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Abstract 

Endothelial injury often causes intimal hyperplasia, a disease characterised by local 

inflammation and critical narrowing or restenosis of the blood vessel. Endothelial 

cells (EC) grown on collagen particles are highly effective in inhibiting intimal 

hyperplasia in various animal models, and this effect appears to be, at least in part, 

the result of EC-derived soluble factors that suppress local vascular inflammation. To 

test this hypothesis, we produced EC on collagen particles-conditioned medium 

(ECPCM), which was expected to contain soluble anti-inflammatory factors. Indeed, 

EC treated in vitro with ECPCM together with pro-inflammatory cytokines including 

tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) displayed reduced gene 

expression of the inflammation-related adhesion molecules E-selectin and VCAM-1. 

Investigation of the molecular mechanism of action for the anti-inflammatory 

activity excluded mRNA stability of E-selectin and VCAM-1, activation of 

signalling cascades via the NF-kB and Stat3 pathways, and nuclear localization of 

transcription factors. ECPCM did affect the TNFα-induced binding of p65, a subunit 

of the NF-kB transcription factor, to the E-selectin and VCAM-1 promoters. These 

results suggest that inhibition of gene transcription is responsible for the ECPCM-

mediated suppression of inflammatory responses in EC. The therapeutic effects of 

ECPCM were supported by in vivo experiments performed on the mutant mouse 

strain JR5558, which develops spontaneous choroidal neovascularization (CNV) 

lesions associated with inflammatory cell recruitment and expression of 

inflammatory adhesion molecules. The CNV lesion area and recruitment of activated 

macrophages were both decreased in JR5558 mice given intraperitoneal injections of 

ECPCM. ECPCM might therefore have therapeutic potential in treating 

inflammatory vascular diseases. 
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 Chapter 1: Introduction 

 

Intimal hyperplasia is a state of abnormal vascular remodelling that represents a 

major issue in vascular surgery and biology. It is a complication that follows many 

vascular interventions and eventually can cause the failure of transplanted organs, 

venous and prosthetic bypass grafts, angioplasty and surgical repair (Nugent HM 

1999; Newby AC 2000; Collins MJ 2012). This PhD project was inspired by the 

discovery of a novel and effective endothelial cell (EC)-based therapy for intimal 

hyperplasia, in which the collagen matrix Vascugel® is used as a support for EC 

culture. The major goal of this thesis is to identify and understand the mechanism of 

action of the molecules secreted by Vascugel®-associated EC.  

 

This thesis presents novel findings about the anti-inflammatory activity of an EC-

conditioned medium, which is partly responsible for the therapeutic effect of 

Vascugel®-associated EC on intimal hyperplasia. The studies described here provide 

evidence for the potential therapeutic application of this anti-inflammatory activity 

for treating inflammation-driven vascular pathologies such as choroidal 

neovascularisation (CNV) in the eye. The following introduction provides 

information on how EC control vascular physiology and homeostasis, and how they 

behave during and modulate inflammation. Since intimal hyperplasia is a pathology 

in which inflammation has a major role, a description of intimal hyperplasia and its 

current treatment are provided. Next, a short description of the anatomy of the eye 

and the pathophysiology of CNV is given in order to introduce the animal model 

chosen for functional testing and in vivo experiments performed with the EC-

conditioned medium. Lastly, details about cytokines, chemokines and adhesion 
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molecules involved in inflammation in EC are presented, since these molecules were 

analysed extensively to study the effects and mechanism of action of the EC-derived 

conditioned medium.  
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1.1 General structure of blood vessels 

Arteries and veins are composed of three layers: the intima, media and adventitia 

(figure 1) (Davies MG 1993; Mitra AK 2006). The outermost layer is known as the 

adventitia and is composed of fibroblasts in a loose fibrous connective tissue that 

also contains small blood vessels (vaso vasorum), nerves and adipose tissue. Internal 

to this layer is the tunica media, which is made up of densely packed smooth muscle 

cells (SMC) and elastic tissue (Mitra AK 2006). This thesis focuses on the function 

of the innermost layer, the intima.  This layer is in direct contact with the blood flow, 

and is comprised of a continuous monolayer of flat EC packed closely together and 

seated on a specialized and highly organized extracellular matrix (ECM), the 

subendothelium (Davies MG 1993; Newby AC 2000; Mitra AK 2006). The 

subendothelial layer provides structural integrity, mechanical strength and elasticity 

to the vessels and is composed of type IV collagen, laminin, elastin, fibronectin, 

thrombospondin, von Willebrand factor (vWF) and heparin sulphate proteoglycans 

(HSPG) such as perlecan and syndecan (Davies MG 1993; Timpl R 1996; Mitra AK 

2006). In the artery, the media and adventitia layers are markedly thicker than those 

found in veins (figure 1) (Mitra AK 2006). 

