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ABSTRACT 

In the course of the exploration of computational means in the architectural 

design process, in order to investigate more complex, adaptive geometries, 

the Voronoi diagram has recently gained some attention, as a structure that is 

modular but not repetitive, with potential for a great variety of complex 

geometries. The project looks at the Voronoi diagram as a load-bearing 

structure, whether its formal potential can be useful for statical optimisation, 

and how this optimisation can be facilitated. Hereby, the edges of the Voronoi 

polyhedra are regarded as structural members of a statical system, which 

then is assessed by structural analysis software.  

The project explores different techniques to optimise the cell structure in 

regards to its structural properties. It is suggested that the main challenge to 

optimise the polyhedra structure lies in the inherent complex relationship 

between the Voronoi cell cores and the resulting cell geometry. Cell 

geometries emerge from combinatorial properties of the underlying set of 

points and so there is no means to manipulate the cells directly. 

Results seem to indicate that the emergent Voronoi polyhedra structure, 

although difficult to control due to its complex behaviour, can produce a very 

specific type of structural order, which is distinctively beneficial for a statical 

structure. Certain polyhedra structures which emerge from the Voronoi system 

appear to exhibit ‘synergetic’ system behaviour of cooperating tear and 

pressure forces, which makes the structure more stable and minimises 

deformation. The overall shape of the structure hereby is minimally 

transformed. The working principle of the optimised structure lies rather in 

how forces are redirected in the system due to its specific topology, rather 

than through geometrical transformations of the structure’s overall shape. 
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1 INTRODUCTION 

1.1 BACKGROUND 

Alongside the introduction of computation in the design process, architects 

and structural engineers have been exploring the possibilities of more 

complex geometries and adaptive forms and structures. The Voronoi 

diagram has recently gained some attention in this field, being a three-

dimensional space-filling structure which is modular but not repetitive. This 

makes it attractive as a design tool - as the non-repetitiveness suggest a 

parametric quality that might be more ‘adaptive’ than ordinary modular 

systems. A further interesting property of the Voronoi structure is its 

inherent notion of spatial relationships, adjacencies and neighbourhoods, of 

which the Voronoi cell is a direct geometric equivalence. This property 

suggests that the Voronoi diagram can be useful to model parametric 

spatial relationships and can thus find various application in architecture 

and urban design. Thirdly, architects and designers have been attracted by 

the ‘creative’ potential of the Voronoi diagram to produce emergent, 

complex cell geometries. Accordingly, the Voronoi diagram has been 

applied to experimental form finding tasks in various design projects. 

However, the actual geometry of the Voronoi polyhedron is difficult to 

predict and control, as the shape of a cell emerges from the configuration of 

the entire neighbourhood of cell cores and is thus a result of multiple 

parameters. The geometry and the topology of the polyhedron of each cell 

– such as size, proportion or the number of edges – is highly sensitive to 

even the slightest change of position of any point in the neighbourhood. 

The relationship between the cell cores and the resulting geometry of the 

cells is thus inherently complex.  
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For architects and structural engineers, however, a tool which offers little 

control over the actual geometry obviously is of limited usability. - Being 

precise about the geometry of space and structure is what these 

professions are concerned with in the first place. So although the Voronoi 

diagram is likely to work well for tasks to optimising topologies, it remains 

unclear in how far the difficulty to control the cell shape is a limitation for its 

use as a design tool in architecture and structural engineering.  

 

1.2 AIMS AND OBJECTIVES 

Little research has so far been done to explore the Voronoi diagram under 

specific consideration of its geometrical properties rather than its cell 

topology. This project explores emerging geometries of three-dimensional 

Voronoi polyhedra in terms of their properties as load-bearing structures. 

This task obviously implies specific demands to the cell geometry as such. 

Similar to prior approaches, the motivation to become engaged with the 

Voronoi diagram is its potential for complex unexpected geometries, and it 

seems of interest whether this potential can be exploited to deliver 

optimised statical structures. However, it is unclear whether the Voronoi cell 

geometry can be controlled sufficiently to evolve statical structures at all. 

 

1.3 INTRODUCTION TO THE PROBLEM 

The statical structure that shall be subject to optimisation will be constituted 

by the edges of the Voronoi polyhedra, and be assessed by structural 

analysis tools in terms of its stability and its deformation. The evolution of 

the structure is induced through relocation of the Voronoi cell cores. The 
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resulting changes of the cell geometry are assessed statically and then 

feed back to guide the further evolution of the system.  

Characteristically, when moving Voronoi cell cores, not only the Voronoi cell 

geometry changes, and hence the length and orientation of Voronoi cell 

edges, but also inseparably the actual cell topology. As neighbourhood 

relationship between cells changes, entire polyhedra faces emerge or 

vanish. Geometric constellations of the cell structure are created from very 

specific configurations of cell cores, and can equally vanish again through 

only slight changes of the configuration. 

These topology changes, as will be shown, have a significant impact on the 

performance of the structure. The actual fitness of the overall structure will 

abruptly change at thresholds where Voronoi cell core movements cause 

the topology to change. In this sense, the changes of the Voronoi cell core 

configuration and the resulting changes of the overall structural fitness are 

non-linearly related. This ‘emergent’ property of the cell topology will make 

it difficult to predict successful future movements of Voronoi cell cores 

based on their former successes.  

However, it will be suggested that there is also a significant potential: A 

great variety of different topologies can be created with slight changes of 

the Voronoi cell core configuration and thus minor changes of the overall 

shape of the structure as such. It shall be suggested that from this solution 

space of ‘near-by topologies’, solutions with significant structural potential 

can be retrieved: Topologies emerge which apparently redirect forces more 

efficiently than in the original simpler structures, whilst exhibiting 

‘synergetically’ collaborating tear and pressure forces. Notably, these 

‘synergetic’ structures show a comparatively good performance with only 

little actual deformation of the Voronoi cells themselves. 
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2 RELATED WORK 

A considerable range of research has been done to investigate the 

potential of the Voronoi structure as a generative tool in architecture and 

urban design. Typically, the aim has been to generate functional topologies 

of entities, by letting Voronoi cells represent these entities, and to evolve 

the system’s topology through optimising Voronoi cell neighbourhoods. The 

resulting cell geometry provides a structure, which accounts for these 

topological affordances in terms of its cell adjacencies. The cell structure 

can hence be considered as functional in terms of the topological 

affordances, or, at least, as a good starting point for further geometrical 

amendments to become functional. – However, little research has been 

done which targets the cell geometry as a main subject to optimisation, by 

defining specific fitness goals for the cell geometry itself in the first place.  

 

2.1 THE VORONOI DIAGRAM AS A TOOL FOR FORM-FINDING 

The Voronoi structure has been used as a tool for form finding, deliberately 

exploiting the ‘creative’ emergent potential from the geometry from bottom-

up self-organising processes of the Voronoi point cloud. It is this formal 

potential that makes the Voronoi diagram attractive as a design tool.   

M-any (Bonwetsch et al, 2006) is a research project from the ETH Zurich 

which explores the formal spectrum of emergent geometries of a 

parametrical Voronoi structure (Figure 1). The parameters which control the 

process are concerned with topological aspects of the cells in the first 

place. The geometry itself is hardly constrained with specific affordances 

but rather appreciated as emergently delivering unexpected results.   
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Formally, the resulting structures have been associated with foam-like 

structures such as sponges, bone structures and crystals. The tradition of 

these formal associations reaches back to the famous work of architects 

like Toyo Ito (Ito, 2008), Buckminster Fuller (in: McHale,1962) or Frei Otto 

(Otto, 2008), which was inspired by formation principles, geometries, spatial 

effect and constructions in nature, as a formal, spatial and/or constructive 

inspiration.  

 

 

Figure 1:  M-any:  Parametric design based on 

the Voronoi diagram 

 

 

2.2 THE VORONOI DIAGRAM IN OPTIMISATION TASKS 

The Voronoi diagram has been applied to spatial optimisation tasks in 

urban and architectonic contexts. An example which optimises topology in 

the first place, but though defines geometric affordances, is the research 

project Kaisersrot (Braach et al, 2006). In the course of this research 

project, a computer software was created which optimises land use for 

housing developments. The representation of the plots is based on the 
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Voronoi diagram. The tool generates layouts for housing developments, 

according to individual parameters that are individually defined for each 

plot, such as desired adjacencies, attractors and plot sizes. The 

optimisation process works in two stages, firstly, topological and layout 

parameters such as plot sizes, land use deviation and neighbourhoods of 

plots are evolved, secondly, the actual geometry is fixed in order to function 

with a street layout.  

In the first stage, Voronoi cells - the plots - move around in order to 

increase their individual fitness, in terms of sizes and adjacencies. This 

eventually leads to an acceptable solution for the overall configuration 

topology. In the second stage, the actual cell geometry is corrected to 

function as an urban layout. Plot edges need to be aligned and 

straightened in order to allow of a reasonable street layout. These 

corrections are facilitated through alignments of the ‘plot’ cells with the 

adjacent ‘street’ cells (Figure 2). 

