shattering spikelet bases (Fuller et al.

2014), it is likely to have still possessed some wild-type traits, including pereniality, which

means that under consistent water conditions vegetative growth would have been

emphasized, thus reducing grain yield. These small fields would have allowed easy drainage

to induce water stress and produce more flowers and grains (Fuller & Qin 2009; Fuller 2011).



In any case these fields imply small, scale and intensive cultivation rather than complex and

extensive systems. Sixteen samples were analysed from a range of contexts at Caoxieshan.

Maoshan is located on an alluvial plain, dissected by streams and spans 3000-2300BC,

including three sub phases of the Liangzhu culture. In the Late Liangzhu period (2600-

2300BC) there is evidence here for large intensively irrigated farming (Figures 4D, 4E) with

irrigation streams running through fields of ca. 0.2 hectares (Zhuang et al. 2014), while Early

Liangzhu levels include small ovoid field units similar to those from Caoxieshan. The

intensification of rice farming over the course of the Liangzhu period supported major

specialized craft production and social differentiation on the level of early urban societies

(Qin 2013). Eighteen samples were analysed from Maoshan including cultural midden

deposits as well as rice field palaeosols.

The evidence for rice cultivation at these sites thus suggests a range of practices, some early

cultivation through wetland margin management (Tianluoshan) to small, highly controlled

and regularly flooded and drained fields (Caoxieshan and early Maoshan) to large intensive

and irrigated paddies (later Maoshan). As rice was being farmed very differently at these sites

it should be possible to see changing agricultural practices over time, thus providing an ideal

test case of the utility of our proposed phytolith index for rice field wetness. All three sites

have samples from the river’s edge or fields, and also from cultural contexts so it is possible

to test whether the arable system can be reflected in the phytolith assemblages from the

typical midden material on habitation sites as well as from the fields themselves.

Results

The percentage of fixed morphotypes versus the percentage of sensitive forms demonstrate

distinctive patterns in modern analogue rice fields as do the wild rice stands (Figure 5). The

wild rice stands are wetter than the cultivated rice fields, and annual rice (O. nivara) stands

are wetter than perennial rice (O. rufipogon). At first it might seem counterintuitive that

annual wild rice has a wetter signature than perennial rice, since annual wild rice grows in

climatically drier conditions. However, these regions are only seasonally dry and during the

months when wild O. nivara is growing it grows under very wet conditions brought on by the

rainy season. The rice from the temporarily inundated decrue fields has higher levels of

sensitive forms and lower levels of fixed forms than the lowland rainfed rice, again reflecting

the environments in the sampled fields, while in contrast the upland rainfed rice has higher



percentages of fixed and the lowest level of sensitive. Overall ratios decrease according to the

decrease in water abundance in each arable system and they are wettest in conjunction with

wild rice stands.

For the three sites in the Lower Yangtze, Tianluoshan, Caoxieshan and Maoshan, there are

two questions to address. The first is can the samples from the fields be related to specific

agricultural systems. The second is whether the remains from the cultural contexts (more

typical settlement waste, including household rubbish (midden) and crop-processing waste)

reflect the fields.

First, we can compare all three sites on the basis of phytoliths from river edge and/or paddy

field contexts (Figure 7). The riverside samples from Tianluoshan show high proportions of

sensitive morphotypes, consistent with a wetland setting, like those settings where wild rice

occurs. This is not to say the rice of the Hemudu period is wild, as it is clearly undergoing

domestication and in the pre-domestication cultivation stage (Fuller et al. 2007; 2009), but

that the ecology under which early cultivated rice was managed here is close to the habitat of

wild rices. The comparatively high ratio should be expected, as early cultivated rice was

managed in habitats like those of wild populations, but probably closer to the annual end of

that spectrum (Fuller and Qin 2010; Fuller 2011). In contrast, the phytoliths from small fields

at Caoxieshan have many more fixed morphotypes, keeping with the drier signatures in

cultivated rainfed or decrue fields among the analogues. This also supports the notion that

these fields were kept drier than wild rice stands in order to force the rice to produce seed.