 

 

 

 

 

Figure 1: Structure of the vessel wall (adapted from Human 
Physiology, Fox Stuart, 4th ed., Brown Publishers) 
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1.2 Regulation of vascular homeostasis by the endothelium 

The blood vessel is an extremely sophisticated structure in which the endothelial 

monolayer of the intima not only provides a structural integrity to the blood vessel by 

forming a continuous, selectively permeable barrier between the blood and the vessel 

wall (Rubanyi GM 1993), but also regulates vascular physiology by producing a 

variety of factors and metabolites that affect the underlying SMC and circulating 

blood elements. In this way, EC control thrombosis, coagulation, vasomotor tone, 

blood flow and cell growth. They also function as a mechanical sensor and 

responder, and modulate inflammatory and immunological responses to regulate 

vascular homeostasis. 

 

Thrombosis 

The basic barrier function of the endothelium exerts an important anti-thrombotic 

and anti-coagulation activity simply by separating platelets and coagulation factors 

present in the blood from pro-aggregating constituents of the subendothelial layer 

such as collagen and vWF. Under basal conditions the endothelium also maintains 

this non-thrombogenic blood-tissue interface by producing and releasing a variety of 

molecules. These anti-thrombogenic molecules, which include prostacyclin (also 

called prostaglandin I2, PGI2) and nitric oxide (NO), inhibit platelet aggregation and 

cause vasodilation (Davies MG 1993; Sumpio BE 2002). The reduction of reactive 

oxygen species (ROS) in EC also contributes to the non-thrombogenic status of the 

endothelium. Moreover, ectonucleotidases present on the endothelial surface can 

metabolize ADP to adenosine, which in turn increases cyclic AMP (cAMP) levels in 

platelets and inhibits their reactivity (Davies MG 1993). The endothelial surface 
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regulates fibrinolysis by binding the native form of plasminogen (glu-plasminogen) 

and converting it to its proteolytic derivative (lys-plasminogen), which is more easily 

activated into plasmin, the enzyme responsible for degrading fibrin clots (Gong Y 

2001). In addition, EC synthesize plasminogen activators and inhibitors (Davies MG 

1993). Finally, HSPG expressed on the EC surface localise and increase the activity 

of anti-thrombotic factors such as anti-thrombin III and lipoprotein-associated 

coagulation inhibitor (Davies MG 1993; Pober JS 2007). 

 

Coagulation 

In normal situations, the endothelium releases the inhibitors of the tissue factor 

pathway (TFPI), which blocks the initiation of coagulation (Pober JS 2007); it also 

releases activated protein C and protein S, which inactivate various components of 

the clotting cascade (Pober JS 2007). However, in response to injury, the 

endothelium can initiate coagulation rapidly by producing pro-coagulation co-factors 

such as high molecular weight kininogen (HMWK), factor V, factor VIII, tissue 

factor and vWF (Davies MG 1993; Sumpio BE 2002).  

 

Vascular tone and blood pressure 

Over the past two decades many vasoactive factors produced by EC have been 

discovered and characterised. These factors can be categorised in five families: 

prostanoids, NO and NO-containing compounds, ROS, endothelins and angiotensins 

(Davies MG 1993; Luscher TF 2000; Sumpio BE 2002; Campbell WB 2007; Pober 

JS 2007; Vignon-Zellweger N 2012). 

Prostanoids are a class of eicosanoids produced during the metabolism of arachidonic 
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acid. In EC cyclooxygenase-1 and -2 (COX-1 and -2) convert arachidonic acid into 

prostaglandin (PG) D2, E2, F2α and I2 and thromboxane (TX) A2 (Sumpio BE 2002; 

Campbell WB 2007). PGE2 is a pyretic agent and vasodilator involved, together with 

PGD2, in acute inflammation resolution (Sumpio BE 2002). PGI2 is a potent 

vasodilator, inhibitor of platelet aggregation and pro-fibrinolytic agent (Davies MG 

1993; Sumpio BE 2002; Pober JS 2007). Its effects are mediated by an increase of 

cAMP in SMC and platelets (Davies MG 1993; Campbell WB 2007). In contrast, 

TXA2 and PGF2α cause vasoconstriction and platelet aggregation (Davies MG 1993). 

 

In EC NO is synthesized from the conversion of L-arginine to L-citrullin by two 

enzymes: a constitutively active NO synthase (eNOS) and an inducible NO synthase 

(iNOS), both of which are calcium- and calmodulin-dependent (Davies MG 1993). 

NO is a potent vasodilator (Davies MG 1993; Sumpio BE 2002; Pober JS 2007). It 

acts by activating guanylate cyclase in SMC, producing an increase in cyclic GMP 

(cGMP) that, in turn, stimulates protein phosphorylation and ultimately relaxation 

(Davies MG 1993). 

