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Abstract

This study proposes a framework for deconstructing complex walking patterns to create a simple principal component
space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus
on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis
affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower
dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via
projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we
recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along
a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-
posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded,
leaving 1–3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via
Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas
over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying
structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are
distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a
Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy
equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical
decision making. This measure proves that knee osteoarthritis subjects exhibit more variability in the two-dimensional
principal component space.
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Introduction

The aim of this study is to check whether the redundant

dimensionality of the human biomechanical system can be

effectively reduced by projection into a low principal component

(PC) space. In the later space it is proven that the patterns

produced by normal subjects and pathological subjects that suffer

from knee osteoarthritis (OA), are still identifiable. A challenge in

analysing gait patterns is that, as a form of behaviour, it exhibits

high variability [1]. Both sensory inputs and motor outputs are

subjected to noise and uncertainty [2] [3].

Additionally, movement analysis is extremely complex since the

musculoskeletal system has over 600 degrees of freedom. We

assume that the design of our muscoloskeletal system is redundant

and, as a result of, this the central nervous system has several

options when generating movement for a specific task. In [4] it is

indicated that muscular redundancy is necessary, however the idea

of redundancy still greatly increases the complexity incurred when

generating movement. Movement data is inherently variable both

within subjects (across trials) as well as across subjects [5]. Most

traditional motion analysis methods simply average away the

variability in the data to obtain a clear readout of an underlying

mechanism. This dismisses a lot of the obtained data implying that

features buried in the structure of variability of behavioural data

are lost. In contrast, we embrace here the variability of the data, as

we hypothesis the structure of variability provides insight into the

underlying mechanisms. The novelty of our idea is that instead of

averaging variability out we take the view that the structure of

variability may contain valuable information about the task being

performed [5]. We examine whether motor behaviour can be

understood by identifying a simplicity, through projection to a low

PC space, which may reflect upon the underlying mechanism [6],

[7]. Previous research has verified the existence of stereotypical

patterns of correlation between joints of the fingers during

everyday tasks [6] [8] [9]; or even recognising motion segments

from the whole body [10]. Here, we confine ourselves to human
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walking, which is highly complex and exhibits long-range

correlations and self-similarity, although there are differences

between normal and pathological gait [11], [12].

The reason why we chose OA is that it is a widespread joint

disease affecting many individuals, it is known to alter gait and

function and as such is an ideal condition to test the proposed

machine learning protocol for detecting patterns that are

characteristic of changes from normality. It is also worth

mentioning that although altered gait profiles have been linked

with OA, it is unknown if abnormal gait is a cause or effect of the

disease [13]. OA is the most widespread joint disease; and this is

forecast to increase with the rapidly ageing population. OA leads

to pain, stiffness, weakness, joint instability, and reduced range of

motion. It ranks as the 2nd cause of disability [14], leading to 171

million years of life lived with disability [15]. Not surprisingly OA

is now recognized as the fastest growing major health condition.

Current estimates project that 40% of people over 70 years of age

will suffer with knee OA, experiencing severe pain, and limited

joint motion; with 25% of this group experiencing a major impact

on daily activities [16]. Of greater concern is the fact that patient

numbers are predicted to more than double in the near future, as

the ageing population expands. In the UK, for example, a twofold

increase is predicted by 2030 [17]. Given its prevalence, it is not

surprising that OA poses a huge socioeconomic burden, both in

the UK and worldwide. More than 1 million adults consult their

GP each year with OA in UK alone [18]. Currently, diagnosis is

based on radiographic findings [19], which implies an advanced

stage of knee OA. The gold standard is MRIs for identification of

changes in cartilage but these are expensive and usually clinicians

resort to them until symptoms are severe and restricting. Although

imaging is frequently used it is commonly acknowledged that

imaging and patient reporting of pain and loss of function do not

always align with some subject reporting high pain and reduced

functionality, with limited evidence of joint degeneration on

imaging. Early problem identification could prove to be beneficial,

since late interventions, such as total knee arthroplasty although

successful in removing pain, may lead to compromised functions,

leaving recipients dissatisfied [20] [21]. Although joint replace-

ments are considered successful they do have a finite lifespan and

frequently require replacing within 10 years of initial surgery. With

people living longer this poses a problem and the ideal would be to

develop interventions to delay joint deterioration and the need for

replacement such that implants would last the lifetime of the

recipient [22].

