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Abstract—In the analysis of dynamic PET data, compartmental
kinetic analysis methods require an accurate knowledge of the ar-
terial input function (AIF). Although arterial blood sampling is the
gold standard of the methods used to measure the AIF, it is usually
not preferred as it is an invasive method. An alternative method is
the simultaneous estimation method (SIME), where physiological
parameters and the AIF are estimated together, using information
from different anatomical regions. Due to the large number of pa-
rameters to estimate in its optimisation, SIME is a computation-
ally complex method and may sometimes fail to give accurate esti-
mates. In this work, we try to improve SIME by utilising an input
function derived from a simultaneously obtained DSC-MRI scan.
With the assumption that the true value of one of the six param-
eter PET-AIF model can be derived from anMRI-AIF, the method
is tested using simulated data. The results indicate that SIME can
yield more robust results when the MRI information is included
with a significant reduction in absolute bias of estimates.

Index Terms—Arterial input function, magnetic resonance
imaging, noninvasive measurement, positron emission tomog-
raphy.

I. INTRODUCTION

I N THE pharmacokinetic analysis of dynamic positron
emission tomography (PET) images, compartmental

models are widely used to quantify physiological and biochem-
ical processes in the tissue of interest. This requires an accurate
estimation of the tracer concentration in plasma as a function
of time, which is known as the arterial input function (AIF).
There are several existing methods used to measure the input

function. The gold standard method involves collection of arte-
rial blood samples at various time points, which are further an-
alyzed in the laboratory environment to measure the total con-
centration of non-metabolized tracer in plasma [1]. However,
this method is not favoured in routine clinical practice, as it is
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highly invasive and labour intensive. For this reason, a number
of alternative methods have been proposed to accurately mea-
sure the input function. One method is the use of standardized,
population-based input functions from literature, which is ob-
tained by taking the average of the AIF curves from a group
of patients [2]. The method can be improved by taking one
or more arterial blood samples to scale the population-based
input function [3], [4]. However, this method assumes that input
functions can be approximated using a standard input function,
which may not always be valid. Input functions of different
individuals, or different groups, will always have some shape
discrepancies, which may cause errors in parameter estimation.
In addition, to our knowledge, this method has only been ap-
plied to 2-deoxy-2-[ ] fluoro-D-glucose (FDG) studies, so
has limited usage with other tracers. A third method is to ob-
tain image-derived input functions (IDIF) [5] where the voxels
corresponding to arteries, or heart, are defined on PET images,
and the mean concentration within that region is computed over
time. This method completely avoids the need for collecting
blood samples but introduces the difficulties of correctly seg-
menting the arteries on PET images with low spatial resolu-
tion and correcting for partial volume effects. There has been
some work to improve this method by using higher resolution
co-registered MRI images in the segmentation of arteries and
correction for partial volume effects [6], [7]. In addition, a vis-
ible artery may not always be present in the field of view. Fi-
nally, this method is less useful if radiometabolites are present
in the plasma, as they will contribute to the signal in the PET
images and the IDIF method can not distinguish the fraction of
the parent compound from the total blood activity.
Another alternative tomeasure the input function is the simul-

taneous estimation (SIME)method [8], [9], [10], wheremultiple
region of interests (ROIs) are utilized. Assuming that the input
function is common between these regions, input function pa-
rameters are estimated simultaneously with the kinetic param-
eters for all ROIs. In this approach, the objective function in-
cludes the input function parameters as well as kinetic param-
eters, and takes strength from the distinct kinetic behaviour of
each region. In order to ensure model identifiability, this method
requires at least one blood sample (a venous sample may be suf-
ficient) which is used to scale the estimated input function. The
biggest disadvantage of the SIME method in the PET kinetic
analysis is its computational complexity as there are a large
number of parameters to estimate in the optimization (input
function parameters plus kinetic parameters for each region).
An accurate measurement of the input function is also es-

sential in the analysis of dynamic-susceptibility contrast (DSC)
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MRI and dynamic contrast enhanced (DCE) MRI. In these tech-
niques, the injected bolus of gadolinium-based contrast agent
causes a signal drop on T2 and weighted images and a
signal rise on T1 weighted images. These signal changes can
then be related to the time-dependent concentration of the con-
trast agent [11]. Estimation of the input function can have some
advantages in MRI due to its temporal resolution. In DSC-MRI,
the temporal resolution can be set to 1 second [12] which makes
it easier to detect the rapid changes during the first passage of
the contrast agent. On the other hand, the nonlinear relationship
between the measured MRI signal and contrast agent concen-
tration can be a problem in MRI quantification, as opposed to
PET where a linear relationship exists.
In this work, we tried to reduce the complexity of the PET

SIMEmethod by deriving some of the input function parameters
from an input function measured from a simultaneous dynamic
MRI scan. If the same injection protocols are used, the early
parts of PET derived and MRI derived input functions will have
similar shapes, since the delivery of tracer or contrast agent to
the tissue of interest will be mainly dominated by vascular flow
dynamics [13], [14].

