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Abstract

It is well-known that the probabilistic behaviour of financial asset returns is

not captured well by the classical Black-Scholes model. The true behaviour

will never be perfectly captured in any model, but insight is continually being

obtained into our understanding of more sophisticated and realistic models.

Much research has been published recently exploring the use of Lévy pro-

cess models, which maintain the original independent stationary increments

assumption present in the Black-Scholes model, but incorporate jumps in the

modelling. This investigation seeks to motivate a new class of models, throwing

out the stationary increments hypothesis. We argue that certain techniques of

trading decision-making are not independent of previous price movements, and

the returns, being driven by the trade order flow, will reflect that. From here,

we develop two particular such models, which are both diffusion models, and

study them for their probabilistic behaviour. The first of these models is a hy-

brid of the arithmetic and geometric Brownian motions, which has transition

probabilities expressible in terms of a spectral expansion involving Legendre

functions. The second is a hybrid of the arithmetic Brownian motion and the

Cox-Ingersoll-Ross process, and its spectral expansions involve the confluent

hypergeometric functions. Having developed these expressions in sufficient de-

tail to do so, we consider the calculation of value-at-risk and expected shortfall

in these two models.
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Chapter 1

Introduction

1.1 The Gaussian hypothesis for financial asset returns

The purpose of this investigation is to motivate and study a class of stochastic

processes as dynamic models for a single financial asset price. The processes

are in continuous time and we assume that they possess the Markov property so

as to obtain analytic tractability. Our aim is really to begin from fairly simple,

natural modelling assumptions and find that they lead to a wider, and more

statistically plausible, class of return probability distributions than the most

basic models do. This is not only of theoretical interest, but also of practical

importance if it can be shown that, actually, fat-tailed return distributions

should arise just as naturally as does the Gaussian.

The first continuous-time stochastic model in finance, developed by Louis

Bachelier in 1900 in his PhD thesis Théorie de la spéculation, used a scaled

Brownian motion with drift to model a security price directly. It was later

realised1 that such a process might more appropriately describe the price’s

logarithm, or the returns process. In 1973, Black & Scholes [18] wrote down,

in closed form, the price of European put and call options on this asset under

this latter model.

In modern notation, we write the stochastic dynamics of the underlying

asset price St, under the Black-Scholes model, as dSt = µStdt+σStdWt, where

µ ∈ R and σ > 0 are constants (termed respectively drift and volatility) and

(Wt)t≥0 is a standard one-dimensional Wiener process. Using Itô’s lemma,

one finds that the model may equally well have been specified in terms of the

returns process Xt = log(St)− log(S0), whose dynamics are governed by

dXt = µ1dt+ σdWt, t > 0, X0 = x, (1.1)
1This was an observation made independently around the same time (in the 1950s) by M. F. M. Osborne,

P. A. Samuelson and S. S. Alexander. See the introduction in part 1 of Cootner [32].
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in which the drift coefficient is the constant µ1 = µ − σ2/2. According to

this model then, the returns on an investment made for a period of length

t have the N(µ1t, σ
2t) distribution. In this study, we shall refer to any of

the distributions N(µ, σ2) as normal or Gaussian. We furthermore refer to

any model using (1.1) for the underlying returns process as the Black-Scholes

model, or the arithmetic Brownian motion (aBm) model, since (1.1) is the

SDE for an aBm.

Unfortunately, empirical investigations strongly reject the hypothesis of

Gaussian distributed returns. Whole books have been written about non-

Gaussian financial modelling, see for instance Boyarchenko & Levendorskĭi [23],

Campbell et al. [25], Embrechts et al. [41] and Jondeau et al. [71]. Non-

normality of financial asset returns had been observed long before Black & Sc-

holes’ fundamental paper, notably already in 1963 by Fama [47] and

Mandelbrot [86], but it had in fact been observed and discussed before that.

Mandelbrot [86] refers to an article2 as far back as 1915.

For an easy explanation of what is wrong with the Gaussian hypothesis, we

shall consider a test based on moments. If X denotes a real-valued random

variable, for instance the return on some investment over a known time-period,

with distribution F , we define its mean and variance

m = EX =

∫ ∞
−∞

xF (dx),

σ2 = var (X) =

∫ ∞
−∞

(x−m)2F (dx) = E[X2]− (EX)2.

We then define its skewness and kurtosis as

sk(X) = E

[(
X −m
σ

)3
]

and ku(X) = E

[(
X −m
σ

)4
]

respectively. Skewness is a measure of the asymmetry of a distribution. Kur-

tosis is a measure of the spread of the distribution, and it tells you how heavy

the tails are, without distinguishing the left and right ones. If X belongs to

the normal family of distributions, then it has zero skewness and a kurtosis of

3. For this reason, one often defines the excess kurtosis of X as

excess kurtosis(X) = ku(X)− 3.

Empirical investigations tend to show that returns have slightly negative

skewness and large positive excess kurtosis. Indeed let us now conduct a test

2‘The Making and Using of Index Numbers’, by Wesley C. Mitchell
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for normality on some share price indices, based on skewness and excess kur-

tosis. For simplicity, we shall suppose that the data are modelled as i.i.d. ran-

dom variables, with their observed mean and variance, and test the assumption

that they are from a normal sample. We consider daily log-returns of seven

world indices, each sampled between 2nd January 1996 and 30th December

2005 (31st was a Saturday). These can be sampled using the FinancialData[]

function built in to Mathematica 8, or using the get.hist.quote() function in

R [95] in the tseries package, see Dańıelsson [34]. Skewness and kurtosis are

estimated from i.i.d. data (rn)Nn=1 by

ŝk = N−1

N∑
n=1

(
rn − r
σ̂

)3

, k̂u = N−1

N∑
n=1

(
rn − r
σ̂

)4

,

where mean and variance were estimated as usual:

r = N−1

N∑
n=1

rn, σ̂2 =
1

N − 1

N∑
n=1

(rn − r)2.

We use a Jarque-Bera (JB) test3, which uses the fact that as N →∞,

ŝk√
6/N

d→N(0, 1) and
k̂u− 3√

24/N

d→N(0, 1).

The Jarque-Bera test statistic JB is defined as and satisfies

JB = N ×

[
ŝk

2

6
+

(k̂u− 3)2

24

]
d→χ2

2

where the distribution on the right is the chi-square distribution with 2 degrees

of freedom. JB cannot be negative; large values of JB are likely to reject the

Gaussian hypothesis. The χ2
2-distribution attributes4 99% of its mass to the

interval (0, 9.210), and 99.9% of its mass to the interval (0, 13.816). So values

of JB greater than 13.816 reject the Gaussian hypothesis even at the 99.9%

confidence level.

The results are summarised in table 1.1. We can see from them that excess

kurtosis is very positive, and the JB test statistic gives an idea of how non-

normal the data are (normality is rejected at the 99% level when JB > 10).

JB allows us, for every one of the indices in table 1.1, to reject the Gaussian
3This method is outlined in Jondeau et al. [71], section 2.2.3.
4Rohlf & Sokal [98]
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Index mean std. dev. skewness excess JB
(%, 3 s.f.) (%, 3 s.f.) kurtosis

FTSE 100 0.0167 1.29 -0.140084 2.52965 681.499
S & P 500 0.0277 1.33 -0.0907735 2.95578 920.075

DAX 0.0341 2.54 -0.146489 2.35538 593.41
Cac 40 0.0357 2.04 -0.113291 2.61001 724.672

Hang Seng Index 0.0153 2.93 0.123453 11.0659 12608.9
Nikkei 225 -0.0100 2.09 -0.0271506 1.94153 386.208

Ibovespa Sao Paulo 0.0821 5.38 0.441001 14.5207 21824.3

Table 1.1: JB test for normal distribution of seven financial time series sampled between
2/01/1996 and 30/12/2005

hypothesis based on both the skewness and excess kurtosis of the data, but in

fact for all these indices the Gaussian hypothesis is also rejected by a normal

test on only the excess kurtosis.

The tails of the Gaussian model can be fattened to some extent by allowing

for non-constant volatility. For example, we might consider a simple Bernoulli

mixture distribution F = θN(µ, σ2
1) + (1 − θ)N(µ, σ2

2), where θ ∈ (0, 1) is

called the mixing probability. This distribution has four parameters. In gen-

eral, taking mixtures of k normal distributions with the same mean µ but

different volatilities gives us a distribution with 2k parameters, because the

use of another volatility also introduces an extra mixing parameter. In Chap-

ter 7, once we have developed our models, we shall consider a likelihood test

on using data from these same world indices and compare the fit of our models

with the classical Gaussian and a Gaussian with a random volatility.

1.2 A review of the Gaussian Black-Scholes theory

Since the theory is elementary, we shall now summarise the Black-Scholes

model. When we later generalize its underlying assumptions (in particular,

the underlying equation of motion (1.1)), this should serve as a template for

investigation of analogous properties of our new model. First, consider mea-

sures of risk associated with the aBm model. The 100α% value-at-risk (VaR)

is defined as the minimum relative loss made on an investment in the worst

100(1 − α)% of cases. Assuming that under our model, Xt has an invert-

ible distribution function, this definition states that if VaRα(Xt) = ξα, then

α = P{Xt > −ξα}. Expected shortfall at the 100α% confidence level is then

defined as the conditional expected loss, given that the loss exceeds VaRα.

Defining the functions

uk(x) = |x|k1(−∞,−ξα)(x),

13



it is easily seen that we can use the formulae

1− α = E[u0(Xt)], ESα(Xt) =
1

1− α
E[u1(Xt)] (1.2)

to define or compute VaR and ES. Some authors use higher values of k for

more general risk measures, extracting information deeper in the tails5. These

risk measures are a function of the probability level and the random variable

or, more properly, its distribution. For a specific financial asset returns process

X = (Xt), they are functions of α and t (Hull [63]).

For the Gaussian distribution N(µ1t, σ
2t), distribution function and its in-

verse, the quantile function, are known and can be easily implemented in

certain software packages6. For example, under these assumptions the 100α%

value-at-risk is

VaRα(Xt) = σ
√
tΦ−1(α)− µ1t,

where Φ−1 denotes the normal quantile function. The expected shortfall is

ESα(Xt) = σ
√
t
ϕ(Φ−1(1− α))

1− α
− µ1t.

where we have denoted the standard normal pdf

ϕ(x) =
1√
2π

e−
1
2
x2

.

Secondly, since the transition function of the Markov process (Xt)t≥0 is also

known explicitly, maximum likelihood estimation of the parameters µ and σ

is easy to perform. The transition density is

p(t;x, y) = p(t;x, y, θ) = (2πσ2t)−1/2 exp

(
−(y − (x+ µ1t))

2

2σ2t

)
.

where θ = (µ, σ2) is the vector containing the parameters. Suppose that we

are given a time series (Xn∆)Nn=0, in which the time-lag ∆ > 0 is known. Under

the aBm assumption, the likelihood function is then

L(θ;X) =
N∏
n=1

p(∆;X(n−1)∆, Xn∆, θ)

= (2πσ2∆)−N/2 exp

(
− 1

2σ2∆

N∑
n=1

(Xn∆ −X(n−1)∆ − µ1∆)2

)
,

5See Jondeau et al. [71], Section 9.2, the definition is from Berkelaar & Kouwenberg [12]. For example,
k = 2 can give us the ‘downside variance’.

6R, MATLAB, Mathematica and Maple all have built-in functions for computing these.
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The usual choice for estimating the parameter θ in situations where this func-

tion is known explicitly is to choose it so that the function L is maximized. It

is equivalent to maximize the log-likelihood

`(θ;X) = logL(θ;X) = −N
2

log(2πσ2∆)− 1

2σ2∆

N∑
n=1

(Xn∆−X(n−1)∆−µ1∆)2.

This is performed by differentiating with respect to each of the parameters in

turn, so defining the score function

SN(θ) = ∂θ`(θ;X),

then setting this equal to 0 and solving for θ. In the aBm model this gives

explicit formulae

µ̂1 =
1

N∆

N∑
n=1

(Xn∆−X(n−1)∆), and σ̂2 =
1

N∆

N∑
n=1

(Xn∆−X(n−1)∆−µ̂1∆)2.

Finally, it may be shown that explicit formulae may be found for European

call and put options on an asset with returns process (1.1). In the full Black-

Scholes set-up of their paper [18], one considers a market in which two assets

are traded, each with perfect liquidity: a risky asset whose returns process is

given by (1.1) and a riskless asset (βt) which accumulates at a constant rate

r; i.e. βt = β0e
rt. This market is free from arbitrage and is complete7, so

that there is a unique pricing measure Q under which contingent claims are

priced. For a European option, with payoff function g and time t remaining

until expiry, it is

u(t,X0) = E[e−rtg(Xt) | X0] (1.3)

where the expectation is taken under the pricing measure Q. This formula is

actually a special case of that given on page 6 of Dynkin [38] volume I. Write

S0 = eX0 . Under the pricing measure Q, the returns process X has stochastic

dynamics

dXt = (r − 1

2
σ2)dt+ σdWQ

t

where WQ is a Q-Brownian motion, so Xt −X0 ∼ N((r − σ2/2)t, σ2t) under

Q. Put and call options have respectively payoffs gP(x) = [K − ex]+ and

gC(x) = [ex − K]+ and, for these functions, (1.3) may be written down in

7For definitions of arbitrage and market completeness, see any standard introductory text on math-
ematical finance. Good introductions include Björk [15], Etheridge [45] and Shreve [103]; I recommend
Klebaner [77] Chapter 11. Absence of arbitrage corresponds to the existence of an equivalent martingale
measure Q, while completeness is equivalent to its uniqueness.
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closed form. One easily finds by direct calculation that

E[e−rtgC(Xt) | X0] = S0Φ(d1)− e−rtKΦ(d2)

and

E[e−rtgP(Xt) | X0] = e−rtKΦ(−d2)− S0Φ(−d1).

where we have used the usual notational abbreviations for these cases

d1 =
X0 − log(K) + (r + 1

2
σ2)t

σ
√
t

, d2 =
X0 − log(K) + (r − 1

2
σ2)t

σ
√
t

and Φ is the standard normal distribution function.

We note that formula (1.3) is the Feynman-Kač formula8, telling us the

transition operator of the process X killed at the constant rate r. Thus the

option pricing formula, like the formula defining risk measures or the likelihood

function for parametric estimation, may be found directly from the transition

function of the aBm.

1.3 Fundamental and technical analysis

Before discussing which of the properties of the aBm model it is desirable for

us to retain in our search for more realistic financial models, we shall briefly

initiate our attempts to provide some explanation for this observed deviation

of the returns distribution from normality. Consider once again the model in

question, namely (1.1), thinking this time about where it comes from. One

might envisage the security S being traded on an extremely liquid market, in

which are executed so many transactions, each one at a slightly different price

from the previous one, that a plot of the returns process against time looks

from sufficiently far out like a continuous diffusion process. From this point

of view, the market participants, in making these trades, are driving the asset

price up and down continuously.

It makes sense that the buyer-initiated trades result in upward price move-

ment, while seller-initiated trades result in downward price movement. The

net effect on the market state (i.e. Xt) of trading over small time periods is

probably partly determined by the imbalance of inflow of buy and sell trade

orders9. The equation of motion (1.1) says that, while we do not know the

change in price over a small time-period, we do know, or at least we can cal-

culate, its mean and variance. The model then supposes further that the price

8Çinlar [30] Chapter 9, formula 2.49, and Rogers & Williams [97] III(18.13).
9We discuss this further in section ??, where we define limit orders and market orders
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is driven in the same way over a succession of these trading periods.

If it is these market participants who are driving the returns process X,

then in order to discover why it is that the returns process moves about in a

certain way, we shall probably wish to study these traders’ trading motivations.

One dichotomy of trading motivations is particularly popular in the literature,

into trading based on fundamental analysis and trading based on technical

analysis. Traders employing fundamental analysis are termed fundamental-

ists, those employing technical analysis, technicians. Both fundamentalist and

technician are seeking to gain knowledge about the general direction (upward

or downward) of an asset’s price and trade based upon that knowledge, but

their methods of obtaining this information differ.

The fundamentalists look for external factors that lie behind price changes.

For example, when trading the stock of a particular company, the fundamen-

talist will look at the general health of that company and its profit prospects.

On the other hand, the technicians look at the history of all sorts of market

statistic: a chart of Xt against t over a previous time period will be useful

to a technician, and he or she also trades based on information such as the

history of trading volumes. Since, quite often, the work of a market technician

involves looking at and analysing charts, technicians are often called chartists.

Key textbooks aimed at the market technician are Kirkpatrick & Dalquist [76]

and Murphy [90]. In our rôle of market modelling, we need not comment upon

the relative merits of either style of market participation, which have been dis-

cussed elsewhere; we need only accept the presence of both in the market. We

should also note that the actual traders in the market are probably employing

analysis of both types in some form, but this does not affect our modelling:

we simply need to acknowledge that both types of motivation are present in

the orders that arrive at the market.

1.4 Non-Gaussian returns and the Markovian assump-

tion

We know from the above discussions that the assumption of Gaussian-distributed

returns fails to capture observed financial market behaviour. The observed

negative skewness in the data means that market returns are asymmetric in

the sense that market crashes occur more frequently than booms. Excess kur-

tosis, on the other hand, is observed because extreme events occur much more

frequently than a Gaussian model is capable of predicting. The true distribu-

tion of financial asset returns should have much heavier tails than the normal
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distribution. This will be our main concern in developing models to replace

the aBm model developed above, though we would also like them to be capable

of exhibiting asymmetry when the need should arise.

Despite the observed drawbacks of the aBm model, it has one notable ad-

vantage over its competitors: tractability. We have already noted that risk

measures, parameter estimation and derivatives pricing are all elementary in

this model. The reason for this is that they have closed-form expressions based

on the transition function of the underlying Markov process, which is in turn

known in terms of its density with respect to the Lebesgue measure.

In stating that the process X describing the market state possesses a tran-

sition function of the form Pt(x,A) = P x{Xt ∈ A}, we are assuming that it

is Markovian. The equality P x{Xt ∈ A} = P [Xs+t ∈ A | Xs = x] then fur-

ther assumes that it is time-homogeneous. Time-homogeneity can probably

be justified over short to medium trading periods, but the Markov assumption

is fairly specific and restrictive. In fact, the Markov assumption essentially

says that all the relevant information about the asset’s future price fluctua-

tions contained in the asset price’s history is encoded in its current price. This

implies that any attempts, by chartism for instance, to determine the price’s

future movements are futile.

The aBm model (1.1) actually contains all of the following assumptions:

(i) X is a Markov process, possessing a transition function;

(ii) X is temporally homogeneous;

(iii) X has continuous paths, i.e. the function t 7→ Xt is continuous;

(iv) X is spatially homogeneous.

Conversely, if X is assumed to satisfy these conditions (i)-(iv), then it is possi-

ble to show that X satisfies equation (1.1) for suitably chosen constants µ1 and

σ. If we are to discover more general models, one or more of these conditions

must be relaxed, or dropped completely.

We now discuss these assumptions in a little more detail. Starting from

the top, a Markov process X on a time-parameter set T with topological

state space S may (and is usually assumed to) possess a transition function

Ps,t(x, dy), intuitively10 given by

Ps,t(x,B) = P [Xt ∈ B | Xs = x], s ≤ t in T, x ∈ S, B ∈ S,
10To define rigorously, one must take care to remember that conditional probabilities are defined uniquely

only up to a set of measure 0, see Blumenthal & Getoor [19].
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where S denotes the class of Borel subsets of S. The assumption that X is

Markovian does not imply that a transition function should exist: this property

must be assumed. Transition functions, however, make sense only for processes

possessing at least the simple Markov property that, at each fixed time t (called

the ‘present’), past and future are conditionally independent given the present

state Xt. By conditioning on intermediate times u ∈ [s, t], one sees that the

transition function Ps,t(x, dy) must satisfy the so-called Chapman-Kolmogorov

relation

Ps,t(x,B) =

∫
S

Ps,u(x, dy)Pu,t(y,B), for any u ∈ [s, t] ⊂ T, x ∈ S, B ∈ S.

Roughly speaking, we say that a Markov process is strong Markov if the (sim-

ple) Markov property is satisfied when the ‘present’ fixed time t is replaced

with stopping times τ . See Blumenthal & Getoor [19] for the precise defini-

tions.

It is worth noting at this point what is possible if all four conditions, includ-

ing the Markovian assumption, are dropped. That is, we consider a market,

still described by a one-dimensional stochastic process (Xt), which is now not

even Markovian. It is usually assumed in this situation that X is a semimart-

ingle. That is, X is a rcll11 process, decomposable as

Xt = X0 +Mt + At, t ≥ 0

where M is a local martingale and A is a process of finite variation, both

starting at zero. These processes are discussed in section 2.4. The problems

of risk measurement and option valuation then require the computation of

expectations, without using transition semigroups. Specifically, the value at

time t of a European option with payoff function u is given by the expectation

V (t, x) = E(t,x)[e−rtu(XT )]

under some measure P (t,x) (under which P (t,x){Xt = x} = 1). Similarly, the

α-level value-at-risk may be defined as the unique value of ξ > 0 such that

P (t,Xt){XT < −ξ} = E(t,Xt)[1{XT < −ξ}] = 1− α.

If it is possible to simulate the process X, then such expectations may at least

be computed by Monte Carlo methods. For the most part, since the analytic

tools on which we later rely are not available in the general non-Markov set-up,

11Right-continuous with left limits, also often described as càdlàg or corlol.
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the solution of these problems is necessarily computationally intensive.

It is noted in Çinlar [30], Chapter 9 remark 1.12, that, if tractability is

permitted to be completely disregarded, any stochastic process may be made

Markovian by a sufficient expansion of its state space12. Indeed, if a stochastic

processX is given on a probability space, then one may construct a new process

Y on the same space, such that the state Yt describes the whole history of X

up till time t. By this construction then, Y is Markovian, but there is nothing

further we can do with it since the present state Yt is in general too complicated

for us to condition on.

There do, however, exist situations in which non-Markovian processes may

be made Markovian without the loss of too much tractability. We should

like to call Markov reducible any process X with the property that, with the

introduction of an Rd-valued process Y , the stochastic process (X, Y ) is then

Markovian with respect to its natural filtration. So long as d is a sufficiently

small number, the system should remain tractable. An example is furnished

by the evolution of the value At of an Asian option, see for instance Wilmott

et al. [111]. Let X again represent the return on the underlying asset, and

introduce the price averages

I1(t) =
1

t

∫ t

0

eXudu (arithmetic average),

I2(t) = exp

(
1

t

∫ t

0

Xudu

)
(geometric average).

The payoff of the option is then given by some expression of the form AT =

u(XT , I(T )) (where I ∈ {I1, I2}) for the suitable payoff function u. The process

A is not Markovian, but if X is itself Markov with respect to its natural

filtration, then so is the process (A,X, I). It is then possible to study this as

a 3-dimensional Markov process.

In order to preserve analytic tractability, we have decided to consider only

the situation in which the one-dimensional process X satisfies the Markov

property. We hope that, at some stage, the ideas sketched above may be used

to conduct a more realistic investigation into the return process under pressure

from fundamental and technical trading, for instance by the introduction of

a finite-dimensional market statistic process, say Y , such that (X, Y ) satisfies

a stochastic differential equation. Yt would represent a vector of statistics

considered by technicians. In fact, Brody et al. [24] (referred to as BHM)

already went even further than this, by developing a general framework in

12Çinlar [30] attributes this observation to Doob.
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which the information available to market participants is modelled directly. In

the BHM framework, investors gain their information from a separate process

(ξt). For example, in the simplest case, the value at time t ≤ T of an asset

entitling the holder to only a single cashflow DT at time T , would be equal

to E[P (t, T )DT |ξt], where P (t, T ) is the time t value of a unit cashflow at

time T . Thus the information in the marketplace is generated by the process

(ξt), rather than by the Brownian motion W which drives the asset price St in

models such as that of Black & Scholes [18]. For an equity share, DT would

represent a dividend paid by the company at time T ; the authors went on

to consider shares paying multiple dividends and dividend growth. Hughston

& Macrina developed the framework further in [61], by pricing fixed-income

securities in it.

We return to the discussion of assumptions (i)-(iv) of the elementary aBm

model. A Markov process X, with state space S, is said to be temporally

homogeneous if Ps,t(x,A) depends on the time variables s and t only through

t− s, in which case we write

Ps,t(x,A) = Pt−s(x,A).

Çinlar [30] (exercise 1.40) notes that, if X is a temporally inhomogeneous

Markov process in S, the process (t,Xt), with state space R+ × S, is tempo-

rally homogeneous. For a time-homogeneous Markov processX with transition

function (Pt), each Pt is a kernel from S to itself, but can of course also be

viewed as an operator defined on the space Sb of bounded Borel-measurable

functions u : S → R. From this perspective, the Chapman-Kolmogorov rela-

tion is equivalent to the semigroup property

Ps+t = PsPt.

Since the analytic theory of semigroups arising in this way is quite extensively

developed, this will provide us with a good deal of information about the

probabilistic behaviour of the process X.

It is assumptions (iii) and (iv) that must be relaxed to furnish more realistic

yet usable return models. Before looking at any examples, let us classify

the possibilities. Roughly speaking, we call a time-homogeneous continuous

strong Markov process a diffusion, and a space- and time- homogeneous strong

Markov process a Lévy process. Diffusion models are expressed by means of a

stochastic integral equation against a driving Brownian motion (though these

integral equations are then usually written in differential form). To write
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down the equation of motion of a Lévy process requires an extra integral term,

against a Poisson random measure, which represents the jumps of the motion.

The general (i.e. space-inhomogeneous) process whose equation of motion is

an integral equation involving integrals against both a Brownian motion and a

standard Poisson random measure on R+×R+ is called an Itô process ; such a

process is a diffusion between its jumps. If the process has only finitely many

jumps in each finite time-interval, then we call it a jump-diffusion.13

1.5 Some specific non-Gaussian Markov models

1.5.1 Lévy processes

Lévy processes have been proposed to generalize the aBm model in finance by

a large number of proponents. Indeed, when Mandelbrot [86] noted the defi-

ciencies in the Gaussian models, he was proposing the immediate replacement

of the aBm with stable processes, a subclass of Lévy processes. We would like

to give some examples of Lévy process models which have been proposed, but

first recall some basic definitions needed to specify these models.

We have described Lévy processes as the continuous-time Markov processes

which are time and space homogeneous. A regularity assumption is also re-

quired: usually one assumes that a Lévy process is stochastically continuous14,

see Sato [99] definition 1.5. Non-overlapping increments are independent of

each other, and have a distribution depending only on the length of the time-

increment. The distribution of the whole process is then determined by its

starting point (often taken to be zero) and the distribution of one of the Xt,

usually X1. This distribution is infinitely divisible and there is a bijection be-

tween the class of Lévy processes which start at zero and the class of infinitely

divisible distributions.

From these observations, every Lévy process X is characterized by the

distribution of X1, which is in turn characterized by a triple (µ, σ, ν), where

µ ∈ R, σ ≥ 0 and ν is a Lévy measure15 on R \ {0}. If, for example, ν = 0,

then

Xt = µt+ σWt;

a continuous Lévy process is therefore an arithmetic Brownian motion. The

13This terminology agrees with that used in Çinlar [30], Chapter IX.
14Note that ‘stochastically continuous’ does not even imply that any of the paths are continuous. See

Kallenberg [72] Theorem 15.1, which states that, together with the assumption of independent increments,
it does imply that the process has an rcll version with no fixed (non-random) jumps, which is what we work
with.

15i.e. a measure satisfying the integrability condition
∫

(1 ∧ |x|2)ν(dx) <∞.
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full characterization of the general Lévy process in one dimension is now stan-

dard, and we quote the formula from Kallenberg [72], Corollary 15.8, see also

Boyarchenko & Levendorskĭi [23] formulae (2.14) and (2.15). The characteris-

tic function of Xt is

E[eiξXt ] = etψ(ξ)

where the characteristic exponent ψ possesses a representation, the so-called

Lévy-Khintchine formula,

ψ(ξ) = iµξ − 1

2
σ2ξ2 +

∫
R\{0}

(eiξx − 1− iξx1[−1,1](x))ν(dx). (1.4)

The jump measure ν is called the Lévy measure: if it possesses a Lebesgue

density g(x) = ν(dx)/dx, we call this the Lévy density. The Lévy measure ν

is concentrated on R \ {0}, and must satisfy∫
R\{0}

(1 ∧ |x|2)ν(dx) <∞.

If it satisfies the stronger condition∫
R\{0}

(1 ∧ |x|)ν(dx) <∞,

then the Lévy process with characteristics (µ, 0, ν) (i.e. X with its Brownian

component removed) has finite variation, and if ν(R \ {0}) <∞, then X has

finitely many jumps in any bounded time-interval [t1, t2].

An increasing Lévy process A is called a subordinator. In this case, the

distribution of A1 is concentrated on [0,∞). Instead of using the characteristic

function and characteristic exponent, such a process is characterized instead

by its Laplace exponent ψ, defined via

E[e−λAt ] = etψ(λ).

In these cases, the Lévy-Khintchine representation takes on the form

ψ(λ) = µλ+

∫
(0,∞)

(e−λx − 1)ν(dx).

Since a subordinator is increasing, it has finite variation and the Lévy measure

must satisfy ∫
R\{0}

(1 ∧ x)ν(dx) <∞.

Subordinators are unsuitable for modelling financial asset returns, but they
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are often used as random time-change processes. This technique, called sub-

ordination, is largely due to S. Bochner16. Here we note that if an arbitrary

Lévy process Y (t)) has characteristic exponent χ and a subordinator (At) has

Laplace exponent ψ, then the subordinated process X given by Xt = Y (At)

has characteristic exponent ψ(χ), i.e.

E[eiξXt ] = etψ(χ(ξ)).

We may now introduce the class of stable processes. First consider an

arbitrary Lévy process X, with X0 = 0. The distribution F1 of X1 is infinitely

divisible, and the distribution Ft of Xt is then uniquely determined by F1. It

may happen that, for every t > 0, Ft is a change of scale and a change of

location from F1; in this case F1 is called a stable distribution, and X is called

a stable process. (It follows that Ft is a stable distribution for every t > 0.) A

stable process satisfies the scaling relation17

(c1/αXt + µt)t≥0 ∼ (Xct)t≥0, c > 0

for some α ∈ (0, 2]. The arithmetic Brownian motion satisfies this relation with

α = 2, and it is fairly intuitive that any stable process with variance should

satisfy the same, and is therefore an aBm. Thus, any stable process which is

not an aBm has infinite variance. Mandelbrot [86] conducted his own empirical

investigation on cotton price fluctuations using the class of stable distributions,

which he termed stable Paretian, and found an approximate value α ' 1.7.

This indicates that, for the data with which he worked, infinite variance stable

distributions provide a better fit than the Gaussian distribution.

However, the use of stable distributions in modelling financial asset re-

turns is also usually found to be somewhat unrealistic. Authors including

Boyarchenko & Levendorskĭi [23] and Jondeau et al. [71], who attribute the

observation to DuMouchel, argue that the tails of the stable distributions ap-

pear too heavy : return distributions in reality appear to have finite second,

third and probably higher moments. Boyarchenko & Levendorskĭi go further

by observing that, if (Xt) is α-stable with α < 2, then E[eXt ] = ∞, so that

options pricing by usual methods runs into problems at the outset. So the

heavy tails in the stable models lead to complications that even financial time

series do not warrant.

By using the subordination technique described above, we can obtain the

variance gamma (VG) model, advocated by Madan & Seneta [84] in 1990. In

16See Jacob [67], which provides technical details as well as historical notes.
17See Sato [99], DEFINITION 13.4. If µ = 0, then X is called strictly stable.

24



fact either of the following yield a VG process:

(i) Let C and D be independent gamma processes with identical distribu-

tions (i.e. Lévy processes such that C1 ∼ D1 ∼ Gamma(c,
√

2ρ) for some

pair (c, ρ)), and let X = C −D.

(ii) Let B be a Brownian motion, and let γ be an independent gamma process

with parameters c and ρ. Define Xt = Bγ(t).

The processes as constructed by these two methods have the same distribu-

tion. Since for a Brownian motion B, var (Bt) = t, we have in (ii), var (Xt |
γ(t)) = γ(t), which explains the name variance gamma. More generally, we

permit the two gamma subordinators in (i) to have their own parameters,

C1 ∼ Gamma(c+, ρ+) and D1 ∼ Gamma(c−, ρ−). This process then has Lévy-

Khintchine triple (0, 0, ν) where ν has Lebesgue density

g(x) =

{
c+x

−1e−ρ+x, x > 0,

c−|x|−1e−ρ−|x|, x < 0.

