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Abstract

The motion of a free boundary separating two immiscible fluids in an unbounded

Hele-Shaw cell is considered. In the one-phase problem, a viscous fluid is separated

from an inviscid fluid by a simple closed boundary. Preliminaries for a complex vari-

able technique are presented by which the one-phase problem can be solved explicitly

via conformal mappings. The Schwarz function of the boundary plays a major role

giving rise to the so called Schwarz function equation which governs the evolution of

exact solutions. The Schwarz function approach is used to study the stability of a

translating elliptical bubble due to a uniform background flow, and the stability of

a blob (or bubble) subject to an external electric field.

The one-phase problem of a translating free boundary and of a free boundary

subject to an external field are studied numerically. A boundary integral method

is formulated in the complex plane by considering the Cauchy integral formula and

the complex velocity of a fluid particle on the free boundary. In the case of a free

boundary subject to an external electric field due to a point charge, it is demon-

strated that a stable steady state is achieved for appropriate charge strength. The

method is also employed to study breakup of a single translating bubble in which

the Schwarz function singularities (shown to be stationary) of the initial boundary

play an important role.
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The two-phase problem is also considered, where the free boundary now separates

two viscous fluids, and the construction of exact solutions is studied. The one-phase

numerical model is enhanced, where a boundary integral method is formulated to

accommodate the variable pressure in both viscous phases. Some numerical exper-

iments are presented with a comparison to analytical results, in particular for the

case where the free boundary is driven by a uniform background flow.

This thesis was completed under the supervision of Professor Nicholas Robb

McDonald and Professor Jean-Marc Vanden-Broeck.
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Chapter 1

Introduction

1.1 Problem background

The list of authors that have contributed to the study of fluid mechanics is littered

with some of the greatest minds of mathematics and philosophy, such as Aristotle,

Archemedes, da Vinci, Newton, Euler, Lagrange and many more, with works recorded

from as early as the 4th century BC. The equations of motion for a ‘frictionless fluid’

were first introduced in differential form by Euler [42] in the mid 18th century based

on Newton’s laws of motion [141]. The mathematical equations governing the flow

of viscous fluids—taking into account friction—were established in the 19th century,

now known as the Navier-Stokes equations [105, 130]. Since the inception of the

Navier-Stokes equations the topic of viscous fluid flow has flourished, becoming a

core subject of interest in applied mathematics. The application of the equations

covers a wide range of problems. In this thesis the focus is on an effectively two

dimensional (2D) viscous flow produced by the constraints of an apparatus known as

the Hele-Shaw cell [50,51], where the resulting equations of the underlying model also

find application in complex geometrical flows, such as flows through porous media.

The Hele-Shaw cell—see figure 1.1—was first introduced in 1897 by a British

engineer, scientist and inventor by the name of Henry Selby Hele-Shaw. Whilst a
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professor at University College Liverpool, Hele-Shaw endeavoured to capture the

imagination of his students by arranging experiments to showcase the characteristics

of fluid flow past an object [150]—see figure 1.2. In doing so, the cell was formed,

consisting of two solid plates with viscous fluid sandwiched between them. Hele-

Shaw made the realisation that if the plates were sufficiently close together, the

resulting flow between the plates will remain laminar at all velocities, a concept

he described in the paper entitled ‘Experiments on the flow of water’ published in

Transactions of the Liverpool Engeneering Society in 1897 [150]. Schematics and

further discussion regarding the Hele-Shaw cell can be found in the widely known

publications made in 1898 and 1899 by Hele-Shaw [50, 51]. Although the problems

for which the cell was originally constructed contain areas of significant interest in

fluid dynamics, e.g. laminar flow past an aerofoil, the Hele-Shaw cell also gave rise to

another problem; the problem of a moving free boundary between two fluids in two

dimensions. The Hele-Shaw cell provides a very useful tool to visualise such problems,

and the mathematical treatment of patterns produced by the free boundary between

a viscous and effectively inviscid fluid have merited a large research interest among

the mathematical, physics and engineering community. In 1998, a bibliography was

compiled by Howison [61] of over 500 articles on the topic of Hele-Shaw flow.

(a) (b)

Figure 1.1: Schematics of a Hele-Shaw cell. The cross section in (b) depicts the
assumption of laminar Poiseuille flow with parabolic velocity profile between two
parallel plates, and (a) shows a sketch of the flow produced by injection through the

upper cell wall.
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Moving free boundaries make up a wide range of interesting physical problems in

applied mathematics, engineering and physics. In particular, there has been consid-

erable work on the motion of fluids and gasses in porous media, where the resulting

macroscopic fluid flow obeys Darcy’s law, derived by Darcy in 1856 [29, pp.137–184].

Although the fluid motion at microscopic scale is complex and interesting, the re-

sounding question is; how does the boundary of the fluid evolve on a macroscopic

scale as it moves through the porous media? It transpires that the equations of

motion of porous media are analogous to those for flows in a Hele-Shaw cell, given

by the Stokes-Leibenzon model (derived in section 1.2.1) in 2D. The one-phase free

boundary problem in a Hele-Shaw cell can be described qualitatively as follows.

Consider a blob of viscous fluid surrounded by a secondary fluid of neg-

ligible viscosity, in a Hele-Shaw cell. Suppose that the two fluids are im-

miscible and also that the fluid blob grows via injection at a point through

the upper cell wall—see figure 1.1(a). The resulting motion of the in-

terface between the two fluids characterises the free boundary problem.

Henceforth, the problem of finding the shape of the evolving interface will

be known as the Hele-Shaw free boundary problem [48, 107], also

widely referred to as the Laplacian growth problem [100].

Two fluids are considered immiscible if they do not mix at the molecular level and

therefore there is no mixing at the macroscopic level. This implies that the two fluids

are separated at all times by a distinct, sharp interface. In this thesis, the interface

separating two fluids will usually refer to the free boundary, where interface and free

boundary shall be considered synonymous. It shall also be assumed that the physical

properties of density and viscosity in each fluid remain constant. It is well known in

the literature that the Hele-Shaw free boundary problem can be categorised in the

following ways [48].
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(a)

R i e g e  1 s , Zur Kritik des Hele-Shaw-Versuchs 97 Band 18, Heft 2 
April 1938 

dieses Obelstandes wurde in den hinteren Querteil des Rahmens ein feines Loch gebohrt, so 
dab die Luftblasen mit einem etwa 1 mm starken, zwischen den Platten eingefuhrten Draht be- 
seitigt werden konnten. 

Die ersten sichtbaren Abweichungen von der Potentialstrtimung zeigen sich schon bei 
verhaltnismahig geringen Werten von A.  Bei A = 1 sind diese Abweichungen aber immer 
noch klein, wie man auf Abb. 3 sieht. Rei grolieren Werten von A zeigen sich bedeutende 

Ahli. 3.  Stroinlinieit bei .1 = 1. Abb. 4. Stromlinien bei A = 3. 

Ahh. 5 Stromlinieri hoi A = 4 .  Abb. 6. Stromlinien bei A = 6 , 1 .  

Veranderungen des Stromlinienbildes, und zwar nicht nur hinter dem Ktirper, sondern auch 
schon vorher : Es treten Sekundarstromungen auf. Bei den stark gekriimmten Stromfaden 
werden die langsamen Fliissigkeitsteilchen in der Nahe einer Wand starker abgelenkt als die 
in der Mitte schnell strtimenden Teilchen. Auf den Abb. 4 bis 6 betrachte man z. B. den 
neben der Symmetrielinie liegenden Stromfaden. Dieser kommt von links und teilt sicli 
neben dem Zylinder auf. Der eine Teil weicht dem Zylinder aus, und zwar hinter dem 
Zylinder starker als bei A = 0, wahrend ein anderer Teil ganz dicht an den Zylinder heran- 
geht; dazwischen sind alle Ubergange vorhanden. Die Stromlinien verlaufen also in ver- 
schiedenen Wandabstanden vollkommen verschieden ; und zwar gibt die auliere Kontur der 
ausweichenden Linien, von denen zuerst die Rede war, die Stromlinien in der Mittelebene 
zwischen den beiden Glaswanden wieder; die stiirker gekriimmten Linien, die dicht an den 
Zylinder herangehen, befinden sich dagegen in der Nahe der oberen bzw. unteren Wand. 

Ich habe dieses auch dadurch bestitigen kbnnen, dali ich feinere Diisen fur die Farb- 
fliissigkeit verwendete. Die Abb. 4 bis 6 sind z. B. niit Diisen von 1 mm Offnung gemacht. 
Sie geben daher die Gesamtheit der Stromlinien in allen Wandabstanden wieder. . Aulier 
diesen sind Aufnahmen gemacht, die lediglich die Strtimung in einer kleinen Umgebung in 
der Mitte bzw. in Wandnahe zeigen. Hierzu wurden Diisen von '/lo mm bei 2 mm Abstand 
der Glasplatten verwendet. Die Einstellung der Diisen in verschiedene Htihenlagen geschah 
durch Verdrehen des Zufiihrungsrohres, das die Diisen tragt. Die so gemachten Aufnahmen 
stimmen niit den begrenzenden Linien der gezeigten Stromlinienbilder vollkommen uberein. 
Mit zunehmender Entfernung vom Zylinder, fur weiter wegliegende Stromlinien, nimmt die 
starke Kriimmung der Stromlinien jedoch schnell ab. 

Wie die Abb. 3 bis 6 zeigen, werden diese Veranderungen der Strtimung mit znnehmen- 
den Werten der charakteristischen Zahl A grtiher. Gleichzeitig bemerkt man auch vor dem 
Zylinder Veranderungen. Die Stromlinien, die sich hinten eng an den Zylinder anschmiegen 
(also die in Wandnahe), weichen dem Zylinder vorne gerade starker aus als die Stromlinien 

?* 

(b)

Figure 1.2: Potential flow past (a) a screw strut and (b) a cylinder, produced by a
Hele-Shaw cell where die is used to visualise streamlines. An almost perfect potential
flow is observed, even behind the cylinder in (b). Pictures are from (a) the paper by

Hele-Shaw [50] and (b) the paper Riegels [120].

(i) The well-posed problem, where the advancing fluid is more viscous than the

surrounding fluid.

(ii) The ill-posed problem where the advancing fluid is less viscous than the sur-

rounding fluid.

In this thesis, we will consider both well-, and ill-posed problems.

Free boundary problems of type (ii) are usually considered with additional phys-

ical effects on the interface, such as surface tension or kinetic undercooling, see

e.g. [27, 28, 132, 145]. Such problems are referred to as regularised Hele-Shaw free

boundary problems, where physical phenomena such as surface tension serve to

smooth regions of high curvature on the interface, which primarily prevent break-

down of the mathematical solution. However, breakdown of the solution may still

occur, see e.g. [139]. A one-phase Hele-Shaw free boundary problems with only a

constant pressure condition on the interface is known as unregularised. Such a prob-

lem is known as a zero surface tension (ZST) Hele-Shaw free boundary problem,

which will be the main focus of this thesis.

The main difficulty in solving the Hele-Shaw free boundary problem lies in the

nonlinear nature of the mathematical problem. This is since an elliptic partial dif-
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ferential equation (PDE) is to be solved in the domain describing the viscous fluid,

given some boundary data, and the boundary of the domain must also be found.

Here, the boundary data in the one-phase problem will be given by the constant

pressure in the inviscid fluid region.

1.1.1 Historic overview, recent studies and appli-

cations

Since the 1940s, there has been plenteous effort devoted to the Hele-Shaw free

boundary problem, described above, both analytically and numerically. There have

been two main groups responsible for its development: one made by mathematicians

in the east (e.g. Russia) and the other predominantly made by mathematicians in

the west (e.g. Great Britain). The two streams converged in the late 1980s and early

1990s. Significant steps leading to exact solutions of the Hele-Shaw free boundary

problem arose via complex variable methods and conformal mapping techniques, by

which the problem can be recast as an initial value problem of a functional differen-

tial equation. This was first realised independently by the Russian mathematicians

Polubarinova-Kochina [110,111] and Galin [44] in 1945.

During the late 1950s, Saffman and Taylor tackled the now well known problem

of viscous fingering in the Hele-Shaw cell, experimentally, theoretically and computa-

tionally [123,138]. Their initial interest (similar to Polubarinova-Kochina and Galin)

was due to the industrial application of oil recovery as a free boundary problem. Con-

sider a pocket of oil surrounded by water forming a free boundary at their interface,

in a porous medium. The problem is extracting a fluid with viscosity larger than the

surrounding fluid (e.g. extracting oil from water). This is an ill-posed problem, i.e.

a problem of type (ii) described above. This ill posedness gives rise to instabilities

on the contracting interface which subsequently form long fingers. From the view of



Chapter 1. Introduction 25

oil recovery, this leads to unwanted water contamination in the recovered oil.

The works by Saffman and Taylor [123,138] have lead to a vast array of study in

Hele-Shaw free boundary problems and the viscous fingering effect. In [123], the main

aim of the study is the selection of finger size in a channel geometry set-up in the

Hele-Shaw cell, where air (a fluid of low viscosity) advances into glycerin (a viscous

fluid of relatively high viscosity)—see figure 1.3. Saffman and Taylor [123] derived

a family of solutions for the fingering phenomenon in an infinitely long channel in

the Hele-Shaw cell. Following this work, Taylor and Saffman [138] also derived

solutions for a translating air bubble, known today as the Taylor-Saffman bubble, in

a channel geometry. From these solutions, the solution for a translating air bubble

in an unbounded Hele-Shaw cell can be found as an asymptotic approximation, by

taking the channel width to be infinite. The propagation of the air bubble is due to a

uniform, bounded, background flow and the pressure gradient—due to the existence

of the bubble—in the direction of the flow.

 on November 26, 2013rspa.royalsocietypublishing.orgDownloaded from 

Figure 1.3: A Saffman-Taylor finger produced in a channel within a Hele-Shaw cell
by the penetration of air into glycerine. Picture from [123].

An interesting outcome of the works of Saffman and Taylor [123, 138] is known

as the selection problem, namely the selection of speed or bubble shape given the

dynamics of the surrounding viscous fluid. Much of the work in this area relates the

‘naturally’ selected shape or speed of the bubble (observed by Taylor and Saffman
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[123,138]) from a family of possible solutions; the selection was since conjectured to

be due to surface tension, i.e physical effects on the bubble interface, see e.g. [69,136]

and references therein. However, more recently, the necessity of surface tension as

the main selection mechanism has been questioned. It has been shown that selection

of the Saffman-Taylor finger can be made in the absence of surface tension [96].

Moreover, for the translating Taylor-Saffman bubble in a channel, it is has recently

been shown that the unique bubble shape corresponding to a bubble travelling at

twice the speed of the background flow emerges as the stable solution for large times

without surface tension [149]. This result was shown by virtue of the existence of an

infinitely dimensional dynamical system for a parametric solution of the Hele-Shaw

free boundary problem, resulting from the infinite conservation laws of Hele-Shaw

flows. The stability of the free boundary and the selection of the interface shape in

an unbounded Hele-Shaw cell is studied here, numerically, in chapter 4.

One of the most intriguing results, and features, of Hele-Shaw flows attracting

the attention of the physics community is the existence of an infinite number of con-

servation laws1—the complex moments. These were first deduced by Richardson in

1972 [116]. Using this feature of Hele-Shaw flows proved particularly useful in find-

ing exact solutions to the free boundary problem in terms of a parametric conformal

map of the interface.

The methods presented by Polubarinova-Kochina [111], Galin [44] and Richard-

son [116], based on complex variable techniques, are of particular interest, mathemat-

ically, due to exact solutions that exhibit cusp formation on the physical interface.

The cusps correspond to singularities of the set of ordinary differential equations

(ODEs) that govern the evolution of the conformal map. Typically, in the ill-posed

problem, breakdown of the mathematical solution occurs in finite time, for example,

1See appendix A for a derivation of the infinite conservation laws and short description of how
these may be used to find exact solutions of the one-phase Hele-Shaw free boundary problem via a
conformal mapping technique described in section 1.3.1.
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in Hele-Shaw flows driven by a sink due to the formation of cusps on the free bound-

ary [25,56,59], or complete extraction of the fluid. Furthermore, the exact solutions

highlighted the property of time reversibility of ZST Hele-Shaw flows, for example,

reversal in time of a sink driven Hele-Shaw flow is equivalent to replacing the sink by

a source, in which the precise initial condition of the interface of the former solution

is recovered.

On the basis of the complex variable methods described, more elaborate mapping

functions were sought from which exact solutions have been derived describing a wide

variety of physical situations. In particular, mathematically interesting solutions

were found where higher order cusps can form in finite time on the free boundary,

beyond which the solution can be continued—e.g. the ‘special case’ of radial fingers

in the expanding bubble problem [56] and the expanding blob problem with specific

initial condition [63].

The Hele-Shaw cell finds application in other significant areas of fluid flow the-

ory such as potential flow through a porous media, where the governing equation

describing the flow velocity is given by Darcy’s law [53, 57]. The Hele-Shaw cell has

also been used to model dendritic instabilities in crystallisation fronts, which can be

studied via the dendritic growth of the Saffman-Taylor finger in a Hele-Shaw cell [17].

The Hele-Shaw model also finds application in the study of the evolving interface

between viscous fluids and liquid crystals, e.g. the study of 2D solidification and

melting in potential flows in porous media [24] where it turns out that the resulting

motion of the interface is analogous to the case of ZST Hele-Shaw flow.

Hele-Shaw free boundary problems have been studied over the past seven decades

for both the wide spread application in fluid problems, as well as the mathematical

challenges embedded in its formulation. Mineev-Weinstein [93] has demonstrated the

link between a system of ODEs, giving exact solutions to the Hele-Shaw free bound-

ary problem, and the conserved moments of Richardson [116]. Mineev-Weinstein
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derives the system of ODEs using conformal mapping techniques, where the map-

ping function on the unit circle (in an auxiliary mapping domain) represents a closed

interface, i.e. the interface of a bubble, say. This realisation was a significant step

in the development and understanding of the Hele-Shaw free boundary problem and

its integrable structure, paving the way for interesting connections to other fields of

mathematics and classical physics such as dynamical and integrable systems [48,100],

in particular 2D quantum gravity [99] and random matrices [98].

For a further, in-depth account on the life of Hele-Shaw and the developments

in the Hele-Shaw free boundary problem, the reader is directed to the article by

Vasil’ev [150], and chapters 1 and 2 of the book by Gustafsson and Vasil’ev [48] where

a brief overview of the Hele-Shaw free boundary problem and a historic overview of

the development in finding exact solutions is presented.

The Hele-Shaw free boundary problem is characterised by a PDE (derived in

the following section) whose solution we seek, given two boundary conditions, along

with the unknown domain since the domains boundary is unrestricted. Like nonlinear

waves, two solutions to the free boundary problem cannot be superimposed to provide

another solution, hence, the problem is nonlinear.

1.2 Mathematical model

Let us begin by introducing the equations of motion governing fluid flow. In this

work we consider all fluids to be Newtonian. In fluid mechanics, the motion of an

incompressible inviscid fluid can be described by the well known Euler equations [42]

given by

ρ
Du

Dt
= −∇p+ fb, (1.1a)

∇ · u = 0, (1.1b)
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where D/Dt = ∂/∂t + u · ∇ denotes the material derivative, the 3D operator ∇ =

(∂x, ∂y, ∂z), u = (u1, u2, u3) is the 3D velocity vector following a fluid particle, ρ

denotes fluid density, p denotes fluid pressure and fb represents body forces on the

fluid, e.g. gravity. Equation (1.1a) represents the momentum equation of the fluid,

while (1.1b) describes conservation of mass.

Considering the shear and normal stresses on a volume of fluid, we introduce

viscous forces on the right hand side of (1.1a), i.e. the governing equations become

∂u

∂t
+ (u · ∇) u = −1

ρ
∇p+ ν∇2u +

1

ρ
fb, (1.2a)

∇ · u = 0. (1.2b)

Equations (1.2) are known as the Navier-Stokes equations which are used to model

flow of a viscous fluid. The parameter ν = µ/ρ denotes the kinematic viscosity,

where µ denotes the dynamic viscosity of the fluid.

1.2.1 The Stokes-Leibenzon model

We will now derive the equation governing Hele-Shaw flows. The model con-

sidered is due to Leibenzon [81, 82], first developed as a theory of the motion of

gases in porous media during the 1920s, and later employed by Muskat [104]. In

this section all quantities presented are dimensional quantities. Let us consider slow

uni-directional flow of an incompressible viscous fluid occupying some domain Ω(t),

between two parallel plates fixed at a distance h apart, as shown in figure 1.1(b). Let

the velocity u of the fluid be generated from some external mechanism, e.g. injection

of fluid—see figure 1.1(a). The flow profile between the plates is that of Poiseuille

flow since we have the no-slip condition on the surface of each plate. In this sec-

tion we consider the Navier-Stokes equations, (1.2), where external body forces are
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neglected for simplicity, i.e. fb = 0, thus

∂u

∂t
+ (u · ∇) u = −1

ρ
∇p+ ν∇2u, (1.3a)

∇ · u = 0. (1.3b)

Assume the injection of fluid is slow such that the flow remains approximately

steady and parallel to the plates—in fact, Hele-Shaw discovered that the flow will

remain laminar for any velocity given the two plates are sufficiently close together

[49, 150]. That is, there is no vertical fluid motion, i.e. u3 = 0, and ∂u/∂t = 0.

Hence, the x1, x2 and x3 momentum equations from (1.3a) give

u1
∂u1

∂x1

+ u2
∂u1

∂x2

= −1

ρ

∂p

∂x1

+ ν∇2u1, (1.4a)

u1
∂u2

∂x1

+ u2
∂u2

∂x2

= −1

ρ

∂p

∂x2

+ ν∇2u2, (1.4b)

0 = −1

ρ

∂p

∂x3

, (1.4c)

with the no-slip boundary condition at the upper and lower plates given by

u1|x3=0,h = 0, (1.5a)

u2|x3=0,h = 0. (1.5b)

Now we consider a dimensional analysis of (1.4). Let the typical velocity scale in

the x1 and x2 directions be Ud, let the typical length scale in the x1 and x2 directions

be Ld, and the typical length scale in the x3 direction be h. Then, the inertial terms

on the left hand side of (1.4a) and (1.4b) have orders of magnitude

u1
∂u1

∂x1

∼ U2
d

Ld

, u2
∂u1

∂x2

∼ U2
d

Ld

,

u1
∂u2

∂x1

∼ U2
d

Ld

, u2
∂u2

∂x2

∼ U2
d

Ld

,

(1.6)
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whilst the viscous terms on the right hand side of (1.4a) and (1.4b) have magnitude

∂2u1

∂x2
1

∼ Ud

L2
d

,
∂2u1

∂x2
2

∼ Ud

L2
d

,
∂2u1

∂x2
3

∼ Ud

h2
,

∂2u2

∂x2
1

∼ Ud

L2
d

,
∂2u2

∂x2
2

∼ Ud

L2
d

,
∂2u2

∂x2
3

∼ Ud

h2
.

(1.7)

Hence, for h/Ld � 1 the derivatives of u1 and u2 with respect to (w.r.t.) x1 and x2 are

negligible as compared to the derivative w.r.t. x3. Thus, (1.4) can be approximated

as

∂p

∂x1

= µ
∂2u1

∂x2
3

, (1.8a)

∂p

∂x2

= µ
∂2u2

∂x2
3

, (1.8b)

0 =
∂p

∂x3

. (1.8c)

Equations (1.8a) and (1.8b) represent Stokes flow in two dimensions, whilst equation

(1.8c) states that the pressure p is independent of x3, i.e. p = p(x1, x2, t). Hence,

integrating (1.8a) and (1.8b) and applying the boundary condition given in (1.5) we

have

u1 =
1

2µ

∂p

∂x1

(
x2

3 − hx3

)
, (1.9a)

u2 =
1

2µ

∂p

∂x2

(
x2

3 − hx3

)
. (1.9b)

Taking the mean (average volume flux per unit width of fluid layer) of (1.9) over the

gap between the parallel plates yields

u1 =
1

h

ˆ h

0

u1 dx3 = − h2

12µ

∂p

∂x1

, (1.10a)

u2 =
1

h

ˆ h

0

u2 dx3 = − h2

12µ

∂p

∂x2

. (1.10b)



32 Chapter 1. Introduction

In vector form, (1.10) can be written as

u = − h2

12µ
∇p, (1.11)

where here and in the remainder of this thesis, ∇ will denote the 2D differential

operator (∂x1 , ∂x2). Equation (1.11), describing a 2D potential velocity field, is known

as the Hele-Shaw equation and the coefficient k = h2/12µ is the mobility of the fluid.

The flow field is identical to that of a hypothetical 2D flow of inviscid fluid with

zero vorticity. The Hele-Shaw equation (1.11) is a useful analogue for the study of

inviscid potential flow in porous media, where (1.11) is equivalent to Darcy’s law,

governing flow in 2D porous media with permeability h2/12. Many references are

made in the literature outlining the connection between Hele-Shaw flow and flow in

porous media, see for example [123]. In what follows, we drop the bar notation for

the mean velocity field in (1.11) and write u = (u1, u2) as u = (u1, u2), for brevity.

The averaged velocity field (1.11) also satisfies the 2D continuity equation

∇ · u =
∂u1

∂x1

+
∂u2

∂x2

(1.12)

= 0. (1.13)

Coupled with (1.11), (1.12) implies that the pressure p satisfies Laplace’s equation,

i.e.

∇2p = 0 in Ω(t), (1.14)

and hence p(x1, x2, t) is harmonic in Ω(t).

Finally, to close the system, we require boundary conditions on the free boundary

∂Ω(t). These are the dynamic and kinematic boundary conditions. We shall assume,

for the moment, that the secondary fluid forming the interface with the fluid occu-

pying Ω(t) is of negligible viscosity. Therefore, the pressure in the inviscid fluid is
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constant, taken to be zero without loss of generality (w.l.o.g.), and so in the case of

ZST, the dynamic boundary condition is

p = 0 on ∂Ω(t). (1.15)

The dynamic boundary condition serves to determine the boundary data of p(x1, x2, t).

The resulting motion of the free boundary is given by the fluid velocity on the inter-

face. The kinematic boundary condition states that fluid particles on the interface

remain on the interface, and is given by

Vn = u · n on ∂Ω(t), (1.16)

where n is the unit normal vector on ∂Ω(t) pointing to the right if ∂Ω(t) is positively

orientated (i.e. traversed in the anticlockwise direction) and Vn is the normal velocity

of ∂Ω(t). That is, if the finite region enclosed by ∂Ω(t) describes a fluid blob then

n points out of Ω(t), if it describes a bubble then n points into Ω(t)—see figure 1.4.

This choice is made for simplicity in the mathematical formulation of the numerical

model presented in chapter 2.

1.2.2 The ZST Hele-Shaw free boundary problem

Writing φ(x1, x2, t) = −kp(x1, x2, t), the governing equation (1.14) and the bound-

ary conditions (1.15) and (1.16) can be written in terms of the scalar potential func-

tion φ(x1, x2, t), i.e.

∇2φ = 0, x ∈ Ω(t), (1.17a)

φ = 0, x ∈ ∂Ω(t), (1.17b)

Vn =
∂φ

∂n
, x ∈ ∂Ω(t), (1.17c)
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(a) (b)

Figure 1.4: The types of two fluid set-up considered in this thesis, displaying
direction of the normal vector on the free boundary ∂Ω(t). In (a) we have a fluid
blob and in (b) a bubble. In both cases, the outer fluid is of infinite expanse, i.e. an

unbounded Hele-Shaw cell is considered.

where ∂/∂n = n · ∇ denotes the derivative in the normal direction on ∂Ω(t) and

x = (x1, x2) is the 2D position vector. In this thesis we will refer to (1.17) as the free

boundary problem2.

The free boundary ∂Ω(t) in many Hele-Shaw flows is driven by hydrodynamic

singularities, for example distributed sources or sinks in the case of injection or

extraction of fluid mass. In this thesis we will mainly be concerned with two types

of hydrodynamic singularities, described below.

(i) For finite fluid blobs occupying the domain Ω(t), we will consider cases where

the interface ∂Ω(t) is driven by sources or sinks (or even higher order hydro-

dynamic singularities, e.g. dipoles, quadrupoles etc.). Conservation of mass

adheres to the rate of injection or extraction of fluid, i.e. considering the

flux integral of fluid mass over ∂Ω(t) and applying Gauss’ theorem we find

∇ · u =
∑

j Qjδ0(x − xj) for a combination of sources and sinks of strength

Qj [9, pp. 88–92]. Here, δ0(x−x′) denotes the Dirac distribution supported at

2A derivation of the free boundary problem with external background fields, i.e. fb 6= 0, is given
in appendix B. The motion of ∂Ω(t) due specifically to background electric fields are studied in
chapter 3.
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the origin, i.e.

δ0(x− x′) =


∞ if x = x′,

0 if x 6= x′.

(1.18)

Hence, the field equation (1.17a) in this case is given by

∇2φ =
∑
j

Qjδ0(x− xj), x ∈ Ω(t), (1.19)

where Qj denotes the strength of the j-th hydrodynamic singularity at position

xj ∈ Ω(t) \ ∂Ω(t) and
∑

j Qj gives the rate of change of fluid mass due to the

finite number of distributed hydrodynamic singularities. Using the Green’s

function for the Laplacian operator in 2D, we find3

φ(x, y, t)→
∑
j

Qj

2π
log|x− xj|, as x→ xj, (1.20)

a supplementary condition that must be satisfied inside Ω(t).

(ii) In the case of a finite bubble surrounded by an infinite expanse of viscous fluid

occupying the domain Ω(t) in an unbounded Hele-Shaw cell, we will consider

the motion of the interface ∂Ω(t) due to a bounded uniform flow at infinity.

That is, the free boundary problem (1.17) is supplemented with the condition

φ→ V x, as x→ ±∞, (1.21)

i.e. in this case the fluid is driven by a singularity at large distance from ∂Ω(t).

In this thesis, we shall constrain our focus to problems where the interface, ∂Ω(t),

separating the two fluids is a simple closed curve in R2.

3Throughout this thesis, log denotes the natural logarithm, base e.



36 Chapter 1. Introduction

1.3 Preliminaries

As we are concerned with a 2D flow, in the remainder of this thesis we use the

classical notation in R2 where x ≡ x1, y ≡ x2, u ≡ u1 and v ≡ u2. Since the

flow is incompressible, there also exists a stream function ψ(x, y, t), say, such that

u = ∇× ψk, where k is the unit vector in the x3 direction, i.e.

u =
∂ψ

∂y
, (1.22a)

and

v = −∂ψ
∂x

. (1.22b)

Combining (1.11) and (1.22) gives

∂φ

∂x
=
∂ψ

∂y
, (1.23a)

and

∂φ

∂y
= −∂ψ

∂x
, (1.23b)

which can be viewed as the classical Cauchy-Riemann equations. This implies that

there exists a complex potential

w(z, t) ≡ φ(x, y, t) + iψ(x, y, t), (1.24)

which is an analytic function of the complex variable z = x+ iy. This is a significant

result as it suggests that Hele-Shaw flow can be investigated using the theory of

analytic functions. Indeed, such methods based on complex variables will be utilised

frequently in this research. In terms of the complex variable z, the free boundary
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problem (1.17) is given by

∇2
zφ = 0, z ∈ Ω(t), (1.25a)

φ = 0, z ∈ ∂Ω(t), (1.25b)

Vn =
∂φ

∂n
, z ∈ ∂Ω(t), (1.25c)

where ∂/∂n = <{(n1 + in2)(∂x − i∂y)}, n1 and n2 are the x and y components of

the unit normal vector n on ∂Ω(t), respectively, the harmonic function φ(x, y, t) ≡

φ(z, z̄, t) and ∇2
z = 4∂2/∂z∂z̄ is the complex form of the Laplacian operator ∇2 =

∂2/∂x2 + ∂2/∂y2.

1.3.1 Conformal mapping techniques

To tackle the Hele-Shaw free boundary problem, conformal mapping techniques

have been used extensively in the literature, e.g. [25,48,59,89,99,111]. Due to the 2D

nature of the Hele-Shaw free-boundary problem, one can take advantage of complex

variable methods to seek the evolution of the free boundary, ∂Ω(t), by transforming

(1.17) into an initial value problem of a functional equation. Here we shall briefly

state some basic definitions and concepts of conformal mapping techniques and derive

the so called Schwarz function equation which is used extensively throughout this

research to find exact solutions to the Hele-Shaw free boundary problem.

Since ∂Ω(t) is considered to be a simple closed curve in R2, in the language of

complex variables, ∂Ω(t) is Jordan curve in C.

Definition 1.3.1 (Jordan Curve) Let an arc in the complex z-plane be defined

by a parametric equation z = z(s), where s ∈ R. If the arc is finite, then z(s) =

x(s) + iy(s) is a continuous function on an interval a ≤ s ≤ b, say, whose orientation

is fixed by its parameterisation, where z describes the arc in the positive sense as s

increases from a to b. A Jordan curve is defined by the closed path z(a) = z(b) such
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that z(s1) 6= z(s2) for a ≤ s1 < s2 ≤ b.

A complex function, z = f(ζ), say, where f : A → A′, ζ ∈ A, z ∈ A′ and A,

A′ ⊆ C, is a function that maps a point ζ = ξ + iη in the ζ-plane (ξ, η ∈ R) to a

point z = x+ iy in the z-plane.

Definition 1.3.2 (Conformal map) A conformal map of a domain or surface is a

map that preserves the magnitude of angles between curves.

That is, the map f : A → A′ is said to be conformal if f(ζ) preserves angles, and

their orientation, of smooth curves. A map f : A→ A′ is conformal at a point where

the derivative exists and is non-zero, that is, any analytic function f(ζ) is conformal

where f ′(ζ) 6= 0 in the complex plane4.

Definition 1.3.3 (Analytic function) Let f(ζ) be a complex function on some

domain A ⊆ C. If f(ζ) is single-valued and differentiable at each point ζ ∈ A, then

f(ζ) is called analytic. An analytic function is also referred to as a regular function,

where analytic and regular may be used interchangeably throughout this thesis.

Definition 1.3.4 (Univalent map) Let B, B′ ⊂ C ∪ {∞}, then a map is called

univalent in B if it is injective (one-to-one) in B, i.e. f(ζ1) 6= f(ζ2) if ζ1 6= ζ2, where

ζ1, ζ2 ∈ B and z1 = f(ζ1), z2 = f(ζ2) ∈ B′. If f : B → B′ is univalent in B, it is

also univalent in all subdomains of B.

The set C ∪ {∞} is known as the Riemann sphere or extended complex plane. A

univalent map is a conformal homemorphism (topological isomorphism). The inverse

of a univalent map, i.e. ζ = f−1(z), is also univalent.

The basis of applying conformal mapping techniques in the complex plane to find

exact solutions to the Hele-Shaw free boundary problem is the Riemann Mapping

Theorem. This important result states that any simply connected domain in the

4In this thesis, the prime used in conjunction with a function shall always denote differentiation
w.r.t. the first argument.
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complex plane can be obtained via a conformal map from the unit disc in an auxiliary

‘mapping domain’ [48].

In this thesis we will consider time-dependent univalent mappings from the inte-

rior or exterior of the unit ζ-disc (the mapping domain) in the ζ-plane, to the viscous

fluid domain Ω(t) in the z-plane, i.e.

z = f(ζ, t). (1.26)

The interior and exterior of the unit ζ-disc are defined as

D := {ζ : |ζ|≤ 1} (1.27a)

and

Dext := {ζ : |ζ|≥ 1}, (1.27b)

respectively. That is, the interface separating the two fluids in the z-plane, i.e. the

free boundary ∂Ω(t), is mapped from the unit ζ-circle in the ζ-plane. The unit

ζ-circle is defined as

∂D := {ζ : |ζ|= 1}. (1.28)

1.3.2 The Schwarz function and its properties

By use of the Schwarz reflection principle (symmetry principle) [106], the Schwarz

function (defined below) can be used to construct a functional equation relating the

free boundary, ∂Ω(t), to the hydrodynamics (and even external body force effects)

which drive its evolution.

Definition 1.3.5 (Schwarz function) The uniquely defined function g(z, t), which

is analytic in the neighbourhood Ωε(t), say, of a simple curve ∂Ω(t) in the complex
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plane such that

z̄ = g(z, t), z ∈ ∂Ω(t), (1.29)

is called the Schwarz function.

If the curve ∂Ω(t) is given by h(x, y, t) = 0, then the Schwarz function of the

curve ∂Ω(t) can, in principle, be obtained by setting x = (z+ z̄)/2 and y = (z− z̄)/2

and re-arranging h([z + z̄]/2, [z − z̄]/2i) = 0 for z̄.

Let z = f(ζ, t) be a time-dependent conformal map from the interior of the unit

ζ-disc, D, to Ω(t) in the z-plane. Then the Schwarz function of the curve ∂Ω(t) is

given by

g(z, t) = z̄

= f(ζ, t)

= f̄(1/ζ, t),

(1.30)

since |ζ|2= ζζ̄ = 1, where the points z = f(ζ, t) ∈ ∂Ω(t) are mapped from the unit

ζ-circle ∂D—see figure 1.5.

Figure 1.5: A conformal map from the unit ζ-circle, ∂D, in the ζ-plane, to the free
boundary, ∂Ω(t), in the z-plane.

Note that on ∂D we have that ζ̄ = 1/ζ, and therefore

f(1/ζ, t) = f(ζ, t). (1.31)
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Since ∂Ω(t) is mapped from ∂D by f(ζ, t), it can be shown that f(ζ, t) is regular

on ∂D, and that f̄(ζ, t) and f(1/ζ, t) are analytic continuations of one another.

Furthermore, (1.31) does not just hold on ∂D, but for all analytic continuations of

f̄(ζ, t). Taking the complex conjugate of (1.31), we see that the point f(1/ζ, t) is the

reflection of the point f̄(ζ, t) with respect to ∂Ω(t) [106], a useful fact when deriving

the Schwarz function equation for the Hele-Shaw free boundary problem.

Before deriving the Schwarz function equation, we derive three useful properties

of the Schwarz function.

(a) Let the curve ∂Ω(t) be parameterised by its arc length, which is denoted by s,

then

ds2 = dx2 + dy2

= (dx+ idy)(dx− idy)

= dzdz̄.

(1.32)

Let z̄ = g(z, t) be the Schwarz function of the curve ∂Ω(t), then from (1.32)

we have

∂g

∂z
=
∂z̄

∂z

=

(
∂s

∂z

)2

,

(1.33)

hence, taking the positive root, (1.33) yields

∂z

∂s
=

(
∂g

∂z

)−1/2

. (1.34)

(b) Let ∂Ω(t) be given by h(x, y, t) ≡ h(z, z̄, t) = 0. Recall the kinematic boundary

condition (1.16), which states that a fluid particle on the boundary stays on

the boundary, i.e. the boundary is formed by the same set of particles for
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all time. This implies that the material derivative following a fluid particle

on ∂Ω(t) must be equal to zero in the normal direction, and since the normal

velocity of the interface must be equal to the normal velocity of fluid on ∂Ω(t),

the material derivative on ∂Ω(t) is

∂h

∂t
+ Vnn · ∇h = 0, (1.35)

where n = (dy/ds,−dx/ds) is the unit normal vector on ∂Ω(t). The unit

normal to ∂Ω(t) can also be written in terms of h(x, y, t) as n = ∇h/|∇h|, and

so (1.35) becomes

∂h

∂t
+ Vn

∇h · ∇h
|∇h|

=
∂h

∂t
+ Vn|∇h|

= 0.

(1.36)

Using the relations

∂

∂x
=

∂

∂z
+

∂

∂z̄
, (1.37a)

∂

∂y
= i

∂

∂z
− i ∂

∂z̄
, (1.37b)

and h(x, y, t) ≡ h(z, z̄, t), we may write

|∇h| = (∇h · ∇h)1/2

=

[(
∂h

∂x

)2

+

(
∂h

∂y

)2
]1/2

=

(
4
∂h

∂z

∂h

∂z̄

)1/2

.