Early water control was about drainage rather than irrigation. Later at Maoshan there is a

return to domination by sensitive forms but to a slightly lesser extent than in the earlier phase

at Tianluoshan. This suggests much wetter conditions, wetter than our Indian cultivated

analogues, which may be expected in highly irrigated paddy systems.

Archaeological samples from typical cultural contexts, associated with occupation debris or

middens, show a similar picture in terms of contrasts between sites (Figure 8). The

Tianluoshan samples are dominated by high percentages of sensitive forms. Caoxieshan

presents a contrast with more than 50% fixed forms. Maoshan shows a return to higher levels

of sensitive morphotypes but not as high as the field samples, with a much lower sensitive to

fixed ratio than the paddy field samples. This may be because a greater proportion of the

grass leaves from Maoshan may not necessarily be from crop processing than at the other

sites, and harvesting methods may have targeted the higher portion of plants (mainly



panicles), suggested by the widespread occurrence of hand harvest knives (sickles) in the

Liangzhu period. It is also possible that other non-crop weed grasses entered assemblages

regularly, such as those used in roofing or matting. Nevertheless the contrasts with earlier

Majiabang samples indicate wetter conditions, suggesting that a signal from the arable rice

environment is present. Thus phytolith assemblages from both kinds of contexts appear to

reflect the same underlying patterns of phytolith input from rice habitats.

The general trend is the same from both sample types, and these agree on the chronological

changes, but there are still some contrasts between sample types within Maoshan. At

Maoshan the field samples have higher percentages of sensitive forms and the sensitive to

fixed ratio is lower in the assemblages from the cultural contexts. This indicates some of wet

indicator taxa or plant parts are remaining in field rather than being harvested. This is

expected as these morphotypes occur in grass leaves, only a fraction of which enter the

harvest. When both sets of results are shown together (Figure 9), it is seen that the wet field

samples from Maoshan and the pre-domestication cultivation samples from Tianluoshan have

high ratios like our modern wild rice stands (Figure 9).

Conclusions

The samples from the cultural contexts show similar patterns to the archaeological field

systems although contrasts are not as strong. We suggest that this relates to harvesting

practices with the harvest including a smaller proportion of the overall grass leaves (from the

crop or weeds) that were in the field. At Tianluoshan the percentage of sensitive to fixed is

almost the same as the fields suggesting the grass leaves from the site are predominantly crop

processing waste. At Caoxieshan, as Tianluoshan, there are more fixed forms in the cultural

contexts than from the fields but the difference is slight. The phytolith assemblage from the

Maoshan site has a lower sensitive to fixed ratio than the paddy field samples. This may be

because a greater proportion of the grass leaves from Maoshan came from different sources,

other than crop-processing. Non-crop weed grasses may have been used in roofing, matting,

or basketry, etc. However, the differentiation mostly reflects the samples from the fields

supporting the theory that most of the plant remains in the samples from these sites come

from crop-processing residues which contain a signal about past field conditions. This means

that this method is applicable to archaeological samples from cultural contexts as well as

those from ancient field systems



The results of applying this model to the phytoliths from Tianluoshan, Caoxieshan and

Maoshan demonstrate a good method for differentiating between arable field systems. It is

possible to see early rice cultivation in the river at Tianluoshan. This method provides a

similar environment to the stands of wild rice growing in India and it is easy to picture the

development of rice husbandry here by seeding and managing a wetland margin. At

Caoxieshan the fields are drier, and it seems likely that the small fields at Caoxieshan were

rainfed, and that water control efforts were directing at drying out the fields strategically. The

development of large paddy fields at Maoshan can be seen in the increase in sensitive forms

in the phytolith assemblage. This method is a useful tool for exploring and understanding

developments in early rice farming.
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Tables

Table 1. Phytolith morphotypes from grasses classified into fixed and sensitive morphotypes.