Here, c+, c−, ρ+ and ρ− are positive parameters. These processes are called

bilateral gamma processes in Küchler & Tappe [79]. The VG process was

later (2002) generalized by Carr, Geman, Madan and Seneta [26], by simply

defining the Lévy measure of a new infinitely divisible distribution, the CGMY

distribution, to have the more general density

g(x) =

{
C+x

−Y−1e−Gx, x > 0,

C−|x|−Y−1e−M |x|, x < 0

for some Y ∈ [0, 2). The CGMY model contains the VG model with Y = 0, so

that it is a proper generalization of that model. When applying the model to

financial data, Carr et al. [26] found significant evidence that Y > 0, meaning

that the CGMY model performed better than the VG model. This family of

models is also called KoBoL in Boyarchenko & Levendorskĭi [23].

Another possibility of subordination was explored by Barndorff-Nielsen &

Levendorskĭi [11]. They use a tempered stable subordinator: let p(x;α, δ) de-

note the probability density function of an α-stable distribution concentrated

on (0,∞), with Laplace transform∫ ∞
0

e−λxp(x;α, δ)dx = exp (−δ(2λ)α) .

The tempered stable distribution is then defined by taking another parameter
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γ > 0, and observing that with λ = γ2/2, the function of x given by

p(x;α, γ, δ) = eδγ
2α

p(x;α, δ)e−
1
2
γ2x

is the density of an infinitely divisible distribution on (0,∞). The associated

subordinator is called a tempered stable subordinator. Barndorff-Nielsen and

Levendorskĭi take a Brownian motion with drift, and subordinate by the tem-

pered stable subordinator. The resulting process is called a Normal Tempered

Stable (NTS) Lévy process. The special case α = 1/2 gives us the Normal

Inverse Gaussian Process, proposed for finance by Barndorff-Nielsen [10].

In 1977, O. Barndorff-Nielsen [9] proposed the generalized hyperbolic (GH)

distributions to model the size of sand particles. A subclass of the class of GH

distributions is that of the hyperbolic distributions. These are most conve-

niently defined through their probability density functions because, while the

logarithm of the Gaussian pdfs is a parabola, the logarithm of a hyperbolic

distribution is a hyperbola: thus, in the present terminology, we would call

the Gaussian distribution a parabolic distribution. Hyperbolic distributions

are considered for financial applications by Eberlein & Keller [39]. There they

define the pdf of a hyperbolic distribution as

hyp(x) =

√
α2 − β2

2αδK1(δ
√
α2 − β2 )

exp
(
−α
√
δ2 + (x− µ)2 + β(x− µ)

)
.

The introduction of a fifth parameter gives us the pdf of a GH distribution.

For the sake of completeness, we record this as

gh(x) = a(λ, α, β, δ)(δ2 + (x− µ)2)(λ−1/2)/2Kλ−1/2(α
√
δ2 + (x− µ)2 )eβ(x−µ).

Eberlein & Prause [40] say that these distributions are well suited to describing

asset returns.

Other more general types of Lévy processes have been considered. A Lévy

process is said to be completely asymmetric if its Lévy measure ν is concen-

trated on a half-axis (−∞, 0) or (o,∞). If it is just concentrated on the nega-

tive half-axis, it could also be called a spectrally negative Lévy process. These

processes have also been the subject of attention in finance and insurance appli-

cations. The simplest non-trivial example is the well-known Cramér-Lundberg

model from collective risk theory Xt = u+ ct−Ct where (Ct) is a compound-

Poisson process, see for example Embrechts et al. [41]. Thus, the setting of a

spectrally negative Lévy process, used by Avram et al. [8], is a generalisation

of this model. Spectrally negative Lévy processes were also used by Avram et
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al. [7] to model the underlying asset returns, after which they proceed to solve

the problem of pricing Russian options and Canadized Russian options on the

underlying asset. The authors comment that the assumption of only negative

jumps was largely for the tractability gained, since it then permits the use of

results on spectrally negative Lévy processes, but that Carr & Wu [27] also

found some empirical evidence that a spectrally negative Lévy model, specifi-

cally an α-stable process with α ∈ (1, 2) may be appropriate for the modelling

of stock returns.

1.5.2 Diffusion models

Diffusion processes may in some generality be thought of as continuous, strong

Markov processes, with a locally compact topological state space S, but in

financial applications the model is likely to be specified by a stochastic differ-

ential equation (SDE). We shall consider only SDEs in one dimension, with

state space R, or a subset of R. Such a diffusion model requires specifica-

tion of three infinitesimal characteristics, namely the infinitesimal mean (drift

coefficient), infinitesimal variance (diffusion coefficient) and the infinitesimal

killing rate. Assuming a constant zero killing rate, a diffusion model is of the

form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t > 0, X0 = x (1.5)

for some x ∈ I, where the state space I is an interval in R, W is a standard

Wiener process, b : R+×R→ R is the drift coefficient and σ2 : R+×R→ R+

is the diffusion coefficient, b and σ satisfying for example the conditions of

Klebaner [77] Theorem 5.2 so that a (strong) solution of (1.5) exists and

is unique18. If the coefficients do not depend on time t, then the model is

time-homogeneous: our diffusion models are always time-homogeneous. The

aBm model corresponds to the case in which the coefficients b and σ de-

pend on neither the state space variable nor the time parameter - they are

simply constants. The only time-homogeneous diffusion model which is also

space-homogeneous is therefore the aBm model, so that generalisations of this

process as a diffusion involve removing the spatial homogeneity. Because of

this, diffusion models, unlike Lévy processes, are capable of exhibiting mean-

reverting features or trends (developing momentum).

Mean reversion makes diffusions suitable for modelling spot rate dynamics.

18The conditions are that b(t, x) and σ(t, x) are locally Lipschitz in x uniformly in t, and that they satisfy
a linear growth condition in x. They ensure existence and uniqueness of a solution of (1.5), and are given
also in Kallenberg [72] Theorem 21.3 and Rogers & Williams [97] . In our investigation, we shall devote
attention to the one-dimensional time-homogeneous case, in which the slightly sharper Yamada-Watanabe
conditions existence and uniqueness of a strong solution, see Theorem 5.
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Examples of diffusion models developed for spot rates are

• the Merton model

dXt = µdt+ σdWt, t > 0, X0 = x,

Merton [88];

• the Vasicek model

dXt = κ(µ−Xt)dt+ σdWt, t > 0, X0 = x,

Vasicek [110];

• the Cox-Ingersoll-Ross (CIR) model

dXt = κ(µ−Xt)dt+ σ
√
Xt dWt, t > 0, X0 = x,

Cox et al. [33];

• The Ho-Lee model

dXt = µtdt+ σdWt, t > 0, X0 = x,

Ho & Lee [60]

• The Black-Derman-Toy model

dXt = µtXtdt+ σtdWt, t > 0, X0 = x,

Black et al. [16]

Hull & White [62] generalize the Vasicek model to

dXt = κt(µt −Xt)dt+ σtdWt, t > 0, X0 = x,

while Black & Karasinski [17] specify

dXt = Xt(θt − ϕt logXt)dt+ σtdWt, t > 0, X0 = x.

Merton’s model is simply an aBm. The Vasicek model uses an Ornstein-

Uhlenbeck (OU) process to model the short rate. A process satisfying the SDE

of the CIR model will be called a CIR process. For all these models the tran-

sition density is known: it is elementary to derive it for the OU process, while

for the CIR model it had previously been found by Feller [48]. The Vasicek

models (including the Merton model) have Gaussian transition probabilities,
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concentrated on R. The CIR model has state-space (0,∞) or [0,∞), and its

transition probability distributions are non-central chi-square distribution. So

long as κ > 0, these (OU and CIR) processes are mean-reverting. They have

a long-term mean of µ, and an invariant distribution π, so that as t → ∞,

Xt
d→ π. In the OU process, π is Gaussian, while in the CIR process, π is a

gamma distribution.

These models exhibit some elements of current state sensitivity (i.e. de-

pendence of dXt on Xt), but fall short of a full feedback of the price in the

returns’ dynamics, especially in the volatility. Our efforts are to be concen-

trated then in expanding the class of known diffusion models available to the

financial modeller.

Before concluding our remarks on diffusion models, we just mention that,

by Itô’s lemma, it is possible to form new diffusions from existing ones. If X

is a diffusion process satisfying (1.5) and f is a C2 function, then the process

f(X) = (f(Xt))t≥0 is a diffusion process satisfying the equation of motion

df(Xt) = Af(Xt)dt+ σ(Xt)f
′(Xt)dWt, t > 0, X0 = x,

where

Af(x) =
1

2
σ2(x)f ′′(x) + b(x)f ′(x).

In a formal sense, A here is the infinitesimal generator of the process X. We

shall have more to say on infinitesimal generators and their rôles in the study

of diffusion processes in section 2.3, but we just mention here that, as shown

in Shaw & Schofield [102], an instance of this arises in the models that we

develop in this investigation, specifically the process sinh(Wt). This process

can be understood through Bougerol’s identity [22]. Furthermore, Alili et

al. [3] showed a beautiful generalisation of Bougerol’s identity which relates

to the process sinh(Yt) when Yt is specified via the dynamics

dYt =

(
c0 tanh(Yt) +

c1

cosh(Yt)

)
dt+ dWt, t > 0, Y0 = y.

Shaw & Schofield [102] noted further that this process, sinh(Yt) with c0 = 1

and c1 = 0, also arises in the context of the hybrid diffusions we are about

to develop, and noted a symmetry between the two processes sinh(Wt) and

sinh(Yt), which can be interpreted in terms of the Legendre symmetry Pν ↔
P−ν−1. For a collection of results and survey of literature relating to Bougerol’s

identity, see Vakeroudis [109].
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1.5.3 Jump-diffusion models

The theoretical generalization of diffusion processes and Lévy processes, which

includes both those classes, is the class of Itô processes. These are described by

an integral equation. (The proper interpretation of an SDE of the form (1.5)

is as an integral equation). In addition to a standard Wiener process W , we

introduce an independent standard Poisson random measure N on R+ ×R+,

i.e. such that

for all B ∈ B(R+ ×R+), N(B) ∼ Poi(|B|)

where |B| denotes the Lebesgue measure of the set B. We further denote the

compensated Poisson random (signed) measure Ñ = N − EN , i.e. Ñ(B) =

N(B)− |B|; then the equation of motion for an Itô process is19

Xt = X0 +
∫ t

0

{
b(Xs)ds+ σ(Xs)dWs +

∫
R
j(Xs−, y)1D(Xs−, y)N(ds, dy)

+
∫
R
j(Xs−, y)1Dc(Xs−, y)Ñ(ds, dy)

}
, t ≥ 0,

where

D = {(x, y) ∈ R×R+ : |j(x, y)| > 1},

and where b : R → R, σ : R → R+ and j : R ×R+ → R are deterministic

functions. The function j gives the size of the jumps.

This level of generality is too great, for our purposes of investigating the

distributions of the underlying asset’s returns, and we do not expect such

models to be tractable. Instead, we shall consider a special case, in which

only finitely many jumps occur in each bounded time-interval. We shall call

the processes we are about to describe jump-diffusions. They are assumed to

satisfy the equation of motion

Xt = X0 +

∫ t

0

{
b(Xs)ds+ σ(Xs)dWs +

∫
R

j(Xs−, y)N(ds, dy)

}
, t ≥ 0,

(1.6)

where it is assumed that there is a λ > 0 such that j(x, y) = 0 for all y ≥ λ.

Given that a jump occurs from the point Xt− = x, the jump has size ∆Xt =

j(x, U) where U ∼ Unif(0, λ). The conditional distribution of this jump is

denoted20 J(x, ·): J is a probability kernel from R to R. Between its jumps

19Çinlar [30], 3.95.
20This is non-standard notation, adopted only here for convenience. y 7→ j(x, λy) is the quantile function

of J(x, ·).
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the process acts as a diffusion

dX̄t = b(X̄t)dt+ σ(X̄t)dWt, τn−1 < t < τn,

(where τn denotes the time of the nth jump) killed at a rate given by

k(x) = | {y ∈ R+ : j(x, y) 6= 0} |.

At a ‘killing time’ τ , instead of being sent to the cemetery state, X simply

chooses a new starting point, according to the law J(Xτ−, ·).
It is clear how this generalizes the notion of a diffusion. It does not gener-

alize the notion of a Lévy process in the generality with which we have defined

them. The motion (1.6) is a Lévy process if b and σ do not depend on Xs

and j does not depend on Xs−. The Lévy processes this motion is capable of

producing are therefore those of the form

Xt = bt+ σWt + Ct, t ≥ 0,

where the compound Poisson process (Ct) is given by

Ct =
Nt∑
n=1

Yn,

for some independent i.i.d. sequence (Yn) and an independent Poisson process

(Nt) with rate λ. The characteristic exponent for this particularly simple Lévy

process is

1

t
logEeiξXt = ibξ − 1

2
σ2ξ2 +

∫ ∞
−∞

(eiξy − 1)λFY (dy)

where FY denotes the distribution of each Yn. Thus our jump-diffusions cannot

be Lévy processes of infinite activity.

Some jump-diffusion processes which have been considered in the litera-

ture are Lévy processes of finite activity, but they arose differently to those

mentioned above in the class of Lévy models. The models described as an

aBm with a compound Poisson process of jumps superimposed are sometimes

themselves referred to as jump-diffusions. Examples of jump-diffusion mod-

els of this type are those of Merton [88] and Press [92], in which the jump

distribution FY was assumed to belong to the Gaussian family.

In the full level of generality, an approach to pricing double barrier options

on an underlying Itô process (which they call a jump-diffusion) was presented

in Eriksson & Pistorius [44]. The authors also mention that commodity prices
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exhibit features of jumps and mean-reversion, see the references therein. The

equation of motion is actually given as

dXt = b(t,Xt)dt+ σ(t,Xt)dWt + λ(t,Xt)dJt, t > 0, X0 = x,

where (Jt) is a pure-jump Lévy process (i.e. with Lévy-Khintchine triple

(µ, σ, ν) = (0, 0, ν)). Since J may have infinite activity, this process is an

Itô process, rather than a jump-diffusion process as we have defined them. A

barrier option becomes worthless when the underlying X leaves some set B.

The authors show how to use a method of moments approach, based on the

discounted exit location measure

ξ(A) = E[e−ατ1{(τ,Xτ )∈A}]

and the discounted occupation measure

ω(A) = E

[∫ τ

0

e−ατ1{(s,Xx)∈A}ds

]
,

where

• τ is the first time at which X leaves the set B;

• α is given by

αt =

∫ t

0

r(s,Xs)ds

for the rate r of discounting.

1.6 Plan of investigation

We have now reviewed the basic Gaussian model employed in finance and

highlighted some major flaws, which are well-known. We have also discussed

some more sophisticated models which have been developed to address to some

extent some of these flaws. Our aim is now to motivate, study and illustrate

a further class of such models, that we have termed hybrid diffusion models.

The structure of the remainder of this investigation is then as follows.

In Chapter 2, we review the theory and associated literature needed for

each of the subsequent chapters in turn. In Chapter 3, we develop a market

microstructure model in which the impact of each individual trade order on

the market state is modelled. The latter model results in a process in which

the market state makes successive and finitely many discrete jumps between

successive states. Chapter 4 describes the procedure of approximating this
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discrete jump process with a continuous one. An equation of motion is derived,

which allows us to discuss the possible additional assumptions one can make

in the feedback model and the resulting specific model.

At this point, we choose to specify two models in particular, the arithmetic-

geometric hybrid Brownian motion of Shaw & Schofield [102], studied in Chap-

ter 5, and the arithmetic-Cox-Ingersoll-Ross process which is new, and which

we study in Chapter 6. In Chapter 7 we conduct a maximum likelihood test to

show that our models do indeed fit return distributions better than classical

models. We then give some numerical illustrations of these two processes in

Chapter 8 before concluding.
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Chapter 2

A theory and literature review

Here we look forward to each of the subsequent sections in turn and point

to the relevant mathematical headings under which they fall. The minimal

theory for our investigation is developed and with each topic summary the

reader is pointed to some of the associated literature. Before we begin, here is

a summary of the following discussions.

In section 2.1, we give an exposition of the theory of renewal processes

and renewal-reward processes, whose importance is that we can use them to

describe the trade order flow. Given certain other assumptions regarding the

price formation process, we obtain a discrete renewal model of the market.

The main result from renewal theory that we are interested in is the renewal

theorem, Theorem 1, which tells us that under relatively weak conditions the

underlying renewal process converges in law to a stationary renewal process.

As a consequence, we get a simple description of the large-time mean and

variance of the renewal-reward process.

Section 2.2 is a summary of the concepts and results we require from the

theory of weak convergence of probability measures, which is relevant to our in-

vestigation through our aim of approximating the discrete renewal-type model

mentioned above by a continuous diffusion process. In this section, we give

theorems 2-4. Theorem 2 tells us that a sequence of processes which converge

in distribution in the space C[0, T ] of continuous functions also converge in

distribution to the same limit in the Skorohod space D[0, T ]. Theorem 3 is

Donsker’s invariance principle, which is a functional Central Limit Theorem,

stating essentially that a suitable successive scalings of a random walk (based

on a distribution with zero mean and finite variance) converge in distribution

to a standard Brownian motion. A variation of this is Theorem 4, which re-

places the random walk (Sn) in Donsker’s Theorem with the renewal-reward

process (SN(t)).
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The longest section of this chapter is section 2.3, which goes through the

concepts that we shall require from the theory of Markov processes, including

the theory of one-dimensional diffusions. This is necessarily in some detail,

since then a direct application of this thoery allows us to present a charac-

terisation of the probability distributions associated with our models (in most

cases, this is through the associated Green function). The general theory of

Markov processes and the more specific theory of one-dimensional diffusions

are quite well-known, so we simply explain and summarise these concepts with-

out formal statements of the results. We formally present three theorems in

this section, theorems 5, 6 and 7. Theorem 5 gives conditions under which a

one-dimensional SDE makes sense in the sense that a strong solution exists and

is unique. Theorem 6 is Linetsky’s spectral classification of one-dimensional

diffusions, based on the Sturm-Liouville theory associated with its generator,

while Theorem 7 characterises the oscillatory/non-oscillatory nature of the

boundary points via the Liouville transformation.

In section 2.4 we give some definitions from the general theory of stochas-

tic processes. This material follows Jacod & Shiryaev [68]. The reason for

introducing this material is only to state two convergence theorems for semi-

martingales when we come to section 4.6. We hope these theorems will be

useful in a further investigation to prove that our convergence results hold

when the Markov assumption is removed. The situation is then one in which

the approximating processes are semimartingales. We introduce the set-up on

which semimartingales are defined, and go on to define the characteristics of

semimartingales, in terms of which these convergence theorems will be stated.

This material is relevant only to the open question of convergence of the mi-

crostructure model and may therefore be omitted if the reader is interested

only in the development and implementation of hybrid diffusion models.

Once we have applied the analysis of section 2.3 to our models, our solutions

will be in the form of special functions, whose behaviour we shall need to

understand. In sections 2.5 and 2.6, we summarise the basic properties of the

Legendre functions and the confluent hypergeometric functions. We do not

present any major results in these sections; rather these sections are intended

as a reference for properties of these functions that we intend to apply later.

In section 2.7, we discuss the definition of a risk measure, and desirable

properties of risk measures. We then go on to define value-at-risk (VaR) and

expected shortfall (ES), two risk measures which are used in finance. The

reason for doing this is that we would like to be able to show how these risk

measures may be computed for our new models, and use them to compare our
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model with the Gaussian model.

The final section of this chapter is section 2.8, in which we show some meth-

ods in which parameters may be fitted to our models. We begin by showing

that, via a rather crude approximation, we could use a standard likelihood

technique, based on the invariant distribution of our model (assuming it ex-

ists). This also allows us to perform an investigation quantifying the goodness

of fit. For a dynamic parameter estimation, this technique is not sufficiently

accurate and we suggest the use of martingale estimating functions. We give

the basic definitions and the usual method of constructing them, but there is

much further work to do in this area.

2.1 Renewal and semi-Markov processes

Our feedback models are based on a random arrival of trade orders to a market.

We suppose that the trades each affect the security price directly and propor-

tionally to the size of the trade order. These natural assumptions are the

simplest within this type of model and it makes sense to investigate the conse-

quences of these simplest assumptions before generalizing. The two sources of

randomness in the model are then the randomness of the time instant at which

a trade arrives at the market and the random size of the trade order. The total

quantity which has been ordered since a certain fixed time in the past then

forms a renewal-reward process; the number of trades gives a renewal process.

The theory of such processes is called renewal theory and is used for example

in modelling the flow of insurance claims arrivals.

A modern systematic treatment of renewal theory begins with a transient

random walk (Tn) on R. Thus, we do not need the increments τn = Tn−Tn−1

to be positive, just to have a distribution such that |Tn| → ∞ as n→∞ with

probability one. However, we shall develop the theory assuming that the τn

are positive, since they shall represent waiting times in our framework. Then

(Tn) is a transient random walk based on a distribution Fτ concentrated on

(0,∞). The initial position T0 is permitted to have an arbitrary distribution

F0, so the renewal sequence (Tn) is actually defined as

T0 ∼ F0, Tn = Tn−1 + τn, n ≥ 1,

where (τn) is an i.i.d. sequence of Fτ -distributed random variables, the so-

called holding times. When T0 = 0, the renewal process is called pure, other-

wise we call it delayed.
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The renewal process is the random measure

N = #{Tn ∈ ·} =
∑
n≥0

δTn , N(B) =
∑
n≥0

1{Tn ∈ B} (2.1)

where δx denotes unit mass at x. By (Nt) we denote its (random) distribution

function, also called the renewal process; thus,

Nt = N [0, t] =
∑
n≥0

1{Tn ≤ t}, t ≥ 0.

By the intensity (or intensity measure) of N , we mean the (nonrandom)

measure

EN = F0 ∗
∑
n≥0

F n∗
τ (2.2)

where F n∗ denotes the nth convolution power1 of the measure F . Sometimes

EN(dt) = λdt for a constant λ > 0 (dt denoting integration with respect to

Lebesgue measure) in which case λ is also referred to as the intensity, or the

rate, of (Nt).

Introduce the shift operators ϑt on the set of all measures µ on R+ by

setting

ϑtµ(B) = µ(B + t), B ∈ B(R+), t ≥ 0.

The renewal process N is said to be stationary if ϑtN ∼ N for all t ≥ 0. One

of the basic results of renewal theory2 is that for each Fτ having a finite mean

m ∈ (0,∞), there is a unique choice of initial distribution F0, such that the

renewal process N is stationary, namely

F0(t) = m−1

∫ t

0

Fτ (s,∞)ds, t ≥ 0.

Conversely also, if Fτ does not have a mean belonging to (0,∞) then N can-

not be stationary. A characterisation of the Lebesgue measure3 as the only

shift invariant measure (on any of the Euclidean spaces Rd) then implies that

EN(dt) = λ dt for some λ > 0. In fact, it is easily found that λ = m−1.

In developing renewal models, we shall hereafter begin from a random walk

based on a distribution Fτ with mean λ−1. Now, the renewal theorem, usually

attributed to D. Blackwell and W. Smith, states4 the following:

1If independent random variables X1 and X2 have distributions F1 and F2, then the distribution of
X1 +X2 is F1 ∗ F2. If F1 = F2 = F , this is written F ∗ F = F 2∗.

2See Kallenberg [72] Proposition 9.18; Feller [53] Chapter XI, equation (4.6) and the discussion thereafter;
Resnick [96] Theorem 3.9.1.

3Kallenberg [72] Theorem 2.6
4This is the one-sided version of Kallenberg [72] Theorem 9.20
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Theorem 1 (renewal theorem). Let N be a renewal process based on a nonar-

ithmetic5 distribution Fτ with mean λ−1 and an initial distribution F0. Let

Ñ be a stationary renewal process based on the same transition distribution

Fτ . Then as t → ∞, ϑtN
d→ Ñ and ϑtEN(dx)

v→λdx where µn
v→µ denotes

convergence in the vague topology.

Here, the vague topology is defined by µn
v→µ if µnu → µu for all non-

negative continuous functions u having compact support. The vague topology

makes sense on the spaceM(S,S) of locally finite measures on a locally com-

pact second countable Hausdorff (lcscH) space endowed with its Borel σ-field

S. Vague convergence is defined, for example, in Billingsley [14] section 28,

and Kallenberg [72] Chapter 16 (p316). For convergence in distribution (
d→ ),

see section 2.2.

From Theorem 1, the mean number of renewals occurring in [0, t] is asymp-

totically equal to λt,

ENt ∼ λt, t→∞, (2.3)

with equality for all t in the case of a stationary renewal process. A corre-

sponding result concerning the asymptotic behaviour of the variance is also

valid when the holding times have a finite variance, and may be deduced as

follows (Feller [53] Chapter XI, Problem 13; see also Resnick [96] Exercise

3.21. Taylor & Karlin also quote the result in [107] Chapter VII, equation

(4.4).). First, assume that the renewal process is pure. By considering the

representation of the renewal process

Nt =
∑
n≥0

1{Tn ≤ t},

we find that

E[N2
t ] = ENt + 2

∑
m≥1

mFm∗
τ (t) = 2U ∗ U(t)− U(t),

where U is the renewal measure

U(t) =
∑
n≥0

F n∗
τ (t),

(equal to ENt, because the renewal process is pure). Integration by parts leads

to

E[N2
t ] = 2λ

∫ t

0

U(s)ds+ σ2
τλ

3t,

5A distribution is said to be nonarithmetic if it is not concentrated on hZ for some h > 0
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from which we obtain

var (Nt) ∼ σ2
τλ

3t, t→∞. (2.4)

For delayed renewal processes N , (2.4) still holds, whatever the delay distri-

bution F0, but with equality if and only if N is stationary.

Introducing next an independent i.i.d. sequence of rewards Rn, we may

define a new process

Dt =
Nt∑
n=1

Rn =
∑
n≥1

Rn1[0,t](Tn).

This renewal-reward process generalizes the compound Poisson process, which

is the instance of it when N is a Poisson process or, equivalently, the i.i.d.

holding times τn are exponentially distributed. It takes only straightforward

conditioning to observe that the mean satisfies

EDt = ER1 · ENt ∼ µλt, t→∞

where it is supposed that µ = ER1 exists, and that the variance satisfies

var (Dt) = ENtvar (R1) + var (Nt)(ER1)2 ∼ [σR + (µστλ)2]λt, t→∞

when var (R1) = σ2
R <∞.

Each Rn may be described as a step or increment in a random walk. The

random walk is then the discrete-parameter process (Sn) where

S0 = 0, Sn = R1 + · · ·+Rn = Sn−1 +Rn, n ≥ 1.

The reward-renewal process may then be written

Dt = SN(t), or D = S ◦N

for the underlying renewal process N . Evidently D is Markovian if and only

if N is a Poisson process. In this construction, the processes (Sn) and N were

assumed independent.

If N is a Poisson process, then the process D = S ◦ N is, of course, a

compound Poisson process. As time passes, the jumps arrive according to

a Poisson process and the increments are independent of N and i.i.d. If we

replace the random walk with a discrete-parameter Markov process S, then the

resulting process D = S ◦N is called a pseudo-Poisson process, see Feller [53]
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X.1. When the process is at x, waiting for its next jump, the time until the

next jump has an exponential distribution with some rate, denoted ρ. If now

this rate ρ(x) is permitted to depend on the present state of the process, we

have the most general pure-jump Markov process. If the rate function ρ ≥ 0

is bounded above on R, then it is possible6 to write it as a pseudo-Poisson

process (with constant rate function) in which virtual jumps (i.e. jump from

x to x) are permitted.

To generalize these constructions further, let N be any renewal process. If

S is a random walk, we see that S ◦ N is then a reward-renewal process as

defined above. If instead, the process S is a discrete-time Markov process and

at the time of jumping to x, the waiting time then has some distribution (not

necessarily exponential) depending on x, we call X a semi-Markov process. It

is not a Markov process, because at fixed times t the time that has since the

last jump is relevant in determining the distribution of waiting time until the

next jump, but it is Markov at its jump times. Furthermore, the bivariate

process (Dt, At) where At denotes the time which has elapsed since the last

jump, is Markov, see Gihman & Skorohod [55].

The point of introducing semi-Markov processes is that they allow us to

incorporate a dependence of the holding time and jump distributions on the

current state x. This will be relevant in developing feedback models in which

traders, who are driving the asset price movements, react to the current state

of the market.

For further discussions of renewal theory, the reader is referred to the

relevant sections in Embrechts et al. [41], Feller [53], Kallenberg [72], and

Resnick [96]. Semi-Markov processes are discussed in Çinlar [28] Chapter 10

and [29] and in Gihman & Skorohod [55] Chapter III §3.

2.2 Theory of weak convergence

A dynamic model of returns produced using a renewal-reward model of trade

order arrival will involve discrete jumps. To take advantage of the stochastic

calculus of Itô, we intend to use a continuous approximation to it. If we

imagine the returns process as being represented by a graph of Xt against

time t, then a diffusion approximation is obtained by ‘zooming out’ from the

details of the frequent small price fluctuations. This is illustrated in figure 4.1.

It may be the case that some changes in the return process are so large in such

a small time period that they cannot be described by continuous diffusion and

6Kallenberg [72] Proposition 12.20, Ethier & Kurtz section 4.2.
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so we should also like to consider how models of jump-diffusion type can arise.

Let (S, d) be a separable metric space, and denote by S the class of Borel

sets in S. It is important that we are able to develop this theory without

assuming even that the space S is locally compact, because typical applications

of this theory are to stochastic processes, which are random elements living

in one of the non-locally compact spaces C[0,∞) or D[0,∞). The set of

all probability measures on (S,S) is denoted P(S) = P(S,S). If (µn) is a

sequence and µ a point in P(S), we say that (µn) converges weakly to µ, and

write µn
w→µ, if

µn(u)→ µ(u) for all u ∈ Cb(S),

Cb(S) denoting the real Banach space of all bounded continuous functions

u : S → R, with the norm of uniform convergence,

‖u‖∞ = sup x∈S|u(x)|.

Thus, by the weak topology on P(S), we mean what functional analysts would

mean by the weak∗ topology7 on P(S) when it is regarded as a subset of Cb(S)∗.

The weak topology on P(S) is metrizable. In fact, it is induced by the

metric defined by

d(P,Q) = inf{ε > 0 : QB ≤ PBε + ε, PB ≤ QBε + ε, B ∈ S}

where we have written

Bε = {x ∈ S : d(x,B) < ε}.

This metric is often known as the Lévy-Prohorov metric, or as the Lévy metric

or the Prohorov metric. See Merkle [87] for further details; also useful are

Billingsley [13], Ethier & Kurtz [46] and Stroock [106].

Let Xn, X be random elements of S with distributions µn, µ. We say that

Xn converges in distribution to X, and write Xn
d→X, if µn

w→µ. If the Xn

and X are all defined on the same probability space, this is the same as

Eu(Xn)→ Eu(X) for all u ∈ Cb(S).

We must choose, for approximations by our feedback model, a suitable space

S. The random processes of the approximating sequence and the limit process

7Though our chosen terminology appears ambiguous, it is in fact standard in probability theory, and can
cause no confusion. The ‘real’ weak convergence of functional analysis is never used in probability because
it is too strong a form of convergence to be of any practical value. This is pointed out in Bobrowski [20]
section 5.6 and Stroock [106] section 3.1. See also the discussion in Rogers & Williams [97] preceding II.80.
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are all elements of the space D(R+,R), which consists of the functions x :

R+ → R which are right continuous with left limits (rcll). For the definitions

of the Skorohod topology and notions of weak convergence in D(R+,R), see

Billingsley [13] Chapter 4, Ethier & Kurtz [46] Chapter 3, Iglehart [65] Section

2, Jacod & Shiryaev [68] Chapter 6 and Kallenberg [72] Chapter 16. We

consider first the geometry of D([0, T ],R). The uniform norm does actually

make sense on this space, but it is not separable.

The index set [0, T ] is always thought of as time. A time-deformation of

[0, T ] is a bijective continuous increasing map λ : [0, T ]→ [0, T ], and we denote

by ΛT the set of all time-deformations of [0, T ]. For λ ∈ ΛT , we define

‖λ‖ = sup s 6=t

∣∣∣∣log

(
λ(t)− λ(s)

t− s

)∣∣∣∣
Since (λ(t)−λ(s))/(t−s) approximates the derivative of λ if it exists when t−s
is small, ‖λ‖ can be thought of as telling us how much λ deforms time over its

worst interval (s, t). The Skorohod metric d is defined on DT = D([0, T ],R)

as

d(x, y) = inf{ε > 0 : ‖x− y ◦ λ‖∞ < ε for some λ with ‖λ‖ ≤ ε}. (2.5)

Under the Skorohod metric, elements x and y of DT are within ε of each other

if and only if a time-deformation can be found, itself not larger than ε, to make

y within ε of x in the uniform norm. The metric d is complete and induces a

separable topology.