The short-term purpose of this study is to propose a holistic

framework that can automatically detect patterns in the walking

data by projecting them into a low-dimensional PC space. The

long-term purpose of this study is to offer clinicians an automated

tool that can support them with their clinical decisions by

calculating the probability that a patients suffers from knee OA.

To achieve this, we have collected gait patterns from 180 subjects,

47 of which reported that they suffer from knee OA. The

parameters examined here are the ground reaction forces (GRFs)

recorded in the vertical, anterior-posterior, and medio-lateral axis.

To analyse the aforementioned data we employed machine

learning techniques, since the latter may reveal implicit informa-

tion that is hidden in the data but cannot be revealed by human

eye. Machine learning offers novel tools that can expand and

augment classical statistics and hypothesis testing. Machine

learning tries to find patterns in the data and discover the hidden

relationship among several parameters. Therefore we apply

Probabilistic Principal Component Analysis (PPCA) to recover

the variability structure of the data and show that the variability

signature extracted carries predictive power for OA detection from

force plate data. Moreover it allows us an objective definition of

how complex the force plate time series are that are generated by

walkers. Thus, we can compare how complex the force patterns

between healthy and OA patients are and we find this method to

be able to efficiently detect the knee OA subjects in our

population.

In more detail, PPCA captures the main components of motion,

that account for most of its variability. Those components are then

used in order to build motion models. Specifically, two models are

built to explore our understanding of the gait patterns: one of them

for the gait patterns produced by control subjects and a second one

for the gait patterns of knee OA sufferers. The models are

multidimensional Gaussians and in order to assess whether a

pattern is derived by a normal or a knee OA subject, a Bayes

classifier is utilised. A Bayes classifier provides two probabilities:

the probability that the subject comes from the control population

and the probability that the subject suffers from knee OA. In short,

this approach aims to automatically detect knee OA, while

revealing the fundamental structure of motion.

Previous biomedical studies on discriminating subjects with knee

OA vs. normal subjects using machine learning are available in the

literature. For example the sagittal/frontal/transverse plane range

of motion along with the maximum of the vertical GRF and

cadence are used to discriminate between 15 normal and 15 knee

OA subjects, using the Dempster-Shafer theory of evidence in

[23]. In another study [24], knee flexion angle, flexion moment,

and adduction moment for 50 patients with end-state knee OA

and 63 aged-matched asymptomatic control subjects are analysed

via principal component analysis and discriminant analysis cycle.

Important differences with respect to knee OA included smaller

knee flexion moments during stance, larger knee adduction

moments during the stance phase of the gait cycle, and smaller

knee exion angle ranges of motion throughout the gait cycle.

In our work, we reduced the dimensionality of the initial GRF

patterns via PPCA, a procedure which allowed us to identify the

underlying structure of the walking patterns that supports the view

that the cortex organises behaviour in a low-dimensional manner,

although the muscoloskeletal system is redundant. Next, by

exploiting the covariance as it was calculated by PPCA, we

created two multivariate Gaussian models of human locomotion.

If we project from the initial 606 dimensional space to a 36

dimentional space, an accuracy of 82.62% in differentiating

between subjects that are normal and those that suffer from knee

OA is achieved.

Materials and Methods

Subjects
A total of 180 subjects participated in this study, 47 of which

were diagnosed with OA. All control subjects were recruited from

staff and students at Charing Cross Hospital and posters circulated

in hospitals/gyms/local health centres. OA subjects were recruited

from clinics in Charing Cross Hospital and local district hospitals.