(1.38)

Using the definition of the Schwarz function (1.29), it can be seen that ∂Ω(t)
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is given by h(z, z̄, t) = z̄ − g(z, t) = 0, and so (1.38) yields

|∇h| = 2

(
∂h

∂z

∂h

∂z̄

)1/2

= 2i

(
∂g

∂z

)1/2

,

(1.39)

since ∂h/∂z = −∂g/∂z and ∂h/∂z̄ = 1. Taking the partial derivative w.r.t.

time of h(z, z̄, t) = z̄ − g(z, t), we obtain

∂h

∂t
= −∂g

∂t
. (1.40)

Substituting (1.39) and (1.40) into (1.36), we deduce that5

Vn = − i
2

ġ

(g′)1/2
. (1.41)

(c) From the definition of the Schwarz function (1.29), it can easily be verified that

the Schwarz function satisfies the consistency condition

g(g(z, t), t) ≡ z̄. (1.42)

1.3.3 The Schwarz function equation

Exact solutions of the Hele-Shaw free boundary problem are rare and often diffi-

cult to come by owing to the nonlinearity of the problem. The general solution for an

arbitrary shaped blob forced by a single source has not been found. However, some

exact solutions can be found using complex variable methods, an idea first employed

by Polubarinova-Kochina [110, 111] and Galin [44] in 1945. In [44, 110, 111] the so

called Polubarinova-Galin equation (P-G equation) is formulated6, the designation

5Here, and in the remainder of this thesis, the dot shall represent derivative w.r.t. time.
6A derivation of the P-G equation is given in appendix C.
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appearing in a paper by Howison [59]. More recently, the application of the Schwarz

function to find explicit solutions to the Hele-Shaw free boundary problem has been

seen, e.g. [25,59,89].

Here we derive the governing equation based on the Schwarz function approach to

find exact solutions to the Hele-Shaw free boundary problem (1.25). Let us consider

the case of a viscous fluid blob occupying a simply connected domain, Ω(t). Suppose

the domain Ω(t) is mapped from the interior of the unit ζ-disc7, D, via a time-

dependent univalent conformal map z = f(ζ, t). Then the free boundary ∂Ω(t) has

Schwarz function (1.30). The dynamic boundary condition (1.25b) implies that the

free boundary is an isobar (a surface of constant pressure), in particular φ(z, z̄, t) = 0.

From (1.30) the free boundary can be described by φ(z, z̄, t) = z̄ − g(z, t). Now, let

us consider the derivative of the complex potential w(z, t), defined in (1.24), along

∂Ω(t), i.e. tangent to the free boundary. If the curve φ(z, z̄, t) = 0 is parameterised

w.r.t. arc length, denoted by s, we have

∂w

∂z
=
∂w

∂s

∂s

∂z

=

(
∂φ

∂s
+ i

∂ψ

∂s

)
∂s

∂z
.

(1.43)

Hence, since the pressure is constant along ∂Ω(t), ∂φ/∂s = 0. The velocity potential

and stream function satisfy the Cauchy-Riemann equations w.r.t. the tangential and

normal derivatives, i.e.

∂φ

∂n
=
∂ψ

∂s
, (1.44a)

∂φ

∂s
= −∂ψ

∂n
, (1.44b)

where vτ = ∂φ/∂s and vn = ∂φ/∂n denote the tangential and normal velocity com-

ponents on ∂Ω(t), respectively. On the free boundary vn must satisfy the boundary

7It is not necessary for Ω(t) to be mapped specifically from D, it can also be mapped, for
example, from Dext, as is the case when studying translating bubbles in chapter 4.
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condition (1.25c). Therefore, (1.43) becomes

∂w

∂z
= i

∂φ

∂n

∂s

∂z

= iVn
∂s

∂z
,

(1.45)

and finally, employing properties (a) and (b) from section 1.3.2, namely (1.34) and

(1.41), we have

∂w

∂z
=

1

2

∂g

∂t
. (1.46)

In this thesis we will refer to (1.46) as the Schwarz function equation. This

equation is implicit in the work of Richardson [116] and was first derived explicitly

by Lacey [77] (in a different form) where it is stated to hold on the free boundary

∂Ω(t), which follows the derivation given above8. It can also be found in the work

of Millar [91,92] and was popularised by Howison [59].

So far, (1.46) has been derived on the interface, ∂Ω(t). In this respect, (1.46)

is not immediately useful since the complex potential w(z, t) is unknown on ∂Ω(t).

However, since both sides of (1.46) are analytic functions in the neighbourhood of

∂Ω(t) ⊂ Ω(t), i.e. Ωε(t), both sides of (1.46) may be be analytically continued away

from the free boundary and so (1.46) holds over the entire domain Ω(t). In this light,

(1.46) is now useful since it must hold in the limit where any singularities of w(z, t)

are approached, providing a basis from which exact solutions may be derived.

Example 1.3.1 (Flows due to a point source or sink)

Suppose that the free boundary, ∂Ω(t), is driven by single singularity, such as a

hydrodynamic source or a sink of strength Q1, say, located arbitrarily at z1 = x1+iy1.

In a small vicinity of the point z1 we have ∇2
zφ = Q1 and so the Hele-Shaw free

8An alternative derivation, also including external fields (as discussed in section 1.3.5), is given
in appendix D following the derivation given by McDonald [89].
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boundary problem in this case is given by

∇2
zφ = Q1δ0(z − z1), z ∈ Ω(t), (1.47a)

φ = 0, z ∈ ∂Ω(t), (1.47b)

vn =
∂φ

∂n
, z ∈ ∂Ω(t), (1.47c)

where δ0(z − z1) is the Dirac distribution defined in (1.18) with 2D position vectors

replaced by their complex variable counterparts, and so

φ(z, z̄, t)→ Q1

2π
log|z − z1|, as z → z1. (1.48)

The complex potential, w(z, t), has only one singularity, which corresponds to the

source or sink, that drives the flow. The driving singularities and the initial boundary

shape given by g(z, 0) are fixed, completing the initial description of the problem.

From the equality in (1.46), the singularities of w′(z, t) and ġ(z, t) must match,

that is, the hydrodynamic singularities driving the flow give singularities of ġ(z, t)

within Ω(t) and so in this sense singularities of g(z, t) evolve in a predictable way.

In the case of a single point source or sink, w′(z, t) has a simple pole at z = z1

with residue Q1/2π, where Q1 > 0 corresponds to a source, and Q1 < 0 to a sink.

The Schwarz function equation (1.46) then implies ġ(z, t) must also have the same

singular behaviour.

For a point source or sink, considering (1.48), we may deduce that in the vicinity

of the hydrodynamic singularity the complex potential takes the form

w =
Q1

2π
log(z − z1) +W (z), (1.49)

where W (z) can be expressed as an analytic power series of z, hence, from (1.46) we
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have

∂g

∂t
=
Q1

π

1

z − z1

+G(z), (1.50)

where G(z) can also be expressed as an analytic power series of z. Equation (1.50)

coupled with (1.30) provides a method with which to solve the physical problem

described by (1.47). More precisely, first employing (1.30), the Laurent expansion of

the Schwarz function, g(z, t), about the singular point z1 can be found. Then, match-

ing the coefficients in the Schwarz function equation, which in the current example

is given by (1.50), determines the time-dependent parameters of the univalent con-

formal map z = f(ζ, t). Thus, the parameters are usually given by a set of coupled

ODEs.

To summarise, complex variable methods and conformal mappings are used to

reformulate the ZST Hele-Shaw free boundary problem as a nonlinear initial value

problem in a fixed canonical domain (e.g. D in the ζ-plane).

1.3.4 Exact solutions of one-phase Hele-Shaw flow

Here we display the procedure by which exact solutions can be found to the

Hele-Shaw free boundary problem by virtue of the Schwarz function equation (1.46).

Example 1.3.2 (Expanding circular fluid blob)

Let us consider the trivial example of a circular fluid blob growing due to a point

source located at its centre, z = z1, say. The area of the viscous domain, Ω(t), will

grow at the rate of injection, Q1. By the symmetry of the problem, it is expected

that the boundary will remain circular for all time. Since the blob is circular, on the

free boundary ∂Ω(t), we have

zz̄ = a2, (1.51)

where a = a(t) is the radius of the circular blob at time t. Therefore, the Schwarz
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function is easily found and is given by

g =
a2

z
. (1.52)

Here, the radius of the fluid blob (a ∈ R) is a time varying parameter to be found.

Near the source the complex potential takes the form (1.49). Thus, the conjugate

complex velocity, w′(z, t) = u− iv, is

∂w

∂z
=
Q1

2π

1

z − z1

+W ′(z), as z → z1, (1.53)

which has a simple pole at z = z1. Considering the Schwarz function equation (1.46)

with (1.50), (1.52) and (1.53), equating terms of O((z − z1)−1) we have

Q1

2π
=

1

2

d

dt
(a2). (1.54)

Integrating (1.54) yields

a =

√
Q1t

π
+ a(0)2, (1.55)

i.e. a(t) ∼ t1/2. Note that re-arranging (1.54) gives

Q1 =
d

dt
(πa2), (1.56)

which states that the rate of change of area of the circular blob is equal to the rate

of change of fluid mass, Q1, as expected. Thus, the evolution of the free boundary

∂Ω(t) can be described via the differential equation (1.56) with the initial condition

a(0) = a0, say. In the case of a point source, i.e. Q1 > 0, (1.55) is well-defined, i.e.

a ∈ R for all t, as expected.

Consider the problem in which ∂Ω(t) is driven by a sink at z = z1. Solution (1.55)

holds, however, since Q1 < 0, it is expected that (1.55) will give an imaginary solution
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beyond some time, t = t∗, say, where the solution breaks down in the physical sense.

The time t∗ can be calculated by setting

Q1t
∗

π
+ a2

0 = 0, (1.57)

and re-arranging we have

t∗ = −πa
2
0

Q1

. (1.58)

This is precisely the time for all the fluid to be extracted by the sink. In practice,

Hele-Shaw sink flows are ill-posed, and typically cusps form on the free boundary in

finite time, before all the fluid is extracted [56, 62, 63]. This is demonstrated in the

next example.

Example 1.3.3 (Shrinking perturbed circular blob)

Consider the non-trivial case of an initially perturbed circular blob of fluid whose free

boundary is driven by a source or a sink. It is well known that the interior of a circle

with n− 1 perturbations can be mapped from the unit disc. Therefore, consider the

following simple mapping function from D to the fluid domain Ω(t) (employed by

Cummings et al. [25]) given by the polynomial map

z = a

(
ζ − b

n
ζn
)
, (1.59)

where n ≥ 2, n ∈ N. We may assume a = a(t) and b = b(t) are real, positive

parameters for all time that are to be found. Note that (1.59) is univalent if and

only if |b(0)|< 1. For b(0) 6= 0, the shape of the initial boundary, ∂Ω(0), is a limaçon.

The Schwarz function of (1.59) is found by employing (1.30) and using the fact

ζ̄ = ζ−1 on ∂Ω(t), which gives

g = a

(
1

ζ
− b

nζn

)
. (1.60)
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The derivative of the complex potential, w′(z, t), takes the form (1.53) as z → z1,

and from (1.59) we have

1

ζ
=

1

z

(
a− ab

n
ζn−1

)
. (1.61)

Without loss of generality, assume that the source is located at the origin, i.e. z1 = 0.

As ζ → 0, we approximate

ζ =
z

a
+O(zn), (1.62)

and we can write

1

ζ
=
a

z
− ab

nan−1
zn−2 +O(z2n−2). (1.63)

To complete the expansion of g(z, t) about the location of the source, z = 0, the

expansion of 1/ζn is also required as ζ → 0. This is achieved by the binomial

expansion of (1.63), giving

1

ζn
=
an

zn
− ab

z
+O(zn−2). (1.64)

Hence, the Schwarz function has the expansion

g = −a
n+1b

n

1

zn
+ a2

(
1 +

b2

n

)
1

z
+O(zn−2), as z → 0. (1.65)

Applying (1.46) and comparing terms of O(z−n) and O(z−1), we have a set of coupled

differential equations for a(t) and b(t) given by

d

dt

[
an+1b

]
= 0, (1.66a)

d

dt

[
a2

(
1 +

b2

n

)]
=
Q1

π
, (1.66b)

which, in turn, describe the evolution of the free boundary ∂Ω(t). Integrating we
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have

an+1b = an+1
0 b0, (1.67a)

a2

(
1 +

b2

n

)
=
Q1t

π
+ a2

0

(
1 +

b2
0

n

)
, (1.67b)

where a0 = a(0) and b0 = b(0). The solution (1.67) was also derived by Galin [44]

and Polubarinova-Kochina [112] using a different method—see appendix C.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

ℜ (z )

ℑ
(z

)

(a)

0.2 0.25 0.3 0.35
−0.1

−0.05

0

0.05

0.1

ℜ (z )

ℑ
(z

)

(b)

Figure 1.6: Cusp formation on the free boundary, ∂Ω(t), at t = tc ≈ 0.6825,
beyond which the solution breaks down—close up after breakdown shown in (b)
where t > tc. The initial boundary (dashed), ∂Ω(0), is given by (1.59) with a0 = 1,
b0 = 0.1. Snapshots of the evolution of ∂Ω(t), in (a), are shown t = 0, 0.0683, 0.1365,
0.2046, 0.273, 0.3413, 0.4095, 0.4778, 0.546, 0.6143 and 0.6825. The flow is driven

by a sink of strength Q1 = −π, marked by a square.

In the case of a point source, i.e. Q1 > 0, the fluid blob grows such that ∂Ω(t)

eventually becomes a circle centred at z = 0, where the solution (1.67) is valid for

all time. For a sink driven flow, i.e. Q1 < 0, a cusp forms on the free boundary at

time t = tc, say, beyond which (1.59) is no longer univalent and the solution breaks

down—see figure 1.6. Physically, the assumption of a simply connected domain Ω(t)

is violated beyond this time [25]. At t = tc, we have b(tc) = 1 and ∂Ω(t) becomes

a cardioid, as shown in figure 1.6(a), where the shape of ∂Ω(t) comprises a 3/2-

power cusp, at which point the speed of the free boundary at the cusp tip is of
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O((t− tc)−1/2), i.e. infinite [56].

Example 1.3.4 (Growing circular blob near a wall)

Example 1.3.3 may be generalised to accommodate any number of sources or sinks

distributed in Ω(t). In some cases it may be useful to have more than one singularity

driving the free boundary, for example the problem of a fluid blob expanding near

a straight wall. To model the flow when a fluid blob is in contact with the wall,

the method of images can be employed, e.g. [117], reflecting the free boundary and

any sources or sinks in the wall to satisfy the zero flux boundary condition on the

wall—see figure 1.7.

(a) (b)

Figure 1.7: Employing the method of images to solve the problem of a Hele-Shaw
flow near a wall where the free boundary, ∂Ω(t), is driven by a point source of
strength Q1, marked by a triangle, depicted in (a). The equivalent scenario in which

the boundary is that of a Neumann oval is shown in (b) where Q1 ≡ Q2.

Consider the rational map from D, in the ζ-plane, to Ω(t), in the z-plane, such

that ∂Ω(t) has the same shape as that shown in figure 1.8(b) given by

z =
Rζ

ζ2 − ζ2
1

, (1.68)

where R ∈ R gives the required symmetry in the =(z) axis. R = R(t) and ζ1 = ζ1(t)

are real, time varying parameters to be found. Assume that we want to model the
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evolution of ∂Ω(t) driven by two sources, as shown in 1.8(b), such that the line of

symmetry coincides with the imaginary axis. Hence, the sources lie on the real axis

located at z = z1 and z = z2 ≡ −z1, say. Without loss of generality, let us take

z1 = 1. Taking the complex conjugate of (1.68) and using the fact ζ = ζ−1 on ∂D,

we have the Schwarz function for the free boundary given by

g =
Rζ

ζ
2 − ζ2

1

= − R

2ζ2
1

(
1

ζ + ζ−1
1

− 1

ζ − ζ−1
1

)
,

(1.69)

which has simple poles at ζ = ζ−1
1 and ζ = −ζ−1

1 . Given the sources or sinks are

located at z = ±1, choosing to map the poles of (1.69) to z = ±1, i.e. z(±ζ−1
1 ) = ±1,

then, from (1.68) we have the relation

Rζ1 = (1− ζ4
1 ). (1.70)

Now consider the expansion of (1.68) about ζ = a−1, i.e.

z = z(ζ−1
1 , t) + (ζ − ζ−1

1 )z′(ζ−1
1 , t) +O((ζ − ζ−1

1 )2), (1.71)

and so we have

1

ζ − ζ−1
1

=
1

z − 1
z′(ζ−1

1 , t) +O(1), (1.72)

hence

1

ζ − ζ−1
1

=
1 + ζ−4

1

Rζ−2
1

1

z − 1
+O(1). (1.73)

Considering the complex potential, we find that

∂w

∂z
→ Q1

2π

1

z − 1
, as z → 1. (1.74)
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Therefore, employing the the Schwarz function equation (1.46) and comparing terms

of order O((z − 1)−1) yields

d

dt

[
1

2

(
1 + ζ−4

1

ζ−2
1

)]
=
Q1

π
. (1.75)

Integrating (1.75) gives

ζ4
1 −

(
2
Q1t

π
+

1 + ζ−4
10

ζ−2
10

− 2

)
ζ2

1 + 1 = 0, (1.76)

where ζ10 = ζ1(π/Q1), and at t = π/Q1 the circular blob has unit radius (and just

touches the wall). The parameters ζ1(t) and R(t) are found by solving (1.76) and

(1.70), where |ζ1(t)|≥ 1, and both ζ1(t) and R(t) are real for (1.68) to be univalent.

Figure 1.8 shows solution to (1.76) and (1.70) for t > π/Q1 where ζ10 = 1 and

R0 = R(π/Q1) = 0. As t→∞, ∂Ω(t) tends to a circle.
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Figure 1.8: Time evolution of ∂Ω(t) of a fluid blob growing under the influence of a
point source (marked by a triangle) near a solid wall coinciding with <(z) = 0, shown
in (b). The initial boundary (dashed), ∂Ω(0), is given by (1.68) with ζ1(π/Q1) = 1
and R(π/Q1) = 0, where Q1 = 1. Evolution of ∂Ω(t) is shown at t = 3.142,
4.084, 5.027, 5.969, 6.912, 7.854, 8.796, 9.739, 10.681, 11.624, 12.566. The equivalent
problem of a dumbbell shaped boundary evolving under the action of two sources of

the same strength (marked by triangles) in each lobe is shown in (a).
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Examples 1.3.1–1.3.4 outline a useful method by which exact solutions to the

one-phase Hele-Shaw free boundary problem can be found, a method which will be

used extensively to study the evolution of the free boundary, ∂Ω(t), in chapters 3

and 4.

1.3.5 The generalised Schwarz function equation

The Schwarz function equation (1.46) can be generalised to include background

conservative body force effects in one-phase Hele-Shaw flows [39, 89]. For flows in-

cluding body forces, the Hele-Shaw free boundary problem is given by (B.11) in

appendix B, where the dynamic boundary condition now reads

φ = Ψ, x ∈ ∂Ω(t), (1.77)

and the background force can be described as the gradient of a scalar potential

function Ψ(x, y, t) such that fb = −∇Ψ/k. Therefore, the free boundary ∂Ω(t) can

be described by the function φ(x, y, t) − Ψ(x, y, t) = 0. Making the substitution

x = (z+ z̄)/2, y = (z− z̄)/2, and using the definition of the Schwarz function (1.30)

of ∂Ω(t), on the free boundary we must have φ((z + z̄)/2, (z − z̄)/2, t) − Ψ((z +

z̄)/2, (z − z̄)/2, t) ≡ φ(z, z̄, t)−Ψ(z, z̄, t) = z̄ − g(z, t) = 0. Since the pressure along

the free boundary is given by (1.77), taking the tangential derivative along ∂Ω(t)

gives ∂φ/∂s = ∂Ψ/∂s. Therefore, using (1.44a), (1.43) along ∂Ω(t) gives

∂w

∂z
=

(
∂Ψ

∂s
+ i

∂φ

∂n

)
∂s

∂z
. (1.78)

Finally, employing (1.25c), (1.34) and (1.41), we have

∂w

∂z
=
∂Ψ

∂z
+

1

2

∂g

∂t
. (1.79)
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The analytic continuation of (1.46), as descried in section 1.3.3, also applies to (1.79),

which we shall call the generalised Schwarz function equation, and so is valid over

the entire domain Ω(t). Therefore, (1.79) can be used to construct exact solutions to

the Hele-Shaw free boundary problem including external potentials, if the structure

of singularities of ∂w/∂z and ∂Ψ/∂z are known.

Example 1.3.5 (Elliptical bubble in a rotating cell)

Consider an elliptical bubble surrounded by an infinite fluid region, Ω(t), in a rotating

Hele-Shaw cell [19,41,89]. For a rotating Hele-Shaw cell, the centrifugal potential in

the entire plane is given by

Ψ = ω
zz̄

2
, (1.80)

where ω is constant, denoting the speed of angular rotation. Therefore, since z̄ = g

on the free boundary ∂Ω(t), (1.80) gives

∂Ψ

∂z
= ω

(
g + z

∂g

∂z

)
. (1.81)

Let us consider the map from the interior of the unit ζ-disc, D, to the fluid region

exterior to the elliptical bubble, Ω(t), by

z =
a

ζ
+ bζ, (1.82)

where a(t) and b(t) are real, time varying parameters to be found. Note, from (1.82),

it is clear that as ζ → 0, z →∞. Taking the complex conjugate of (1.82), and using

(1.82) to approximate 1/ζ as ζ → 0, the Schwarz function of ∂Ω(t), as z → ∞, has

the expansion

g =
b

a
z +

a2 − b2

z
+O(z−3). (1.83)

Since there are no hydrodynamic singularities within Ω(t), ∂w/∂z is analytic in

Ω(t). Hence, considering terms of O(z) and O(z−1), the generalised Schwarz function



Chapter 1. Introduction 57

equation (1.79) gives

d

dt

(
b

a

)
+ 2ω

(
b

a

)
= 0, (1.84a)

d

dt
(a2 − b2) = 0, (1.84b)

a set of coupled ODEs governing the evolution of a and b. The second of these

equations, (1.84b), is equivalent to conservation of bubble area, as expected, since

there is no flux of fluid mass through ∂Ω(t). Solving (1.84), the exact solution for

the elliptical bubble in a rotating Hele-Shaw cell is given by the map (1.82) with

a =
a0

√
a2

0 − b2
0√

a2
0 − b2

0 exp(−4ωt)
, (1.85a)

b =
b0

√
a2

0 − b2
0 exp(−2ωt)√

a2
0 − b2

0 exp(−4ωt)
, (1.85b)

where a0 = a(0) and b0 = b(0). Without loss of generality, we can choose

a2
0 − b2

0 = 1, (1.86)

fixing the area of the elliptical bubble for all time.

Evolution of an initially elliptical bubble for positive and negative ω are shown in

figure 1.9. For ω > 0, the flow is stable, where the elliptical bubble tends to a circle

as t → ∞, whereas for ω < 0, the flow is unstable and the solution (1.85) breaks

down in finite time, t = tc, say, at which point the elliptical bubble collapses onto

the real axis [89].

Example 1.3.6 (Translating circular bubble)

Consider a circular bubble of initial radius R0 centred at z = C0 (where R0, C0 ∈

R), surrounded by an infinite expanse of viscous fluid occupying the domain Ω(t).

Assume that the bubble is driven by a uniform steady flow of speed V in the positive
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Figure 1.9: Time evolution of an initially elliptical bubble interface (dashed line)
in a rotating Hele-Shaw cell, with a0 = 1.2, b0 =

√
1.22 − 1 and 0 ≤ t ≤ 1. In (a)

the evolution of ∂Ω(t) for ω = −1 is shown at t = 0, 0.2, 0.4, 0.6, 0.8 and 1.0, and
in (b) for ω = 1, the interface is shown at t = 0, 0.04, 0.08, 0.12, 0.16 and 0.2.

x direction [138]. That is, as z →∞, w(z, t)→ V z.

Let us consider the conformal map from the interior of the unit ζ-disc, D, to the

fluid region exterior to the circular bubble given by

z =
R

ζ
+ C, (1.87)

where R(t), C(t) ∈ R are time-dependent parameters to be found. The Schwarz

function of ∂Ω(t) behaves like

g → R2

z
+ C, as z →∞. (1.88)
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Therefore, applying the Schwarz function equation (1.46) as z →∞, we find

V =
RṘ

z
+
Ċ

2
, (1.89)

and so, comparing terms of O(z−1) and O(1) in (1.89), we have

R
dR

dt
= 0, (1.90a)

dC

dt
= 2V. (1.90b)

Hence, if R(0) = R0 and C0 = C(0), the solution to (1.90) is R = R0 = constant and

C = 2V t+C0, which implies the circular bubble will translate as a circle of constant

radius at speed twice that of the background flow, in the same direction.

1.4 Thesis structure

The research presented in this thesis is arranged around three topics, two of which

are problems studied in one-phase Hele-Shaw flows, in chapters 3–4, and the third

is based on the study of two-phase Hele-Shaw flows given in chapter 5. The Hele-

Shaw free boundary problem in both one-, and two-phase are investigated using two

approaches: analytically, via the Schwarz function approach presented in sections

1.3.3–1.3.5 of this chapter, and numerically. Earlier in this chapter, the Hele-Shaw

free boundary problem was introduced and a review of some of the literature, which

will be relevant throughout the subsequent chapters, was presented. Some exact

solutions obtained via the Schwarz function approach were also presented, serving

as introductory material for the following chapters.

In chapter 2, the mathematical formulation and algorithm for the numerical

method, developed as part of the current research, is presented for the one-phase

problem. A brief account on the formulation of existing numerical methods is given
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in section 2.1. In section 2.2.2 the mathematical formulation is presented, based

on complex variable techniques, namely contour integration, by which a boundary

integral equation (BIE) is derived. The distinguishing factor between bubbles and

blobs in the mathematical formulation is discussed in section 2.6. The numerical

method is tested against some known, exact solutions to one-phase Hele-Shaw flows,

like those presented in sections 1.3.4 and 1.3.5. Finally, the numerical method is

extended to consider multiple interface problems, e.g. flows with multiple bubbles,

after which, some concluding remarks are made.

Chapter 3 is concerned with flow of conducting fluids subject to an external

electric field. The underlying assumptions and field equations governing the electro-

magnetic effects are set forth in section 3.1, and the resulting free boundary problem

is presented in section 3.2. In the following section, analytical results are derived for

a steady solution after which a temporal solution is given which tends to the former

steady state solution. The stability of the free boundary under the action of the

external field is discussed in section 3.3.2. In section 3.4 the numerical results (com-

puted using the method presented in chapter 2) are compared with the analytical

results. Given the excellent agreement between analytical and numerical results, ad-

ditional numerical simulations are presented with some discussion, and finally some

conclusions are drawn.

The unsteady motion of a translating bubble, due to a uniform background flow,

is considered in chapter 4. Details of the Taylor-Saffman bubble and the selection

problem [138] are given. In section 4.2 the steady elliptical bubble is revisited and

the propagation speed of the rotated elliptical bubble is derived using the Schwarz

function approach. Numerical simulations of a translating bubble are shown in sec-

tion 4.3 and the attraction to the circular bubble with propagation speed twice the

background flow is discussed. The breakup of a single bubble is investigated numer-

ically in section 4.3.2 where the singularities of the Schwarz function of the initial
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bubble interface play a significant role. The stability of an elliptical bubble is studied

analytically in section 4.4. Details of exact solutions that breakdown in finite time

and unsteady solutions that exist for all time are studied in section 4.4.1. Further-

more, in chapter 6, the problem of a single bubble near a wall of infinite length,

subject to a uniform flow, is considered numerically.

In Chapter 5, the two-phase Hele-Shaw free boundary problem is considered,

where two fluids of non-zero, finite viscosity are separated by a simple closed inter-

face. The construction of exact solutions are discussed in section 5.3 and are used to

test numerical results in section 5.2.3. The formulation and algorithm of the numer-

ical method to solve the two-phase Hele-Shaw free boundary problem are presented

in sections 5.2.1 and 5.2.2. An exact solution for a rotated elliptical inclusion is

presented in section 5.3.2 using an existing solution technique for two-phase flow,

and a relationship between viscosity ratio and the speed of propagation of a circular

inclusion is given in section 5.3.3. Remarks made by Taylor and Saffman [138] are

revisited in section 5.3.4 with some discussion, and some concluding remarks are

made.

In the final chapter—chapter 6—the conclusions of the work presented in this

thesis are summarised and some avenues of future research are discussed.

1.5 Contribution to literature

As a result of the research carried out during the term of the author’s PhD

studentship, two complete research articles have been written and submitted, one to

the European Journal of Applied Mathematics, and the other to Physics of Fluids

[71,72]. The first article was published online in October 2013 (later published in the

25th volume of the journal in August 2014), and the second paper is currently under

the review process. Below we give the abstracts of each paper. The majority of the
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research published (or submitted) is presented in chapters 3 and 4, respectively.

Article title

Hele-Shaw flow driven by an electric field (European Journal of Applied Mathe-

matics, 25(4): 425–447, 2014).

Article abstract

The behaviour of two-dimensional finite blobs of conducting viscous fluid in a

Hele-Shaw cell subject to an electric field is considered. The time-dependent free

boundary problem is studied both analytically using the Schwarz function of the free

boundary, and numerically using a boundary integral method.

Various problems are considered including: (i) the behaviour of an initially cir-

cular blob of conducting fluid subject to an electric point charge located arbitrarily

within the blob, (ii) the delay in cusp formation on the free boundary in sink driven

flow due to a strategically placed electric charge and (iii) stability of exact steady

solutions having both hydrodynamic and electric forcing.

Article title

On the motion of unsteady translating bubbles in an unbounded Hele-Shaw cell

(Physics of Fluids, 27(1): 1–21).

Article abstract

Unsteady propagating bubbles in an unbounded Hele-Shaw cell are considered

numerically in the case of zero surface tension. The instability of elliptical bubbles

and their evolution toward a stable circular boundary, with speed twice that of the

fluid speed at infinity, is studied numerically and by stability analysis. Numerical
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simulations of bubbles demonstrate the important role played by singularities of the

Schwarz function of the bubble boundary in determining the evolution of the bubble.

When the singularity lies close to the initial bubble, two types of topological change

are observed: (i) the bubble splitting into multiple bubbles and (ii) a finite fluid blob

pinching off inside the bubble region.



Chapter 2

A numerical model for one-phase

Hele-Shaw flows

2.1 Boundary Integral Methods

The solutions of Hele-Shaw free boundary problems including various boundary

effects, for example constant pressure, surface tension or kinetic undercooling, have

been the subject of numerical study with a large emphasis on Boundary Intergral

Methods (BIMs) in the literature1, see e.g. [1, 14, 15, 26, 28, 68]. The use of a BIM is

appealing as the main interest lies in computing the motion of the interface, hence,

formulating the problem in terms of quantities of interest such as velocity potential,

stream function or fluid velocity on the interface is sufficient and efficient. BIMs

usually consist of an integral equation formulated along the interface, as we do in this

thesis, known as a Boundary Integral Equation (BIE). In some cases the equations

on the interface may be derived in the form of an integro-differential system, see

e.g. [14]. The formulations of BIEs are either based on complex variable methods,

e.g. [90, 146], or a Green’s identity approach, formulated by virtue of Green’s third

1For a further in-depth discussion and historical perspective on BIMs and their application to
fluid dynamic problems, the reader is referred to the paper by Hou et al. [55] and references therein.
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identity, e.g. [68, 126].

McLean and Saffman [90]—whose work concerns the time-dependent problem

of predicting the shape of a finger in a channel, where surface tension effects are

included, and the stability of the steady Saffman-Taylor finger—formulate the Hele-

Shaw free boundary problem as an integro-differential system where a BIE (which

in fact is a Cauchy principal value integral) is formulated using free streamline tech-

niques due to Helmholtz [52] and Kirchhoff [74] by considering the complex conjugate

velocity and the complex potential along the interface. More recently, the same BIE

formulation is also used by Chapman and King [15] and Dallaston [26] to study the

effects of kinetic undercooling on particular Hele-Shaw flow problems, e.g. selection

of the Saffman-Taylor finger, where asymptotic expansion techniques are also em-

ployed to investigate the stability and asymptotic behaviour of the interface, whereby

the expansions are truncated and the resulting equations can be treated numerically.

A BIE can also be formulated via a vortex sheet method for Hele-Shaw flows which

can be treated numerically using spectral methods, see e.g. [14,55,143], which follow

closely the numerical method for computing the motion of a vortex sheet, for example

used in the studies by Baker [8] and Krasny [76]. Such boundary integrals are based

on an integro-differential equation known as the Birkhoff-Rott equation [11, 121]

in which the velocity of the free boundary is related to the strength of the vortex

sheet. In particular, Ceniceros et al. [14] follow the algorithm of Strain [131], where

the governing equations are recast in a curvilinear coordinate system, and the time

stepping algorithm is based on an explicit-implicit method. Furthermore, Ceniceros

et al. [14] establish a small scale decomposition to reduce stiffness of the resulting

system of equations. The formulation allows clustering of mesh points in regions of

high curvature and therefore allows to accurately predict the formation of a cusp of

an exact solution such as example 1.3.3. Although the numerical method is elaborate

and accounts for the stiffness of the system of equations, stability issues, similar to
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those presented here and by Aitchison and Howison [1], still occur, and a filtering

process is applied. The filtering process employed is based on that of Krasny [76],

where Fourier modes, satisfying a given tolerance condition, are set to zero, i.e. the

Fourier series is truncated.

In a similar way to the vortex sheet method, where the strength of the ‘vortex

sheet’ is found as part of the formulation at any instance, a method of distributed

sources can also be used. Here sources are distributed along the free boundary and

the source strengths must be determined as part of the formulation, see e.g. [34]. In

the method presented by Degregoria and Schwarz [34], a conformal map is used to

transform the problem to a simpler domain before solving numerically to find the

complex potential which is then differentiated w.r.t. the complex variable to give the

conjugate complex velocity of the free boundary.

Green’s identity can also be used to formulate a BIE in R2 as opposed to C,

where in particular, Green’s third identity is used giving a formulation whereby the

stream function and its normal derivative are related through an integral equation,

see e.g. [67, 68, 126]. Such a formulation has proven popular in recent years and a

similar line integral formulation has also been used to study other free boundary

problems in fluid mechanics such as Contour Dynamics [33, 35], the equations of

which can also be reformulated in the complex plane [23].

Another numerical method closely related to the Contour Dynamics method has

also been employed in [88] to study Hele-Shaw flows near obstacles, where the Hele-

Shaw free boundary problem can be recast as a pseudo vortex patch problem via a

Baiocchi transform. The objective then becomes to find a steady patch of uniform

vorticity by a combination of Contour Dynamics and Newton’s method to compute

the varying strength of vorticity for such equilibria. Again, quantities of interest are

computed on the free boundary only.

Solution methods are not restricted to BIMs: Volume of Fluids methods, e.g.
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[151], immersed interface methods, e.g. [54], or finite difference methods, e.g [108],

have also been employed to solve Hele-Shaw free boundary problems numerically.

In the Volume of Fluids method, for example, the pressure field is computed in the

viscous phase using finite difference approximations, and the continuity equation is

given in terms of a flux integral over the interface which is approximated numerically

using well known quadrature rules, e.g. the trapezium rule. However, even today, the

downside to such methods is the dramatic increase in computational complexity as

the entire phase domain (or an area surrounding the interface in immersed interface

methods) is discretised, as compared with ‘pure’ BIMs where the interface alone is

discretised.

2.2 Numerical model

Here we give, in detail, a formulation of a boundary integral method which differs

to those discussed in section 2.1. The formulation presented here is similar to the

method introduced by Vanden-Broeck [146,147] in which a complex contour integral

on the free boundary is constructed such that the integrand is a function of the

complex conjugate fluid velocity (which is an analytic function). Considering such

an integral gives an equation which can be solved directly for the fluid velocity on—

and therefore the velocity of—the interface.

In section 2.2.2 we present the numerical model for a finite fluid blob enclosed by

an anticlockwise contour describing the interface. Section 2.3 describes the numerical

procedure. In section 2.4 the stability of the numerical model is discussed and in

section 2.5 the model is modified to incorporate external fields. In section 2.6 the

equations are presented for the bubble problem where the contour describing the

bubble interface is also orientated in the anticlockwise direction. Numerical results

are tested against exact solutions in section 2.7, and we finally end by presenting an
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extension to the numerical model to study problems with more than one distinct,

simple, closed interface in section 2.8.

The Cauchy integral formula and Cauchy principal value

Before we proceed, we state two important mathematical concepts, namely the

Cauchy integral formula and the definition of the Cauchy principal value for specific

real integrals, that form the basis of the numerical model and allow us to compute

the solution.

The Cauchy integral formula for an integrand with at most a simple pole can be

stated as follows. Let f(z) be analytic everywhere in the domain Ω(t), say, then for

any simply connected closed contour C within Ω(t), with positive orientation, i.e.

traversed in the anticlockwise direction, then

1

2iπ

ˆ
C

f(z)

z − zm
dz =



0, if zm is outside of C ,

f(zm), if zm is inside of C ,

1
2
f(zm), if zm is on C .

(2.1)

When evaluating a real integral, the assumption is that the integrand is well-

defined over the entire domain of integration, i.e. when evaluating
´ b
a
f(s) ds, it is

assumed f(s) is well-defined over [a, b], a, b ∈ R. An integral can be evaluated if

f(s) is undefined at some point over the domain of integration and the integral is

convergent, in the following sense.

Definition 2.2.1 (Cauchy principle value) Let f(s) be a real function that is

undefined at a point s0 ∈ [a, b], then the value of the integral

−
ˆ b

a

f(s) ds = lim
ε→0+

{ˆ s0−ε

a

f(s) ds+

ˆ b

s0+ε

f(s) ds

}
(2.2)
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is called the Cauchy principal value if the limits on the right hand side of (2.2) exist.

Convergent integrals with a Cauchy principal value are denoted by a dashed integral

sign, as in the left hand side of (2.2).

2.2.1 Decomposition of the velocity potential

To present the numerical method for finite viscous domains Ω(t) (i.e. finite blobs

of fluid), we choose the particular case where the free boundary is driven by a point

source or sink located at (x1, y1) ∈ Ω(t) \ ∂Ω(t). The velocity potential of the flow is

decomposed as φ = φ̃+ φ̂ where the velocity potential due to the given background

flow (i.e. due to the point source or sink) is φ̂(x, y, t), and φ̃(x, y, t) is the potential

part due to the presence of the free boundary (i.e. the interface with the inviscid

domain C \ Ω(t)). The velocity ũ = ∇φ̃(x, y, t) is a solenoidal, irrotational vector

field which describes the local evolution of the interface as a result of the background

flow, û = ∇φ̂, and so φ̃(x, y, t) is regular in Ω(t). The total fluid velocity is given by

the sum u = ũ + û. In order to solve (1.47) numerically, the free boundary problem

is written in terms of φ̃ for which the governing equations are

∇2φ̃ = 0, x ∈ Ω(t), (2.3a)

φ̃ = −φ̂, x ∈ ∂Ω(t), (2.3b)

Vn =
∂

∂n

(
φ̃+ φ̂

)
, x ∈ ∂Ω(t), (2.3c)

where, in the case ∂Ω(t) is driven by a point source or sink, the background potential

is φ̂ = (Q1/4π) log [(x− x1)2 + (y − y1)2] ≡ (Q1/2π) log|z − z1|.

The numerical method is to first solve (2.3a) and (2.3b) to find the velocity due

to φ̃ on ∂Ω(t) at any instance given Ω(t), and then to advect the interface by the

kinematic condition (2.3c).
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2.2.2 Mathematical formulation

Suppose two fluids are separated by a simple closed curve, ∂Ω(t), in a Hele-

Shaw cell. Suppose also that one of the fluids is viscous and the other is a fluid

with negligible viscosity, e.g. oil and air. Let the viscous fluid domain occupy the

finite region Ω(t). Since we consider ∂Ω(t) to be a simple closed curve in R2, in the

language of complex variables, we consider ∂Ω(t) to be a contour in C traversed in

the positive direction in the normal sense2. That is, following convention—the same

convention used in section 1.2.1—when traversing along ∂Ω(t) in the anticlockwise

direction we take the (outward) unit normal vector pointing to the right, i.e. we

take the mass of fluid occupying Ω(t) to lie to the left [66, pp. 98–99]. Therefore,

in the case of a fluid blob, ∂Ω(t) is traversed in the anticlockwise direction and we

stick to this convention throughout the derivation of any subsequent equations. Let

us parameterise ∂Ω(t) with arc length, s. Let the total arc length of ∂Ω(t) be L(t).

Then, in C, z(s) = x(s) + iy(s) describes ∂Ω(t) in the anticlockwise direction with s

increasing from 0 to L(t), i.e. 0 ≤ s ≤ L(t).