This example demonstrates that a Voronoi structure, which is optimised in 

terms of a desired topology of its cell layout, is not determined in terms of 

its geometry. There exists a great variety of geometries for a specific 

topology. Meaningful geometric order does not emerge from sorting out the 

cell topology alone. 
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Clockwise from top left: 1Initial configuration 2 Optimised 

configuration of plot cell cores 3 resulting plot layout from topology 

rules 4 plot layout after geometry optimisation  

Figure 2: Kaisersrot. Urban layout generation based on the Voronoi 

diagram 

 

 

In the project ‘Self-organising Room Layout’ (Friedrich, 2007) it was 

attempted to optimise the layout of ‘rooms’ in three-dimensional space. The 

rooms were given as point locations and their interconnections and desired 

adjacencies were represented as a graph of links. This graph of nodes and 

interconnections was optimised in three-dimensional space using a 

Kohonen algorithm. The Voronoi diagram was used to display the shape of 

the rooms, using the nodes as cell cores. Results show clearly that mere 

optimisation for adjacency is by far not sufficient to produce meaningful 

spatiality (Figure 3). 
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Clockwise from top left: 1Initial random configuration 2 Optimised configuration of 

room nodes through the Kohonen algorithm 3 Resulting room geometry as generated 

through the Voronoi diagram of the room nodes 

Figure 3: Self- organising room layout using Kohonen !eural !etwork and 

Voronoi diagrams 

 

2.3 THE VORONOI DIAGRAM IN STATICAL OPTIMISATION  

Little research has so far been done considering the Voronoi diagram as a 

tool for structural optimisation of statical structures. Rather than the Voronoi 

cells, its dual, the Delaunay tessellation has been applied to structural 

problems (Canzarra, 2001), taking advantage of the fact that the three-

dimensional Delaunay is a statically rigid structure of space-filling 

tetrahedra (Figure 4).  



 

 15 

It remains unclear if the Voronoi system can be evolved for the specific 

geometric and structural affordances. The project presented here will 

investigate different optimisation strategies, aiming to evolve the structure 

of the Voronoi cells rather than the Delaunay tetrahedrisation in terms of its 

fitness as a statical system. The structural system to be assessed will 

hereby be generated from the Voronoi cell edges as structural beams, and 

will be evolved through feedback-driven amendment of the Voronoi cell 

cores. 

 

 

 

 

 

 

Figure 4: Pablo M. Canzarra – Evolved Cantilever 
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3 METHODOLOGY 

3.1 COMPUTER TOOLS 

The software which was developed for this project consists of two 

interacting components:  

• a program written in Processing1 which generates a statical structure 

based on a three-dimensional Voronoi diagram and optimises it 

through amending  the Voronoi cell core configuration. In this 

component, different algorithms have been implemented which 

evaluate structural performance feedback during the optimisation 

process and amend the cell core configuration based on this 

feedback 

• a structural analysis program - Oasys GSA2 - to assess the structure 

and to feed back fitness results to the main program 

Oasys GSA can be controlled remotely via a COM-interface, so it can run in 

the background, and the process of analysing models and reimporting 

results can seamlessly be integrated into the Processing applet. 

 

 

 

 

1
 www.processing .org 

2
 www.oasys-software.com 
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3.2 THE VORONOI DIAGRAM AS A STATICAL STRUCTURE 

The Voronoi diagram is created from a set of points inserted into a hyper-

tetrahedron which confines the structure. The statical structure subject to 

optimisation is obtained from the cells of a subset of the point set (Figure 

5). To confine the structure to the outer space, the subset of ‘structural’ 

cells are surrounded by a layer of ‘non-structural’ cells, which are assigned 

a constant position in space and are thus not actively taking part into the 

optimisation process. 

 

  

   

Clockwise from top left: 1 Initial hypertetrahedron from four points 2 A set of 108 cell cores 

arranged on a grid 3 The Voronoi cell structure from the point configuration 4 The statical system 

from the inner layer of cells; cells are clipped on the bottom plane 

Figure 5: The Voronoi structure as a statical system 
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The edges of the structural cells act as beam members and are connected 

through rigid nodes – as the cell structure is not triangulated this is a 

necessary precondition to generate a valid statical structure which can be 

processed by the statical analysis software. In order to confine the structure 

towards the ground, the structural cells are clipped on a horizontal ground 

plane. Each beam member which intersects this plane is trimmed at the 

intersection point and fitted with a fixed support to the ground. Members 

below the bottom plane are not considered. 

In order to analyse the structure in Oasys GSA, it has to be assigned some 

real-world properties such as size and material properties of the beam 

members. As the work presented here is more concerned with relative 

performance rather than to address a specific optimisation problem, it shall 

be suggested that these units can be chosen arbitrarily – within reason – as 

long as they are used consistently. Given that the size of the structure is in 

reasonable proportion to its beam sizes, GSA produces valid results, and 

thus gives meaningful account of relative variance of performance during 

the structure’s evolution over time.   

The optimisation process starts from a simple initial configuration: Voronoi 

cell cores are arranged on a grid, thus producing cube-shaped Voronoi 

cells. The resulting statical structures is a modular space frames with 

rectangular beam connections. The grid size has been set to 10x10x10 

metres. At that scale, a reasonable material size for beams seems to be a 

circular hollow steel profile with a diameter of 0.3 m and a wall thickness of 

0.02 m. Beams which connect to the bottom plane are defined as fixed 

supports.  

In order to choose a simple load case, the structure is merely considered in 

terms of self weight. In a prior investigation (Friedrich et al, 2007), in some 

cases a moderate wind load has been applied which was implemented as 
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horizontal force of 1 kN/m2, and suction on roof areas, as well as additional 

floor loading. However, it has been apparent that these load cases did not 

affect significantly the nature of the optimisation process. Hence, in the 

present work only self-weight shall be considered. 

 

 

 

Clockwise from top left: 1 The structure as space frame, imported into Oasys GSA. 2 Load 

diagram 3 Deformation of the structure due to its loading (magnified x 12.5) 

Figure 6: OASYS GSA – Statical analysis 

 

The initial configuration consists of twenty structural cells, of which sixteen 

constitute an upper level which is supported at the ground level by four 

cells at its corners (Figure 6). Other configurations have been tested 

elsewhere (Friedrich et al, 2007), but, for conciseness, shall not be included 

in this investigation. 
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3.3 THE VORONOI CELL GEOMETRY AS AN OPTIMISATION PROBLEM 

Oasys GSA calculates the values of forces and moments in beams and 

supports, as well as the deformation of the structure due to loading, firstly 

for the initial configuration and then after each time the Voronoi cell cores 

have been moved. The analysis results are reimported into the main applet 

and feed back into the optimisation process, in order to evaluate the next 

movements of cell cores. The performance of the initial configuration – the 

maximum occurring deformation (MD) – will be the measure and scale to 

appraise the increase of fitness – the reduction of this maximum 

deformation - during optimisation.   

Although feedback on optimisation success can be obtained in each 

optimisation step, it turns out to be by no means straightforward to derive 

strategies for successful next movements from this feedback. This is, as 

shall be suggested, due to the inherent complex relationship between the 

configuration of the Voronoi cell cores and the properties of the Voronoi cell 

structure, in terms of the mere geometry of the cells geometrically but also 

due to the affordances of the structure as a statical system. 

It shall be recalled that the Voronoi diagram is a topological data structure 

in the first place, which describes neighbourhoods of given points. The 

Voronoi cells are emerging from configurational properties of this point 

cloud. The Voronoi structure can hence be described from two different 

points of view, namely the microstatic view which considers properties of 

the set of points, and the macrostatic view, which is engaged with the 

geometry of the cells. It will be suggested that the relationship between the 

microstate and the macrostate is inherently complex, and that the specific 

type of complexity observed here will make it non-trivial to control the 

macrostate from the bottom up, and to generate geometry features which 
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are at all advantageous in the light of the optimisation task – the overall 

structure as a statical system.  
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4 THE VORONOI SYSTEM AND COMPLEXITY  

4.1 TYPES OF COMPLEXITY 

In science, the term complexity has been characterised in several different 

ways. In general, complexity is tied to the idea of a system, a set of parts 

which have relationships among each other, whereby the source of 

complexity is either the occurrence of numerous elements in the system or 

the occurrence of numerous relationships between the elements 

(Wikipedia). 

Warren Weaver (Weaver, 1948) distinguishes between two types of 

complexity, namely ‘organised’ and ‘disorganised’ complexity. According to 

Weaver, disorganised complexity is a matter of a very large number of 

parts, in which individual interactions can be seen as largely random, but 

which total behaviour can be understood using probability and statistical 

means. These regularities can be exploited to relate the properties of the 

micro- and macrostate of a complex system, for example, as Sunny Y. 

Auyang suggests, by installing so-called inter-level theories (Auyang, 

1998). Such inter-level theories define mathematical shortcuts between the 

micro- and the macrostate of a system which can be accomplished for 

example through probabilistic approximations on – both largely idealised – 

micro- and macrostates.   

Different from disorganised complexity, organised complexity, according to 

Wikipedia, ‘resides in the non-random, or correlated, interaction between 

the parts of a system’ (Wikipedia). The system as a whole manifests, so 

Wikipedia, ‘macrostatic properties not carried by, or dictated by, these 

individual parts’. The organised macrostate emerges from specific 

configurations of its components - whereby the source of complexity in the 
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system lies in the combinatorial explosion of number of possible states with 

increasing numbers of entities in the system.   

 

4.2 THE COMPLEX BEHAVIOUR OF THE VORONOI DIAGRAM 

It shall be suggested that the kind of complexity of the relationship between 

the microstatic configurations of Voronoi cell cores to its macrostate, the 

resulting cell geometry, can be better understood in terms of the second 

definition of complexity, namely organised complexity, as the cell geometry 

emerges from specific configurational properties of the point cloud3. The 

respective geometrical features are a result of multiple local properties of 

the cell core configuration. For example, each plane between two 

neighbouring points depends on the relative position of those two points in 

terms of its orientation in space. To cut this plane to its actual shape as a 

face of a polyhedron we have to take into account the relation to all other 

planes to other neighbours which are intersecting this plane.  