Table 2. Modern rice stands in India sampled for phytoliths and grouped based on relative degrees

of wetness (further details of sites in Weisskopf et al 2014)

Figure Captions

Figure 1. Map of modern analogue study sites, in India, and archaeological sites, in China, referred to

in this paper.

Figure 2. Example of phytolith morphotypes included in this study, from modern reference material.

A. Avena leaf long sinuate; B. Chloris virgata leaf saddles; C. Setaria faberii leaf square bilobate D.

Bromus catharticus leaves long smooth and rondels; E. Oryza rufipogon leaf scooped bilobes; F. wild

Setaria sp. leaf bilobate; G. Panicum miliceum leaf long cells and bilobes; H. Coix lachrymajobi leaf

crosses I. Ischaemum rugosum leaf bilobes; J. Stipa tirsa leaf round rondels; K. Bambusa sp. leaf

collapsed saddles; L. Dactylis glomerata leaf long smoooth

Figure 3. Example of modern rice stands in India sampled for phytoliths in this study. A. Upland

rainfed rice, Penchant Ghat, Maharashtra (I2); B. Lowland rainfed rice, central Odisha (I4); C.

Lolwand rainfed rice, Maharashtra (I1); D. Decrue field in Munda zone of northern Odisha, ranging

from dry to deepwater (I7); E. Oryza rufipogon, perennial wild rice, northeastern Odisha (I10); F.

Oryza nivara, anuual wild rice, northeastern Odisha (I5).

Figure 4. The archaeological sites sampled for this study. A. Tianluoshan Site, main part of ancient

river (center) and western river bank, with posts aligned along the bank (left); B Caoxieshan site,

plan of trench T0422 plan (F1: House platform with postholes; S:paddy fields); C. Caoxieshan site

trench during excavations showing paddyfield units (trench is 5 m. wide); D. Maoshan site, overview

of whole paddy area (orange lines drawn over paths/embankments between paddy fields;

archaeological trenches are 15 meters square; E. Part of Maoshan excavations showing a view of

pathways L2, the eastern most field boundary uncovered, running north to south.

Figure 5: Percentage of fixed versus sensitive phytolith morphotypes in wild rice stands and modern

Indian rice fields. Percentages exclude all phytoliths types not within the sensitive/fixed

classification.
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palaeosol assemblages. B. Comparison of cultural layer/midden context assemblages.
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(center) and western river bank, with posts aligned along the bank (left); B Caoxieshan site, plan of
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Figure 6. Comparison of the proportion of sensitive versus fixed phytolith morphotypes across three

archaeological sites of different phases in the Lower Yangtze. A. Comparison of river edge or field

palaeosol assemblages. B. Comparison of cultural layer/midden context assemblages.



Table 1. Phytolith morphotypes from grasses classified into fixed and sensitive morphotypes.

Dry or fixed, passive (Short grass cells) Wet or sensitive, active (Long grass cells and
stomata)

Rondel Long smooth

Round rondel (Stipa type) Long sinuate

Saddle Long polyhedral

Bilobate Long echinate

Scooped bilobate Stomata

Square bilobate (Setaria type)

Cross

Collapsed saddle



Table 2. Modern rice stands in India (I#) sampled for phytoliths and grouped based on relative

degrees of wetness (further details of sites in Weisskopf et al 2013)

Dry rice Intermediate Wet rice
Wild I5 (O. nivara

I10 (O. rufipogon)
Cultivated I2 & I3

(upland rainfed)
I1,I4 & I6
(lowland rainfed),
I7 & I8 (decrue)



Supplementary Table. Archaeological sediment samples included in the phytolith analysis reported

in the present paper

Site Sample number Period est. date Context type

Tianluoshan T105 (8) S2 Hemudu 4900-4700 BC river edge, (waterlogged)

Tianluoshan T105 (8) SI Hemudu 4900-4700 BC river edge, (waterlogged)