II. THEORY

A. Compartment Model

In this work, a dynamic FDG model was adopted to simulta-
neously extract kinetic parameters together with the input func-
tion. The behaviour of FDG after injection can be described
using a two-tissue compartment model [15] as illustrated in
Fig. 1. In this model, one compartment represents the extravas-
cular space of the tissue, which contains the free tracer available
for metabolism, and a second compartment represents the con-
centration of the metabolised tracer. This model was used in our
simulation study.
The two-tissue compartment model can be described using

ordinary differential equations, which are:

(1)

(2)

where , , and are the rate constants, is the con-
centration of tracer in the plasma, or the input function, is
the concentration of the free tracer and is the concentration
of the phosphorylated FDG in the tissue of interest. In the ab-
sence of vascular tissue in the region of interest, the sum of
and gives us the total tissue activity, . The solution of the

is given by:

(3)

where

Fig. 1. Schematic diagram of the reversible two-tissue compartment model
used for FDG data.

and

and are the parameters of the solution which are the
combinations of rate constants. Once and are
known for several time points, it is possible to estimate the rate
constant values by non-linear least squares fitting.
In addition to the activity in the tissue, total activity measured

by the PET scanner also includes the activity from the vascular
tissue present in the region of interest. This vascular activity, or
blood volume, can sometimes be high enough to cause errors
in the estimated kinetic parameters and needs to be taken into
account in the model [16]. Therefore, the total observed activity,

can be written as:

(4)

where is the radioactive decay constant for the radionuclide,
BV represents the blood volume and represents the concen-
tration of tracer in whole blood. BV can sometimes be a param-
eter of interest and can be estimated together with rate constants.

(5)

Once the values of rate constants ( ) are estimated, the net
influx constant, , can be calculated using equation (5). Influx
rate is a representation of rate constants in a non-directional way,
and incorporates both net inward transport and trapping of the
tracer in tissue of interest.

B. Input Function
Arterial input functions are usually measured by taking a

number of blood samples at different time points, in order to
determine the concentration of the PET tracer or MRI contrast
agent in the blood plasma over time. A good estimation of AIF
is essential for accuracy of results in both PET and MRI kinetic
analyses.
AIFs can also be represented by mathematical models which

are used to fit blood data. One example is Feng’s mathematical
model which is a sum of a gamma variate with biexponential
[2]. It has six parameters and can be written as equation (6)

(6)
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where , and are the eigenvalues of the model and ,
and are the coefficients of the model.
With the introduction of hybrid PET/MRI scanners, dynamic

PET and MRI data can be obtained simultaneously. Hence, it
is possible to measure the PET-AIF and MRI-AIF during the
same scan. At the moment, PET tracers and MRI contrast agent
injections are administered separately, and to our knowledge
no group has tried delivering both with a single injection in a
clinical scan. However if the PET tracer and the MRI contrast
agent are injected using the same injection protocol (i.e. same
injection duration), similar peak shapes are expected to be seen
in PET andMRI input functions, after scaling them to same peak
heights. Ibaraki et al. [13] have shown this with input functions
from PET and DSC-MRI studies. Poulin et al. [14] have
also observed this similarity on input functions obtained from
mice studies and they have also shown that an AIF conversion
from PET-AIF to MRI-AIF or vice versa is possible in specific
circumstances.
If the obtained PET and MRI input functions are fitted using

equation (6), then similar values are expected for the pa-
rameter due to the similarity in the bolus shapes. Hence, it can
be assumed that even in the absence of a PET-AIF, the pa-
rameter can be determined if an MRI-AIF is present from the
same study. This information can be used in SIME to reduce
the number of AIF parameters to estimate by one.