 

 

 

 

3 The Voronoi polyhedra structure defines topological neighbourhood of given sets of points by defining the 

space around each point which is closer to the point in question than to any other point in the point cloud. The 

dual of the polyhedra structure is the Delaunay triangulation, which joins neighbouring points through the vertices 

of its triangles. The Voronoi polyhedra are obtained from all vertical planes through the centre point of each of the 

Delaunay edges which connect neighbouring points. Each plane divides the space between two neighbouring 

points, defining the area which is nearer to each of them. Each polyhedron around a point has thus as many 

faces as there are neighbours to the point.  
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Deformed Image – Section  

Deformation Magnification x50 

Maximum Deformation = 89.62mm 

 

 Deformed Image – Section Deformation 

Magnification x50 

Maximum Deformation = 102.1mm 

Optimisation: - 13.9% 

 Deformed Image – Section 

Deformation Magnification x50 

Maximum Deformation = 82.44mm 

Optimisation: + 7.8% 

     

7.1 Voronoi Structure from a regular 

point grid 

 7.2 Voronoi Structure, one cell core is 

moved  

 7.3 Voronoi Structure, two cell cores 

are moved 

  

  

The topology of the structure changes when individual cell cores are moved slightly out of the initial grid. In both cases 

(Figure 7.2 and 7.3) the geometry does not change much, however the topology substantially rearranges and becomes much 

more complex. Whilst the dislocation of a single point, as in (7.2), makes the structure less stable and increases deformation, 

in the second case, (7.3), the new topology shows more integrity – principal structural members stay connected to each other 

– and deformation is decreased. 

Figure 7: Effects of cell core movements on topology and structural performance 
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When relative positions of Voronoi cell cores change, the resulting changes 

of the geometry and the topology of the cell structure are in no 

straightforward, proportionate relation to these changes: whilst the Voronoi 

cell cores are moving continuously in space, the impact on the macrostatic 

geometry can be anything from a linearly related stretching of the Voronoi 

cells, an angle turn of a face between two cell cores and an accordingly 

accelerated expansion or shrinking of some cell edges, or, on thresholds 

which lets a cell core lose one of its neighbours the vanishing of an entire 

face between two points, which causes the structure to substantially 

rearrange (Figure 7). 

The source of complexity between the micro- and the macrostate of the 

Voronoi system lies thus on the one hand in the mere variety of possible 

cell geometries due to the exponentially increasing number of possible cell 

core configurations, and on the other hand in the non-linearly related 

effects of local microstatic changes to the global structure, on cell 

geometries as well as structural topologies simultaneously. 
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4.3 EXPECTED IMPACT ON THE OPTIMISATION PROCESS 

It can reasonably be anticipated4 that, in particular, the topological changes 

which are occurring when cell core configurations change will have a major 

impact on the fitness of the structure as a statical system. The specific 

configuration of structural members will matter for structural fitness in how 

forces can be transmitted more or less efficiently. The stability and integrity 

of the statical structure hereby will be crucially dependent on the 

connectivity of its members and the underlying topological and geometrical 

principles of the structure as a whole. If principal members lose 

connections, the stability of the structure will decrease (Figure 7). The 

Voronoi macrostate, as a statical structure, will thus be a self-contained 

system with distinct properties and affordances on this macrolevel which 

 

 

 

 

4
The architect Buckminster Fuller, for example, who has been extensively researching the property of 

configurations in statical structures, has pointed out that load-bearing structures must be considered as systems 

which cannot be analysed by considering their individual parts in terms of strength and sum up their performance, 

but to take into account the intrinsic system behaviour of the structure as a whole.  Buckminster Fuller coined the 

term ‘synergy’ when he referred to the specific system behaviour structural systems exhibit which is more than 

the sum if its parts. A synergetic structure Fuller developed is the Octet truss (Fuller, 1956), a space frame 

structure from alternating octahedra and tetrahedra, now widely used as wide-spanning joists. Fuller could 

demonstrate that ‘the strength of the framework is far greater than would be predictable using any conventional 

formulae based on resolution of forces and known values of strength of materials. He writes that ‘In fact, my 

practical tests have shown that the actual strength of these  L structures so far exceeds calculated values that 

such structures are ‘synergetic’ in the sense that we have a stress behaviour in the system which is unpredicted 

by its parts.’ (in: Meller, 1970) 
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are non-linearly related to properties of the microstate: structural 

performance will be dependent on the macrostatic system behaviour, the 

integrity of the structure as a whole. This structural integrity might be 

difficult to control from the bottom-up, through movements of the Voronoi 

cell cores. 

In the optimisation task at hand, the system’s state space shall be defined 

as the description of possible configurations of cell cores – each cell core 

configuration having a unique cell geometry associated on the macrolevel, 

and the fitness landscape shall be defined as the landscape of associated 

structural fitness levels of the Voronoi cell structure at each respective 

state. From above considerations it can be anticipated that a ‘statical’ 

Voronoi system travelling through its state space will encounter sudden 

topology changes at thresholds where neighbourhood relations among the 

Voronoi cell cores change, and that these topology changes have a major 

impact on the structural fitness. We thus can expect the fitness landscape 

of the statical system to be irregular and disrupt, with considerable slopes 

on thresholds where the topology of the structure changes. 
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5 OPTIMISATION STRATEGIES 

5.1 OVERVIEW ON THE APPLIED TECHNIQUES 

This paper will present two different optimisation strategies: an algorithm 

related to a gradient descent algorithm on the one hand, and on the other 

hand a strategy which searches exhaustively through combinatorial 

movements of Voronoi cell cores. 

The first approach attempts to explore the gradient of the fitness landscape 

of the Voronoi system at the system’s current state towards its 

neighbouring states. The technique presented here makes a guess on the 

gradient of the fitness landscape at the current state of the system by 

moving the individual cell cores one step in each of the three dimensions 

x , y  and z  and, from these test steps, evaluating a vector for a combined 

movement of all cell cores towards the system’s next state, taking the 

achieved degree of increase in fitness as a weight for the respective 

dimension.  

The second approach acknowledges the fact that geometric features of the 

Voronoi cells are results of specific configuration of the cell’s 

neighbourhood rather than a statistical distribution of local properties. In 

each optimisation time step, possible next states are enumerated through 

searching exhaustively through possible combinations of cell core 

movements. Due to the immense size of the number of all possible 

combinations of movements for all Voronoi cell cores of the given system, 

however, a full exhaustive search is not feasible. Thus, exhaustive search 

is performed on subsets of the system – groups of points are moved 

sequentially. 
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Results of all series will be compared in terms of the respective degree of 

fitness that can be achieved as well as the specific geometric features 

which emerge from each technique. All techniques, over time, are able to 

produce structures which are optimised terms of the defined target to 

minimise deformation. However, there are considerable differences in the 

number of steps for each strategy to reach a certain degree of fitness on 

the one hand, and the degree of deformation of the cell geometry which 

comes with it.  

It appears that finding beneficial topologies seems in fact to play a crucial 

role for optimisation success. Whilst the gradient descent – style approach - 

which tries to approximate each next advantageous state  through 

evaluating isolated movements of Voronoi cell cores - seems to be less 

efficient to find suitable topologies, and rather is trading geometric 

deformation against topological efficiency, the approach evaluating local 

combinatorial moves seems in some cases to be able to detect topologies 

which improve stability with comparably little actual geometric change in 

cell shape. 

The next sections will present the results of two gradient descent 

applications with different step sizes, and several series of combinatorial-

movement optimisations, varying in structure of subgroups and sequence 

of processing these groups. 
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5.2 TECHNIQUE 1: ESTIMATING THE GRADIENT OF THE FITNESS 

LANDSCAPE 

5.2.1 SETUP 

The standard gradient descent algorithm (Wikipedia) aims to find a local 

minimum of a function, by calculating the gradient of the function at the 

current point, and then taking steps proportional to the negative of the 

gradient. In each iteration, the next state 1+nx is calculated through 

  

                           1+nx = nx -  nγ  )( nxF∇                                                  [01] 

 

with )( nxF∇  being the gradient of the function at nx , and nγ  being the step 

size.  

Given a system which is constructed from the Voronoi cells of 20Voronoi 

cell cores, the state space of the configurations of the 20 cell cores can be 

described using a vector of 3*20 dimensions to hold the x , y  and z  

coordinates of each of the Voronoi cell cores. The fitness of each state is 

the resulting performance of the statical structure of the Voronoi cells.   

At each iteration of the optimisation process, a guess is made on the 

gradient of the fitness landscape of the system state space at its current 

state, in order to move the system into this direction. For this guess, each 

cell core performs a ‘test step’ in each dimension x , y  and z , and the 

resulting difference in fitness compared to the current state is assessed. A 

high decrease in fitness for the respective test step indicates a steep 

gradient in the direction the test step was done. From these test 
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movements, a 3*20 -dimensional vector is generated which points into the 

assumed direction of the steepest ascent of fitness for the system at this 

state. This Vector is calculated by taking the direction of each test step, 

weighted by the amount of change in fitness of the test step - this should 

take into account the amount of increase or decrease in fitness each 

individual move has in relation to the other moves, thus test steps which 

have a greater impact will bias the final combinatorial move stronger than 

those with minor impact. This vector is applied to the  x , y  and z  

coordinates of the Voronoi cell cores in order to  move the system to the 

next state.  
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The algorithm hence ‘guesses’ on the most advantageous direction towards 

the fitness optimum, by merging the test vectors of the individual moves 

due to their probability pointing towards the optimum of the fitness 

landscape. Formula [02] presents the 3*20 -dimensional  vector which 

suggests the next state for the Voronoi cell cores, with  
11 +n

x ...
13*20 +n

x  being 

the x , y  and z  coordinates for the 20  Voronoi cell cores at this stage, 

nMD  being the current maximum deformation and )1( 1 +
n

xMD  to )1( 3*20 +
n

xMD the 

maximum deformation of the structure resulting from the test step of the 

respective cell core in the respective dimension. It is assumes that through 
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these guesses the system will eventually move to an overall better stage, 

and errors, fuzziness and false estimations will average out. 