For those subjects OA was diagnosed by their clinicians (GPs or

orthopaedics). For imaging verification, a multitude of techniques

were used, such as MRIs, x-rays, or CTs. Concerning the side of

the pathology, OA could affect either medial or lateral tibiofem-

oral compartment or it could be patellofemoral or a combination

of these. Subjects were excluded from the study if they reported

rheumatoid or other systemic inflammatory arthritis, morbid

obesity (Body Mass Index .35 kg/m2) or had undergone previous

surgical treatment for knee OA, besides arthroscopy. More

demographic details of the recruited subjects, such as age, height,

weight, etc, are demonstrated in Table 1.

Knee Osteoarthritis Detection
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Ethics statement
Ethical approval for this study was obtained from the South

West London Research Ethics Committee and all subjects

provided written informed consent. The individual that appears

in this manuscript has given written informed consent (as outlined

in PLOSconsent form) to publish these case details.

Data acquisition
Subjects were asked to walk at their normal speed along a 6 m

walkway embedded with two force plates (Kistler Type 9286B,

Kistler Instrumente AG, Winterthur, Switzerland). A picture of

the walkway along with a subject walking can be seen in Figure 1a.

The individual in this manuscript has given written informed

consent (as outlined in PLOSconsent form) to publish these case

details. Each subject was barefoot and was asked to walk along the

walkway a minimum of five times. Trials with no clean force plate

strike were excluded. A maximum of three trials where the subject

cleanly struck the force plate were recorded for the left and right

foot. Since the 180 subjects provided 1–3 trials, a total of 532 trials

were available. The signals from the force plates were recorded

using an analogue signal data acquisition card provided with the

Vicon system (Vicon Motion Systems Ltd, Oxford, UK) and the

Vicon Nexus software at a sampling rate of 1000 Hz. The GRF

corresponds to the red arrow depicted in Figure 1b over the real

world image and on Figure 1c over the Vicon reconstruction.

Data comprised of GRFs for all three planes: vertical, medio-

lateral, and anterior-posterior. GRF data was normalised to the

subjects’ body weight (N/kg), and was time-normalised to the

entire gait cycle using linear interpolation. This way, we obtained

101 samples per gait cycle. Given that all three axes are considered

for the GRF and that we consider both knees for each subject, the

gait pattern for each trial has a total length of 3626101 = 606

samples.

Results

Data pre-processing
Before analysing the data, we visualised them for each axis and

for each leg separately. In Figure 2 the medio-lateral (GRF-X),

anterior-posterior (GRF-Y), and vertical (GRF-Z) axes are

depicted both for normal as well as for knee OA subjects. The

blue curve corresponds to the mean GRF curve for the normal

knee, whereas the blue shaded region indicates the aforemen-

tioned mean plus minus one standard deviation. Accordingly, the

red curve corresponds to knee OA. It can be seen that the GRFs

for the knee OA subjects exhibit higher variability that than of

normal subjects, for which GRFs are more consistent. In the

anterior posterior axis, knee OA subjects exhibit lower GRFs,

whereas for the two other axes, it is the normal subjects that exert

lower forces. Finally, it is also evident from Figure 2 that GRFs

developed over the two legs are not strictly symmetrical. This adds

to the complexity of the problem and contributes to the belief that

there are random signal disturbances of our nervous-system

function which are responsible for coordinating motion [5].

As already discussed, human behavioral data exhibit high

variability [25] [26]. Regrading inter-subject variability, it is easy

to see in Figure 2 that subjects walk in a different manner, i.e. that

the inter-subject variability is high, as indicated by the width of 61

standard deviation, that is the shaded area. The intra-subject

variability is depicted in Figure 3, where 3 trials for one indicative

subject are depicted.