Now let us define the unit normal and tangent vectors on ∂Ω(t) as

n =

(
dy

ds
,−dx

ds

)
, (2.4a)

τ =

(
dx

ds
,
dy

ds

)
, (2.4b)

respectively. That is, according to the convention described above, travelling in the

positive direction on ∂Ω(t), (2.4a) fixes the direction of n towards the right—see

figure 2.1. Let the normal and tangential fluid velocity on the interface ∂Ω(t) be

denoted by vτ and vn, respectively. If u = (u, v) denotes the fluid velocity vector

2Recall, the Hele-Shaw free boundary problem can be recast in terms of the complex variable
z = x+ iy such that φ(x, y, t) ≡ φ(z, z̄, t), as presented in section 1.3—c.f. (1.25).



Chapter 2. A numerical model for one-phase Hele-Shaw flows 71

inside Ω(t) in Cartesian coordinates, then on the interface, vτ and vn are

vn = u · n

= u
dy

ds
− vdx

ds
,

(2.5)

vτ = u · τ

= u
dx

ds
+ v

dy

ds
.

(2.6)

Figure 2.1: Displaying the parameterisation of the interface, ∂Ω(t), of a finite fluid
blob occupying Ω(t), and the direction of the normal and tangential vectors on the

interface.

Since we are interested in formulating the free boundary problem directly for the

velocity of the interface, let us write the dynamic boundary condition (2.3b) in terms

of the tangential velocity on ∂Ω(t). Taking the tangential derivative of (2.3b) gives

∂φ̃

∂τ
= −∂φ̂

∂τ
, x ∈ ∂Ω(t), (2.7)

i.e.

ṽτ = −v̂τ , x ∈ ∂Ω(t). (2.8)

Now let us turn our attention to the kinematic condition (2.3c). Since the normal
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velocity on ∂Ω(t) must be continuous, we write (2.3c) as

Vn = vn, x ∈ ∂Ω(t), (2.9)

where the total normal fluid velocity is

vn = ṽn + v̂n, x ∈ ∂Ω(t). (2.10)

Now we reformulate the field equation (2.3a) in terms of a complex contour inte-

gral. In order to do so, we first construct a complex function F (z, t). The complex

potential, an analytic function in Ω(t), for the regular part of the flow field can be

defined as

w̃(z, t) = φ̃(z, z̄, t) + iψ̃(z, z̄, t), (2.11)

where ψ̃(x, y, t) ≡ ψ̃(z, z̄, t) is the stream function and so ∂w̃/∂z = ũ − iṽ is the

conjugate complex velocity, which is also analytic in Ω(t). Since it is required that

div(ũ) = div(∇φ̃) = 0, in terms of the function ∂w̃/∂z, we must have that

‰
∂Ω(t)

∂w̃

∂z
dz = 0, (2.12)

i.e. there are no residues in Ω(t). Now, let the function F (z, t) in Ω(t) be defined as

F (z, t) :=
∂w̃/∂z

z − zm
, (2.13)

where zm ∈ Ω(t) and so F (z, t) is a well-defined analytic function in Ω(t) except at

the simple pole z = zm. If zm ∈ ∂Ω(t), considering the contour integral of F (z, t)

over ∂Ω(t), we have

1

2iπ

‰
∂Ω(t)

F (z, t) dz =
1

2

∂w̃

∂z

∣∣∣∣
zm

, (2.14)

by Cauchy’s integral formula—see (2.1). Writing (2.14) explicitly in terms of ũ and
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ṽ, we have ‰
∂Ω(t)

ũ− iṽ
z − zm

dz = iπ (ũ− iṽ)|zm . (2.15)

Equation (2.15) gives a direct relation between the regular part of the fluid velocity,

ũ, and the geometry of the interface, ∂Ω(t). Since ∂Ω(t) can be parameterised w.r.t.

arc length, s, (2.15) can be written as

−
ˆ L(t)

0

ũ(s)− iṽ(s)

z(s)− z(sm)

dz

ds
ds = iπ (ũ− iṽ)|sm , (2.16)

where 0 < sm < L(t) is such that zm = z(sm), and the integral on the left hand side

of (2.16) is a Cauchy principal value integral. We note that, on ∂Ω(t), we have the

identity

(ũ− iṽ)
dz

ds
= (ũ− iṽ)

(
dx

ds
+ i

dy

ds

)
= ũ

dx

ds
+ ṽ

dy

ds
+ i(ũ

dy

ds
− ṽdx

ds
)

= ũ · τ + iũ · n

= ṽτ + iṽn.

(2.17)

Using (2.17) we can express (2.16) in terms of the tangential and normal velocity on

the interface, i.e.

−
ˆ L(t)

0

ṽτ (s) + iṽn(s)

z(s)− z(sm)
ds = iπ (ṽτ + iṽn)

(
dz

ds

)−1
∣∣∣∣∣
sm

. (2.18)

Equations (2.8), (2.9) and (2.18) describe the Hele-Shaw free boundary problem.

Since the free boundary ∂Ω(t) moves in the normal direction and is governed by the

kinematic boundary condition (2.9), using the dynamic condition (2.8) along ∂Ω(t),

we are able to solve (2.18) for ṽn. That is, direct substitution of (2.8) into (2.18)
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yields

−
ˆ L(t)

0

−v̂τ (s) + iṽn(s)

z(s)− z(sm)
ds = iπ (−v̂τ + iṽn)

(
dz

ds

)−1
∣∣∣∣∣
sm

, (2.19)

and re-arranging gives

(2.20)
dz

ds

∣∣∣∣
sm

−
ˆ L(t)

0

iṽn(s)

z(s)− z(sm)
ds+ πṽn(sm) = r(sm),

where the right hand side of (2.20) is given by

(2.21)r(sm) =
dz

ds

∣∣∣∣
sm

−
ˆ L(t)

0

v̂τ (s)

z(s)− z(sm)
ds− iπv̂τ (sm).

Since v̂τ is known on the interface, r(sm) is a known function on ∂Ω(t).

Given the background potential φ̂, the tangential velocity, v̂τ = τ·∇φ̂, and normal

velocity, v̂n = n ·∇φ̂, are known on ∂Ω(t). For example, in the case of a point source

we have φ̂ = (Q1/4π) log [(x− x1)2 + (y − y1)2], then the background tangent and

normal velocities on the interface are

v̂τ =
Q1

2π

xs(x− x1) + ys(y − y1)

(x− x1)2 + (y − y1)2
(2.22a)

and

v̂n =
Q1

2π

ys(x− x1)− xs(y − y1)

(x− x1)2 + (y − y1)2
, (2.22b)

respectively, where the subscript s denotes differentiation w.r.t. arc length. Equation

(2.20) can then be solved for ṽn, from which the normal velocity of ∂Ω(t), Vn, can be

inferred since Vn = ṽn + v̂n. Since ∂Ω(t) moves in the normal direction, the velocity

of ∂Ω(t) in Cartesian coordinates is given by

V = Vnn, x ∈ ∂Ω(t), (2.23)

and so ∂Ω(t) is advected according to the kinematic condition

dx

dt
= V, x ∈ ∂Ω(t), (2.24)
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and the tangential velocity on ∂Ω(t) is zero.

This completes the formulation of the Hele-Shaw free boundary problem as a

BIM, where the solution to the BIE (2.20) gives the unknown normal velocity on

∂Ω(t) at any instance t, where Ω(t) and φ̂(x, y, t) are given, and (2.24) allows ∂Ω(t)

to be advected forwards in time.

2.3 Numerical procedure

The BIE (2.20) and (2.24) can be discretised in space and time which allows us to

compute the evolution of ∂Ω(t) over time. Here we outline the numerical procedure

in computing the interface at each time step. In what follows explicit time notation

is suppressed for brevity. At time t = tj, the numerical solution to the BIE (2.20) is

considered when the interface ∂Ω has total arc length L. All quantities are taken at

time tj unless stated otherwise. On the interval [0, L], N + 1 equispaced mesh points

are constructed such that

S1 = 0, (2.25a)

Si+1 = Si + ∆S, i = 1, . . . , N, (2.25b)

where the mesh size is given by

∆S =
L

N

=
SN+1

N
,

(2.26)

and N midpoints are defined as

Si+1/2 = Si +
∆S

2
, i = 1, . . . , N. (2.27)

The point sm in (2.20) and (2.21) is chosen to coincide with Sm+1/2—see figure 2.2.
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Figure 2.2: Discretisation of the interface ∂Ω at time t = tj, displaying both mesh
points and midpoints given by (2.25) and (2.27), respectively.

New variables for the discretisation of ∂Ω are defined as

Zi = z(Si), i = 1, . . . , N + 1, (2.28)

and the unknown quantities to be found are

αi = ṽn(Si), i = 1, . . . , N + 1. (2.29)

The periodic conditions

ZN+1 = Z1, (2.30a)

and

αN+1 = α1, (2.30b)

hold since ∂Ω is assumed to be a simple closed contour at each time step. Let

the right hand side of (2.21) be discretised such that Ri = r(Si+1/2). The value of

z(sm) = z(Si+1/2) = Zi+1/2 are found via a four point formula given by

Zi+1/2 =
1

16
(−Zi−1 + 9Zi + 9Zi+1 − Zi+2) . (2.31)
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The quantity ṽn(Si+1/2) = αi+1/2 is approximated linearly between neighbouring

points on ∂Ω for i = 1, . . . , N , i.e.

αi+1/2 =
1

Zi+1 − Zi
[(
Zi+1 − Zi+1/2

)
αi +

(
Zi+1/2 − Zi

)
αi+1

]
. (2.32)

The integrals in (2.20) and (2.21) are approximated using the trapezium rule.

Since the singular points, si, are taken to coincide with the midpoints of the mesh,

Si+1/2, the integral is evaluated by ignoring the singularities3 with an accuracy no

less than that of a non-singular integral [8,146]. Taking into account the periodicity

on the interface, the integral is approximated as

−
ˆ L

0

iṽn(s)

z(s)− z(sm)
ds ≈

N∑
j=1

iαj
Zj − Zm+1/2

∆S, m = 1, . . . , N. (2.33)

Baker [8] gives the approximation to the integrand of the type given in (2.1), as

s approaches sm, to be (after making the change of variable from z to s)

f(s)zs(s)

z(s)− z(sm)
=

f(sm)

|s− sm|
+ fs(sm) +

f(sm)(zm)ss
2(zm)s

+O(|s− sm|), (2.34)

where here the subscript s denotes differentiation. Considering the integral over

the k-th (singular) panel of the integrand of type given above (under an equispaced

discretisation), then approximation by the trapezium rule gives

Ik =

ˆ Sk+1

Sk

f(s)zs(s)

z(s)− z(Sk+1/2)
ds

≈ 1

2

[
f(Sk)zs(Sk)

z(Sk)− z(Sk+1/2)
+

f(Sk+1)zs(Sk+1)

z(Sk+1)− z(Sk+1/2)

]
∆S.

(2.35)

Since Sk = Sk+1/2 − ∆S/2 and Sk+1 = Sk+1/2 + ∆S/2, expanding the first term in

3For supplementary discussion on the evaluation of integrals by ignoring singularities, specifically
for Cauchy principal value integrals, the reader is directed to the book by Davis and Rabinowitz [31,
pp.180–187].
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the brackets on the right hand side about Sk+1/2 yields

f(Sk)zs(Sk)

z(Sk)− z(Sk+1/2)
=
f(Sk+1/2)

∆S/2
+fs(Sk+1/2)+

f(Sk+1/2)zss(Sk+1/2)

2zs(Sk+1/2)
+O(∆S), (2.36)

hence, expanding the second term in a similar way, the integral Ik is approximated

as

Ik ≈ ∆S

[
fs(Sk+1/2) +

f(Sk+1/2)zss(Sk+1/2)

2zs(Sk+1/2)

]
. (2.37)

That is, the trapezium rule on the equispaced mesh takes into account the ‘error’

in the terms enclosed by square brackets in (2.35), in approximating the integrand

close to the singularity, so the approximation can be made in the same way as for a

non-singular integrand. Therefore, the discretisation and quadrature in (2.33) gives

a good approximation, where the integrand is singular at z = zm, i.e. the accuracy of

the approximation is the same as a non-singular integral, and in this case is O((∆S)2)

accurate. This also applies to the integral in (2.21).

The derivatives in (2.21), i.e. zs(sm), are approximated via a four point average

of the fourth order centred finite difference approximation of zs(s), i.e.

d

ds
Zi ≈

1

12∆S
(Zi−2 − 8Zi−1 + 8Zi+1 − Zi+2) , (2.38a)

and

d

ds
Zi+1/2 ≈

1

16

(
−dZi−1

ds
+ 9

dZi
ds

+ 9
dZi+1

ds
− dZi+2

ds

)
. (2.38b)

Thus, employing (2.32) and (2.33) in (2.21), and taking the real part, gives a system

of N linear algebraic equations for the unknown αi, for i = 1, . . . , N , which can be

written in matrix form as

Mα = R. (2.39)

The matrix equation (2.39) is solved, giving the normal velocity (the vector α) of
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fluid particles on ∂Ω coinciding with the mesh at time t = tj.

Net flux across ∂Ω(t) is zero for all time. Therefore, the solution α can be purged

at each time step following the method given by Kelly and Hinch [68], where we set

αi = αi −
(˛

∂Ω

ṽn(s) ds

)/(˛
∂Ω

ds

)
≈ αi −

1

N

N∑
j=1

αj,

(2.40)

for i = 1, . . . , N, since the mesh points on ∂Ω are equispaced. Largely, the use of

(2.40) has little effect since the solution to (2.39) conserves mass to a good approxi-

mation4.

It remains to compute the evolution of ∂Ω in time given the vector α. The

evolution can be approximated at the following time step, tj+1 = tj + ∆t, as

z(Si(tj + ∆t), tj + ∆t) ≈ z(Si, tj) + ∆t

[
∂z

∂s
(Si, tj)

dSi
dt

+
∂z

∂t
(Si, tj)

]
= z(Si, tj) + ∆t

dz

dt
(Si, tj),

(2.41)

where ż is the complex velocity of the interface. Since (2.3c) must be satisfied, and

the interface evolves according to its normal velocity, the normal interface velocity

Vn is constructed from the total normal fluid velocity, i.e. Vn(Si, tj) = ṽn(Si, tj) +

v̂n(Si, tj). This normal interface velocity is resolved into the x and y components of

the Cartesian coordinate system as U(Si, tj) = ={Vn(Si, t)dZi/ds} and V(Si, tj) =

−<{Vn(Si, t)dZi/ds}, respectively. The mesh points Zi = z(Si, t) ∈ ∂Ω can be

treated as Lagrangian particles and (2.41) is written in the form

<(Znew
i ) = <(Zi) + U(Si, tj)∆t, i = 1, . . . , N, (2.42)

=(Znew
i ) = =(Zi) + V(Si, tj)∆t, i = 1, . . . , N, (2.43)

4In appendix E, an argument for an observed constant error in approximating (2.21), in particular
v̂τ (s), and the effect on the solution ṽn(s) is given, where the use of (2.40) is highlighted in the
study of translating bubbles in chapter 4.
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where Znew
i ∈ ∂Ωnew, which is the new position of the interface ∂Ω at t = tj + ∆t.

A modified Euler (i.e. a second order Runge-Kutta) method is employed, as in [8],

such that the time stepping method is approximately O((∆t)2) accurate.

Once ∂Ωnew is found, the new total arc length Lnew is computed from the mesh

points Znew
i , i = 1, . . . , N + 1, which are then redistributed to an equispaced mesh

by cubic spline interpolation. Setting Zi = Znew
i (i.e. ∂Ω = ∂Ωnew and L = Lnew)

and applying the above procedure again completes the algorithm for computing the

interface at later times. Since the time stepping procedure is explicit in time, a

stability constraint applies in the form ∆t ≤ c(∆S)n, for some positive numbers c

and n [14].

2.3.1 Computing elements of the resulting matrix

equation

By discretising the interface w.r.t. arc length, the BIE (2.20) can be approximated

using a combination of a linear approximation for the value of the solution at the

midpoint, (2.32), and the trapezium rule for the Cauchy principal value integral,

(2.33). According to these approximations, when the problem is written in matrix

form (2.39), the elements of the matrix M are given by

Mjk =
i∆S

Zk − Zj+1/2

d

ds
Zj+1/2, k 6= j, k 6= j + 1, (2.44a)

Mjk =
i∆S

Zk − Zj+1/2

d

ds
Zj+1/2 +

Zj+1 − Zj+1/2

Zj+1 − Zj
, k = j, (2.44b)

Mjk =
i∆S

Zk − Zj+1/2

d

ds
Zj+1/2 +

Zj+1/2 − Zj
Zj+1 − Zj

, k = j + 1, (2.44c)

for j = 1, . . . , N − 1, k = 1, . . . , N , and when j = N

MNk =
i∆S

Zk − ZN+1/2

d

ds
ZN+1/2, k = 2, . . . , N − 1, (2.45a)
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MNk =
i∆S

Zk − ZN+1/2

d

ds
ZN+1/2 +

Z1 − ZN+1/2

Z1 − ZN
, k = N, (2.45b)

MNk =
i∆S

Zk − ZN+1/2

d

ds
ZN+1/2 +

ZN+1/2 − ZN
Z1 − ZN

, k = 1, (2.45c)

due to the periodic conditions (2.30). The right hand side of the matrix system is

given by

Rj = −iπv̂τ (Sj+1/2) +
N∑
k=1

v̂τ (Sk)

Zk − Zj+1/2

∆S, (2.46)

where v̂τ (Si) and v̂τ (Si+1/2) are known quantities when given the background poten-

tial φ̂. For example, when the interface is driven by a point source the background

tangential velocity in discrete form is

v̂τ (Si) =
Q1

2π

<{(dZi/ds)(Zi − z1)}
|Zi − z1|2

, (2.47)

where z1 ∈ Ω(t)\∂Ω(t) and Q1 denote the location of the point source and strength,

respectively.

2.4 Numerical instability of the discre-

tised equations

Many authors have employed BIEs to solve a range of 2D fluid dynamic problems

where numerical instabilities due to ‘round off error’ are a common occurrence, see

e.g. [1, 14, 76, 85]. These errors, usually referred to as ‘spurious oscillations’ in the

literature, in most cases arise when a solution to a discretised integral equation,

similar to the form presented here, is required. Since the free boundary problem

is physically ill-posed (e.g. in the case of a point sink, i.e. when Q1 < 0) and is

unregularised (ZST), and the solution to a singular integral equation is required for

a temporal problem, it is difficult to distinguish the underlying cause of numerical
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oscillations to the solution of (2.39). In the present work, it was noted that errors

in the solution were largely due to the discretisation of the integral equation and

similar to those reported previously, see e.g. [1, 71,85].

The solution to the BIE (2.20) at each ‘evaluation point’, z(sm), governs the

function ṽn(s) on the interface and requires a solution satisfying an integral over

the entire interface, ∂Ω. The integral equation is discretised and the points sm are

chosen to coincide with the midpoints of the equispaced mesh on ∂Ω. This gives

rise to numerical instabilities if one was to solve the discretised problem, i.e. (2.39),

directly. This can be seen by investigating more closely the discretisation of the

integral equation (2.20). In matrix form, this equation becomes (2.39). The matrix

M is the discretisation of an effective linear operator. The vector α is the desired

solution, i.e. αi = ṽn(Si) and R the approximation of r(Si+ 1
2
), given in (2.21), i.e.

the right hand side of (2.20).

Following the analysis of Phillips [109] and Twomey [144] on the discretisation of

integral equations, the right hand side of (2.20), i.e. (2.21), can strictly be written (at

the discrete midpoints) as r = R + e where e represents the error in approximating

r(Si+ 1
2
), and so the discretised integral equation in matrix form can be written as

Mα = R + e. (2.48)

Phillips [109] shows that if a smooth solution is superimposed with some undula-

tions, then the resulting superposition will also satisfy the integral equation. Similar

arguments can be applied to the discrete equation (2.39). The undulations of the

solution occur in the discretised problem as a result of the errors in approximating

r(Si+ 1
2
), i.e. in calculating r, giving rise to an oscillatory solution to α.

Phillips [109] suggests a method to solve (2.48) by introducing a minimisation

problem for the integral of the square of the second derivative of the solution ṽn(s),

since the solution ṽn of the BIE (2.20) is assumed to be smooth. That is, it is
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assumed the function does not undergo sudden change in gradient, a good assumption

for the physical quantity of normal velocity on a smooth continuous interface, ∂Ω.

Otherwise, oscillatory solutions are valid for (2.48) and so some knowledge from a

physical aspect should be applied. In the method proposed by Phillips [109], the

inversion of two matrices is required in finding the smooth solution solving (2.39).

However, Twomey [144] suggests an improvement where only one matrix inversion

is necessary. This method is described below.

The discrete matrix equation (2.48) can be written as

N∑
k=1

Mjkαk = Rj + ej, (2.49)

where Mjk are given by (2.44)–(2.45). The quantity to be minimised, chosen here to

be ˆ L

0

(
∂2ṽn
∂s2

)2

ds, (2.50)

can be written in discrete form (see e.g. [109]) as

N∑
k=1

(αk−1 − 2αk + αk+1)2, (2.51)

and an equation for the square of the errors can be written as

N∑
k=1

e2
k = ε2. (2.52)

Therefore, a function H can be constructed, given by

H =
N∑
k=1

(αk−1 − 2αk + αk+1)2 + γ

(
N∑
k=1

e2
k − ε2

)
, (2.53)

where γ is known as the Lagrange multiplier. From (2.48) it can be seen that ej is
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a linear function of the unknown discrete solution αk, and so

∂ek
∂αj

= Mkj. (2.54)

Hence, differentiating H with respect to αj, critical points are given by the solutions

to the set of linear equations

0 =
N∑
k=1

(αk−2 − 4αk−1 + 6αk − 4αk+1 + αk+2) + γMkjek, (2.55)

which in matrix form is written as

0 = Hα + γM>e, (2.56)

where H is the matrix representation of a third order difference operator [144].

Eliminating e between (2.56) and (2.48) gives

(M>M + γ−1H)α = M>R. (2.57)

From (2.56) it is clear that the errors e and the smoothness of the solution α depend

on the parameter γ. Therefore, γ serves as a smoothing parameter, where, given

different estimates to the error e, γ should be chosen such that the solution is suffi-

ciently smooth [109]. That is, we solve for the smooth solution, α, where γ is known

(chosen) and error e is unknown. It is expected that ek = O((∆S)P ), k = 1, . . . , N ,

where P ≥ 1 is a positive integer denoting the order of spacial error arising from

the approximations (2.32) and (2.33). For example, we expect error of O((∆S)3) for

trapezium rule approximation on a periodic domain and error of O((∆S)4) arising

from the centred finite difference formula (2.38a) employed for approximating deriva-

tives. Thus, for non-zero, finite value of γ, inverting the matrix on the left hand side
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of (2.57), the desired approximate smooth solution to (2.20) is given by

α = (M>M + γ−1H)−1M>R, (2.58)

where usually decreasing values of γ increases the smoothing effect on the solution.

In general 0 < γ <∞ and (2.57) gives a sufficiently accurate solution compared with

an otherwise oscillatory solution from (2.39). The filtering technique employed here is

analogous to that of spectral methods, e.g. [14], where the Fourier series is truncated

and modes of the high frequency, small amplitude oscillations are neglected. The

affects of the filtering technique on the discrete solution are displayed in figure 2.8(a)

in example 2.7.1 on page 97.

Since the discrete solution to the BIE (2.20) is susceptible to oscillatory solutions

through errors in approximating the right hand side, i.e. r(Si+1/2), these errors may

grow in time as the interface evolves. Aitchison and Howison [1] have reported on the

growth of errors in solutions to Hele-Shaw free boundary problems, where a boundary

integral method is employed. They show that the growth rate of numerical errors

over time are related to the local linear stability of the interface, given by Saffman

and Taylor [123]. In [123] it is shown that a fluid penetrating a more viscous fluid

is physically unstable and that the growth rate of the physical instability increases

with shorter wave length disturbances on the interface.

Aitchison and Howison [1] make a note on the introduction of small wave length

instabilities into the solution of the numerical problem as a result of rounding errors

and approximate solution techniques. The difficulty being, the more mesh points that

are included (i.e. increasing N), shorter wavelength errors are permitted which grow

fastest with time. However, in [1], the cause of the errors from the approximations

and their oscillatory nature are not elaborated. These have been addressed above,

specifically for the BIE (2.20), and the frequency of the oscillations in the error scale

with N , as expected. Since these oscillatory errors grow rapidly in time, the solution
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requires filtering. Filtering is carried out at each time step by solving the modified

matrix equation (2.57), in which a sufficiently smooth solution is required to the

physical problem. Since this filtering process is coupled with the numerical solution

to the physical problem, it provides a better approximation to the solution than

the filtering technique which was employed previously during this research and is

recorded in [71], where the solution may be susceptible to ‘unwanted’ smoothing or

changes, e.g. in areas where curvature of the interface may vary rapidly5.

The filtering technique presented in this section provides a regularisation such

that solutions to the ZST Hele-Shaw free boundary problem can be computed nu-

merically. This filtering technique may be akin to the limit of vanishing surface

tension in the sense that it provides a regularisation effect. However, instead of

introducing surface tension we impose directly smoothness of the solution by an ap-

propriate filter, i.e. here we have a mathematical requirement as apposed to the

physical imposition of, for example, a surface tension condition on the interface.

2.5 Including external potential fields

When the fluid flow is subject to an external potential field, Ψ(x, y, t), the Hele-

Shaw free boundary problem can be written in the form

∇2φ = 0, x ∈ Ω(t), (2.59a)

φ = Ψ, x ∈ ∂Ω(t), (2.59b)

vn =
∂φ

∂n
, x ∈ ∂Ω(t), (2.59c)

5In the article published in the European Journal of Applied Mathematics as part of this
research—see [71]—a rudimentary matrix system is solved to calculate the velocity of fluid par-
ticles on the interface, where the background potential is not decomposed, as suggested in section
2.2.1. The filtering technique employed there is similar to the filtering technique suggested by
Longuet-Higgins and Cokelet [85], where the desired effect is similar, but not as robust as the
filtering technique suggested in this section.
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where φ(x, y, t) ≡ φ(z, z̄, t) and Ψ(x, y, t) ≡ Ψ(z, z̄, t) are scalar potential functions—

c.f. appendix B. Decomposing the velocity potential φ as in section 2.2.1, the free

boundary problem in terms of φ̃(x, y, t) ≡ φ̃(z, z̄, t) becomes

∇2φ̃ = 0, x ∈ Ω(t), (2.60a)

φ̃ = Ψ− φ̂, x ∈ ∂Ω(t), (2.60b)

vn =
∂

∂n

(
φ̃+ φ̂

)
, x ∈ ∂Ω(t), (2.60c)

where Ψ(x, y, t) and φ̂(x, y, t) are known functions on ∂Ω(t). Taking the tangential

derivative of (2.60b) along ∂Ω(t), the dynamic boundary condition (2.8), in the case

of applied external fields, becomes

ṽτ = Ψτ − v̂τ , x ∈ ∂Ω(t), (2.61)

where Ψτ = ∂Ψ/∂τ = τ · ∇Ψ. Hence, the BIE (2.20), for a fluid blob, becomes

dz

ds

∣∣∣∣
sm

−
ˆ L(t)

0

iṽn(s)

z(s)− z(sm)
ds+ πṽn(sm) =

− dz

ds

∣∣∣∣
sm

−
ˆ L(t)

0

Ψτ (s)− v̂τ (s)
z(s)− z(sm)

ds+ iπ [Ψτ (sm)− v̂τ (sm)] . (2.62)

Equation (2.62) can be discretised and solved numerically in a similar manner to

that presented in sections 2.3 and 2.4—see example 2.7.3, where (2.62) is employed

and the interface is driven solely by an external potential field.
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2.6 A boundary integral formulation for

a finite bubble in an unbounded Hele-

Shaw cell

Here, the BIE in the case of a bubble surrounded by a viscous fluid of infinite

extent is derived. First we assume that the viscous fluid domain, Ω(t), is of finite

extent, extending from the interface of the bubble to a circular contour of radius

R, say, centred at the origin (we can take the origin to coincide with the centre of

mass of the bubble region w.l.o.g.). Let the bubble interface be given by a simple

closed contour, ∂Ω(t). Taking the usual convention of fluid lying towards the left

of the contour defining the interface (as described in section 2.2.2) implies ∂Ω(t)

should be traversed in the clockwise direction—see figure 2.3. Therefore, the outer

contour, which we denote by ΓR, is a circle of radius R, traversed in the anticlockwise

direction and Ω(t) is bounded by the two curves ∂Ω(t) and ΓR. In this case, taking

the definition of the normal and tangent on ∂Ω(t) as in (2.4a) and (2.4b), respectively,

then the normal vector on ∂Ω(t) points in to the bubble region. If the pressure on

the exterior of ΓR is taken to be the same as the pressure in the bubble, i.e. φ = 0,

then (2.3) hold with the additional conditions

φ = 0, x ∈ ΓR, (2.63a)

VΓn =
∂

∂n
(φ̂+ φ̃), x ∈ ΓR, (2.63b)

where VΓn is the normal velocity of the interface marked by ΓR.

Here, the velocity field due to φ̃, i.e. ũ, is still a solenoidal vector field and so

div(ũ) = 0 still holds over Ω(t). This implies that if z = zm ∈ Ω(t), the function F (z)

defined in (2.13) is analytic everywhere in Ω(t) except at the simple pole z = zm.
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Figure 2.3: A bubble in a Hele-Shaw cell surrounded by a finite fluid region, Ω(t),
which is bounded by the curves ∂Ω(t) and ΓR. The normal and tangential vectors

along ∂Ω(t) are displayed.

Let z = zA and z = zB be two points lying on ∂Ω(t) and ΓR, respectively, and let

the arc zAzB be a straight path between zA and zB with positive sign, in Ω(t), as

shown in figure 2.4. Following the above statement with zm ∈ Ω(t), then

∂w̃

∂z

∣∣∣∣
zm

=

(ˆ
zAzB

+

‰
ΓR

+

ˆ
zBzA

+

fi
∂Ω(t)

)
F (z, t) dz

=

(ˆ
zAzB

+

‰
ΓR

−
ˆ
zAzB

+

fi
∂Ω(t)

)
F (z, t) dz

=

(‰
ΓR

+

fi
∂Ω(t)

)
F (z, t) dz

(2.64)

must hold.

It can be assumed that the contour integral around ΓR of F (z, t) is equal to

zero for sufficiently rapidly decaying F (z, t) as z → ∞. This is true for F (z, t)

as defined in (2.13) since it is a function of the ‘residual’ field, i.e. ũ − iṽ, which

exhibits no singularities in Ω(t). Hence, taking the limit R → ∞, in the case of an

unbounded Hele-Shaw cell—see figure 2.5(a)—where Ω(t) is of infinite extent, and
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letting zm ∈ ∂Ω(t), (2.64) becomes

fi
∂Ω(t)

F (z, t) dz =
1

2

∂w̃

∂z

∣∣∣∣
zm

, (2.65)

i.e.

1

2iπ

fi
∂Ω(t)

ũ(z)− iṽ(z)

z − zm
dz =

ũ− iṽ
2

∣∣∣∣
zm

. (2.66)

Figure 2.4: Choice of contours taken in the calculation of the integral in (2.64),
where the orientation is displayed along each contour.

Now suppose that we traverse the contours in figure 2.4 in the opposite direction,

i.e. considering ∂Ω(t)∪ zAzB ∪ ΓR ∪ zBzA to be a simple closed curve in C traversed

in the clockwise direction, and if zm ∈ Ω(t), then (2.64) becomes

(fi
ΓR

+

‰
∂Ω(t)

)
F (z, t) dz = − ∂w̃

∂z

∣∣∣∣
zm

. (2.67)

Therefore, changing the orientation of the contour describing the bubble from clock-

wise in figure 2.5(a) to anticlockwise as in figure 2.5(b), in the unbounded Hele-Shaw
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cell, and letting zm ∈ ∂Ω(t), the equation that must hold on ∂Ω(t) reads

1

2iπ

‰
∂Ω(t)

ũ− iṽ
z − zm

dz = − ũ− iṽ
2

∣∣∣∣
zm

. (2.68)

Since the vectors n and τ are defined in (2.4a) and (2.4b) and are thus given by the

choice of parameterisation, i.e. the direction in which ∂Ω(t) is traversed, in terms of

the tangential and normal velocities on ∂Ω(t), (2.68) becomes

1

2iπ
−
ˆ L(t)

0

ṽτ(s) + iṽn(s)

z(s)− z(sm)
ds = − ṽτ + iṽn

2

(
dz

ds

)−1
∣∣∣∣∣
sm

. (2.69)

Using the dynamic boundary condition (2.8), (2.69) can be written as

dz

ds

∣∣∣∣
sm

−
ˆ L(t)

0

−v̂τ(s) + iṽn(s)

z(s)− z(sm)
ds = −iπ (−v̂τ + iṽn)|sm , (2.70)

and re-arranging gives

dz

ds

∣∣∣∣
sm

−
ˆ L(t)

0

iṽn(s)

z(s)− z(sm)
ds− πṽn(sm) =

dz

ds

∣∣∣∣
sm

−
ˆ L(t)

0

v̂τ(s)

z(s)− z(sm)
ds+ iπv̂τ(sm). (2.71)

Equation (2.71) is the BIE equation for a bubble in an unbounded Hele-Shaw, which

differs from the BIE equation for the case of a fluid blob by a crucial change in

sign—c.f. (2.20).

The BIE (2.71) can be approximated via the approximations (2.32) and (2.33),

and therefore can be written in matrix form (2.39), which can be solved in the form

according to (2.58) giving a smooth solution.



92 Chapter 2. A numerical model for one-phase Hele-Shaw flows

(a) (b)

Figure 2.5: A bubble in an unbounded Hele-Shaw cell with interface ∂Ω(t) traversed
in the clockwise direction in (a) and anticlockwise direction in (b). Displaying the
direction of the normal and tangential vectors along ∂Ω(t) as defined by (2.4a) and

(2.4b), respectively.

2.7 Testing and results

The numerical method outlined above was tested against some exact, known so-

lutions of the Hele-Shaw flow problem. These include the growth of finite fluid blobs

by hydrodynamic singularities, e.g. sources or sinks (where the background flow

potential φ̂ is modified appropriately), and for flows driven by external background

fields. The numerical results give excellent agreement with the exact solutions. Fur-

thermore, in the unstable regime, e.g. when the interface (given by a polynomial

map) of a fluid blob is driven by a sink, the numerical solutions agree with exact

solutions before cusp formation. In all the numerical results presented here, the

smoothing parameter γ = 1 gives sufficiently smooth and accurate results.

Example 2.7.1 (Circular translating bubble)

The numerical method is tested against the exact solution for a translating circular

bubble in a uniform flow given in example 1.3.6. In this case, the background velocity

potential is given by φ̂ = V x, i.e. û = (V, 0). The exact normal velocity on the

interface is u ·n = (u, v) · (ys,−xs), where the circular interface is parametrised with
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arc length, traversed in the anticlockwise direction. Subtracting the velocity due to

the background flow on the interface gives the exact solution for the normal velocity

due to the existence of the bubble, i.e.

Ṽn = (u− û) · n

= ((2V, 0)− (V, 0)) · (ys,−xs)

= V ys

= V cos Θ,

(2.72)

where s ≡ Θ for a circular bubble, and the initial circular bubble of unit radius is

given by z = eiΘ, i.e. centred at the origin. The numerical solution of (2.71) is

denoted by αi = ṽn(Si). Figure. 2.6 shows the convergence of the solution α(Θ)

towards the exact solution Ṽn(Si), as the number of mesh points, N , is increased,

over one time step. The root mean square error (RMSE) is given by

1

N


√√√√ N∑

i

[
αi − Ṽn(Si)

]2

 . (2.73)

Here, the background flow speed is set to be V = 1. As expected, the errors decrease

approximately as O(1/N3), as measured by the RMSE. This is because the largest

errors occur in approximating the integrals in (2.71) by the trapezium rule (2.33).

The affect of filtering on the numerical solution in this case is presented in figure

2.7, where the numerical solution is given as a function of the angle Θi = arg(z(Si)),

i.e. αi = ṽn(Θi). In the absence of filtering, the errors in approximating the right

hand side of (2.71) give oscillatory solution (as discussed in section 2.4) about the

corresponding smooth solution. When the filter is applied—by choosing finite value

of γ in (2.57)—the smooth solution gives excellent agreement with the expected

solution, in this case given by (2.72).

Figure 2.8(a) shows a superposition of the interface at the last time step and
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Figure 2.6: The decrease in RMSE of the normal velocity of a circular bubble of
unit radius in a uniform background flow, as the number of mesh points is increased
from N = 100 to N = 5000. In all tests, the algorithm is run for one fixed time step

∆t = 0.001.

the interface given by the exact solution, given in example 1.3.6, at t = 10. There

is excellent agreement between the numerical and exact solutions. The area of the

bubble is calculated at each time step as follows. Consider the integral

A(t) =

¨
Ω(t)

dxdy, (2.74)

where applying Green’s theorem and parameterising with respect to arc length, s,

(2.74) becomes

A(t) =
1

2

˛
∂Ω(t)

(
x

dy

ds
− ydx

ds

)
ds. (2.75)

Since the mesh points are equispaced at each time step according to (2.28), we have

at time t = tj, the discrete form of (2.75) given by

Anum(tj) =
1

2

N∑
i=1

(
<(Zi)=

(
dZi
ds

)
−=(Zi)<

(
dZi
ds

))
∆S, (2.76)
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Figure 2.7: An example of oscillations in the (unfiltered) numerical solution of ṽn
after one time step with N = 78, ∆t = 0.001, superimposed on the smooth (filtered)
solution. The smoothing parameter is γ = ∞ (unfiltered) and γ = 1 (filtered),
respectively. The solutions presented are for a circular bubble of unit radius in a

uniform background flow such that û = (V, 0).

obtained using the trapezium rule. The bubble area of the exact solution can be

calculated using complex variables, where in this example z ∈ ∂Ω(t) is given by the

map (1.87) and so the bubble area A is

A(t) =

∣∣∣∣ 1

2i

˛
∂D

z(ζ, t)z′(ζ, t)dζ

∣∣∣∣
=

∣∣∣∣ 1

2i

˛
∂D

−cR
ζ2
− R2

ζ
dζ

∣∣∣∣
= πR2,

(2.77)

as expected, for a circle, where here R = constant represents the radius in the

parametric map of the exact solution. The area of the numerical solution, (2.76),

and the area of the exact solution, (2.77), are used to calculate a relative error at
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any time step by the expression

A(tj)− Anum(tj)

A(tj)
, (2.78)

and for the current example is shown in figure 2.8(b). The maximum observed error,

given by (2.78), is O(10−4) for the results shown in figure 2.8.

Example 2.7.2 (Growing circular blob along a wall)

Consider a circular fluid blob growing along a straight wall (after contact is made), as

presented in example 1.3.4, where the method of images is employed. Figure 2.9(a)

shows the superposition of numerical results with analytical results, where in the

numerical method, an initial Neumann Oval interface is used (obtained from (1.68)

with ζ1 = 0.7071 and R = 1.0607 at initial time t = 0.25 + π/Q) with two sources

of equal strength, Q1 = π, in each lobe. There is excellent agreement between the

numerical and exact solutions.

For a fluid blob whose interface is driven by a distribution of sources and sinks

in Ω(t), the area can be calculated at any time tj as

A(tj) = A0 +
K∑
i=1

Qitj, (2.79)

where A0 is the initial area of the fluid blob, and K is the total number of hydrody-

namic sources and sinks of strength Qi. Hence, in this example, the area of the total

fluid blob can be computed as

A(tj) = A0 + 2Q1tj, (2.80)
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Figure 2.8: Superposition of the numerical and exact solutions of (a) the interface
at time t = 10, and (b) the relative error of bubble area (2.78), 0 ≤ t ≤ 10, for
a translating circular bubble of unit radius in a uniform background flow of speed
V = 1. Here there are N = 100 mesh points on the free boundary and step-size

∆t = 10−3.
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and the initial area is given by

A0 =

∣∣∣∣ 1

2i

˛
∂D

R0ζ

(1− ζ2ζ2
10)

(
R0

ζ2 − ζ2
10

− 2R0ζ
2

(ζ2 − ζ2
10)2

)
dζ

∣∣∣∣
=

πR2
0(1 + ζ4

10)

(1− ζ10)2(ζ10 + 1)2(1 + ζ2
10)2

.

(2.81)

Figure 2.9(b) shows relative error of the area of the fluid blob, calculated according

to (2.78). Again, there is excellent agreement between the results. In (2.81), R0 and

ζ10 represent parameters of the map in the exact solution presented in example 1.3.4.