 

Free radicals in the endothelium derive from the activity of xanthine oxidase and 

from direct transfer from the extracellular space. ROS are reduced by superoxide 

dismutase, catalase and the glutathione redox cycle in EC. Low ROS levels stimulate 

vasodilation by enhancing COX-1 and -2 activity and prostacyclin formation. High 

levels of ROS inactivate NO and inhibit prostacyclin production. They can also 

destroy the enzymes responsible for prostacyclin synthesis, while having no effect on 

those synthetizing TXA2. The end result of these interactions is vasoconstriction 

(Davies MG 1993).  
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Endothelins are a small family of peptides (ET-1 to -4) in which ET-1 is the 

predominant isoform. ET-1 acts through the activation of Gi-protein-coupled 

receptors ETA and ETB (Luscher TF 2000). ETA receptors, found mainly on SMC 

(Vignon-Zellweger N 2012),  mediate vasoconstriction, whereas ETB receptors, 

present in EC as well as in SMC (Vignon-Zellweger N 2012),  stimulate the release 

of NO and prostacyclin, thereby mediating vasodilation (Luscher TF 2000). 

 

The renin-angiotensin system in the vessel wall is important in controlling blood 

pressure (Davies MG 1993; Sumpio BE 2002). Angiotensin I synthesised by EC 

stimulates prostaglandin release and therefore vasodilation. On the other hand, 

angiotensin II, produced from angiotensin I by angiotensin-converting enzyme, acts 

as a potent vasoconstrictor.  

 

Cell growth 

The endothelium produces a variety of factors that affect both EC and SMC growth. 

Platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), 

insulin-like growth factor-1 (IGF-1), transforming growth factor-α (TGF-α), oxygen 

free radicals, endothelins and angiotensin II promote cell growth, whereas TGF-β, 

NO and PGI2 act as cell growth inhibitors together with various ECM molecules such 

as collagen (type V), glycosaminogycans and glycoproteins (Davies MG 1993). 

Endothelial cells also produce granulocyte- and granulocyte-macrophage colony 

stimulating factors (G-CSF and GM-CSF) which affect phenotype, proliferation and 

migration of macrophages, granulocytes, SMC and EC themselves (Bobik A 1993). 
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Mechanical sensing and response 

The endothelium can transduce the physical forces produced by blood flow into 

biochemical signals that affect the vessel wall, therefore acting as a mechanosensor 

(Davies PF 1993). Rapid responses are mediated by changes in G-protein activity, 

adenylate cyclase activity and NO production. Slower responses are mediated by 

mitogen-activated protein kinase (MAPK) phosphorylation and subsequent changes 

in the gene expression of growth factors, vasoactive peptides and enzymes (Davies 

MG 1993). 

 

1.3 The endothelium in inflammation 

Due to its strategic position, the endothelium plays a key role in immune and 

inflammatory reactions by regulating leukocyte adhesion, activation and migration 

into the tissue (Davies MG 1993; Sumpio BE 2002). EC are usually in a quiescent, 

anti-coagulant and anti-thrombogenic state during which they do not interact with 

leukocytes (Davies MG 1993; Pober JS 2007). This is because chemokines and 

leukocyte-interacting proteins (such as P-selectin, interleukin-8 and eotaxin-3 in the 

Weibel Palade body (WPB) vesicles) are sequestered inside the cell and transcription 

of leukocyte adhesion molecules is suppressed (Øynebråten I 2004; Rondaij MG 

2006; Pober JS 2007). The endothelium can be readily activated by different stimuli, 

including cytokines, thrombin, histamine and physical injury.  Endothelial activation 

is characterised by a switch in the synthetic profile towards a pro-thrombogenic, pro-

proliferative, pro-inflammatory and vasoconstrictive state (Davies MG 1993; Pober 

JS 2007). Once activated, EC express different classes of adhesion molecules that mediate 

the increased interaction with leukocytes: selectins, such as E-selectin, which bind to 
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carbohydrate determinants on leukocytes to facilitate rolling; and members of the 

immunoglobulin superfamily such as intercellular adhesion molecule-1 (ICAM-1) and 

vascular cell adhesion molecule-1 (VCAM-1), which bind to integrins to mediate firm 

adhesion and transendothelial migration of leukocytes (Davies MG 1993; Carlos TM 1994). 

Among the adhesion molecules expressed by the activated endothelium, E-selectin 

and VCAM-1 are of particular interest to this thesis and will be discussed in more 

detail later in this chapter. Activated EC also produce platelet activating factor, 

which enhances expression of the adhesion molecules and cooperates with P-selectin 

to amplify platelet and neutrophil aggregation at the endothelium (Sumpio BE 2002). 