Finally, it is useful to verify that the collected actual empirical

GRFs are indeed Gaussian distributed. This is because PPCA

exploits a Gaussian latent variable model and can be utilised as a

general Gaussian density model [27]. Also, the Bayesian classifier

used in this work, assumes that the samples of each class follow the

Gaussian distribution. The collected GRF histograms are depicted

in Figures 4a-4b along with the fitted Gaussian distributions. As

verified by the aforementioned Figures, the empirical distributions

are well-fitted with a Gaussian distribution. The empirical pdf

histogram is depicted in blue. The theoretical distribution pdf

fitted on the empirical data histogram is depicted by a solid red

line. Although the GRF statistics for walking are indeed Gaussian

distributed, our method would work irrespective of the actual

empirical data distribution, as we simply use the amount of

variance explained by each PC (and compute these for all

dimensions) as characteristic to measure and distinguish walking

patterns.

Probabilistic principal component analysis. PPCA re-

duces the set of correlated data to a set of non correlated variables,

called principle components. The first component contains the

maximum value of the variance (maximum variability of data),

followed by the second and so forth to the last PC [28] [27].

Because of that, PPCA has been used to determine the complexity

of human walking by reducing the dimensionality of the space

(here, a 606 dimensional space) and measuring the amount of

variance of the data contained by each of the PCs.

Table 1. Mean value and standard deviation about the age, height, weight, BMI, sex, and pain (as assessed by the KOOS score) and
the number of subjects that have experienced a surgery or an injury for both the control and the knee OA subjects.

no knee OA knee OA

(133 subjects) (47 subjects)

Age (years) 45.0 (16.5) 58.1 (12.7)

Height (mm) 1714.6 (102.2) 1695.8 (113.2)

Weight (kg) 69.2 (12.4) 76.2 (14.4)

BMI (kg/mm2) 23.4 (2.9) 26.381(3.325)

Male/Female 66/67 22/25

Previous Injury 35.3% 46.8%

Previous Surgery 23.3% 66.0%

Pain (KOOS) 90.9 (13.4)% 60.8 (18.9)%

Demographic details of the subjects
doi:10.1371/journal.pone.0107325.t001

Knee Osteoarthritis Detection
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To provide a short overview [27], we denote the observed data,

i.e. the GRF patterns by y~yi,i~1,:::d,d~606, and the

significantly lower q dimensional latent vectors as x. It is true

that q equals to the number of PCs we retain. The following

relationship is considered:

y~Wxz mz , ð1Þ

where W is the matrix that projects y to x; m is the mean vector of

the model; and is the model noise. If the noise is isotropic

Gaussian noise, i.e.,

*N(0,s2I), ð2Þ

then it holds that

yDx*N(Wxzm ,s2I): ð3Þ

If we consider that the latent variables also follow a Gaussian

distribution, i.e. x*N(0,I), then:

y*N(m ,C), ð4Þ

where

C~WWTzs2I: ð5Þ

The Maximum Likelihood Estimators (MLEs) of W and s are:

W~U(L{s2I)
1
2R, ð6Þ

and

s~
1

d{q

Xd

j~qz1

lj , ð7Þ

where U are the principal eigenvectors of the sample covariance

matrix of y, with eigenvalues flj ,j~1 � � � qg that form the

diagonal matrix L, and R is a rotation matrix.

Here, we compute the covariance matrices CNR and COA for

the normal and for the knee OA model, respectively [29] by

utilising PPCA. Those matrices are subsequently used by the Bayes

classifier to compute the probabilities that a testing GRF vector

ytest belongs to each distinct class.

A new measure of complexity. As a way to quantify the

complexity of the ground reaction forces for a given number of

PCs, we propose a new measure that we call motion complexity

CN .

CN~1{
2

N{1

XN

j~1

Xj

i~1

Variance Explained by PCi {
1

N
,ð8Þ

where N is the total number of PCs we consider. This implies that

the lower the value, the higher the complexity.