In below elaborations, to each sequence of performing all test steps of all 

Voronoi cell cores and the resulting step of the system to the next state will 

be referred to as one iteration, or one optimisation step. 

In each optimisation procedure, a constant step scale γ  has been used 

throughout. Several different scale values have been tested in different 

experimental series. The series using step scales 01.0=γ  and 001.0=γ , 

the latter being a rather fine grained step size,  shall be presented in this 

paper. Below,  these two optimisation procedures shall be referred to as 

]01.0[gd  and ]001.0[gd  

 

5.2.2 RESULTS 

In both series, the system got better over time in terms of the targeted 

fitness goal of minimising the maximum nodal deformation ( Figure 

8, Figure 9). However, there are substantial differences between the series 

in terms of the characteristics of the optimisation process as such, the 

number of iterations which were needed to reach a certain level of 

optimisation, the maximum achievable optimisation and the properties of 

the emergent cell geometry.  

Both series have been running for about 500 iterations. ]01.0[gd  optimises 

rather quickly in the very first steps, and minimises deformation by 40%, 

compared to the deflection of the initial structure, then gradually slows 

down. After 150 iterations, the system did not appear to optimise further, 

but contrariwise, tended to ‘mess up’ again. ]001.0[gd optimised very slowly, 

but steadily over a very long time, and seemed to be able to optimise even 
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further after 500 iterations if it would have been running on. However, it 

needed about 100 iterations to achieve a comparable value than ]01.0[gd  

already reaches in the first couple of iterations. 

In terms of totally achieved performance, again ]01.0[gd  seemed to perform 

better: It accomplished about 60% optimisation after 160 time steps. 

]001.0[gd  reaches about 50% optimisation after 500 iterations – in a slow 

but rather steady process. 

Comparing the geometry of the optimised structures, ]01.0[gd  produces 

stronger deformed geometries of cells than ]001.0[gd . However, the 

geometry looks very irregular and to some extend even random - which 

appears inadequate given this very regular symmetrical structure and the 

trivial load case – any optimisation of the shape would have been expected 

to reflect these regularities. Moreover, there is evidence that in some cases, 

that assumptions on the gradient of the fitness landscape were misleading: 

For example, in the first iteration of ]01.0[gd , all four Voronoi cell cores in 

the centre of the upper layer have been moved in the same direction– 

namely in the opposite direction than their initial test steps – which 

indicates that each test step must have made the system worse at this 

stage, and the program now just moved the cell cores in the opposite 

direction of the test steps.   

]001.0[gd  generally made more subtle changes to the geometry due to the 

smaller step size, which produces cells which are not strongly deformed, 

but rather contorted and shifted against each other, whilst maintaining the 

original sizes and proportions. However, the geometry appears to be quite 

irregular nevertheless. 
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Time Step 000 

Max. Deformation = 

89.62mm 

Time Step 001 

Max. Deformation = 

58.81mm 

Optimisation:34% 

Time Step 025 

Max. Deformation = 

40.10mm 

Optimisation:55% 

Time Step 030 

Max. Deformation = 

43.69mm 

Optimisation:51% 

Time Step 089 

Max. Deformation = 

28.24mm 

Optimisation:68% 

 

Time Step 157 

Max. Deformation = 

25.13mm 

Optimisation:72% 

Axonometry Section A-A Section B-B Section C-C 

 Figure 8: Evolution of ]01.0[gd  over time 



 

 35 

 

Time Step 000 

Max. Deformation = 

89.62mm 

 

Time Step 115 

Max. Deformation = 

62.83mm 

Optimisation:27% 

Time Step 224 

Max. Deformation = 

49.56mm 

Optimisation:40% 

Time Step 286 

Max. Deformation = 

45.01mm 

Optimisation:49% 

Time Step 353 

Max. Deformation = 

41.79mm 

Optimisation 54% 

 

Time Step 451 

Max. Deformation = 

34.29mm 

Optimisation:58% 

 Axonometry Section A-A Section B-B Section C-C  

 Figure 9: Evolution of ]001.0[gd  over time 
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The chart shows the maximum deformation for the first 160 iterations of the optimisation process. The first bar 

(grey) represents the original structure. Bars in red indicate iterations in which the system got worse. 

Chart 1: Maximum Deformation of ]01.0[gd  during optimisation 
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The chart shows the maximum deformation for the first 160 iterations of the optimisation process. The first bar 

(grey) represents the original structure. Bars in red indicate iterations in which the system got worse. 

Chart 2: Maximum Deformation of ]001.0[gd  during optimisation 
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One interesting finding, however, is that, comparing results of the two 

processes at stages of similar degree of optimisation, for example at 

deformation reduction of 50% - which happens at iteration 3 for ]01.0[gd  

and at iteration 400 for ]001.0[gd  – actually the latter has achieved this 

performance with a substantially lesser amount of geometric change than 

]01.0[gd , but rather through topological alterations of the structure. 

Apparently, ]01.0[gd  has ‘overstepped’ some local optima, and there are 

possible solutions with equivalent performance, accomplished through 

certain topologies which require a lesser amount of geometrical 

deformation. 

 

5.2.3 PERFORMANCE ASSESSMENT 

To summarise, it can be ascertained that with the technique described 

above a certain degree of structural optimisation can be accomplished.  

However, resulting geometries seem counter-intuitively irregular, and the 

optimisation process either seems to overstep local optima, as in ]01.0[gd , 

or is progressing impracticably slow, as in ]001.0[gd .  

One factor which is constraining the algorithm might be the fact that the 

fitness landscape of the microstatic state space is inherently irregular and 

hilly, with jumps in structural performance due to ever-changing topologies 

of the overall cell members as Voronoi cell cores move around. In this case, 

the local gradient of the fitness landscape would be of limited significance 

to direct a system to a  relative optimum. - In fact, it is an accredited 

weaknesses of the gradient descent algorithm that it ‘can take many 

iterations to converge towards a local minimum, if the curvature [of the 

search space] in different directions is very different.’ (Wikipedia) 
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There is furthermore reason to assume that structural features of the 

Voronoi macrostate – the cell geometry - can probably not efficiently be 

optimised by simply merging individual moves of single cell cores, weighted 

by their isolated success,  to a combined step. This might be due to the 

kind of complexity that characterises the relationship between Voronoi cell 

cores and the respective cell geometry, namely organised complexity, 

which arises out of the organised complex interaction of Voronoi cell cores 

which produces the overall cell geometry. Each cell cores configuration 

produces a specific macrostatic cell geometry. There is an abundant 

number of possible macrostates which can significantly differ in topology 

and thus in terms of their fitness as a structural system. The fitness of the 

system therefore depends on the specific configuration of its microstatic 

entities rather than averaging out from a certain statistical distribution of 

local properties – as it can be observed in some large many-body systems. 

Optimising the cell structure of the Voronoi diagram thus might present a 

problem which resists efficient exploration through probabilistic means. 

For example, referring back to (Figure 7), if we start from a regular 

configuration of cell cores which produce a regular modular space frame, 

and slightly move one cell core out of the grid, the system immediately 

undergoes major topological changes: principal members get disconnected, 

and the structure becomes less stable. Moving two critical cell cores in 

respect to each other however, can lead to a configuration in which 

topology changes lead to coherent structures beyond the individual cell – 

principal members keep in touch with each other. This complex geometry 

emerges precisely form a specific configuration of neighbouring points, and 

cannot be deduced from individual movements.  

Stephen Wolfram has coined the term ‚computational irreducibility’ for 

systems of organised complexity which resist mathematical approximation 

so that in effect the only way to find their behaviour is to trace each of their 
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steps” (Wolfram, 2002). If the Voronoi system presents a system which 

allows no mathematical shortcut between its microstate and the structural 

behaviour of its macrostate, one would need to explore the system by 

iterating through all its possible states.  

In the next section, an optimisation strategy which systematically explores 

ranges of possible states is applied. It will be suggested that despite 

obvious drawbacks of exhaustive search it though provides interesting 

results in terms of geometry and topology of the Voronoi cells. It appears 

that, although only a limited range of the solution space can be considered 

due to its abundant size, exhaustive search gives more control over the 

macrostatic geometry and thus seems to drive forward the optimisation 

process more straightforwardly than the strategy presented before. 

 

5.3 TECHNIQUE 2: EXPLORATION OF COMBINATORIAL CELL CORE 

MOVEMENTS 

5.3.1 SETUP 

Optimisation strategies which explore a solution space by enumerating all 

possible states are referred to as exhaustive search (Weisstein, 2008). 