Our next step is to consider some concrete weak convergence results in DT

and in D := D(R+,R). The now classical functional central limit theorem

of Donsker [36] (Billingsley [13] Theorem 8.2) is a weak convergence result

in C = C(R+) but may be adapted to D, by a result of Liggett & Rosén

to obtain Theorem 3 below (quoted from Billingsley [13] Theorem 14.1 and

Kallenberg [72] Theorem 14.9). Liggett & Rosén’s result is Theorem 3 of

Iglehart’s paper [65] and says

Theorem 2 (weak convergence for function spaces C and D). Let (Xn) be a

sequence of random elements of C[0, T ], (Yn) a sequence of random elements

of D[0, T ] and X a random element in C[0, T ]. Denote the Skorohod metric on

D[0, T ] by ρ. If ρ(Xn, Yn)
d→ 0, then Xn

d→X in C[0, T ] if and only if Yn
d→X

in D[0, T ]. In particular, Xn
d→X in C[0, T ] if and only if Xn

d→X in D[0, T ].

In the space DT , Donsker’s invariance principle (Theorem 14.1 of Billings-

ley [13], Kallenberg [72] Theorem 14.9) states
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Theorem 3 (Donsker’s invariance principle). Let X1, X2, . . . be i.i.d. random

variables with mean 0 and variance σ2. Define

Xn
t =

1

σ
√
n

∑
k≤nt

Xk, t ≤ T ;

then Xn d→W where W is a standard Wiener process on [0, T ].

Billingsley, [13] Chapter 14, then shows how to place this in the context of

renewal theory. Let (Tn) be a renewal sequence, so that Nt =
∑

k 1{Tk ≤ t} is

a renewal process. His Theorem 14.6 there asserts the following. Assuming

that constants λ−1 and στ exist so that, for

Xn
t = n−1/2

[nt]∑
k=1

(τk − µ), τk = Tk − Tk−1, k ≥ 1

we have Xn d→σW ; then with

Zn
t =

Nnt − λnt
λ3/2
√
n

we have Zn d→σW .

The central result of Iglehart’s paper [65] (i.e. Theorem 6) extends this

result to random sums, though his notation is designed for approximating risk

reserve processes u + ct − SN(t). We quote essentially the same result from

Embrechts et al. [41], Theorem 2.5.17, which states:

Theorem 4 (functional central limit theorem for random sum processes). Let

(Nt) be a renewal process based on a distribution with mean λ−1 and variance

σ2
τ > 0. Let (Rn) be an independent i.i.d. sequence of random variables with

mean µ and variance σ2
R > 0. Denote Sn = X1 + · · ·+Xn, n ≥ 1 and

Xn
t =

SN(nt) − λµnt√
(σ2

R + (µλστ )2)λn
; (2.6)

then Xn d→W in D[0,∞).

The standard reference for the theory of weak convergence of probability is

the textbook by Billingsley [13]. For weak convergence of the distributions of

processes, the reader is referred to Ethier & Kurtz [46], Jacod & Shiryaev [68]

and Kallenberg [72] as general references. We shall extend the theory of this

section in section 4.6 by stating two convergence theorems for semimartingales

from Jacod & Shiryaev’s text that we believe will be useful in extending the
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diffusion approximation results obtained in this thesis to the case of non-

Markov approximating processes. As far as I know, the idea of approximating

renewal-reward processes using diffusion processes is due to Iglehart [65], who

was working with an inflow of insurance claims. It is based on the invariance

principle obtained by Donsker [36]. Also Embrechts et al. [41] mentions and

summarises these ideas in the context of approximating random sum processes.

2.3 Markov processes and transition functions

The correct mathematical framework in which to study Markov processes is

set out in Blumenthal & Getoor [19]. For general Markov process background

theory, the reader is referred also to Ethier & Kurtz [46], Kallenberg [72] and

Rogers & Williams [97]. Also, of historical significance and containing a vast

quantity of relevant theory, we have the books of Dynkin [38] and of Itô &

McKean [66].

For diffusion processes in one dimension, the theory is very complete. The

process is characterized by a monotone increasing bijective scale function, a

speed measure and a killing measure all defined on the state-space. The state

space of the diffusion is an interval I ⊂ R, and these characteristics deter-

mine the nature of the two boundary points. Borodin & Salminen [21] is a

useful reference, since it points to how to determine scale and speed from the

infinitesimal characteristics, and shows how to determine the boundary clas-

sification from them. This theory is quite standard now, and can be found for

example in Karlin & Taylor [73] and Rogers & Williams [97]. It was born in

the 1950s with the work of Feller [49, 50, 51], McKean [57] and others.

From analysis, we need the theory of strongly continuous operator semi-

groups. The transition function (i.e. the set of transition probabilities) of

a Markov process, when considered as a family of operators on an appro-

priate function space, forms a strongly continuous contraction semigroup of

positive operators. For one-dimensional diffusion processes, with a certain

choice of measure m on the state space I, this semigroup is also self-adjoint on

L2(I,m) (Linetsky [83]). The general theory of strongly continuous operator

semigroups is in Engel & Nagel [42] and I have also used extensively the mono-

graph of Jacob [67], since he restricts attention to results and topics relevant

to the probabilist concerned with Markov processes. Classic monographs are

Yosida [113] and Hille & Phillips [59]. Virtually any text on Markov processes

in continuous time will include a preliminary discussion on strongly continuous

semigroups. I mention again Ethier & Kurtz [46], as well as Feller [53] Chapter

44



X (also IX).

The other analysis topic we must consider is spectral theory, needed to

study the generators of such semigroups. The generator uniquely determines

the semigroup and is actually a more natural starting point for our investiga-

tions, because the returns process is specified by its infinitesimal characteristics

rather than its transition probabilities. Ultimately our aim would be to obtain

closed form expressions for the transition probabilities and their associated op-

erators but, since these are often out of reach, we shall then settle for obtaining

approximations, via a spectral analysis of the generator. Indeed in most situa-

tions we shall encounter, the transition semigroup my be recovered by means of

a generalization of Dunford’s functional calculus for bounded operators. The

resulting expressions may be viewed as spectral decompositions of the transi-

tion semigroup and density, though they need not be calculated this way. In

addition to the references given above, I mention the treatises of Dunford &

Schwartz [37] and of Kato [74], and the textbook by Abramovich & Alipran-

tis [1]. Based on the well-known classification of Sturm-Liouville problems

(Fulton et al. [54]), Linetsky [82, 83] has developed a spectral classification of

all one-dimensional diffusion processes, and we shall base our analysis on it.

Let X be a strong Markov process with state space S ⊂ R. Associated with

each x ∈ S we have a probability measure P x, with the property P x{X0 =

x} = 1. The transition function is defined as

Pt(x,A) = P x{Xt ∈ A}.

Each Pt is a kernel from the state space to itself. We recall that a kernel

(x,A) 7→ K(x,A) from a measurable space S to another measurable space

T (here x ∈ S, A ⊂ T ) induces a linear operator Ku(x) =
∫
T
K(x, dy)u(y)

formally mapping functions u defined on T to functions Ku defined on S.

Thus Pt induces an operator

Ptu(x) =

∫
Pt(x, dy)u(y) = Exu(Xt)

on, for example, Cb(S). With abuse of terminology, we sometimes say that

kernels are operators, or that operators are kernels. We shall have more to

say on the choice of function space later, but for now we assume that the

operators Pt are simply defined on a sufficiently rich Banach space B. The

fact that each Pt(x, dy) is a (sub-) probability measure makes it a contraction

(i.e. ‖Ptu‖ ≤ ‖u‖).

45



The kernels Pt satisfy the Chapman-Kolmogorov equations

Ps+t(x,B) =

∫
I

Ps(x, dy)Pt(y, A), s, t ≥ 0, x ∈ S,B ∈ S;

these are always assumed to hold for any Markov process possessing a transi-

tion function (S denotes the σ-field on S turning S into a measurable space).

In terms of the operators Pt, this is equivalent to the semigroup property

Ps+t = PtPs, s, t ≥ 0.

For tractability reasons, it is usually advantageous to develop models in which

the transition kernels Pt possess a density with respect to the Lebesgue mea-

sure. This is called the transition density and is denoted p(t;x, y), that is,

Pt(x, dy) = p(t;x, y)dy.

We denote a transition density with respect to another measurem by pm(t;x, y),

i.e.

Pt(x, dy) = pm(t;x, y)m(dy).

This is particularly useful when the process X is symmetric with respect to a

measure m. By this we mean that the transition density pm(t;x, y) is symmet-

ric with respect to (x, y) (that is, pm(t;x, y) = pm(t; y, x)), in which case the

transition operators are symmetric (hence self-adjoint, since they are bounded)

in the Hilbert space L2(S,m). This case provides a dramatic analytic simplifi-

cation which, encouragingly, is always available when X is a one-dimensional

diffusion in the state space S = I ⊂ R, an interval on the line.

2.3.1 Transition semigroups

Since it is quite standard, instead of developing the theory of these strongly

continuous semigroups systematically, we give a list of the basic objects (num-

bers, functions, operators etc.) and their definitions. These concepts are

mostly found in Engel & Nagel [42] and Jacob [67]. At the beginning here, the

semigroup is defined only on an arbitrary Banach space B. However, these

operators will be defined by formulae which make sense on more than one

Banach space, so that all these notions introduced here are dependent on B.

• The semigroup itself is denoted (Pt). It is a family of operators in the

space L(B) of bounded linear operators on B, such that the map t 7→ Pt

is continuous with respect to the strong topology on L(B).

46



• The type of the semigroup is defined as

ω0 = inf{w ∈ R : there exists Mw > 0 with ‖Pt‖ ≤Mwe
wt}

Note that ‖Pt‖ ≤Mwe
wt for every w > ω0, but not necessarily for w = ω0.

Strong continuity of the semigroup implies that ω0 <∞, but it is possible

that ω0 = −∞.

• The generator

Au = lim
t→0

t−1(Ptu− u),

is defined on

D(A) = {u ∈ B : lim
t→0

t−1(Ptu− u) exists in B}.

The generator is a closed densely defined operator in B. If (Pt) is a

contraction semigroup (∀t, ‖Pt‖ = 1) then A is dissipative, i.e.

‖(λ− A)u‖ ≥ λ‖u‖, λ > 0, u ∈ B.

A is bounded (hence D(A) = B) if and only if (Pt) is continuous in the

uniform operator topology, in which case Pt = etA in the usual sense

for bounded operators. Of the processes mentioned in this thesis, the

Markov processes with a bounded generator are precisely the pseudo-

Poisson processes with a bounded rate function.

• The semigroup has a finite spectral bound

s(A) = sup{Reλ : λ ∈ σ(A)}.

From standard semigroup theory,

s(A) ≤ ω0. (2.7)

The spectral mapping theorem σ(Pt) \ {0} = etσ(A) holds if and only if

equality holds in (2.7).

• The resolvent family is {R(λ,A) = (λ− A)−1 : λ ∈ ρ(A)}. For Reλ >

ω0, one has

Rλ = R(λ,A) =

∫ ∞
0

e−λtPtdt,

exhibiting the fact that the resolvent may be obtained as the Laplace

transform of the semigroup. Indeed this definition may be used to prove

(2.7). When (Pt) is a contraction semigroup, the fact that the generator
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is dissipative implies that (Rλ : λ > 0) is a contraction resolvent, i.e.

‖λRλ‖ ≤ 1, λ > 0.

Note that this terminology means that the operators λRλ are contrac-

tions, rather than the resolvent operators themselves.

• Sectorial operators and Laplace inversion. A densely defined op-

erator (A,D(A)) in a Banach space B is called sectorial (of angle θ ∈
(0, π/2)) if its resolvent set contains a sector

Sθ,w = {λ ∈ C \ {w} : | arg(λ− w)| < π/2 + θ} ⊂ ρ(A),

and for λ ∈ Sθ,w, the estimate

‖R(λ,A)‖ ≤ M

|λ− w|

holds for a constant M independent of λ. Such an operator is automat-

ically closed. The generator of a self-adjoint contraction semigroup on

L2(I,m) is sectorial of angle π/2 with w = 0 and M = 1. For secto-

rial operators, the semigroup may be obtained from the resolvent by the

Laplace inversion formula

Pt =
1

2πi

∫
Γ

eλtR(λ,A)dλ, (2.8)

where one picks a θ′ ∈ (π/2, π/2+θ) and defines the contour of integration

by

Γ = {re−iθ′ :∞ > r ≥ 1} ∪ {eiϕ : −θ′ < ϕ < θ′} ∪ {reiθ′ : 1 ≤ r <∞}
(2.9)

In fact this definition allows us to extend the semigroup to {t ∈ C :

| arg t| < θ}, and one often says that the semigroup (Pt) is analytic (of

angle θ). For analytic semigroups, (2.7) holds with equality.

2.3.2 One-dimensional diffusion processes

By a one-dimensional diffusion, we mean a path-continuous strong-Markov

process whose state space is an interval I ⊂ R. We denote its left endpoint l

and its right endpoint r, where −∞ ≤ l < r ≤ ∞.
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Scale, speed and killing.

In this introduction, we follow Borodin & Salminen [21] very closely. One-

dimensional diffusions have three characteristics, namely speed measure, scale

function and killing measure. Following Blumenthal & Getoor [19], it is stan-

dard in Markov process theory to adjoin to the state space a cemetery state

∆ /∈ I, and allow the process X to be killed at some time ζ ∈ [0,∞], called

its lifetime, ζ = inf{t : Xt /∈ I}, at which point the process is transported

instantaneously to the cemetery state. The killing measure k of our diffusion

is associated with the distribution of the location of X at its lifetime:

P x[Xζ− ∈ A; ζ < t] =

∫ t

0

ds

∫
A

k(dy)pm(s;x, y)

where pm is the density of the transition kernel with respect to the speed

measure.

Let us suppose first for the ease of exposition that the killing measure is

zero. The scale function S is chosen so that the scaled diffusion S(X) is a

continuous local martingale on the scaled state-space S(I). S is a continuous

strictly increasing function, a homeomorphism S : I → S(I). If X0 = x, the

probability that X hits b > x before a < x is

P x{Hb < Ha} =
S(x)− S(a)

S(b)− S(a)
.

The scale function being strictly increasing induces a measure, the scale mea-

sure also denoted S, on I. For x ∈ [a, b] the probability above is S[a, x]/S[a, b].

It is a well-known result8 of Dambis, Dubins and Schwarz that every con-

tinuous local martingale is a time-change of Brownian motion. Write X̃t =

S(Xt), t ≥ 0. Then X̃t = B(γt) for a random time-change γ. To get the

time-change, we put

At =

∫
S(I)

lxt m̃(dx)

for the speed measure m̃ of X̃ and the Brownian local time (lxt ), and then let

γt = inf{s : As ≥ t}

be the right-continuous inverse of A. m̃ is a measure on S(I); the speed

measure of X is then

m(a, b) = m̃(S(a), S(b)), a, b ∈ I.
8Klebaner [77] Theorem 7.37, Rogers & Williams [97] (I.(2.3)), IV.34, Kallenberg [72] Theorem 18.4.
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The speed measure m is invariant with respect to the transition function (Pt).

Thus

mpt :=

∫
I

m(dx)pt(x, ·) = m(·).

For this reason the transition operators are self-adjoint in L2(I,m) and m may

also be referred to as the symmetry measure.

Boundary classification

We allow non-zero killing again from here. Each of the boundary points l and

r is classified according to the behaviour of the process when it is near that

boundary. The terminology is motivated by the notion of a diffusing particle

in I, its position at time t being denoted Xt. We use notation from Karlin &

Taylor [73].

Let X be a regular diffusion on I with scale measure S, speed measure m

and killing measure k. Let ξ ∈ (l, r) = I◦ be an arbitrary but fixed point of

the interior of the state space. The classification is independent of the choice

of ξ.

Let

Σ(l) =

∫ ξ

l

S(l, x] (m(dx) + k(dx)), Σ(r) =

∫ r

ξ

S[x, r) (m(dx) + k(dx)).

(2.10)

We say that the boundary e is exit if Σ(e) < ∞. Obviously a sufficient

condition that e not be exit is that S be infinite in neighbourhoods of e. If S

is finite in neighbourhoods of an endpoint e, then we call e attracting. Thus a

non-attracting endpoint is never exit, and attracting boundaries may or may

not be exit.

Likewise, define

N(l) =

∫ ξ

l

S[x, ξ] (m(dx) + k(dx)), N(r) =

∫ r

ξ

S[ξ, x] (m(dx) + k(dx)).

(2.11)

We say that the boundary e is entrance if N(e) <∞. Using Fubini’s theorem,

one can deduce that if the speed measure m is infinite in neighbourhoods of

an endpoint e, then that endpoint is not entrance.

The boundary classification is as follows. The boundary e ∈ {l, r} is said

to be:

• regular if e is both entrance and exit, i.e.

Σ(e) <∞, N(e) <∞;
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• exit-not-entrance if

Σ(e) <∞, N(e) =∞;

• entrance-not-exit if

Σ(e) =∞, N(e) <∞;

• natural if it is neither entrance nor exit, i.e.

Σ(e) = N(e) =∞.

SDEs

The calculus becomes much easier to perform when we are given an SDE. In

what follows, we show how to proceed from knowing the infinitesimal param-

eters of our diffusion process (i.e. b, σ and c below) to the scale, speed and

killing measures.

The solution X of the general time-homogeneous stochastic differential

equation of the form

dXt = b(Xt)dt+ σ(Xt)dWt, t > 0, X0 = x, (2.12)

is a diffusion. A sufficient condition that (2.12) makes sense is given in Kle-

baner [77], Theorem 5.3 (note that this is for one-dimensional SDEs only), that

b satisfies a Lipschitz condition and σ satisfies a Hölder condition of order α,

with α ≥ 1/2. That is, there exists constants Kb and Kσ such that

|b(x)− b(y)| ≤ Kb|x− y|, for all x, y ∈ I (2.13)

and

|σ(x)− σ(y)| ≤ Kσ|x− y|α, for all x, y ∈ I, where α ≥ 1/2. (2.14)

The existence of a strong solution of (2.12) is guaranteed by the following

theorem9.

Theorem 5 (Yamada-Watanabe). Let b, σ : R → R be functions satisfying

(2.13) and (2.14) respectively. Then equation (2.12) has a strong solution and

it is unique.

9Klebaner [77], Theorem 5.3.
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In addition to the infinitesimal mean b and standard deviation (or volatility)

σ, the diffusion should have specified an infinitesimal killing rate c : I → R+.

The speed, scale and killing measures are assumed to be absolutely continuous

with respect to Lebesgue measure, i.e.

m(dx) = m(x)dx, k(dx) = k(x)dx, S(x) =

∫ x

ξ

s(y)dy for some ξ ∈ I.

(The choice of ξ ∈ I may be made arbitrarily.)

First, the generator A may be defined on the subset C∞c (I) of its domain

by

Au(x) =
1

2
σ2(x)u′′(x) + b(x)u′(x)− c(x)u(x), u ∈ C∞c (I), x ∈ I (2.15)

To determine scale, speed and killing densities, one takes

B(x) =

∫ x

ξ

2b(y)

σ2(y)
dy.

Then the scale density s is

s(x) = e−B(x), (2.16)

the speed density is

m(x) =
2

σ2(x)s(x)
(2.17)

and the killing density is

k(x) = c(x)m(x). (2.18)

Note that S satisfies

1

2
σ2(x)

d2S(x)

dx2
+ b(x)

dS(x)

dx
= 0

while m enjoys the adjoint property

1

2

d2

dx2
(σ2(x)m(x))− d

dx
(b(x)m(x)) = 0.

The latter is another statement that m is an invariant measure when c = 0.

In fact every invariant measure is a multiple of m, so that the diffusion has a

unique invariant distribution precisely if m(I) <∞. In this case, the measure

π =
m

m(I)
, π(dx) = π(x)dx =

m(x)dx∫
I
m(y)dy

(2.19)

is its unique invariant distribution and, for any initial distribution µ (of X0)
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on I, as t→∞,

Xt
d→ π

A diffusion with an invariant probability distribution is positive recurrent as

a Markov process.

Sturm-Liouville problems and Green functions

The Sturm-Liouville (SL) equation is

Au(x) = λu(x) (2.20)

Observe at this point that the generator may be written in formally self-adjoint

form, so that the SL equation is

1

m(x)

[
d

dx

{
1

s(x)

du(x)

dx

}
− k(x)u(x)

]
= λu(x)

It has two independent fundamental solutions, determined uniquely up to a

multiplicative constant. The first is increasing and the second decreasing,

denoted respectively ψλ and χλ. If a boundary point is regular, then the

definition is not unique, and requires specification of a boundary condition, of

ψλ at l and of χλ at r. By taking our derivatives with respect to the scale

measure, the Wronskian here is defined as

wλ =
dψλ(x)

s(x)dx
χλ(x)− ψλ(x)

dχλ(x)

s(x)dx
(2.21)

and is independent of x.

The Green function is the Laplace transform of the transition density:

Gλ(x, y) =

∫ ∞
0

e−λtpm(t;x, y)dt.

As a consequence of this definition, it is the integral kernel of the resolvent

operator:

R(λ,A)u(x) = (λ− A)−1u(x) =

∫
I

u(y)Gλ(x, y)m(y)dy.

According to classical theory of differential equations, the Green function is

Gλ(x, y) =

{
w−1
λ ψλ(x)χλ(y), x ≤ y

w−1
λ ψλ(y)χλ(x), y ≤ x.

(2.22)
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The transition operators are then given by Laplace transform inversion

Ptu(x) =
1

2πi

∫
Γ

eλtRλu(x) dλ =
1

2πi

∫
Γ

eλt
∫ ∞
−∞

u(y)Gλ(x, y)m(y)dy dλ,

(2.23)

and the transition density by

p(t;x, y) =
1

2πi

∫
Γ

eλtGλ(x, y)m(y)dy, (2.24)

where Γ is a contour to the right of the spectrum of A. From our development

of the theory, it is natural to use the contour given by (2.9), but this is not the

only possibility: since σ(A) is contained in the real negative half-axis (−∞, 0],

this contour may be deformed. The classical Laplace transform theory will

suggest the Bromwich contour

B = {γ + is : −∞ < s <∞}, (2.25)

but computational considerations will usually lead us to use Talbot’s method,

which involves the contour

C = {λ(θ) = rθ(cot(θ) + i) : −π < θ < π} (2.26)

where r > 0 is a parameter. These contours and methods are defined and

examined in Cohen [31] and Davies [35]. See also LePage [80] for the Bromwich

inversion integral.

2.3.3 Linetsky’s spectral classification

Linetsky [82, 83] has used the classification of Sturm Liouville problems of

Fulton et al. [54] to provide a spectral classification of one-dimensional SDEs.

Because of the constraints on the generator of our diffusion, there are only three

categories that may arise, and they depend on the nature of the solutions of

the SL equation at the boundary points. Recall that σ(A) ⊂ (−∞, 0], when

A is considered as an operator in L2(I,m), because (a) A being self-adjoint,

the spectrum is real, and (b) we also have s(A) ≤ ω0 ≤ 0 from the analytic

theory of strongly continuous contraction semigroups.

We say that the SL equation (A−λ)u = 0 is oscillatory at the boundary e ∈
{l, r} if every solution u has infinitely many zeros in every neighbourhood of

e, otherwise we call it non-oscillatory at e. We similarly describe the endpoint

e as being non-oscillatory or oscillatory. This boundary classification then

depends on λ. The Liouville transformation we introduce later will classify
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the non-oscillatory/oscillatory nature of each of the boundary points for all

values of λ ∈ R. There are two possibilities10:

(i) The SL equation is non-oscillatory at e for all λ ∈ R;

(ii) There exists a cut-off point −Λ ≤ 0 such that the SL equation is non-

oscillatory at e for λ > −Λ and oscillatory at e for λ < −Λ.

In the latter case, the SL equation may be either oscillatory or non-oscillatory

for λ = −Λ, except in the case Λ = 0, because the SL equation is always

non-oscillatory for λ = 0. We refer in case (ii) to the boundary e as oscillatory

with cut-off −Λ. Any combination of the classifications for the two endpoints

is possible, so there are three possibilities, namely that both boundaries may

be non-oscillatory, that one may be non-oscillatory for all λ and the other

oscillatory below a cut-off −Λ or that both boundaries are oscillatory below

their own cut-off points −Λl and −Λr. In Feller’s boundary classification given

above, it is only the natural boundaries which may be oscillatory with a finite

cut-off −Λ > −∞.

Linetsky’s spectral classification11 is as follows:

Theorem 6. Let X be a one-dimensional diffusion on the interval I with

boundaries l < r, with infinitesimal generator (A,D(A)). Then (Xt) belongs

to precisely one of the following:

• Spectral Category I. Both endpoints are non-oscillatory for all real

λ and σ(A) = σd(A) consists12 only of an infinite sequence of simple

eigenvalues, accumulating at −∞.

• Spectral Category II. One endpoint is non-oscillatory for all real λ,

and the other is oscillatory with cut-off −Λ. Then σe(A) ⊂ (−∞,−Λ]

and σd(A) ⊂ [−Λ, 0]. The discrete part of the spectrum is finite if the os-

cillatory endpoint is non-oscillatory when λ = −Λ, and otherwise consists

of countably infinitely many simple eigenvalues accumulating at −Λ.

• Spectral Category III. The two endpoints are oscillatory, with cut-offs

−Λl and −Λr. We take Λ = Λl ∧ Λr and Λ = Λl ∨ Λr. The spectrum

is simple in (−Λ, 0] and has multiplicity two in (−∞,−Λ). Furthermore

σd(A) ⊂ [−Λ, 0]. There are finitely many eigenvalues in this interval

if and only if the equation is non-oscillatory for λ = −Λ. If there are

10Linetsky [82] Theorem 1, [83] Theorem 3.1
11Linetsky [82] Theorem 2, [83] Theorem 3.2
12We adopt the convention of partitioning the spectrum σ(A) into its discrete σd(A) and essential σe(A)

components. The discrete spectrum consists of eigenvalues of finite multiplicity, and the essential spectrum
consists of every other spectral value. For differential operators, all eigenvalues have finite multiplicity.
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infinitely many eigenvalues (i.e. the equation is oscillatory for one of the

endpoints when λ = −Λ) then they cluster at −Λ.

Spectral Category I is obviously the simplest. Suppose that we have a dif-

fusion which does fall into Spectral Category I. Recall that the Green function

is given by (2.22); as a function of λ it may be analytically continued to a

complex-valued function on ρ(A) ⊂ C. In light of the straightforward struc-

ture of the spectrum, we see that this function (of λ) possesses simple poles at

each of the simple eigenvalues of A, which form a decreasing sequence (−λn),

where 0 ≤ λn < λn+1 ↑ ∞. These poles occur at the zeros of the function

λ 7→ wλ. The eigenvalue of smallest absolute value may or may not be zero.

Now we may observe that (2.23) reduces via the Cauchy residue theorem to

Ptu(x) =
∑
n

e−λnt(ϕn, u)mϕn(x), u ∈ L2(I,m), x ∈ I, t ≥ 0, (2.27)

where ϕn is the unit eigenfunction corresponding to −λn, and (·, ·)m de-

notes the inner product in L2(I,m). The transition density (with respect

to Lebesgue measure) may then be written in the form

p(t;x, y) =
∑
n

e−λntϕn(x)ϕn(y)m(y), x, y ∈ I, t ≥ 0.

This does not provide us with a representation of the transition operator and

density in closed form because it is, in general, difficult to find the eigenvalues

−λn exactly and difficult to normalise the eigenfunctions ϕn.

For spectral categories II and III, the eigenfunction expansion (2.27) must

be replaced by a more general spectral expansion, in which an integral replaces

the sum below the first cut-off point −Λ.

The Liouville transformation

The following form of the transformation of the SL equation is taken from

Linetsky [83]. Assume that the coefficients σ and b are twice continuously

differentiable. By a change of the independent variable then a change of the

dependent variable, one may transform the SL equation (2.20) to the so-called

Liouville normal form (LNF). For historical reasons, one usually works with

the positive operator −A, and we shall also make the simplifying assumption

that there is no killing. Thus we start from the SL equation written in the

form

−Au(x) = − 1

m(x)

d

dx

{
u′(x)

s(x)

}
= λu(x)
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The Liouville normal form for our SL equation is

−1

2
v′′(z) +Q(z)v(z) = λv(z), (2.28)

with no first order term, and the second order term always has constant coef-

ficient13 −1/2. The operator

1

2

d2

dz2
−Q(z)

may, by comparison with (2.15), be thought of as the generator of a standard

Brownian motion on z(I) killed at the rate Q. The change of independent

variable is the Lamperti transform z (see Iacus [64]), chosen to satisfy

z′(x) =
1

σ(x)
,

and the change of the dependent variable is

u(x) = v(z(x))
√

(σ(x)s(x))

In (2.28) the potential function is given by Q(z) = U(x(z)), where x(z) is the

inverse of the Lamperti transform, and

U(x) =
1

8
(σ′(x))2 − 1

4
σ′′(x)σ(x) +

1

2

b2(x)

σ2(x)
+

1

2
b′(x)− b(x)σ′(x)

σ(x)

We shall refer to the function Q as the Schrödinger potential.

Recall that only a natural boundary may be oscillatory. Linetsky [82] The-

orem 3 and [83] Theorem 3.3 tell us the following:

Theorem 7. Suppose that the boundary e ∈ {l, r} is a natural boundary. Then

the oscillatory/non-oscillatory nature of e is unchanged under the Liouville

transformation, and:

(i) If the Lamperti transform takes e to a finite point z(e) ∈ R, then that

endpoint is non-oscillatory for all real λ;

(ii) If z(e) is infinite, and U(e) = +∞, then e is non-oscillatory for all real λ.

If instead U(e) = Λ, then e is oscillatory with cut-off −Λ. If Λ = 0, then

e is non-oscillatory for λ = −Λ = 0. If Λ > 0 and limx→e z
2(x)(U(x) −

Λ) > −1/4 then e is non-oscillatory for λ = −Λ, while if Λ > 0 and

limx→e z
2(x)(U(x)− Λ) < −1/4, then e is oscillatory for λ = −Λ.

13In physics, one often chooses this coefficient equal to one. Then the operator on the left is then the
generator of a Brownian motion, running twice as fast as a standard Brownian motion, in the potential Q.
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2.4 Some definitions from the general theory of stochas-

tic processes

Here we introduce some definitions for the general theory of stochastic pro-

cesses. This material is used only to give the definitions that allow the state-

ment of the theorems in section 4.6 and is not used elsewhere in this thesis.

Let (Ω,F , (Ft), P ) be a filtered probability space14. The time-parameter set

is the set R+ = [0,∞). A stochastic process is a measurable map X : Ω→ SR+

into the set of S-valued functions x : R+ → S, but we may also be interpret X

as a mapping of the set R+×Ω into the state space S. We take S = R in this

investigation. However, we additionally assume that our stochastic processes

are regular, that is, that X(ω) is right-continuous with left-hand limits or left-

continuous with right-hand limits. The predictable σ-field P is defined as that

generated by the left-continuous adapted processes. The optional σ-field O
is defined as that generated by the right-continuous adapted processes. One

has P ⊂ O, meaning that every predictable process is optional. The standard

Poisson process is an example of an optional process that is not predictable.

A process X is said to be integrable if suptEXt < ∞. A property of a

stochastic process is said to hold locally if there exists a sequence of stopping

times τn such that τn → ∞ a.s. and that property holds for the stochastic

process (Xt∧τn) stopped at τn for every n. The Doob-Meyer decomposition15,

states the following: a local submartingale X has an almost surely unique

decomposition Xt = Mt + At, where M is a local martingale and A is a

locally integrable increasing, predictable process. The process A is called the

compensator of X. Notice that, if a process A has locally finite variation, and

its variation is locally integrable, then it may be decomposed into two locally

integrable increasing processes, to which the Doob-Meyer decomposition may

be applied. Thus a locally finite variation process A of locally integrable

variation also possesses a compensator. The compensator of a process A is a

predictable process Ã such that A− Ã is a local martingale.