With respect to the newly defined complexity measure CN , a

diagram of how complexity is progressing with respect to the

number of PCs can be seen in Figure 5. It can be concluded from

the Figure that in the lower PC dimensional space knee OA

subjects walk in a more complex manner, whereas when a higher

number of PCs is exploited, the complexity between the two

groups converges. This is in line with the interpretation of

Figure 6, where it is seen that for first 3 PCs the variability

explained for knee OA subjects is lower compared to the normal

ones. For example, CN = 1.311 for the knee OA subjects, whereas

CN = 1.486 for the normal subjects for the simple case of

considering the first two PCs. This way complexity can be thought

as a new assessment measure that is calculated after an objective

mathematical analysis and can potentially support clinicians when

taking decisions.

Bayes classifier. Classification of the data is accomplished

by means of a Bayes classifier. We consider 2 classes, i.e. healthy

Figure 1. Data capturing. Figure 1a is the real, lab-based environment, Figure 1c is the computer reconstruction, whereas Figure 1b an overlay of
the two.
doi:10.1371/journal.pone.0107325.g001
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Figure 2. The blue curve corresponds to the mean GRF curve, whereas the blue shaded region indicates the precision of plus minus
one standard deviation. Accordingly, the foot which has knee OA is depicted in red.
doi:10.1371/journal.pone.0107325.g002
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subjects vs subjects that suffer from knee osteoarthritis. In the

training phase, we estimate the multivariate Gaussian distribution

parameters by utilising the ytrain GRF vectors. For each class we

estimate the mean vectors mNR and mOA, for the normal and the

osteoarthretic classes respectively, as well as covariance matrixces

CNR and COA using Eq.(5).

The probability of an observed GRF vector of the test set (ytest)
to be derived from a normal walking subject is:

p(ytestjNR)~

1

(2p)
d
2jCNRj

1
2

exp({
1

2
(ytest{mNR)T )C{1

NR(ytest{mNR),
ð9Þ

given that ytest*N(mNR,CNR). Accordingly, we compute the

probability p(ytestDOA) for a subject that suffers from knee OA.

The Bayes rule [30] for 2 classes vi~fNR,OAg, states that

p(vi Dytest)~
p(ytestDvi)p(vi)

p(ytest)
. Accordingly, the Bayes classifier

denotes that [31]:

if p(NRjytest)=p(OAjytest)w1u

p(ytestjNR)p(NR)wp(ytestjOA)p(OA), then normal subject

if p(NRjytest)=p(OAjytest)v1u

p(ytestjNR)p(NR)vp(ytestjOA)p(OA), then knee OA subject

ð10Þ

Figure 3. GRFs for an random indicative subject.
doi:10.1371/journal.pone.0107325.g003

Figure 4. The goodness of fit of a Gaussian distribution to the actual empirical distribution of the GRFs patterns for (a) normal
subjects and (b) knee OA subjects. Probability distributions over GRF patterns. Solid red lines is Gaussian distributions with mean and standard
deviation matched to the empirical GRFs histograms. The data and the matching Gaussian distributions appear as bell-shaped.
doi:10.1371/journal.pone.0107325.g004

Knee Osteoarthritis Detection

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e107325



Figure 6 shows the amount of variance explained in the data

versus the number of pricipal components. In this Figure we

confine ourselves to the first 60 PCs, since, for the whole dataset,

i.e. normal subjects and subjects that have knee OA, over 99% of

the variance is explained by those components. The readability of

the Figure is significantly decreased if we utilize all 606 PCs. From

Figure 6 it can be concluded that the first PC explained just over

33% of the variability of the data, the first 2 PCs explained about

45% of the variance in the data, whereas the explained variance

percentage raises to almost 60% for 3 PCs. For the same Figure, it

is also evident that if we confine ourselves to a 1-dimensional PC

space, then the variance explained of the knee OA subjects is lower

that for the normal subjects. However, for as the number of PCs

increases, the knee OA subjects exhibit less variance.