III. MATERIALS AND METHODS

A. Generation of Simulation Data
The purpose of this work was to improve the results of the

simultaneous estimation work, by reducing some of the param-
eters in the optimization using information from anMRI derived
input function. Methods with and without the MRI information
were compared using simulation.
Simulated data were created by using COMKAT, version

3.2[17] in MATLAB (The Mathworks, Inc., Natick, MA),
version 8.1.0. Feng’s function was used as the plasma input [2]
with published averaged parameter values: ,

, , , and
. No time delay was assumed in the delivery of

the input function. Time activity curves (TACs) were generated
using a two-tissue compartment model equation, using kinetic
parameters and cerebral blood volume values from a published
human brain FDG study, as shown in Table I [16]. Rate constant
values from grey matter, white matter and tumour regions were
used and the resulting TACs are illustrated as data A, data B
and data C respectively in Fig. 2. The simulated AIF and TACs
were sampled at 29 time intervals. The acquisition protocol
was set to 6 frames of 5 sec, sec, sec, ,

and , summing to a total scanning duration
of 2 hours.
Gaussian noise with standard deviation, , was generated

based on PET measurement variance structure as shown in
equation (7) [18].

(7)

Fig. 2. Simulated time activity curves with an example of their fits. Noise level
was set to 0.5. Data A represents the time activity curve generated using kinetic
parameters from the grey matter, data B from the white matter and Data C from
the tumour region. Only the first hour is plotted for simplicity.

TABLE I
TRUE VALUES OF THE KINETIC PARAMETERS USED TO GENERATE THE THREE

TIME ACTIVITY CURVES

where is the total measured PET activity, is the frame
duration and is the scaling factor used to set the noise level
added to the data. In this work, three noise levels were con-
sidered and was set to 0.5, 2 and 4 respectively. The lowest
noise level corresponds to a smooth time activity curve with a
low amount of noise, which is typical when very large ROIs are
used. The highest noise level corresponds to typical noisy data
when TACs are extracted from a few voxels. Fifty realizations
were created for each noise level.

B. Optimization of the Cost Function
The SIME cost function includes common input function pa-

rameters between all regions, together with kinetic parameters
from different ROIs, which are estimated simultaneously. The
cost function can be written as equation (8):

(8)

where is the number of regions, is the number of time
points in each TAC, is the measured concentration of the
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tracer in the region at time point and is the model
output with parameter vector , which includes 5 parameters
( and BV) from each region of interest and 6
parameters ( ) from the AIF model.
The objective function was optimized using the ordinary least

squares method (OLS), where the best estimates of parameters
are found by minimizing the cost function. Weights determined
from variance structure (eq. (7)) were not used in the optimiza-
tion as uniform weighting of OLS gave results with lower bias
on estimated paraeters [19]. Optimization was performed by
using fmincon from the MATLAB Optimization Toolbox via
COMKAT’s interface.

C. Scaling of the Input Function

In the simultaneous estimation method, one or more arterial
or venous blood samples are required to scale the input func-
tion. In the implementation of their method, Feng et al. used
multiple blood samples to aid the recovery of AIF. As and

dominate the tail of the AIF model, which represents the end
of the scanning period, it can be assumed that these parameters
can be obtained by fitting two or more blood samples measured
near the end of scanning. In this simulation work, parameters A3
and were kept fixed to their true values in order to reproduce
the effect of this scaling method on the parameter estimates.
An alternative AIF scaling method was also implemented,

where only one blood sample is obtained at the end of the scan.
Then, the ratio of estimated AIF’s endpoint to the actual radioac-
tive tracer concentration obtained by blood sample is used as a
factor to scale the whole input function. This was simulated by
computing the ratio of true input function endpoint to estimated
input function endpoint and multiplying the whole input func-
tion with this ratio.

D. Analysis of Parameter Estimates

The simulation study was repeated 5 times using the simu-
lated dataset at each of 3 noise levels. The five different exper-
imental scenarios can be listed as following:
1) No MRI information, single point AIF normalization
2) With MRI information, single point AIF normalization
3) No MRI information, multiple point AIF normalization
4) With MRI information, multiple point AIF normalization
5) Input function parameters fixed to their true values
AIF parameters and rate constants, together with the blood

background, were estimated for each of 50 noise realizations.
In the fifth case, all of the six AIF parameters were fixed to their
true values and only the kinetic parameters were estimated. This
was done in order to see the accuracy of estimated parameters
when the perfect AIF was used.
For each case, absolute bias and coefficient of variation (CV)

values were calculated and used in the performance comparison.
These were calculated by using equations (9) and (10) respec-
tively, where, represents the mean parameter over 50 noise
realizations, represents the standard deviation of and

is the true value of the parameter.