A semimartingale is a process X of the form

Xt = X0 +Mt + At

where M is a local martingale and A has locally finite variation, both starting

14It is always assumed that the filtration (Ft) is right-continuous, but not necessarily complete.
15Kallenbergy [72] Theorem 25.5.
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at 0. If the variation of A is locally integrable, then we may write

Xt = X0 +Mt + (At − Ãt) + Ãt = X0 +M ′
t + Ãt

which expresses the decomposition into a local martingaleM ′ and a predictable

locally finite variation process Ã. In other words the process A in the decom-

position of the semimartingale X is predictable. In this case we call X a

special semimartingale. Thus X is a special semimartingale if A may be cho-

sen predictable, and this occurs if the variation of A is locally integrable. A

sufficient condition for X to be a special semimartingale is that the jumps of A

are bounded, |∆At| ≤ a for some fixed a > 0. Note that, by the Doob-Meyer

decomposition, every local submartingale is a special semimartingale.

Now let us consider the local martingale part M of X. Two local mar-

tingales M and N are said to be orthogonal if their product MN is a local

martingale. A local martingale is said to be purely discontinuous if it is orthog-

onal to every continuous local martingale. This does not mean that it equals

the sum of its jumps, but if M is a purely discontinuous local martingale of

locally finite variation, then it equals the compensated sum of its jumps. A

general result of the theory states16 that any local martingale M has an almost

surely unique decomposition Mt = M0 + M c
t + Md

t where M c is a continuous

local martingale and Md is a purely discontinuous local martingale. Since the

decomposition is essentially unique, we call the process M c the continuous

martingale part of M . For a semimartingale X with the decomposition given

above, this decomposition applies to the local martingale part M , so that X

has a continuous martingale part, written Xc.

If M is a local martingale, the process M2 is a local submartingale and

its compensator is the process denoted 〈M〉. 〈M〉 is called the predictable

quadratic variation of M . The quadratic variation of M is the process [M ],

where

[M ]t = lim
n→∞

n∑
k=1

(M(tnk)−M(tnk−1))2

where the limit is in probability and is taken over finite partitions 0 = tn0 <

tn1 < · · · < tnn = t of [0, t] which satisfy max(tnk − tnk−1) → 0 as n → ∞.

This process does exist (indeed even so if M is only a semimartingale) and is

increasing. The compensator of [M ] is 〈M〉.
In order to define the characteristics of a semimartingale, there is one final

concept to explain, compensators of random measures. For our purposes,

it suffices to consider random measures on R+ × R, where R+ is the time-
16See Kallenberg [72] Theorem 26.14.
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parameter set and R is the state space. If N is a random measure on this

space, then a measure-valued process is formed by taking Nt = N([0, t] × ·)
and considering the process (Nt). (Nt) takes values in the measurable space

M(R) of σ-finite measues on R, which is endowed with the σ-field generated

by the projections πB : µ 7→ µ(B) for B ∈ B(R). The random measure N is

predictable if (Nt) is predictable, and adapted if (Nt) is adapted. Finally, we

call N integrable if N([0,∞)×R) is an integrable random variable. A general

result17 of the theory is that if N is a locally integrable, adapted random

measure then there is a predictable random measure Ñ on R+×R, called the

compensator of N , such that E[
∫
WdN ] = E[

∫
WdÑ ] for every predictable

process W ≥ 0 on R+ ×R.

Now it is time to motivate the concept of characteristics of a semimartingale.

These generalise the Lévy-Khintchine characteristics of a Lévy process. For

technical reasons, we introduce a truncation function h, which is a bounded

function which agrees with the identity (i.e. h(x) = x) in a neighbourhood of

zero. The classical choice is h(x) = x · 1[−1,1](x), but for limit theorems h is

often chosen continuous instead. However, in the discussion below, we shall

assume this form for h. Now the distribution of a Lévy process (Xt) starting at

zero is characterised by constants µ ∈ R, σ > 0 and a measure ν concentrated

on R \ {0}, subject to the condition∫
R\{0}

(1 ∧ x2)ν(dx) <∞,

via

E
[
eiξXt

]
= eψt(ξ), for all ξ ∈ R,

where

ψt(ξ) = ibtξ −
1

2
ctξ

2 +

∫
R\{0}

(eiξx − 1− iξh(x))νt(dx).

with bt = µt, ct = σ2t and νt(dx) = ν(dx)t, and where h is a truncation

function. It follows that eiξXt−ψt(ξ), is a martingale. The idea behind char-

acteristics of a semimartingale is this: replace the functions bt, ct and the

measure-valued function νt above with processes (Bt), (Ct) and a random

measure N on R+ ×R, so that eiξXt−ψt(ξ) is a martingale. Of course, it will

only be possible to choose deterministic functions

Bt = µt, Ct = σ2t and N([0, t]× dx) = ν(dx)t

if the process X is a Lévy process. For a general semimartingale X, one
17Kallenberg [72] Theorem 25.22.

60



requires B, C and N to be predictable processes.

For an example, let X be the diffusion process which arises as the solution

of a stochastic differential equation, say

dXt = b(Xt)dt+ σ(Xt)dWt, t ≥ 0, X0 = x,

where the coefficients b and σ satisfy the conditions given in Theorem 5. Define

a new process Y by

dYt = dXt − b(Xt)dt = σ(Xt)dWt,

which, as a stochastic integral with respect to the Brownian motion W , is a

local martingale. By considering the complex stochastic exponential18 of the

process iξY , we therefore see that candidates for the characteristics of X are

Bt =

∫ t

0

b(Xs)ds,

Ct =

∫ t

0

σ2(Xs)ds,

N = 0.

The details of defining the characteristics of a semimartingale X are too

involved to go through here: they may be found in Jacod & Shiryaev [68]

section II.2a, to which the reader is referred if he or she is looking to make

rigorous the following discussion. Roughly speaking, B is the finite variation

part of the process X(h) that is formed from X by subtracting its large jumps.

The large jumps are defined by

X̌(h)t =
∑
s≤t

[∆Xs − h(∆Xs)]

and we take

X(h)t = Xt − X̌(h)t,

so that X(h) is a special semimartingale: this means that X(h)t = X0 +

M(h)t + B(h)t for a local martingale M(h) and a finite variation predictable

process B(h), and the first characteristic is given by B = (B(h)t). The second

characteristic C is the predictable quadratic variation of the continuous mar-

tingale part of (Xt), usually written Ct = 〈Xc〉t (in the example above, for our

diffusion X the quadratic variation was continuous, implying it is predictable).

The predictable random measure N is the compensator of the random measure

18See for example Kallenberg [72] Lemma 18.1.
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µX associated with the jumps19 of X. N and C do not depend on the choice

of h, while B does.

Furthermore, the modified characteristics may be defined by taking

X(h)t = X0 +M(h)t +B(h)t

where M is a local martingale and B(h) is the first of the characteristics of X.

Then instead of Ct = 〈Xc〉t, put

C̃t = 〈M〉t.

The modified characteristics of a semimartingale form the triple (B, C̃,N).

Note that C̃, like B, now depends on the choice of truncation function.

2.5 Legendre functions

The Legendre functions arise as the solution of certain second-order ordi-

nary differential equations related to the hypergeometric equation. We re-

quire them as solutions of the Sturm-Liouville equation associated with the

arithmetic-geometric hybrid semigroup studied in Chapter 5. The associated

Schrödinger potential is a case of modified Pöschl-Teller potential, see Grosche

& Steiner [56] (6.2.3). The properties of these functions that we need, we take

mostly from Erdélyi et al. [43] Chapter 3, but many facts and formulae are

also in Abramowitz & Stegun [2] and the Wolfram functions site [112].

Legendre’s differential equation is

(1− z2)w′′(z)− 2zw′(z) +

[
ν(ν + 1)− δ2

1− z2

]
= 0.

Solutions are the Legendre functions

P δ
ν (z) =

1

Γ(1− δ)

(
z + 1

z − 1

)δ/2
2F1

(
−ν, ν + 1; 1− δ; 1− z

2

)
and

Qδ
ν(z) = eδiπ2−ν−1

√
π Γ(1+ν+δ)

Γ(ν+3/2)
z−ν−δ−1(z2 − 1)δ/2

2F1

(
ν+δ

2
+ 1, ν+δ+1

2
; ν + 3/2; 1

z2

)
.

In fact, with these definitions, the functions P±δν (±z), P±δ−ν−1(±z), Q±δν (±z)

and Q±δ−ν−1(±z) are all solutions of Legendre’s differential equation.

19This is from Jacod & Shiryaev [68] II.1.16: µX(ω; dt, dx) =
∑
s 1{∆Xs(ω)6=0}δ(s,∆Xs(ω))(dt, dx).
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For this investigation, we need only the values P δ
ν (z), for z = x ∈ (−1, 1).

The definition above works for the whole complex plane, with branch cuts

(−∞,−1) and (−1, 1), and the Legendre function on the cut (−1, 1) is defined

by the averaging formula

P δ
ν (x) =

1

2
[eδiπ/2P δ

ν (x+ i0) + e−δiπ/2P δ
ν (x− i0)],

so as to obtain real values. Thus the definition we use is

P δ
ν (x) =

1

Γ(1− δ)

(
1 + x

1− x

)δ/2
2F1

(
−ν, ν + 1; 1− δ; 1− x

2

)
,

in agreement with Erdélyi et al. [43] 3.4(6). These are sometimes referred to

as Legendre polynomials, although that term is at other times reserved for the

case δ = 0 and ν ∈ Z+.

2.5.1 Differentiation

We have

dP δ
ν

dx
(x) =

(ν + 1)xP δ
ν (x)− (ν − δ + 1)P δ

ν+1(x)

1− x2
=
−νxP δ

ν (x) + (ν + δ)P δ
ν−1(x)

1− x2
,

from Erdélyi et al. [43] 3.8(19).

2.5.2 Asymptotic behaviour

Since we are working on the cut only, we need to consider the behaviour of

P δ
ν (x) as x → ±1. We also shall find that we are only interested in δ < 0.

Erdélyi et al. [43] 3.9(8) and 3.9(14) tell us that

P δ
ν (x) ∼ 2δ/2(1−x)−δ/2

Γ(1−δ) , x→ 1, δ 6= 1, 2, . . .

P δ
ν (x) ∼ 2−δ/2Γ(−δ)(1+x)δ/2

Γ(1+ν−δ)Γ(−ν−δ) x→ −1, Reδ < 0.

2.6 Confluent hypergeometric functions

Confluent hypergeometric functions are special functions which arise as solu-

tion of ordinary differential equations. We require them for solutions of the

Sturm-Liouville equation associated with the generator of the hybrid arithmetic-

CIR semigroup.
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The confluent hypergeometric equation, also called Kummer’s equation, is

zw′′ + (c− z)w′ − aw = 0

where a and c are constants. Two independent solutions are given in the case

c /∈ Z by

M(a, c, z) = Φ(a, c; z) = 1F1(a; c; z)

and

U(a, c, z) = Ψ(a, c; z)

=
π

sin(πc)

{
M(a, c, z)

Γ(1 + a− c)Γ(c)
− z1−cM(1 + a− c, 2− c, z)

Γ(a)Γ(2− c)

}
Properties of these functions are studied in Erdélyi [43] and Slater [104], and

listed in Abramowitz & Stegun [2]; see also the wolfram functions site [112]. We

shall refer to the function M(a, c, z) as Kummer’s function, and to U(a, c, z)

as Tricomi’s function. They have the integral representations

M(a, c, z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

eztta−1(1− t)c−a−1 dt, Re b > Re a > 0,

U(a, c, z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)c−a−1 dt, Re a > 0,Re z > 0

In discussing these functions (and only in this context), the following notation

is standard.

(a)0 = 1

(a)1 = a

(a)n =
Γ(a+ n)

Γ(a)
= a(a+ 1) . . . (a+ n− 1), a ∈ C, n ∈ Z+

2.6.1 Analyticity

The confluent hypergeometric function of the first kind M(a, c, z), is an entire

function of both a and z for c /∈ −Z+. For fixed values of a and z, the function

c 7→M(a, c, z) has simple poles at each of the points c = −n (n = 0, 1, 2, · · ·).
The regularised version

1F̃1(a, c, z) :=
M(a, c, z)

Γ(c)
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is an entire function of a, c and z. U(a, c, z) is the confluent hypergeometric

function of the second kind. It is an entire function of a, c, and z, even defined

and finite as c→ n, n ∈ Z.

2.6.2 Differentiation

The following differential calculus holds for Kummer’s and Tricomi’s functions.

d

dz
M(a, c, z) = M ′(a, c, z) =

a

c
M(a+ 1, c+ 1, z).

d

dz
U(a, c, z) = U ′(a, c, z) = −aU(a+ 1, c+ 1, z).

For indefinite integration, the following relations (see Slater [104], (3.2.7)-

(3.2.12)) are also helpful:

e−zzc−1U(a, c, z) = − d

dz

[
e−zzcU(a+ 1, c+ 1, z)

]
, (2.29)

zc−1U(a, c, z) =
1

c− a
d

dz
[zcU(a, c+ 1, z)] , a 6= c, (2.30)

e−zU(a, c, z) = − d

dz

[
e−zU(a, c− 1, z)

]
. (2.31)

2.6.3 Wronskian

For functions u and v, denote W{u, v} = −W{v, u} = uv′ − u′v, called the

Wronskian. Then20 with U(z) = U(a, c, z) and M(z) = M(a, c, z), we have

W{U,M} =
Γ(c)

Γ(a)
ezz−c.

2.6.4 Behaviour for large |z|

From Abramowitz & Stegun [2], as |z| → ∞

M(a, c, z) =
Γ(c)

Γ(a)
ezza−c

(
1 +O(|z|−1)

)
U(a, c, z) = z−a

(
1 +O(|z|−1)

)
(2.32)

We see that, when a > 0, the linear space spanned by Tricomi’s function

contains every solution of Kummer’s equation which is zero at z = +∞.

20Abramowitz & Stegun13.1.22
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2.6.5 Laguerre polynomials

Let m denote a (not necessarily normalised) Gamma(c, ρ) distribution on

(0,∞), with pdf

m(x) = m0e
−ρxxc−1.

Then a sequence of (unnormalised) orthogonal polynomials in the Hilbert space

H = L2([0,∞),m) is given by

ϕn(x) = L(c−1)
n (x) =

∑
k≤n

(c+ k)n−k(−x)k

(n− k)!k!
.

The polynomial L
(c−1)
n is referred to as a generalized Laguerre polynomial.

They are special cases of the confluent hypergeometric functions, by the fol-

lowing relations: (Abramowitz & Stegun [2] formulae 13.6.9 and 13.6.27)

M(−n, c, x) =
n!

(c)n
L(c−1)
n (x), (2.33)

U(−n, c, x) = (−1)nn!L(c−1)
n (x). (2.34)

2.7 Risk measures

Intuitively speaking, a risk measure is a statistic (number) associated with a

distribution, which gives an idea of how risky an investment with that return

(or relative loss) distribution is. For elementary examples, (minus) expectation

and variance are both risk measures. Other examples are value-at-risk (VaR)

and expected shortfall (ES). Our aim here is only to provide the means for

calculating VaR and ES within the models we develop. We do not intend

to enter the debate as to what constitutes a good risk measure. The term

coherence is applied to risk measures satisfying certain properties as set out in

Artzner et al. [5, 6] (and discussed below), but we are interested in this only

so that we know certain elementary properties of VaR and ES. Risk measures

are well introduced and studied in Jondeau et al. [71] and Klugman et al. [78].

Consider a real linear space L consisting of random variables which could

represent the return obtained on an investment; the space L should include

all degenerate random variables X = µ ∈ R. A risk measure is a functional

ρ : L → R such that ρ(X) is determined by the distribution of X. Such

functionals exist: elementary examples are the expectation and the variance

functionals21. The quantity ρ(X) is then meant to describe in some way the

21Comparison with the expectation functional E is the reason we have chosen to define ρ on a space of
random variables rather than a space of probability distributions on R.

66



risk associated with taking a position which gives a return of X. In order to

fix the terminology, we list four desirable properties for risk measures to have.

Here, X and Y denote arbitrary elements of L.

• monotonicity X ≤ Y implies ρ(X) ≥ ρ(Y ).

• subadditivity ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

• positive homogeneity If σ > 0 then ρ(σX) = σρ(X).

• translation invariance22 If µ ∈ R, then ρ(X + µ) = ρ(X)− µ.

A risk measure satisfying all four is said to be coherent, see Artzner et al. [5].

Subadditivity means that diversification cannot result in increased risk.

We now define the two risk measures most used in finance. The questions

of how (or even whether) to use these measures in finance have been debated

elsewhere, but mathematically speaking these are useful summary statistics of

any probability measure on R.

Value-at-risk (VaR)

Let X be a random variable with a distribution F . If α ∈ (0, 1) is a fixed

probability (confidence level), we may define the quantile function

F−1(α) = inf{x ∈ R : F (x) ≥ α}.

The value-at-risk at the confidence level α of X (or of F ) is the quantile

VaRα(X) = ξα = −F−1(α). (2.35)

It is easily checked that VaR is monotone, positive homogeneous and transla-

tion invariant. It is not subadditive, so VaR is not a coherent risk measure in

the sense of Artzner et al. [5].

Expected shortfall (ES)

Expected shortfall has been variously termed tail value-at-risk, conditional

value-at-risk and tail conditional expectation. It has been shown (Artzner et

al. [5]) that it is a coherent risk measure. At the confidence level α ∈ (0, 1), ES

is the conditional expectation of X given that the relative loss (−X)exceeds

22Of course, the risk measure is not invariant under translations! Unfortunately this terminology is
standard.
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the α-level value-at-risk ξα. That is,

ESα(X) = E[−X | X < −ξα] =
E[−X;X < −ξα]

P{−X < ξα}
. (2.36)

One may compute this quantity with any of the formulae

ESα(X) =



− 1
1−α

∫ −ξα
−∞ xF (dx)

ξα +
∫ −ξα
−∞

F (y)
1−α dy

1
1−α

∫ 1−α
0

ξudu,

(2.37)

where F is the distribution (function) of X. The first and third equations are

obtained by direct integration, whilst the second is obtained from the first by

a simple application of Fubini’s theorem. The second relation expresses the

difference between VaR and ES as the mean excess loss above the VaR (see

Klugman et al. [78]).

Given a return model (Xt), VaR and ES are functions of the probability

level α and the time horizon t, as stated in Hull [63]. This is because the

distribution of Xt is a (measure-valued) function of the time t.

2.8 Model fitting and parameter estimation

When attempting to use these diffusion models, the following problem is likely

to arise. Suppose that a time-series (Yn)0≤n≤N = (Xn∆)0≤n≤N , where ∆ > 0

is a fixed known time-lag, of N + 1 observations of the process X taken from

the proposed model, is given. We would like to be able to be able to estimate

the parameters. The problem of testing the model’s fit to the given data is

related and also of interest.

For the parametric estimation, we assume a given model

dXt = b(Xt, θ)dt+ σ(Xt, θ)dWt. (2.38)

Note that throughout, the functions depend now also on a parameter θ ∈ Θ ⊂
RK . If the transition densities are p(t;x, y, θ), then the likelihood function is

LN(θ, (Yn)) =
N∏
n=1

p(∆;Yn−1, Yn, θ),
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where ∆ > 0 is assumed known and Y0 = 0. The log-likelihood is

`N(θ, (Yn)) =
N∑
n=1

log(p(∆;Yn−1, Yn, θ)).

and the score function is defined as

SN(θ, (Yn)) = ∂θ`N(θ, (Yn)) =
N∑
n=1

1

p(∆;Yn−1, Yn, θ)
∂θp(∆;Yn−1, Yn, θ)

where ∂θ denotes the gradient operator (∂θ1 , . . . , ∂θK ). This is a vector-valued

function, taking values in RK where K is the number of dimensions in the

parameter space. If the transition densities are known in closed form, then so

is the score function, and the optimal estimate of θ is obtained by solving

SN(θ) = 0.

In all but the most elementary models (2.38), the transition densities are not

known in closed form. Approaches which have been developed to circumvent

this problem are based on numerical approximation of the transition density,

and constructing estimating functions to mimic the properties of the score

function.

2.8.1 Static estimation

The crudest approximation of the transition density is simply the invariant

distribution (2.19). To use this, we suppose that

p(∆;x, y, θ) = π(y − x, θ), x, y ∈ R,

with π from (2.19), write down the likelihood function

L(θ, (Yn)) =
N∏
n=1

π(Yn − Yn−1, θ) =
N∏
n=1

π(∆Yn, θ),

and maximise over θ. An equivalent formulation supposes that the increments

∆Yn = Yn − Yn−1, n ≥ 1.

(for example daily returns) are i.i.d. π, and uses a maximum likelihood esti-

mation.

The technique of maximum likelihood tends to favour a model with more

free parameters. This can result in an overfitting of the model to the data, so
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that we fit the model to noise rather than the underlying trend. Intuitively

we understand that this is likely to happen in cases where the number of

observations is not large enough compared with the dimension of the parameter

space. Fortunately for us, there are a few information criteria which have been

introduced in statistics to quantify the goodness of fit of the model, taking

into account its number of free parameters. We mention two of them: the

Akaike information criterion (AIC) and the Schwarz (or Bayesian) information

criterion. These are defined respectively as

AIC = −2 log(L)/N + 2k/N (Akaike)

BIC = −2 log(L)/N + 2k log(N)/N (Schwarz)
(2.39)

where L denotes the likelihood, N denotes the number of observations and

k denotes the number of free parameters in the model. Of these two, BIC

penalises models for having more parameters more than AIC.

2.8.2 Estimating functions

The simplest construction of an estimating function is to define functions

h1, . . . , hM which have conditional mean zero, i.e. for each m = 1, . . . ,M ,

Ex
θhm(Y0, Y1, θ) =

∫
R

hm(x, y, θ)p(∆;x, y, θ)dy = 0, x ∈ R,

and weight functions a1, . . . , aM : R × Θ → RK . Thus a(Yn, θ) is a K ×M
matrix and

f(x, y, θ) = a(x, θ)h(x, y, θ) =
M∑
m=1

am(x, θ)hm(x, y, θ)

defines an RK-valued function. The estimating function is defined by

FN(θ, (Yn)) =
N∑
n=1

f(Yn−1, Yn, θ),

which is a martingale. Then we have

Eθ0FN(θ, (Yn)) = 0, if and only if θ = θ0.

where θ0 is the true value of θ. Thus we estimate θ by solving

FN(θ, (Yn)) = 0.
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Most progress on the problem of parameter estimation in diffusion mod-

els from discrete observations has been made relatively recently. To gain an

overview of the subject, the survey by H. Sørensen [105] is extremely useful,

summarising the techniques which have been explored. For implementation of

these techniques for one-dimensional diffusion processes, see Iacus [64].
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Chapter 3

Feedback models

We now begin the procedure of specifying a probabilistic model of the financial

asset price. At this first stage, the intention is to look at certain aspects of

the market microstructure which drive the market state as it changes over

time. We will write down the various components of the change in the market

state, drawing attention to their dependencies so as to obtain a mathematical

expression of the market dynamics.

For simplicity, we assume that a single number Xt is enough to tell us the

current state of the market. Fixing a time t ≥ 0, we define the (log-) return

Xt = log

(
St
S0

)
, (3.1)

where St denotes the asset price at time t. X = (Xt) is a real-valued stochastic

process, and the state of the market at time t is Xt. Xt is the return on an

investment made at time 0. Note that, as long as the price change St − S0 is

sufficiently small relatively to S0, the log-return (3.1) approximates the simple

return

Rt =
St − S0

S0

,

This is the Taylor development of (3.1) up to order 1.

3.1 A renewal-reward trade order model

In our feedback models, the market state Xt is driven by the arrival of buy and

sell orders to the market. Let us fix the present time t = 0 and consider the

next trade which is to arrive at the market. There are obviously two random

quantities we are interested in knowing, namely the duration of the waiting

period between now and the next trade order and the size of the trade order.
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By modelling the size of the order as a (−∞,∞)-valued random variable, this

quantity then also tells us whether it is a buy order or a sell order (sell orders

are negative). Of course, an order may not be of size 0.

Consider then a time interval [0, T ] or [0,∞) of market activity. For sim-

plicity we shall suppose that the waiting durations between successive trades

forms an i.i.d. sequence. Then let (τk) be an i.i.d. sequence of holding (wait-

ing) times, so that trade orders arrive at the successive time instants

T1 = τ1, Tk = Tk−1 + τk, k ≥ 2.

The sequence (Tn) is an increasing random walk so that only finitely many Tn

can appear in any bounded trading period [0, t]. Its occupation measure

N(B) = #{Tn ∈ B : n ∈ N}

is a renewal process, and its (random) cumulative distribution function is de-

fined as

Nt = N [0, t] =
∑
n≥1

1[0,t](Tn). (3.2)

(also often referred to as a renewal process). The random walk (Tn) is referred

to, in this context, as a renewal sequence.

Attached to the nth trade, which occurs at time Tn, is the trade size. We

shall suppose again that the successive sizes form an i.i.d. sequence, this time

denoted (Rn), and shall further suppose that the two sequences (τn) and (Rn)

are independent of one another. The aggregate order in any time interval

I ⊂ [0,∞) is

D(I) =
∑
Tn∈I

Rn =
∑
n≥1

Rn1I(Tn).

D is not a measure, since it must be permitted to take negative values (in

neighbourhoods of sell orders). D might be viewed mathematically as an

atomic signed random measure. We let

Dt = D[0, t] =
Nt∑
n=1

Rn =
∑
n≥1

Rn1[0,t](Tn). (3.3)

be the renewal-reward process, telling us the aggregate trade order in [0, t].
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3.2 Choice of inter-trade waiting time and trade order

size distributions

Thanks to the technique of using an invariance principle for the diffusion ap-

proximation below, actual specification of the reward (trade size) and tran-

sition (waiting duration) distributions is unnecessary, further than assuming

the finiteness of variance, for the models we are to study. However, for mod-

elling asset returns by other processes which might include jumps, such as

Lévy processes or jump diffusions, it will be necessary to have some sort of

understanding of these two distributions. The invariance principle will not

apply and the final mathematical expression for the market state dynamics

will still depend upon the chosen distributions.

The most natural choice of inter-trade waiting time distribution Fτ is the

exponential distribution. Indeed, our renewal and renewal-reward processes

are not Markovian unless the holding times are exponential. If Tn are as-

sumed exponentially distributed, with mean λ−1 say, then (Nt) is a Poisson

process with intensity λ. The demand process (Dt) is then a compound Pois-

son process, the most tractable of renewal-reward processes. Unfortunately,

it is found in empirical studies that the exponential distribution does not fit

inter-trade data well. We mention the investigations of Mainardi et al. [85],

Politi & Scalas [91], Sazuka et al. [100] and Scalas et al. [101]. In those pa-

pers, the authors conclude that a much better fit is provided by Weibull and

Mittag-Lefler distributions. Jiang et al. [70] also suggest a Weibull distribution

provides a good fit for the inter-trade distribution in their analysis of trading

in 23 liquid Chinese stocks listed on the Shenzhen Stock Exchange in 2003.

The study of Cartea & Meyer-Brandis [4] notes investigates the impact of the

duration between trades on the security price process and on option prices.

They find that the volatility smile arises as a consequence of incorporating

duration between trades in the model.

For the distribution FR of trade sizes, empirical investigations largely ignore

the buy-sell property of the trade orders and concentrate only on absolute

value. Therefore, an appropriate choice may well be a Bernoulli mixture of

a buy-order distribution concentrated on (0,∞) and a sell-order distribution

concentrated on (−∞, 0). It appears from the studies of Mu et al. [89] and

Queirós [94] that the distribution of best fit for trading volumes is an F - or

beta prime distribution. These are Type VI in the Pearson classification.
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3.3 Feedback model

Having summarised the basic ingredients of the market microstructure model,

we turn our attention to the price formation process. Let us suppose that the

state of the market Xt is known at some time t > 0 and that it will change at

time t + ∆t, by a quantity ∆Xt = Xt+∆t − Xt. We previously asserted that

a price change occurs because of an imbalance between buy and sell orders.

Mathematically, this means that we may express the change in the market

state over the trading-period [t, t+ ∆t) as a function of the aggregate demand

over this period ∆Dt, i.e.

∆Xt = I(∆Dt),

where the impact function I is to be specified. The only of its properties we

know for certain are that it should be non-decreasing, so that when demand

exceeds supply the price is pushed upwards, and I(0) = 0, so that when

demand and supply match the price does not move.

Let us explain why the quantities of the asset being bought or sold in this

market is important to the price formation. The following is based on the

discussion in Jondeau et al. [71], section 3.1. In an order-driven market,

traders enter their orders into an electronic trading system. Orders may be of

various types, and we consider here only limit orders and market orders. A

trader placing a limit order would indicate his or her willingness to trade (buy

or sell) a certain quantity at a certain price. In some markets, the trader may

also provide additional information such as a time-limit after which he or she

would no longer be willing to trade that quantity at that price. The collection

of all the limit orders forms the order book. A market order would execute

the transaction immediately at the best available prices. For example, if the

highest limit bid orders are for 10, 25 and 15 units at prices 35.0, 34.5 and

34.0 respectively, and a market sell order is made for 20 units, then the trader

placing the market order will sell 10 units at a price of 35.0, and a further 10

units at a price of 34.5. If instead a market sell order is made for 40 units,

they will sell 10 units at a price of 35.0, 25 units at a price of 34.5 and the

remaining 5 units at 34.0. We see that a greater number or volume of sell

orders results in a more noticeable fall in the transaction price, while large

numbers or volumes of buy orders result in large increases in the transaction

price.

We opt for mathematically the simplest model, that of a linear price impact

function, i.e. I(x) = kx for some k > 0. In terms of the order book, we attempt

a partial justification as follows. The actual price adjustments that occur do so
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at the execution of market orders. When a market order is executed, it might

leave a ‘hole’ in the order book (that is, there are fewer limit orders remaining

in the system); however, we assume that this market is sufficiently liquid that

more limit orders are placed as soon as the market order was executed and

the structure of the order book remains intact. The impact function I is then

just a description of the order book, and we suppose that it is approximately

linear.

The actual structure of the order book is probably some sort of staircase

function, but investigations into its structure consider possible smooth approx-

imations to it. Kempf & Korn [75] observe from intraday data on German

index futures that the impact function is nonlinear, stating ‘Large orders lead

to relatively small price changes whereas small orders lead to relatively large

price changes’. This means a sublinear impact function, examples of which

are (kx)α with 0 < α < 1. Zhang [114] suggests a square root function, i.e.

I(x) = (kx)1/2, while Lillo et al. [81] find that I(x) ∝ xα, where the exponent

α changes - it is close to 0.5 for small volumes and decreases to about 0.2 for

larger volumes.

In any case, for our model we have chosen

∆Xt = k∆Dt

for some fixed k > 0. It remains to incorporate the effects of fundamental

analysis and technical analysis in ∆Dt. The excess demand due to fundamen-

tally motivated trades during the trading period of interest is ∆DF (t) and that

due to the technically motivated trades is DT (t). The overall excess demand

is then ∆Dt = ∆DF (t)+∆DT (t). Writing Rk for the fundamental trade order

sizes and Wk for the technical trade order sizes,

∆DF (t) =

Nt+∆t∑
k=Nt+1

Rk;

∆DT (t) =

Nt+∆t∑
k=Nt+1

Wk.

The difference between the above expressions is that the distribution of the

technical trade order size Wk is assumed to depend directly on Xt, the current

market state. When the renewal process (Nt) is stationary, we have

E[∆DF (t)] = µF∆t, var (∆DF (t)) = σ2
F∆t
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for suitably chosen constants µF ∈ R and σF > 0, and

E[∆DT (t)] = −µT (Xt)∆t, var (∆DF (t)) = σ2
T (Xt)∆t

likewise. The minus sign is included without any loss in generality, since then

an increasing choice of function µT indicates the traders’ employment of a

mean-reverting strategy. It is assumed that the technical traders do not trade

when there is no movement of the price, so that µT (0) = σT (0) = 0. Using

our linear price impact model, we obtain

E[∆Xt] = kµF∆t− kµT (Xt)∆t

and

var (∆Xt) = k2
(
σ2
F + 2rσFσT (Xt) + σ2

T (Xt)
)

∆t,

where r ∈ [−1, 1] is the correlation between ∆DF (t) and ∆T (t), the effects

over the time-period of interest of fundamental trading and technical trading

respectively. Finally, we write

∆Xt = (µ1 − f(Xt))∆t+ σ1∆W 1
t + g(Xt)∆W

2
t , (3.4)

where

• µ1 = kµF ,

• σ1 = kσF ,

• f(x) = kµT (x),

• g(x) = kσT (x),

• f(0) = g(0) = 0,

• ∆W 1
t and ∆W 2

t are random variables with mean 0 and variance ∆t.