Exhaustive search is usually applied to problems in which no efficient 

solution is known. The advantage of this technique is that a solution will 

always be found if one exists. However, as the computational cost is 

proportional to the number of candidate solutions, exhaustive search is 

usually limited to applications with limited problem size, or when there are 

problem-specific heuristics which can be used to reduce the set of 

candidate solutions to a manageable size (Wikipedia). 
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Searching exhaustively through a range of configurations of Voronoi cell 

cores and their respective geometries will allow to assess a variety of 

emerging topologies more systematically. However, there are two obvious 

drawbacks of the application of the technique on the optimisation task 

discussed here: 

• Exhaustive search is usually applied on discrete problems. It is 

hence necessary to ‘discretise’ the possible movement for each cell 

core, to obtain a set of possible next positions to iterate through. 

• The range of configurations which can be considered giving 

limitations of computing power will present a very small subset of all 

possible states. 

To address the first issue, possible movement for each cell core has been 

limited to an array of movement vectors of the size 33  to allow for all 

combinations of x , y  and z - movements being either 1− ,0  or 1+ . To 

scale movement to the system size, each movement vector has been 

scaled to the length of 5 cm. 

A full exhaustive search optimisation would now, in each loop, enumerate 

all possible states from all combinations of movements for the set of cell 

cores, assess the structural fitness of the resulting Voronoi cell structure 

and finally execute the combinatorial move which has shown to be the best 

option. 

With 33  possible next positions for each Voronoi cell core, the number of 

possible next states in a system of 20 cell cores in each cycle is 

.433.20103.514.294.275.216.242.391.1583
203 = . It is thus not feasible to 

enumerate this number of possible states, as processing time for one 

analysis loop takes about 5.0 seconds on a standard laptop when using the 
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software components as described above. Thus, it would not even be 

possible to search all possible states of only one loop of the optimisation 

process. 

In order to limit the size of the search space, the whole set of Voronoi cell 

cores is hence divided into subsets. The optimisation process enumerates 

the possible system states from movements of members of one group at a 

time, chooses the best option and moves on to the next group.  

In the work presented here, six different experimental setups, which differ in 

their constellations of subgroups, shall be compared, in the following 

referred to as ]01[cm , ]02[cm , ]03[cm , ]04[cm , ]05[cm  and ]06[cm  - see 

Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

]01[cm  

- groups of 2 

- starting from the 

centre of the 

structure 

 ]02[cm  

- groups of 2 

- processing cells 

in rows 

 ]03[cm  

- groups of 4 

- processing cells 

in rows 

 ]04[cm  

- groups of 4 

- starting from the 

centre of the 

structure 

 ]05[cm  

- groups of 8 

- starting from the 

centre of the 

structure 

 ]06[cm  

- groups of 2 

- reverse order 

than [cm01] 

 

Figure 10: Six experimental setups of cell core groups to be moved in respect to each other 

during optimisation 
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It appears to be reasonable to group together adjacent cell cores in order to 

support potentially emerging larger-scale structures between adjacent cells; 

and to group together cell cores in similar positions in the structure, in order 

to apply a successful movement to multiple similar members in one go. 

Subsets of each two, four and eight cell cores have been tested.  

The number of candidate solutions to be assessed each time is 729 for 

subsets of 2 cell cores, 531.441 for subsets of 4 cell cores, and 

282.429.536.481 for subsets for 8 cell cores. This still leaves us with a 

considerable number of combinations per subgroup. From these, only a 

small percentage of combinations can be anticipated to produce structures 

which present an enhancement in fitness. In fact, test runs which 

enumerated all possible solutions for subsystems of pairs of two cell cores 

have shown that there is a high agglomeration of advantageous solutions 

among the combinatorial moves which are done symmetrical to each other, 

for example the two Vectors 
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for two cell cores moving symmetrical to a plane in y  – direction (Figure 

11). Typically, these symmetrical movements tend to produce cells which 

major cell edges remain connected to those of the adjacent cell, thus 

maintaining straightforwardly connected topologies beyond cell borders. 

Most other combinations of moves will rather create a greater disruption 
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and topological discontinuity between adjacent cells, which tends to 

decrease structural stability of the overall structure. 

In order to shrink down further the set of candidate solutions to be searched 

through, it therefore seems reasonable to only apply symmetric 

movements, according to a symmetry plane through the centroid of each 

group. Thus, for each group – equally for two, four and eight Voronoi cell 

cores - only 27 solutions need to be tested (Figure 12). 

Adopting these presettings, the optimisation process is carried out by 

processing cell core groups sequentially: the solutions of possible 

symmetrical movements of members of one group at a time are 

enumerated, the best option is selected, then the next group of cell cores is 

processed. The operation of processing all groups once shall be referred to 

as one iteration, or one optimisation step.   

 

 

Figure 11: Two cell cores moving symmetrically to each other on local mirrored 

coordinate systems 
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Group of 2 points 

Symmetry along the vertical plane 

through the group centroid 

 Group of four points 

Symmetry axis is the vertical axis 

through the centroid of the 

configuration 

 Row of four points  

Each two adjacent cells will behave 

symmetrical to each other 

 

Points will be moved symmetrically to each other according to their local coordinate systems. These will be 

mirrored according to the group centroid. 

Figure 12: Combinations of  movements of point groups 
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5.3.2 RESULTS 

Figure 13 shows the evolution of ]01[cm  over time. In terms of the 

optimisation target to minimise the maximum nodal deformation of the 

structure, an optimisation of 86.4% is accomplished after 17 iterations. The 

major part of the improvement hereby is facilitated in the early stages of the 

process. In the later stages, improvement rates significantly slow down 

(Chart 3) 

The development of the Voronoi cell geometry shows a sequence of 

characteristic formal stages over time: In the early stages, it is rather the 

topology of the structural members which evolves and becomes more 

complex, whilst the Voronoi cells themselves do not change very much but 

just slightly contort against each other. Cell edges are rotated out of the 

previously orthogonal arrangement and appear to create braced 

configurations which operate on a larger scale throughout the structure. 

Typical topological features which are established in these early steps of 

the process tend to persist in later stages.  During the later stages, the 

geometry of the structure develops more significantly. The cells are no 

longer cube-shaped, but become more complex and multi-facetted. The 

overall structures now resemble foam-like formations. The structures also 

tend to get more irregular and asymmetrical. However, the impact on the 

actual fitness of the structure is rather small compared to the degree of 

geometrical change the structure undergoes. 
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Time Step 000 

Max. Deformation = 89.62 mm 

 

Time Step 001 

Max. Deformation = 45.82 mm 

Optimisation:48% 

Time Step 005 

Max. Deformation = 22.15 mm 

Optimisation:75% 

Time Step 008 

Max. Deformation = 15.09 mm 

Optimisation:83% 

Time Step 016 

Max. Deformation = 12.2 mm 

Optimisation 86% 

 

 

 Axonometry Section A-A Section B-B Section C-C  

  

Figure 13: Evolution of ]01[cm over time 

 



 

 47 

Maximum Deformation (MD) of  [cm01]

Iterations 0 - 17

89

45
,8

36
,3

32
,3

26
,3

22
,1

19
,2

16
,8

14
,9

14
,1

13
,3

12
,7

12
,6

12
,3

12
,2

12
,2

12
,2

12
,1

0

20

40

60

80

100

1
0

0
%

  
  
0

4
8

%
  
  
1

5
8

%
  
  
2 3 4

7
5

%
  
  
5 6 7

8
3

%
  
  
8 9

1
0

1
1

1
2

1
3

1
4

1
5

8
6

%
  
  
1

6

1
7

Iteration

M
a
x
im
u
m
 D
e
fo
rm
a
ti
o
n
 (
m
m
)

 

The chart shows the maximum deformation for the first 17 iterations of the optimisation process.  

Chart 3: Maximum Deformation of ]01[cm  during optimisation 
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Chart 4: Maximum Deformation (MD) of [cm01], [gd0.01] & [gd0.001] at different stages of 

optimisation 
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15 - 1 

 

14 – 1 

 

15 – 2 

 

14 - 2 

14 – 1: gd0.01 – Step 025: MD = 36.6 mm; Optimisation = 58% 

14 – 2: gd0.01  – Step 158: MD = 25.1 mm; Optimisation = 72%  

Figure 14: Topologies – Section B-B of ]01.0[gd  

 

15 – 3 

 

16 - 1 15 – 1: cm01 – Step 02: MD = 36.4 mm; Optimisation = 58% 

15 - 2 : cm01 – Step 08: MD = 14.5 mm; Optimisation = 83% 

15 – 3: cm01 – Step 16: MD = 12.2 mm; Optimisation = 86%  

Figure 15: Topologies – Section B-B of ]01[cm  

16 - 1: gd0.001  – Step 451: MD = 37.3 mm; Optimisation = 57%  

Figure 16: Topologies – Section B-B of ]001.0[gd  
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5.3.3 PERFORMANCE ASSESSMENT 

Compared to the structures of the gradient descent series ]01.0[gd  and  

]001.0[gd , the overall geometry of the optimised cells appears more regular 

and symmetric than the geometry resulting from the gradient descent, 

which appears more adequate to the simple symmetrical system and the 

regular load case given. 

Comparing the performance of ]01[cm  with ]001.0[gd  and  ]01.0[gd , it shall 

be pointed out that similar levels of optimisation are accomplished with 

comparably little effort in changes of the cell geometry. It appears that 

certain topologies which emerge from the combinatorial movements of 

adjacent Voronoi cell cores seem to generate statically rather efficient 

constellations: the symmetrical movements of adjacent cell cores let cells 

contort against each other whilst principal structural members of adjacent 

cells keep in touch with each other, thus maintaining structural integrity. 