(9)

Fig. 3. Simulated arterial input function with different values. was set
to 4.134 to represent Feng’s AIF model. AIFs with error on are also
shown to model the effect of error in the AIF.

(10)

E. Sensitivity Analysis
Even though bolus shapes of PET-AIF and MRI-AIF are ex-

pected to be similar, there might be small differences in the
derived parameters when both input functions are fitted with
the model. This can cause PET values to be underestimated
or overestimated from the MRI-AIF. The effect of any error
present in the fixed parameter on the parameter estimates
was evaluated.
By adding error on the fixed parameter, was set

to 3.7206 and 4.5474 respectively. All the starting parameters,
lower and upper bounds, and optimization settings were kept
the same as in the previous experiment. Fig. 3 illustrates how
the AIF changes with different values.

F. Inter-individual Variability Analysis
In order to further evaluate the performance of the method,

the simulation study was repeated with four other sets of rate
constants obtained from various published FDG brain tumour
studies (group 2 from [20] group 3 and 4 from [21], and group
5 from [22]). Similar to the first study, rate constants were ob-
tained from grey matter, white matter and tumour tissue (Range
of : 0.023-0.10, : 0.087-0.162, : 0.032-0.107, : 0.001-
0.15, BV: 0.3-0.7). TACs were generated using these rate con-
stants and Feng’s input function and gaussian noise was added
to the generated TACs.

IV. RESULTS

A. Evaluation of Parameter Estimates
The average bias on kinetic parameters of each ROI is shown

in Fig. 4 for each of the 5 methods and noise levels used. It can
be seen that when no AIF parameter was fixed and AIF scaling
with a single blood sample was used, the average bias on the
estimates, averaged over three noise levels, was approximately
13.8%. This was reduced to 5.4% when the parameter of AIF
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Fig. 4. Absolute bias on 50 estimates, averaged over three ROIs, when noise level was set to (a) 0.5, (b) 2, (c) 4. Black bars on top show the bias with the
scaling method with one blood sample obtained at the end of the study, dark grey bars show the bias with the scaling method where the tail is fit to the multiple
blood samples obtained towards the end of the study and light grey bars show the bias which would be present when all six parameters of the AIF was set to their
true values.

Fig. 5. Absolute bias on 50 and an average of the , and parameter estimates, averaged over three ROIs. Results are shown for noise levels (a) 0.5,
(b) 2, (c) 4. Only one blood sample AIF normalisation results are shown. Black bars indicate the bias on estimates and grey bars indicate the average bias on

estimates.

was fixed to its true value. When the AIF was scaled using the
method where the tail was fit to multiple blood samples, the av-
erage bias was 13.5% and was reduced to 10.6% after was
fixed to its true value. The average bias on the estimated was
5.2% when all six parameters of the input function were set to
their true values and only values of the kinetic parameters and
the vascular fraction for each ROI were estimated. The same
trend was seen at all noise levels. Also the biases of the fits were
close to the bias with true input function when one input func-
tion parameter was obtained from MRI-AIF. However the ob-
served improvement was decreased as the noise level increased.
When the biases of individual rate constant estimates were

studied, it was seen that fixing the parameter improved the
estimates most. When the single blood sample AIF scaling

method was used, the bias on was reduced from 46.3% to
10.3%, averaged over all noise levels. When the alternative AIF
scaling method was used, 58.6% bias was seen on estimates
even after the parameter was fixed to its true value. The bias
of parameters , , and were comparable across the
two AIF scaling methods. For these parameters, much smaller
improvement was observed after the MRI component was uti-
lized. These are also shown in Fig. 5. BV estimates had 66.8%
absolute bias which was reduced to 64.8% when parameter
was fixed to its true value for the single point AIF normalisa-
tion method. However, the high bias on the BV did not affect

the accuracy of estimates. This was confirmed by a seperate
experiment by estimating the with BV fixed to its true value
where only 0.28% increase in overall bias was observed.
Fig. 6 shows the summary of coefficient of variation of esti-

mated parameters, averaged over three ROIs and plotted for
each noise level. From these results, it can be seen that both AIF
scaling methods yielded estimates with similar CV values.
Using the scaling method with a single blood sample resulted in

estimates with 6.3% CV, averaged over three noise levels,
which was reduced to 5.7% with fixed . The AIF scaling
method with multiple blood samples produced estimates
with 6.7% CV and this was improved to 5.4%. Finally, the true
input function estimated the influx rate parameter with average
CV of 4%.