3.4 Immediate price changes

To summarise the model above, we have allowed trades to accumulate over a

short time period [t, t+∆t) and then adjusted the price according to excess buy

or sell orders. This description is useful in that it leads very transparently to

the discrete equation (3.4), which in turn suggests an obvious continuous-time

analogue. However, it is also useful mathematically to consider the possibility

in which an arriving trade order causes an immediate price fluctuation propor-

tional to the order size. The resulting process is then of pure-jump type and is
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right-continuous with respect to the discrete topology on R. Such a process is

expressed more easily than the one considered earlier, in terms of the random

variables from which it is constructed.

Suppose then that the return Xt is adjusted at the moment a new trade

order arrives. Assume for a first illustration that the market is composed

entirely of fundamentalists. Then the first trade order arrives at some time

T1 = τ1 and has size R1. Since these quantities never depend on the current

state of the market, the process (Xt) is just a renewal-reward process

Xt =
Nt∑
n=1

kRn,

where (Nt) is the renewal process associated with the i.i.d. holding times

sequence (τn) (and k is the price impact constant).

Now assume that some of the trades are technically motivated. Suppose

that the process has had its (n − 1)th jump at time Tn−1 = τ1 + · · · + τn−1,

and that now we have

Tn−1 ≤ t < Tn, Xt = x, At = t− Tn−1.

Then the time Tn of the next jump has some conditional distribution governed

by

P [τn ∈ ·|τn > At] =
Fτ (x, ·)

1− Fτ (x,At)
.

The jump size also has a distribution dependent on x, which means the se-

quence (Yn) of states that X visits, Yn = Xτn , is a discrete-time Markov

process. The process (Xt) is then a semi-Markov process. It is Markov if the

jump times are exponentially distributed. In that case, the time until the next

jump never depends on At.

The whole process can be constructed from scratch as follows. For each

possible state x of the market, there is a waiting-time distribution Fτ (x, ·) and

a trade order distribution FR(x, ·). For the given start point, Y0 = X0, the

variables of interest are the first arrival time τ1 ∼ Fτ (Y0, ·) and the first order

size R1 ∼ FR(Y0, ·). We define T1 = τ1 and Y1 = kR1 + Y0. Now given Y1, we

are interested in τ2 ∼ Fτ (Y1, ·) and R2 ∼ FR(Y1, ·). We define Y2 = kR2 + Y1

and T2 = τ2 + T1.

Once we know the pair (Tn−1, Yn−1), we may obtain the next pair (Tn, Yn)

by letting

τn ∼ Fτ (Yn−1, ·) and Rn ∼ FR(Yn−1, ·)
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and then letting Yn = kRn + Yn−1 and Tn = τn + Tn−1. The sequence of

points (Tn, Yn) gives the arrivals of the market state process (Xt) at each of

its successive states. The whole process is given by

Xt = YN = X0 +
Nt∑
n=1

kRn, TN ≤ TN+1. (3.5)

where Nt = sup{n ≥ 1 : t ≥ Tn}. (Nt) generalizes the notion of a renewal

process by introducing some dependency structure to the sequence (τn) of

holding times.

We note finally that, if the τn are exponentially distributed, then the pro-

cesses (Xt) and (Nt) are Markov. We use ρ(x) to denote the rate parameter

(inverse of the mean) of the holding time τn given that X is in the state x.

Then the generator of this process is

Au(x) = ρ(x)

∫
(u(y)− u(x))K(x, dy)

where the transition kernel K is related to the trade size kernel via

K(x,B) = FR

(
x,
B − x
k

)
, B ∈ B(R).
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Chapter 4

Process approximation

Now that we have described a discrete price formation process, we would like to

consider the validity of using a continuous approximation to it. We consider

first the most direct approach, which is a continuous approximation to the

discrete equation of motion (3.4). Continuous movement may be observed in

the limit if the number of trades during any fixed trading period becomes very

large while their respective price impacts become very small, which suggests

that it would be appropriate to appeal to a functional version of the Central

Limit Theorem. We then look at other possible approximating sequences to

the same continuous model.

The motivation for a diffusion approximation is that a graph of the step

process (X
(ρ)
t ) against time looks from a distance like continuous diffusion.

We give a simple illustration in figure 4.1, which shows simulated compound

Poisson processes with increasing rates. The renewal-reward process starts to

run very quickly and a diffusion (Xt) is obtained by considering a time-and-

space scale on which the time between individual trades and their impacts are

small. The asymptotic results with t→∞ are available from renewal theory.

4.1 Direct approximation by the Central Limit Theo-

rem

Equation (3.4) is obviously suggestive of a possible continuous approximation,

so we now argue that the continuum limit may be taken as ∆t → 0, by

appealing to a functional version of the Central Limit Theorem. The following

is not the only possible direct method of diffusion approximation, but it serves

as an example to take us through the issues the approximation presents and

leads us to the financial return models we are interested in investigating. We
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Figure 4.1: Simulated scaled compound Poisson processes with rate ρ and normal
increments.
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(c) ρ = 1000.

may then study in more detail the consequences of each modelling assumption

on the resulting model, before turning back to rigorize the approximation

argument.

First, let δ > 0 denote the slope of the order book, i.e. I(x) = δx. Consider

first only the fundamental trades and their impact ∆FXt of trading in [t, t +

∆t). We shall now allow the trade order rate ((Eτ1)−1) to depend on δ. This

already assumes that Eτ1 ∈ (0,∞), but let us also assume that var (τ1) <∞.

Small values of δ would be expected with greater liquidity in the market, so we

might reasonably expect that the trade order rate increases as δ ↓ 0. In fact,

where we previously had an underlying renewal process (Nt) with arbitrary

rate λ > 0, let us have a renewal process N
(ρ)
t = Nρt, where ρ is another

parameter which measures liquidity, and is not independent of δ. Our renewal

process has a rate λρ and, by Theorem 1, satisfies the asymptotic expressions1

EN
(ρ)
t ∼ λρt, var (N

(ρ)
t ) ∼ σ2

τλ
3ρt, ρ→∞.

We also allow the trade order size distribution to depend on ρ and δ. The

trade sizes need to become small to make the diffusion approximation work,

1These asymptotic expressions are from (2.3) and (2.4) which were consequences of the renewal theorem,
Theorem 1.
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but we also need to be careful that the variance does not become too small,

otherwise the limit process will be deterministic. Let us explicitly take

ER
(ρ)
1 = µδ, var (R(ρ)) = σ2

R.

To make the diffusion approximation work, suppose that ρ → ∞ and δ → 0

in such a way2 that δ2ρ→ 1 (this needs to be a positive constant; there is no

loss in generality in taking this constant to be 1). Then

E[∆FX
(ρ)
t ] = µλ(δ2ρ)∆t, var (∆FX

(ρ)
t ) = [σ2

R + (µδστλ)2]λ(δ2ρ)∆t

As ρ → ∞, the number of trades grows large: N (ρ)(t)
d
=N(ρt)

a.s.−→∞, and,

dropping the (ρ) from our notation, the distribution of the sum

∆FXt =
n−Nt=∆Nt∑
n−Nt=1

δRn

is approximately normally distributed according to the central limit theorem.

We can therefore approximate the increment ∆FXt by

∆FXt = µλ∆t+ σR
√
λ∆W 1

t , (4.1)

where

∆W 1
t = ∆W 1

t+∆t −∆W 1
t ∼ N(0,∆t)

is an increment of a standard Brownian motion in R over the time interval

[t, t + ∆t). If we treat disjoint intervals as being independent of one another,

equation (4.1) may be supposed to hold for all values t for the one Brownian

motion {W 1
t }.

For the technical traders, we again suppose that X has a known value at

time t and that it is to be adjusted at time t + ∆t. For the traders using

technical analysis, the distributions of the quantities ∆N(t) and Rk depend

upon the value Xt. The most straightforward way to model the change ∆TXt

in X due to technical analysis is by taking the corresponding parameters λT ,

µT and σT to be functions of Xt. Therefore,

∆TXt = µTλT∆t+ σT
√
λT ∆W 2

t , (4.2)

where W 2 is another Brownian motion, and where we have suppressed the Xt-

dependence of the parameters λT , µT and σT in the notation, for readability.

2The reader may like to compare this technique with that outlined in Feller [52] XIV.6, particularly the
limiting procedure (6.4) there.
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The increment of the process X is found by putting together the two com-

ponents due to fundamental and technical trading,

∆Xt = ∆FXt + ∆TXt .

We end up with the discrete hybrid process

∆Xt = (µλ+ µTλT )∆t+ σ
√
λ∆W 1

t + σT
√
λT∆W 2

t (4.3)

where subscript T (for technical) reminds us of dependence on the current

level Xt. It is natural to take λT = µT = σT = 0 when Xt = 0.

Next, we let the time length ∆t over which the price remains unchanged

approach zero. The limit in probability of the sequence of processes satisfying

the discrete equation (4.3) is a process X satisfying the continuous equation

dXt = (µ1 − f(Xt))dt+ σ1dW
1
t + g(Xt)dW

2
t , t > 0, X0 = x, (4.4)

with fundamental parameters µ1 = λµ and σ1 = σ
√
λ and technical functions

−f = µTλT and g = σT
√
λT , with f(0) = 0 and g(0) = 0 (since technical

excess demand is supposed not to be triggered by zero price-change). Here, f

must satisfy condition (2.13), while g should satisfy (2.14), so that (4.4) has a

unique strong solution.

4.2 Specific models

The next step in specifying the return model is choosing the functions λT , µT

and σT (hence f and g in (4.4)). The simplest models, save the arithmetic

model (in which they are all constant in Xt), are the following.

• Arithmetic-geometric hybrid

If the rate of trading does not vary with Xt, but the trade size distribution

does with both µT and σT varying linearly with Xt, say

f(Xt) = µ2Xt, g(Xt) = σ2Xt ,

for certain constants µ2 and σ2, we reach the model

dXt = (µ1 − µ2Xt)dt+ σ1dW
1
t + σ2XtdW

2
t , t > 0, X0 = x, (4.5)

which is a hybrid of arithmetic and geometric Brownian motions.

• Arithmetic-CIR hybrid
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Supposing the trade size distribution does not depend on Xt, but the rate

λT of trading depends linearly on Xt, we obtain technical functions of the

form

f(Xt) = µ2Xt, g(Xt) = σ2

√
|Xt| ,

and hence

dXt = (µ1−µ2Xt)dt+σ1dW
1
t +σ2

√
|Xt|dW 2

t , t > 0, X0 = x, (4.6)

where µ1 and σ2 are constants.

The arithmetic-geometric process was the subject of study in Shaw &

Schofield [102].

4.3 Distributional impact of fundamental and technical

trading

Now we remark briefly upon the respective rôles in these models of each of its

two essential components, the separate pressures exerted on the market state

by the fundamentally motivated trades and the technical trades. If we consider

the general diffusion model (4.4) that we arrive at, the effects are made explicit

in the notation, in that µ1 and σ1 are effects of the fundamental trading, while

f and g reflect the technical trading. If only the fundamentalists trade, we

should make the simplifications f = g = 0, and if only the technicians trade,

we would take µ1 = σ1 = 0.

If there is no technical pressure, the process we arrive at via this diffusion

approximation is a Lévy process. This would be true by design even if we

did not approximate the whole process by this diffusion and left in some of

the jumps - the assumptions of this microstructure model still lead us to a

spatially homogeneous process. As remarked in the introduction, the process

is then characterized by a Lévy-Khintchine triple (µ, σ, ν).

By introducing the technical pressure then, we have sought to remove from

that sort of model the assumption of spatial homogeneity. The technical trad-

ing brings, at each time t ≥ 0, a dependence of the next price movements on

the present state Xt of the market. Jump-diffusion models (without killing)

are described by three components, namely

• a drift coefficient b : R→ R;

• a diffusion coefficient a = σ2 : R→ R+;

• a jump kernel L(x, dy).
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The triple (b, a, L) generalizes3 the Lévy-Khintchine triple (µ, σ, ν). At least,

this is the most natural generalization of the Lévy processes discussed above to

spatially inhomogeneous Markov processes obtainable from our fundamental-

technical price feedback model. Our investigation of hybrid diffusion models

only, leads us, after this Chapter, to consider only models with L = 0, but we

believe it is important that it is possible to generalize this analysis to situations

in which the returns process exhibits jumps. We note from Çinlar[30], section

9.3, that the restriction of the generator of such a process (with only finitely

many jumps in any time-period) to, for example C∞c (R), is given by

Au(x) =
1

2
a(x)u′′(x) + b(x)u′(x) +

∫ ∞
−∞

L(x, dy)(u(y)− u(x)).

This is the sort of process we are aiming at. Consideration of the market

microstructure, and of the motivations of fundamentalists and technicians,

serves to suggest what sort of form the coefficients a, b and L should take. Our

aim in the present Chapter is to bridge that gap between the microstructure

concepts and the model specification in terms of these infinitesimal coefficients.

4.4 Use of the theory of weak convergence

Let X be a process satisfying (4.4) and, for each ρ > 0, let X(ρ) be the step

process constructed to satisfy (3.4) at each of its jump times t = n∆t. X and

X(ρ) are random elements in the space D = D[0,∞). The validity of using X

to approximate X(ρ) is summarised by the statement

X(ρ) d→X in D, as ρ→∞. (4.7)

Denoting by F the distribution of (Xt) and by Fρ the distribution of (X
(ρ))
t

(4.7) means

Fρ
w→F as t→∞,

where
w→ means convergence in the ‘weak’ sense of Billingsley [13]. In other

words, (4.7) is really a statement not about the random elements X(ρ) and X

themselves but rather about their distributions.

Consider the approximation problem when only fundamentalists trade. We

aim to manipulate either side of (2.6), so that we can obtain a convergence

result of the form

(δSN(nt))t≥0
d→ (µt+ σWt)t≥0.

3More properly, the diffusion coefficient a replaces σ2 in a Lévy process model.
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In this expression, we recall that δ > 0 is the price impact constant and that

(Sn) gives the successive price levels. Let us recall how we made our previous

attempt at this process approximation. The N-valued parameter n is replaced

with a real one ρ. We shall allow both the mean ‘µ’ of R(ρ) and the rate λ of

N (ρ) to depend on ρ in a certain way. Finally, we recall that, with the rate

of trading increasing to infinity, the market liquidity also increases, so that

the impact upon the price, which is what we are interested in, is given by

ρ−1/2SN(ρt), rather than the random sum SN(ρt) itself.

Assume then that we have a sequence of holding times τn with positive

mean λ−1 and finite variance σ2
τ . Let (N(t)) be the renewal process associated

with the τn. We take ER
(ρ)
1 = µρ−1/2 for a suitable constant µ; then we see

that

E
[
ρ−1/2SN(ρt)

]
= E[N(ρt)]E[R

(ρ)
1 ]ρ−1/2 ∼ λµt as t→∞

and

var
(
ρ−1/2SN(ρt)

)
= ρ−1

{
E
[
var

(
SN(ρt)|N(ρt)

)]
+ var

(
E
[
SN(ρt)|N(ρt)

])}
∼ ρ−1

{
σ2
Rρλt+ µ2ρ−1σ2

τλ
3ρt
}

→ σ2
Rλt as ρ→∞.

So by Theorem 4,

(ρ−1/2SN(ρt))t≥0
d→ (λµt+ σR

√
λWt),

where the convergence is weak convergence of the distributions on the Skoro-

hod space D[0,∞).

The final stage of our approximation procedure is to use the outline above

for the fundamentally motivated trades, and a spatially inhomogeneous gener-

alization of the same thing for the technicians. We would like to make these pa-

rameters λ, µ and σ2
R depend on the present state Xt of the market, and make

the price adjustments at the points of an increasingly fine mesh {n∆t : n ∈ N

}. However, it is difficult to argue rigorously that the discrete processes should

converge in distribution to a stochastic integral
∫

(b(Xs)ds + σ(Xs)dWs). We

see that extending these arguments to spatial inhomogeneity is not easy, and

we shall actually approach it via a different method.
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4.5 Approximation by pseudo-Poisson processes

Given the difficulties encountered in the direct approach above, we seek an

alternative approach to obtaining the desired weak convergence results. One

possible strategy is to use the following result, taken from Billingsley [13],

Theorem 3.1.

Theorem 8 (weak convergence of two approximating sequences). Suppose that

(Xn) and (Yn) are two sequences of random elements of a metric space (S, d),

and that X is another random element in S. If Xn
d→X and d(Xn, Yn)

d→ 0,

then Yn
d→X.

This result may potentially be usefully employed in our context by using

the random elements Xn as a bridge between the discrete processes Yn from

our feedback model, satisfying (3.4), and the process X of (4.4).

The candidates for Xn are pseudo-Poisson processes. We recall that a

pseudo-Poisson process is a process of the form (SN(t)) where (Sn) is a discrete-

time Markov process and (N(t)) is a Poisson process. Unfortunately, these

processes are not permitted to arise directly from the feedback model since

they have a Poisson process which counts the trade order arrivals, a model

empirically refuted in financial markets by the investigations of E. Scalas and

others, as previously mentioned. On the other hand, like the processX of (4.4),

they are time-homogeneous Markov processes, which means that they possess

a generator that may be used to characterise the process. The generator pro-

vides a more straightforward description of the infinitesimal characteristics of

the process, and our intention is to choose the approximating sequence (Xn)

of pseudo-Poisson processes in such a way that we can see their generators

converging, in the sense discussed below, to the generator of X.

Here is a plan of our discussion:

(i) We intend to use a result linking strong convergence of the generators

with convergence in distribution of the associated Markov processes.

(ii) We give a characterization of pseudo-Poisson processes by their genera-

tors.

(iii) Generators of diffusion processes are obtained, for instance in Feller [53],

by Taylor development of the transition operator near t = 0. We would

like to use a similar argument, replacing the transition operator of the

diffusion itself with the jump kernel of a pseudo-Poisson process.
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For the convergence result at the end, we intend to employ Theorem 9 be-

low4, but in order to state it, some preparation is needed. It concerns a set-up

in which Markov processes are defined, taking values in some locally compact,

second countable Hausdorff space S. A Feller semigroup is a transition semi-

group (of a Markov process) (Pt) which maps C0(S) into itself, and a Feller

process is a process whose transition semigroup is Feller. All the Markov pro-

cesses that we consider are Feller processes5. The Alexandroff compactification

S∆ of S is constructed by taking a point ∆ /∈ S and adjoining it to the state

space to form S∆ = S ∪ {∆}. ∆ is thought of as the cemetery state, so that

a process X which dies at some point ζ = inf{t : Xt /∈ S} is then transported

immediately to ∆ and stays there for ever. This construction always makes the

extended semigroup (P̂t) conservative in the sense that P̂t(x, S∆) = 1 for all

x ∈ S∆ and for all t ≥ 0. Recall that a core D for a closed operator (A,D(A))

is a subset of the domain D(A) which is dense in D(A) with respect to the

graph norm.

Theorem 9 (convergence of Feller processes). Let Xn and X be Feller pro-

cesses in some locally compact, separable metric state space S with transition

semigroups (P n
t ) and (Pt), and generators (A(n), D(A(n))) and (A,D(A)), de-

fined on C0(S), respectively. Suppose that there is a core D for (A,D(A)).

Then the following conditions are equivalent:

(i) For every u ∈ D there are un ∈ D(A(n)) with un → u and Anun → Au.

(ii) P n
t → Pt operator strongly for each t > 0.

(iii) If Xn
0

d→X0 in S then Xn d→X in D(R+, S∆).

This theorem is stronger than we need. In fact, there are useful pseudo-

Poisson processes with bounded generators so that, in the first condition of

this theorem, we require only that, for all u ∈ D, Anu→ Au (since D(An) =

C0(S)).

The classic text in which pseudo-Poisson processes are defined is Feller [53]

Chapter X. Another very clear definition is given in Kallenberg [72], p241.

Let us start however, by considering the space-homogeneous case, with the

intention of generalizing afterwards. Consider then a space- and time- homo-

geneous pure-jump Markov process, taking its values in R. It is described by

two characteristics:

(i) the rate ρ > 0 of jumps;

4Kallenberg [72] Theorem 19.25
5See the discussion at the end of Çinlar [30], Section 9.5.
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(ii) the distribution K of each jump size.

By the Markov property, inter-arrival durations are exponentially distributed

random variables, and we define ρ as the reciprocal of their means. The

underlying renewal process is then a Poisson process (Nt), and the pure-jump

process has i.i.d. jumps R1, R2, . . .. The overall process is the compound

Poisson process

Ct =
Nt∑
n=1

Rn.

By conditioning on the number of jumps in [0, t], the transition probability of

transition from x to B ⊂ R can easily be calculated as

Pt(x,B) =
∞∑
n=1

e−ρt
(ρt)nKn∗(B − x)

n!
(4.8)

which exhibits the process as having generator

A = ρ(K ∗ −1), i.e. Au(x) = ρ

∫
(u(x− y)− u(x))K(dy). (4.9)

A is a bounded operator on C0(R) and Pt = etA = eρt(K∗−1) holds for (4.8)

and (4.9) in the usual sense for bounded operators.

To generalize these notions to allow state-space dependency, we allow the

rate ρ to depend on x, and replace the jump distribution with a probability

kernel K from R to itself. For our purposes, it suffices that the rate function

ρ : R → R+ is assumed bounded. The generator of the resulting process is

then

Au(x) = ρ(x)

∫
(u(y)− u(x))K(x, dy) =

∫
(u(y)− u(x))L(x, dy),

where L(x, dy) = ρ(x)K(x, dy) is the rate kernel (see Kallenberg [72] p238, or

Çinlar [30] Chapter 9, formulas (3.11) and (3.52), where L is called the Lévy

kernel for its analogy with the Lévy measure for the jumps of Lévy processes).

According to Proposition 12.20 of Kallenberg [72], or the discussion on pp162-

164 of Ethier & Kurtz [46], such a process is equivalent to a pseudo-Poisson

process, i.e. a process of the form Xt = YN(t) where (Yn) is a Markov chain

and N is a Poisson process with constant rate ρ̄ = supx∈R ρ(x) > 0. The

homogeneous case discussed above is the special case when Y is a random

walk.
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Recall that the process X satisfying (4.4) has formal generator

Au(x) =
1

2
a(x)u′′(x) + b(x)u′(x).

where a(x) = σ2
1 +2rσ1g(x)+g2(x), r being the correlation coefficient between

the two Brownian motions, and b(x) = µ1 − f(x). We look for generators

ρ(K(ρ) − 1) of pseudo-Poisson processes which converge, as ρ → ∞, to A

pointwise on a core D of A. The most obvious example is yielded by the

definition

Au = lim ρ→∞ ρ(P1/ρu− u)

where (Pt) is the transition semigroup of the diffusion X itself; that this is

the definition of the generator of (Pt) is seen by taking ρ = t−1. Feller [53],

in section X.4, defines a diffusion process by the following postulates6 on the

transition function (Pt): for all δ > 0, as t→∞,

t−1
∫
|y−x|≥δ Pt(x, dy) → 0;

t−1
∫
|y−x|<δ(y − x)Pt(x, dy) → b(x);

t−1
∫
|y−x|<δ(y − x)2Pt(x, dy) → a(x).

(4.10)

For u ∈ C∞c (R), he uses the Taylor development of u around x, and the fact

that u(3) is bounded:

Ptu(x)− u(x)

t
=

1

t

∫
(u(y)− u(x))Pt(x, dy)

=
1

t

∫ (
(y − x)u′(x) +

1

2
(y − x)2u′′(x) +

1

6
(y − x)3u(3)(ξ)

)
Pt(x, dy)

→ b(x)u′(x) +
1

2
a(x)u′′(x), t→ 0,

where we have denoted by ξ some point lying between x and y. The strong

convergence

t−1(Pt − 1)→ 1

2
a(x)

d2

dx2
+ b(x)

d

dx
on D(A),

depends on the postulates (4.10), rather than the fact that Pt is the transition

operator associated with X. Thus our approach is to look for pseudo-Poisson

processes with generator ρ(K(ρ) − 1) satisfying the following three analogous

postulates for arbitrary δ > 0:

6Feller [53] Chapter X, formulae (4.2)-(4.4); see also Prohorov & Rozanov [93]
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(i)

lim ρ→∞ ρ

∫
(x−δ,x+δ)c

K(ρ)(x, dy) = 0;

(ii)

lim ρ→∞ ρ

∫ x+δ

x−δ
(y − x)K(ρ)(x, dy) = b(x);

(iii)

lim ρ→∞ ρ

∫ x+δ

x−δ
(y − x)2K(ρ)(x, dy) = a(x).

Example: Two-point distributions. Consider a pseudo-Poisson process

sitting at x which, at the next arrival of its underlying Poisson process, will

jump upwards to a point u(x) with probability 1/2 or downwards to d(x)

with probability 1/2. By the choice

u(x) = x+ ρ−1b(x) + ρ−1/2σ(x),

d(x) = x+ ρ−1b(x)− ρ−1/2σ(x),

where σ2(x) = a(x) we find that the distribution

K(ρ)(x, ·) =
1

2
(δu(x) + δd(x))

satisfies the conditions (i)-(iii). Note that this distribution has mean x +

ρ−1b(x) and standard deviation ρ−1/2σ(x) (hence variance ρ−1a(x)).

Arbitrary jump distributions. K(ρ)(x, ·) satisfies conditions (ii) and (iii)

if it has mean x+ ρ−1b(x) and variance ρ−1a(x).

We have therefore derived the following.

Convergence Result 1. Assume that b : R→ R and σ =
√
a : R→ R+ are

functions satisfying the conditions (2.13) and (2.14) of Theorem 5. Let ρ0 > 0

and for each ρ > ρ0, let (X
(ρ)
t ) be a pseudo-Poisson process taking values in R,

with X
(ρ)
0 = x, with rate ρ, and with jump probability kernel K(ρ)(x, dy), so that

the family {K(ρ) : ρ > ρ0} satisfies (i), (ii) and (iii) above. Then X(ρ) d→X in

the Skorohod space D[0,∞), where X is the unique strong solution of the SDE

dXt = b(Xt)dt+ σ(Xt)dWt, t > 0, X0 = x.
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Example: Convergence of the feedback model.

Let us proceed to show a possible link between the feedback models of section

3.4 and the limit process X in Convergence Result 1 under the elementary (and

unrealistic) assumption of exponentially distributed holding times. For the

sake of simplicity, we shall also assume that the fundamentally and technically

motivated market participants act independently of one another.

Assume then that fundamental trades arrive according to a Poisson process

with rate θρ, and that the technical trades arrive according to an independent

Poisson process with rate (1− θ)ρ, where ρ > 0, and where θ ∈ (0, 1) is fixed.

Assume that at some time instant t, the market state is Xt = x. Then the

Poisson process of trades has rate ρ and the size of the next trade order to

arrive has a distribution which is a Bernoulli mixture of FR, the distribution of

the fundamental trade size, and FW (x, ·) the distribution of the technical trade

size, with mixing parameter θ (i.e. it is a fundamental trade with probability

θ). Let µ1 ∈ R, σ1 > 0 and assume that f and g are functions which satisfy the

conditions (2.13) and (2.14) respectively. Suppose that the mean and variance

of the fundamental and technically motivated trades are as follows:

• The mean fundamental trade size (mean of FR) is

µF =
µ1

θρ1/2
. (4.11)

• The mean technical trade size is

µT = − f(x)

(1− θ)ρ1/2
. (4.12)

• The variance of the fundamental trade size distribution FR is

σ2
F =

σ2
1

θ
. (4.13)

• The variance of the technical trade size distribution FW (x, ·) is

σ2
T =

g(x)2

(1− θ)
. (4.14)

Then with price impact function I(x) = ρ−1/2x, it can be seen that the distri-

bution K(ρ)(x, ·) of the next jump (which we shall denote Y ) of X(ρ) satisfies

conditions (ii) and (iii) above. In order to show that (i) also holds, it is natural

to try applying Markov’s inequality. Recall that Markov’s inequality states7

7Kallenberg [72] Lemma 4.1.
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that, for a nonnegative random variable Z and a constant δ > 0, one has

P{Z ≥ δ} ≤ E[Z]

δ
.

Applying this with Z = (Y − E[Y ])2 gives

ρP{|Y − E[Y ]| ≥ δ} ≤ ρ ·
E

[(
Y − x− b(x)

ρ

)2
]

δ2

→ a(x)

δ2
as ρ→∞

by (ii) and (iii) above (note that the distribution of Y depends on ρ, but

this is hidden in the notation) and we proceed no further. The bound on the

probability on the left yielded by Markov’s inequality is not sharp enough,

because it is valid for any probability distribution.

In order for Convergence Result 1 to apply then, we need further assump-

tions. One possibility is to require that FR and FT (x, ·) both have a finite

standardised kurtosis which is independent of ρ, or else does not increase with

ρ. In this case, applying Markov’s inequality with Z = (Y − E[Y ])4 yields

ρP{|Y − E[Y ]| ≥ δ} ≤ ρ
E[(Y − E[Y ])4]

δ4

= ρ
(σ1 + g(x)2)2 ku(Y )

ρ2δ4

→ 0, as ρ→∞.

This condition on the kurtosis is satisfied, for instance, by a normal distribu-

tion.

Hence if conditions (4.11) to (4.14) are assumed for every ρ, and for each

ρ and x the kurtosis of the distribution K(ρ)(x, ·) is non-increasing with ρ, we

have convergence to the diffusion which solves the SDE

dXt = (µ1 − f(Xt))dt+
√
σ2

1 + g(Xt)2dWt.

Jumps in the limiting process.

It is the small jump condition (i) that ensures that the process obtained in

the limit ρ → ∞ has continuous paths. Let us therefore see what happens

when we no longer assume it. Suppose instead that the jump distribution is a

mixture of small and large jumps

K(ρ)(x, dy) = θS(ρ)(x, dy) + (1− θ)L(x, dy)
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where the large jump component L(x, dy) does not depend on ρ, while the

small jump component S(ρ) satisfies conditions (i)-(iii) above. For readability,

we wrote θ for the mixing probability, but it actually is permitted to depend

upon ρ and x. where the large jump component L(x, dy) does not depend on

ρ, while the small jump component S(ρ) satisfies conditions (i)-(iii) above. For

readability, we wrote θ for the mixing probability, but it actually is permitted

to depend upon ρ and x.

The generator of the resulting pseudo-Poisson process is then

ρ(K(ρ)u(x)− u(x)) = ρθ(S(ρ)u(x)− u(x)) + ρ(1− θ)(Lu(x)− u(x)).

By looking at the second term on the right here, dependence of θ on ρ is

evidently needed; more precisely we shall take

ρ(1− θ(ρ, x)) = k(x)

where k(x) ≥ 0 is independent of ρ. These definitions make sense when ρ >

k(x), and we shall henceforth assume that k is bounded, so that we may take

ρ > k uniformly. The jump kernel of the approximating process of rate ρ is

then

K(ρ)u(x) =

(
1− k(x)

ρ

)
S(ρ)u(x) +

k(x)

ρ
Lu(x), (4.15)

hence the process itself has generator

ρ(K(ρ)u(x)− u(x)) = (ρ− k(x))S(ρ)u(x) + kLu(x)− ρu(x).

Rearranging then letting ρ→∞, in view of

ρ(S(ρ)u− u)→ 1

2
au′′ + bu′, u ∈ C∞c (R),

we obtain

lim ρ→∞ ρ(K(ρ)u− u) =
1

2
au′′ + bu′ + k(Lu− u), u ∈ C∞c (R)

the limit on the left here being taken in the uniform topology on C0(R). Note

that the coefficients a, b and k are functions defined on the state space, and L

is a probability kernel from R to itself.

The process X(ρ) with generator ρ(K(ρ)− 1), where K(ρ) is given by (4.15),

has rate of jump arrivals ρ and jump kernel which is a mixture of the small

jump kernel S(ρ) and the large jump kernel L. If X
(ρ)
t = x at some time t,

then the position that the process reaches at its next jump is chosen from
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the large jump distribution L(x, ·) with probability k(x)/ρ and from the small

jump distribution S(ρ)(x, ·) with probability 1− k(x)/ρ. From Theorem 9, we

therefore have the following result.