The complexity of the structure of human walking can be

visualised if we plot the projection of the original GRF patterns in

the PC space. In Figure 7 the projection to a 2-dimensional space

is demonstrated. To conclude, PPCA on a limited number of steps

(1–3 steps) revealed that complex walking patterns restricted on a

low dimensional subspace are not easily separable.

Aiming to visualise how different are the walking patterns

between normal and knee OA subjects, the trajectories of PC 1 vs

PC 2 are depicted in Figures 8a-8b for all 47 folds. As explained in

detail later on in this Section, a 47-cross validation protocol

guarantees that we maximise the number of subject-independent

training patterns. Each trajectory corresponds to one fold, since

one normal and one osteoarthretic model is built for each fold. It

becomes clear from Figures 8a-8b that there is an underlying

structure in the GRF patterns and that those patterns are

considerably different between the normal subjects and the

subjects that have knee osteoarthritis. The greater variability

among the normal subjects can be attributed to the fact that it is

expected that some subjects may have early signs of knee OA, but

were asymptomatic at the time of the study. Thus they cover a

higher range of the disease presence and motion patents,

compared to the knee OA subjects subset. The latter is more

uniform, since all subjects have already been diagnosed with knee

OA. Ultimately, the walking trajectories in the PC space exhibit a

different structure.

An alternative way to visualise the difference in the structure of

the PC space is to depict all PCs for the normal and the knee OA

subjects. We decided to utilise 36 dimensions because those

explained about 99% of the variance in the data. In Figure 8c,

PCs are extracted for one indicative fold of the 47-folds protocol

and each PC is depicted with a different color. Since the

component subspace is a 36-D basis, PCs are unit vectors. It is

clear that PCs are following different trajectories for the two

classes. To increase the clarity of the Figure 8c, we focus on the

first 3 PCs for which the trajectories for the two classes are

demonstrated in Figure 8d. Solid lines stand for the normal

subjects, whereas dashed lines indicate the knee OA subjects.

Visual inspection verifies that all 3 PCs follow different trajectories

Figure 5. The proposed complexity measure CN for the first 36 PCs. In the lower PC dimensional space knee OA subjects have a tendency to
present lower values.
doi:10.1371/journal.pone.0107325.g005

Figure 6. How much variability is explained as a function of the
number of the components. The x-axis corresponds to the number
of PCs, whereas the y-axis the percentage of the variance of the GRF
patterns explained by the respective number of PCs. It is evident that
human walking is a complex process, since the slope starts at a low
point (1 PC explains just above 30% of the variability of the combined
data) and the slope progresses slowly.
doi:10.1371/journal.pone.0107325.g006

Knee Osteoarthritis Detection
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over the two classes, whereas the 2nd PC is the most discriminative

among the two classes.

Next, we applied a Bayes classifier in order to distinguish the

two classes. The experimental protocol is subject-independent. If a

subject’s trial is included in the training set, then all the trials of

this subject are part of the training set and none is used in the test

set. Subject-independent systems present several advantages. They

are able to handle efficiently an unknown subject [32]. Thus, they

are more robust and stable, and demonstrate a better generaliza-

tion ability than the subject-dependent ones, since they avoid

classifier over-fitting. In subject-dependent experimentation it is

possible that the classifier may learn special characteristics of the

specific subject along with the pathological locomotion patterns.

Finally, subject-independent systems are suitable for real-life

applications, such as a general practitioner’s surgery or for

training medicine students on orthopaedics.