These topologies enhance structural stability considerably from the first 

stages of the process onwards, even without significant geometric 

deformation of the structure. For example, the optimisation of 58% in the 

early stage of ]01[cm   is reached by ]01.0[gd  after 25 time steps, but with 

greater effort in terms of overall geometry deformation. ]001.0[gd  reaches 

57% optimisation with comparable little geometry change, but needs 451 

iterations to get there (Figures 14 –16) . 
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In a nutshell, it appears that the strategy of exhaustively searching through 

combinations of Voronoi cell cores movements, despite various drawbacks5 

of the approach already mentioned, nevertheless seems to come up with 

interesting topologies, which accomplish structural improvement rates of 

60% without major geometric changes in the early stages of the process. 

In the next section, therefore, different types of topologies which emerge 

from the six different setups shall be analysed in  more detail.

 

 

 

 

5
 It needs to be added to the list of drawbacks that the methodology presented here seems to become less 

efficient in the later stages of the optimisation process. In the late stages, the fitness is increased by only further 

20% percents. The strongly restricted movement spectrum of each point fails to maintain and improve topologies 

as precisely as in the beginning of the  process, due to cell geometries becoming more complex. Further 

research, however, could aim to develop an algorithm to specifically optimise the geometry of these topologies, 

but this is beyond the scope of this paper. 
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6 ANALYSIS OF THE VORONOI CELL TOPOLOGY AS A 

STATICAL SYSTEM 

6.1 THE VARIETY OF TOPOLOGY FROM DIFFERENT SETUP TYPES 

The six different setups ]01[cm  to ]06[cm  which are considered in this 

paper are developing considerable topological differences in the course of 

their evolution. As observed, these topological differences are already 

established in the first stages of the optimisation processes. The different 

topologies result in notable different force patterns – the way axial forces 

are distributed over the system -, and lead to considerably varying degrees 

of structural fitness among the results of each test case at similar stages – 

the worst performance after one iteration is ]03[cm with a maximum 

deformation (MD) of 67 mm (=24% optimisation), compared to a MD of 43.3 

mm (= 51% optimisation) at  ]04[cm . 

Figure 17 to Figure 22 shows the results of ]01[cm  to ]06[cm  after each one 

iteration – each group has been moved once.  

After the first iteration, although Voronoi cell cores have only dislocated 

slightly out of the initial configuration, and thus overall geometrical changes 

of the Voronoi cells are minor, the topologies of the cell edges have already 

changed significantly. Typical topological features which emerge 

throughout all six setups are: 
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• cells are slightly contorted but principal structural members keep in 

touch to principal members of adjacent cells 

• there are typical doubled edges, for example the horizontally 

spanning members of the centre cells which seem to engage in 

larger-scale configurations spanning throughout the structure 

• edges move out of their initial straight horizontal and vertical 

arrangement and are bracing against each other 
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Chart 5: Maximum Deformation of ]01[cm - ]06[cm after 1 iteration 
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MD=45.8 mm; Optimisation = 48% 

Axonometry and sections A-A, B,B and C-C. Sections are overlaid with deformed sections. 

Figure 17: Optimised structure of ]01[cm after 1 iteration  

         

MD=50.9 mm; Optimisation = 42% 

Axonometry and sections A-A, B,B and C-C. Sections are overlaid with deformed sections. 

Figure 18: Optimised structure of ]02[cm after 1 iteration 
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MD=67 mm; Optimisation = 24% 

Axonometry and sections A-A, B,B and C-C. Sections are overlaid with deformed sections. 

Figure 19: Optimised structure of ]03[cm after 1 iteration 

         
 

MD=43.3 mm; Optimisation = 51% 

Axonometry and sections A-A, B,B and C-C. Sections are overlaid with deformed sections. 

Figure 20: Optimised structure of ]04[cm after 1 iteration 
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MD=57.9 mm; Optimisation = 35% 

Axonometry and sections A-A, B,B and C-C. Sections are overlaid with deformed sections. 

Figure 21: Optimised structure of ]05[cm  after 1 iteration 

         
 

MD=51.3 mm; Optimisation = 41% 

Axonometry and sections A-A, B,B and C-C. Sections are overlaid with deformed sections. 

Figure 22: Optimised structure of ]06[cm  after 1 iteration 
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6.2 ANALYSIS OF FORCE PATTERNS  

Each new topology has a distinct force pattern (Figures 23 – 32). Whilst the 

force pattern of the original structure is rather simple, featuring moderate 

pressure and tear forces (Figure 23), the optimised structures reveal force 

patterns which are much more complex (Figures 24 - 29). Coherent 

patterns of high stress are emerging which span over multiple cells. 

Furthermore, there are typical patterns such as constellations of tear and 

pressure forces in the doubled members in the highly stressed spanning 

centres of the structure, featuring each one pressure and one tear 

component. It appears that through these cooperating pressure and force-

stressed members, the optimised structures are stabilising considerably. – 

In the later stages of optimisation, when structures tend to become more 

irregular and principal members loose connection to each other, these 

coinciding tear and pressure force constellations disappear again, and 

formerly coherent patterns of strong forces become more fragmented again 

(Figure 30). 

In the early stages, however, these interacting pressure and tension forces 

seem to exhibit a distinct kind of structural quality which has a considerable 

effect on the statical fitness of the structure. 
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Axonometry  

Figure 23: Original structure – Diagram of Axial Forces Fx 

           
Axonometry and sections A-A and B-B 

Figure 24: ]01[cm 1
st
 iteration – Diagram of Axial Forces Fx 
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Axonometry and sections A-A and B-B 

Figure 25: ]02[cm 1
st
 iteration – Diagram of Axial Forces Fx 

           
Axonometry and sections A-A and B-B 

Figure 26: ]03[cm 1
st
 iteration – Diagram of Axial Forces Fx 
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Axonometry and sections A-A and B-B 

Figure 27: ]04[cm 1
st
 iteration – Diagram of Axial Forces Fx 

           
Axonometry and sections A-A and B-B 

Figure 28: ]05[cm 1
st
 iteration – Diagram of Axial Forces Fx 
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Axonometry and sections A-A and B-B 

Figure 29: ]06[cm 1
st
 iteration – Diagram of Axial Forces Fx 

           
Axonometry and sections A-A and B-B 

Figure 30: ]01[cm 16
th

  iteration – Diagram of Axial Forces Fx 
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Axonometry and sections A-A and B-B 

Figure 31: ]01.0[gd  1
st
  iteration – Diagram of Axial Forces Fx 

           
Axonometry and sections A-A and B-B 

Figure 32 : ]001.0[gd  491
th

  iteration – Diagram of Axial Forces Fx 
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Statical systems which exhibit strategic interactions of tear and pressure 

forces have been extensively analysed in their applicability to architectonic 

structural systems. Notably Buckminster Fuller observed that certain 

constellations of tear and pressure forces generate structural integrity 

which comes from the synergy between balanced tension and compression 

components. He coined the term ‘Tensegrity’ for this phenomenon (in: 

Meller, 1970). Buckminster Fuller explained the operating principle of such 

structures in the fact that tear and pressure are ‘not opposites, but 

fundamental physical laws that are complementally working together in a 

‘win-win-relationship’’.  

Although Tensegrity structures in their purest form obviously present an 

extreme type6, ideas to exploit synergies of tear and pressure forces are 

nevertheless widely applied in architecture and structural engineering. The 

Swiss architect Valerio Olgiati, for example (Figure 33), used the synergy of 

tear and pressure members in the structure of the University of Lucerne, in 

order to make the statical structure ‘more efficient’ (Olgiati, 2006) and 

allowing the members being thinner in dimension. The design for the 

 

 

 

 

6
 In classical Tensegrity structures, tension is continuous and compression discontinuous; pressure members are 

not interconnected to each other. This technique allows structures to be extremely lightweight. However, 

Tensegrity structures are sensitive to varying load cases and thus have been considered impractical for most 

real-world applications. 
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University of Lucerne was a winning contribution to a competition tendered 

in 2003. The statical structure, distorted and seemingly coincidental, is in 

fact precisely derived from static and functional preconditions. The slight 

contortion of the building is exploited to stabilise the structure in any three 

directions, with as few pillars as necessary. There are two types of pillars, 

the main load-bearing ones which are mainly stressed by pressure and 

which push up, accompanied by additional thin pillars which pull down at 

certain points where the horizontal beams cantilever and tend to bend 

upwards. This interplay of supporting and tearing elements 'makes the 

structure thinner and more efficient' (Olgiati, 2006), 'The building is a 

skeleton building, but on the other hand it is also an organic building, that is  

not modular anymore, even though it is based on the typology of a piloty 

system.' 