Convergence Result 2. Assume that b : R → R and σ =
√
a : R → R+

are functions satisfying conditions (2.13) and (2.14). Assume further that

L(x, dy) is a probability kernel, that there exists a maximum jump size J so

that L(x, [x − J, x + J ]) = 1 for all x, and that k : R → R+ is a bounded

measurable function. For each ρ > supx k(x), let X(ρ) be a pseudo-Poisson

process taking values in R, with X
(ρ)
0 = x, with rate ρ, and with jump kernel

K(ρ)(x, dy) of the form (4.15)where {S(ρ)} is a family of probability kernels

satisfying the conditions (i), (ii) and (iii) above. Then there exists a process

X with paths in D[0,∞), satisfying

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs+

∫ s=t

s=0

∫
y∈R

j(Xs−, y)M(ds, dy), t > 0

where M(·, ·) is a standard Poisson random measure on [0,∞)× [0,∞) which

is independent of the Brownian motion (Wt), and where, for each x ∈ R, α 7→
j(x, αJ) is the quantile function of the probability measure L(x, ·). Moreover,

X(ρ) d→Xin D[0,∞), as ρ→∞ in the Skorohod space D[0,∞).

4.6 Approximation by semi-Markov processes

In this section, we sketch the approach that will hopefully be developed in

subsequent investigations and used to prove that (4.4) is the limit of processes

of the form (3.5). Given a process of the form (4.4), we are now able to find an

approximating sequence (X(ρ)) of Markov jump processes with rates ρ. What

we would like to be able to do next is use an approximating sequence (X(ρ))

of jump processes, which are only semi-Markov because the underlying jump

counting process is not Poisson. The semi-Markov process is a time-change of

the Markov process that we have already used to approximate the diffusion

X. Unfortunately, the approximation by semi-Markov processes has proved

just out of reach for the present investigation. For this discussion then, we

intend simply to state the two theorems, from Jacod & Shiryaev [68], that are

candidates to be applied to the processes X(ρ) and limit X to conclude that

X(ρ) d→X.

In order even to state these two theorems a good deal of preparation is

needed. We have included a short exposition of the necessary definitions from
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the general theory of stochastic processes in section 2.4. Jacod & Shiryaev’s

presentation is concerned with semimartingales, as both the approximating

processes X(ρ) and the limit processes X. This choice is widely applicable and

we note that all the processes that we are considering here are semimartingales.

Our preparation for stating these limit theorems consists of the following:

(i) Define the characteristics of a semimartingale.

(ii) Explain what is meant by a solution of the martingale problem, in the

setting of a given semimartingale.

(iii) Introduce a class of functions C1(R).

In developing this theory, we take much material from Jacod & Shiryaev [68].

We then use it subsequently solely to state these convergence results, and it is

not needed in the rest of the thesis.

Characteristics of semimartingales

Recall that a semimartingale is an adapted process X that has a decomposition

Xt = X0 +Mt + At

where M is a local8 martingale starting at zero and A is a process with locally

finite variation also starting at zero. The process X(ρ) defined by (3.5) has,

by construction, locally finite variation, hence is a semimartingale. The limit

process in (4.4) is also a semimartingale.

Let h be a truncation function (i.e. a bounded function h : R → R which

agrees with the identity in a neighbourhood of zero). Define

X̌(h)t =
∑
s≤t

[∆Xs − h(∆Xs)]

and

X(h)t = Xt − X̌(h)t,

so that X(h) is a special semimartingale: this means that X(h)t = X0 +

M(h)t + B(h)t for a local martingale M(h) and a finite variation predictable

process B(h). The first characteristic of X is B = (B(h)t), the compensator of

X(h). The second characteristic C is the predictable quadratic variation of the

continuous martingale part of X, usually written Ct = 〈Xc〉t (in the example

above, for our diffusion (Xt) the quadratic variation was continuous, implying

8In this context, a property of a process X holds locally if there exists a sequence of finite stopping times
τn such that τn →∞ a.s and the process Xτn = (Xt∧τn ) stopped at τn has that property.
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it is predictable). The predictable random measure N is the compensator of

the random measure µX associated with the jumps9 of X. N and C do not

depend on the choice of h, while B does.

Furthermore, the modified characteristics may be defined by taking

X(h)t = X0 +M(h)t +B(h)t

where M(h) is a local martingale and B is the first of the characteristics of X.

Then instead of Ct = 〈Xc〉t, put

C̃t = 〈M(h)〉t.

In terms of the characteristics (B,C,N), we have

C̃t = Ct +

∫
h(x)N([0, t]× dx)−

∑
s≤t

(∆Bs)
2.

The modified characteristics of a semimartingale form the triple (B, C̃,N).

Note that C̃, like B, now depends on the choice of truncation function.

The Martingale Problem

Consider a filtered space (Ω,F , (Ft)) without a probability measure on it.

We insist that the filtration is right-continuous, but there is no notion of

completeness for these σ-fields. Let H be a sub-σ-field of the initial σ-field F0

and let PH be a probability measure, called the initial condition, on (Ω,H).

Let C be a class of R-valued processes that are optional10 (e.g. all rcll processes

are optional). A solution of the martingale problem associated with (PH , C) is

a probability measure P on (Ω,F) such that P |H = PH (i.e. P (A) = PH(A)

for all A ∈ H) and every X ∈ C is a martingale on the filtered probability

space (Ω,F , (Ft), P ).

For a simple example to illustrate the context, take the canonical space

Ω = C[0,∞) of continuous functions, let Wt(ω) = ω(t) for ω ∈ Ω, Yt = W 2
t −t,

C = {W,Y } and assume that W is adapted to a right-continuous filtration

(Ft). Then Lévy’s characterisation of Brownian motion says that (Wt) is a

standard Brownian motion with respect to P if and only if P is a solution of

the martingale problem associated with (PH , C), where PH{X0 = 0} = 1.

For a semimartingale X, we say that a probability measure on (Ω,F) solves

9This is from Jacod & Shiryaev [68] II.1.16: µX(ω; dt, dx) =
∑
s 1{∆Xs(ω)6=0}δ(s,∆Xs(ω))(dt, dx).

10The optional σ-field is the σ-field on Ω×R+ generated by the rcll processes when they are considered
as mappings of Ω×R+.
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the martingale problem associated with (H, X) and (PH ;B,C,N) if P |H = PH

and X is a semimartingale on (Ω,F , (Ft), P ) with characteristics (B,C,N).

The martingale problem associated with (H, X) and (PH ;B,C,N) is denoted

S(H, X|PH ;B,C,N). The processes B, C and N are not martingales with

respect to P in this set-up, but it turns out that a solution P of this martingale

problem is characterised as a solution of the martingale problem associated

with (PH , C) where C contains the following processes:

(i) M(h), the martingale part in the semimartingale decomposition X(h)t =

X0 +M(h)t+B(h)t. (Recall that X(h) is the result of removing the large

jumps from X.)

(ii) The process

M(h)2 − C̃

where

C̃t = Ct +

∫
x∈R

h(x)2N([0, t]× dx)−
∑
s≤t

(∆Bs)
2

(iii) g · µX − g ·N , defined by

g · µXt − g ·Nt =

∫
R

g(x)µX([0, t]× dx)−
∫
R

g(x)N([0, t]× dx)

where g is bounded, continuous and vanishes inside a neighbourhood of

0. (Recall that µX was the random measure associated with the jumps

of X.)

Let X be an rcll adapted process on a fixed filtered space (Ω,F , (Ft)), h
a truncation function, B and C predictable processes and N a predictable

random measure on R+×R. The uniqueness-measurability hypothesis is that

(i) for each x ∈ R the martingale problem11 S(σ(X0), X|δx;B,C,N) has a

unique solution P x;

(ii) x 7→ P x(A) is a Borel function for all measurable sets A.

Spaces of functions

There is one final technical concept that we must introduce from Jacod &

Shiryaev [68], two classes12 of functions C1(R) and C2(R). C2(R) is the set of

all continuous bounded functions which are 0 around 0, and C1(R) is defined

as a subclass of C2(R) consisting of nonnegative functions, containing all the

11Here σ(X0) means ‘the σ-field generated by X0’.
12See Jacod & Shiryaev [68] VII.2.7.
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functions ga where ga(x) = (a|x| − 1)+ ∧ 1 for all positive rationals a, and

with the following property: let ηn, η be positive measures on R with no

mass at 0 and finite on the complement of every neighbourhood of zero; then

ηn(f)→ η(f) for all f ∈ C1(R) implies ηn(f)→ η(f) for all f ∈ C2(R). These

properties do not uniquely determine C1(R), but the point is that C1(R) is

a convergence-determining class for the weak convergence induced by C2(R)

(that is, convergence only needs to be checked on C1(R) before one knows that

it holds for C2(R).

Statement of theorems

We now state the two promised theorems on the convergence of semimartin-

gales to jump diffusions. These are given in Jacod & Shiryaev [68], Chapter

IX, theorems 4.8 and 4.15.

Theorem 10. Let X and X(ρ) for each ρ ∈ {R,R + 1, R + 2, . . .}, where R

is some sufficiently large number, be semimartingales with X0 = x and with

characteristics and modified characteristics all of the following form:

Bt =

∫ t

0

b(Xs)ds,

Ct =

∫ t

0

c̃(Xs)ds,

N(dt, dx) = dtK(Xt, dx)

C̃t =

∫ t

0

= c̃(Xs)ds

where b : R → R, c : R → R are Borel, K is a Borel kernel from R to itself

with
∫
K(x, dy)(|y|2 ∧ 1) <∞, and where

c̃(x) = c(x) +

∫
K(x, dy)h2(x),

where h is a truncation function. Assume the uniqueness measurability hy-

pothesis for X (but not for X(ρ)). Assume further that the characteristics of

X are such that

lim
ξ↑∞

sup
|x|≤a

K(x,R \ [−ξ, ξ]) = 0 for all a > 0,

that b, c̃ and Kg = K(·, dy)g(y) are continuous functions on R for all g ∈
C1(R), and that

b(ρ) → b, c̃(ρ) → c̃,
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and K(ρ)g → Kg locally uniformly on R for all g ∈ C1(R). Denote the

distribution of X(ρ) by P (ρ); then P (ρ) w→P x.

Theorem 11. Let X(ρ) and X be as in theorem 10. Assume the uniqueness-

measurability hypothesis for X and that

lim
b↑∞

sup
|x|≤a

∫
|y|>b

K(x, dy)|y|2 = 0 for all a > 0.

Set

b′(x) = b(x) +

∫
K(x, dy)(y − h(y)) and c̃′(x) = c(x) +

∫
K(x, dy)y2,

and similarly for b′(ρ) and c′(ρ), and suppose that b′, c′ and Kg are continuous

for all g ∈ C1(R). Also assume that K(ρ) integrates |y|2 and that b′(ρ) → b′,

c̃′(ρ) → c̃′ and K(ρ)g → Kg locally uniformly on R for all g ∈ C1(R). Write

P (ρ) for the distribution of X(ρ) (recall that it starts at x); then P (ρ) w→P .
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Chapter 5

Arithmetic-geometric hybrid

Brownian motion

The hybrid arithmetic-geometric hybrid Brownian motion process arises nat-

urally from the feedback model in the form

dXt = (µ1 − µ2Xt)dt+ σ1dW
1
t + σ2XtdW

2
t , t > 0, X0 = x, (5.1)

driven by the two Brownian motions (W 1
t ) and (W 2

t ), having a correlation

coefficient r ∈ (−1, 1). It is studied in Shaw & Schofield [102]. Let us define a

process W by setting

dWt =
σ1√

σ2
1 + 2rσ1σ2Xt + σ2

2X
2
t

dW 1
t +

σ2Xt√
σ2

1 + 2rσ1σ2Xt + σ2
2X

2
t

dW 2
t .

By Lévy’s characterization1 of Brownian motion, the process W above is a

Brownian motion. The hybrid SDE (5.1) can thus be written in the equivalent

form

dXt = (µ1 − µ2Xt)dt+
√

(σ2
1 + 2rσ1σ2Xt + σ2

2X
2
t ) dWt, t > 0, X0 = x.

(5.2)

Theorem 5 guarantees existence and uniqueness of a strong solution (Xt). This

process is a regular diffusion on the whole line I = (−∞,∞).

The parameters µ1 and µ2 are real, σ1 and σ2 are positive (nonzero to avoid

trivialities) and −1 ≤ r ≤ 1. With the usual notation

B(x) =

∫ x

0

2b(y)

σ2(y)
dy, x ∈ I,

1Lévy’s characteriztion of Brownian motion says the following. Let M be a continuous local martingale
with M0 = 0 and quadratic variation process [M ]t = t; then M is Brownian motion. See, for example,
Kallenberg [72] Theorem 18.3 or Klebaner [77] Theorem 7.32.
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we have in this case

B(x) = ν2

[
− arcsin(r) + arctan

(
x− η
x0

)]
− µ2

σ2
2

log

(
σ2(x)

σ2
1

)
,

where
ν = 2µ2

σ2
2

+ 1

ν2 = 2(rµ2σ1+µ1σ2)√
(1−r2)σ1σ2

2

x0 = σ1

σ2

√
1− r2

η = − r√
(1−r2)

x0 = −r σ1

σ2
.

(5.3)

Observe that for the expression inside the log function,

σ2(x)

σ2
1

= 1 +

(
x− η
x0

)2

.

5.1 Scale

The diffusion (5.2) has scale density

s(x) = e−B(x) = eν2 arcsin(r)

(
1 +

(x− η)2

x2
0

) ν−1
2

e
−ν2 arctan

(
x−η
x0

)
. (5.4)

The arctan function is bounded (taking values in (−π/2, π/2)) and it is easily

seen that the scale measure has finite mass if and only if 2(ν − 1)/2 < −1.

Thus, the scale measure is finite if and only if ν < 0.

5.2 Speed

The speed measure associated with (5.2) has Lebesgue density

m(x) =
2

σ2
1

e−ν2 arcsin(r)

(
1 +

(x− η)2

x2
0

)− ν+1
2

e
ν2 arctan

(
x−η
x0

)
. (5.5)

The speed measure is finite precisely if ν > 0, in which case an invariant

distribution exists.
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5.3 Boundary classification

The scale measure is finite at both endpoints if ν < 0 and infinite at both

endpoints if ν ≥ 0. Both boundaries are always natural, that is, the diffusing

particle can neither enter the state space from ±∞ nor reach ±∞ from the

interior of the state space.

5.4 Equilibria

The simplest way of calculating the density of the invariant distribution, when

it exists, is simply to normalise the speed density. We denote invariant distri-

butions, and their densities with respect to the Lebesgue measure, by π, i.e.

π(dx) = π(x)dx. These invariant distributions exist precisely when ν > 0.

• Symmetric case µ1 = r = 0. In this case, normalising the speed density

leads us to

π(x) =
Γ
(
ν+1

2

)
√
πΓ
(
ν
2

)
x0

(
1 +

x2

x2
0

)− ν+1
2

, x ∈ R. (5.6)

This is easily recognised as a scaled Student’s t-distribution, with ν de-

grees of freedom and scale parameter x0/
√
ν. If T is a Student random

variable with ν degrees of freedom, then the invariant distribution is the

distribution of x0T/
√
ν. It is well-known that this distribution has sig-

nificantly fatter tails than the normal distribution. Indeed it has only an

nth moment for n < ν.

Denoting by X a stochastic variable having this invariant distribution,

we have

EX = 0

E[X2] = var (X) =
x2

0

ν − 2

Of course, for ν > 3 it has zero skewness and, for ν > 4, an excess kurtosis

of

ex. kurtosis (X) =
6

ν − 4
.

• General case. For general values of the parameters µ1, µ2 ∈ R, σ1, σ2 >

0, −1 < r < 1, we find the invariant probability density

π(x) = C

(
1 +

(
x− η
x0

)2
)− ν+1

2

e
ν2 arctan

(
x−η
x0

)
, (5.7)
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where the normalising constant is2 given by

C =
Γ
(
ν+1

2

)
x0

√
πΓ
(
ν
2

) ∣∣∣∣∣Γ
(
ν+1−iν2

2

)
Γ
(
ν+1

2

) ∣∣∣∣∣
2

The invariant distribution belongs to the Pearson Type IV class of distri-

butions. It is a kind of skew-Student distribution. A useful guide to the

properties of the Pearson Type IV class of distributions is Heinrich [58].

We note here the first four moments:

1. For ν > 1, the mean exists and equals

m = EX = η +
ν2x0

ν − 1
.

2. For ν > 2, we can calculate the variance

σ2 = var (X) = η +
x2

0[(ν − 1)2 + ν2
2 ]

(ν − 1)2(ν − 2)
.

3. The standardized skewness is, for ν > 3,

s = E

[(
X −m
σ

)3
]

=
4ν2

(ν − 3)

√
ν − 2

(ν − 1)2 + ν2
2

.

4. The excess kurtosis is, for ν > 4,

κ− 3 = E

[(
X −m
σ

)4
]
− 3 =

6[(ν − 1)2(ν − 3) + (5ν − 11)ν2
2 ]

(ν − 3)(ν − 4)((ν − 1)2 + ν2
2)

.

5.5 Spectral classification

We consider only the simplest case with µ1 = r = 0, the model for which we

have exhibited a Student t equilibrium. In this case, the Lamperti transform

is

z(x) =
1

σ2

arsinh

(
x

x0

)
, x(z) = x0 sinh(σ2z), (5.8)

and direct application of Itô’s lemma yields the SDE

dZt = bZ(Zt)dt+ dWt

2Heinrich [58] and Jeffreys [69].
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for Zt = z(Xt), where

bZ(z) = −1

2
νσ2 tanh(σ2z).

The Schrödinger potential is Q(z) = U(x(z)) where

U(x) =
−2σ2

1σ
2
2ν + σ4

2ν
2x2

8(σ2
1 + σ2

2x
2)

which satisfies

U(±∞) =
σ2

2ν
2

8
.

Thus both endpoints ±∞ are oscillatory with the same cut-off −Λ = −σ2
2ν

2/8

and the process belongs to Linetsky’s spectral category III. The spectrum

consists of a (possibly empty) set of simple eigenvalues in [−σ2
2ν

2/8, 0] together

with an essential component contained in (−∞,−σ2
2ν

2/8]. The essential part

of the spectrum has multiplicity 2. Finally, because

lim
x→±∞

z2(x)(U(x)− Λ) = 0 > −1

4

the SL equation is nonoscillatory for λ = −Λ, which means that A has only

finitely many eigenvalues, all found in [−σ2
2ν/8, 0]. We note that 0 is an

eigenvalue in precisely those cases when an invariant distribution π exists, i.e.

when the speed measure is finite. This is equivalent, in this model, to the

condition ν > 0.

Writing x(z) = x0 sinh(z) in Q(z) = U(x(z)) leads us to the Schrödinger

potential

Q(z) = c0 +
c1

cosh2(σ2z)
,

c0 =
σ2

2ν
2

8
, c1 = −(2µ2 + 3σ2

2)ν

8

This is a special case of the modified Pöschl-Teller potential, see Grosche &

Steiner [56], pp244-245, especially equation (6.6.10).

5.6 Dynamic probabilities

Dynamic moment evolution

Writing mn(t) = E[Xn
t ], t ≥ 0, n ∈ N, we have from Shaw & Schofield [102]

ṁn(t)+(µ2n−
n(n− 1)

2
σ2

2)mn(t) =
n(n− 1)

2
σ2

1mn−2(t)+(µ1n+n(n−1)rσ1σ2)mn−1(t).

105



with m0 = 1, and mn(0) = 0, n ≥ 1. In particular,

EXt =
µ1

µ2

(1− e−µ2t).

The variance is easily written down in the case µ1 = r = 0:

var (Xt) =
σ2

1

(ν − 2)σ2
2

(1− e−σ2
2(ν−2)t). (5.9)

For ν = 2, the variance equals σ2
1t. This formula for the variance in the ν = 2

case was confirmed in Shaw & Schofield [102].

Knowing the conditional moments in full is useful for constructing estimat-

ing functions for estimation of the parameters from discretely sampled data.

However, we must be careful in this model whether these moments exist. Us-

ing the first moment involves tacitly assuming that ν > 1, and using second

moments, ν > 2. Historical data appear to support the latter assumption in

some, but not all, cases. If X0 = x, we have

m(x) = ExXt =
µ1

µ2

+

(
x− µ1

µ2

)
e−µ2t (5.10)

and, assuming that ν > 2,

q(x) = ExX2
t = h(x) + (x2 − h(x))e−(2µ2−σ2

2)t, (5.11)

where

h(x) =
2µ2

1/µ2 + σ2
1

2µ2 − σ2
2

− 2(µ1 − µ2x)

µ2 − σ2
2

.

Towards the transition densities

We consider only the symmetric case µ1 = r = 0. Thus, scale and speed

densities simplify to

s(x) =

(
1 +

(
x

x0

)2
) ν−1

2

, m(x) =
2

σ2
1

(
1 +

(
x

x0

)2
)− ν+1

2

. (5.12)

We have already noted that the Liouville transformation

z(x) =
1

σ2

arsinh

(
x

x0

)
, v(z) = u(x)/

√
σ(x)s(x), (5.13)
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takes the SL equation

1

2
σ2(x)u′′(x) + b(x)u′(x)− λu(x) = 0

to its Liouville normal form

1

2
v′′(z)−

(
λ+ c0 + c1sech2(σz)

)
v(z) = 0 (5.14)

where

c0 =
σ2

2ν
2

8
, c1 = −(2µ2 + 3σ2

2)ν

8
.

The solution of the equation in this form is well-known: the increasing and

descreasing solutions of this equation are, respectively

ψ̃λ(z) = P
−δ(λ)
ν/2 (tanh(−σ2z)), χ̃λ(z) = P

−δ(λ)
ν/2 (tanh(σ2z)), (5.15)

where we have used the notation

δ(λ) =

√
2λ

σ2
2

+
ν2

4
(5.16)

for the discriminant. It is easily checked that these are solutions; the difficulty,

that χ̃λ represents the decreasing solution, is the same as the result in section

1 of Vagurina [108] (where he uses the notation ϕ̃).

The corresponding solutions of the original SL equation are then found by

reversing the procedure of making these substitutions: u(x) = v(z(x))
√
σ(x)s(x).

We observe first that

ξ(x) = tanh(σ2z(x)) = tanh(arsinh(x/x0)) =
x/x0√

1 + (x/x0)2
∈ (−1, 1)

and

σ(x)s(x) = σ1

(
1 +

(
x

x0

)2
)ν/2

.

Note that ξ is strictly increasing, and is a bijection from R to (−1, 1). It

now follows that the fundamental increasing and decreasing solutions of the

SL equation (A− λ)u = 0 are

ψλ(x) =

(
1 +

(
x

x0

)2
)ν/4

P
−δ(λ)
ν/2

(
− x/x0√

1 + (x/x0)2

)
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and

χλ(x) =

(
1 +

(
x

x0

)2
)ν/4

P
−δ(λ)
ν/2

(
x/x0√

1 + (x/x0)2

)
respectively. The Wronskian is

wλ =
2 + 2δ + ν

2x0

[
P
−δ(λ)
ν/2 (ξ)P

−δ(λ)
ν/2+1(−ξ) + P

−δ(λ)
ν/2 (−ξ)P−δ(λ)

ν/2+1(ξ)
]
.

The general SL theory tells us that the Wronskian does not depend on x,

hence ξ, though this is not obvious from the formula. Obvious possibilities for

us are to consider ξ = 0 and ξ → 1. Taking ξ = 0 gives useful cancellations

for expressions for transitions from x = 0:

Gλ(0, y)m(y) =
2δ(λ)−1Γ

(
δ(λ)−ν/2

2

)
Γ
(

1+δ(λ)+ν/2
2

)
√
πσ1σ2

×

×

(
1 +

(
y

x0

)2
)− ν/2+1

2

P
−δ(λ)
ν/2 (|ξ(y)|),

which agrees with formula (110) in Shaw & Schofield [102]. Using instead from

Erdélyi et al. table 3.9.2 formulae (8) and (14) for the behaviour as ξ → 1 of

the Wronskian, we obtain

wλ =
2

x0Γ
(
δ(λ)− ν

2

)
Γ
(
δ(λ) + ν

2
+ 1
) (5.17)

which gives an expression for the Green function

Gλ(x, y) =


x0

2
Γ
(
ν
2

+ δ(λ) + 1
)

Γ
(
δ(λ)− ν

2

)(
1 +

(
x
x0

)2
)ν/4

×

×
(

1 +
(
y
x0

)2
)ν/4

P
−δ(λ)
ν/2 (−ξ(x∧))P

−δ(λ)
ν/2 (ξ(x ∨ y)).


(5.18)

Since the Green function is the integral kernel of the resolvent with respect to

the speed measure, we are actually interested in finding expressions for

Gλ(x, y)m(y) =


1

σ1σ2
Γ(δ(λ) + 1 + ν/2)Γ(δ(λ)− ν/2)

(
1 +

(
y
x0

)2
)−ν/4−1/2

×

×
(

1 +
(
x
x0

)2
)ν/4

P
−δ(λ)
ν/2 (−ξ(x∧y))P

−δ(λ)
ν/2 (ξ(x∨y)).


(5.19)

The Legendre functions P−δν/2(ξ) may be expressed in terms of Gauss’ hy-

pergeometric function (as indeed was the chosen representation in Shaw &
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Schofield [102]) via formula 3.4(6) in Erdélyi et al. [43]

P−δν/2(ξ) =
1

Γ(1 + δ)

(
1− ξ
1 + ξ

)δ/2
2F1

(
−ν/2, ν/2 + 1; 1 + δ;

1− ξ
2

)
.

We note first that we may write

1− ξ(x)

1 + ξ(x)
= e−2arsinh(x/x0).

Now certain special cases present themselves: the hypergeometric function

reduces to a polynomial if ν/2 is any integer. Its degree will then be{
ν/2 if ν ≥ 0

−ν/2− 1 if ν < 0.

We now conduct an analysis of these special cases.

(a) The case ν = 0.

This case could be solved directly from the Liouville normal form (5.14)

of the SL equation, because in this case c0 = c1 = 0 and

1

2
v′′(z)− λv(z) = 0.

We have

ψλ(x) = e
√

2λz(x), χλ(x) = e−
√

2λz(x)

and

Gλ(x, y)m(y) =
1√

2λ(σ2
1 + σ2

2y
2)

exp

(
−
√

2λ
|arsinh(y/x0)− arsinh(x/x0)|

σ2

)
.

Laplace transform inversion is easy3 in this case and gives us the closed-

form transition density

p(t;x, y) =
1√

2πt(σ2
1 + σ2

2y
2)

exp

(
−|arsinh(y/x0)− arsinh(x/x0)|2

2σ2
2t

)
.

We can just check that our more general formulae give the same thing

when the special case ν = 0 is considered. Since

P
−δ(λ)
0 (ξ(x)) =

exp (−δ(λ)arsinh(x/x0))

Γ(1 + δ(λ))
,

3Formula 29.3.84 in Abramowitz & Stegun [2]

109



(5.18) becomes in this case

Gλ(x, y) =
x0

2

Γ(1 + δ(λ))Γ(δ(λ))

Γ(δ(λ) + 1)Γ(δ(λ) + 1)
exp

(
−δ(λ)|arsinh(y/x0)−arsinh(x/x0)|

)
which reduces to the same Green function as above.

In terms of the Lamperti transform z and its inverse z−1 (see (5.8)), we

may write this

p(t;x, y) = pW (t; zx, zy)(z
−1)′(zy)

where zx denotes the position of the process z(X) when X is at x and pW

is the transition density of the standard Wiener process

pW (t; zx, zy) =
1√
t
ϕ

(
zy − zx√

t

)
.

So X = x0 sinh(σ2Z) for a Wiener process Z.

This leads us to some useful interpretations by Bougerol’s [22] identity.

First, Xt has the same distribution as x0B(At(Z)) for an independent

Brownian motion B and an Asian time-change

At(Z) =

∫ t

0

e2σ2Zudu.

Furthermore, using Vakeroudis [109] Corolloary 2.2 with µ = ν = 0 (due

to Alili et al. [3]) we can see that the process X has the form

Xt = σ1

∫ t

0

eσ2ZudBu.

In fact, by direct solution of the hybrid SDE (4.5) Shaw & Schofield were

able to replace the two Brownian motions B and Z in this formula with

the original ones W 1 and W 2 driving, respectively, the fundamentally and

technically motivated noise in the price process.

(b) The case ν = 2.

We begin by recalling that the speed measure is finite on R, and we have

an invariant distribution π which is Student’s t, with 2 degrees of freedom

and scale parameter x0/
√

2 (the variance is infinite). Now the Legendre

function of interest is

P−δ1 (ξ(x)) =
exp (−δarsinh(x/x0))

Γ(1 + δ)
2F1

(
−1, 2; 1 + δ;

1− ξ
2

)
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=
exp (−δarsinh(x/x0))

Γ(1 + δ)

(δ + ξ(x))

(1 + δ)
.

Put

δ(λ) =

√
2λ

σ2
2

+ 1.

We obtain

Gλ(x, y)m(y) =

√
1 + (x/x0)2 e

−δ(λ)
|z(x)−z(y)|

σ2

2x0 λ δ(λ)(1 + (y/x0)2)
[δ(λ)−ξ(x∧y)][δ(λ)+ξ(x∨y)].

With x = 0, this becomes

Gλ(0, y)m(y) =
exp

(
− δ(λ)|arsinh(y/x0)|

)
[δ(λ) + |ξ(y)|]

2x0λ

(
1 +

(
y
x0

)2
)

This is invertible explicitly. From this form of the integrand, we can per-

form the inversion by writing λ = (1/2)σ2
2(δ−1)(δ+1) in the denominator,

splitting the expression into two separate fractions and inverting using for-

mulae 29.3.88 and 29.2.14 from Abramowitz & Stegun [2]. The result is

p(t; 0, y) = e−
z2(y)

2t −
1
2σ

2
2t

√
2πσ2

1t

(
1+(y/x0)2

)
+ 1

2x0

(
1+(y/x0)2

)3/2

[
Φ
(
z(y)

σ2

√
t

+ σ2

√
t
)
− Φ

(
z(y)

σ2

√
t
− σ2

√
t
)]

(5.20)

where z is given in (5.13) and Φ is the standard normal distribution func-

tion.

(c) The case ν = 4.

The invariant distribution is Student’s t with four degrees of freedom and

scale parameter x0/2, which has mean 0, variance x2
0/2 and skewness 0.

In this case we define

δ(λ) =

√
2λ

σ2
2

+ 4.
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Suppressing the dependence on λ of δ in our notation, we have

Gλ(x, y)m(y) =


(

1+
(
x
x0

)2
)

exp

(
−δ|arsinh(x/x0)−arsinh(y/x0)|

)
σ1σ2(δ−2)5

(
1+
(
y
x0

)2
)3/2 ×

× [(δ2 − 1)− 3δξ(x) + 3ξ2(x)][(δ2 − 1) + 3δξ(y) + 3ξ2(y)]


for x, y ∈ R. Here, by (δ − 2)5, we meant the rising factorial

(δ − 2)5 = (δ − 2)(δ − 1) δ (δ + 1)(δ + 2) =
2λ

σ2
2

(
2λ

σ2
2

+ 3

)√
2λ

σ2
2

+ 4.

In the case x = 0 we have a cancellation of the second term on the right

with the polynomial in ξ(x) in the Green function. Thus,

Gλ(0, y)m(y) =
σ2 exp

(
− δ|arsinh(x/x0)− arsinh(y/x0)

)
2σ1λδ(λ)

(
1 +

(
y
x0

)2
)3/2

×

×[(δ2 − 1) + 3δ|ξ(y)|+ 3ξ2(y)].

(d) The case ν = −2.

In the case ν = −2, the hypergeometric function equals constant 1, and

Gλ(x, y) =
exp

(
− δ(λ)|arsinh(x/x0)− arsinh(y/x0)|

)
σ1σ2δ(λ)

√
1 +

(
x
x0

)2

This formula is easily invertible in closed form, and leads us to the transi-

tion density

p(t;x, y) =
e−

σ2
2
2
t√

2π(σ2
1 + σ2

2x
2)t

exp

−
(

arsinh(x/x0)− arsinh(y/x0)
)2

2σ2
2t


An exercise in elementary calculus shows that, as a function of y, this is a

pdf.

In terms of the Lamperti transform, we may write this

p(t;x, y) =
1√

2πt(σ2
1 + σ2

2x
2)
e
− 1

4t

[
((zy−zx)−σ2t)

2
+((zy−zx)+σ2t)

2
]
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Looking again at the result of Alili et al.[3] (Vakeroudis Corollary 2.2,

this time with µ = 1 and ν = 0) we recognise

Xt ∼ x0 sinh(Wσ2t + εσ2t)

where ε is a symmetric Bernoulli random variable taking values in {±1}.
The interpretation is then that the Bernoulli random variable decides

which way the momentum effects of the technical trading are going to push

the process X. The unconditional density is a mixture of two densities

moving apart at constant speed, one rightwards and the other leftwards,

as t increases.