Example 2.7.3 (Elliptical bubble in a rotating cell)

The numerical results shown in this example were computed using the adaptation

of the BIM presented in section 2.2, shown in appendix F. Figure 2.10(a) shows a

superposition of the numerical results and the explicit results obtained from example

1.3.5 in section 1.3.5, for an elliptical bubble in a rotating Hele-Shaw cell. The

initial interface is given by (1.82) with a = 1.2 and b =
√

0.44 at t = 0. The

only forcing of the interface is due to the external potential field, and the dynamic

boundary condition given in section 2.5 is employed. Figure 2.10(b) shows relative

error between numerical and exact results for the area of the bubble, where the area

can be calculated numerically and explicitly as in examples 2.7.1 and 2.7.2. There is

excellent agreement between numerical and exact solutions.

2.8 Extension to multiple interface prob-

lems

The BIEs (2.20) and (2.71) formulated for a single blob or bubble, respectively,

can be extended to consider Hele-Shaw free boundary problems with multiple blobs

or bubbles. Here we derive the BIE in the case of multiple bubbles in an unbounded
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Figure 2.9: Superposition of the numerical and exact solutions of (a) the interface
at time t = 1.25, 1.44, 1.64, 1.84, 2.04, 2.24, 2.44, 2.64, 2.84, 3.04, 3.24, and (b) the
relative error of blob area (2.78), 0.25+π/Q ≤ t ≤ 2.25+π/Q, for a dumbbell shaped
fluid blob with two sources of strength Q = Q1 = Q2 = π at z = ±1, marked by
triangles in (a). Here there are N = 500 mesh points on the free boundary and step-
size ∆t = 10−2. The initial interface is given by (1.68) with ζ1(0.25 + π/Q) = 0.7071

and R(0.25 + π/Q) = 1.0607.
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Figure 2.10: Superposition of the numerical and exact solutions of (a) the interface
at time t = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and (b) the relative error
of bubble area (2.78), 0 ≤ t ≤ 1, for an elliptical bubble in a rotating Hele-Shaw
cell with external centrifugal potential given by (1.80) with ω = 1. Here there are
N = 500 mesh points on the free boundary and step-size ∆t = 10−3. The initial

interface is given by (1.82) with a(0) = 1.2 and b(0) =
√

0.44.



Chapter 2. A numerical model for one-phase Hele-Shaw flows 101

Hele-Shaw cell.

Suppose two fluids are separated by multiple simple closed curves, ∂Ω`(t), ` =

1, . . . ,Υ, in a Hele-Shaw cell, where Υ is the total number of simple closed curves

describing each interface. For simplicity, let us first consider the case of two bubbles,

i.e. Υ = 2, surrounded by a viscous fluid—see figure 2.11. Taking the average fluid

velocity over the cell gap, the fluid velocity in the viscous phase is governed by (1.11).

Assuming the pressure in each bubble is equal, i.e. we shall assume p1 = p2 = 0 where

the subscript denotes each bubble, then the Hele-Shaw free boundary problem can

be written as

∇2φ = 0, x ∈ Ω(t), (2.82a)

φ = 0, x ∈ ∂Ω`(t), (2.82b)

Vn` =
∂φ

∂n`
, x ∈ ∂Ω`(t). (2.82c)

where n` is the unit normal vector on each bubble interface and Vn` is the normal

velocity of the `-th interface.

Figure 2.11: Two finite bubble regions described by simple closed curves ∂Ω1(t)
and ∂Ω2(t), in an unbounded Hele-Shaw cell, where the viscous domain Ω(t) is of

infinite extent.

Parameterising each interface with arc length s such that ∂Ω`(t) are traversed in

the anticlockwise direction (see figure 2.12), taking the tangential derivative of the
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dynamic boundary condition (2.82b) gives

∂φ

∂τ`
= 0, x ∈ ∂Ω`(t), (2.83)

i.e.

vτ` = 0, x ∈ ∂Ω`(t), (2.84)

where τ` is the unit tangent vector along ∂Ω`(t) and vτ` is the tangential velocity

on the `-th interface. Since the normal velocity on ∂Ω`(t) must be continuous, the

kinematic boundary condition (2.82c) can be written as

Vn` = vn`, x ∈ ∂Ω`(t), (2.85)

where vn` is the normal fluid velocity on the `-th interface.

Figure 2.12: The contours bounding the viscous domain Ω(t) ⊂ C. In the limiting
case R→∞, the scenario of finite bubbles in an infinite expanse of viscous fluid (in

an unbounded Hele-Shaw cell) is achieved.

Decomposing the velocity potential of the viscous phase as in section 2.2.1, the
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Hele-Shaw free boundary problem in terms of φ̃ becomes

∇2φ̃ = 0, x ∈ Ω(t), (2.86a)

φ̃ = −φ̂, x ∈ ∂Ω`(t), (2.86b)

Vn` =
∂

∂n`

(
φ̃+ φ̂

)
, x ∈ ∂Ω`(t) (2.86c)

and the conditions (2.84) and (2.85) can be written as

ṽτ` = −v̂τ`, x ∈ ∂Ω`(t), (2.87)

and

Vn` = ṽn` + v̂n`, x ∈ ∂Ω`(t), (2.88)

respectively.

A boundary integral equation for the regular part of the flow field can be con-

structed over the interfaces of the bubbles in a similar manner to the BIE for a

single bubble derived in section 2.6 by first assuming the domain Ω(t) is bounded by

an outer contour ΓR traversed in the clockwise direction—see figure 2.13. Choosing

the points zA1 and zA2 on ΓR, and zB1 and zB2 on ∂Ω1(t) and ∂Ω2(t), respectively,

defining the straight paths zA`zB` to be the arcs joining the points zA` and zB`, then

the BIE, corresponding to (2.68) in the single bubble case, now for multiple bubbles,

becomes

− 1

2iπ

Υ∑
`=1

fi
∂Ω`(t)

ũ(z)− iṽ(z)

z − zm
dz =

ũ− iṽ
2

∣∣∣∣
zm

, (2.89)

in the limit R → ∞ and zm is a point lying on ∂Ω`(t), ` ∈ {1, . . . ,Υ}, i.e. zm ∈
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∪Υ
`=1∂Ω`(t). Using the identity

(ũ− iṽ)
dz

ds
= ṽτ` + iṽn`, (2.90)

where z ∈ ∂Ω`(t), then the boundary integral equation (2.89) can be formulated

in terms of the normal and tangential components of the regular part of the fluid

velocity on each interface, i.e.

−
Υ∑
`=1

−
ˆ L`(t)

0

ṽτ`(s) + iṽn`(s)

z(s)− z(sm)
ds = iπ (ṽτ + iṽn)

(
dz

ds

)−1
∣∣∣∣∣
sm

, (2.91)

when zm ∈ ∂Ω(t),  ∈ {1, . . . ,Υ}, and L`(t) is the total arc length of the closed

interface ∂Ω`(t). Using the dynamic boundary condition in the form (2.87), the BIE

(2.91) can be written in terms of the unknown normal velocity on each interface, i.e.

−
(

dz

ds

)∣∣∣∣
zm

Υ∑
`=1

−
ˆ L`(t)

0

iṽn`
z − zm

ds+ π ṽn|zm =

−
(

dz

ds

)∣∣∣∣
zm

Υ∑
`=1

−
ˆ L`(t)

0

v̂τ`
z − zm

ds− iπ v̂τ|zm . (2.92)

Given the background potential, φ̂, the tangential velocity v̂τ` on any interface

∂Ω`(t) is known. Equation (2.92) can be solved for ṽn`, from which the normal

velocity of the of the interfaces, Vn`, can be inferred since Vn` = ṽn` + v̂n`. The

normal velocity on each interface can be written in Cartesian form as

U` = Vn`n`, x ∈ ∂Ω`(t). (2.93)

Therefore, since the interfaces move in their respective normal directions, each inter-

face is advected according to

dx

dt
= U`, x ∈ ∂Ω`(t). (2.94)
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Figure 2.13: The choice of contours and their directions in the formulation of the
BIE (2.89) in which the limit R → ∞ is taken, for the case of multiple bubbles in

an unbounded Hele-Shaw cell filled with a viscous fluid.

Following the approximations set out in section 2.3, the boundary integral equa-

tion (2.92) can be discretised, giving a set of algebraic equations which can be written

as a matrix system in the form (2.39), i.e. Mα = R . If each interface ∂Ω`(t) is

discretised into N` distinct mesh points, then we can choose N` distinct midpoints,

zm, on each interface, and so due to (2.92) there exist
∑Υ

`=1N` algebraic equations.

Let us construct the solution vector α such that

α =
(
α(1), . . . ,α(Υ)

)>
, (2.95)

where α
(`)
k = ṽn`(Sk), k = 1, . . . , N`, is the unknown normal velocity at the k-th mesh

point on the `-th interface. Using the approximations (2.32) and (2.33), (2.92), in



106 Chapter 2. A numerical model for one-phase Hele-Shaw flows

discrete form, can be approximated as

− d

ds
Z

()
m+1/2

Υ∑
`=1

N∑̀
k=1

iα
(`)
k

Z
(`)
k − Z

()
m+1/2

∆S(`)

+π

[
Z

()
m+1 − Z

()
m+1/2

Z
()
m+1 − Z

()
m

α()
m +

Z
()
m+1/2 − Z

()
m

Z
()
m+1 − Z

()
m

α
()
m+1

]
=

− d

ds
Z

()
m+1/2

Υ∑
`=1

N∑̀
k=1

v̂τ`(S
(`)
k )

Z
(`)
k − Z

()
m+1/2

∆S(`) − iπv̂τ
(
S

()
m+1/2

)
,

(2.96)

for m = 1, . . . , N,  = 1, . . . ,Υ and the vector R = (R(1), . . . ,R(Υ))> is such

that R
()
m is given by the right hand side of (2.96). Hence, the matrix M is a(∑Υ

`=1N`

)
×
(∑Υ

`=1 N`

)
matrix. In this way, any number of interfaces or bubbles

can be considered in the numerical method presented, where the computational com-

plexity of the system grows linearly with the total number of discrete mesh points of

all the interfaces combined.

Following the filtering method proposed in section 2.4 for the single interface

problem, the matrix system, Mα = R, is modified to the form (2.57) by consid-

ering errors in approximating the right hand side of (2.96). Assuming ṽn`(s) are

smooth periodic functions on each interface ∂Ω`(t), the modification incorporates

the condition that the integral of the square of the second derivative of ṽn`(s) on

each interface must be minimised, independently. The modified matrix equation in

the case of multiple bubbles then reads

(M>M + P )α = M>R, (2.97)
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where P is a
(∑Υ

`=1N`

)
×
(∑Υ

`=1N`

)
block diagonal matrix given by

P =


γ1H1 0 0

0
. . . 0

0 0 γΥHΥ

 . (2.98)

Here, H` are the N`×N` matrix representations of a third order difference operator

[144] and γ` denotes the smoothing parameter for the solution α(`) of each interface,

where 0 < γ` <∞ and ` = 1, . . . ,Υ.

The restriction here is that the pressure in all bubbles is considered equal. To

introduce an extra parameter of the problem specifying the pressure in each bubble,

the boundary integral method should be formulated for the solution of the stream

function on each interface—c.f. appendix F—instead of solving directly for the fluid

velocity. Taking the derivative of the stream function with respect to arc length

will provide the normal velocity on each interface. Solving the problem of varying

pressure bubbles, numerically, is not done in this doctoral research.

2.9 Summary

In section 2.2 a BIE is presented which is formulated by constructing a meromor-

phic function, F (z, t), on the viscous fluid domain Ω(t), and considering the Cauchy

integral formula with integration along the free boundary ∂Ω(t). The numerical

procedure and the numerical instabilities encountered are described in section 2.3

and 2.4, respectively. An appropriate smooth solution for the normal velocity of the

fluid on ∂Ω(t) is sought. The model is also presented for flows with external fields

in section 2.5, and is extended to multiple independent interfaces in section 2.8. In

section 2.7, numerical results are compared with known exact solutions for which

excellent agreement is found.



Chapter 3

Hele-Shaw flows of conducting

fluids

The main results from this chapter have been published in the paper entitled

‘Hele-Shaw flow driven by an electric field’ [71].

The results presented in this chapter may find applications in problems involving

fluid extraction and in the theory of fluid flows in microfluidic devices, where the

main interest lies in the manipulation of fluid blobs via electric fields. Entov and

Etingof [39] raise the idea of the application of Hele-Shaw free boundary flows in

electrokinetics, where flow is induced by applying electric fields, resulting in what

is known as ‘electro-osmotic flow’. The use of electro-osmotic flow in microfluidic

devices, where flow in narrow gaps or channels are driven by electric potential fields,

is mentioned in [83,152]. More recently, controlling fluid blobs or bubbles in advanced

microfluidic devices has also become an area of interest in bio-chemical processes and

fluid logical devices [16, 86, 113]. A method known as electrowetting has become a

widely used tool through a surge in so called ‘lab-on-chip’ devices for applications

such as DNA analysis and medical diagnostics; where electrowetting, first introduced

by Lippmann in 1875 (English translation [102]), allows the manipulation of small

drops or blobs of fluid on small surfaces, usually surrounded by air.
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In section 3.1, the assumptions of the model are presented for Hele-Shaw flow

of a conducting fluid due to a static point charge, where the assumption of non-

conducting cell walls is important, and the governing equations are presented in

section 3.2. New analytical results are derived in section 3.3 and some numerical

results are presented in section 3.4. In section 3.4.3, the stability of known exact

solutions are tested, numerically, and some concluding remarks are made in section

3.5.

3.1 Electromagnetic field equations

An electric current is a flow of electric charges. Such currents exist in conducting

media. It will be assumed that the viscous fluid considered here has the same prop-

erties as a dielectric: a medium in which a constant current cannot flow. In general,

if a conducting fluid flows in a magnetic or electric field, the electric field is modified

due to the fluid motion, and is often described by the resulting ‘streaming poten-

tial’. That is, electric currents are induced in the flow and the currents themselves

affect the magnetic field [79]. In many cases, such a phenomenon occurs when the

conducting fluid is in contact with a conducting solid boundary, which gives rise to

the streaming potential in the conducting fluid. Although the study of such physical

scenarios are relevant and apparent in the literature, specifically in engineering ap-

plications (see e.g. [73,115,129]), here it will be assumed for simplicity that the walls

of the Hele-Shaw cell are non-conducting. The motivation and application of the

model presented here is in the manipulation of fluid blobs (or bubbles) in ‘simplified’

lab-on-chip devices, similar to those that already exist (see for example [32]) but

with non-conducting surfaces.

It is well known that an electric field, E, in a conducting medium can be described



110 Chapter 3. Hele-Shaw flows of conducting fluids

as the gradient of a scalar electric potential such that

E = ∇Ψe. (3.1)

Electric displacement in a linear material is defined as

D = ceE, (3.2)

where ce denotes the electric permittivity of the material. Here we shall restrict

ourselves to homogenous fluids, where ce remains constant throughout. The equa-

tions governing the electric and magnetic fields in a conducting medium are given

by Maxwell’s equations. In a fixed (i.e. Eulerian) frame of reference, these are

∇ ·D = ρe, (3.3a)

∇ ·B = 0, (3.3b)

∇× E = −∂B

∂t
, (3.3c)

∇×B = −cm
(

I + ce
∂E

∂t

)
. (3.3d)

Here, the vector B represents the magnetic field and cm represents the magnetic

permeability of the medium, i.e the fluid. The distribution of electric charge in the

medium is given by ρe. Ohm’s law states that the current, I, in a conducting medium

is proportional to the electric potential difference. That is, for a fluid of conductivity

σe, the current is related to the electric field by

I = σeE. (3.4)

Here we assume that the viscous fluid is a homogenous conductor, i.e. σe is constant.

Then (3.4) implies that the conducting fluid is isotropic.
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In a moving frame of reference (i.e. in the Lagrangian frame moving with a fluid

particle), via the so called Lorentz transformation, Ohm’s law reads [78,79]

I = σeE
′, (3.5)

where E′ is the electric field in the moving frame given by

E′ = E + u×B. (3.6)

It is assumed that the speed of the conducting fluid, |u|, is small compared with

the speed of light. Under this approximation, the field equations are (3.3) with the

electric current given by (3.5) [114].

For an electrostatic potential field produced by a point charge of strength E, the

body force acting on a conducting mass is given by

fb = ρeE + I×B, (3.7)

where the first term is known as Coulomb’s force and the second as the Lorentz force.

For the electric field given in (3.1), the body force can be described in terms of the

electric potential Ψe as

fb = ρe∇Ψe + I×B. (3.8)

An electro-osmotic flow is a flow induced by an electric potential differential in

a conducting fluid. This phenomena arises in different physical applications; those

that are relevant to the present work are flows in thin gaps in micro-fluidic devices

or even flows through porous media [101] (the similarity between Hele-Shaw flows

and those governed by Darcy’s law have been previously discussed in section 1.2.1).

The equations governing fluid flow are therefore given by (1.2) with fb given in (3.8).

Electrokinetic coupling in a fluid is the relationship between hydrodynamics and
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electric fields. Fluid flow and electric current become coupled when a conducting

fluid is in contact with electrically conducting solid boundaries, e.g. a conducting

wall. In the case when the solid boundaries are considered to be uncharged (precisely

the assumption we make here), the pressure gradient of the flow and electric field

remain decoupled [73, p. 64].

3.2 The Hele-Shaw free boundary prob-

lem for a conducting fluid subject to

an external electric field

For a highly conducting fluid, the time scale on which the fluid evolves is much

larger than the time scale for any charge to move around on its surface and thus

the flow effect on the electric current is negligible. Here, the surface is described by

the free boundary ∂Ω(t). This implies that for an applied external electric potential

field, E, we have an electrostatic problem [36]. For highly conducting materials, ρe

is assumed to be zero throughout the material, i.e. throughout the viscous fluid

domain Ω(t) [73,78]. In this case, considering the applied external electric field, the

mean effect of electric energy is assumed to be much larger than that of any magnetic

effects. That is, here we shall also assume the magnetic effects are negligible, i.e. we

set B = 0 [73,115].

3.2.1 Flow driven by an isolated static point charge

Consider the case in which a viscous fluid is driven by an isolated static electric

point charge of strength E = constant. Initially, we shall consider the case in which

the point charge is located inside the viscous fluid region, Ω(t). Therefore, (3.3) gives



Chapter 3. Hele-Shaw flows of conducting fluids 113

∇ · E = Eδ(x− x0), (3.9a)

∇× E = 0, (3.9b)

I = −ce
∂E

∂t
. (3.9c)

Equation (3.9b) implies that E is an irrotational vector field, x = (x, y) is the

2D position vector and x0 ∈ Ω(t) is the location of the point charge. Taking the

divergence of (3.9c) and employing (3.9a) implies

∇ · I = 0. (3.10)

Since magnetic effects are assumed to be negligible, the Lorentz force in (3.8)

is effectively zero. Therefore, in a Newtonian, instantaneously responsive, isotropic

fluid this leaves the force on the fluid mass, i.e. on the domain Ω(t), to be simply a

Coulomb force due to the point charge, given by

fb = E∇Ψe. (3.11)

It is assumed that the inviscid fluid, exterior to Ω(t), has the same conductivity

as the viscous fluid such that the electric field is able to permeate through it. In

this case, the electric potential Ψe(x, y) is governed by (3.9a) in the entire plane.

The hydrodynamic pressure in the inviscid fluid is constant and we set this to zero,

arbitrarily. Since both fluids are considered to be perfectly conducting fluids, all

excess charge lies at the interface separating the fluids, i.e. on ∂Ω(t). Therefore,

any applied electric field exerts a pressure on the interface by its action on the

charge at the free boundary, giving the dynamic boundary condition. Following the

derivation of Hele-Shaw flows with external potential fields, discussed in section 1.3.5
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and presented in appendix B, setting Ψ(x, y) ≡ EΨe(x, y), the dynamic boundary

condition is given by (B.9) and the Hele-Shaw free boundary problem subject to an

external electric field due to a static point charge is then given by

∇2φ = 0, x ∈ Ω(t), (3.12a)

φ = Ψ, x ∈ ∂Ω(t), (3.12b)

vn =
∂φ

∂n
, x ∈ ∂Ω(t), (3.12c)

where φ(x, y, t) is a scalar potential function proportional to the pressure in Ω(t).

Since both fluids have the same conductivity, from (3.9a), it can be seen that

Ψ(x, y) must satisfy the equation

∇2Ψ = Eδ0(x− x0), (3.13)

in the entire plane, where δ0(x − x0) is the Dirac distribution as defined in (1.18).

Therefore, using the Green’s function for the Laplacian operator in 2D, we find

Ψ(x, y) =
E

2π
log|x− x0|, (3.14)

which describes the electric field, due to a static point charge, induced in the viscous

fluid region Ω(t), and which extends to the entire plane.

3.3 Analytical results

The task is to find ∂Ω(t) of a fluid blob evolving under the influence of a back-

ground potential field given the initial boundary ∂Ω(0). Here we shall apply the

complex variable techniques described in section 1.3.1, in particular the generalised

Schwarz function equation (1.79). Since there are no hydrodynamic singularities
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driving the flow, the derivative of the complex potential, w′(z, t), has no singularities

in the fluid domain Ω(t) and hence the left hand side of (1.79) is regular. As pre-

sented in section 1.3.1, the unknown boundary ∂Ω(t) is parameterised by a conformal

map z = f(ζ, t) from the interior of the unit ζ-disc, D, to the interior of the fluid

blob, Ω(t). By balancing singular terms of (1.79), the aim is to deduce ODEs for

the unknown, time-dependent parameters of the conformal map, and subsequently

determine the evolution of the free boundary ∂Ω(t). This approach is used to inves-

tigate the stability and behaviour of initially circular blobs of fluid when the external

field is due to an electric point charge, given in (3.14).

In the complex plane, writing z = x+ iy, the Schwarz function of the free bound-

ary is defined as g(z, t) = z̄ on z ∈ ∂Ω(t) (see section 1.3.2), where g is an analytic

function in the neighbourhood of ∂Ω(t). Let us re-write the governing equation (1.79)

as

∂w

∂z
=

1

2

∂g

∂t
+
∂M

∂z
, (3.15)

which holds over the entire domain Ω(t), where

M(z) = Ψ((z + g(z))/2, (z − g(z))/(2i)), (3.16)

which is an analytic function in the neighbourhood of ∂Ω(t) and w(z, t) is the complex

potential of the flow (defined in (1.24)) [89]. In the absence of any background fields,

i.e. M ≡ 0, (3.15) reduces to the well-known Schwarz function equation (1.46)

governing the evolution of the free boundary [25,89].
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3.3.1 Steady solution for an initially circular fluid

blob with a point charge at its centre

Consider a circular blob of conducting viscous fluid with radius R centred at

the origin enclosing a point charge located at z = 0, i.e. within the initial fluid

domain Ω(0). By symmetry it is expected that this is an exact steady solution. The

external potential owing to the point charge of strength E centred at z = 0 is given

by Ψ = (E/2π) log r = M(z) on ∂Ω(t), where r = (x2 + y2)1/2 and

M =
E

4π
log(zg). (3.17)

Employing (3.17), the Schwarz function equation (3.15) becomes

∂w

∂z
=

1

2

∂g

∂t
+
E

4π

(
1

z
+
g′

g

)
. (3.18)

The boundary of a circular blob of radius R(t) centred at z = 0 has Schwarz

function g(z, t) = R2/z. Using (3.18) and considering the singular structure of terms

as z → 0, recalling that there is no singularity in w since there are no hydrodynamic

sources, it follows that Ṙ = 0. This gives, as expected, a steady solution in which

the fluid blob remains circular with constant radius R0 = R(0), irrespective of the

sign of E.

3.3.2 Stability of blobs subject to an electric point

charge

The stability of the circular blob equilibria is now studied with R0 = 1, where

a small perturbation to the circular boundary is imposed. Consider the conformal

map from the unit ζ-disc to a nearly-circular fluid blob with a small disturbance to
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the initial boundary, ∂Ω(0), given by (see e.g. [25,40,48])

z = ζ + αζn, (3.19)

where n is an integer such that n ≥ 2 and α(t) is a real time varying coefficient

such that |α|� 1. In polar coordinates with r = |z|, (3.19) is equivalent to r =

1 + α cos(n − 1)θ + O(α2), 0 ≤ θ < 2π. Using ζ = ζ−1 on ∂D and the inversion of

(3.19), the Schwarz function has the form

g =
α

zn
+
nα2 + 1

z
+O(zn−2), as z → 0. (3.20)

Ignoring terms of O(α2) and considering the structure of the singularities of O(z−n)

in (3.18), the following ODE for α(t) is obtained:

dα

dt
=

E

2π
(n− 1)α, (3.21)

which has an exponentially decaying solution for a negative point charge E. For

E > 0, the amplitude of the disturbances grow exponentially with time, and the

assumption of small α breaks down. Hence, the flow is stable only if the point

charge within the fluid domain is negative. Physically, this stability property owes

itself to the following characteristic fluid behaviour: anomalous fluid outside |z|= 1

is attracted inward by a negative point charge, while a fluid deficit inside |z|= 1 is

pushed outward. Together, these processes re-symmetrise a perturbed circular blob.

For a positive point charge an anomaly for |z|= 1 is pushed further outward leading

to instability. This stability prediction is tested numerically in section 3.4.1—see

Figure 3.1.

It is worth noting that exact, time-dependent solutions which combine both hy-

drodynamic singularities and point charges have not yet been found. A prime can-
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didate for generating such solutions is to use maps of the type (3.19) since these

yield explicit solutions in the case driven by hyrodynamic singularities when point

charges are absent (e.g. see [25, 48]). However, when combined with point charges,

this map does not yield solutions with, for example, the correct rate of change of

area. Finding a class of maps which admits such exact solutions is an open question.

3.3.3 A circular fluid blob with an off-centre point

charge

Suppose the circular blob in section 3.3.1 is off-set by a small amount ε so that it

is now centred at z = ε, with the point charge E located at z = 0 which lies within

the fluid domain Ω(t). Without loss of generality ε is assumed to be real. Making

the approximation that, to leading order, the blob remains circular throughout its

evolution, consider the conformal map from the unit ζ-disc to the fluid blob given

by

z = ε+Rζ, (3.22)

where ε(t) and R(t) are real, time-dependent coefficients to be found. The validity

of the approximation that the blob remains circular during its evolution is tested

by comparing the analytical results of this section with numerical results in section

3.4.1. The map (3.22) implies ∂Ω(t) has the Schwarz function

g = ε+
R2

z − ε
. (3.23)

Expanding (3.23) for small ε yields

g = ε+
R2

z
+
R2ε

z2
+O(ε2). (3.24)



Chapter 3. Hele-Shaw flows of conducting fluids 119

Considering the structure of the singularities of O(z−1) and O(z−2) on both sides of

(3.18), the following pair of ODEs are obtained for R(t) and ε(t):

R
dR

dt
= 0, (3.25a)

R2

2

dε

dt
+ εR

dR

dt
− E

4π
ε = 0. (3.25b)

Hence, (3.25a) gives R(t) is constant, which we denote by R0 (the radius of the initial

fluid blob) which is consistent with conservation of mass. Therefore, (3.25b) gives

ε = ε0 exp

(
E

2R2
0π
t

)
, (3.26)

where ε0 denotes the abscissa of the centre of the initial circular fluid blob. Again, it is

clear that for a negative point charge, E < 0, the resulting flow is stable and the blob

moves through a series of near-circular domains Ω(t) until a steady state is achieved

where ε(t)→ 0. That is, the blob approaches a state in which it is circular and has

its centre coinciding with the location of the point charge. In the case of a positive

charge, E > 0, the flow is unstable, since ε(t) grows exponentially, the asymptotic

analysis breaks down and it is unlikely that the blob remains near-circular. These

predictions are tested numerically in section 3.4.1.

3.4 Numerical results

The numerical results shown here are based on the numerical method presented

in chapter 2, section 2.5, where details regarding the inclusion of external fields in

the numerical model can be found.
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3.4.1 A circular blob subject to an electric point

charge

The stability of a circular fluid blob subject to a point charge, discussed in section

3.3.2, is tested numerically. The boundary given by the map (3.19) is considered,

with α = 0.1, n = 6 and an electric point charge is located at the origin. Figure 3.1(a)

demonstrates stability for a negative point charge, where disturbances on the bound-

ary are suppressed and the boundary approaches a circle. In figure 3.1(b), on the

other hand, for a positive point charge the instability is clear with the disturbances

on the boundary growing and the solution rapidly breaking down, as predicted. For

this reason only the stable case of E < 0 is investigated in the following numerical

experiments.
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Figure 3.1: Stability of a perturbed circular blob for (a) E = −π and (b) E = π.
Initial boundary (dashed) given by (3.19) with α = 0.1 and n = 6. Boundary shapes
are shown at later times (solid) given at (a) t = 4 and (b) t = 0.5. Here, results are

presented for N = 200 and step-size ∆t = 1.25× 10−4

The analytic solutions presented in section 3.3.3 are also compared with numerical

results. At time t = 0, a circular blob with radius R0 = 1 centred at (ε0, 0) is allowed

to evolve owing to a fixed electric point charge at the origin with strength E < 0.

Here, the main interest is in the quantity ε(t) given in (3.26), i.e. the x-coordinate
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of the centre of the circular fluid blob. For comparison purposes, the centre of mass

ε of the numerically computed blob is defined as

ε(t) =
1

A

¨
Ω(t)

x dxdy, (3.27)

where A is the area of the fluid blob which is computed numerically by the formula

(2.76). The analytic solution, ε(t), is compared with the numerical results for ε(t).

The behaviour of ε̄(t) with t is shown in figure 3.2 for different values of electric

point charge, E, with N = 125 mesh points on the boundary and step-size ∆t = 10−4.

Initially ε0 = 0.1 and E = −π/2, −π and −2π. The numerical and exact solutions

are superimposed in figure 3.2 and are in excellent agreement. Plots of ∂Ω(t) (not

shown) establish that the boundary remains very close to circular throughout its

motion.
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Figure 3.2: Evolution of the centre of mass, ε(t), superimposed with the analytic
solution (3.26) for the centre of the circle, ε(t), of a circular fluid blob with initial
centre (ε0, 0) such that ε0 = 0.1 and radius R0 = 1. Three cases for increasing point

charge strength are shown: (i) E = −π/2, (ii) E = −π and (iii) E = −2π.
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The numerical method is used to investigate the evolution of the boundary for

larger choices of ε0 for which the analytical result (being a small-ε theory) does

not necessarily hold. Figure 3.3 shows the evolution of the centre of mass, ε(t),

compared with the prediction from the analytic solution, ε(t), in the cases ε0 = 0.25

and ε0 = 0.5. It is apparent that there is no longer excellent agreement between

the analytical and numerical solutions, as expected, since the assumption of small

ε was made in section 3.3.3. Nevertheless, even in this non-asymptotic regime the

comparison is good. Figures 3.4 and 3.5 show snap shots of the evolving boundary

corresponding to the results of figure 3.3. It is clear that the boundary shape remains

closely circular during its evolution and that by t = 10 the blob is circular with centre

coinciding with the point charge.
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(a) ε0 = 0.25.
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(b) ε0 = 0.5.

Figure 3.3: Evolution of the centre of mass, ε(t), superimposed with the analytic
solution (3.26) for the centre of the circle, ε(t), of an initially circular fluid blob
centred at (ε0, 0) with radius R0 = 1. Three cases for increasing point charge strength

are shown: (i) E = −π/2, (ii) E = −π and (iii) E = −2π.

The case in which ε0 is chosen such that the electric point charge is close to the

initial boundary (i.e. ε0 is comparable to R0), but still within the fluid domain, is

also studied. For such a set-up the evolution of the boundary is shown in figure

3.6. Initially, a ‘pinching’ of the boundary can be seen near the point charge—see
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Figure 3.4: Snapshots of the evolving boundary (solid) of an initially circular fluid
blob (dashed) of radius R0 = 1 centred at (ε0, 0) with ε0 = 0.25. An electric point

charge of strength E = −π is located at the origin (marked by the cross).
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Figure 3.5: Snapshots of the evolving boundary (solid) of initially circular fluid
blob (dashed) of radius R0 = 1 centred at (ε0, 0) with ε0 = 0.5. An electric point

charge of strength E = −π is located at the origin (marked by the cross).

figure 3.6(b)—after which the blob evolves through a smooth sequence of elliptical

and egg-like domains. Finally, for large time, the fluid blob tends to the same steady

state as for small ε0. That is, the fluid blob becomes symmetrised about the location

of the point charge, adopting a circle of radius R0 centred at the origin.

A ‘random’ boundary shape, ∂Ω(0), of area π is generated using [142]. The

numerical procedure is used to compute the evolution of the blob with a negative

point charge located within the closed boundary. The expected symmetrising of the

fluid blob to a unit circle about the point charge is demonstrated in figure 3.7.
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(c) t = 0.85.
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(d) t = 1.45.
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(e) t = 2.85.
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Figure 3.6: Snapshots showing the evolution of the free boundary (solid) of an
initially circular fluid blob (dashed) centred at (ε0, 0) with ε0 = 0.9 and radius
R0 = 1. An electric point charge of strength E = −2π is located at the origin

(marked by a cross).
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Figure 3.7: An initially ‘random’ boundary shape (dotted) with an electric point
charge of strength E = −π located at the origin (marked by the cross). Evolution
of the boundary is shown at t = 1.2 (dashed) and t = 22 (solid). Here, the results

are presented for N = 200 and step-size ∆t = 4.89× 10−4.

3.4.2 Delaying cusp formation in sink driven flows

using an electric point charge

The formation of cusps in time-dependent Hele-Shaw flows have been, and still

are, of particular interest, see e.g. [14,25,56,62]. For example, it aids understanding

of practical applications such as the extraction of oil which can be modelled by a

Hele-Shaw flow driven by a hydrodynamic sink singularity within the oil region [75].

Consider a fluid blob with free boundary, ∂Ω(t), given by the following polynomial

map from the unit ζ-disc:

z = aζ + bζn, (3.28)

where a(t) and b(t) are real, time-dependent coefficients, with a point sink located at

the origin. For this map it is known that the free boundary evolves through a series
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of limaçon shapes, eventually leading to cusp formation—see figure 3.8(a)—in finite

time, t∗, beyond which the boundary map no longer remains univalent [25,48].

Suppose now that an electric point charge of strength E < 0 is placed within the

fluid domain, with the aim of delaying the formation of the cusp on the boundary,

thus enabling a greater proportion of fluid to be withdrawn before the solution breaks

down. In section 3.4.1 it is shown that a negative point charge within the fluid domain

provides a symmetrising effect on the boundary about the point charge. A domain

with disturbances on its boundary would typically produce cusps over time in a sink

driven flow. On the other hand the point charge, through its symmetrising effect,

would be expected to suppress the development of cusps.

To assess this competition, a fluid blob with initial shape given by (3.28) with

a(0) = 1, b(0) = 0.1 and n = 2, and a point sink of strength Q = −1 at z = 0,

is allowed to evolve for the two cases when (a) there is no electric charge at z =

0 (analytic solution shown), and (b) E = −5π. As expected, E = 0 leads to a

breakdown of the solution after finite time t∗ ≈ 1.67. For E < 0, the solution lasts

far longer (t > 3) enabling most of the fluid to be withdrawn—see figure 3.8(b).

The boundary can be made to enclose an arbitrarily small region depending on the

numerical parameters (i.e. time-step and resolution) chosen. Here, there are N = 100

mesh points on the boundary and step-size ∆t = 10−4.

3.4.3 Stability of steady solutions

Some non-trivial steady exact solutions of the problem given by (3.12) have pre-

viously been found by Entov and Etingof [39] and McDonald [89] involving combi-

nations of hydrodynamic singularities and electric point charges. Such solutions can

be derived, as shown in [89] and example 1.3.5, by considering the balance between

the terms ∂w/∂z and ∂M/∂z of (3.15) as singularities inside Ω(t) are approached.

The stability of the steady solutions found in [39, 89] is an open question and is
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Figure 3.8: Comparison between the time evolution of free boundaries for (a) cusp
formation due to a sink driven flow (analytic solution) with sink strength Q = −1
(marked by the square), and (b) a superposition of a sink and an electric charge
(numerical solution) with Q = −1 and E = −5π (marked by a square and a cross
respectively). A cusp forms at t∗ ≈ 1.67 in (a), the final time is shown. The final
time shown in (b) is t = 3.17. In both (a) and (b) the initial boundary (dashed) is

given by the map (3.28) with a(0) = 1, b(0) = 0.1 and n = 2.

investigated numerically in this section.

Consider the exact steady solution of Entov and Etingof [39] given by the bound-

ary map from the unit ζ-disc to the blob in the z-plane given by

z =
√
ab

(
1− αζ
1 + αζ

)1/λ

, (3.29)

where λ = E/2Q and

α =

√
1− (a/b)λ/2

1 + (a/b)λ/2
. (3.30)

Here, the flow is driven by a point source of strength Q located at z = a, a point sink

of strength −Q at z = b (a, b ∈ R, b > a) and an electric point charge of strength

E located at z = 0, which is outside the fluid domain. The stability of the steady

solution is demonstrated numerically for large time—see figure 3.9(a). Simulations

are run for t = T , where T is a characteristic time scale for the flow calculated as
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T ∼ L2/Q, where L is taken to be the maximum blob width in the x-direction.

There is little deviation between initial and final blob shapes after this long time.

The stability of the free boundary subject to an electric point charge lying within

the fluid domain is analysed in section 3.3.2. Since here the electric point charge lies

on the exterior of the fluid domain, it is expected that the flow is unstable for negative

point charge strength. Reversing the sign of the source and sink strengths and point

charge, the stability of the above steady solution (which is still a steady solution under

change of sign of Q and E) is tested using the time-dependent numerical solution.

Figure 3.9(b) shows the rise of an instability on the free boundary close to the electric

point charge in much shorter time as compared to the characteristic time T , and the

solution rapidly breaks down. Therefore, the numerical results suggest the solution

given by (3.29) is only stable for positive point charge strength, E. The change in

stability properties when swapping signs of E and Q is consistent with (3.15), which

implies that the two resulting evolutions are time reversals of each other. Figures

3.9(c) and 3.9(d) show the free boundary at time immediately before breakdown of

the solution. The numerical breakdown of the solution could possibly be due to the

formation of high curvature leading to a cusp on the free boundary. Alternatively, the

breakdown could result from the numerical formulation, as a point charge lying on

the free boundary, ∂Ω(t), would provide a singularity in the discretisation formulae

if a mesh point and the point charge were to coincide.

Figures 3.10 and 3.11 show instabilities arising on the boundaries for steady

solutions given in [89] by

z(ζ) = −a tanh

(√
−µ
aE

ζ

)
, (3.31)

for a dipole of strength µ located at z = 0 and electric point charges ±E at z = ±a
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(a) te = 25, E = 0.3909.

0 1 2 3 4 5

−3

−2

−1

0

1

2

3

ℜ (z )

ℑ
(z

)

 

 

(b) te = 4.2496, E = −0.3909.
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(c) te = 4.5696, E = −0.3909.
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(d) Close up of (c).

Figure 3.9: Testing the stability of the steady solution boundary shape given by
(3.29) for a = 1 and b = 1.5, where (a) E = 0.3909, Q = 1. In (b), (c) and (d)
E = −0.3909, Q = −1. The boundary shape at initial time t = 0 (dashed) and
at later time t = te (solid) are shown. The electric point charge, source and sink
are marked by a cross, triangle and square, respectively. In the results presented

N = 500, step-size ∆t = 5× 10−4 and L = 4.9331
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(a ∈ R), and

z = a

√√√√√√ 1− exp
(
−
√

2δ
E

√
a2+b2

ab
ζ2
)

1 + a2

b2
exp

(
−
√

2δ
E

√
a2+b2

ab
ζ2
) , (3.32)

with a quadrupole of strength δ at z = 0 and electric point charges −E at z = ±a

and E at z = ±ib (a, b ∈ R), respectively. Since in both of these exact steady

solutions there are negative point charges lying outside of the fluid domain, the

flow is unstable. It is evident (within short time) that the instabilities on the free

boundary are prominent in regions closest to the negative point charges. Figures

3.10(c) and 3.10(d) show the free boundary at time immediately before breakdown

of the solution when a mesh point lying on the horizontal axis and the point charge

coincide. The solution of the free boundary in figure 3.11 eventually breaks down in

a similar manner.

McDonald [89], also gives a family of exact steady solutions for an electric point

charge of strength E, lying within the fluid domain, superimposed on a hydrodynamic

n-pole of strength M at z = 0, given by

z = βζ exp

(
2M

Eβn
ζn
)
, (3.33)

for some parameter β. The stability of the solution is demonstrated for negative

charge E in figure 3.12(a), which shows the case for a hydrodynamic dipole (n = 1).