 

 

Figure 33: Valerio Olgiati: University of Lucerne. Competition entry, 2003 
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The Architects Meili & Peter and the structural engineers Juerg Conzett and 

Partners (Figure 34) developed a structural system for the lobby roof 

structure of the Swiss Re building in Rueschlikon, 1996-99 (Mostafa, 2006), 

which was specially designed to minimise deflection. The roof structure is 

‘resolved’ into a system of tensile and pressure members, which divert 

forces more efficiently than straightforward beam members. The lobby is 

designed as a ‘garden hall’ with a glazed façade which should not be 

obstructed by columns. Thus the roof is cantilevering freely more than 13 

metres from the rear wall of the lobby. However, the glazed façade is very 

sensitive to even slight deflections of the roof, and a standard timber beam 

construction would not have met these affordances. To minimise and 

reverse deflection and to release the façade from pressure forces, the 

structural engineers developed a technique which reversed and redirected 

the forces in a manner which transformed the system from a simple 

cantilevering beam structure into a more complex system joining together 

the various tension and pressure members as crucially interacting 

cooperative parts. The roof beams were post-stressed in a manner that 

they would tend to bend upwards, using the rear lobby wall as a pylon, with 

the cables wrapping over a ‘baffle saddle’ before disappearing back inside 

the beams above the hall. The beams take up the compression forces 

generated by the tension cables. Conversely, the permanent load of the 

beams and additional roof load are taken up by the tension cables. The 

façade itself is under tension instead of pressure, even in cases of maximal 

snow load. In the façade construction, thin rods under tension could so 

replace columns under compression.  
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Figure 34: Meili + Peter, with J. Conzett: Swiss Re Lobby roof structure 
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Likewise, as shall be suggested, some of the structures presented in this 

section feature topologies of a structural integrity which allows synergetic 

tear and pressure forces to take place. Forces are directed more efficiently 

than in the original simple structure, and also more efficiently than in 

comparably stronger fragmented, but geometrically stronger deformed 

structures of the later stages of the optimisation process, or results of other 

optimisation techniques such as in ]001.0[gd and ]01.0[gd  (Figures 30, 31, 

32). 

The effect of tear and pressure forces hereby can be read off the force 

patterns of the structural members. The variations in the degree of 

structural fitness of the results of ]01[cm - ]06[cm  suggest that coherent 

patterns of highly stressed members reaching throughout the structure are 

beneficial for minimising deformation. The best option, ]04[cm , exhibits a 

constellation of high-stressed structural members which form a closed ring 

around the critical spots of maximal deformation, and efficiently transfer 

forces towards the vertical members. Other structures, in which force 

patterns are continuously spanning across the structure – as in ]01[cm  - 

exhibit a good performance also, whereas, as in ]03[cm forces are non-

coherent, inefficiently distributed and not tackling the actual problem zone; 

structural performance is less good and the maximum deformation is 

comparably higher – 67mm compared to the best result – 45.8mm in 

]04[cm . Structures generally perform well when they are not too 

fragmented, and crucially stressed members are well interconnected to the 

overall structure. 
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6.3 ANALYSIS SUMMARY 

These observations indicate that structural performance of the optimised 

Voronoi cell structures is highly dependent on its capacity to act as a 

system of interconnected structural members. Structural performance does 

not add up linearly from the amount of material used and the mere sum of 

physical properties of material strengths, but emerges from the integrity of 

the structure as a whole.  

It appears that a strength of the Voronoi diagram lies in the potential to 

produce interesting and unexpected structures which exhibit statically 

efficient system behaviour. Certain topologies which have emerged during 

the optimisation process apparently allow for ‘synergy’ effects of 

coordinated interactions of tear and pressure forces.  

On the other hand, for the same reason that topology is crucial for 

performance, it appears that the structural fitness of the Voronoi structure 

can probably not be enhanced efficiently through a bottom-up ‘probabilistic’ 

approach which ‘guesses’ on the fitness landscape on the basis of out-of-

context isolated cell core movements, which gives little control over the 

actual topology of the structure. As synergetic structural effects as 

observed in the structures presented in this section, however, apparently 

demand precisely connected structural layouts, the Voronoi diagram as a 

statical structure can probably only explored by deliberately iterating 

through combinations of Voronoi cell core  movements and their emerging 

geometries. 
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7 FUTURE DEVELOPMENT 

As has been argued above, the interesting potential of the Voronoi diagram 

for structural optimisation lies in its capacity to produce a multitude of 

different topologies and geometries, some of them leading to novel and 

unexpected structural solutions for statical optimisation problems. The 

Voronoi diagram hereby manipulates structural geometry and topology 

simultaneously  - in contrast to strategies which either optimise topologies 

or geometries of predefined topologies, which, on the other hand, makes 

the emergent topology very difficult to control. 

It has been indicated that the Voronoi diagram as a statical structure thus 

can probably only be explored by exhaustive search, which is 

computationally expensive and not feasible for more complex systems. This 

issue, however, would demand to be addressed in future developments. 

This could be done either by increasing computing power, or by refining the 

technique to minimise computing cost as such, by combining exhaustive 

search with additional algorithms. 

The computing power could be easily increased through a setup which 

distributes the necessary computing over a network, engaging several 

computers at a time: The exhaustive search could be easily done in parallel 

processing mode, as the state evaluations of the search space are 

independent processes. 

In order to minimise computing demand one could combine the exhaustive 

search with other optimisation strategies in order to make the process more 

efficient: It has been observed that performative topologies can already be 

found in early steps of exhaustive search optimisation. These topologies 
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tend to persist through later stages. One could take advantage of this by 

letting the Voronoi diagram only evaluate the topology and then employ 

more suitable algorithms to optimise the actual geometry for this topology. 

At this stage, the Voronoi diagram could be dismissed. Instead, the new 

topology could be processed straightforwardly, for example as a connection 

graph of beams and nodes. 
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8 SUMMARY 

This paper explores strategies to optimise a three-dimensional Voronoi cell 

structure as a statical system.  

In order to act as a statical system, the edges of the Voronoi cells are 

considered as beam members with rigid connections, and have been 

assigned appropriate real-world material properties. The structure is 

assessed by statical analysis software in terms of the occurring maximal 

deformation – which is to be minimised during optimisation-, and seeks to 

optimise through amendments of the position of its Voronoi cell cores.  

It has been pointed out that the relationship between the configuration of 

the Voronoi cell cores, the microstate of the system, and its resulting overall 

cell geometry, the system’s macrostate, is inherently complex: each cell 

vertex is a combinatorial product of all adjacent Voronoi cell cores and thus 

depends on multiple parameters.  Any change of the Voronoi cell core 

configuration triggers changes of the geometry of the cell structure as well 

as its topology instantaneous. Topological changes of the cell structure 

however can result in abrupt changes of the system’s ‘fitness’ as a statical 

structure. In that sense, the degree of structural fitness in terms of the 

problem considered here is non-linearly related to the actual amount of 

dislocation of the Voronoi cell cores. The overall cell geometry emerges 

from the underlying Voronoi cell core configuration and is thus difficult to 

control precisely from the bottom – up – by amending the positions of the 

Voronoi cell cores.  

This paper has explored two different techniques to optimise the Voronoi 

structure:  
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The first approach attempts to explore the gradient of the fitness landscape 

of the Voronoi system, given the systems states as the configurations of the 

Voronoi cell cores and the fitness of each state being the structural 

performance of the Voronoi cell geometry. The technique attempts to 

approximate the direction of the steepest ascent of the fitness landscape at 

each current state through evaluating individual test steps of individual 

Voronoi cell cores and merging them to a combined step, weighted 

according to the success of each test step. 

It has be suggested that this technique is inherently flawed from the lack of 

control it provides over the topology of the cell geometry. As the specific 

topology of the Voronoi structure emerges from the respective constellation 

of the Voronoi cell core set, conclusions on a beneficial next state of the 

system may not be generated by adding up individual cell core movements. 

Specific structural features from individual moves might not happen in the 

combination of movement of neighbouring cell cores. In fact, optimised 

structures generated with this technique, although performing better than 

the original structure, look irregular and random, with considerable 

distortion of the geometry of the structure. 

The second approach attempts to explore the emergent topology of the 

Voronoi structure more exhaustively. It enumerates solutions from 

combined movements of Voronoi cell cores and evaluates each in terms of 

its structural fitness. Exhaustive search, however, is computationally 

extremely expensive due to the abundant size of the search space, so it 

was only possible to search through movement combinations of subsets of 

cell cores which shrinks the search space to a feasible size. – Although the 

curtailment of the search space presents an obvious drawback of the 

method, it still appeared that the optimisation process was able to discover 

structures with a very specific structural potential. Certain  topologies which 

emerged from combined movements of neighbouring cell cores – especially 
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in the early stages of the process – appear to generate ‘synergetic’ 

constellations of structural members, which, whilst cells are only minimally 

deformed, redirect forces more efficiently than the straightly connected 

structural members of the original cubic cell structure, or the more distorted 

structures from the earlier approach. It shall be suggested that this system 

behaviour of tear and pressure forces inherently emerges from the specific 

topology of the structure. 

It has been suggested that the Voronoi structure can be considered as a 

complex system. The source of complexity hereby lies in the combinatorial 

explosion of the number of possible cell geometries, emerging from specific 

constellations of Voronoi cell cores. This type of complexity is difficult to 

control as it can neither be described by probabilistic means nor 

exhaustively searched due to its abundant possibilities of states.  

This lack of control will limit the applicability of the Voronoi structure as a 

shape-generating tool for architecture and structural design problems. On 

the other hand, however, it shall be suggested that it is precisely this variety 

of novel geometries and topologies ready for exploration which bears a 

potential for unexpected solutions which would not have been detected 

otherwise.  
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APPENDIX 

1 MAIN COMPONENTS AND VARIABLES 

1 Vector Cores; 

The set of Voronoi points is represented by a vector of the class Core. 

Core holds the position information of each point as well as additional 

information such as the set of neighbours etc. 

2 DelaunayTetrahedrisation dt; 

The class for the tetrahedrisation 

 

3 Vector bars; 

Vector nodes; 

 

Bars and nodes represent the structural beams and interconnections. 

Geometrically, they are in principle matching the Voronoi cell edges, 

however, they are clipped on the bottom plane. 