Since the problem we are dealing with is highly complex and

the dataset is of moderate size, we decided to apply a 47-cross

validation protocol. The reason for this choice is that the number

of subjects that suffer from knee OA is 47. This way, in each fold

46 subjects that have knee OA are used for training the knee OA

multidimensional Gaussian model and the remaining one subject

is used for testing. Accordingly, we maximise the number of

subjects utilised for training. The accuracy achieved is

82.62613.75% when utilising 36 PCs. The number of true

positives across the trials equals 131, the number of false positives

is 3, the number of false negatives is 35, and the number of true

negatives equals 10. Thus specificity and sensitivity are 0.79 and

0.77 respectively; and precision is 0.97. The high number of false

negatives proves that with this method we are able to recognise

subjects that although they believe to be normal, in fact they

exhibit motion patterns that are closer to those of those subjects

that suffer from knee OA. It is reminded that we decided to use the

aforementioned number of components since it explains about

99% of the variance.

Discussion

The complexity of human walking
In this paper we aim to investigate the fundamentals of human

motion and how an understanding of this can be used to identify

change in motion due to pathology, pain or other cause. Knee

osteoarthritis is a condition we have applied to test the concept

that complex data can be used to identify pathology or changes

from normality, depicting the potential use of such analysis

approach to assist in the diagnosis and management of complex

clinical conditions. To achieve this goal, we applied machine

learning. Machine learning concerns the construction of systems

that can learn from data. It aims to reveal hidden patterns in the

data and to build a system that performs well on unseen data

instances.

We attempted to explore the complexity of human gait by

projecting complex locomotion data to a low dimensional PC

space. We take the view that the motor behaviour can be

understood by identifying a simplicity, which may reflect upon the

underlying mechanism [6], [7]. To extract the structure of gait

cycle pattern variability we used PPCA which built generative

models of walking and specifically, one model for normal walking

and another one for that of subjects with knee OA. Importantly,

the low-dimensional subspaces of just 36 dimensions appeared

numerically distinct between subjects that suffer from knee OA

and healthy ones. To quantify the complexity we proposed a novel

complexity measure that has a tendency to be lower for knee OA

subjects compared to normal ones for the first 7 PCs (except from

the third PC where the complexity measure is almost equal for the

two cases). This supports the view that the motor cortex organises

behaviour in a low-dimensional manner to avoid the curse of

dimensionality in terms of computational complexity. That is, it

retains as much dimensions as needed for moving effectively, but

not all the dimensions. All the dimensions include an enormous

amount of information that would possibly impede movement.

Additionally, it supports the hypothesis that specific walking

patterns produce movement variability in characteristic sub-

spaces. This is the reason that we are able to effectively predict

the degree of knee OA by observing just a small amount of

movement data (i.e. one to three steps).

Our remarks about the ability to model human motion in low

PC spaces are in line with those presented in [33], where motion

tracking is achieved by means of a Bayesian method, verifying the

suitability of the Bayes theory to handle data that come from low-

dimensional PC spaces. It is also interesting that the PC space has

been proven suitable to capture different types of human activity

by analysing data that come from hand movements [34], rather

than from bipedal locomotion. Besides human motion, C. elegans

Figure 7. Projection of the GRF patterns in 2-D PC space (i.e. the first two PCs). The two classes are not separable.
doi:10.1371/journal.pone.0107325.g007
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Figure 8. PC visualisations as discriminants of the two classes: normal subjects vs. knee OA subjects.
doi:10.1371/journal.pone.0107325.g008
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motion is also effectively modelled by eigenanalysis that is related

to PPCA [35].

GRFs as predictors for knee OA
The structure of variability may contain valuable information

about the way a task is performed [5] [36] and accordingly here

the walking task may reveal osteoarthritic patterns. This is because

it is expected that moving patterns are distorted in a systematic

manner, rather than in a randon way, if a pathological factor is

present. The latter is also verified from Figures 8a-8b, where the

trajectories of the PCs for the normal and the pathological gait

present differences that can be easily inspected visually. Even

lower subspaces can effectively differentiate between normal and

knee OA subjects. For example, if we confine ourselves to the 1-

dimensional space the classification accuracy is 77.68626.34%,

for the same experimental protocol (i.e 47-folds cross-validated

and subject-independent). This also suggests that GRFs are

adequate predictors of knee OA. To support clinical decision

making we propose a novel complexity measure that can be used

as a possible indicator of knee OA. Another advantage of the

proposed method is that it has a high number of false positives

(also known as type I error), that is subjects that claimed not to

have knee OA, but the proposed method estimates that their

walking patterns are closer to osteoarthritic rather than the normal

ones. An additional advantage of the proposed schema is that it

can be easily transfered to other timeseries captured by alternative

sensors during walking, such as accelerometers, gyroscopes, EMGs

etc.