The characteristic time scale for the flow is T ∼ L3/M . The case for positive charge

is also tested, and the solution no longer remains steady, developing instabilities on

the free boundary and then the solution breaks down rapidly, as expected—see figure

3.12(b). This is due to the aforementioned unstable nature of a positive point charge

lying within the fluid blob (c.f. section 3.4.1). Note again that swapping the signs

of the forcing and electric charge changes the stability properties.
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(b) Close up of (a).
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(c) te = 1.04.
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Figure 3.10: Testing the stability of the steady solution boundary shape given by
(3.31) for a = 0.9, µ = −1 with E = ±1 at z = ±a. The boundary shape at
initial time t = 0 (dashed) and at time t = te (solid) are shown. The dipole and
electric point charges are marked by a circle and crosses, respectively. In the results

presented N = 100 and step-size ∆t = 1.25× 10−5.
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Figure 3.11: Testing the stability of the steady solution boundary shape given by
(3.32) for a = 0.9, b = 1, δ = 0.5 with E = −1 at z = ±a and E = 1 at z = ±ib. The
boundary shape at initial time t = 0 (dashed) and at time t = 0.5 (solid) are shown.
The quadrupole and electric point charges are marked by a diamond and crosses,

respectively. In the results presented N = 100 and step-size ∆t = 1.25× 10−5.
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(b) te = 9, E = 1.

Figure 3.12: Testing the stability of the steady solution boundary shape given by
(3.33) for β = 2.0, M = E/2 and n = 1, where (a) E = −1 and (b) E = 1. The
boundary shape at initial time t = 0 (dashed) and at later time t = te (solid) are
shown. The quadrupole and electric point charge are marked by a circle and cross,
respectively. In the results presented N = 500, step-size ∆t = 3.33 × 10−4 and

L = 4.4669.
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3.5 Summary

It has been shown that for a Hele-Shaw free boundary flow, if a negative electric

point charge lies inside the fluid domain Ω(t0), where its boundary ∂Ω(t0) is a simple,

smooth curve such as a circle, the resulting evolution of the free boundary ∂Ω(t) is

stable. Furthermore, the boundary remains smooth for all time and tends to a steady

state which is circular and centred about the point charge. The family of curves

through which the boundary evolves depends on the location of the point charge

relative to the initial boundary, as displayed in section 3.4.1. It has been shown

analytically, in section 3.3.3, that if the location of the point charge is sufficiently

close to the centre of a circular fluid blob, the family of curves the boundary evolves

through are approximately circular, for which the numerical results (based on a

boundary integral method) show excellent agreement.

It has been shown that for a positive point charge lying within the fluid domain,

the evolution of the free boundary is unstable. In section 3.4.3, the stability of some

exact solutions were tested numerically, where electric point charges of strength E

lay outside of the fluid domain. The numerical results suggest that for E > 0, the

evolution of the boundary is stable, whilst for E < 0, it is unstable.

For the exact steady solutions given by (3.29) and (3.33), numerical results show

no instability on the free boundary after some characteristic time scale, provided

that the sign of electric charge is negative within the fluid blob, and positive when

lying outside the fluid blob. Although this does not prove stability or otherwise,

by demonstrating that a solution stays close to the original exact, steady solution

on some characteristic time scale, we conjecture that such solutions are likely to be

stable. It is important to note that the solution breaks down in much shorter time

(compared to the characteristic time) in the corresponding unstable cases.



Chapter 4

Unsteady translating bubbles in a

Hele-Shaw cell

The main results from this chapter have been submitted for publication in the

paper entitled ‘On the motion of unsteady translating bubbles in an unbounded

Hele-Shaw cell’ [72].

The motion of a traveling bubble in a Hele-Shaw cell is a long-standing free

boundary problem, which was first considered mathematically and experimentally

by Saffman and Taylor [123,138] in the late 1950s. The motion of a single travelling

bubble has proven to be a difficult problem which yields a rich class of solutions,

and the literature is littered with plenteous work regarding the selection problem—

see section 4.1. Here, we consider a simpler problem of a travelling bubble in an

unbounded Hele-Shaw cell as compared with that of the original works of Saffman

and Taylor [123,138] where the flow domain is constrained by a parallel sided channel.

Bubble breakup (or blob pinch-off) and the associated change in topology has

been of interest in Hele-Shaw flow. The breakup of a bubble, mainly due to con-

traction (by the suction of air from the bubble domain) has been previously con-

sidered [38, 80]. In [38], a system of contracting bubbles are also considered where

breakdown of the solution is due to the formation of a cusp on one of the bubble
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interfaces. The Schwarz function of the interface is used to study, in detail, the form

of the interface when bubble breakup occurs (local to the point of breakup) in [80].

In particular, left-right symmetry about the point of bubble breakup is considered

in the case of ZST Hele-Shaw flows and the connection of the governing equation to

the dispersionless string equation of soliton theory is also explored.

Blob pinch-off has also been studied, see e.g. [4], where the interplay of centrifugal

and capillary forces are considered and it is found that an initially dumbbell shaped

blob in a rotating Hele-Shaw cell may pinch-off into two disconnected parts (as well

as possibly stretching to infinity or becoming circular—c.f. example 1.3.5). Similar

topological evolution, i.e. pinch-off of a viscous blob into the inviscid domain is

considered in [97] in the case of ZST Hele-Shaw flow. The deformation of blobs and

bubbles, including surface tension effects, have also been considered in 2D flows of

ideal fluids induced by circulation [18], which may be applicable to Hele-Shaw flows

given the effective 2D potential nature of the Hele-Shaw equation (1.11). In [18],

steady equiliberia interface shapes are found which exist up to the point of steady

pinch-off or breakup of a blob or bubble respectively.

The breakup of a stream of bubbles rising in a Hele-Shaw cell has also been

considered experimentally, where a stack of bubbles rising in a Hele-Shaw cell may

split in two streams by individual bubbles in the stack breaking up in a symmetric

fashion [87]. There, the shape of a single bubble rising in a Hele-Shaw cell at different

inclination angles to the horizontal are also considered, however, the breakup of a

single travelling bubble is not observed.

Notwithstanding the work described above, the relatively simple but fundamental

problem of a single travelling bubble in an unbounded Hele-Shaw cell does not appear

to have been studied previously in the literature. The aim of the latter part of this

chapter will be to consider the break up, or pinch-off, for various initial bubble shapes

in ZST Hele-Shaw flows. It is shown in sections 4.3.2 and 4.3.3 that singularities of
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the Schwarz function of the initial interface play an important role in the evolution

of the interface, in that the bubble ‘avoids’ contact with the singular point.

In section 4.1 we discuss briefly the travelling finger and bubble solutions of

Saffman and Taylor [123, 138]. The steady (rotated) elliptical solution of Tian and

Vasconcelos [140] is revisited in section 4.2 using the Schwarz function approach,

and the stability of the elliptical solution is tested numerically in section 4.3. The

stability is also discussed analytically by considering a perturbed ellipse in section

4.4. We end this chapter with a summary in section 4.5.

4.1 The Taylor-Saffman bubble in an un-

bounded Hele-Shaw cell

Taylor and Saffman [138] considered the now well-known problem of a translating

bubble, symmetric about the channel centreline in a Hele-Shaw cell, in which the

viscous fluid region is constrained by a parallel sided channel. They found a family

of solutions governed by the bubble speed and maximum bubble width. Previous to

this, Saffman and Taylor [123] considered the motion of an infinitely long bubble in

the channel (the Saffman-Taylor finger), where the observed ‘selected’ solution is half

the width of the channel. The so called ‘selection’ of these particular width fingers

can be explained by introducing surface tension and then taking the limit as surface

tension tends to zero [133,145].

Taylor and Saffman [138] conjectured that in the case of a small bubble in a

channel (or equivalently an arbitrary sized bubble in an unbounded cell), surface

tension effects are comparable with changes in fluid pressure near the bubble interface

and it is the surface tension that makes the perimeter of the bubble as short as

possible, therefore the bubbles evolves into a circle, which travels at speed twice that

of the background flow, i.e. U = 2V , where U denotes the speed of the propagating
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bubble and V the speed of the uniform background flow. Following the works of

Taylor and Saffman [123, 138], much work has been carried out on the selection

problem numerically, experimentally and theoretically, some of which are cited here

[58,70,96,128,133–136,145,149] (see also references therein).

More recently, the selection of particular solutions of the solution family has

been proposed as a fundamental stability property of ZST Hele-Shaw flows [96, 99,

149]. In this sense, surface tension can be viewed as a perturbation on the free

boundary that forces the interface to the selected shape (observed in [123, 138])

whilst regularising high curvatures. In [96], the selection of the infinitely long finger

travelling in the channel was considered. It was shown, using stability analysis, that

when the selection problem is solved in the absence of surface tension for a particular

class of solutions, the travelling finger with half the channel width is still selected.

That selection is determined entirely by the ZST dynamics has led to much debate

in the literature [3, 13, 70, 94, 95, 124]. Moreover, the ZST problem is ill-posed in

the sense that small perturbations may cause large effects in the resulting interface

evolution [128, 136]. The present work uses numerical smoothing to regularise the

problem enabling convergent numerical results to be computed. The choice to use

smoothing rather than surface tension offers an alternative way to understand the

selection problem for bubbles in an unbounded Hele-Shaw cell.

The result of [96] has recently been extended to a finite bubble travelling in

a channel [149], where it is demonstrated that the bubble with propagation speed

U = 2V is selected as it is a fixed point attractor of the ZST translating bubble

problem. In an unbounded Hele-Shaw cell, or equivalently, the small bubble limit

in a channel geometry, the attractor is the circular bubble. In this thesis, the ZST

problem for unsteady bubbles in an unbounded cell is studied numerically. The

selection problem is considered as well as cases of bubble breakup.

For a bubble in the presence of a uniform steady background flow with speed V ,
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the free boundary problem (1.17) is supplemented with the condition

φ→ V x, as |x|→ ∞, (4.1)

i.e. there exists a uniform background flow, taken to be parallel to the x-axis w.l.o.g.

Therefore, due to the pressure gradient, the bubble translates downstream at speed

U(t) which needs to be determined along with the bubble shape, ∂Ω(t). In the

following section we use the Schwarz function approach to demonstrate how the speed

and direction of propagation of a bubble may be calculated, in particular for a rotated

ellipse. An alternative method has been presented by Tian and Vasconcelos [140] for

the same problem.

4.2 Steady elliptical solution and rotational

invariance

The elliptical bubble is a steady solution of the Hele-Shaw free boundary problem

in an unbounded cell, and so is any rotation of the ellipse due to the rotational

invariance of steady Hele-Shaw flows [140]. That is, the map given by

z = C + eiθe
(
aζ +

b

ζ

)
(4.2)

is a solution to the Hele-Shaw problem, where the time-varying parameters a, b and

θe (later shown to be constant) are real such that b 6= 0, and in general C is complex

valued. Here, (4.2) represents a conformal map from the interior of the unit ζ-disc,

D, to the exterior of the bubble, i.e. the flow domain Ω(t). The interface ∂Ω(t)

is mapped from the unit ζ-circle, i.e. ∂D. The speed of the bubble can be found

using the Schwarz function approach as follows. First, considering the map (4.2),
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the Schwarz function of ∂Ω(t) is given by

g = z̄(1/ζ, t)

= C + e−iθe
(
a

ζ
+ bζ

)
.

(4.3)

As ζ = 0 maps to infinity, from (4.2) we see that

ζ =
beiθe

z − C
+O((z − C)−3), as z →∞, (4.4)

and thus the time derivative of the Schwarz function in (4.3) as z →∞ is given by

∂g

∂t
=

dC

dt
+
a

b
(z − C)

d

dt
(e−2iθe) + e−2iθe

d

dt

(a
b

(z − C)
)

+O((z − C)−1). (4.5)

If the background flow is given by a uniform flow of speed V , then as z → ∞ the

complex potential takes the form w = V z. Since the Schwarz function equation

(1.46) must hold over Ω(t), using (4.5), as z →∞ at O(1) and O(z) we find

d

dt

(
C − e−2iθe

a

b
C
)

= 2V, (4.6a)

d

dt

(
e−2iθe

a

b

)
= 0. (4.6b)

In addition to (4.6a) and (4.6b), the bubble area, A, must also be constant where

A =

∣∣∣∣ 1

2i

˛
∂D

z̄z′dζ

∣∣∣∣
= π

∣∣a2 − b2
∣∣ , (4.7)

and is calculated using the complex form of Green’s theorem. That is, |a2 − b2|=

A/π = constant and together with (4.6b) implies that a, b and θe are constant.
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Employing (4.6b) in (4.6a), and taking the real and imaginary parts gives

ĊR −
a

b

(
ĊR cos(2θe) + ĊI sin(2θe)

)
= 2V, (4.8a)

−ĊI −
a

b

(
ĊI cos(2θe)− ĊR sin(2θe)

)
= 0, (4.8b)

where CR and CI denote the real and imaginary parts of C(t), respectively. Here,

the dot denotes derivative with respect to time. Solving ĊR and ĊI from (4.8), and

integrating with the initial condition C(0) = 0, yields

C(t) =
2V t

1− a2/b2

(
1 +

a

b
cos(2θe) + i

a

b
sin(2θe)

)
, (4.9)

where U = Ċ gives the bubble velocity. That is, the angle at which the bubble

propagates steadily is given by tan−1 ([(a/b) sin(2θe)]/[1 + (a/b) cos(2θe)]), measured

from <(z), which agrees with the result given by Tian and Vasconcelos [140]. In [140],

a complex variable technique is used where, by considering an appropriate frame of

reference, the kinematic condition is used to write down the velocity potential. Note

that for a circular bubble a = 0 and from (4.8a) and (4.8b) U = 2V , i.e. the bubble

propagates in the purely real direction with speed twice that of the background flow.

4.3 Numerical simulations of a translat-

ing bubble

The stability of the steady elliptical solution given by (4.2) is tested numerically

in section 4.3.1. In section 4.3.2, numerical experiments are carried out which lead

to the breakup of a single bubble in to multiple bubbles in an unbounded Hele-Shaw

cell. In section 4.3.3, a different type of topological change is observed where a fluid

blob is seen to pinch off inside a bubble which initially has a simple closed interface.
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4.3.1 Attraction of an elliptical bubble to a circu-

lar bubble

Consider an initially elliptical bubble given by the conformal map (4.2) from D

in the ζ-plane to the exterior of the bubble Ω(0) in the z-plane, in an unbounded

Hele-Shaw cell. The evolution of the interface computed by the numerical procedure

described in chapter 2 is given in figure 4.1 for three values of θe, all with same area,

and aspect ratio (of 1/2). In all cases, the bubble evolves rapidly (within a distance

of 2–3 major axis lengths) to the circular solution, and then translates steadily with

speed U = 2V .

The velocity of the centre of mass of the bubble can be calculated given the

normal velocity on the interface by [137]

żcm =
1

A

ˆ L(t)

0

zu.n ds, (4.10)

where żcm denotes the velocity of the of the centre of mass in complex form, and

u and n are the velocity and normal vectors on ∂Ω(t), s denotes the arc length

parameter and L(t) is the total arc length of ∂Ω(t). The speed of the centre of mass

can thus be calculated as vcm = |żcm|. The velocity in (4.10) is computed numerically

at each time step. The real and imaginary (i.e. x and y) components of żcm, and

the speed of the centre of mass vcm are plotted as functions of time in figure 4.2.

As expected, elliptical bubbles with semi-major axis aligned in the direction of the

background flow (i.e. θe = 0) decelerate to the steady solution U = 2V as they

become circular. It was noted by Taylor and Saffman [138] that bubbles elongated in

the direction of the flow travel with increased speed, i.e. greater than 2V . Elliptical

bubbles with semi-major axis perpendicular to the background flow accelerate (c.f.

figure 4.2, θe = π/2) to U = 2V while becoming circular.

If 0 < θe < π/2, then the bubble interface adjusts to the steady circular solution
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2

Figure 4.1: Evolution of initially elliptical bubbles with semi-major axis inclined at
three different angles θe to the positive real axis. In each case the interface evolves
into a circle. The initial interface is given by (4.2) with a = 1, b = 1/3 and C = 0.
The results presented are for N = 400, ∆t = 10−3 and V = 1. The corresponding

time of the interface is displayed below and above the snapshots.
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Figure 4.2: Velocity of the centre of mass in the (a) real and (b) imaginary direc-
tions, and (c) overall speed vcm corresponding to the numerical solution presented in

figure 4.1, for the different elevation angles θe of initially elliptical bubbles.
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as =(żcm)→ 0. Therefore, starting with an initially elliptical interface with arbitrary

inclination to the uniform background flow, the bubble evolves to the steady circular

solution as t→∞ travelling with speed U = 2V , parallel to the background flow—

see curves in figure 4.2 with θe = π/4.

It is interesting to note that for a short time after t = 0 the bubble speed adjusts

only slowly as the interface remains approximately elliptical before instability sets in.

Figures 4.3(a) and 4.3(b) show a close-up of the evolution of vcm(t) for small time and

corresponding snapshots of the interface, respectively. This delay before instability is

possibly a numerical effect and is now investigated. Figure 4.4 shows dependence of

bubble speed for various values of mesh points, N . WhenN is increased (keeping time

step ∆t fixed), the solution approaches the circular solution more rapidly. This may

seem counter intuitive, however, Aitchison and Howison [1] speculate that increasing

N introduces shorter wavelength instabilities which grow the fastest, thus increasing

resolution leads to a more rapid growth in instability. This result holds true for

increasing N with ∆t/∆S fixed, where ∆S is the mesh size defined in section 2.3.

4.3.2 Initial conditions leading to bubble breakup

Here we consider bubbles with ‘simple’ but non-elliptical initial fluid-bubble in-

terfaces in a uniform background flow, and show how the initial geometry of the

bubble may predict breakup by considering singularities of the Schwarz function of

the initial interface.

Recall, the evolution of the interface can be expressed in complex form by the

Schwarz function equation (1.46). It is well known (as demonstrated later in this

section) that (1.46) implies that the singularities of the Schwarz function of the

initial map remain fixed in the fluid domain [59] and that these cannot cross the

boundary of the bubble. This will lead to bubble deformation as the singular points

are approached. Next, the bubble deformation process is investigated numerically.
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Figure 4.3: Small time evolution of an initially elliptical bubble. The initial in-
terface is given by (4.2) with a = 1, b = 1/3, C = 0 and with θe = 0. The results
presented are for N = 400, ∆t = 10−3 and V = 1. Evolution of the speed of the
centre of mass of the bubble is shown in (a) with snapshots of the bubble interface

shown in (b).
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Figure 4.4: The effect of increasing the number of mesh points, N , on vcm of
an initially elliptical bubble as the interface evolves to the stable circular bubble
travelling with speed U = 2V . The initial bubble is given by (4.2) with a = 1,
b = 1/3, C = 0 and θe = 0. For the results presented, ∆t = 10−3 and the background

flow has speed V = 1.
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Consider a bubble in a uniform flow with initial interface given by the rational

map

z =
a0 + a1ζ + a2ζ

2

ζ + b0

, (4.11)

which for particular parameters ai and bi, i = 0, 1, 2, gives a univalent map from

D to the exterior of a crescent shaped bubble. Here we will take ai and bi, to be

real valued so that the bubble is symmetric about <(z). For simplicity, we fix the

coefficients a0 = −0.375, a1 = −0.15, a2 = 0.25 and vary b0 in order to generate

different initial shapes. It is required that |b0|< 1 for univalency. The map (4.11)

has a singularity at ζ = −b0, which is mapped to infinity in the z-plane.

Since ζζ = 1 on ∂D, the Schwarz function of the initial interface, ∂Ω(0), is given

by

g =
a0ζ

2 + a1ζ + a2

ζ + b0ζ2
. (4.12)

The function (4.12) has two singularities. Here, the only relevant singularity is at

ζ = 0 since it is the only one that lies inside D, i.e. it is mapped to the fluid domain

as displayed in figure 4.5. Note that this singular point is downstream of the initial

bubble position in the z-plane.

As ζ → 0, the map (4.11) gives

z =
a0

b0

(
1 +

[
a1

a0

− 1

b0

]
ζ

)
+O(ζ2), (4.13)

hence, expanding g to leading order yields

g =
a2

ζ
+ (a1 − a2b0) +O(ζ)

=
a0a2

b0

(
a1

a0

− 1

b0

)
1

(z − a0/b0)
+ (a1 − a2b0) +O(z − a0/b0).

(4.14)

It is clear that the Schwarz function has a singularity at the point z0 = a0/b0 = z(0),



Chapter 4. Unsteady translating bubbles in a Hele-Shaw cell 147

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

ℜ (z )

ℑ
(z

)

Figure 4.5: Initial bubble shape given by (4.11) and location of the singularity of
the Schwarz function (4.12) with a0 = −0.375, a1 = 0, a1 = −0.15, a2 = 0.25, and
b0 = −0.5. The singularity (marked by a cross) is mapped from the interior of D to

the initial fluid domain, Ω(0).

as expected. Differentiating (4.14) w.r.t. time gives

∂g

∂t
=

(
a0a2

b0

[
a1

a0

− 1

b0

])
d

dt

(
a0

b0

)
1

(z − z0)2
+

d

dt

(
a0a2

b0

[
a1

a0

− 1

b0

])
1

(z − z0)

+
d

dt
(a1 − a2b0) +O(z − z0), (4.15)

i.e. ġ has singularities at z0 of first and second order. Since the background flow is

a steady uniform flow (no sources, sinks or dipoles), ∂w/∂z is analytic in Ω(t), and

since (1.46) holds away from ∂Ω(t), (4.15) implies d [(a1a2/b0)− (a0a2/b
2
0)] /dt = 0

and d(a0/b0)/dt = 0. The latter implies ż0 = 0, i.e. z0 = constant, and so the

singularity of g remains stationary. Since this point must always lie in the fluid

domain, the bubble boundary cannot cross z0. That is, the interface must avoid z0

as it evolves in time.

Figure 4.6 shows the evolution of initial crescent shaped bubbles given by the

map (4.11) for various values of b0, where the background flow speed V = 1 in each

case. In all cases the front and rear of the bubble interface become progressively
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close until they collide after which it is expected that the bubble will ‘split’ symmet-

rically. We do not extend the numerical solutions beyond this time. As the front of

the starting bubble becomes less convex with respect to the interior of the bubble

(and direction of the flow) the bubble splits at more than one location, as can be

seen in figure 4.6(e). Furthermore, as the front of the initial bubble shape changes

from convex to concave, the numerical results suggest the bubble no longer splits, as

is the case in figure 4.7 where b0 = −0.1. In the same limit of (4.14) the singularity

of g is located further away from the starting location of the bubble. Instead of

splitting, the bubble evolves to a circle, similar to the behaviour of the elliptical bub-

ble observed in section 4.3.1 (which have Schwarz function singularities at infinity).

That is, in figure 4.7 the interface passes over the location of the Schwarz function

singularity. Mathematically, this is not permitted but it may be explained because of

numerical instabilities which force the solution rapidly to a circular interface and so

the numerical effects (e.g. instabilities and filtering) cause information on the initial

Schwarz function singularity to be lost. The larger the distance the bubble has to

travel before encountering the Schwarz function singularity the greater these effects

are.

Now consider an initially crescent shaped bubble which is asymmetric in <(z).

Figure 4.8 shows the evolution of a bubble with initial interface given by (4.11)

rotated through an angle θr = −π/4 (i.e. we replace z by e−iθrz) with b0 = −0.8.

Although the singularity of the corresponding Schwarz function of the initial interface

lies directly downstream of a portion of the bubble, it can be seen that the bubble

evolves to the circular solution in a manner so as to avoid contact with the singularity

z0. If the angle of rotation is reduced to θr = −π/8, as in figure 4.9, the bubble will

split asymmetrically before the interface reaches z0.

It is possible to use (4.11) to find an exact solution for the evolution of a Hele-

Shaw bubble. The four unknown parameters a0, a1, a2 and b0 are governed by four
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(a) b0 = −0.6, te = 0.4875
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(b) b0 = −0.5, te = 0.405
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(c) b0 = −0.4, te = 0.43
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(d) b0 = −0.3, te = 0.43
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(e) b0 = −0.2, te = 0.555

Figure 4.6: Snapshots of the bubble interface at the initial time t = 0 (dashed)
and when the interface collides with itself at time t = te (solid). Here, the results
presented are for N = 400, ∆t = 5 × 10−4 and V = 1. The Schwarz function

singularity of the initial bubble shapes are marked by a cross.
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Figure 4.7: Evolution of an initially crescent shaped bubble given by the map (4.11)
with b0 = −0.1 and corresponding Schwarz function singularity in Ω(0) is marked
by a cross. The results presented are for N = 400, ∆t = 5 × 10−4 and V = 1. The

corresponding time of the interface is displayed below and above the snapshots.
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t = 0.50
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Figure 4.8: Evolution of an initially crescent shaped bubble given by the map (4.11)
with b0 = −0.8 rotated by angle θr = −π/4. The results presented are for N = 400,
∆t = 5×10−4 and V = 1. The corresponding time of the interface is displayed below
and above the snapshots. The Schwarz function singularity in Ω(0) is marked by a

cross.

ODEs, two of which come from (4.15); namely that the strength and location of the

singularity of the Schwarz function at z = z0 are constant. A further two independent

ODEs can be derived by considering the behaviour of the Schwarz function (4.12) as

z →∞ and applying (1.46) with ∂w/∂z → V +O(z−2) in the same limit. Equating

terms of O(1) and O(z−1) yields the additional two ODEs, the latter of which is

equivalent to bubble area conservation (see also section 4.4 for a similar derivation).

These ODEs can then be integrated numerically to find a0, a1, a2 and b0 given

their initial values. This has, in fact, been done and the results (see appendix G)
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Figure 4.9: Snapshot of the bubble interface at t = 0 (dashed) and t = 0.445
(solid), where the initial interface is given by the map (4.11) with b0 = −0.8, rotated
by angle θr = −π/8. The corresponding Schwarz function singularity in Ω(0) is
marked by a cross. The results presented are for N = 400, ∆t = 5×10−4 and V = 1.

differ from those in figures 4.6–4.8: while they confirm that the Schwarz function

singularity plays an important role in the bubble evolution in that they are avoided

by the bubble boundary, cusps form and the solution breaks down in finite time.

It is evident that the present numerical procedure provides sufficient ‘smoothing’

to prevent such cusps forming and that instead breakdown here occurs via bubble

breakup. As such, the numerical scheme can be viewed as providing a regularisation

effect, so that the behaviour is closer to that of the case of vanishing small surface

tension, as opposed to the ideal ZST problem—see section 2.4.

4.3.3 Finite blob pinch-off within a bubble

Here we present numerical results showing a different type of change in bubble

topology. Consider the map given by

z =
α0 + α1ζ

(ζ + β1)(ζ + β2)
, (4.16)
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giving a crescent shape shown by the dashed line in figure 4.10(a). The coefficients

αi, βi, i = 0, 1, 2, are real and such that (4.16) maps D to the exterior of the

bubble. Here, the map has a singular point lying inside D, namely ζ = −β1, where

−1 < β1 < 1 so that the map remains univalent on D, and one singular point outside

D at ζ = −β2, i.e. |β2|> 1.

The Schwarz function of ∂Ω(0) in this case is given by

g =
α0ζ + α1

(1 + β1ζ)(1 + β2ζ)
, (4.17)

which gives one singularity for g in the fluid domain at position z(−1/β2) lying on

the real axis, downstream of the initial bubble, shown in figure 4.10(a) marked by

a cross. Again, we denote this point by z0, and it can be shown using a similar

argument presented in section 4.3.2 that z0 = constant.

Figure 4.10 shows the evolution of a bubble with initial interface given by the

map (4.16) with α0 = α1 = −0.25, β1 = −0.3 and β2 = 1.15 subject to a background

uniform flow of unit speed, i.e. V = 1. As the bubble translates downstream, the

‘horns’ of the crescent become smoother and begin to close at the front of the bubble.

Subsequently, a region of fluid is trapped by the engulfing bubble and the interface

of the bubble collides with itself, beyond which it is expected that the trapped fluid

blob pinches off, with the bubble forming a ring around a disconnected fluid blob

in its interior. The interior blob is centred on the Schwarz function singularity,

z0 = z(−1/β2)—see figure 4.10(b). Since the pressure in the bubble region remains

constant, the blob inside the bubble is expected to remain stationary once pinched

off as no information of the background flow reaches its interface, whilst the outer

interface is expected to translate downstream until the interior blob collides with

the rear of the bubble and the blob will then reattach to the main body of fluid.

As t → ∞, we speculate that the bubble attracts to the aforementioned circular

solution, travelling at speed twice the background flow.
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Figure 4.10: Snapshot of the bubble interface at t = 0 (dashed) and t = 0.06625
(solid), where the initial interface is given by the map (4.16) with α0 = −1, α1 = −1,
β1 = −0.3 and β2 = 1.15. The corresponding singularity of the Schwarz function
in Ω(0) is marked by a cross. Close-up of the blob pinched off by the surrounding
bubble is shown in (b). Results are presented for N = 400, ∆t = 2.5 × 10−4 and

V = 1.

4.4 Stability of elliptical bubbles

Here we will study, analytically, the stability of an elliptical bubble in a uniform

background flow. As noted in section 4.1, Vasconcelos and Mineev-Weinstein [149]

have given a stability analysis for time-dependent solutions (which survive for all

time) describing bubbles in finite width channels. They show that the bubble with

speed U = 2V is the only stable attractor for these solutions. In the small bubble

limit, in which the bubble is far from the channel walls, this corresponds to a circular

bubble (in an unbounded Hele-Shaw cell). In this section an alternative stability

analysis is given in which an elliptical bubble is shown to be unstable to a particular

type of perturbation (this being sufficient to guarantee that it is unstable) and that

it evolves toward a circle.

Consider the stability of the steady translating elliptical bubble solutions to a
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certain class of perturbations having the form

z = c+ aζ +
b

ζ − ε
, (4.18)

where, now, the exterior of the unit ζ-disc, Dext, is mapped to the exterior of the

perturbed elliptical bubble (i.e. the flow domain Ω(t)), and the time-varying param-

eters are such that ε is small, a 6= 0, b and c are real. If ε = 0, note that (4.18) is

the map describing an elliptical bubble, in which case a, b, and c are constant. The

Schwarz function of the interface is given by

g = c+
a

ζ
− b

ε
+
b

ε

1

1− εζ
. (4.19)

In the limit z →∞ it can be shown from (4.18) and (4.19) that

g = c− b

ε
+

1

z

(
a2 − ab

ε2

)
+O(z−2). (4.20)

Applying the Schwarz function equation (1.46) as z →∞ yields

d

dt

(
c− b

ε

)
+

d

dt

(
a2 − ab

ε2

)
1

z
+O(z−2) = 2V, (4.21)

which gives at O(1) and O(z−1)

d

dt

(
c− b

ε

)
= 2V, (4.22a)

d

dt

(
a2 − ab

ε2

)
= 0. (4.22b)

Now, g has a singularity lying at ζ = 1/ε exterior to the unit ζ-circle (i.e. in

the pre-image fluid domain), about which the Schwarz function has leading order

behaviour as z → z0
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g = −
(
ab

ε2
− b2

(1− ε2)2

)
1

(z − z0)
+ c+ aε− b

ε

− b2ε

a(1− ε2)3 − bε2(1− ε2)
+O(z − z0), (4.23)

where z0 = z(ε−1) = c+ a/ε+ bε/(1− ε2). Differentiating (4.23) w.r.t. time yields

∂g

∂t
= −dz0

dt

(
ab

ε2
− b2

(1− ε2)2

)
1

(z − z0)2 −
d

dt

(
ab

ε2
− b2

(1− ε2)2

)
1

(z − z0)

+
d

dt

(
c+ aε− b

ε
− b2ε

a(1− ε2)3 − bε2(1− ε2)

)
+O(z − z0). (4.24)

Since the velocity potential must be analytic in the fluid domain Ω(t), i.e. there exist

no hydrodynamic singularities in the flow, and since the Schwarz function equation,

∂g/∂t = 2∂w/∂z, must hold over the fluid domain, taking ζ → 1/ε gives

d

dt

(
ab

ε2
− b2

(1− ε2)2

)
= 0, (4.25a)

d

dt

(
c+

a

ε
+

bε

1− ε2

)
= 0. (4.25b)

Along with the above equations, the area of the bubble must also be conserved.

The area can be calculated using Green’s theorem, with integration around the unit

ζ-circle, ∂D, to yield

A =
1

2i

˛
∂D

z̄z′dζ

= π

(
a2 − b2

(1− ε2)2

)
.

(4.26)

Note that (4.25a) is a linear combination of (4.22b) and (4.26), and so provides

no new information on the evolution of the parameters ε, a, b and c. Therefore,

there are four equations, namely (4.22a), (4.22b), (4.25b) and (4.26) governing the

evolution of the map (4.18) for the perturbed ellipse.

Now consider the case where the Schwarz function singularity of the initial bubble
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interface may not lie on the real axis. This can be achieved in the case that =(ε) 6= 0

initially, and so ε and b are no longer real in general and the set of equations governing

the evolution of the time-dependent parametric map (4.18) become

d

dt

(
c− b

ε

)
= 2V, (4.27a)

d

dt

(
a2 − ab

ε2

)
= 0, (4.27b)

d

dt

(
c+

a

ε
+

bε

1− |ε|2

)
= 0, (4.27c)

a2 − |b|2

(1− |ε|2)2
=
A

π
. (4.27d)

Therefore, (4.27) give a set of three complex equations and one real equation for the

complex parameters c, b and ε, and the real parameter a. Now, as the bubble travels

in the positive <(z) direction, as t → ∞, c → ∞. From (4.27c), ε → 0 as t → ∞

to balance c terms. The alternative possibility of a and b→∞ can be ruled out by

virtue of (4.27b) and (4.27d). Equation (4.27b) in turn implies that b→ 0 and hence

(4.27d) implies a→ constant as t→∞. Using (4.27a), (4.27c) further implies that

ε→ −a/(c+ [bε/(1− |ε|2)]−K) ∼ −a/t, where K =constant, i.e. ε approaches zero

from below. Equation (4.27b) implies that b ∼ ε2 as t→∞, that is b must approach

zero at least as t−2 as t → ∞. Finally, (4.27a) implies c → 2V t as t → ∞. Thus,

the bubble becomes circular, travelling at speed twice the background flow.

Figure 4.11 shows the evolution of an initially elliptical, perturbed bubble given

by the map (4.18) where the time-dependent coefficients are found by solving the

nonlinear set of coupled equations (4.27a), (4.27b), (4.27c) and (4.27d), numerically.

The numerical simulations in section 4.3.1 demonstrate the evolution of an ini-

tially elliptical bubble to a circular bubble where the transition of shape takes place

over a short distance, no more than 2–3 semi-major axis lengths of the initial bubble

shape. That is, an otherwise steady shape solutions evolves to the circular bub-

ble due to the numerical instabilities, which are implicit at each time step of the
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Figure 4.11: Evolution of an initially perturbed elliptical bubble given by the map
(4.18) with c(0) = 0, a(0) = 1, b(0) = 1/3, ε = −0.3803, where the background flow
has speed V = 1. The cross denotes the location of the Schwarz function singularity
of the initial interface. The corresponding time of the interface is displayed below

and above the snapshots.

numerical algorithm (c.f. section 2.4). The rapid evolution towards the steadily

translating circular bubble, beginning as soon as the numerical instability perturbs

the interface, can be seen in figure 4.4. Therefore, with the added effects of numeri-

cal instability, it is expected that numerical simulations with initial bubble interface

given by (4.18) would exhibit an enhanced rate of evolution to the circular bubble

as compared with evolution governed by the set of coupled equations (4.27). Figure

(4.12) shows a comparison between numerical results and evolution governed by the

set of equations (4.27). It is observed that the numerical simulation evolves to the

circular bubble more quickly, as expected. However, it is important to emphasise

that in both cases, the dynamics of the interface are such that the bubble perimeter

becomes circular, i.e. the parameters b and ε of (4.18) decay to zero as t→∞.
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Figure 4.12: Evolution of an initially perturbed elliptical bubble given by (4.18)
with c(0) = 0, a(0) = 1, b(0) = 1/3 and ε(0) = −0.2113. Comparison between
numerical simulation (solid) and solution to the set of equations (4.27) (dashed) are
shown at multiple snapshots. The corresponding time is displayed below and above
the interface snapshot pairs. Numerical results (solid) are presented for N = 200,

∆t = 10−3. The background flow speed is set to V = 1.
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4.4.1 Unsteady perturbed solutions that exist for

all time

In section 4.4 it is noted that when =(ε) 6= 0, then the long time behaviour of

ε is such that ε → −a/(c+ [bε/(1− |ε|2)]−K) ∼ −a/t where K = constant and a

is real, i.e. ε approaches zero from below, along the real axis. Here we investigate

the set of initial conditions such that <(ε) > 0, for which the solution exists for all

time—tending to a circular interface as t→∞.

Let z(ζ, t) given by (4.18) be a conformal map from the exterior of the unit

circle, Dext, to the exterior of the bubble, Ω(t), in an unbounded Hele-Shaw cell.

The interface of the bubble is mapped from the unit circle ∂D. For simplicity, we

shall assume that b is also real and the parameter ε is such that |ε|< 1 so that (4.18)

has one singularity inside D, namely at ζ = ε. Note, the Schwarz function of the

bubble interface, given by (4.19), has a singularity in Dext, i.e. the pre-image of Ω(t).

Taking the derivative of z in (4.18) with respect to ζ yields

z′(ζ, t) = a− b

(ζ − ε)2
. (4.28)

Now consider the critical points of (4.18), i.e. the points ζ∗ such that z′(ζ∗, t) = 0.

The reader is reminded that if the pre-image domain contains critical points, the

map z(ζ, t) is not univalent [64]. From (4.28), we find that the critical points of

(4.18) are given by

ζ∗ = ε±
√
b

a
. (4.29)

Therefore, if both critical points lie outside Dext, it is required that |ζ∗|< 1 for (4.18)
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to be univalent. Writing ε(t) = εR(t) + iεI(t), this implies

1 >

∣∣∣∣∣ε±
√
b

a

∣∣∣∣∣
=

[(
εR ±

√
b

a
+ iεI

)(
εR ±

√
b

a
− iεI

)]1/2

.

(4.30)

Hence, assuming a and b are real positive numbers, at any instance, the curves which

describe the extent of the regions in which ε would satisfy the inequality |ζ∗|< 1 are

given by

1 =

[(
εR ±

√
b

a
+ iεI

)(
εR ±

√
b

a
− iεI

)]1/2

. (4.31)

Expanding and rearranging the above expression gives

(
εR ±

√
b

a

)2

+ ε2I = 1, (4.32)

i.e. two circles centred at (
√
b/a, 0) and (−

√
b/a, 0).

The regions satisfying the inequalities (4.30) in the complex plane are given by

the interior of each circle. Hence, the region satisfying both inequalities simultane-

ously for possible values of ε such that (4.18) remains univalent is described by the

overlapping (shaded) region shown in figure 4.13, inside the unit ζ-disc, D.

A radial grid of 600 points is shown in figure 4.14, such that π/4 ≤ arg(ε(0)) ≤

π/2, where the evolution of c, a, b and ε satisfy (4.27). The initial ε, i.e. ε(0), are

split up into two groups, those which lie to the left of the dashed curve (blue) and

those which lie to the right (red). The (red) points that lie to the right of the dashed

curve display the initial ε which give subsequent evolution of c, a, b and ε such that

a critical point given by (4.29) collides with the unit ζ-circle, at which point a cusp

forms on the interface ∂Ω(t). All initial values that lie in the shaded region with
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Figure 4.13: The shaded region describing possible values of complex ε inside D
when t = 0, a(0) = 1, b(0) = 1/3, such that (4.18) remains univalent. The arcs of
the circles described by the dashed lines mark the extremity of the shaded region

and are given by (4.32).

arg(ε(0)) < π/4 are such that a critical point given by (4.29) collides with the unit

ζ-circle and are not displayed. Figure 4.15 shows an example of the interface for

such evolution. The corresponding evolution of the critical points given by (4.29)

are displayed in figure 4.16(a).