B. Sensitivity Analysis Results

In this section, the effect of erroneous AIF on the kinetic pa-
rameter estimates is evaluated. Similar to previous analyses, ab-
solute bias and coefficient of variation are used to compare es-
timates.
Fig. 7 shows the bias when the was underestimated or

overestimated by 10%. Results obtained with the single blood
sample AIF scaling method are shown only. Bias on parameter
estimates obtained with no fixing and when was fixed to
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Fig. 6. Coefficient of variation values over 50 estimates, averaged over three ROIs, when noise level was set to (a) 0.5, (b) 2, (c) 4. Black bars on top show
the CV with the scaling method with one blood sample obtained at the end of the study, dark grey bars show the CV with the scaling method where the tail is fit
to the multiple blood samples obtained towards the end of the study and light grey bars show the CV which would be present when all six parameters of the AIF
was set to their true values.

Fig. 7. Absolute bias on estimated Ki values. Darker bars show results without the MRI component, one PET-AIF parameter fixed assuming it can be obtained
from MRI-AIF, error added on the fixed AIF parameter. Grey bars show the bias on estimates when all the AIF parameters were fixed to their true values.

its true value are also included in the plot for comparison pur-
poses. These results showed that much lower bias values were
obtained even when error was present in the fixed AIF
parameter. Themethod estimated rate constants more accurately
when the was underestimated rather than overestimated.

C. Inter-individiual Variability Analysis
Fig. 8 shows the absolute bias on estimates obtained in 5

different simulation studies with TACs generated with different
sets of rate constants. Results with the single blood sample AIF
normalisation method is included only. Significant reduction in
absolute bias of estimates was obtained by fixing to its true
value in all of the 5 different simulation studies. It can be seen
that including theMRI information reduced the bias in the range
of 3.4% to 12%.

V. DISCUSSION AND CONCLUSIONS
We have proposed a novel approach for improving AIF

estimation, and hence kinetic parameter estimation in dynamic
FDG-PET studies with the SIME method by utilising infor-
mation from simultaneously acquired DSC-MRI data. We
used simulated data to compare estimated parameters with and
without additional MRI information. With the single-point AIF
normalisation method, the bias in the values was reduced
by 77%, 57% and 51% respectively for each noise level using

Fig. 8. Results of the inter-individual variability analysis. Reduction in
absolute bias of estimates after fixing to its true value are shown for
five different simulation studies. Results for noise level 2 and single point AIF
normalisation method are shown only. Black bars show the results with no
MRI information and grey bars denotes the results with fixed.

the proposed method, to a level similar to that obtained with
fully know AIFs. For single blood sample AIF normalisation
method, utilising the MRI information gave slightly better
results than true AIF results at the highest noise level. A similar
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behaviour was also seen for the estimates. A paired t-test
comparison of the absolute error in individual estimates
obtained with both methods showed that the difference in both
sets of estimates is not statistically significant, with p values of
0.09, 0.37 and 0.23 for the three ROIs.
The improvement in biases was insensitive to small er-

rors in the fixed values of . The bias-reduction was
much lower when the more complex normalisation procedure
was used, which involves collecting multiple blood samples in
practice. The biggest improvement was seen in the esti-
mates. The variance in was reduced only in the low-noise
case. The reduction was slightly larger with the more complex
normalisation.
In this work, the assumption of similarity between PET-AIF

and MRI-AIF peaks was based on the similar rates of delivery
of PET tracer and MRI contrast agent to the tissue of interest
as this is mostly dominated by cardiac output and blood flow.
This would be valid for most of the PET tracers with negligible
uptake in lungs. The AIF peak shapes also depend on the in-
jection durations used; the administration of tracer and contrast
agent are usually performed separately with different injection
rates. The effect of different injection durations on PET-AIF and
MRI-AIF peak shapes needs to be taken into account before a
parameter conversion can be made. We have shown that param-
eters describing the early part of the PET-AIF can be derived
from an MRI-AIF even when different injection durations are
used [23].
In addition to FDG studies, the SIME method is a promising

approach to analyse other tracers [9][10]. As the metabolite-free
AIF can be measured using this method, it can potentially be
used to study tracers with radio-labelled metabolites present in
the blood.
In conclusion, we have shown that the accuracy of kinetic

parameter estimation by the SIME method can be improved
using data from a DSC-MRI derived AIF. The method requires
a single blood-sample at the end of the scan for AIF normalisa-
tion.
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