(e) The case ν = −4.

Via the Legendre symmetry, we see that this case mirrors the ν = 2 case,

hence an explicit inversion is available for x = 0. This time,

δ(λ) =

√
2λ

σ2
2

+ 4 .

A little algebra leads us to the formula

Gλ(0, y)m(y) = u(y)e−k(y)δ(λ)

(
1 + |ξ(y)|
δ(λ)− 1

+
1− |ξ(y)|
δ(λ) + 1

)
where u(y) =

√
1 + (y/x0)2/(2σ1σ2) and k(y) = |arsinh(y/x0)| = σ2|z(y)|

(z begin given by (5.13)). Noting that

e−k(y)(1 + |ξ(y)|) = ek(y)(1− |ξ(y)|) = (cosh2(arsinh(|y|/x0)))1/2,

direct inversion (using again formulae 29.3.88 and 29.2.14 from Abramowitz

& Stegun [2]) leads us to the explicit formula

p(t; 0, y) = e−2σ2
2t

(√
1+(y/x0)2√

2πσ2
1t

e−
z2(y)

2t

+ e
1
2σ

2
2t

2x0

[
Φ
(
z(y)+σ2t√

t

)
− Φ

(
z(y)−σ2t√

t

)])
,

(5.21)

where Φ is the standard normal distribution function and z is given by

(5.13).
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Chapter 6

Arithmetic-Cox-Ingersoll-Ross

hybrid

The arithmetic-Cox-Ingersoll-Ross hybrid model is the solution of the SDE

dXt = (µ1 − µ2Xt)dt+ σ1dW
1
t +

√
|Xt|dW 2

t , t > 0, X0 = x, (6.1)

for two standard Wiener processes W 1 and W 2. For tractability, we consider

only the case in which W 1 and W 2 are uncorrelated, in which case we are

investigating the equivalent SDE

dXt = (µ1 − µ2Xt)dt+
√

(σ2
1 + σ2

2|Xt|)dWt, t > 0, X0 = x, (6.2)

where W is a standard Brownian motion by Lévy’s characterisation (see the

discussion at the beginning of chapter 5). This process is again a regular

diffusion on the whole real line I = (−∞,∞). By Theorem1 5, equation (6.2)

has a unique strong solution. The difficulties involved here stem from the

fact that the diffusion coefficient a(x) = σ2
1 + σ2

2|x| is not smooth at zero, and

solutions must be written down separately on (0,∞) and (−∞, 0), and junction

conditions imposed at zero. We shall not find closed-form expressions for the

transition density, but we can write down the Green function easily enough

in terms of confluent hypergeometric functions (section 2.6). The transition

operators and densities may therefore be approximated by means of (2.23)

with contour of integration (2.26).

Again, the parameters µ1 and µ2 are real, whilst σ1 and σ2 must be taken

1Note that the Hölder condition (2.14) is only just weak enough to be applicable here. The theorems
from other sources mentions in the introduction, subsection 1.5.2, are not sharp enough for this diffusion
coefficient.
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positive (nonzero to avoid trivialities). We have

B(x) = −ρ|x|+ c̃ log

(
1 +
|x|
x0

)
where the parameters associated with this process are

ρ = 2µ2

σ2
2
, x0 =

σ2
1

σ2
2
,

c̃ =

{
c =

2(µ2σ2
1+µ1σ2

2)

σ4
2

, x > 0,

ĉ =
2(µ2σ2

1−µ1σ2
2)

σ4
2

, x < 0,

z0 = ρx0 = 1
2
(c+ ĉ).

(6.3)

The symmetry condition µ1 = 0 results in the simplifications z0 = c = ĉ = c̃.

Observe that the rate parameter ρ always has the same sign as the technical

drift µ2.

6.1 Scale

The scale density is

s(x) = eρ|x|
(

1 +
|x|
x0

)−c̃
. (6.4)

The associated scale measure S on R is

• finite when µ2 < 0.

• infinite at both endpoints when µ2 > 0.

When µ2 = 0, we have

s(x) =


(

1 + x
x0

)−c
x > 0

(
1 + |x|

x0

)c
x < 0.

In these cases, the scale measure is always infinite at one of the endpoints;

however we note that it is:

• finite at the left endpoint (l = −∞) precisely if c < −1, i.e. µ1 < −σ2
2/2.

• finite at the right endpoint (r =∞) precisely if c > 1, i.e. µ1 > σ2
2/2.

When µ2 = 0 and c ∈ [−1, 1], the scale measure is infinite at both endpoints.

For µ1 = 0, the scale measure equals Lebesgue measure on R. This we should
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expect since our process is then just a stochastic integral with respect to a

standard Wiener process, making it a continuous local martingale.

6.2 Speed

From the formula

m(x) =
2

σ2(x)s(x)

we obtain the speed density of the hybrid arithmetic-CIR process

m(x) =
2

σ2
1

e−ρ|x|
(

1 +
|x|
x0

)c̃−1

. (6.5)

The speed measure is finite if µ2 > 0 and infinite if µ2 < 0. If µ2 = 0, then

the speed measure is

• finite at +∞ if and only if c < 0 i.e. µ1 < 0.

• finite at −∞ if and only if c > 0, i.e., µ1 > 0.

6.3 Boundary classification

We have seen that both boundaries are attracting if µ2 < 0 and neither are

if µ2 > 0. This is intuitive. µ2 < 0 refers to the momentum case, so that

once the returns start moving upwards towards +∞, it is then driven further

that way, and similarly if it starts moving towards −∞ its momentum forces

it downwards. In the case µ2 = 0, the overall direction of movement ceases to

be state space dependent and the drift term µ1 comes into play. The upper

boundary +∞ is attracting if and only if µ1 > σ2
2/2 and the lower boundary

−∞ is attracting if and only if µ1 < −σ2
2/2. We note that both boundaries are

natural boundaries in either case. In particular, even though the boundaries

can be attracting, they are never attainable.

6.4 Equilibria

Normalising the speed density in the case µ2 > 0, and keeping it continuous

at zero, the invariant distribution π has density

π(x) =

{
p ρc

Γ(c,ρx0)
e−ρ(x0+x)(x0 + x)c−1, x > 0,

q ρĉ

Γ(ĉ,ρx0)
e−ρ(x0+|x|)(x0 + |x|)ĉ−1, x < 0.

(6.6)
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where the probabilities attributed to (0,∞) and (−∞, 0) respectively are

p =
Γ(c, ρx0)

Γ(c, ρx0) + (ρx0)c−ĉΓ(ĉ, ρx0)
and q =

(ρx0)c−ĉΓ(ĉ, ρx0)

Γ(c, ρx0) + (ρx0)c−ĉΓ(ĉ, ρx0)
.

In the symmetric case c = ĉ, one has equal probabilities p = q = 1/2. p is

increasing with µ1.

To clarify the nature of the general invariant distribution, we make some

observations. The gamma distribution Gamma(c, ρ) has density

g(x; c, ρ) =
ρc

Γ(c)
e−ρxxc−1, x > 0,

where ρ > 0 is the rate parameter and c > 0 is the shape parameter. It has

survival function

Q(c, ρx) =
Γ(c, ρx)

Γ(c)
, x > 0

giving the probability of the interval (x,∞). If this distribution is then trun-

cated, by chopping off the interval (0, x0), shifting its left endpoint back to

zero and renormalising, one obtains the density

g(x; c, ρ, x0) =
ρc

Γ(c, ρx0)
e−ρ(x0+x)(x0 + x)c−1.

where the parameter is now a triple (c, ρ, x0) ∈ R× (0,∞)× (0,∞). Observe

that by truncating the distribution at x0, we no longer require the condition

c > 0 of integrability at zero. The invariant distribution π of the present

model is then a mixture of this truncated shifted Gamma(c, ρ, x0) distribution

on (0,∞), and a truncated shifted Gamma(ĉ,−ρ, x0), which is, by definition,

concentrated on (−∞, 0). (We define g(x; c,−ρ, x0) = g(−x; c, ρ, x0).)

From these considerations, the raw moments mk =
∫
R
xkπ(x)dx may be

easily calculated as

mk =
k∑
r=0

(
k

r

)
(−x0)k−r

ρr

[
(ρx0)ĉ−cΓ(c+ r, ρx0) + (−1)kΓ(ĉ+ r, ρx0)

(ρx0)ĉ−cΓ(c, ρx0) + Γ(ĉ, ρx0)

]
.

(6.7)

In particular we note that when we are in the symmetric case µ1 = 0, then

c = ĉ and mk = 0 when k is odd and

mk =
k∑
r=0

(
k

r

)
(−x0)k−rΓ(c+ r, ρx0)

ρrΓ(c, ρx0)
.
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6.5 Liouville transformation

We begin by finding the Lamperti transform of X, so that the transformed

process Z = z(X) has unit diffusion coefficient. The appropriate transform is

z(x) =


2
σ2

2
(
√

(σ2
1 + σ2

2x)− σ1), x ≥ 0,

− 2
σ2

2
(
√

(σ2
1 − σ2

2x)− σ1), x ≤ 0.

The inverse transform is given by

x(z) =


σ1z + 1

4
σ2

2z
2, z ≥ 0,

σ1z − 1
4
σ2

2z
2, z ≤ 0.

Note that sgn(z(x)) = sgn(x) for all x ∈ R. The drift coefficient of Z in

dZt = bZ(Zt)dt+ dWt

is given by

bZ(z) =


(µ1− 1

4
σ2

2)−µ2σ1z− 1
4
µ2σ2

2z
2

σ1+ 1
2
σ2

2z
, z ≥ 0

(µ1+ 1
4
σ2

2)−µ2σ1z+
1
4
µ2σ2

2z
2

σ1− 1
2
σ2

2z
, z ≤ 0

The Schrödinger potential in this case is Q(z) = U(x(z)), where

U(x) =
1

32σ2(x)


A+Bx+ Cx2, x ≥ 0,

Â+Bx+ Cx2, x ≤ 0,

A = 16µ2
1 − 16µ2σ

2
1 − 16µ1σ

2
2 + 3σ4

2, Â = 16µ2
1 − 16µ2σ

2
1 + 16µ1σ

2
2 + 3σ4

2,

B = −32µ1µ2, C = 16µ2
2.

Assume that µ2 6= 0. Then, although z(R) = R, we have U(±∞) =∞ which

means that the boundaries ±∞ are both non-oscillatory and our process falls

into Linetsky’s spectral category I. The spectrum is discrete, with a strictly

decreasing sequence of eigenvalues of A accumulating at −∞.

In the special case µ2 = 0, we have U(±∞) = 0, which means that the pro-

cess is spectral category III. The spectrum is purely continuous, and contained

in (−∞, 0]. The SL equation is oscillatory for λ ∈ (−∞, 0) and non-oscillatory

in [0,∞). We shall find that, as a function of the spectral parameter λ, the
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Green function has a branch cut along the negative half-line.

6.6 Dynamic probabilities

This time the dynamic moment evolution is not so tractable as it was for

the arithmetic-geometric hybrid. However, we may still write down the first

moment

EXt =
µ1

µ2

(1− e−µ2t).

We move on to obtaining expressions for the transition densities. The case

µ1 = 0 is notationally simplest, and for this reason we shall study it in detail.

Expressions for the general case are obtained in essentially the same way, but

the formulae are lengthier, because the transformation2

z(x) = ρ(x0 + |x|)

works differently on the separate intervals (−∞, 0) and (0,∞).

Mean-reverting case µ2 > 0.

The SL equation (A− λ)u = 0 is solved by the functions

M

(
λ

µ2

, c, ρ(x0 + |x|)
)

and U

(
λ

µ2

, c, ρ(x0 + |x|)
)

where M(a, c, z) and U(a, c, z) are Kummer’s and Tricomi’s confluent hyperge-

ometric functions respectively (see Abramowitz & Stegun [2] for this standard

notation). For abbreviation, we shall write

M(λ, x) = M

(
λ

µ2

, c, ρ(x0 + x)

)
, U(λ, x) = U

(
λ

µ2

, c, ρ(x0 + x)

)
.

The function U(a, c, z) then equals 0 at z = +∞ (i.e. x = ±∞), and we choose

the fundamental solutions of the SL equation as follows:

ψλ(x) =

{
U(λ,−x), x ≤ 0

C1(λ)M(λ, x) + C2(λ)U(λ, x), x ≥ 0

where the constants C1(λ) and C2(λ) are chosen so that ψλ is a continuously

differentiable function on R (i.e. choose the constants so that ψλ and ψ′λ are

2This is not the Lamperti transform.
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continuous at zero). Because of the symmetry µ1 = 0, we may take also

χλ(x) = ψλ(−x), x ∈ R.

The formulae given above must be modified in the general case µ1 ∈ R, since

the parameter c must be exchanged for ĉ when constructing these solutions on

(−∞, 0).

Next, we denote the classical Wronskian at zero

Wλ = M ′(λ, 0)U(λ, 0)−M(λ, 0)U ′(λ, 0).

Since, with our normalisation of the scale density, s(0) = 1, we have wλ =

WλC1(λ) for the scaled Wronskian (2.21). The constants are all given by

C1(λ) = W−1
λ [−2U(λ, 0)U ′(λ, 0)], (6.8)

C2(λ) = W−1
λ [M ′(λ, 0)U(λ, 0) +M(λ, 0)U ′(λ, 0)], (6.9)

Wλ = ρ
Γ(c)

Γ
(
λ
µ2

)eρx0(ρx0)−c. (6.10)

For the Green function, there are six cases, dependent upon the relative po-

sitions on the real line of the three points x, y and 0, though because of the

symmetries Gλ(x, y) = Gλ(y, x) and Gλ(x, y) = Gλ(x,−y), there are only re-

ally two cases that need to be computed, when 0 lies between x and y and

when both x and y are to one side of 0. For x > 0, we have

Gλ(x, y) =



U(λ,x)U(λ,−y)
−2U(λ,0)U ′(λ,0)

, y ≤ 0,

[C1(λ)M(λ,y)+C2(λ)U(λ,y)]U(λ,x)
−2U(λ,0)U ′(λ,0)

, 0 ≤ y ≤ x,

[C1(λ)M(λ,x)+C2(λ)U(λ,x)]U(λ,y)
−2U(λ,0)U ′(λ,0)

, x ≤ y,

(6.11)

and for x < 0,

Gλ(x, y) =



[C1(λ)M(λ,−x)+C2(λ)U(λ,−x)]U(λ,−y)
−2U(λ,0)U ′(λ,0)

, y ≤ x,

[C1(λ)M(λ,−y)+C2(λ)U(λ,−y)]U(λ,−x)
−2U(λ,0)U ′(λ,0)

, x ≤ y ≤ 0,

U(λ,−x)U(λ,y)
−2U(λ,0)U ′(λ,0)

, y ≥ 0,

(6.12)
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where the expression in the denominator is

−2U(λ, 0)U ′(λ, 0) = C1(λ)Wλ =
2ρ

µ2

λU

(
λ

µ2

, c, c

)
U

(
λ

µ2

+ 1, c+ 1, c

)
.

(6.13)

These formulae are also all valid for x = 0, though since this case leads to

considerable simplification in the formulae, we quote it separately. We have

Gλ(0, y) =
µ2

2ρ

U
(
λ
µ2
, c, ρ(x0 + |y|)

)
λU
(
λ
µ2

+ 1, c+ 1, c
) . (6.14)

or

Gλ(0, y)m(y) =
1

2xc0

e−ρ|y|(x0 + |y|)c−1U
(
λ
µ2
, c, ρ(x0 + |y|)

)
λU
(
λ
µ2

+ 1, c+ 1, c
)

From this, the eigenfunction expansion of the conditional density of Xt given

X0 = 0 is

p(t; 0, y) =
∑
n

rne
−λntU

(
−λn
µ2

, c, ρ(x0 + |y|)
)
e−ρ|y|(x0 + |y|)c−1. (6.15)

Here −λn are the zeros of the function λ 7→ λU(λ/µ2 + 1, c + 1, c) and rn

are constants which can be determined by contour integration around the

eigenvalue −λn:

rn =
1

2πi

∫
∂B(−λn,ε)

1

2xc0λU
(
λ
µ2

+ 1, c+ 1, c
) dλ

As t → ∞, the contributions of higher terms decreases fast, and we are left

mainly with the invariant distribution, which corresponds to the n = 0 term.

Momentum case µ2 < 0

In the momentum case, we introduce the positive rate parameter β = −ρ
and the variable ζ = −z = β(x0 + |x|). Again assume µ1 = 0, so that

c = −βx0 = −ζ0. The analysis can proceed analogously to the mean-reverting

case using instead the functions

M̂(λ, x) = e−β|x|M(c− λ/µ2, c, ζ), Û(λ, x) = e−β|x|U(c− λ/µ2, c, ζ).

The expression for the Green function in this case is
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(a) for x > 0,

Gλ(x, y) =



Û(λ,x)Û(λ,−y)

−2Û(λ,0)Û ′(λ,0)
y ≤ 0

Û(λ,x)[Ĉ1(λ)M̂(λ,y)+Ĉ2(λ)Û(λ,y)]

−2Û(λ,0)Û ′(λ,0)
, 0 ≤ y ≤ x

[Ĉ1(λ)M̂(λ,x)+Ĉ2Û(λ,x)]Û(λ,y)

−2Û(λ,0)Û ′(λ,0)
x ≤ y;

(6.16)

(b) for x < 0, similarly

Gλ(x, y) =



[Ĉ1(λ)M̂(λ,−x)+Ĉ2Û(λ,−x)]Û(λ,−y)

−2Û(λ,0)Û ′(λ,0)
y ≤ x

Û(λ,−x)[Ĉ1(λ)M̂(λ,−y)+Ĉ2(λ)Û(λ,−y)]

−2Û(λ,0)Û ′(λ,0)
, x ≤ y ≤ 0

Û(λ,−x)Û(λ,y)

−2Û(λ,0)Û ′(λ,0)
y ≥ 0;

(6.17)

where this time, (note: βx0 = −c)

−2Û(λ, 0)Û ′(λ, 0) = 2βU

(
c− λ

µ2

, c,−c
)
U

(
c− λ

µ2

, c+ 1,−c
)

(6.18)

Ĉ1(λ) = Ŵ−1
λ [−2Û(λ, 0)Û ′(λ, 0)] (6.19)

Ĉ2(λ) = Ŵ−1
λ [M̂ ′(λ, 0)Û(λ, 0) + M̂(λ, 0)Û ′(λ, 0)] (6.20)

Ŵλ = β
Γ(c)

Γ
(
λ
µ2

)eβx0(βx0)−c (6.21)

Comparing with (6.13), we are missing the factor λ in (6.18), so 0 /∈ σ(A).

The spectrum is σ(A) = (−λn)n≥1, where 0 < λ1 < λ2 < · · ·, consisting of the

zeros of the functions U(c− λ/µ2, c,−c) and U(c− λ/µ2, c+ 1,−c) of λ. Note

that, in the case x = 0, these expressions simplify to

Gλ(0, y) =
e−β|y|U

(
c− λ

µ2
, c, β(x0 + |y|)

)
2βU

(
c− λ

µ2
, c+ 1,−c

) (6.22)

or

Gλ(0, y)m(y) =
(x0 + |y|)c−1U

(
c− λ

µ2
, c, β(x0 + |y|)

)
2|µ2|xc0 U

(
c− λ

µ2
, c+ 1,−c

) .
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The eigenfunction expansion of the conditional density of Xt given X0 = 0 is

then

p(t; 0, y) =
∑

nrne
−λntU

(
c+

λn
µ2

, c, β(x0 + |y|)
)

(x0 + |y|)−β−1 (6.23)

where the λn are zeros of the function λ 7→ U(c − λ/µ2, c + 1,−c) and rn

are constants which can be determined by contour integration around each

eigenvalue −λn. Zero is not an eigenvalue: as t increases, the contribution of

all terms for fixed y ∈ R converges to zero because, eventually, all probability

mass escapes any bounded interval.

Borderline case µ2 = 0

In the case µ2 = 0, the solution of the SL equation is more conveniently ex-

pressed in terms of Bessel functions, rather than the confluent hypergeometric

functions. For this case, we remove our symmetry assumption µ1 = 0. Recall

that

c =
2µ1

σ2
2

, s(x) =

(
1 +

x

x0

)−c sgn(x)

, m(x) =
2

σ2
1

(
1 +

x

x0

)c sgn(x)−1

.

The first fundamental solution of the equation

Au(x) :=
1

2
(σ2

1 + σ2
2|x|)u′′(x) + µ1u

′(x) = λu(x)

is given by

ψλ(x) =


(σ(x))1+cKc+1(zx(λ)) x ≤ 0

(σ(x))1−c[C1(λ)Ic−1(zx(λ)) + C2(λ)Kc−1(zx(λ))] x ≥ 0

where

zx(λ) =
2

σ2
2

√
2λ σ(x), (6.24)

C1(λ) =
2

σ2
2

√
2λ σ2c+1

1 [Kc−1(z0(λ)) +Kc+1(z0(λ))]Kc(z0(λ)), (6.25)

C2(λ) =
2

σ2
2

√
2λ σ2c+1

1 [Ic(z0(λ))Kc+1(z0(λ))− Ic−1(z0(λ))Kc(z0(λ))],(6.26)

and where Iν(z) and Kν(z) refer respectively to the modified Bessel functions

of the first and second kinds respectively: see Abramowitz & Stegun [2] for

this standard notation. The second fundamental solution of the SL equation
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is

χλ(x) = ψλ(−x), x ∈ R.

In this case, the scaled Wronskian is the function of only λ given by

wλ = 2σ2c+1
1

√
2λ Kc(z0(λ))Kc+1(z0(λ)). (6.27)

We then obtain a Green function in the cases

(a) x ≤ 0,

Gλ(x, y) =



(
1− x

x0

) 1−c
2 [C1(λ)Ic−1(zx(λ))+C2(λ)Kc−1(zx(λ))]

(
1− y

x0

) 1+c
2 K1+c(zy(λ))

2σ2c−1
1

√
2λ Kc(z0(λ))Kc+1(z0(λ))

, (i)

(
1− x

x0

) 1+c
2 K1+c(zx(λ))

(
1− y

x0

) 1−c
2 [C1(λ)Ic−1(zy(λ))+C2(λ)Kc−1(zy(λ))]

2σ2c−1
1

√
2λ Kc(z0(λ))Kc+1(z0(λ))

, (ii)

σ1

2

(
1− x

x0

) 1+c
2 K1+c(zx(λ))

(
1+ y

x0

) 1+c
2 K1+c(zy(λ))

√
2λ Kc(z0(λ))Kc+1(z0(λ))

, (iii);

(6.28)

in the cases

(i) y ≤ x,

(ii) x ≤ y ≤ 0,

(iii) y ≥ 0.

(b) x ≥ 0

Gλ(x, y) =



(
1+ x

x0

) 1+c
2 K1+c(zx(λ))

(
1− y

x0

) 1+c
2 K1+c(zy(λ))

2σ2c−1
1

√
2λ Kc(z0(λ))Kc+1(z0(λ))

, (i)

(
1+ x

x0

) 1+c
2 K1+c(zx(λ))

(
1+ y

x0

) 1−c
2 [C1(λ)Ic−1(zy(λ))+C2(λ)Kc−1(zy(λ))]

2σ2c−1
1

√
2λ Kc(z0(λ))Kc+1(z0(λ))

, (ii)

(
1+ x

x0

) 1−c
2 [C1(λ)Ic−1(zx(λ))+C2(λ)Kc−1(zx(λ))]

(
1+ y

x0

) 1+c
2 K1+c(zy(λ))

2σ2c+2
1

√
2λ Kc(z0(λ))Kc+1(z0(λ))

, (iii)

in each of the cases

(i) y ≤ 0,

(ii) 0 ≤ y ≤ x,

(iii) y ≥ x.

124



(c) In particular, for x = 0, we can write

Gλ(0, y) =
1

2
σ1

(
1 + |y|

x0

) 1+c
2
K1+c(zy(λ))

√
2λ Kc(z0(λ))

(6.29)

and

Gλ(0, y)m(y) =
x
c+1

2
0 (x0 + |y|)− c+1

2 K1+c(2δ(λ)
√
x0 + |y|)

σ1σ2δ(λ)Kc(2δ(λ)
√
x0)

(6.30)

where

δ(λ) =

√
2λ

σ2
2

6.7 Risk measures

6.7.1 Stationary VaR and ES

To calculate the VaR and ES for the invariant distribution (6.6), we work out

first how to calculate them for a gamma distribution. Let γ be Gamma(c, ρ)

distributed. The tail probabilities are by definition

G(x; c, ρ) = Q(c, ρx) =
Γ(c, ρx)

Γ(c)
, (6.31)

and the quantile function is therefore

VaRα(γ) = G−1(α; c, ρ) = ρ−1Q−1(c, 1− α), (6.32)

where the inverse function Q−1 is known, and implementable for example in

Mathematica as InverseGammaRegularized. Denoting this quantity ξα, we

have3

ESα(γ) =
1

ρ

[
c+

ξαg(ξα; c, ρ)

1− α

]
, (6.33)

where g(·; c, ρ) is the pdf of γ.

Suppose now that X is a random variable with the density x 7→ π(−x),

where π is given by (6.6), representing the loss made on an investment (with a

profit made if X < 0). Conditional on making a loss (an event with probability

q), the distribution of X is a left shifted gamma distribution with parameters

ĉ, λ and x0. Therefore, at a given probability level α, the VaR of X is just the

VaR of the left truncated gamma distribution at the level α/q, then relocated

3Klugman et al. [78]
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by subtracting x0. We have

VaRα(X) = ξα = ρ−1Q−1

(
ĉ,

(
1− α
q

)
Q(ĉ, ρx0)

)
− x0. (6.34)

A calculation then shows that ES for this distribution is given by

ESα(X) =
1

ρ

[
ĉ+

(x0 + ξα)g(x0 + ξα; ĉ, ρ)

Q(ĉ, ρ(x0 + ξα))
− ρx0

]
. (6.35)

6.7.2 Dynamic VaR and ES

We would like to know (2.23) for

uk(x) = 1(−∞,−ξ)(x) · (−x)k, for ξ > 0 and small k ∈ Z+. (6.36)

Finding the VaR is the problem of calculating the value of ξ for which Ptu0(x) =

α. Once that is calculated, ESα(Xt) = Ptu1(x)/(1−α) when ξ in (6.36) is the

VaR. Higher values of k give higher conditional moments, which can be used

to give more detailed information about the behaviour of the distribution in

the left tail.

Mean-reverting case µ2 > 0

The first step is to find Rλu(x). From (2.29), a calculation gives

Rλu0(x) =
1

2
e−ρξ

(
1 +

ξ

x0

)c U(λ, x)U
(
λ
µ2

+ 1, c+ 1, ρ(x0 + ξ)
)

λU(λ, 0)U
(
λ
µ2

+ 1, c+ 1, c
) . (6.37)

The probability P x{Xt < −ξ} is then found by (2.23), and when the probabil-

ity α is given the VaR is the inversion problem of finding ξ so that Ptu(x) = α.

An integration by parts, again using (2.30) yields the relevant integral for

the expected shortfall:

∫ −ξ
−∞ (−y)

1

2xc0
eρy(x0 − y)c−1U

(
λ

µ2

, c, ρ(x0 − y)

)
dy

=
1

2
e−ρξ

(
1 +

ξ

x0

)c [
ξU

(
λ

µ2

+ 1, c+ 1, η

)
+ (x0 + ξ)U

(
λ

µ2

+ 2, c+ 2, η

)]
where η = ρ(x0 + ξ). If ξ > 0 is the value-at-risk at a certain level α, then the

ES is calculated as Ptu1(x). The resolvent Rλu1(x) is found now by multiplying
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the above expression by

U
(
λ
µ2
, c, ρ(x0 + x)

)
λU
(
λ
µ2
, c, c

)
U
(
λ
µ2

+ 1, c+ 1, c
) .

Then the ES may be evaluated numerically via (2.23). A little simplification

occurs when x = 0. It is the function

λ 7→ 1

2
e−ρξ

(
1 +

ξ

x0

)c
×

×

[
ξU
(
λ
µ2
, c+ 1, ρ(x0 + ξ)

)
+ (x0 + ξ)U

(
λ
µ2

+ 2, c+ 2, ρ(x0 + ξ)
)]

λU
(
λ
µ2

+ 1, c+ 1, c
)

on which we must perform the Laplace transform inversion (2.23). The ex-

pected shortfall is then found by dividing by (1− α).

For higher powers k, one may use∫ −ξ
−∞

(−y)k
1

2xc0
eρy(x0 − y)c−1U

(
λ

µ2

, c, ρ(x0 − y)

)
dy

=
eρx0

2xc0ρ
c+k

∫ ∞
ρ(x0+ξ)

(z − ρx0)ke−zzc−1U

(
λ

µ2

, c, z

)
dz. (6.38)

which can be integrated by parts.

As a final note, (6.38) may be used to find the variance of this distribution.

Taking ξ = 0 and k = 2, repeated integration by parts leads to

∫ 0

−∞
ykGλ(0, y)m(y) dy =

x2
0U
(
λ
µ2

+ 3, c+ 3, c
)

λU
(
λ
µ2

+ 1, c+ 1, c
) . (6.39)

Because of the symmetry, the same integral over (0,∞) is the same. Therefore,

the variance may be found as

var (Xt) = E0[X2
t ] = 2x2

0

1

2πi

∫
C
eλt

U
(
λ
µ2

+ 3, c+ 3, c
)

λU
(
λ
µ2

+ 1, c+ 1, c
) dλ. (6.40)

Momentum trading µ2 < 0

We have not found useful expressions for VaR and ES in this case. The reason

for this is that the speed measure is not finite in any neighbourhood of −∞
and, therefore, the functions uk defined in (6.36) do not belong to the Hilbert
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space L2(I,m) in which we are working, so the resolvent operators Rλ may

not be applied to uk. This does not mean that the VaR or ES are not defined.

It means that our approach of performing the y-integration first, followed by

the numerical Laplace transform is not valid. Instead the transition density

must be obtained first, via the numerical integration (2.24) using (6.29). The

VaR and ES are finally computed by integration in the y-domain.

Borderline case µ2 = 0

The same difficulty is present in the borderline cases with µ1 ≤ 0, but when

µ1 > 0, the speed measure is finite in every neighbourhood of −∞ which is

not also a neighbourhood of +∞. We recall that

m(x) =
2

σ2
2


(

1 + x
x0

)c−1

, x ≤ 0,(
1− x

x0

)−c−1

, x ≤ 0.

Therefore, u0 ∈ L2(R,m) and we may calculate the probability of such a

neighbourhood by first integrating the Green function over it, then performing

the numerical Laplace transform inversion. If in addition c > 1, i.e. µ1 > σ2
2/2,

then also u1 ∈ L2(R,m).

With the notation

δ(λ) =

√
2λ

σ2
2

that we introduced in (6.30), we have∫ −ξ
−∞Gλ(0, y)m(y)dy

=
x

1+c
2

0 (x0+ξ)−c/2

{
2Γ(1+c)Kc(2δ(λ)(x0+ξ))+ π

sin(πc)
[δ(λ)(x0+ξ)]

c
}

2σ1σ2Γ(1+c)δ(λ)Kc(2δ(λ)
√
x0)

and ∫ −ξ
−∞ yGλ(0, y)m(y)dy

=

x
c+1

2
0



(1+c)π
sin(πc)

(
δ(λ)
√
x0 + ξ

)c(
c+ x0δ

2(λ)
)

−2Γ(c+ 2)δ(λ)
[√

x0 + ξKc−1(2δ(λ)
√
x0 + ξ)

+ξδ(λ)Kc(2δ(λ)
√
x0 + ξ)

]


2(x0+ξ)c/2σ1σ2Γ(c+2)δ4(λ)Kc(2δ(λ)
√
x0)

Note that, in this case, the function y 7→ y2 never belongs to L2(R,m), so the

variance cannot be evaluated in this way.
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Chapter 7

Model fitting and parameter

estimation

Now it is time to consider the problem of estimating the parameters of these

models from historical data. We begin by performing a classical maximum

likelihood estimation on daily returns, treating them as i.i.d. This allows a

comparison between competing models, although it is limited in that it ignores

dependency between successive observations. We fit the data to the invariant

distributions from either model (given by (5.6) and (6.6)), also comparing with

a fitted Gaussian distribution and also a fitted Gaussian mixture with random

volatility. In the latter model, the volatility may take one of two values, σ1 or

σ2 and we denote this mixture distribution

GMix(µ, σ2
1, σ

2
2, θ) = θN(µ, σ2

1) + (1− θ)N(µ, σ2
2).