The (blue) points lying to the left of the dashed curve in figure 4.14 display those

initial ε where c, a, b and ε evolve in such a manner that ε and b decay to zero. An

example of the evolution of the interface with such an initial condition is displayed in

figure 4.17, where the bubble interface evolves to a circle as t→∞. In this case, the

trajectory of ε in the ζ-plane is displayed in figure 4.18, where we see that ε loops on

to the negative real axis, after which ε→ 0 as t→∞. The corresponding trajectories

of the critical points given by (4.29) are displayed in figure 4.16(b), where we see both

critical points moving towards the origin for large time. Hence, it is demonstrated

that for the class of solutions given by (4.18) that survives for all time for a ZST
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Figure 4.14: An example showing values of ε(0) (in the positive quadrant) such
that (4.18) is univalent at t = 0 and (i) ε(t), b(t) decay to zero as t→∞ (dots lying
to the left of the dashed curve), (ii) a(t), b(t) and ε(t) evolve such that the critical
points (4.29) collide with the the unit circle (dots lying to the right of the dashed
curve). Here, c, a, b and ε of (4.18) evolve under the physics of a bubble in a uniform

flow of unit speed at infinity with c(0) = 0, a(0) = 1 and b(0) = 1/3.

Hele-Shaw flow (by avoiding contact with the Schwarz function singularity) tend

towards a circle traveling at speed U = 2V , otherwise the solution breaks down in

finite time.

4.5 Summary

The stability of a steady shape elliptical bubble solution of the Hele-Shaw free

boundary problem in an unbounded cell has been studied both analytically and

numerically. In section 4.3.1 the numerical results demonstrate that for initially

elliptical bubbles, the only (attractive) solution as t→∞ is a circular bubble travel-

ling at a steady speed of twice the background flow V . Since surface tension effects

are not included, the results are related to the analytical results of Vasconcelos and

Mineev-Weinstein [149] for the selection problem in a channel geometry, where it is
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Figure 4.15: Snapshots of the evolution of a perturbed elliptical bubble given
initially (dashed) by (4.18) with c(0) = 0, a(0) = 1 and b(0) = 1/3 and ε(0) =
0.14434 + 0.25i. A cusp forms on the interface at t = 0.329. The singularity of the

Schwarz function (4.19) is marked by a cross.
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Figure 4.16: Comparison of the trajectories of the critical points in the ζ-plane,
given by (4.29), for the cases (a) corresponding to figure 4.15 with 0 ≤ t ≤ 0.329 and
(b) corresponding to figure 4.17 with 0 ≤ t ≤ 100. The initial position of the critical

points are marked by a dot.
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Figure 4.17: Snapshots of the evolution of a perturbed elliptical bubble given
initially (dashed) by (4.18) with c(0) = 0, a(0) = 1 and b(0) = 1/3 and ε(0) =
0.10157 + 0.31259i. The interface evolves smoothly to a circular interface as t in-

creases. The singularity of the Schwarz function (4.19) is marked by a cross.
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Figure 4.18: The trajectory of ε(t) in the ζ-plane for 0 ≤ t ≤ 100 according to
(4.27) with c(0) = 0, a(0) = 1 and b(0) = 1/3 and ε(0) = 0.10157 + 0.31259i. The
initial location of ε is marked by a dot and epsilon decays to zero along the negative
axis for large t. The corresponding interface evolves smoothly to a circular interface

as t increases, shown in figure 4.17.

shown that the selected bubble also propagates with speed 2V . A stability argument

in section 4.4 based on a perturbed ellipse provides further evidence the circular

bubble with speed U = 2V as being the stable attractor. However, it should be

noted that the filtering method has a smoothing effect akin to surface tension. Thus

it is not clear if the numerical results support the ZST selection mechanism, or if the
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selection is a result of the filtering mechanism itself. In section 4.4 the extent of the

domain for which solutions do not break down in finite time of the ZST problem has

been calculated by solving the corresponding ODEs, i.e. (4.27), numerically.

In section 4.3.2 and 4.3.3 it is shown for some initial shapes of ∂Ω(0), it is possi-

ble that the evolution of ∂Ω(t) results in one of two types of topological change. In

the former, the numerical results suggest the bubble may split, becoming multiply

connected. In the latter, the bubble encloses a region of viscous fluid, i.e. a singly

connected viscous fluid domain eventually becomes two disconnected regions. The

numerical results suggest the singularities of the Schwarz function of the initial inter-

face play an important role on the evolution of the interface, since mathematically

the boundary cannot cross the singularity.



Chapter 5

Two-phase Hele-Shaw flows

5.1 Problem background and mathemat-

ical model

In this chapter we consider the ‘general’ problem of two-phase Hele-Shaw flows,

otherwise known as the Muskat problem [103], where two viscous fluids with varying

pressure are separated by a common interface ∂Ω(t). Most of the work regarding

Hele-Shaw flows centres around the one-phase problem, and rightly so as there are

many interesting problems that have been studied and are yet to be studied, as

demonstrated in the preceding chapters of this thesis. In 2000, Howison [60] remarks

that ‘little progress has been made in the study when the viscosity of both phases

are significant ’. Almost fifteen years later this statement is still largely valid. The

difficulty being, the complex variable techniques which prove to be very useful in

constructing exact solutions for the one-phase problem (used throughout chapters

1–4) are much more difficult to apply in the two-phase problem.

In the one-phase problem, conformal mappings are used in a variety of complex

variable techniques, e.g. the Polubarinova-Galin equation [44, 112], the complex

moment technique [116] or the Schwarz function method presented in this thesis.



166 Chapter 5. Two-phase Hele-Shaw flows

The conformal mapping technique is particularly useful in the one-phase problem

since the viscous phase, in most cases, can be mapped to a simple canonical domain,

e.g. the interior of the unit disc (c.f. example 1.3.3 or 1.3.4) by virtue of the Riemann

mapping theorem—see section 1.3.1. To use a similar conformal mapping technique

in the two-phase problem, it would be required that the complement of the domain

mapped in the one-phase problem be mapped to the secondary viscous fluid in the

two-phase problem under the same one-to-one mapping function, e.g. mapping the

interior of the unit disc to the domain occupied by the fluid with viscosity µ1 and

mapping the exterior of the unit disc to the domain occupied by the fluid with

viscosity µ2, under the same univalent map. In theory this is difficult to accomplish,

however, it is possible to construct solutions in particular scenarios, see e.g. [20].

Some efforts have been made in the development of methods for the construction of

exact solutions, e.g. [2, 20, 60], some of which are briefly discussed in section 5.3.1.

The method presented by Crowdy [20] is followed in the construction of an exact

solution presented in section 5.3.2.

Due to the difficulties in constructing exact solutions to the two-phase Hele-

Shaw free boundary problem, various numerical methods have been developed, see

e.g. [14,43,47,125], which include BIMs, e.g. [14]. In section 5.2, the BIM introduced

in chapter 2 for one-phase Hele-Shaw flow is further developed to include two-phases,

where the two fluids with finite, non-zero mobility (i.e. viscosity) ratio are separated

by a simple closed curve ∂Ω(t).

Now we introduce the mathematical formulation of the general two-phase Hele-

Shaw free boundary problem. Consider Ω1(t) to be a finite domain, which will

be referred to as the inclusion, and Ω2(t) which will denote the infinite domain

surrounding Ω1(t), where Ω1(t) and Ω2(t) share the common interface ∂Ω(t)—see

figure 5.1. A fluid of viscosity µj occupies each domain Ωj(t) and will be referred

to as a phase. The fluids of each phase are governed by equations (1.11) and (1.12),
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which can be derived as in section 1.2.1 for the one-phase problem. Using a subscript

notation to distinguish between fluid properties in each phase, we write the Hele-

Shaw equation as

uj = − h

12µj
∇pj, x ∈ Ωj(t), (5.1)

where µj denotes the viscosity of the fluid occupying the domain Ωj(t), and the

continuity equation in each phase is given by

∇ · uj = 0, x ∈ Ωj(t), (5.2)

for j = 1, 2, except at a finite number of distributed hydrodynamic singularities that

may exist in the either fluid domain—c.f. section 1.2.2. Following similar arguments

to the derivation of the equations for the one-phase ZST Hele-Shaw free boundary

problem with background fields (given in appendix B), in the two-phase problem,

the dynamic boundary condition is

p1 = p2 + Ψ, x ∈ ∂Ω(t), (5.3)

i.e the pressure across the interface is continuous and Ψ(x, y, t) can be set appropri-

ately for the given external field. The kinematic condition is

u1 · n = u2 · n, x ∈ ∂Ω(t), (5.4)

i.e. the normal velocity of both phases is continuous on the interface, where n is the

unit normal vector on ∂Ω(t) pointing from Ω1(t) into Ω2(t)—see figure 5.1. Here,

as in section 1.2.2, we write the free boundary problem described by (5.1)–(5.4) in

terms of the velocity potential in each phase defined as

φj(x, y, t) = −kjpj(x, y, t), (5.5)
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where kj = h2/12µj is the (constant) mobility of each fluid, j = 1, 2, and so the

two-phase ZST Hele-Shaw free boundary problem can be written as

∇2φ1 = 0, x ∈ Ω1(t), (5.6a)

∇2φ2 = 0, x ∈ Ω2(t), (5.6b)

φ1 = Λ (φ2 − k2Ψ) , x ∈ ∂Ω(t), (5.6c)

∂φ1

∂n
=
∂φ2

∂n
, x ∈ ∂Ω(t). (5.6d)

The constant Λ, defined as Λ := k1/k2 = µ2/µ1, in (5.6c) is the mobility (or viscosity)

ratio.

Figure 5.1: Sketch of the two-phase Hele-Shaw free boundary problem in an un-
bounded Hele-Shaw cell. The inclusion, i.e. the domain Ω1(t) occupied by a viscous
fluid with viscosity µ1, is surrounded by an infinite expanse of another viscous fluid
with viscosity µ2. The direction of the normal vector on the interface ∂Ω(t) is dis-

played.

The stability of a planar front separating two fluids in an unbounded cell was

first considered by Saffman and Taylor [123], where one fluid displaces the other. It

is well understood that if fluid advances into another fluid of greater viscosity, the

interface is unstable, as indicated in section 1.1. The mathematical solutions given

in [123, 138] regarding fingers and bubbles in the Hele-Shaw cell are derived in the
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limit where viscosity of one of the fluids is set to zero, i.e. the one-phase problem.

However, some remarks are made on the two-phase problem in passing. For example,

in [123], regarding the family of solutions for the Saffman-Taylor finger in a channel

traveling at speed U , say, where the viscosity of the fluid inside the finger is taken

to be zero, the equations of motion are considered for non-zero fluid viscosity inside

the finger instead, where the finger now travels with speed U∗, say. The pressure

condition in the two-phase scenario then reads U∗/k1 = |U |/k2, i.e. U∗ = Λ|U | and

the authors remark that the width of the bubble remains unchanged, travelling with

speed U∗.

In the following section we derive a numerical method for ZST two-phase Hele-

Shaw flow, which is tested against known exact results in section 5.2.3, and new

analytical results presented in section 5.3.

5.2 A numerical model for two-phase Hele-

Shaw flows

Here, the BIM derived in chapter 2 is extended to the case when both fluids

have non-zero viscosity. This requires Laplace’s equation be satisfied in both phases.

Namely, (5.6a)–(5.6b) are satisfied independently, and the velocity potentials in each

phase are coupled through the boundary conditions (5.6c)–(5.6d).

5.2.1 Mathematical formulation

Suppose the two phases are separated by a simple closed curve, ∂Ω(t). In this

chapter we restrict our attention to the evolution of ∂Ω(t) such that it remains a

simple closed interface, for simplicity. The interface is driven by either a background

field (as in section 2.5 for the one-phase problem) or hydrodynamic singularities,



170 Chapter 5. Two-phase Hele-Shaw flows

which may exist in either fluid phase.

The velocity potential in each phase is decomposed as φj = φ̃j+φ̂j, j = 1, 2, where

the velocity potentials due to the given background flow (e.g. due to hydrodynamic

singularities in each phase) are φ̂j(x, y, t), and φ̃j(x, y, t) are the potential parts due

to the presence of the free boundary. The background flow field is given by ûj = ∇φ̂j.

The velocity fields ũj = ∇φ̃j(x, y, t) are solenoidal, irrotational vector fields which

describe local evolution of the interface, ∂Ω(t), as a result of the background flow,

and so φ̃j(x, y, t) are regular in Ωj(t), for j = 1, 2, respectively. The total fluid

velocity in each phase is then given by the sum uj = ũj + ûj, j = 1, 2. In terms of

the complex variable z = x + iy, φ̃j(x, y, t) ≡ φ̃j(z, z̄, t), and therefore, in terms of

φ̃j, the free boundary problem (5.6) can be written as

∇2
zφ̃1 = 0, z ∈ Ω1(t), (5.7a)

∇2
zφ̃2 = 0, z ∈ Ω2(t), (5.7b)

φ̃1 + φ̂1 = Λ
(
φ̃2 + φ̂2 − k2Ψ

)
, z ∈ ∂Ω(t), (5.7c)

∂

∂n

(
φ̃1 + φ̂1

)
=

∂

∂n

(
φ̃2 + φ̂2

)
, z ∈ ∂Ω(t), (5.7d)

where ∇2
z = 4∂2/∂z∂z̄ ≡ ∂2/∂x2 + ∂2/∂y2, ∂/∂n = <{(n1 + in2)(∂x − i∂y)}, and

n = (n1, n2) is the unit normal vector on ∂Ω(t) pointing from Ω1(t) in to Ω2(t).

Let the interface be parameterised w.r.t. arc length, s, such that ∂Ω(t) is tra-

versed in the anticlockwise direction, then the normal and tangential vectors are

defined as (2.4a) and (2.4b). Let us define the total normal and tangential velocities

of each fluid phase on the interface as

vnj = uj · n

= uj
dy

ds
− vj

dx

ds

(5.8a)
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and

vτj = uj · τ

= uj
dx

ds
+ vj

dy

ds
,

(5.8b)

where uj = (uj, vj) is the fluid velocity vector in each phase j = 1, 2 and τ = (τ1, τ2)

is the unit tangent vector on ∂Ω(t). Taking the tangential derivative of the dynamic

boundary condition (5.7c) yields

∂φ̃1

∂τ
+
∂φ̂1

∂τ
= Λ

(
∂φ̃2

∂τ
+
∂φ̂2

∂τ
− k2

∂Ψ

∂τ

)
, z ∈ ∂Ω(t), (5.9)

i.e.

ṽτ1 = −v̂τ1 + Λ(ṽτ2 + v̂τ2 − k2Ψτ ), z ∈ ∂Ω(t), (5.10)

where Ψτ = ∂Ψ/∂τ = τ · ∇Ψ. We shall write the kinematic boundary condition

(5.7d) as

ṽn1 = −v̂n1 + v̂n2 + ṽn2, z ∈ ∂Ω(t). (5.11)

Since the normal velocity on ∂Ω(t) must be continuous, the velocity of the interface

shall be denoted by

Vn = vn1 = vn2, z ∈ ∂Ω(t). (5.12)

Before we construct the BIEs on ∂Ω(t), first assume Ω2(t) is enclosed by a large

circular contour ΓR, of radius R, centred at the centre of mass of Ω1(t)—see figure

5.2. We construct the function Fj(z, t), j = 1, 2, such that

Fj(z, t) :=
∂w̃j/∂z

z − zm
, (5.13)

where zm ∈ ∂Ω(t) and w̃j = φ̃j + iψ̃j is the complex potential in the fluid region

Ωj(t) and ψ̃j is the harmonic conjugate of φ̃j, j = 1, 2. Now we consider two contour

integral equations such that the contours enclose the domains Ωj(t) lying to their
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left. First we consider an equation concerning the complex potential in the inclusion,

i.e. in the fluid domain Ω1(t), given by

1

2iπ

‰
∂Ω(t)

F1(z, t) dz =
1

2

∂w̃1

∂z

∣∣∣∣
zm

, (5.14)

since ∂w̃j/∂z is an analytic function inside Ωj(t), j = 1, 2. Making the change of

variable as proposed in section 2.2.2, (5.14) can be written as

−
ˆ L(t)

0

ṽτ1(s) + iṽn1(s)

z(s)− z(sm)
ds = iπ (ṽτ1 + iṽn1)

(
dz

ds

)−1
∣∣∣∣∣
sm

, (5.15)

where the integral on the left hand side is a Cauchy principal value integral, L(t) is

the total arc length of ∂Ω(t) and on the interface the identity

(ũj − iṽj)
dz

ds
= ṽτj + iṽnj, j = 1, 2, (5.16)

has been employed.

Now we consider the integral equation such that the contour is constructed to

contain Ω2(t) to its left. In order to achieve this, the contour considered is ΓR ∪

zAzB ∪ ∂Ω(t) ∪ zBzA, as displayed in figure 5.2, and a change of sign is made in the

integral equation to account for the reversal of the orientation such that Ω2(t) does

indeed lie to the left of the appropriately orientated contour. Hence, the integral

equation considering the complex potential of the fluid occupying Ω2(t) reads

− 1

2iπ

(fi
ΓR

+

ˆ
zAzB

+

‰
∂Ω(t)

−
ˆ
zAzB

)
F2(z, t) dz =

1

2

∂w̃2

∂z

∣∣∣∣
zm

, (5.17)

where zAzB is the straight path joining the points zA ∈ ΓR to zB ∈ ∂Ω(t). Consider-

ing the limit in which R → ∞, in an analogous manner to the derivation presented
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Figure 5.2: An inclusion Ω1(t) surrounded by a finite fluid region, Ω2(t), bounded
by the curves ∂Ω(t) and ΓR. The normal and tangential vectors along ∂Ω(t) are
displayed. The choice of contours and their orientation in the calculation of the
integral of (5.15) and (5.19) are also displayed, Ocm denotes the centre of mass of

Ω1(t) and R the radius of the circular contour ΓR.

in section 2.6, (5.17) becomes

− 1

2iπ

‰
∂Ω(t)

F2(z, t) dz =
1

2

∂w̃2

∂z

∣∣∣∣
zm

. (5.18)

In parametric from, w.r.t. arc length, and making use of the identity (5.16), (5.18)

becomes

−
ˆ L(t)

0

ṽτ2(s) + iṽn2(s)

z(s)− z(sm)
ds = −iπ (ṽτ2 + iṽn2)

(
dz

ds

)−1
∣∣∣∣∣
sm

. (5.19)

Using the dynamic and kinematic conditions (5.10) and (5.11), the integral equa-

tions (5.15) and (5.19) are written in terms of the two unknown quantities of one of

the fluid phases, i.e. ṽnj and ṽτj for j = 1 or 2. In what follows, we eliminate ṽτ1

and ṽn1 in favour of ṽτ2 and ṽn2 such that (5.15) and (5.19) give a system of coupled
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integral equations, i.e.

−
ˆ L(t)

0

−v̂τ1 + Λ [ṽτ2(s) + v̂τ2(s)− k2Ψτ (s)]

z(s)− z(sm)
ds

+i−
ˆ L(t)

0

−v̂n1(s) + ṽn2(s) + v̂n2(s)

z(s)− z(sm)
ds

= iπ {−v̂τ1 + Λ [ṽτ2 + v̂τ2 − k2Ψτ ] + i [−v̂n1 + ṽn2 + v̂n2]}
(

dz

ds

)−1
∣∣∣∣∣
sm

,

(5.20a)

and

−
ˆ L

0

ṽτ2(s) + iṽn2(s)

z(s)− z(sm)
ds = −iπ [ṽτ2 + iṽn2] . (5.20b)

Re-arranging (5.20a) and (5.20b), we have

(
dz

ds

)∣∣∣∣
sm

−
ˆ L(t)

0

Λṽτ2(s) + iṽn2(s)

z(s)− z(sm)
ds− iπ [Λṽτ2(sm) + iṽn2(sm)] = r(sm), (5.21a)

(
dz

ds

)∣∣∣∣
sm

−
ˆ L(t)

0

ṽτ2(s) + iṽn2(s)

z(s)− z(sm)
ds+ iπ [ṽτ2(sm) + iṽn2(sm)] = 0, (5.21b)

where zm = z(sm) ∈ ∂Ω(t), and here r(sm) is a known function on the interface,

given by

r(sm) =

(
dz

ds

)∣∣∣∣
sm

−
ˆ L(t)

0

v̂τ1(s)− Λ [v̂τ2(s)− k2Ψτ (s)]− i [v̂n2(s)− v̂n1(s)]

z(s)− z(sm)
ds

+ iπ {−v̂τ1(sm) + Λ [v̂τ2(sm)− k2Ψτ (sm)] + i [v̂n2(sm)− v̂n1(sm)]} . (5.22)

The known tangential and normal velocities on the interface, i.e. v̂τj and v̂nj, can

be found given the background potential φ̂j in each phase, j = 1, 2. The coupled

equations (5.21) can be solved for ṽn2 and ṽτ2 from which the normal velocity of the of

the interface, Vn, can be inferred according to (5.12) and recalling that vn2 = ṽn2+v̂n2.

Since the interface moves in the normal direction, the velocity of the interface is given
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by

V∂Ω = Vnn, x ∈ ∂Ω(t). (5.23)

Therefore, the interface is advected according to

dx

dt
= V∂Ω, x ∈ ∂Ω(t). (5.24)

This completes the formulation for the numerical method of the two-phase, ZST

Hele-Shaw free boundary problem with external background fields. Equations (5.21)–

(5.23) give the normal velocity of ∂Ω(t) at any instance, and (5.24) allows the inter-

face to be advected in time.

5.2.2 Numerical procedure

In what follows, explicit time notation is suppressed for brevity. Equations (5.21)

and (5.24) can be discretised in space and time, and the solutions ṽn2 and ṽτ2 can

be approximated numerically. The interface is discretised according to (2.25)–(2.28),

and the midpoints and derivatives are calculated according to (2.31) and (2.38),

respectively, as presented in section 2.3. The unknown quantities to be found at the

discrete mesh points, Si, are

αni = ṽn(Si), (5.25a)

ατi = ṽτ (Si), (5.25b)

for i = 1, . . . , N , with the periodic conditions

αnN+1 = αn1, (5.26a)

ατN+1 = ατ1. (5.26b)
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The BIEs (5.21a) and (5.21b) can be discretised as follows. The integrals are

approximated via the trapezium rule, for example, the first integral in (5.21a) can

be approximated as

−
ˆ L

0

Λṽτ2(s) + iṽn2(s)

z(s)− z(sm)
ds ≈

N∑
j=1

Λατj + iαnj
Zj − Zm+1/2

∆S, m = 1, . . . , N. (5.27)

The value of the solution at the midpoints Si+1/2, for i = 1, . . . , N , are calculated

via a linear approximation, for example, αn(Si+1/2) is approximated as

αni+1/2 =
1

Zi+1 − Zi
[(
Zi+1 − Zi+1/2

)
αni +

(
Zi+1/2 − Zi

)
αni+1

]
. (5.28)

Since the background normal and tangential velocities are known at the discrete

points, i.e. v̂n2(Si) and v̂τ2(Si), and midpoints, i.e. v̂n2(Si+1/2) and v̂τ2(Si+1/2),

the function r(sm) can be approximated using the trapezium rule and we write

r(sm) = r(Sm+1/2) ≈ Rm, m = 1, . . . , N . Hence, as in chapter 2, choosing sm to

coincide with the midpoints Sm+1/2, the BIEs (5.21a) and (5.21b) each provide N

linear, algebraic equations.

Let us write the right hand side of (5.21a) and (5.21b) as one vector, i.e. R =

(R1, . . . , RN , RN+1, . . . , R2N)>, where Ri = 0, for i = N + 1, . . . , 2N , i.e. the

right hand side of (5.21b). Then, constructing a solution vector α, such that

α = (αn,ατ)>, where αn = (αn1, . . . , αnN)> and ατ = (ατ1, . . . , ατN)> are the

normal and tangential velocities at the N mesh points, a matrix equation can be

written in the form

Mα = R, (5.29)

giving a 2N × 2N system of linear equations. The elements Mkj of M and Rk of R

are calculated appropriately, according to (5.21), in a similar manner to (2.44)–(2.46)

presented in section 2.3.1. Following the filtering method proposed in the numerical
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solution to the one-phase problem, as presented in 2.4, the matrix system (5.29)

is modified by considering errors in approximating the right hand side of (5.21b).

Assuming ṽn2(s) and ṽτ2(s) are smooth periodic functions on ∂Ω(t), the modification

incorporates the condition that the integral of the square of the second derivatives for

ṽn2(s) and ṽτ2(s) must be minimised, independently. The modified matrix equation

reads

(M>M + γP )α = M>R, (5.30)

where P is the block diagonal matrix

P =

H 0

0 H

 , (5.31)

and the N × N matrix H is the matrix representation of a third order difference

operator [144] and γ denotes the smoothing parameter, where 0 < γ <∞ (see section

2.4 for further detail).

It remains to compute the evolution of ∂Ω in time after computing the solution

vector α from (5.30) at time tj. The evolution can be approximated at the following

time step tj+1 = tj + ∆t by

<(Znew
i ) = <(Zi) + U(Si, tj)∆t, i = 1, . . . , N, (5.32)

=(Znew
i ) = =(Zi) + V(Si, tj)∆t, i = 1, . . . , N, (5.33)

where Znew
i ∈ ∂Ωnew, which is the new position of the interface ∂Ω at t = tj +

∆t, U(Si, tj) = ={Vn(Si, t)dZi/ds}, V(Si, tj) = −<{Vn(Si, t)dZi/ds}, Vn(Si, tj) =

ṽn(Si, tj) + v̂n(Si, tj) and (U ,V) = V∂Ω as in (5.24). A modified Euler (i.e. a second

order Runge-Kutta) method is employed, as in [8] and chapter 2, such that the time

stepping method is approximately O((∆t)2) accurate.

When ∂Ωnew is found, the new total arc length Lnew is computed from the mesh
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points Znew
i , i = 1, . . . , N+1, which are then redistributed to an equispaced mesh by

cubic spline interpolation. Setting Zi = Znew
i (after interpolation to the equispaced

mesh), i.e. setting ∂Ω = ∂Ωnew and L = Lnew, applying the above procedure again

completes the algorithm for computing ∂Ω at later times.

5.2.3 Testing and results

Example 5.2.1 (Elliptical inclusion in a straining flow)

Here we consider the exact solution derived by Crowdy [20] for an elliptical inclusion,

Ω1(t), inside a steady straining background flow in Ω2(t). The derivative of the

complex potential in the phase occupying Ω2(t), in terms of the notation of section

5.2.1, is given by

∂ŵ2

∂z
= σstz, (5.34)

as z → ∞ where σst, a given constant, is the strength of the purely straining flow.

Here we have Ψ ≡ 0. Following the solution presented in [20], the interface ∂Ω(t) is

mapped from the unit ζ-circle ∂D by

z =
a

ζ
+ bζ, (5.35)

where a(t) and b(t) are real time-dependent parameters given by the solution

a =
1√

1− |e|2
, (5.36)

b = ea, (5.37)
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and e(t) represents eccentricity of the ellipse and is given by the solution to the

equation

Λ tanh−1 e− Λ− 1

2
e = σstt. (5.38)

Figures 5.3(a) and 5.3(b) show comparison between numerical results and the

exact solution described by (5.35)–(5.38) for Λ = 0.5 and 2, respectively. There is

excellent agreement between numerical and explicit solutions.

Example 5.2.2 (Expanding circular inclusion)

Here we consider the explicit solution of example 5.3.1 for a circular inclusion, Ω1(t),

centred on the origin, driven by a point source of strength Q1 located at at the origin.

In this example, we make use of the external field Ψ to cater for the sink at infinity,

in Ω2(t), by setting Ψ = (−Q1/2πk1) log|z| in (5.22) and the background fields in

Ω1(t) and Ω2(t) are given by φ̂1 = (Q1/2π) log|z| and φ̂2 = 0, respectively. This

satisfies the condition Ψ = p1 − p2 on ∂Ω(t).

Figure 5.4(a) shows comparison between the exact solution (derived in example

5.3.1 in section 5.3) and numerical solution of the interface. Figure 5.4(b) shows the

relative error, (2.78), between the area of the inclusion calculated explicitly, given

in example 5.3.1, and numerically, according to (2.76). There is excellent agreement

between the numerical and exact solutions.

5.3 Exact solutions

Here we present steady solutions for translating inclusions in a uniform steady

background flow in the case of an ellipse, with major axis inclined at an arbitrary

angle to the direction of the background flow, and for a circle, where a relationship

between the propagation speed of the inclusion and the mobility ratio is derived.
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Figure 5.3: Superposition of the numerical and exact solutions of the interface at
time (a) t = 0, 0.25, 0.5, 0.75 and 1, and (b) t = 0, 0.125, 0.25, 0.375 and 0.5.
Results presented for an initially circular inclusion subject to a straining background
flow with σst = 1 and viscosity ratios (a) Λ = 0.5 and (b) Λ = 2. Here there are
N = 300 mesh points on the free boundary and step-size ∆t = 10−3. The initial

circular interface is given by (5.35) with a(0) = 1 and b(0) = 0, i.e. e(0) = 0.
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Figure 5.4: Superposition of the numerical and exact solutions of the interface at
time t = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 shown in (a). The relative
error of inclusion area, 0 ≤ t ≤ 1, is shown in (b). Results are presented for an
an initially circular inclusion subject to point source of strength Q1 = π located at
the origin, marked by a triangle in (a), and viscosity ratio Λ = 0.5. Here there are
N = 100 mesh points on the free boundary and step-size ∆t = 10−3. The initial

circular interface is given by (5.46) with R(0) = R0 = 1.
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This theoretical result is compared with results from simulations computed using

the numerical method presented in section 5.2.

5.3.1 Solution methods

As discussed in section 5.1, little work on exact solutions to the two-phase problem

exists due to the difficulties of applying complex variable methods. Below we briefly

discuss two solution methods suggested in the literature. First we give an account

of the method suggested by Howison [60].

In [60], a solution method in an ‘inverse manner’ is presented, motivated by the

comments on the two-phase finger solution made by Saffman and Taylor [123]. The

following steps are suggested.

(i) Construct the complex potential, w1, in Ω1(t) to be an analytic function in the

entire complex plane (not just inside the inclusion). The idea is to analytically

continue w1 away from the initial interface between the two-phases, ∂Ω(0),

assuming no additional singularities exist. That is, considering the one-phase

problem with, φ2 ≡ 0 in Ω2(t), then the complex potential w1 satisfies the

Schwarz function equation (1.46), i.e. 2∂w1/∂z = ∂g/∂t. Therefore, assum-

ing w1 can be analytically continued away from ∂Ω(0) implies g, the Schwarz

function of the initial interface, has no additional singularities.

(ii) Assume the fluid inside Ω1(t) occupies all of the complex plane and then fol-

low the evolution of ∂Ω(0) in C as a material curve under the action of w1,

with time, i.e. use the kinematic boundary condition (5.12) according to w1.

Therefore, the complex conjugate velocity of ∂Ω(t) is given by the derivative

of the complex potential w1. Writing the equation of the interface according
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to (1.29) we have
∂w1

∂z
=

dz̄

dt

=
dg

dt

=
∂g

∂z

dz

dt
+
∂g

∂t
,

(5.39)

hence

∂w1

∂z
=
∂g

∂z

∂w1

∂z
+
∂g

∂t
, (5.40)

where w1 = w1(z̄, z, t) = w1(g(z, t), z, t) is analytic in Ω1(t) since w1 is. Equa-

tion (5.40) has characteristics from which it is found that $2 − w2 = constant

along the characteristics, an equation which must be satisfied for a valid solu-

tion to the two-phase problem.

(iii) Finally, find the complex potential w2 (by writing w2 = (k2/k1)w1 +$2, where

$2 is the additional correction required) catering for the fluid of viscosity µ2 in

Ω2(t), which must satisfy the dynamic boundary boundary condition (5.3) on

∂Ω(t), as well as the kinematic boundary condition (5.4). Writing <($2) = ϕ2,

then the velocity potential of w2 is given by <(w2) = φ2 = φ1 + ϕ2 and

<(w1) = φ1 is known from steps (i) and (ii). Then, ϕ2 must satisfy the pseudo

one-phase free boundary problem

∇2
zϕ2 = 0, z ∈ Ω2(t), (5.41a)

ϕ2 = 0, z ∈ ∂Ω(t), (5.41b)

∂ϕ2

∂n
=
k1 − k2

k1

∂φ1

∂n
, z ∈ ∂Ω(t), (5.41c)

where the Schwarz function equation (1.46) can be applied and, in this case,

would be written as 2∂$2/∂z = ∂g/∂t.

Using the method above, Howison [60] gives examples of constructing exact solu-

tions, e.g. travelling wave, straining flow, and also derives the solution of Jacquard
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and Séguier [65] of growing fingers in a channel, which is the same (for a particular

value of finger width) as given by Saffman in [122]. Crowdy [20] notes that the so-

lution obtained by Jacquard and Séguier [65] is somewhat fortuitous and that the

above solution method of Howison [60] is a systematic alternative.

Crowdy [20] also suggests a solution method of finding explicit solutions of the

two-phase Hele-Shaw free boundary problem in the following manner, relying on two

main steps when the interface ∂Ω(t) is given in the form of a parametric map for a

particular class of time-dependent flows.

(i) First write the velocity potential in each phase in complex form as φj =

<{wj(z, t)} = {wj(z, t) + wj(z, t)}/2, j = 1, 2. Hence, applying the dy-

namic condition (5.3) and kinematic condition (5.4), a relationship between

the derivative of the complex potential in Ω2(t) can be written in terms of the

complex potential in Ω1(t), known a priori, i.e. to find explicitly the derivative

of the complex potential in Ω2(t) due to the presence (and pressure inside) of

Ω1(t) [20] by

∂w2

∂z
=

(Λ−1 + 1)

2

∂w1

∂z
+

(Λ−1 − 1)

2

∂w1

∂z

dg

dz
, z ∈ ∂Ω(t). (5.42)

(ii) Secondly, the kinematic condition, written in the form ={(∂w1/∂z)(dz/ds)} =

−={(dz/dt)(dz̄/ds)} [20] is employed and the kinematic boundary condition

(5.7d) can be written as

∂w2

∂z
− ∂w2

∂z

dg

dz
=
∂w1

∂z
− ∂w1

∂z

dg

dz
, z ∈ ∂Ω(t). (5.43)

Equation (5.43) can then be used to determine the evolution of the interface,

as the parameters of the map of ∂Ω(t) are found as the solution to a system of

ODEs.
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In fact, Crowdy [20] derives exact solutions assuming Ω1(t) is elliptical for all

time, subject to background flows such that ∂w1/∂z is a linear function of z. In

section 5.3.2 and 5.3.3, we consider a class of flows such that the derivative of the

complex potential inside Ω1(t) is assumed constant, i.e. we consider translating

inclusions as a result of a uniform background flow in Ω2(t). Crowdy [20] remarks

that the elliptical shape of ∂Ω(t) and the linear flow in Ω1(t) is a ‘special case’, and

the analysis presented there cannot be extended easily to other interface shapes.

A particular reason being that the derivative of the Schwarz function, i.e. ∂g/∂z

in (5.42), should not exhibit any singularities for w2 to be analytic throughout the

complex plane.

Below we present a straight forward example of finding an exact solution based

on the method suggested in [20].

Example 5.3.1 (Expanding circular inclusion)

Consider a circular inclusion Ω1(t) expanding due to a point source of strength Q1 >

0, located at the centre of Ω1(t), taken to be the origin w.l.o.g., for which the complex

potential in Ω1(t) is given by

w1 →
Q1

2π
log z, as z → 0. (5.44)

In the outer fluid, i.e. in Ω2(t), the complex potential behaves like

w2 →
Q2

2π
log z, as z →∞, (5.45)

where fluid is removed to conserve mass (Q2 > 0), i.e. there exists a sink at infinity.

Let the circular interface ∂Ω(t) be given by the map

z =
R

ζ
, (5.46)
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which, in fact, is a conformal map from the interior of the unit ζ-disc, D, to the

exterior of the circular inclusion, i.e. Ω2(t). Taking the complex conjugate of (5.46),

and differentiating w.r.t. z, we find the derivative of the Schwarz function of ∂Ω(t)

to be

dg

dz
= −R

2

z2
. (5.47)

Therefore, applying (5.42) we have

Q2

2π

1

z
=

Λ−1 + 1

2

Q1

2π

1

z
− Λ−1 − 1

2

Q1

2π

1

z̄

R2

z2
(5.48)

=
Λ−1 + 1

2

Q1

2π

1

z
− Λ−1 − 1

2

Q1

2π

z

R2

R2

z2
, (5.49)

and comparing terms of O(z−1) we find the strength of the sink at infinity to be

Q2 = Q1. (5.50)

Now we apply the kinematic condition (5.6d), which can be written in the form

(see equations (5.71)–(5.73) in section 5.3.2)

=
(
−iQ1

2π

1

z

R

ζ

)
= −=

(
i
Ṙ

ζ
Rζ

)
. (5.51)

Using (5.46) on the interface, (5.51) yields

1

2

d

dt
(R2) =

Q1

π
, (5.52)

that is, the area of the circular inclusion Ω1(t) is given by A = πR2 = Q1t+ πR2
0, as

expected, with radius R =
√
R2

0 + (Q1t/π).
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5.3.2 Rotated elliptical inclusion in a uniform flow

Consider a fluid of viscosity µ1 separated from a fluid of viscosity µ2 by a simple

closed free boundary, ∂Ω(t) := Ω1(t)∩Ω2(t), in an unbounded Hele-Shaw cell, where

Ω1(t) is of infinite expanse surrounding the inclusion Ω1(t). The governing equations

in each fluid phase are given by (5.1)–(5.4) which can be written in terms of the free

boundary problem (5.6).

Suppose the free boundary (and thus the inclusion) is driven by a uniform back-

ground flow in Ω2(t) of speed V in the positive x direction, then, the complex po-

tential in Ω2(t) is given by

w2 → V z, as z →∞. (5.53)

This implies Ω1(t) propagates downstream with speed U(t) = UR(t) + iUI(t), say,

where the UI(t) allows for additional cross stream velocity. Suppose ∂Ω(t) is given

by an ellipse whose semi-major axis is inclined at an angle θe(t) to the real axis. The

mapping from the unit ζ-circle, ∂D, to the interface, ∂Ω(t), is given by

z = d+ eiθe
(
a

ζ
+ bζ

)
, (5.54)

i.e. it is assumed Ω1(t) is elliptical for all time. Using the solution method presented

in [20]—discussed in section 5.3.1 above—we check whether (5.54) yields a solution

to the two-phase problem, and we seek the appropriate components of the velocity

of the inclusion, i.e. (UR, UI). In fact, (5.54) describes a conformal map from the

interior of the unit ζ-dsic, D, to the exterior of the ellipse, i.e. Ω2(t), hence, we

assume a 6= 0, and that a(t), b(t) ∈ R and d(t) ∈ C, are parameters to be found.

Assuming the fluid inside the inclusion Ω1(t) propagates uniformly inside an

elliptical boundary with speed U = UR + iUI , where UR, UI ∈ R, then the complex



188 Chapter 5. Two-phase Hele-Shaw flows

potential in Ω1(t) is given by w1 = Uz. Therefore, (5.42) gives

∂w2

∂z
=

(Λ−1 + 1)

2
U +

(Λ−1 − 1)

2
U

dg

dz
, z ∈ ∂Ω(t). (5.55)

The function z̄ on ∂Ω(t), i.e. when ζ ∈ ∂D, is equivalent to the Schwarz function

g of the interface, and from (5.54) we have that for the rotated elliptical interface

g = d+ e−iθe
(
aζ +

b

ζ

)
. (5.56)

From (5.54) we also note that

1

ζ
=
e−iθe

a
(z − d)− b

a
ζ, (5.57)

and so (5.56) can be written as

g = d− bd

a
e−2iθe +

b

a
e−2iθez +

e−iθe

a

(
|a|2−|b|2

)
ζ. (5.58)

Differentiating (5.58) w.r.t. z yields

dg

dz
=
b

a
e−2iθe +

e−iθe

a

(
|a|2−|b|2

) 1

dz/dζ

=
b

a
e−2iθe +

e−iθe

a

(
|a|2−|b|2

) ζ2

bζ2 − a
.

(5.59)

Therefore, substituting (5.59) in (5.55) we have

∂w2

∂z
=

(Λ−1 + 1)

2
U +

(Λ−1 − 1)

2
U

[
b

a
e−2iθe +

e−iθe

a

(
|a|2−|b|2

) ζ2

bζ2 − a

]
, (5.60)

which is a complex equation valid on the interface, i.e. for z ∈ ∂Ω(t). Note that

dz/dζ, in this case, has no zeros inside the unit ζ-disc, D, which in turn implies that

the right hand side of (5.55) is analytic for all z ∈ Ω2(t), since |a/b|> 1.