 

2 GENERATING THE STATICAL STRUCTURE 

void createBars() { 

  bars=new Vector(); 

  nodes=new Vector(); 

  barcounter=0; 

  nodecounter=0; 
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  //loop through all tetrahedrons 

  for (Iterator it = theTetrahedrisation.iterator(); it.hasNext();) { 

    Simplex triangle = (Simplex) it.next(); 

    //loop through all facets of each tetrahedron 

    for (Iterator It2 = triangle.facets().iterator(); It2.hasNext();) {               

      Set facet = (Set) It2.next();                 

      Core[] endpoint = (Core[]) facet.toArray(new Core[3]); 

      //contains the facet a core which is part of the statical structure? 

      int sum=0; 

      for (int i = 0; i < endpoint.length; i++) { 

        if (endpoint[i].typ==2) {             

          sum++; 

        } 

      }  

      if (sum>0) {   //if so 

        //find the neighbour of this facet 

        for (Iterator otherIt = theTetrahedrisation.neighbors(triangle).iterator();  

otherIt.hasNext();) { 

          Simplex other = (Simplex) otherIt.next(); 

            if (other.containsCore(endpoint[0].id) &&  

other.containsCore(endpoint[1].id) &&  

other.containsCore(endpoint[2].id)) { 
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        //a cell vertex joins the circumcentres of two adjacent tetrahedrons 

              //thus: find circumcentres 

              Pnt p = Pnt.circumcenter(triangle); 

              Pnt q = Pnt.circumcenter(other); 

              //create bar 

        bar ba; 

              Vector sharedfacetCores = new Vector(); 

              for (int i = 0; i < endpoint.length; i++) { 

                sharedfacetCores.addElement(endpoint[i]); 

              } 

 

              ba = new bar(p,q,sharedfacetCores,barcounter+1);                              

              if (!containsBar(bars,ba)) { 

          //remove the bar if it is below the ground plane 

                ba=removeIfOffStage(ba); 

                if (ba!=null) { 

     //clip bar on bottom plane 

                  ba.clipBar(); 

     //create nodes which joins bar to other bars 

                  ba.createNodes(); 

                  if (ba.nodeoneend.id!=ba.nodeotherend.id) { 
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                    bars.addElement(ba); 

                    barcounter++; 

                  } 

                }                       

              } 

            }                

          } 

        } 

      } 

    } 

  } 

} 

 

3 EXPORTING BARS AND NODES TO OASYS GSA 

void exportBars(String path) {   

  Vector string_nodes = new Vector(); 

  Vector string_spc = new Vector(); 

  Vector string_bars = new Vector(); 

  String s; 

  //for node export 
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  for(int i = 0; i<nodes.size();i++) { 

    node n = (node)nodes.elementAt(i); 

    s = "NODE\t"+n.id+"\t"+n.pos.coo[0]/10 

+"\t"+n.pos.coo[1]/10+"\t" 

+((stagez/2)-n.pos.coo[2])/10 

+"\t0"; 

    string_nodes.addElement(s); 

    //for restrictions export  - fixed nodes on bottom plane 

    if (n.isRestricted) { 

      s="SPC\t"+n.id+"\t0\t1\t1\t1\t1\t1\t1"; 

      string_spc.addElement(s); 

    } 

  } 

  //for beam export 

  for (int i = 0; i < bars.size(); i++) { 

    bar b = (bar)bars.elementAt(i);            

    s="EL_BEAM\t"+(b.id)+"\t1\t1\t" 

+b.nodeoneend.id+"\t" 

+b.nodeotherend.id 

+"\t0\t0.000000"; 

    string_bars.addElement(s); 
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  } 

  //create textfile for text export 

  String list[] = new String[string_nodes.size() 

+string_spc.size() 

+string_bars.size()+3]; 

  [ . . . ] 

 

  //add material property for beam 

  list[counter]="SEC_BEAM\t1\tSection 1\tSTEEL

 STD%CHS%300.%20.\tNA\t0.000000"; 

  //add loading (self-weight) 

  list[counter+1]="LOAD_GRAVITY\tall\t1\t0.000000\t0.000000\t-1.00000"; 

  //finalise 

  list[counter]="END"; 

  //save 

  saveStrings(path, list); 

  //analyze: run external program to run GSA analysis 

  open(GSAlinker);  

} 
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4 IMPORT ANALYSIS RESULTS 

boolean importResults(String path) { 

  gsaimportstring = loadStrings(path); 

  String disp = "DISP"; 

  String moment = "REACT_MOMENT"; 

  for (int i=0; i < gsaimportstring.length; i++) { 

    String l = gsaimportstring[i]; 

    //read displacement of nodes 

    if (l.length()>=disp.length()&& l.substring(0,4).equals(disp)) {   

      String[] ss = l.split("\t"); 

      int nodenum=Integer.valueOf(ss[1]).intValue(); 

      double dx = Double.valueOf(ss[3]).doubleValue(); 

      double dy = Double.valueOf(ss[4]).doubleValue(); 

      double dz = Double.valueOf(ss[5]).doubleValue()*(-1); 

      Pnt cd = new Pnt(dx,dy,dz); 

      //store maximum occurring displacement 

      if (cd.length() > globaldisp) globaldisp=cd.length(); 

      //store node’s displacement 

      node n = getNode(nodes,nodenum); 

      n.displaced = new Pnt(cd); 

    } 
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  } 

  return true; 

} 

 

5 TECHNIQUE 1: GUESSING ON THE GRADIENT OF THE FITNESS 

LANDSCAPE 

//a Vector to hold the fitness increase of all test steps  

Vector gradients; 

//after each test step, save the degree of optimisation in a vector 

//this will produce a vector of the size of test steps done 

//in this context: (number of cell cores) * (dimensions) = 30 * 3 

Double d; 

//get previous displacement from the Vector MaxDisps() 

double last = ((Double)MaxDisps.elementAt(MaxDisps.size()-1)).doubleValue(); 

//get degree of optimisation achieved in the test step just done 

d=new Double(last-currentDisp); 

//save it  

gradients.addElement(d);   

//after all test steps are done 

//move all cell cores according to the fitness increase achieved by their test 

steps 

for (int i = 0; i < Cores.size(); i++) { 

   Core b = (Core)Cores.elementAt(i); 
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   If (!b.structural) return; 

   double x = ((Double)gradients.elementAt(i*3)).doubleValue(); 

   double y = ((Double)gradients.elementAt(i*3+1)).doubleValue(); 

   double z = ((Double)gradients.elementAt(i*3+2)).doubleValue();    

   Pnt p = new Pnt(x,y,z); 

   p.scale(0.001);   

   //move the cell core to the new position 

   b.pos.add(p); 

} 

6 GSALINKER: CALLING THE GSA COM INTERFACE  

void RunGSAExportFunction(Cstring* csPath1)  

{ 

 COleDispatchDriver cGsaDispDriver; 

 cGsaDispDriver.m_bAutoRelease = true; 

 BYTE      pArgType1[] = "";  

 BYTE      pArgType2[] = VTS_BSTR; 

 //init com 

 bool init = AfxOleInit(); 

 if (!init) 

       { 

         AfxMessageBox("Error when Initialising COM."); 

     } 

 AfxEnableControlContainer(); 
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 CoInitializeEx(NULL,COINIT_MULTITHREADED); 

 // Create an instance of the GSA class "ComAuto"   

 COleException e;  

 if(!cGsaDispDriver.CreateDispatch("Gsa.ComAuto",&e))  

 {  

  AfxMessageBox("GSA not found or not registered"); 

   return; 

 }  

       //analyse 

 bool bStat(true);  

 // Function Open  

 if(bStat)  

    bStat = RunOneFunction(&cGsaDispDriver,  

     "Open",  

     pArgType2,  

     csPath1);  

 // Function Delete  

 if(bStat)  

    bool bStat2 = RunOneFunction(&cGsaDispDriver,  

     "Delete",  

     pArgType2,  

     csDelete1);  
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 // Function Analyse  

 if(bStat)  

 bStat = RunOneFunction(&cGsaDispDriver,  

     "Analyse",  

     pArgType1,  

     ""); 

 // Function SaveAs  

 if(bStat)  

    bStat = RunOneFunction(&cGsaDispDriver,  

     "SaveAs",  

     pArgType2,  

     csPath1);  

 // Function Close  

 if(bStat)  

    bStat = RunOneFunction(&cGsaDispDriver,  

     "Close",  

     pArgType1,  

     ""); 

} 
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bool RunOneFunction(  

  COleDispatchDriver*      pDispDriver,  

  CString                  csFuncName,  

  BYTE*                        pArgType,  

  CString                  csArgument)  

{  

   DISPID      dispid;  

   OLECHAR*      pcsFunc;  

   CString      csMsg;  

   int            iReturn(0);  

   pcsFunc = csFuncName.AllocSysString();  

//Find the function ID  

if(pDispDriver->m_lpDispatch->GetIDsOfNames(  

      IID_NULL,  

      &pcsFunc,   

      1,   

      NULL,   

      &dispid) != S_OK)  

{  

      csMsg.Format(  

            "Function (%s) cannot be found",  

            csFuncName);  

      AfxMessageBox(csMsg);  

      return false;  

}  
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//Run the function  

if(csArgument.IsEmpty())  

      pDispDriver->InvokeHelper(  

            dispid,  

            DISPATCH_METHOD,  

            VT_I2,  

            &iReturn,  

            pArgType);  

else  

      pDispDriver->InvokeHelper(  

            dispid,  

            DISPATCH_METHOD,  

            VT_I2,  

            &iReturn,  

            pArgType,  

            csArgument);  

 

if(iReturn != 0)  

      return false;  

else  

      return true;  

} 