In fact, a range of techniques have been utilised in order to

analyse data that come from normal and knee OA subjects, aiming

to automatically differentiate between them. For example, in [37],

wavelet analysis of GRFs has proved a reduction in peak

anteriorposterior GRFs during the stance phase for knee OA

subjects. Also, the vertical GRFs were lower in severe cases

compared to the moderate cases. A total of 12 healthy and 24 knee

OA subjects participated in the study. Wavelet transformation was

also utilised by the authors of [38] to prove that the antero-

posterior and medial-lateral force components in gait patterns

carry the most discriminating power. The study included 16

healthy subjects and 26 subjects suffering a tibiofemoral knee OA.

GRFs are also examined in [39], where subjects are asked to

perform a sit-to-stand task. Twenty subjects with early medial knee

OA and 20 control subjects participated in the study. It found that

GRF integrals were significantly greater for knee OA sufferers.

The advantage of our study is that it manges to visualise effectively

the differences between the normal and the knee OA subjects. A

very important aspect of this study is that, as it becomes obvious

for Figures 8c-8d, it is the end of the stance phase that bears the

most discriminating differences between the normal and the knee

OA subjects. Specifically, in Figure 8c, it is easily seen that normal

subjects have an extended stance phase, compared to knee OA

subjects, since for the normal subjects PC values reach 0 after

about 73% of the gait cycle, whereas for the knee OA subjects the

latter value falls to about 71%. This is also verified from Figure 8d,

where the most important PC differences between the two groups

can be seen in the 45%–70% zone of the gait cycle. Accordingly,

we propose that future studies may narrow down to this specific

band of the gait cycle, rather than considering the whole gait cycle.

The latter is expected to reduce the volume of the captured data,

whereas at the same time reducing the non-informative parts of

the gait cycle.

Future work
Additional movements, namely stair ascent/descent, sitting and

standing, and squat have been captured in our Lab and analysing

those movements will enable us to discover which activities of daily

life are mostly affected by knee OA. It will also help us verify that

movements are organised in a low dimensional manner as well as

rank them according to their complexity by specifying how many

PCs are required by each type of movement in order to explain the

movement’s variability. The proposed framework for detecting

pathology can be expanded to kinematic data. However,

replicating the same protocol for another source of data, although

expected to improve accuracy, falls out of the remit of this paper,

since it would add unnecessary complexity. Since capturing GRFs

requires a controlled environment, our next aim is the adaptation

of our laboratory based computer tool to accommodate ‘‘GP

based’’ measurements thereby enhancing clinical utility. For

example, we could substitute the force plates with consumer

balance boards such as Wii balance boards or with instrumented

insoles. Further computational analysis will compensate for the

errors introduced by those less accurate sensors. If the aforemen-

tioned system is portable, it could allow patients to self-manage,

ensuring patient empowerment as well as enhancement of patient

compliance with interventions. It could also be used as a novel

diagnostic solution, that act prior to the patient feeling the need to

go to see a clinician.

Possible application to other areas
Other joints that suffer from OA, such as the hip, could benefit

from the same type of analysis, since the underlying biomechanical

mechanisms are the same. Facilitating diagnosis of alternative

degenerative musculoskeletal conditions, such as carpal tunnel

syndrome or back pain, could also benefit from the proposed

approach. Additional problems where the neurological disorder

affects the musculoskeletal system and causes impaired movement,

such as Parkinson’s disease or impaired locomotion due to strokes,

could also benefit from the proposed framework.
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