Chapter 5. Two-phase Hele-Shaw flows 189

From (5.54), as ζ → 0, i.e. z →∞, we find that

1

ζ
=
e−iθe

a
(z − γ) +O(z−1), (5.61)

and

ζ = aeiθe
1

z
+ aγeiθe

1

z2
+O(z−3). (5.62)

As z → ∞, the complex potential in Ω2(t) is given by (5.53). Hence, by analytic

continuation, and expanding the right hand side of (5.60) as z →∞, we have

V =
(Λ−1 + 1)

2
U +

(Λ−1 − 1)

2
U

[
b

a
e−2iθe +

(
|a|2−|b|2

) 1

z2

]
+O(z−3). (5.63)

Comparing terms of O(1), (5.63) yields

2V = (Λ−1 + 1)(UR − iUi) + (Λ−1 − 1)(UR + iUi)
b

a
e−2iθe . (5.64)

Taking the real and imaginary parts of (5.64) gives

2V = (Λ−1 + 1)UR + (Λ−1 − 1)
b

a
(UR cos 2θe + Ui sin 2θe) (5.65a)

and

0 = −(Λ−1 + 1)UI + (Λ−1 − 1)
b

a
(UI cos 2θe − UR sin 2θe), (5.65b)

respectively. From (5.65b), re-arranging yields

UI
UR

=
(b/a)(Λ−1 − 1) sin 2θe

(b/a)(Λ−1 − 1) cos 2θe − (Λ−1 + 1)
, (5.66)

which gives the angle of propagation of the inclusion Ω1(t) as a function of the angle

of tilt of the ellipse, θe, and the mobility ratio, Λ. Eliminating UI between (5.66)
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and (5.65a) we find

UR =
2V [−(Λ−1 + 1) + (b/a)(Λ−1 − 1) cos 2θe]

(b/a)2(Λ−1 − 1)2 − (Λ−1 + 1)2
, (5.67)

and thus, from (5.66), we may write UI explicitly as

UI =
2V (b/a)(Λ−1 − 1) sin 2θe

(b/a)2(Λ−1 − 1)2 − (Λ−1 + 1)2
. (5.68)

It now remains to calculate the evolution of the interface of the form (5.54)

according to the kinematic condition (5.43), i.e. by (5.6d). First consider the identity

ds2 = dx2 + dy2

= dzdz̄,

(5.69)

therefore, we may write the derivative of z w.r.t. s as

dz

ds
=

1

dz̄/ds

=
dz/ds

|dz/ds|2

=
(dz/dζ)(dζ/ds)

|dz/dζ|2|dζ/ds|2
,

(5.70)

hence

dz

ds
=

(dz/dζ)

|dz/dζ|2(dζ/ds)
. (5.71)

On ∂Ω(t), having parameterised w.r.t. arc length, s, we may write ζ = eis, hence

dζ/ds = −ie−is, therefore

dz

ds
= iζ

dz/dζ

|dz/dζ|2
(5.72a)
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and

dz̄

ds
= −i dz̄/dζ

ζ|dz/dζ|2
. (5.72b)

From (5.43), the kinematic condition can be written as

=
(
w′1

dz

ds

)
= −=

(
dz

dt

dz̄

ds

)
. (5.73)

Since w1 = Uz, using (5.72), (5.73) becomes

=
(
Uiζ

dz

dζ

)
= −=

(
−dz

dt

i

ζ

dz̄

dζ

)
, (5.74)

which is valid on the interface and may be written as

<
(
Uζ

dz

dζ

)
= <

(
dz

dt

1

ζ

dz̄

dζ

)
, z ∈ ∂Ω(t). (5.75)

From (5.54) we find that

dz

dζ
= eiθe

(
− a

ζ2
+ b

)
, (5.76)

hence

dz̄

dζ
= e−iθe

(
−aζ2 + b

)
, (5.77)

and

dz

dt
=

dd

dt
+ i

dθe
dt
eiθe
(
a

ζ
+ bζ

)
+ eiθ

(
1

ζ

da

dt
+

db

dt
ζ

)
. (5.78)

Therefore, (5.75) reads
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<
[
(UR − iUI)eiθe

(
−a
ζ

+ bζ

)]
=

<
[
e−iθe

(
−aζ +

b

ζ

)(
dd

dt
+ i

dθe
dt
eiθe
(
a

ζ
+ bζ

)
+ eiθe

(
1

ζ

da

dt
+

db

dt
ζ

))]
, (5.79)

where ζ ∈ ∂D, i.e. ζζ = 1. Writing eiθe = cos θe+i sin θe and ζ = eiα = cosα+i sinα,

from (5.79) we have that

B(b− a) cosα− C(a+ b) sinα = b
db

dt
− ada

dt
+D(b− a) cosα

+ E(a+ b) sinα + 2
dθe
dt
ab sin 2α + (b

da

dt
− adb

dt
) cos 2α, (5.80)

where

B = UR cos θe + UI sin θe, C = UR sin θe − UI cos θe,

D =
ddR
dt

cos θe +
ddI
dt

sin θe, E =
ddI
dt

cos θe −
ddR
dt

sin θe.

Comparing terms of O(1), O(cos 2α) and O(sin 2α) in (5.80) yields

1

2

d

dt

(
b2 − a2

)
= 0, (5.81a)

d

dt
(log a− log b) = 0, (5.81b)

2ab
dθe
dt

= 0. (5.81c)

From (5.81b) we see that a/b = constant and (5.81a) implies a2 − b2 = constant,

i.e. area conservation. Therefore, a and b are constant. Hence, (5.81c) implies

θe = constant. Considering terms of O(cosα) and O(sinα) in (5.80) gives

(b− a)(UR cos θe + UI sin θe) = (b− a)

(
ddR
dt

cos θe +
ddI
dt

sin θe

)
, (5.82)

−(a+ b)(UR sin θe − UI cos θe) = −(a+ b)

(
ddR
dt

sin θe −
ddI
dt

cos θe

)
, (5.83)
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which imply

dd

dt
= U, (5.84)

i.e. d = Ut + d(0), since a, b and θe are constant. That is, an interface of shape

given by (5.54)—i.e. a rotated ellipse—is a steady shape solution of the two-phase

Hele-Shaw free boundary problem with uniform background flow, where the inclusion

(and interface) propagates with speed U = UR + iUI given by (5.67)–(5.68). The

solution (5.67)–(5.68) has various limiting cases, given in table 5.1.

To summarise, the kinematic condition formulated in (5.73) is consistent with

the equation derived on the interface, (5.55), and gives the evolution of the time-

dependent map (5.54), i.e. the evolution of ∂Ω(t). The result shows that steady

solutions of the two-phase Hele-Shaw flow problem, in particular elliptical solutions,

are rotationally invariant, a generalisation of the one-phase counterpart considered

in [140].

5.3.3 Circular inclusion in a uniform flow

Now consider the problem (a special case of the solution presented in section

5.3.2) in which the interface ∂Ω(t) is given by

z = d+
R

ζ
, (5.85)

a conformal map from ∂D to ∂Ω(t), where R(t) and d(t) are real parameters to be

found. That is, we consider the geometric limit of item (iv) in table 5.1, i.e. b ≡ 0,

R ≡ a and so we may also set θe ≡ 0 in (5.54) w.l.o.g.

Suppose ∂Ω(0) is given by a circle of radius R(0) = R0 centred at the origin,

i.e. we set d(0) = 0 w.l.o.g. An expression for the ‘drift’ speed, i.e. the speed of

propagation, of the circular inclusion is found by setting b = 0 in (5.67) and (5.68),
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Viscosity
ratio

Inclusion speed Description

(i)
Λ = 1,
µ1 = µ2.

UR = V , UI = 0.

The interface is a passive
tracer, i.e. all fluid in
Ω1 ∪ Ω2 moves with

velocity V .

(ii)
Λ→ 0,
µ1 →∞.

UR = 0, UI = 0.

The case of a very viscous
inner fluid, akin to flow

past a solid elliptical
object.

(iii)
Λ→∞,
µ1 → 0.

UR =
2V [1 + (b/a) cos 2θe]

1− (b/a)2
,

UI =
2V (b/a) sin 2θe

1− (b/a)2
.

The case of an inviscid
inclusion, i.e. a translating

elliptical bubble [140].

(iv)
∀Λ,
b = 0.

UR =
2V

1 + Λ−1
,

UI = 0.

The case of a translating
patch of fluid with circular

boundary—c.f. solution
(5.86) in section 5.3.3.

Table 5.1: Characteristic limits describing the flow regime for an elliptical inclu-
sion, translating in a uniform background flow with propagation speed given by the
solutions (5.67) and (5.68). The limits in (i)–(iii) are for viscosity ratio Λ, and the

limit in (iv) is a geometric limit.

giving

U =
2V

1 + Λ−1
, (5.86)

where the drift speed U = UR is purely real since UI ≡ 0. It now remains to

calculate the evolution of the interface according to the kinematic condition. From

(5.81a) and (5.84) we find R = R0 = constant and d = Ut. That is, the interface
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∂Ω(t) propagates as a circle of constant radius with speed U given by (5.86), which

is a relationship between the speed of the inclusion, U , the background flow speed,

V , and mobility ratio, Λ. The flow regime can be categorised in particular limits of

viscosity ratio, given in table 5.2.

Viscosity ratio Inclusion speed Description

(i)
Λ→ 0,
µ1 →∞.

U = 0. Flow past a cylinder.

(ii)
Λ = 1,
µ1 = µ2.

U = V.
The interface is a passive

tracer.

(iii)
Λ→∞,
µ1 → 0.

U = 2V .
A translating circular

bubble.

Table 5.2: Characteristic limits of viscosity ratio Λ which describe the flow regime
for a circular inclusion translating in a uniform background flow, where the drift

speed of the inclusion is given in (5.86).

Furthermore, since (5.85) represents a conformal map from the unit ζ-disc, D,

to the exterior of the circular inclusion, i.e. Ω2(t), the complex potential in Ω2(t)

can be computed as follows. The derivative of the Schwarz function of ∂Ω(t) can be

found from (5.85), given by

dg

dz
=
∂g

∂ζ

dζ

dz

= −ζ2

=
R2

(z − d)2
.

(5.87)

Employing (5.87) and w1 = Uz in (5.42) yields

∂w2

∂z
=

(Λ−1 + 1)

2
U +

(Λ−1 − 1)

2
U

dg

dz
, z ∈ ∂Ω(t). (5.88)
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Hence, integrating and using (5.86) gives

w2 = V z +
(Λ−1 − 1)UR2

2(z − d)
, (5.89)

and taking the real part, the velocity potential is

φ2 = V x+
(Λ−1 − 1)UR2

2 [(x− d)2 + y2]
(x− d). (5.90)

In the case Λ−1−1 < 0, i.e. the case where the inclusion has lower viscosity than the

outer fluid, the complex potential (5.89) is that of a flow past an anti-dipole (e.g. a

bubble when Λ−1 ≡ 0) at any instance, and the streamlines intersect ∂Ω(t) at right

angles—see figure 5.5(c).

(a) (b) (c)

Figure 5.5: Sketches of the streamlines in Ω2(t) observed in a stationary frame
when the inclusion Ω1(t) has viscosity such that ∂Ω(t) describes the perimeter of (a)
a cylinder, i.e. Λ→ 0, (b) a passive tracer, i.e. Λ ≡ 1, and (c) a bubble, i.e. Λ→∞.
The sketches (a), (b) and (c) correspond to the cases (i), (ii) and (iii) in table 5.2,

respectively.

Figures 5.6 shows comparison, for a range of viscosity ratios, between numerical

results and the analytic prediction (5.86). Numerical results are found using the

algorithm given in section 5.2, where the initial interface is given by a circle of unit

radius centred at the origin. In the results presented, N = 80 mesh points are taken

on the interface for each viscosity ratio, where on the interval 10−3 ≤ Λ ≤ 40, 200

equally spaced points are taken. Each simulation is run for one time unit with step
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size ∆t = 10−3. The speed of the translating circular inclusion is calculated from

numerical results by averaging the speed of the centre of mass over all time steps.

The solution presented here is for background flow speed V = 1. There is excellent

agreement between the exact and numerical solutions.
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Figure 5.6: Comparison between numerical results and the analytical prediction
of the exact solution (5.86) for the drift speed for a circular inclusion of viscosity
µ1 surrounded by a fluid of viscosity µ2, due to a uniform background flow of speed

V = 1 and 10−3 ≤ Λ ≤ 40. Λ = µ1/µ2 denotes the viscosity ratio.

5.3.4 On the remarks made by Taylor and Saffman

(1959) regarding two-phase solutions

In the original work of Taylor and Saffman [138] on the Taylor-Saffman bubble

solutions in a channel geometry (and also for the Saffman-Taylor finger discussed

in section 5.1) the authors remark on corresponding two-phase solutions to the one-

phase problem studied. In [138] the governing equations of the one-phase problem
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in the channel are presented as

ψ2 = ±1 on y = ±V, φ2 → x, x→ ±∞, (5.91a)

φ2 = 0 on the interface, (5.91b)

ψ2 = Uy on the interface, (5.91c)

which are updated for the two-phase problem—analogous to (5.6)—to

ψ2 = ±V on y = ±1, φ2 → V x, x→ ±∞, (5.92a)

φ1/k1 = φ2/k2 on the interface, (5.92b)

ψ1 = ψ2 = Uy on the interface. (5.92c)

Equation (5.92c) implies the bubble propagates with speed U , and therefore, in

the two-phase problem one then takes φ1 = Ux and ψ1 = Uy inside the inclusion

(i.e. bubble). In [138], the complex potential ( ‘after some algebra’) is given in the

form

W =
φ2 + iψ2 − U∗z

V − U∗
(5.93)

and the authors remark that (5.93) satisfies (5.91), where U∗ = µ1U/µ2 = k2U/k1 =

U/Λ, and replacing U with U ′ = (U−U∗)/(V −U∗) in the solutions to the one-phase

problem gives solutions to the two-phase problem. They go on to say ‘it is noted that

the family of possible shapes are independent of the physical properties of the fluid ’

and that ‘U∗ is the velocity fluid moves around the bubble’ under the action of the

pressure, i.e. φ1, inside the bubble (or inclusion). Note that the second statement

in their observation may not be correct since in the case of µ1 = 0 this implies

the relative velocity is infinite, which cannot be true. In fact, the relative velocity

should be V when µ2 = 0, i.e. equal to the background flow speed as this would be

equivalent to flow around a solid object, and zero when µ1 = 0.
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Now let us turn our attention to the family of solutions given by Taylor and

Saffman [138] in the unbounded cell, i.e. their ‘small bubble limit’ in the channel,

given by their equation (14), for which the corresponding velocity potential is given

in the equation immediately after. In particular, the complex potential (for the

one-phase problem, i.e. the Taylor-Saffman bubble), is given by the equation

V z =
U − V
U

(w2
2 + U2R2)1/2 +

V w2

U
, (5.94)

where R here is equivalent to the maximum half width of the bubble defined in [138].

The solution in their equation (14) can be recovered by setting ψ2 = Uy, φ2 = 0 in

(5.94), where re-arranging and taking the real part gives

(
V x

U − V

)2

+ y2 = R2, (5.95)

describing the shape of the interface in Cartesian coordinates. Equation (5.95) is a

solution to the problem described in (5.91).

We are particularly interested in the circular solution, which is achieved by setting

U = 2V in (5.95), i.e. a bubble travelling at speed twice the background flow

giving a circular interface with radius R—the solution derived in example 1.3.6.

Now, considering the remarks on the two-phase problem made in [138], in particular

employing (5.93) in (5.94), i.e. setting w2 = W and replacing U by U ′ = (U −

U∗)/(V − U∗), as suggested, we have

(
x

U ′ − 1

)2

+ y2 = R2, (5.96)

a solution to the two-phase problem corresponding to (5.95). Again, since we are
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interested in the circular solution, this occurs when U ′ = 2, i.e.

2 =
U − U∗

V − U∗

=
U − U/Λ
V − U/Λ

.

(5.97)

Re-arranging (5.97) for U , the speed of propagation of the circular inclusion, we find

that

U =
2V

1 + Λ−1
, (5.98)

which agrees with the result given in (5.86).

Now consider the velocity potential derived in (5.90). The coefficient of the second

term, when |z−d|=
√

(x− d)2 + y2 = R, can be viewed as the relative velocity of the

fluids in both phases. The coefficient of the second term in (5.90) on the interface,

∂Ω(t), is

(Λ−1 − 1)U

2
=

(Λ−1 − 1)2V

2(1 + Λ−1)

=
µ1 − µ2

µ1 + µ2

V.

(5.99)

Hence, when µ1 = 0, the relative velocity of fluid just outside the inclusion Ω1(t) is

−V since the inclusion (in this case a bubble) is moving at speed twice that of the

background flow. When µ2 = 0, the inclusion is at rest (analogous to the case of a

solid cylinder) and the relative velocity of the passing fluid is V . When µ1 = µ2, the

relative velocity of the two phases is zero, as expected, since µ1 = µ2 is the case in

which ∂Ω(t) describes a passive tracer—see table 5.2.

5.4 Summary

In section 5.3, methods of finding exact solutions are discussed and an exact

solution for an elliptical inclusion is derived. In section 5.2, a BIM is proposed
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with which the two-phase problem can be solved numerically, and results are tested

against exact solutions. The solution for a circular propagating solution is also

derived in section 5.3.3, where the speed of propagation is given explicitly as a

function of mobility ratio and the background flow speed, and is used to further test

the numerical algorithm. It is also shown that, in fact, this solution is implicit in the

work of Taylor and Saffman [138]. Finally, comments regarding two-phase solutions

made in [123,138] are considered, and the correct relative velocity of the two-phases

in the case of propagating elliptical inclusions is given, albeit in an unbounded Hele-

Shaw cell.



Chapter 6

Conclusions and further study

In this thesis three main topics have been explored, namely, the Hele-Shaw free

boundary problem of a simple closed curve where a conducting fluid is subject to an

external electric field in chapter 3; the motion of an unsteady bubble in an unbounded

Hele-Shaw in chapter 4; and the two-phase Hele-Shaw free boundary problem in

chapter 5. Throughout this thesis the ZST problem is considered. A numerical model

is formulated for the one-phase problem in chapter 2 and is applied in chapters 3

and 4. The numerical model is revised for the two-phase problem in chapter 5 and

is verified against exact solutions.

On the numerical method and formulation

A numerical model of the Hele-Shaw free boundary problem for one-, and two-

phase flows are presented in chapters 2 and 5, respectively. The one-, and two-phase

problems are formulated by considering the decomposition of the velocity potential

into the background flow plus a ‘local’ solenoidal part. The stability of the numerical

model is discussed in section 2.4 and is demonstrated in example 2.7.1. The numerical

instability observed is similar to that previously mentioned in the literature, see

e.g. [1,85]. The instability, when no filtering is applied, is described and appropriate

treatment is employed, following methods suggested in [109] and [144]. Numerical
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results are tested against exact solutions in section 2.7 and 5.2.3 where excellent

agreement is found, with errors in the numerical solutions behaving as expected.

The BIE which forms the basis of the numerical model, e.g. (2.15) for the one-

phase problem, is a Cauchy singular integral equation. Taking the real part of the

BIE, as is done, gives an integral equation which is similar to a Fredholm integral

equation of the second kind. In [7] there is discussion and references to [12] and [6] on

the solution to such integral equations and their stability, which may be applicable

to the BIE derived in section 2.4. There is also reference to [84], where singular

Fredholm integral equaltions with unbounded kernels, specifically Abel’s equation,

are studied. Callum [12] specifically mentions a minimisation problem of the error in

the numerical solution to Fredholm integral equations of the first and second kind,

similar to the minimisation problem suggested by Phillips [109] and Twomey [144]

which is employed in this thesis. These techniques may be useful in seeking solutions

to the BIEs presented in this thesis by, for example, a collocation method—see

e.g. [37]. Exploring such solution methods may provide superior accuracy, however,

for the purposes of this thesis, the accuracy of the current algorithm is sufficient.

On the one-phase problem with external fields

The Hele-Shaw equation and the Hele-Shaw free boundary problem including

arbitrary conservative background fields are derived in appendix B which are appli-

cable in various Hele-Shaw flows, see e.g. [39,89]. The one-phase numerical model is

modified to include external fields in section 2.5, which is tested against an existing

exact solution in section 2.7 and a new solution derived in chapter 3.

In chapter 3 the Hele-Shaw free boundary problem for a conducting fluid subject

to an external electric field is derived. It is shown analytically that the interface of

a fluid blob is unstable for a positive point charge, where the external potential is

defined in (3.17). Furthermore, it is shown that the interface is stable for a negative
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point charge where, over time, the interface becomes symmetric about the point

charge, i.e. the interface becomes circular with centre coinciding with the location

of the point charge. The stability of existing steady solutions are then checked

numerically, where it is found that the interface is indeed unstable, locally, near a

positive point charge (if lying in the fluid domain) or negative point charge (if lying

outside the fluid domain).

On the motion of an unsteady bubble in an unbounded Hele-

Shaw cell

In chapter 4, the stability of a propagating elliptical bubble and bubble breakup

is considered.

A boundary integral formulation and numerical method for the study of Hele-

Shaw bubble evolution in an unbounded cell is presented in section 2.6. In section

4.3.1 the numerical results demonstrate that for initially elliptical bubbles, the only

(attractive) solution as t→∞ is a circular bubble travelling at a steady speed twice

that of the background flow. These results are compatible with the analytical results

of Vasconcelos and Mineev-Weinstein [149] for the selection problem in a channel

geometry, where it is shown that the bubble eventually propagates with speed twice

that of the background flow. A stability argument is presented in section 4.4 for

a perturbed ellipse, providing further evidence that the circular bubble with speed

U = 2V is a stable attractive solution.

Usually, the formation of cusps in the un-regularised Hele-Shaw free boundary

problem are deemed unphysical and are treated by the inclusion of surface tension,

see e.g. [26, 67, 132]. This helps model, mathematically, what is observed in the

real world. For example, when modelling sink driven flows, in the un-regularised

model cusps form in finite time at which point the fluid velocity becomes infinite—

see example 1.3.3 and section 3.4.2. The trend has been to then, based on the above
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argument, to include surface tension, which has been the case in the study of the

selection problem. However, this limits the understanding of instabilities on the

interface and their effects on the selection problem as they are eliminated by surface

tension. In this thesis, the un-regularised problem, albeit with numerical filtering, is

modelled mathematically and solved numerically in which we observe the selection

of the bubble with shape such that it travels at speed twice the background flow.

Concerning bubble breakup, a simple analysis is presented by which the breakup

of a single bubble may be predicted, given the initial interface and the driving hydro-

dynamics, by studying the mathematical structure of the Schwarz function equation

and hence the evolution of ∂Ω(t). In section 4.3.2 and 4.3.3 it is shown for some

initial shapes ∂Ω(0) that the evolution of ∂Ω(t) may result in one of two types of

topological change. In section 4.3.2 the numerical results suggest that the bubble

may split, becoming multiply connected. In section 4.3.3 the bubble evolves to en-

close a region of viscous fluid, i.e. a singly connected viscous fluid domain eventually

becomes two disconnected regions. The numerical results suggest that the singu-

larities of the Schwarz function of the initial interface play an important role on

the evolution of the interface, since, mathematically, the boundary cannot cross the

singularity.

On numerical simulation of a bubble near a wall in a steady

uniform flow and interaction with other boundaries

Here we present some preliminary numerical results simulating the motion of

a bubble near a solid, straight wall in a semi-infinite Hele-Shaw cell. Symmetric

bubbles in a channel geometry have been previously studied where some exact steady

solutions have been found, see e.g. [45, 46, 148], and also a specific class of temporal

solutions have been found for initially symmetric and asymmetric bubbles (about the

channel centreline), see e.g. [149]. In the latter, the interface of the bubble evolves to
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the Taylor-Saffman bubble (travelling at speed twice that of the background flow).

The author is not aware of exact temporal solutions of the one-phase Hele-Shaw free

boundary problem for a single bubble travelling close to a solid wall. There exist

steady solutions for symmetric bubbles propagating in an unbounded Hele-Shaw cell

given by Crowdy [21], where the (vertically aligned) two-bubble solution is of interest

here, and the stability of this steady shape solution is tested numerically. By the

method of images, the case of two symmetric bubbles is equivalent to the case of

a single bubble where the wall coincides with the line of symmetry. As mentioned

in chapter 3, there is a vast array of applications of Hele-Shaw flows in microfluidic

devices. Here, motivation can be found from experimental results of single, and

multiple droplets (e.g. oil-in-water [127] and water-in-oil [10] droplets) injected into a

uniform background flow [10,127]. Although the viscosity ratios between the droplet

and the surrounding fluid in [10,127] are finite, where the theory presented in chapter

5 would be applicable, in this section we consider the simpler case in which the

pressure remains constant within the droplet region, i.e. the droplet describes a

bubble.

Assume that the the upper half complex plane is filled with a viscous fluid.

Consider an initially circular bubble of unit radius in a semi-infinite Hele-Shaw cell

with its centre at a distance dw > 0 away from a solid wall which coincides with the

the <(z) axis. Suppose that the bubble—and thus ∂Ω(t)—is driven by a uniform

background flow, of speed V , in the positive <(z) direction. Here, we employ the

method of images together with the extension to multiple interface problems of the

one-phase Hele-Shaw numerical model derived in section 2.8 to simulate the motion

of ∂Ω(t). More precisely, the upper half plane is reflected in =(z) = 0, where now we

investigate the motion of two identical bubbles in an unbounded Hele-Shaw cell—see

figure 6.1.
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Figure 6.1: A sketch showing a circular bubble with interface ∂Ω1(t) and its image,
whose interface is denoted by ∂Ω2(t), reflected in a wall coinciding with =(z) = 0.
The sketch shows the equivalent problem of studying the motion two symmetric
bubbles in an unbounded Hele-Shaw cell with the viscous fluid occupying the domain
Ω(t), to the problem of a single bubble near a wall, where the viscous fluid occupies

the upper half plane.

Let the interface of the bubble above the wall be denoted by ∂Ω1(t) ≡ ∂Ω(t),

and it’s image, below the wall, by ∂Ω2(t). Hence, the BIE (2.92) applies, with

Υ = 2, whose solution gives the normal velocity on each interface denoted by ṽn,

 = 1, 2. Since ∂Ω2(t) is a reflection of ∂Ω1(t) in =(z) = 0, the BIE can be simplified

and written in terms of the the normal velocity on ∂Ω1(t) alone by enforcing the

symmetry conditions ∂Ω2(t) := {z : z ∈ ∂Ω1(t)} and that the complex velocity on

∂Ω2(t) be given by ũ+ iṽ, where ũ + iṽ is the complex velocity on ∂Ω1(t). Hence,

in this case, the BIE (2.92) can be written as

(
dz

ds

)∣∣∣∣
zm

(
−−
ˆ L1

0

iṽn1

z − zm
ds+

ˆ L1

0

iṽn1

z̄ − zm
ds

)
+ π ṽn1|zm =(

dz

ds

)∣∣∣∣
zm

(
−
ˆ L1

0

v̂τ1

z − zm
ds+

ˆ L1

0

v̂τ1

z̄ − zm
ds

)
− iπ v̂τ1|zm , (6.1)

where zm ∈ ∂Ω1(t), and L1(t) denotes the total arc length of ∂Ω1(t). Equation (6.1)

can be discretised and approximated in a similar fashion to (2.96)—see section 2.8—

with N distinct mesh points chosen along ∂Ω1(t). Whence, (6.1) yields N algebraic
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equations where the second integral on the left, and right hand side of (6.1) account

for the existence of the image bubble.

Figures 6.2–6.7 show numerical results for an initially unit circular bubble at dis-

tance dw = 2 from the wall, with centre 2i, which is subject to a uniform background

flow of speed V = 1. Figure 6.2 shows the evolution of the x and y components of

the centre of mass, and figure 6.3 displays the evolution of the speed of the centre of

mass. The centre of mass, zcm, is calculated using the formula

zcm =
1

A

(¨
int(∂Ω1(t))

x dxdy + i

¨
int(∂Ω1(t))

y dxdy

)
, (6.2)

where Green’s theorem is applied and the resulting (surface) integrals are discretised

and approximated by the trapezium rule, in a similar manner to (2.32), and A is

the area of the bubble which can be calculated numerically by the formula given

in (2.76). The speed of the centre of mass, vcm = |żcm|, is calculated by using the

formula given in (4.10). In the numerical results shown, N = 60 mesh points are

taken on the interface. In figures 6.2(a), 6.2(b) and 6.3(a), a range of curves are

presented for decreasing step size ∆t.

It is interesting to note that for small time, for all values of ∆t, the centre of mass

of the bubble transverse to the wall follow almost the same trajectory—see figure

6.4(b). In figure 6.5 we see snapshots of the evolution of the bubble for 0 ≤ t ≤ 2,

where it can also be seen that the interface does not remain circular. The centre

of mass of the bubble arcs away then towards the wall whilst the interface changes

shape, before moving away from the wall as time increases. A similar (small time)

motion is observed experimentally in [127], however, the experiments are conducted

for droplets that are more viscous than the surrounding fluid confined in a finite

width channel, and the interface of the droplets remain circular. As the interface

remains circular, the droplets (and thus the centre of mass) undergo oscillations close

to the wall.
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Figure 6.2: The evolution of <(zcm) and =(zcm) for 0 ≤ t ≤ 50 are plotted for
various values of ∆t in (a) and (b), respectively. In (c) and (d) the curves corre-
sponding to the two smallest values of ∆t are plotted, where the solutions have good
agreement for all t. In the results presented, N = 60, dw = 2 and the background

flows speed is V = 1.

In figure 6.3(b), it can be seen that the speed of the centre of mass converges to a

particular solution, which appears to oscillate towards vcm = 2. Figure 6.2(d) show’s

the y component of the centre of mass also converging towards a particular solution

and shows that the centre of mass of the bubble progressively moves away from the

wall. Figure 6.2(c) shows the x component of the centre of mass converging towards

the line with gradient 2. That is, the bubble diverges away from the wall such that

it becomes a steady circular bubble moving with speed twice that of the background

flow. For ∆t = 5 × 10−5, the maximum size of the spacial step ∆S throughout the

simulation was calculated to be 1.047× 10−1. The relative error in bubble area was
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Figure 6.3: The evolution of vcm for 0 ≤ t ≤ 50 is plotted for various values of ∆t
in (a). In (b) the curves corresponding to the two smallest values of ∆t are plotted,
where the solutions have good agreement for all t. In the results presented, N = 60,

dw = 2 and the background flows speed is V = 1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t

ℜ
(z

c
m
)

 

 

∆t = 10−2

∆t = 5 × 10−3

∆t = 10−3

∆t = 5 × 10−4

∆t = 10−4

∆t = 5 × 10−5

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.98

2

2.02

2.04

2.06

2.08

2.1

2.12

t

ℑ
(z

c
m
)

 

 

∆t = 10−2

∆t = 5 × 10−3

∆t = 10−3

∆t = 5 × 10−4

∆t = 10−4

∆t = 5 × 10−5

(b)

Figure 6.4: Plots showing the short time (0 ≤ t ≤ 2) evolution of <(zcm) and
=(zcm) for various values of ∆t. In the results presented, N = 60, dw = 2 and the

background flows speed is V = 1.

calculated at each time step by the formula given in (2.78), where the exact bubble

area is A = π (since the initial bubble is a circle of unit radius). The maximum

relative error in bubble area throughout the simulation was O(10−3), as expected,

since the area is calculated numerically using (2.76) which employs the trapezium

rule approximation and is O((∆S)3) accurate. Since appreciable differences between

solutions shown in figures 6.2 and 6.3 decrease as ∆t decreases, it is concluded that

the results are reliable for ∆t = O(10−4). The interface of the bubble is shown at

the final time step (of the simulation) in figure 6.6. Figure 6.7 shows evolution of
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Figure 6.5: Snapshots of the evolution of the bubble near a wall (coinciding with
=(z) = 0) shown at times t = 0, 0.4, 0.8, 1.2, 1.6 and 2. The initial bubble interface
(dashed) is given by a unit circle such that dw = 2. In the results presented, N = 60,

∆t = 5× 10−5 and the background flow speed is V = 1.

the interface up to this time. It is speculated that vcm → 2 as t → ∞, where the

interface becomes circular as the bubble propagates to a large distance away from

the wall, i.e. relaxing to the same steady state reported in sections 4.3.1, 4.3.2 and

4.4.
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Figure 6.6: The interface of a bubble at time t = 50. The bubble was initially
circular with centre 2i, i.e. located at a distance dw = 2 from a wall coinciding with
=(z) = 0. In the result presented, N = 60, ∆t = 5× 10−5 and the background flow

speed is V = 1.
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Figure 6.7: Snapshots of the evolution of an initially circular bubble (dashed)
located at a distance dw = 2 from a wall coinciding with =(z) = 0. The snapshots
are shown from t = 0 to 50 in 2.5 unit increments. In the result presented, N = 60,

∆t = 5× 10−5 and the background flow speed is V = 1.

The results suggest that the bubble will diverge away from the wall where the

speed of the bubble tends to twice that of the background flow. The long time oscil-

lations of the speed of the centre of mass are of particular interest which resemble a

similarity to experimental results in [127], albeit of droplets in a relatively less viscous

surrounding fluid. Given the recent experiments in [127], it would be of interest to

extend the multiple interface model of section 2.8 to the two-phase problem, where

the method of images may be applied and the effect of mobility ratio on the motion

of the droplet (or inclusion) can be studied.

The steady solution reported by Crowdy [21] is also tested, in particular the

symmetric solution given by the map

(6.3)z =
ia
√
ρ

[
K

(
− iζ
√
ρ
, ρ

)
−K (−1, ρ) +

(
1− 2

U

)
(K (−iζ√ρ, ρ)−K (−ρ, ρ))

]
,

where the interior of a punctured unit ζ-disc is mapped to the flow domain Ω(t),

K(ζ, ρ) is a Schottky-Klein prime function (details of which can be found in [21,22])

and the background flow speed is taken to be V = 1. In figure 6.8, the evolution of

∂Ω(t) is shown for 0 ≤ t ≤ 2 where the results suggest that the interface does not

remain steady and instead, like the case of a circular bubble, propagates away from

the wall where it is expected that the interface will become circular for large time,

as in figure 6.7.

The parameters chosen for the results presented in figure 6.8 are ρ = 0.3, a =

0.5783 and U = 2, i.e. V = 1. Note, these parameters correspond to the steady

pair of symmetric bubbles (or equivalently a single bubble near a wall that coincides

with the real axis) propagating at speed twice that of the background flow. These
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Figure 6.8: Snapshots of the evolution of a bubble near a wall (coinciding with
=(z) = 0) shown at times t = 0, 0.4, 0.8, 1.2, 1.6 and 2. The initial bubble interface
(dashed) is given by (6.3) with ρ = 0.3 and a = 0.5783. In the results presented,

N = 200, ∆t = 10−4 and the background flow speed is V = 1.

preliminary results suggest that the steady solution given by (6.3) is not stable. In

fact, there is a continuous family of possible shapes for which the bubble (or pair of

symmetric bubbles) will travel at speed U = 2V—see figure 6.9. These shapes are

admitted from the map (6.3) for 0 < ρ < 1. As ρ→ 0, the bubble becomes circular

and is located at large distance from the wall, i.e. from the real axis. The parameter

a in (6.3) can be found by fixing the area of the bubble. The numerical results here

suggest that the circular solution far from the wall is a stable, attractive solution.

It is conjectured that, given a bubble of arbitrary shape initially close to a wall, as

long as the solution exists for all time, the bubble will become circular and attain

speed U = 2V as t→∞ whilst propagating far away from the wall. The possibility

of more than one U = 2V solution is interesting and this problem merits further

investigation, both analytically and numerically.

There also exist temporal exact and numerical solutions for the growth of blobs

and fingers in a wedge for both the ZST [48, 118, 119] and regularised [5] problems.

Furthermore, there are numerical solutions of Hele-Shaw flows past or near obstacles,

see e.g. [88], for which there are no known exact solutions. It would be of interest

to model one-, and two-phase flows interacting with boundaries such as walls, plates
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Figure 6.9: Displaying a discrete set of bubble shapes (from a continuous family
of shapes) such that the bubble near a wall (or equivalently the pair of symmetric
bubbles) travel at a steady speed, U = 2. As ρ→ 0, the interface, given by the map
(6.3), tends to a circle at large distance from the wall that coincides with =(z) = 0.
As ρ → 1, the bubble touches the wall. Here, the area of all bubbles is fixed to π
and the parameter a = 0.9939, 0.9899, 0.9798, 0.9175 and 0.5720 for increasing ρ.

and a wedge which may be compared to solutions in the literature mentioned above.

On numerical simulation of an initially elliptical inclusion in

a steady uniform flow in the two-phase problem

In chapter the 5 the two-phase Hele-Shaw free boundary problem is presented and

a numerical model to solve the problem is given in section 5.2. The numerical model

is tested against known exact solutions in section 5.2.3 where excellent agreement

is found. Two existing methods of finding exact solutions [20, 60] are discussed in

section 5.3 and the method of [20] is used to derive an exact steady solution for a

rotated elliptical inclusion in a uniform background flow which, in fact, is implicit

in [20]. An explicit relation is given between the drift speed and mobility ratio
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for the special case of a translating circular inclusion which is used to further test

the numerical model. In section 5.3.4, remarks of Taylor and Saffman [138] are

discussed and a correct expression is given for relative velocity of the translating

circular inclusion and the outer flow.

Following the numerical results presented in section 4.3.1, a natural question to

ask would be; how long does it take for an elliptical inclusion of mobility ratio Λ to

evolve to an inclusion with a circular interface? More precisely, does the interface

evolve to a circle, and if so, how does the value of Λ affect its evolution. The results

of section 4.3.1 strongly suggest similar behaviour will exist in two-phase numerical

experiments. Some preliminary results have been computed and are presented in

figure 6.10.
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Figure 6.10: A plot showing the time taken against mobility ratio for an elliptical
inclusion to become ‘sufficiently circular’, i.e. ∂Ω(tcirc) satisfies the condition (6.5)
where δT = 0.05, in a uniform background flow of speed V = 1. Data points are
marked by squares for 6 ≤ Λ ≤ 19. In each simulation, the initial shape of the
interface, ∂Ω(0), is given by (5.54) with d = 0, θe = 0, b = 1 and a = 0.2. Results

are presented for N = 200 and ∆t = 10−3.
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The results show the time taken for an initially elliptical inclusion to become

sufficiently circular, a condition computed as follows. Let zcm denote the centre of

mass of the inclusion at time t = tj, say, i.e. the centre of mass of Ω1(tj), which can

be calculated by the formula

zcm =
1

A

(¨
Ω1(tj)

x dxdy + i

¨
Ω1(tj)

y dxdy

)
, (6.4)

where Green’s theorem is applied and the resulting integrals along ∂Ω(t) are discre-

tised and approximated by the trapezium rule, in a similar manner to (2.32). Here,

A is the area of the inclusion Ω1(tj) which can also be calculated numerically by the

formula given in (2.76). Now, let the distance from the i-th mesh point on ∂Ω(tj) to

the centre of mass, zcm, be given by λi = |zcm − z(Si)|, and let Rcirc =
√
A/π where

A is the area of the inclusion calculated numerically. Then, if

max
i

∣∣∣∣ λiRcirc

− 1

∣∣∣∣ < δT , i = 1, . . . , N, (6.5)

is satisfied for some chosen value of tolerance, δT , we assume ∂Ω(tcirc) is sufficiently

circular, where t = tcirc is the time the interface satisfies the condition (6.5). In

the simulations that produced the data of figure 6.10, the tolerance is chosen to be

δT = 0.05, i.e. the radius of the approximately circular interface does not vary more

than 5% between all mesh points on ∂Ω(tcirc). The initial interface, ∂Ω(0), is given

by (5.54) with d = 0, θe = 0, b = 1 and a = 0.2, for all values of Λ, i.e. we start with

precisely the same shape interface in all simulations. The value tcirc corresponding to

the value δT = 0.05 that satisfies (6.5) in the one-phase case (i.e. the case of a bubble

for which Λ → ∞) is computed as tcirc ≈ 1.193, where, the smoothing parameter is

taken to be γ = 1. The data in figure 6.10 suggest decay to a particular value of tcirc,

however, more simulations have to be carried out, in particular for Λ > 19, to be

confident that the value of tcirc will evolve smoothly to tcirc ≈ 1.193 as Λ increases, if
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indeed it does. In all simulations, N = 200 mesh points are taken on on the interface

and time step ∆t = 10−3 is chosen.