The data are the same seven world indices used in the introduction for the

Jarque-Bera test. This time, the observations are the daily returns between

2nd January 2001 and 31st December 2012. To understand why we might

like to fit non-constant volatility, look at figure 7.1. The absolute returns of

three of these indices have been plotted against time and we see in this figure

periods of high volatility and low volatility, the low volatility appearing to

occur between 2004 and 2007.

The findings of the likelihood test are presented in table 7.1. The likeli-

hood functions are denoted LT , LΓ, LG and LGM respectively for the aBm-

gBm invariant distribution (5.6), the aBm-CIR invariant distribution (6.6), the

Gaussian model N(µ, σ2) and the mixture of Gaussians GMix(µ, σ2
1, σ

2
2, θ). We

observe that the Gaussian mixture gives a much better fit than the constant-

vol Gaussian, but is in every given case beaten by at least one of the Student’s
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Figure 7.1: Absolute returns of seven world indices between 2001 and 2013
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Table 7.1: Maximum log-likelihood, AIC and BIC per observation of Gaussian, Student’s
t, hybrid gamma and Gaussian mixture distributions fitted to seven financial time-series,

running between 01/01/2001 and 31/12/2012. The best fit for each series is shown in bold.
(Numbers are shown to 3 d.p. - no two of the numbers are actually equal.)

Criterion Distribution
(quantity per

Index observation) Gaussian t Hybrid gamma Gaussian mixture
Log-likelihood 2.922 3.027 3.022 3.022

FTSE 100 AIC -5.842 -6.052 -6.042 -6.042
(N = 3029) BIC -5.838 -6.046 -6.036 -6.034

Log-likelihood 2.889 3.023 3.022 3.014
S&P 5000 AIC -5.777 -6.044 -6.043 -6.025
(N = 3016) BIC -5.773 -6.038 -6.037 -6.017

Log-likelihood 2.699 2.785 2.787 2.783
DAX AIC -5.397 -5.567 -5.573 -5.563
(N = 3060) BIC -5.393 -5.562 -5.567 -5.555

Log-likelihood 2.732 2.820 2.817 2.817
Cac 40 AIC -5.462 -5.638 -5.631 -5.632
(N = 3070) BIC -5.459 -5.632 -5.626 -5.624

Log-likelihood 2.725 2.838 2.842 2.826
Hang Seng AIC -5.449 -5.673 -5.682 -5.648
(N = 2996) BIC -5.445 -5.667 -5.676 -5.640

Log-likelihood 2.731 2.807 2.777 2.804
Nikkei 225 AIC -5.461 -5.612 -5.551 -5.605
(N = 2943) BIC -5.457 -5.606 -5.545 -5.597

Log-likelihood 2.550 2.603 2.598 2.601
BVSP AIC -5.098 -5.205 -5.193 -5.200
(N = 2965) BIC -5.094 -5.199 -5.187 -5.191

t-distribution and the hybrid gamma distribution.

We should note that the usual Gaussian model with constant volatility has

only two parameters, our invariant distributions (5.6) and (6.6) have three

parameters, while the Gaussian mixture has four. We quote the values of

the information criteria defined in (2.39) also for these models fitted to these

datasets, but note that with such a large sample size relative to the number of

parameters, the conclusions we reach are the same as if we just use maximum

likelihood. In most cases, the equilibrium distribution arising in the hybrid

aBm-gBm fits best, in the other cases, it is that arising from the hybrid aBm-

CIR process.

These likelihoods were maximized over the whole parameter space, so the

values of the parameters for which they were largest provide us with an es-

timate of the actual parameter values. However, this does not complete the

parameter estimation problem for these models because, while the dynamic

models (5.1) and (6.1) are four-parameter model (take correlation r = 0 in
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(5.1)), their equilibria have only three free parameters, the other one from the

dynamic model describing the rate at which the process approaches its equi-

librium. (Note also that fitting the invariant distribution from the diffusion

model automatically assumes µ2 > 0.)

To complete the parameter estimation, I therefore suggest using a linear

estimating function to obtain the parameters in the drift coefficient as follows.

Recall from section 2.8.2 that the usual construction of a martingale estimating

function is

FN(θ) =
N∑
n=1

f(Yn−1, Yn, θ), where f(x, y, θ) = a(x, θ)h(x, y, θ),

a being a (matrix-valued) weight function, h a function satisfying the condi-

tional moment condition∫
R

h(x, y, θ)p(∆;x, y, θ)dy = 0.

Normally one chooses h(x, y, θ) = g(y, θ) − Ex
θ [g(Y1, θ)], to ensure that the

conditional moment condition is satisfied. If we choose g linear in y, we call FN

a linear estimating function; this method is applicable if the first conditional

moment is known in closed form. Indeed, we choose

h(x, y, θ) = y −m(x, θ)

where

m(x, θ) = Ex
θX∆ =

µ1

µ2

+

(
x− µ1

µ2

)
e−µ2t

is the conditional mean of X∆. We know m(x, θ) in closed form just because of

the simple form of the drift coefficient b(x, θ) in (5.1) and(6.1). Here ∆ > 0 is

the fixed time-lag between observations, taken in our data as 1/252 for daily

returns. To simplify matters, the weight matrix may be taken as a(x, θ) =

(1,−x, 0, 0)T , which means that it does not depend on θ, and that we are only

considering estimating the parameters occurring in the top two lines of the

equation FN(θ) = 0. (This is a system of four equations in four unknowns,

but we have reduced it to a system of two equations in two unknowns.)

Consider the time-series Y = (Yn) = (Xn∆) for the fixed time-lag ∆. We

may estimate the parameters µ1 and µ2 in the drift coefficient for Y . We

may also relocate the time-series, and perform the estimation for the time-

series Y − b = (Y0 − b, Y1 − b, . . . , YN − b) where b is a location parameter. b

then determines µ1, leaving µ2 unaffected. This allows us to justify using a
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Model Parameters Descriptive Parameters
Index b µ2 σ1 σ2 ν x0

FTSE 100 -0.18 0.97 0.01 0.98 3.03 0.01
S & P 500 -0.08 0.87 0.01 1.03 2.63 0.01

DAX -0.13 0.4 0.01 0.62 3.07 0.02
Cac 40 -0.42 0.84 0.02 0.86 3.27 0.02

Hang Seng 0.21 0.29 0.01 0.54 3.01 0.02
N225 -0.24 0.64 0.01 0.63 4.26 0.02
BVSP 1.65 0.13 0.01 0.27 4.66 0.03

Table 7.2: Preliminary estimates of the parameters in the aBm-gBm model

Model Parameters Descriptive Parameters
Index b µ2 σ1 σ2 ρ c x0

FTSE 100 -0.18 0.97 0.01 0.13 110.21 0.98 0.01
S& P 500 -0.08 0.87 0.01 0.14 84.19 0.50 0.01

DAX -0.13 0.4 0.01 0.10 86.30 0.95 0.01
Cac 40 -0.42 0.84 0.01 0.13 95.76 1.14 0.01

Hang Seng 0.21 0.29 0.01 0.09 80.88 0.70 0.01
N225 -0.24 0.64 0.02 0.09 162.45 6.08 0.04
BVSP 1.65 0.13 0.01 0.05 111.56 2.78 0.02

Table 7.3: Preliminary estimates of the parameters in the aBm-CIR model

model we have formulae for, by choosing b to fix µ1 = 0. (We have invariably

found that estimates of the parameter µ = µ1/µ2 in the static estimation are

extremely small, which is consistent with this modification.) Combining this

method for the drift and the static estimation for the remaining parameters,

we can come up with the preliminary estimates of all the parameters shown

in tables 7.2 and 7.3.

Since the parameter estimation has presented difficulties that have not so

far been overcome, I suggest that the estimates so obtained must next be

adjusted in order to use the model. I envisage this being achieved either by

further statistical analysis of the time-series in question, or by adjusting to the

current market conditions. One adjustment that can easily be made when the

model implies a finite variance is to scale the parameters so as to match the

model and observed standard deviations.

In the mean-reverting cases of the aBm-CIR model, the variance is obtained

by (6.40). If the original model volatility was s1 and the observed volatility is

s2, then the mappings

ρ 7→ ρ
s1

s2

, x0 7→ x0
s2

s1

yield a model with volatility s2. This adjusts the scale of the distribution

without affecting the shape parameter c. The final estimates of the parameters

this leads to are given in table 7.4.

In known cases of the aBm-gBm model (ν ∈ {−4,−2, 0, 2}) the variance
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Model Parameters Descriptive Parameters
Index b µ2 σ1 σ2 ρ c x0

FTSE 100 -0.18 0.9677 0.2024 0.5337 6.7938 0.9771 0.1438
S& P 500 -0.08 0.8651 0.2075 0.6226 4.4638 0.4959 0.1111

DAX -0.13 0.3991 0.2547 0.4830 3.4222 0.9518 0.2781
Cac 40 -0.42 0.8445 0.0517 0.2511 26.7913 1.1365 0.0424

Hang Seng 0.21 0.2936 0.2481 0.4765 2.5859 0.7010 0.2711
N225 -0.24 0.6444 0.2487 0.3384 11.2551 6.0783 0.5400
BVSP 1.65 0.1325 0.2985 0.3037 2.8728 2.7763 0.9664

Table 7.4: Adjusted estimates of the parameters in the aBm-CIR model

can be found by direct integration if it exists. This is computationally less

demanding than an integration in the λ-domain. Simply increasing the x0

parameter in this model by a factor of σ, while keeping the other parameters

fixed, results in an increase in the standard deviation of the model by σ, hence

the variance is scaled by the factor σ2. In terms of the model parameters, this

corresponds precisely to multiplying σ1 by a factor of σ and leaving µ2 and σ2

untouched. We feel it is unnecessary to illustrate this simple adjustment to

the values in table 7.2 with another table.
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Chapter 8

Numerical illustrations

Our aim in this chapter is to illustrate the use of the theory developed so far.

We shall use the formulae obtained for some of the Green functions in the aBm-

CIR model and the explicit formulae we have found for the dynamic densities

in the aBm-gBm models to plot the dynamic densities and make comparisons.

For this approach to the aBm-CIR model we note that the dynamic density

may be evaluated by a numerical integration in the λ-space. We have not yet

actually quoted this formula:

pt(y) = p(t; 0, y) =
1

2πi

∫
C
eλtGλ(0, y) dλm(y) (8.1)

where C is taken from (2.26), though it is obvious from (2.23). Our choice

of integration contour is simply for the speed of convergence: either of the

contours (2.9) or (2.25) would do. Having considered the transition densities,

we would also like to compute VaR and ES in each of the models. The results of

the numerical integrations to find the risk measures are illustrated graphically

in this chapter and tabulated in appendix A.

8.1 Arithmetic-CIR model

We begin with the aBm-CIR process. To make use of our formulae, we

shall take µ1 = 0 and use the parameters obtained in fitting this model to

the S & P 500 data. Thus we take µ2 = 0.865103, σ1 = 0.207513497 and

σ2 = 0.622578927. The invariant distribution (6.6) has a mean of 0, and a

variance which is easily calculated (see (6.7)) to be 0.0630402. We shall aim to

compare the true pdf for time-increments t = 1/252 (daily returns), t = 1/12

(monthly returns) and t = 1 (annual returns) with each other and with the

Gaussian density fitted to the same data, and the invariant distribution (6.6)
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Figure 8.1: Log-pdf for Gaussian and aBm-CIR invariant distribution.
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(equivalently obtained by setting t =∞ in this model).

Before doing any computation of the dynamic densities, let us compare the

invariant density with the Gaussian density of the same mean and variance.

Figure 8.1 shows the logarithm of these pdfs. The invariant distribution at-

tributes much more mass than the Gaussian does to the tails of the support.

This is, of course, a desirable feature of asset return models.

Direct computation of dynamic pdf

First, we wish to obtain an idea of the dynamic behaviour of the pdf, simply

by directly evaluating (8.1) for x = 0 and for successive values of t. As we

know, at t = 0, the distribution is just a spike at zero. And as t increases, the

probability mass diffuses outwards along the line, converging with t → ∞ to

the invariant distribution. Figure 8.2 shows this happening.

Two plots are necessary to illustrate this development of the dynamic pdf

Figure 8.2: Plots of the pdf of Xt in the aBm-CIR model.
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(a) Dynamic density at t = 1/252 and t = 1/12.
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(b) Dynamic density at t = 1/12, t = 1 and the
invariant density
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Figure 8.3: Eigenfunction approximation against number of terms at (t, y) = (1/252, 0.1).
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because so much probability mass escapes the domain that the plot is capable

of showing. This can be explained by the increase of the standard deviation

of Xt with t, given in table A.1.

Eigenfunction expansion as approximation

The invariant distribution (6.6) is the 0th-order eigenfunction expansion. That

is, from (6.15), we take only the n = 0 term. If this approximation is not

good enough, then it is natural to try adding further terms. The convergence

is actually extremely slow and this method of approximation is not useful.

Figure 8.3 shows the convergence of the approximation at y=0.01. The actual

value is p1/252(0.01) = 22.0938. For the approximation to be of any use, a huge

number of terms would be needed in the approximation.

Value-at-risk

In order to be able to compare like-for-like distributions, we standardise the

distributions, by setting var (Xt) = 1. This corresponds simply to dividing

by the model standard deviation. To obtain actual values, these are then

multiplied by the actual observed standard deviation. To give us an idea of

the sort of numbers that we are dealing with, it is very straightforward to

calculate the VaR implied by the invariant distribution π. From (6.34), we

can calculate the values in the last column in table A.2.
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Figure 8.4: VaR for aBm-CIR model and corresponding Gaussian.
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For calculating the dynamic VaR, we first calculate the distribution func-

tion, which is found from the formula

P x{Xt ≤ ξ} = Ptu0(x) = 1− α

where u0 is given by (6.36). We know the resolvent from (6.37), so it remains

to invert the Laplace transform. We illustrate the values obtained in figure 8.4.

It shows the VaR plotted as a function of the confidence level, for t = 1/252,

t = 1/12 and t = 1, and also shows the corresponding Gaussian model for

comparison as a benchmark. Some of the values we obtained are also presented

in the third, fourth and fifth columns in table A.2. Finally they are compared

also, in the second column, with the values obtained from a standard Gaussian

distribution. Note that the thinner tailed distributions give greater VaR for

the lower confidence levels. Even compensating for the increased variances,

the distributions are fatter-tailed for larger time horizons t and the invariant

distribution has the fattest tail of all.

Expected Shortfall

Using the steps in section 6.7.2 it is also possible to calculate the Expected

Shortfalls in the model. The standardised values illustrated in figure 8.5 and

compared in table A.3. Observe again that the distribution is fatter tailed for

longer time horizons.
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Figure 8.5: ES for aBm-CIR model and corresponding Gaussian.
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Computational considerations

The numbers we obtained came from numerical integration along the Talbot

contour (2.26) with respect to the complex-valued parameter λ, which makes

them necessarily computationally expensive. However, there is one easy way of

making the calculations run more quickly. Recall that both VaR and ES satisfy

the property known as positive homogeneity in the theory on risk measures,

which means that they scale linearly with the standard deviation (volatility).

Given the specific value of the parameters µ2 and c, the standardised VaR

or ES is then fully determined, and the actual value to be used is found by

multiplying by the volatility which fits the situation best. VaR calculations

run more quickly for lower volatilities, while ES is more easily computed for

higher volatilities (because the corresponding VaR is then larger). Particularly

for the ES in the t = 1/252, I found it much quicker to scale the volatility

down for the purpose of calculating the expected shortfall. Take care to note

that the calculation of ES relies on knowing the VaR, so if ES is calculated for

a different volatility, the VaR must be scaled accordingly first.

Approximations

Tables A.2 and A.3 allow us to measure the error of using approximations,

such as the Gaussian for the one-day VaR, or the invariant distribution for

the year VaR. The errors are quite large as tabulated in table A.4. Negative
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numbers indicate that the approximating distribution underestimates the risk,

while it is overestimated if the error is positive.

8.2 Arithmetic-geometric model

The numerical Laplace transform inversion, needed for the calculations in the

aBm-CIR model, is computationally demanding, so in the aBm-gBm model,

we shall restrict our attention to the cases in which we have been able to

perform the inversion symbolically. These are the cases ν ∈ {−4,−2, 0, 2}.
Given the choice of model (i.e. ν), we shall then make a choice of parameters.

We continue to use the S & P 500 daily returns, between 2001 and 2012

inclusive, to fit our model and the parameter choices are given in table 8.1.

Unfortunately, we are not yet quite sure how to perform the full estimation.

We have estimated µ2 = 0.865103, using the linear estimating function, as in

the aBm-CIR model, but for ν ≤ 1 we need to take µ2 negative, so we simply

take µ2 = −0.865103 for the sake of these illustrations. Given our choice of ν,

σ2 may then be calculated. σ1 simply determines the standard deviation, so

we can fit it to any daily volatility, which is calculated from (5.9).

Note that a stationary distribution exists only in the case ν = 2, and it

does not have finite variance.

Direct computation of the dynamic pdf

We have observed that the time-dependent behaviour of the one-dimensional

distributions of the aBm-CIR model is to start off as a spike at zero and

gradually spread its mass along the line, the tails becoming fatter as t increases.

This is also the case for the aBm-gBm models. The three plots in figure 8.6

show the probability mass dissipating towards ±∞ as t increases, and also

that this process is quickest in the case ν = −4 and slowest for ν = 2. Take

care to observe that the scales on both axes change between the plots.

Table 8.1: Parameter choices for hybrid aBm-gBm models.

ν µ2 σ1 σ2
2 0.8651 0.2136 1.3154
0 -0.8651 0.2129 1.3154
-2 -0.8651 0.2136 0.7594
-4 -0.8651 0.2132 0.5883
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Figure 8.6: Dynamic densities for aBm-gBm models ν ∈ {2, 0,−2,−4}.
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(c) t = 1.

VaR and ES

VaR and ES are found by direct integration along the real line with respect to

the y-variable, and are consequently very quick calculations. We present the

results of these integrations in tables A.5 to A.8, and show the VaR and ES

of the ν = 2 case in figure 8.7. We have therefore shown how these quantities

are computable, and that the method of computation that we have suggested

give reasonable results. Again, the standardised distributions have fatter tails

for the longer time horizons.

Figure 8.7: VaR and ES in the aBm-gBm model ν = 2.
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(b) ES.
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Unfortunately at this stage, a comparison between the different models (i.e.

differing ν) is not particularly meaningful, because our choice of parameters

has been somewhat arbitrary, even though we have made a vague attempt

to fit the model to the S& P data between 2001 and 2012. The reader will

notice that the risk measures are greatest in the the ν = 0 model, since the

parameters σ1 and σ2 we have used to force ν = 0 are greatest.

Finally note that when the model is fitted, the variance is also known, via

(5.9).

142



Chapter 9

Conclusions and further work

In this final chapter, we review the progress we have made with this investiga-

tion, then summarise the main lines of research that it leaves open. In order

to place the discussion of our progress into its context, let us recall our original

aims with this investigation.

• We aimed to specify elementary modelling assumptions that might be

satisfied by the returns process of a single financial asset. These assump-

tions would lead under certain conditions to the standard Gaussian mod-

els ubiquitous in the world of financial modelling, but could also be used

for us to arrive at more exotic models which are hopefully able to explain

some of the probabilistic properties observed in actual financial asset re-

turns. In particular, we hope that some assumptions in our elementary

model could lead to fatter-tailed financial models.

• We intended to study the resulting processes probabilistically, especially

to be able to give a comparison of the tails of their one-dimensional distri-

bution in comparison with the Gaussian distributions. We hoped to find

that the distributions have thicker tails than the Gaussian distribution,

in keeping with the tails observed for financial asset returns.

• We finally hoped to be able to demonstrate some usability of the new

models.

We refer to these components respectively as motivation of our new models,

their implications and implementation.

Motivation

The motivation section is itself divided into two separate sections. The first

of these is the microstructure model, which aim to capture aspects of the
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price formation process and convert it into mathematics. The microstructure

model that we used ended up being a semi-Markov process. This was built

forwards in time: given the present state of the market, two random quantities

were of interest, namely the waiting time until the market state next changes

and the actual quantitative change in the market state at that point in time.

An important aspect of our models was that the distributions of these two

quantities were able, for some portion of the traders in the market, to change

conditionally upon the present market state.

Our development of this model has been quite successful. We have de-

veloped it in a very general form and shown that, with our other later as-

sumptions, it leads to the hybrid aBm-CIR and aBm-gBm models without

specification of these two (conditional) distributions.

The second part of the motivation section is the process approximation.

We began by using Donsker’s Theorem to show that the spatially homoge-

neous renewal-reward processes can be made to converge (by increasing the

market liquidity) to the aBm model. By making the distributions of the rel-

evant random quantities depend on the current market state, we moved from

renewal-reward processes to semi-Markov processes. We then showed that,

in the special cases when this price formation process is actually Markovian,

we can completely approximate by a continuous-time Markov process, which

may or may not include jumps. When it came to the more realistic semi-

Markov model, however, we were not quite able to complete the argument by

checking the conditions for application of convergence theorems in Jacod &

Shiryaev [68].

Implications

We have used Linetsky’s spectral classification to obtain aspects of the one-

dimensional distributions of these processes via spectral methods. Another

interpretation of our approach is that we have solved the Laplace transform

of Kolmogorov’s forward equation, which has yielded expressions for the asso-

ciated probabilities. We have then attempted to find the actual probabilities

associated with the process by Laplace transform inversion.

A full explicit inversion has been possible only in the aBm-gBm hybrid,

in the cases ν ∈ {−4,−2, 0, 2}. In fact these were already known in Shaw &

Schofield [102], although the expression in the case ν = −4 was not given there.

In the other cases, the inversion in the aBm-gBm model presents challenges.

We have been able to find general expressions for the Laplace transform
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of the transition probabilities in the hybrid aBm-CIR process. Furthermore,

in cases in which the speed measure is finite in neighbourhoods of the left

endpoint −∞ of the state space, it has been possible to find expressions for

the Laplace transform of the VaR and ES. The reason that this is important is

that it looks like the Laplace transform inversion integral has to be performed

numerically. Risk measures are then obtained by integrating over a domain

in the state space, but when the speed measure is finite on that domain, an

interchange of the order of performing these two integrations is valid, and the

one in the state space can be done symbolically. This leaves the risk measure

as simply a numerical integration with respect to the spectral parameter λ.

We have been unable to find usable expressions for these risk measures in

the remaining cases, and this is the most important area in which further work

is required in this section. In the aBm-gBm models, we would suggest that it

would be useful at first to find the expressions for ν ∈ {−4,−3, . . . , 3, 4}. There

is also scope for investigation into other hybrid models that might arise when

the model of the behaviour of the technical traders in the motivation section

is altered. All these Markov processes are associated with a linear operator,

namely the generator. Diffusion models are the easiest of all, because the

generator is local, so solutions to the Sturm-Liouville equation at least are

likely to be known. But jump diffusions are also important for applications,

and an understanding of the distributions can be built from the corresponding

diffusion without jumps, and the probabilistic behaviour of the jumps if it is

known.

Implementation

We have attempted to investigate a method of estimating the parameters of the

models from historical data. We used a linear estimating function to estimate

the (technical) drift parameter, which appears to have been successful. We

have also performed a static maximum likelihood investigation on daily return

data, to fit it to the invariant distributions in the various models, then used

these to infer the modelling parameters. This method is itself only really valid

to provide a first guess at the model parameters which best fit the data, and

we found that the model then seriously underestimated the volatility. The

parameters were then adjusted to fit the model to the correct daily volatility.

This section of the investigation is in need of attention, to produce a method

of fitting the models to data with a much greater degree of accuracy. We

then envisage that it should be possible to adjust the parameters on, say, a
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daily basis, according to the particular market conditions. The latter topic of

calibration has not been explored at all in this study.

Given the parameters we obtained, which may be described as nothing more

than an educated guess, we were then able to utilise the expressions found in

the implications section to plot graphs of the dynamic pdfs. We then obtained

standardised VaR and ES at various confidence levels, demonstrating the ease

of use of these expressions. It turns out that the numerical integrations in the

λ domain are somewhat computationally intensive, but this can be adjusted

by moving the volatility of the model, downwards for VaR, or upwards for ES,

and then rescaling the number so obtained.

Further work

The main remaining research to be completed in the motivation section the

approximation of the hybrid diffusion process by semi-Markov jump processes

which are not fully Markovian. In this case, the route to a convergence theo-

rem is by characterising the semi-Markov processes via their characteristics as

semimartingales, and checking the conditions of an appropriate convergence

theorem. If these characteristics converge in an appropriate manner to the

characteristics of our candidate for the limiting process then a straightforward

application of the appropriate theorem will complete the argument. We think

that it will be possible to show convergence to a diffusion or a jump diffusion

process, and the form of semimartingale characteristics will inform us under

which conditions jumps arise. As an extension of the present investigation,

one might also attempt to model the behaviour of the technical traders using

market statistic processes, leading not to a one-dimensional Markov process,

but to a Markov-reducible one, or even model more explicitly the information

flow available to the market participants, as in the BHM framework developed

by Brody et al. [24].

In investigating the implications of these models, the most important fur-

ther work to be done is the derivation of expressions for the risk measures

in those cases where we have not yet found them. These are the cases ν /∈
{−4,−2, 0, 2} in the aBm-gBm model, and cases when the speed measure is

infinite in the aBm-CIR model. There is then further investigation to be con-

ducted into extensions of our models which contain jumps. Recall from section

4.5, in particular equation (4.15), that the distributions of the trade orders can

be decomposed into small and large trades, which correspond to diffusion and

jumps after taking the limit in the approximation. This means that, by only
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adjusting our approach to the large trades, we can study processes which have

the same diffusion behaviour but different jumps. Such an investigation would

necessarily start from the knowledge we have developed of the stochastic be-

haviour between the jumps (if there are only fintely many jumps per bounded

time-interval).

In cases where the practitioner is aware of a reliable method of inferring

the optimal parameters to use, the models are ready to use in the cases that

we have illustrated. In terms of applying these models in practice then, the

most important lines for further study are (1) the development of a standard

method of parameter estimation, followed by methods of calibration for daily

use, and (2) the implementation of these models in the remaining cases. For

the aBm-gBm model, it would perhaps suffice to have an implementation for

integers ν ∈ {−4,−3, . . . , 3, 4}, but at present, we have to hope that one of

the values -4, -2, 0 or 2 is the best fit. It is quite realistic to expect that

one can find it for ν = 4 (hence ν = −6 via the Legendre symmetry) but

the odd integers might be more difficult. For the aBm-CIR model, it is most

important to be able to obtain methods of calculating VaR and ES when the

speed measure is infinite in neighbourhoods of −∞. Together with a method

of parameter estimation, these models will then be fully ready to use.
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Appendix A

VaR and ES for the various

models

Here we present the results of the numerical integrations which have been

performed to calculate the value-at-risk and expected shortfall in the various

models. This shows that the calculations are possible, and studying the results

shows that they give reasonable results. First, we note that working in the

models with the parameters that we have used, we know or can calculate the

variances implied by the models. The models have been fitted to the daily

volatility in the data, which means that the standard deviation is the same

over a day, regardless of the model. The choice of model then determines

volatility development. In the aBm-gBm model, these can be obtained by the

formula (5.9). These values have been cross-checked with those arising from

direct numerical integration for obtaining the variances.

To obtain the VaR or ES for using in the given model, one simply multiplies

the standard deviation given in table A.1 by the standardised VaR or ES given

in the tables below.
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Table A.1: Volatility development in all models

s.d.(Xt)
Model

t = 1/252 t = 1/12 t = 1

aBm-CIR c = 0.4959 . . . 0.0135 0.0660 0.2058

aBm-gBm

ν = 2 0.0135 0.0617 0.2136
ν = 0 0.0135 0.0662 0.6355
ν = −2 0.0135 0.0646 0.4220
ν = −4 0.0135 0.0643 0.3907

Table A.2: Standardised VaR for aBm-CIR models.

α = Confidence level
VaRα(Xt)/s.d.(Xt)

Gaussian (t ↓ 0) t = 1/252 t = 1/12 t = 1 t =∞

90% 1.2816 1.2684 1.2237 1.1238 1.0871
95% 1.6449 1.6487 1.6530 1.6279 1.6074
99% 2.3263 2.3840 2.5481 2.8052 2.8711

99.5% 2.5758 2.6600 2.9044 3.3117 3.4308
99.9% 3.0902 3.2407 3.6868 4.4838 4.7531

Table A.3: Standardised ES for aBm-CIR models.

α = Confidence level
ESα(Xt)/s.d.(Xt)

Gaussian (t ↓ 0) t = 1/252 t = 1/12 t = 1 t =∞

90% 1.7550 1.7708 1.8109 1.8527 1.8552
95% 2.0627 2.1004 2.2052 2.3587 2.3945
99% 2.6652 2.7627 3.0475 3.5341 3.6859

99.5% 2.8919 3.0176 3.3876 4.0393 4.2535
99.9% 3.3671 3.5616 4.1422 5.2069 5.5892
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Table A.4: Error of the approximating distribution in the aBm-CIR model for risk
measures.

Error of Gaussian Error of invariant Error of Gaussian Error of invariant
Confidence level distribution for distribution for distribution for distribution for

one-day VaR one-year VaR one-day ES one-year ES

90% 1.04% -11.16% -3.09% 0.13%
95% -0.24% -2.76% -6.46% 1.52%
99% -2.42% 12.68% -12.54% 4.30%

99.5% -3.17% 18.12% -14.63% 5.30%
99.9% -4.64% 28.92% -18.71% 7.34%

Table A.5: Standardised VaR and ES for aBm-gBm model, ν = 2.

α
VaRα(Xt)/s.d.(Xt) ESα(Xt)/s.d.(Xt)

t = 1/252 t = 1/12 t = 1 t = 1/252 t = 1/12 t = 1

90% 1.2796 1.2407 0.9015 1.7563 1.7764 1.6911
95% 1.6443 1.6301 1.3346 2.0667 2.1367 2.2950
99% 2.3327 2.4452 2.7324 2.6787 2.9257 4.2693

99.5% 2.5865 2.7793 3.5748 2.9105 3.2581 5.4477
99.9% 3.1133 3.5466 6.3353 3.4002 4.0313 9.2423

Table A.6: Standardised VaR and ES for aBm-gBm model, ν = 0.

α
VaRα(Xt)/s.d.(Xt) ESα(Xt)/s.d.(Xt)

t = 1/252 t = 1/12 t = 1 t = 1/252 t = 1/12 t = 1

90% 1.2796 1.2379 0.6636 1.7563 1.7777 1.5390
95% 1.6443 1.6291 1.0936 2.0667 2.1415 2.2345
99% 2.3327 2.4530 2.7101 2.6787 2.9425 4.7152

99.5% 2.5865 2.7927 3.7668 2.9106 3.2813 6.2737
99.9% 3.1134 3.5756 7.4154 3.3998 4.0748 11.4835
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Table A.7: Standardised VaR and ES for aBm-gBm model, ν = −2.

α
VaRα(Xt)/s.d.(Xt) ESα(Xt)/s.d.(Xt)

t = 1/252 t = 1/12 t = 1 t = 1/252 t = 1/12 t = 1

90% 1.2809 1.2671 1.0516 1.7554 1.7637 1.7943
95% 1.6447 1.6404 1.5137 2.0640 2.0909 2.3359
99% 2.3285 2.3714 2.7848 2.6697 2.7610 3.8366

99.5% 2.5794 2.6516 3.4380 2.8981 3.0253 4.6050
99.9% 3.0979 3.2561 5.2496 3.3782 3.6042 6.7214

Table A.8: Standardised VaR and ES for aBm-gBm model, ν = −4.

α
VaRα(Xt)/s.d.(Xt) ESα(Xt)/s.d.(Xt)

t = 1/252 t = 1/12 t = 1 t = 1/252 t = 1/12 t = 1

90% 1.2812 1.2729 1.1413 1.7552 1.7604 1.8016
95% 1.6447 1.6423 1.5795 2.0635 2.0799 2.2686
99% 2.3276 2.3537 2.6646 2.6679 2.7231 3.4531

99.5% 2.5780 2.6218 3.1773 2.8958 2.9722 4.0172
99.9% 3.0949 3.1903 4.5002 3.3739 3.5097 5.4744
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[29] E. Çinlar. Markov renewal theory: A survey. Management Science,

21(7):727–752, 1975.
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