Tianluoshan T302 (6) SI Hemudu 4700-4500 BC general habitation fill

Tianluoshan T003 (6) SI Hemudu 4700-4500 BC general habitation fill

Tianluoshan T302 (6) I SI Hemudu 4700-4500 BC general habitation fill

Tianluoshan T302 (5) SI Hemudu 4700-4500 BC general habitation fill

Tianluoshan T302 (5) Hemudu 4700-4500 BC general habitation fill

Tianluoshan T003 (5) SI Hemudu 4700-4500 BC general habitation fill

Tianluoshan T302 (5) T [=lower] S1 Hemudu 4700-4500 BC general habitation fill

Tianluoshan T302 (5) tns Hemudu 4700-4500 BC general habitation fill

Tianluoshan T302 (4) SI Hemudu 4500-4300 BC general habitation fill

Tianluoshan T302 (4) SI Hemudu 4500-4300 BC general habitation fill

Tianluoshan T302 (3) SI Hemudu 4300-3800 BC general habitation fill

Tianluoshan T302 (3) T [=lower] S1 Hemudu 4300-3800 BC general habitation fill

Caoxieshan CXS TO422 (1) E. Section Majiabang 4000BC cultural layer

Caoxieshan CXS TO422 (3) E. Section Majiabang 4000BC cultural layer

Caoxieshan CXS TO422 (4) E. Section Majiabang 4000BC cultural layer

Caoxieshan CXS TO422 (6)E. Section Majiabang 4000BC natural

Caoxieshan CXS TO422 H15 Majiabang 4000BC Platform

Caoxieshan CXS TO422 F1 (1)-C Majiabang 4000BC Floor

Caoxieshan CXS TO422 F1 Found. Majiabang 4000BC Floor Foundation

Caoxieshan CXS TO422 S1 Majiabang 4000BC Field palaeosol

Caoxieshan CXS TO422 S4 Majiabang 4000BC Field palaeosol

Caoxieshan CXS TO422 S5 Majiabang 4000BC Field palaeosol

Caoxieshan CXS TO422 S6 Majiabang 4000BC Field palaeosol

Caoxieshan CXS S21 Majiabang 4000BC Field palaeosol

Caoxieshan CXS S23-1 Majiabang 4000BC Field palaeosol

Caoxieshan CXS S24 Majiabang 4000BC Field palaeosol

Caoxieshan CXS S27 Majiabang 4000BC Field palaeosol

Caoxieshan CXS S29 Majiabang 4000BC Field palaeosol

Maoshan 09YMTN 12E12 - 12 Majiabang ?4500-4000 BC general habitation fill

Maoshan 09YLM TN9E12 -11 Majiabang ?4500-4000 BC general habitation fill

Maoshan 09YLMTN10-11E12G4-1-a Liangzhu 3300-2300 BC general habitation fill

Maoshan 09YLMTN10-11E12G4-1-b Liangzhu 3300-2300 BC general habitation fill

Maoshan 09YLMTN10-11E12G4-1-d Liangzhu 3300-2300 BC general habitation fill

Maoshan 09YLMTN10-11E12G4-1-e Liangzhu 3300-2300 BC general habitation fill

Maoshan 09YLMTN10-11E12G4 -1-f Liangzhu 3300-2300 BC general habitation fill

Maoshan 09YLMTN10-11E12G4 -3 Liangzhu 3300-2300 BC general habitation fill

Maoshan 09YMTN 12E12 - 10 Liangzhu 3300-2300 BC general habitation fill

Maoshan 09YMTN 12E12 - 9 Liangzhu 3300-2300 BC general habitation fill

Maoshan 09YLMTN4E9-7 Liangzhu 3300-2300 BC Field palaeosol

Maoshan 09YLMTN4E9-8 Liangzhu 3300-2300 BC Field palaeosol

Maoshan 09YLMTN5E13-14-8 Liangzhu 3300-2300 BC Field palaeosol

Maoshan 09YLM I Paddy II Liangzhu 3300-2300 BC Field palaeosol

Maoshan 09YLM.paddy. III Liangzhu 3300-2300 BC Field palaeosol

Maoshan 09YLM River Liangzhu 3300-2300 BC ancient river fill