The results are only given here as preliminary results as the smoothing parameter,

γ—see (5.30)—is chosen to be a relatively high value (namely γ = 8000 in these two-

phase simulations) compared with all other one-phase numerical results presented

in this thesis. The high smoothing parameter was chosen to counteract numerical

instability of the type discussed in section 2.7 and example 2.7.1, which appear

prominently at the rear of the elliptical interface (with respect to flow direction).

Currently, the author is not aware of the cause of these numerical instabilities and

why they appear at the rear of the interface, as apposed to the front, as one may

expect. An example of the evolution of the interface from a simulation corresponding

to Λ = 10 with γ = 8000 is shown in figure 6.11 up to time t = tcirc. The evolution of

an initially elliptical inclusion, studied numerically, warrants further investigation.
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Mobility rat io Λ =10.

Figure 6.11: Snapshots of the evolution of ∂Ω(t) for 0 ≤ t ≤ 3.296 in the case
Λ = 10, where the smoothing parameter γ = 8000 is chosen in this simulation. The
initial interface (dashed) is given by (5.54) with d = 0, θe = 0, b = 1 and a = 0.2.
Results are presented for N = 200 and ∆t = 10−3. The interface is shown at times
t = 0, 0.6592, 1.3184, 1.9776, 2.6368 and 3.296. Here, the interface is driven by a

uniform flow in Ω2(t) in the positive <(z) direction of speed V = 1.

In the numerical results presented in section 5.3.3, numerical instabilities are also

observed, which are treated with a modest smoothing parameter value of γ = 15,

which is sufficient for all simulations. For O(1) smoothing parameter, e.g. γ = 1, on

the interval 0 ≤ t ≤ 1, numerical instabilities are observed on ∂Ω(t) at the front of

the circular interface, which are consequently picked up by the underlying physics
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and develop into prominent fingering instabilities. Figure 6.12 shows comparison

between the same simulation with γ = 1 and γ = 15. In figure 6.12(a) we see the so

called fingering instability taking over, whereas in figure 6.12(b) the interface remains

smooth and circular, with drift speed U agreeing with the exact solution (5.86).
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Mobility rat io Λ =40, smoothing parameter γ =1 and N =80.
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Mobility rat io Λ =40, smoothing parameter γ =15 and N =80.

(b)

Figure 6.12: Comparison between numerical simulations of an initially unit circular
interface (dashed) of an the inclusion Ω1(t) driven by a uniform flow in Ω2(t) of speed
V = 1 in the positive <(z) direction. Here the mobility ratio Λ = 40. The final shape
of the interface (solid) is shown at t = 1. In (a) a smoothing parameter of γ = 1 is

chosen and in (b) γ = 15. Results are presented for N = 80 and ∆t = 10−3.

Furthermore, when the number of mesh points, N , is increased, smaller wave-

length instabilities appear, which grow faster with time, as expected—demonstrated

in figure 6.13. This agrees with the discussion presented in section 2.4 and [1]. The
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development of these instabilities (due to the physics) mainly appear when Λ > 1,

as expected, since these values of mobility ratio describe the case of a fluid moving

through a relatively more viscous fluid and therefore correspond to the instabilities

discussed in [123]. The initial instabilities appear, here, due to numerical error. For

Λ < 1, it is conjectured that similar fingering instability should appear at the rear

of the circular inclusion, however, these were not observed in any numerical tests

performed. This may be since Λ < 1 describes a physically stable situation, as com-

pared with Λ > 1, and in the limit Λ→ 0 the results should replicate flow passed a

fixed solid cylinder—this is apparent from the results presented in figure 5.6.

The instabilities observed in the two-phase problem of the type shown in figure

6.13 seem counterintuitive since the two-phase problem is a generalisation of the

one-phase counterpart, where such instabilities are not observed. The author’s initial

thoughts were that the boundary condition (5.6c) would provide a regulatory affect

on the interface. In fact, in one-phase simulations, disturbances on the interface

appear to decay rapidly, even for small smoothing parameter compared with γ = 1

(results not shown here), and the interface remains circular for large time. The

long-time stable behaviour of the interface is demonstrated by the numerical results

presented earlier in this chapter (of a bubble propagating near a wall). These results,

in the author’s view, support the idea that the solution U = 2V (corresponding to

a circular bubble in an unbounded Hele-Shaw cell) is selected as a stable attractive

solution in a dynamical sense, since here, it is the ZST Hele-Shaw free boundary

problem that is studied, and modelled numerically. However, it should be noted that

the filtering method has a smoothing effect akin to surface tension. Thus it is not

clear if the numerical results support the ZST selection mechanism, or if the selection

is a result of the filtering mechanism itself. This requires further investigation.
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Mobility rat io Λ =40, smoothing parameter γ =1 and N =100.
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Mobility rat io Λ =40, smoothing parameter γ =1 and N =160.

(b)

Figure 6.13: Comparison between the evolution of ∂Ω(t) of an initially circular
interface (dashed) in a uniform background flow of speed V = 1 in the positive <(z)
direction. Here the mobility ratio Λ = 40. The final shape of the interface (solid) is
shown at t = 0.5. In (a) N = 100 mesh points are taken on the interface, and in (b)
N = 160. Results presented here are for ∆t = 10−3, and in both cases 0 ≤ t ≤ 0.5

with γ = 1.



Appendix A

Complex moment description of

Hele-Shaw flows

In 1972, Richardson [116] introduced a ‘complex moment’ description which

demonstrates that there is an infinite number of invariants (i.e. conserved quan-

tities) of motion in Hele-Shaw free boundary flows. To derive these infinite conserva-

tion laws (a consequence of the geometric property of Hele-Shaw flows) we consider

the case of an injection driven free boundary. That is, the free boundary evolu-

tion of a fluid blob driven by a source of strength Q1 > 0 located at x = x1, i.e.

z = z1 = x1 + iy1, inside the fluid domain, Ω(t). Let us define the complex moment

Mk :=

¨

Ω(t)

zk dxdy, (A.1)

where the complex variable is z = x + iy. Suppose that the fluid domain Ω(t) has

boundary ∂Ω(t) given by a simple closed contour in C which encloses z1. Then, by

the Riemann mapping theorem, there exists a conformal map from the unit ζ-disc

D in the ζ-plane to the fluid blob in the physical z-plane given by z = f(ζ, t)—see

e.g. [48].

Consider any analytic function L(z) on Ω(t). The rate of change of the integral



222 Appendix A. Complex moment description of Hele-Shaw flows

of L(z) over the fluid domain is (by the Reynolds Transport Theorem [48])

d

dt

¨

Ω(t)

L(z) dxdy =

˛
∂Ω(t)

L(z)vn ds, (A.2)

where the normal velocity on ∂Ω(t) is vn = u · n and n is the unit normal vector on

∂Ω(t). Since the velocity can be described as the gradient of a potential function,

i.e. u = ∇φ, with the boundary data φ = 0 on ∂Ω(t), then (A.2) can be written as

d

dt

¨

Ω(t)

L(z) dxdy =

˛
∂Ω(t)

∂

∂n
(L(z)φ) ds. (A.3)

Applying Green’s theorem and noting that ∇2
zL = 0 since L(z) is analytic, then we

have ˛
∂Ω(t)

∂

∂n
(L(z)φ) ds =

¨

Ω(t)

L(z)∇2φ dxdy. (A.4)

Since ∇2φ = δ0(x − x1) in the fluid domain Ω(t), where δ0(x − x1) is the Dirac

distribution defined in (1.18), (A.4) can be written as

¨

Ω(t)

L(z)∇2φ dxdy =

¨

Ω(t)

L(z) [Qδ0(x− x1)δ0(y − y1)] dxdy

= QL(z1).

(A.5)

Now, letting L(z) = zk we have

d

dt
Mk = Qδ0k, (A.6)

for k = 0, 1, 2, . . . , where δ0k represents the Kronecker delta. This implies that all
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moments, k ≥ 1, are constant and the zeroth moment is

d

dt
M0 =

d

dt

¨

Ω(t)

dxdy

= Q,

(A.7)

which is equal to the rate of injection of fluid mass due to the point source, i.e.

the rate of change of fluid blob area. That is, (A.6) gives an infinite number of

conservation laws, k = 0, 1, 2, . . . , where M0 is proportional to the fluid blob area at

time t, M0 = Qt+M0(0).

The complex moment description (A.6) can be used to derive equations that

describe the evolution of the free boundary, ∂Ω(t). More precisely, given a parametric

map f(ζ, t) with K parameters, (A.6) provide K equations, k = 0, 1, . . . , K − 1.

This is an alternative method to find exact solutions to the Hele-Shaw free boundary

problem described in section 1.3.4. The link between the set of ODEs governing a

parametric map found via the Polubarinova-Galin equation (see appendix C) and the

complex moment description described above was highlighted by Mineev-Weinstein

[99], by which the link to integrable hierarchies in other areas of study become

apparent.



Appendix B

Hele-Shaw flows with external

potential fields

B.1 The Hele-Shaw equation with back-

ground conservative forcing

Here we derive the Hele-Shaw free boundary problem in the case when the fluid

mass is subject to a conservative background body force, e.g. gravity, centrifugal

force, or electromagnetic forces on conducting fluids—see chapter 3. Conservative

forces can be described as the gradient of a scalar potential function Ψ(x1, x2, x3, t),

i.e. we write

fb = ∇Ψ, (B.1)

where ∇ = (∂x1 , ∂x2 , ∂x3).

Following the assumptions of Hele-Shaw flow i.e. neglecting any vertical fluid mo-

tion perpendicular to the plates and assuming ∂u/∂t = 0, from (1.2), the momentum

equations are then

ρu1
∂u1

∂x1

+ ρu2
∂u1

∂x2

= − ∂p

∂x1

+ µ∇2u1 +
∂Ψ

∂x1

, (B.2a)
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ρu1
∂u2

∂x1

+ ρu2
∂u2

∂x2

= − ∂p

∂x2

+ µ∇2u2 +
∂Ψ

∂x2

, (B.2b)

0 = − ∂p

∂x3

+
∂Ψ

∂x3

. (B.2c)

Now, assuming the length scale Ld in the x1x2-plane is much greater than the length

scale h (cell gap) in the x3 direction, i.e. h/Ld � 1, then the above equations reduce

to

0 = − ∂p

∂x1

+ µ
∂2u1

∂x2
3

+
∂Ψ

∂x1

, (B.3a)

0 = − ∂p

∂x2

+ µ
∂2u2

∂x2
3

+
∂Ψ

∂x2

, (B.3b)

0 = − ∂p

∂x3

+
∂Ψ

∂x3

. (B.3c)

Equations (B.3a) and (B.3b) represent Stokes flow in 2D, where the flow is driven by

the gradient of the scalar function P = p−Ψ. Therefore, (B.3c) implies the function

P is independent of x3, i.e. P = P (x1, x2, t). Thus, integrating (B.3a) and (B.3b)

w.r.t. x3 and taking the average over the cell gap, the mean 2D velocity is given by

u1 = − h2

12µ

(
∂p

∂x1

− ∂Ψ

∂x1

)
, (B.4a)

u2 = − h2

12µ

(
∂p

∂x2

− ∂Ψ

∂x2

)
. (B.4b)

Dropping the bar notation, (B.4) in vector form is

u = − h2

12µ
(∇p−∇Ψ) (B.5)

= − h2

12µ
∇P, (B.6)

where here ∇ now represents the 2D differential operator (∂x1 , ∂x2).
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B.2 Boundary effects leading to updated

boundary conditions

Assume that Ψ = Ψ(x1, x2, t), the external potential, is purely 2D and that the

Hele-Shaw cell is filled with a viscous fluid occupying the domain Ω(t) surrounded by

a secondary inviscid fluid over the domain Ωinv(t), forming an interface ∂Ω(t). Let the

pressure and external potential in Ωinv(t) be denoted by pinv and Ψinv, respectively.

The boundary conditions are then

p = pinv, x ∈ ∂Ω(t) (B.7a)

and

Ψ = Ψinv, x ∈ ∂Ω(t), (B.7b)

where x is the 2D position vector (x1, x2). Let us also assume that the external forces

are such that the external potential permeates through the inviscid fluid without

change, e.g. gravity forces remain the same over the viscous and inviscid fluids.

Therefore, the external forces are given by (B.1) in the entire plane. Hence, the

applied external field exerts a pressure on the interface ∂Ω(t). In the inviscid fluid

the pressure distribution is related to the external potential and is such that

pinv ∼ Ψ, x ∈ Ωinv(t). (B.8)

Since the pressure exterior to the viscous fluid is given by the external field in the

inviscid region, the dynamic boundary condition must satisfy

p = Ψ, x ∈ ∂Ω(t). (B.9)

The kinematic boundary condition remains unchanged from (1.16). That is, the
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normal velocity of ∂Ω(t) must be equal to the normal velocity of the fluid on the

interface, i.e.

vn = u · n, x ∈ ∂Ω(t), (B.10)

where n is the unit normal vector on ∂Ω(t).

B.3 The Hele-Shaw free boundary prob-

lem driven by an external electric field

Writing φ(x1, x2, t) = −kp(x1, x2, t), where k = h2/12µ, and considering the

continuity equation, ∇ · u = 0, the free boundary problem can be written in terms

of the scalar potential function φ(x1, x2, t) as

∇2φ = 0, x ∈ Ω(t), (B.11a)

φ = −kΨ, x ∈ ∂Ω(t), (B.11b)

vn =
∂φ

∂n
, x ∈ ∂Ω(t). (B.11c)

The case of Ψ ≡ 0 recovers the classical Hele-Shaw free boundary problem de-

scribed in section (1.2.2). Often, the external potential is re-normalised such that

Ψ(x1, x2, t) ≡ −kΨ(x1, x2, t) and the dynamic boundary condition (B.11b) is written

φ = Ψ, x ∈ ∂Ω(t), as presented in the literature—see e.g. [39,89].
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The Polubarinova-Galin equation

In the mid 1940s, Polubarinova-Kochina and Galin proposed a complex variable

technique to tackle Hele-Shaw free boundary problems by the use of conformal map-

pings. They consider the following Hele-Shaw free boundary problem [44, 112]: let

a viscous fluid occupy a simply connected domain Ω(t) with free boundary ∂Ω(t).

Suppose the free boundary is driven by a source or sink located at x1 = (x1, y1) of

strength Q1, where Q1 > 0 for injection and Q1 < 0 for extraction. The pressure

surrounding the fluid is held constant, and is taken to be p = 0, so the dynamic

boundary condition is

φ(z, z̄, t) = 0 on ∂Ω(t). (C.1)

The function φ(z, z̄, t) is harmonic in Ω(t) \ {x1}, and from the continuity equation

we have

∇2φ = Q1δ0(x− x1), (C.2)

where δ0(x− x1) is the Dirac distribution defined in (1.18). The motion of the free

boundary is given by the fluid velocity on ∂Ω(t) i.e. the kinematic condition

vn =
∂φ

∂n
on ∂Ω(t), (C.3)
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where vn denotes the normal velocity of ∂Ω(t). Now, since the complex potential is

given by w = φ + iψ—an analytic function in Ω(t)—where ψ(x, y, t) ≡ ψ(z, z̄, t) is

the harmonic conjugate of φ(x, y, t) ≡ φ(z, z̄, t), then ∂w/∂z = u− iv. The complex

potential in the vicinity of the point source (or sink) takes the form

w =
Q1

2π
log(z − z1), as z → z1. (C.4)

The Riemann mapping theorem guarantees existence of a conformal map z =

f(ζ, t) from the unit ζ-disc D in the ζ-plane to Ω(t), where the unit ζ-circle, ∂D,

maps to the free boundary ∂Ω(t) in the z-plane [48]. In terms of the function f(ζ, t),

the free boundary is given by

∂Ω(t) = {f(eiθ, t) : θ ∈ [0, 2π)}, (C.5)

and the outward normal to Ω(t) is given by

n = ζ
f ′

|f ′|
, ζ ∈ ∂D, (C.6)

where the prime denotes derivative w.r.t. the first argument. Hence, we can write

the normal velocity vn on ∂Ω(t) as

vn = <
{
∂w

∂z
ζ
f ′

|f ′|

}
. (C.7)

Due to the invariance of the Laplacian under a conformal mapping, we can write the

superposition

(w ◦ f)(ζ, t) =
Q

2π
log(ζ). (C.8)

Since (w ◦ f)(ζ, t) = w(f(ζ, t), t), the derivative of the complex potential w.r.t. z, as
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z → z1, is

∂w

∂z

∂f

∂ζ
=

Q1

2πζ
. (C.9)

Now, since ∂Ω(t) is given by f(ζ, t) such that |ζ|2= 1, the normal velocity on the

free boundary can be calculated as

vn = <
{
∂f

∂t
n

}
= <

{
∂f

∂t
ζ
f ′

|f ′|

}
.

(C.10)

Finally, combing (C.7), (C.9) and (C.10) we have

<
{
∂f

∂t
ζ
∂f

∂ζ

}
=
Q1

2π
on ∂D. (C.11)

More generally, equating the two expressions for vn, namely (C.7) and (C.10), and

noting that |f ′|2= f ′f on ∂D, we have

<

{
ḟ

ζf ′

}
=

1

|f ′|2
<
{
ζ
∂w

∂z

∂f

∂ζ

}
on ∂D. (C.12)

Here, the dot denotes differentiation w.r.t. time. Equation (C.12) is known as the

Polubarinova-Galin equation, or P-G equation for short, which gives the Hele-Shaw

free boundary problem as differential functional equation governing the motion of

the interface.

Example C.1 (Perturbed circular blob)

Consider the fluid blob occupying the domain Ω(t) with free boundary ∂Ω(t) given

by the conformal map

z = aζ + bζ2, (C.13)

from the unit ζ-disc D where a(t) and b(t) are real time-dependent parameters to
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be found, and the free boundary is driven by a point sink located at the origin, i.e.

z1 = 0. Hence, applying (C.11) in the case of a point sink of strength Q1 gives

<
{(

ζ
da

dt
+ ζ2 db

dt

)
1

ζ

(
a+

2b

ζ

)}
=
Q1

2π
. (C.14)

Writing ζ = eiθ on ∂D and comparing terms of O(1) and O(cos θ), (C.14) yields

d

dt

(
a2b
)

= 0, (C.15a)

d

dt

(
a2

2
+ b2

)
=
Q1

2π
, (C.15b)

a set of coupled differential equations governing the evolution of a and b. Integrating

(C.15), a and b are given by the solution to the set of equations

a2b = a2
0b0, (C.16a)

a2

2
+ b2 =

Q1t

2π
+
a2

0

2
+ b2

0, (C.16b)

where a0 = a(0) and b0 = b(0). This is the same problem considered in example

1.3.3, for n = 2, and the solution to (C.16) agree with the solution to (1.67).
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An alternative derivation of the

Schwarz function equation

Let g(z, t) be the Schwarz function of ∂Ω(t) as defined in (1.29), i.e. z̄ = g(z, t),

z ∈ ∂Ω(t). Taking the time derivative of z̄ we have

dz̄

dt
=
∂g

∂z

dz

dt
+
∂g

∂t
. (D.1)

Since ż = u+ iv, then ˙̄z = u− iv, where the dot denotes differentiation w.r.t. time.

Assuming there exists some background force fb = −∇Ψ/k then φ(x, y, t) = Ψ(x, y, t)

on the free boundary and so the tangential velocity along ∂Ω(t) is ∂Ψ/∂s, where s

denotes the arc length parameter along the free boundary. Hence, we have

<
[
(u− iv)

dz

ds

]
=
∂Ψ

∂s
, (D.2)

which can be written as

1

2

[
dz̄

dt

dz

ds
+

dz

dt

dz̄

ds

]
=
∂Ψ

∂s
. (D.3)
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From (1.34) we have that ∂z/∂s =
(√

g′
)−1

, and it can be shown that [30, p. 111]

∂z̄

∂s
=

√
∂g

∂z
. (D.4)

Hence, (D.3) becomes

dz̄

dt
+

dz

dt

∂g

∂z
= 2

∂Ψ

∂z
. (D.5)

Thus, adding (D.1) and (D.5) we have

2
dz̄

dt
=
∂g

∂t
+ 2

∂Ψ

∂z
. (D.6)

Now, since ˙̄z = ∂w/∂z, i.e. the derivative of the complex potential, we can write

(D.6) as

∂w

∂z
=

1

2

∂g

∂t
+
∂Ψ

∂z
. (D.7)

This is precisely the generalised Schwarz function equation (1.79).



Appendix E

Role of the Kelly-Hinch procedure

for translating bubbles

Consider the boundary integral equation (2.70), i.e.

−
ˆ L

0

ṽτ (s) + iṽn(s)

z(s)− z(sm)
ds = −iπ [ṽτ (sm) + iṽn(sm)]

(
dz

ds

)−1
∣∣∣∣∣
sm

. (E.1)

The tangential velocity due to the background flow, on the interface, can be approx-

imated at each mesh point Si, i = 1, . . . , N , by

v̂τ (Si) = û(Si)
dx

ds

∣∣∣∣
Si

+ v̂(Si)
dy

ds

∣∣∣∣
Si

+ εE(Si)

= v̂∗τ (Si) + εE(Si),

(E.2)

where the derivatives in (E.2) are approximated using a finite difference formula and

so εE(Si) denotes the error from the approximation at each mesh point. Therefore, in

general, εE = εE(s). Applying boundary condition (2.8) in (E.1) gives the equation

for the unknown quantity ṽn(s), i.e.

−
ˆ L

0

−v̂τ (s) + iṽn(s)

z(s)− z(sm)
ds = −iπ [−v̂τ (sm) + iṽn(sm)]

(
dz

ds
(sm)

)−1
∣∣∣∣∣
sm

, (E.3)
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and re-arranging gives

dz

ds

∣∣∣∣
sm

−
ˆ L

0

iṽn(s)

z(s)− z(sm)
ds+ πṽn(sm) =

dz

ds

∣∣∣∣
sm

−
ˆ L

0

v̂τ (s)

z(s)− z(sm)
ds− iπv̂τ(sm). (E.4)

Replacing v̂τ (s) with v̂∗τ (s), i.e. the approximation v̂τ (s)− εE(s) in (E.4), we have

dz

ds

∣∣∣∣
sm

−
ˆ L

0

iṽ∗n(s)

z(s)− z(sm)
ds+ πṽ∗n(sm) =

dz

ds

∣∣∣∣
sm

−
ˆ L

0

v̂τ (s)− εE(s)

z(s)− z(sm)
ds− iπv̂τ(sm)− εE(sm), (E.5)

where if ṽn(s) is the solution corresponding to v̂τ , then the solution corresponding to

v̂∗τ = v̂τ (s)−εE(s) is ṽ∗n(s), say. Let us assume that the error, εE(Si), is approximately

the same constant at each mesh point, i = 1, . . . , N . Therefore εE(s) ≈ εE =

constant, since the same finite difference formula is employed at each mesh point

and so the error is expected to be of the same order at each mesh point.

Now, consider the relation between ṽn(s) and ṽ∗n(s), i.e. the affect of the error

εE(s). From (2.15) we see that ũ− iṽ + c is a solution to

1

2iπ

‰
∂Ω(t)

ũ(z)− iṽ(z) + c

z − zm
dz = − ũ(zm)− iṽ(zm) + c

2
, (E.6)

where, in general, c is a complex constant, i.e. c = cR + icI and cR, cI ∈ R. Note

that

(ũ− iṽ + c)
dz

ds
= ṽτ + iṽn + (cR + icI)

dz

ds

= ṽτ + iṽn + cR
dx

ds
− cI

dy

ds
+ i

(
cR

dy

ds
+ cI

dx

ds

)
= ṽτ + iṽn + cA + icB,

(E.7)
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where

cA = cR
dx

ds
− cI

dy

ds
(E.8a)

and

cB = cR
dy

ds
+ cI

dx

ds
. (E.8b)

Parameterising w.r.t. arc length, (E.6) can be written as

−
ˆ L

0

ṽτ (s) + cA + i(ṽn(s) + cB)

z(s)− z(sm)
ds =

− iπ [ṽτ (sm) + cA + iṽn(sm) + icB]

(
dz

ds

)−1
∣∣∣∣∣
sm

. (E.9)

The constant c is fixed by imposing the dynamic boundary condition in (E.9). For

example, for the solution corresponding to (2.8), cA = 0, which implies cB = 0 and so

c = 0. That is, if v̂τ is known exactly, then this corresponds to c = 0. Now, assume

that v̂τ is not known exactly, i.e. v̂τ = v̂∗τ +εE, where εE is the error in approximating

v̂τ and v̂∗τ is the approximation. Then, if we assume v̂τ has some constant error, this

error is related to the constant cA by the dynamic boundary condition, i.e.

ṽτ (s) + cA = −(v̂τ − εE). (E.10)

Hence, when written in terms of the tangential and normal velocities, (E.6) gives

the solution ṽn corresponding to ṽτ = −v̂∗τ on ∂Ω(t), where cA = εE. Therefore if

εE 6= 0, then cA 6= 0 and so cB 6= 0. Since xs, ys, cR and cI are all real, then so

too is cB. Therefore, the solution to (E.5) is ṽn + cB. Hence, if we substitute ṽτ =

−(v̂τ − εE) = −v̂∗τ in (E.1), then the expected solution ṽn(s) will be superimposed

with some constant function K, say. This constant, K = cB, is merely a shift of the

solution ṽn(s) on the vertical axis. These effects are exhibited most prominently in
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the numerical solution of travelling bubbles.

If the desired solution ṽn(s) is shifted by constant K due to the error εE in

approximating v̂τ (s) on ∂Ω(t), and if it is known that the total fluid flux across

∂Ω(t) should be zero, then the average flux of ṽn(s) should also zero. Therefore,

the average flux of ṽn(s) + K across ∂Ω will be K. Now consider the Kelly-Hinch

procedure proposed in [68] and described in section 2.3. The procedure is to ‘perturb’

the solution according to the formula

ṽn(s)→ ṽn − ‘average flux across ∂Ω(t)’, (E.11)

i.e.

ṽn(s)→ ṽn −
(˛

∂Ω(t)

ṽn(s) ds

)(˛
∂Ω(t)

ds

)−1

. (E.12)

Therefore, if the average flux of the solution is zero, then no perturbation takes place

and we have the solution we were seeking, i.e. the error εE(s) = 0. If the average

flux of the computed solution is K, then

ṽn(s)→ (ṽn +K)−K, (E.13)

and we retrieve the desired solution ṽn with zero fluid flux across ∂Ω(t). Therefore,

assuming the observed shift in the solution owes to the error in approximating v̂τ ,

which is of the form εE(s) ≈ εE = constant for all s, and since ṽτ = −v̂τ on the

interface, then the solution to (E.1) is the desired solution ṽn(s) with at most an error

of constant shift K. Hence, applying the procedure (E.12) to the shifted solution

restores the desired solution.
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Alternative BIE and method of

computing the normal velocity

Consider the integral equation (2.14) in the derivation of the BIE (2.20) of the one-

phase Hele-Shaw free boundary problem for a fluid blob with interface ∂Ω(t). There,

the function F (z, t) is constructed using the derivative of the complex potential,

w̃(z, t), i.e. the conjugate complex velocity, in which case the resulting BIE (2.20)

can be solved directly for the unknown normal velocity ṽn on the interface.

Instead, choosing to construct the function F (z, t) in terms of the complex po-

tential, i.e.

F (z, t) :=
w̃(z, t)

z − zm
, (F.1)

then the contour integral over the interface of the blob reads

1

2iπ

‰
∂Ω(t)

F (z, t) dz =
w̃(zm, t)

2
, (F.2)

where zm ∈ ∂Ω(t). Since w̃ = φ̃ + iψ̃, where φ̃ and ψ̃ are the velocity potential and

stream function of the velocity field ũ, respectively, (F.2) gives

‰
∂Ω(t)

φ̃+ iψ̃

z − zm
dz = iπ

(
φ̃+ iψ̃

)∣∣∣
zm
. (F.3)
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Parametrising ∂Ω(t) with arc length, (F.3) becomes

−
ˆ L(t)

0

φ̃(s) + iψ̃(s)

z(s)− z(sm)

dz

ds
ds = iπ

(
φ̃(sm) + iψ̃(sm)

)
. (F.4)

Applying the dynamic boundary condition (2.3b), i.e. φ̃ = −φ̂ on ∂Ω(t), (F.4) can

be written in terms of the unknown stream function, ψ̃(s), on ∂Ω(t), in the form

−
ˆ L(t)

0

iψ̃(s)

z(s)− z(sm)
ds+ πψ̃(sm) = −

ˆ L(t)

0

φ̂(s)

z(s)− z(sm)
ds− iπφ̂(sm). (F.5)

Once ψ̃(s) is found from (F.5), the normal velocity on ∂Ω(t) due to the regular part

of the flow field can be found by differentiating ψ̃(s) w.r.t. s since

dψ̃

ds
=
∂ψ̃

∂x

dx

ds
+
∂ψ̃

∂y

dy

ds

= −ṽdx

ds
+ u

dy

ds

= ũ · n

= ṽn.

(F.6)

Equations (F.5) and (F.6) can be discretised, and (F.5) can be solved using the

methods described in sections 2.3 and 2.4. Therefore, given φ̂(x, y, t), the total

normal velocity of the interface can be found since Vn = ṽn + v̂n, and the interface

can be advected according to (2.23)–(2.24).

Using the approach described here allows for an extra parameter in the model for

multiple interfaces, e.g. when there exist two or more bubbles in an unbounded Hele-

Shaw cell. In particular, the BIE of the form (F.5) allows for mismatched constant

pressure in each bubble. For example, the case of two bubbles with interfaces ∂Ω1(t)

and ∂Ω2(t) such that φ = c1 on ∂Ω1(t) and φ = c2 on ∂Ω2(t). Then, using a similar

formulation for multiple bubbles presented in section 2.8, the boundary integral
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equation for the unknown stream function on the interfaces can be written as

2∑
`=1

−
ˆ L`(t)

0

iψ̃`(s)

z(s)− z(sm)
ds− πψ̃(sm) =

−
2∑
`=1

−
ˆ L`(t)

0

c` − φ̂`(s)
z(s)− z(sm)

ds− iπ
[
c − φ̂(sm)

]
, (F.7)

when zm = z(sm) ∈ ∂Ω(t),  = 1 or 2. Here, ψ̃` and φ̂` denote the stream func-

tion and velocity potential, respectively, on each bubble interface ∂Ω`(t), and L`(t)

denotes the total arc length of each interface, ` = 1, 2.



Appendix G

An exact rational map solution for

a translating bubble

Here we derive an exact solution for a bubble in a uniform flow where the interface

is given by a rational map such that the Schwarz function, defined in (1.29), exhibits

a singularity in the flow domain at a finite distance from the free boundary. Consider

a finite bubble region bounded by the curve ∂Ω(t) in an unbounded Hele-Shaw cell,

where viscous fluid occupies the region exterior of the bubble, denoted by Ω(t). Let

us consider consider the conformal map, z(ζ, t), of the form (4.11), i.e.

z =
a0 + a1ζ + a2ζ

2

ζ + b0

, (G.1)

from the interior of the unit ζ-disc, D, to the domain Ω(t). For univalency and

desired initial crescent bubble shape, we require a0 < 0, a1 < 0, a2 > 0 and |b0|< 1,

where a0, a1, a2 and b0 are real, time-dependent parameters to be found.

The Schwarz function of (G.1) is given by

g =
a0ζ

2 + a1ζ + a2

ζ(ζ + b0)

=
a0ζ

1 + b0ζ
+

a1

1 + b0ζ
+

a2

1 + b0ζ
.

(G.2)
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Note, since |1/b0|> 1, (G.2) has only one relevant singularity, the singularity which

lies inside the unit ζ-disc at ζ = 0 and is mapped to the viscous fluid domain. From

(G.1), we find that the Schwarz function singularity in the viscous domain lies at

z0 =
a0

b0

. (G.3)

Varying b0 about zero places the singularity at a finite distance to the left or to

the right of the bubble interface, on the <(z) axis, whilst altering the shape of the

interface.

As ζ → 0, from (G.1) we have

1

ζ
=

(
a1

b0

− a0

b2
0

)
1

z − z0

+O(1). (G.4)

Assuming that the interface, ∂Ω(t), is driven by a uniform bounded flow at infinity

of constant speed V in the positive <(z) direction, then, as z → ∞, the complex

potential behaves like w → V z. Therefore, expanding g as ζ → 0 yields

g = a0ζ(1− b0ζ) + a1(1− b0ζ + b2
0ζ

2) +
a2

ζ
(1− b0ζ + b2

0ζ
2 − b3

0ζ
3) +O(ζ3)

=
a2

ζ
+O(1)

= a2

(
a1

b0

− a0

b2
0

)
1

z − z0

+O(1).

(G.5)

The Schwarz function equation governing the evolution of a conformal map is given

by (1.46). That is, as z → z0, comparing terms of O((z − z0)−1) and O((z − z0)−2)

we have

d

dt

[
a2a1

b0

− a2a0

b2
0

]
= 0, (G.6)

d

dt

[
a0

b0

]
= 0. (G.7)
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Now let us consider the expansion of g as ζ → −b0, i.e as z → ∞. From (G.1),

as ζ → −b0, we have

ζ = (a0 − a1b0 + a2b
2
0)

1

z
− b0 +O(z)

=
K

z
− b0 +O(z),

(G.8)

where K = a0 − a1b0 + a2b
2
0 = constant. Hence, from (G.2), as ζ → −b0

g =
a0 ([K/z]− b0)2 + a1 ([K/z]− b0) + a2 +O(z)

([K/z]− b0) ([Kb0/z]− b2
0 + 1) +O(z)

=
−(a0b

2
0 − a1b0 + a2)

b0(1− b2
0)

−
[

(a1K − 2b0a0K)

b0(1− b2
0)

+
K(1− 2b2

0)(a0b
2
0 − a1b0 + a2)

b2
0(1− b2

0)2

]
1

z
+O(z−2).

(G.9)

Therefore, applying (1.46) as z →∞ yields

d

dt

[
−(a0b

2
0 − a1b0 + a2)

b0(1− b2
0)

]
= 2V, (G.10)

d

dt

[
(a1K − 2b0a0K)

b0(1− b2
0)

+
K(1− 2b2

0)(a0b
2
0 − a1b0 + a2)

b2
0(1− b2

0)2

]
= 0. (G.11)

The area of the bubble, A, can be calculated using Green’s theorem with inte-

gration around the unit ζ-circle, ∂D, to yield

A =
1

2i

˛
∂D

zz′dζ

=
1

2i

˛
∂D

[
a0ζ

2 + a1ζ + a2

ζ(ζ + b0)

]{
a1 + 2a2ζ

2

ζ + b0

− a0 + a1ζ + a2ζ
2

(ζ + b0)2

}
dζ,

(G.12)

where prime denotes differentiation w.r.t. the first argument. Expressing the inte-

grand as partial fractions we find

A =
1

2i

˛
∂D

a0a2

b0

+
(a0 − a1b0 + a2b

2
0)(a2 − a1b0 + a0b

2
0)

b0(1− b2
0)(ζ + b0)2
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+
a2a1b0 − a2a0

b2
0ζ

− (a0 − a1b0 + a2b
2
0)(a2 − a0b

2
0 − 2a2b

2
0 + a1b

3
0)

b2
0(1− b2

0)2(1 + b0ζ)

+
(a0 − a1b0 + a2b

2
0)(a2 − a0b

2
0 − 2a2b

2
0 + a1b

3
0)

b2
0(1− b2

0)2(ζ + b0)
dζ, (G.13)

and by Cauchy’s integral formula we have

A

π
=

[
a2a1

b0

− a2a0

b2
0

+
(a0 − a1b0 + a2b

2
0)(a2 − a0b

2
0 − 2a2b

2
0 + a1b

3
0)

b2
0(1− b2

0)2

]
=

[
a2a1

b0

− a2a0

b2
0

+
K(a2 − a0b

2
0 − 2a2b

2
0 + a1b

3
0)

b2
0(1− b2

0)2

]
.

(G.14)

Therefore, conservation of bubble area is given by

d

dt

[
a2a1

b0

− a2a0

b2
0

+
K(a2 − a0b

2
0 − 2a2b

2
0 + a1b

3
0)

b2
0(1− b2

0)2

]
= 0. (G.15)

It can be verified that (G.11) is a linear combination of (G.15) and (G.6). Thus,

the evolution of the parameters in (G.1) are governed by (G.6), (G.7), (G.10) and

(G.15), which can be solved numerically.

The critical points of (G.1), i.e. the points ζ∗ such that z′(ζ∗, t) = 0, are given by

(a1 + 2a2ζ
2
∗ )(ζ∗ + b0)− a0 + a1ζ∗ + a2ζ

2
∗ = 0, (G.16)

therefore

ζ∗ = −b0 ±
√
b2

0 −
a1b0 − a0

a2

. (G.17)

Figure G.1 shows an example of the evolution of the interface with Schwarz

function singularity (G.3) lying downstream, i.e. to the right, of the initial bubble

interface. Figure G.2 shows the corresponding motion of the critical points in the ζ-

plane. As the critical points collide with the unit ζ-disc, cusps form on the interface,

beyond which the solution breaks down. The above example shows the evolution
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of a ‘crescent’ shaped bubble, where the solution breaks down before the Schwarz

function singularity is approached, i.e. the bubble interface never crosses the location

of the singularity.

0.5 0.0 0.5 1.0

0.5

0.0

0.5

Figure G.1: Snapshots of the bubble interface at t = 0 (dashed) and at t = 0.172
(solid) where the initial interface is given by (G.1) with a0(0) = −0.375, a1(0) =
−0.15, a2(0) = 0.25, b0(0) = −0.5. The Schwarz function singularity is marked by
the cross, downstream of the initial bubble.The final interface shape (solid) is shown

at t = 0.172, where formation of cusps on the interface are visible.

The above class of solution can also be derived by mapping the exterior of the

unit ζ-disc to the fluid domain. Consider the map from Dext to the viscous fluid

domain, Ω(t), given by (4.11). Note that the map (4.11) can be written in the form

z = c+
a

ζ
+

b

ζ − e

=
(b− ce) + (c− ae)ζ + aζ2

ζ − e

=
a0 + a1ζ + a2ζ

2

ζ + b0

,

(G.18)

where it is required that b < 0, a > 0 and |a|> |b| for univalency. This map has

the same form of the map given by (4.18) in section 4.4. Here, c, a, b and e are
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Figure G.2: Motion of the critical points (G.17) corresponding to an initial bubble
whose interface is given by (G.1) with a0(0) = −0.375, a1(0) = −0.15, a2(0) = 0.25,
b0(0) = −0.5, where 0 ≤ t ≤ 0.18. The initial location of the critical points are

marked by a dot.

real, time-dependent parameters to be found. The Schwarz function of the bubble

interface is given by

g = c+
a

ζ
− b

e
+
b

e

1

1− eζ
. (G.19)

Therefore, as before, there exists only one relevant Schwarz function singularity at

ζ = 1/e, which is mapped to the the point z0 = z(e−1) in the viscous domain, i.e.

z0 = c+
a

e
+

be

1− e2
. (G.20)

The critical points of (G.18) are given by

ζ∗ = e±
√
b

a
. (G.21)

Following the derivation for a perturbed ellipse (c.f. section 4.4) the parameters c,
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a, b and e of the map (G.18) are governed by the coupled set of differential equations

given by

d

dt

(
c− b

e

)
= 2V, (G.22a)

d

dt

(
a2 − ab

e2

)
= 0, (G.22b)

d

dt

(
c+

a

e
+

be

1− e2

)
= 0, (G.22c)

d

dt

(
a2 − b2

[1− e2]2

)
= 0. (G.22d)

Figure G.3 shows an example of the evolution of the interface with Schwarz func-

tion singularity (G.20) lying downstream of the initial bubble, where the coupled

equations (G.22a)–(G.22d) have been solved numerically. Figure G.4 shows the cor-

responding motion of the critical points in the ζ-plane. As the critical points collide

with the unit ζ-circle, cusps form on the bubble interface at t ≈ 0.9385, at which

point the solution breaks down.
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Figure G.3: Snapshots of the bubble interface at t = 0 (dashed) and at t = 0.935
(solid) where the initial interface is given by (G.18) with c(0) = 0, a(0) = 0.85,
b(0) = −0.2, e(0) = 0.3. The Schwarz function singularity is marked by the cross.
At t = 0.935 (solid line), the formation of the cusps on the interface are visible,

beyond which the solution breaks down.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

1.0

0.5

0.0
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Figure G.4: Motion of the critical points given by (G.21), 0 ≤ t ≤ 1, for an initial
bubble with interface given by (G.18) and c(0) = 0, a(0) = 0.85, b(0) = −0.2,
e(0) = 0.3, where the initial location of the critical points are marked by a dot.
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