Additionally, stimulation of the endothelium leads to a rearrangement of the cell-cell 

adhesion and tight junction proteins, which results in the opening of gaps between 

adjacent EC and subsequent extravasation of neutrophils and leukocytes (Pober JS 

2007). The endothelium exerts further control of the immune and inflammatory 

response by producing and releasing cytokines such as interleukin (IL)-1, -6, -8 and 

other inflammatory mediators (Davies MG 1993; Sumpio BE 2002). 

 

Acute inflammation 

Acute inflammation is a rapid response to infectious microbes or injured tissues that 

involves local recruitment and activation of neutrophils. This recruitment depends on 

the activation of EC, a process that can be divided into rapid responses that do not 

require new gene expression (type I activation) and slower responses that depend on 

new gene expression (type II activation) (Pober JS 2007). 

 

Type I activation is typically mediated by ligands (e.g. histamine) that bind to G 

protein-coupled receptors (GPCRs), which signal through the intracellular G-protein 
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αq subunit. This subunit mediates the release of inositol-1, 4, 5- triphosphate (InsP3), 

which then stimulates the release of Ca2+ from endoplasmic reticulum stores. The 

increase in Ca2+ activates phospholipase A2 (PLA2), an enzyme responsible for the 

production of arachidonic acid, the fatty acid that is converted by COX-1 and 

prostacyclin synthase into PGI2, a potent vasodilator (see above). Cytosolic Ca2+ also 

forms a complex with calmodulin, activating NOS to produce NO, which synergises 

with PGI2. This Ca2+-calmodulin complex mediates the contraction of actin filaments 

through the activation of myosin light-chain kinase (MLCK) and subsequent 

phosphorylation of myosin light chain. Actin filaments are attached to the tight and 

adherens junction proteins, and their contraction results in the opening of gaps 

between EC and subsequent leakiness of the vessel. Moreover, intracellular Ca2+ is 

responsible for the exocytosis of WPBs, exposing P-selectin to the luminal surface 

for adhesion of neutrophils (Pober JS 2007). 

 

Signalling through GPCRs lasts for 10-20 minutes, after which the receptors become 

de-sensitised, preventing further stimulation (Gainetdinov RR 2004). A more 

persistent EC activation, namely type II activation, is required for a more sustained 

inflammatory response. Type II activation is typically mediated by cytokines such as 

tumor necrosis factor-α (TNFα) (which will be described in more detail later) and IL-

1. The end result of the action of these cytokines on EC is the activation of the 

transcription factors activator protein 1 (AP1) and nuclear factor-kB (NF-kB). These 

transcription factors mediate the expression of various genes important in the 

inflammatory process, including E-selectin, VCAM-1, intercellular adhesion 

molecule-1 (ICAM-1), COX-2 and various chemokines. Since the expression of 

adherence proteins on EC is enhanced, leukocyte recruitment is much more effective 
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during type II activation. 

 

Chronic inflammation 

If acute inflammatory reactions fail to eradicate the initiating stimulus, the 

inflammatory process will evolve into a chronic and more specialized form. EC 

might contribute to the process by acting as antigen presenting cells for the 

circulating T cells; however, this hypothesis is still controversial (Pober JS 2007). 

Other changes within the endothelium, such as cytokine production and adhesion 

molecule expression, seem to depend on the prevailing T helper cells (type 1 or 2) 

mediating the immunological response (Pober JS 2007). 

 

1.4 Inflammation and intimal hyperplasia 

The description of the numerous functions of EC highlights the pivotal role of the 

endothelium in regulating the homeostasis and biochemical potential of blood 

vessels. It is not surprising, therefore, that uncontrolled EC response and discordant 

stimulation of EC are common events in many pathological processes, including 

intimal hyperplasia, atherosclerosis, allograft vasculopathies, hypertension, 

congestive heart failure, primary pulmonary hypertension, sepsis and inflammatory 

syndromes (Nugent HM 1999; Sumpio BE 2002). This thesis focuses on 

characterizing a novel, secreted, anti-inflammatory activity of EC as a potential 

treatment for pathologies driven by vascular inflammation, including intimal 

hyperplasia and choroidal neovascularization associated with aged-related macular 

degeneration. 
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Intimal hyperplasia (IH) strictly signifies an increase in the number of cells in the 

intima. It is a distinctive state of vascular remodelling in which vascular smooth 

muscle cells (VSMC) proliferate and migrate to the intima, accompanied by an 

increase in the amount of ECM (Newby AC 2000; Mills B 2012). For this reason the 

phenomenon is generally referred to as “intimal thickening” (Newby AC 2000) and 

results in the gradual diminution of the vessel lumen diameter and flow and, 

ultimately, in occlusion (Collins MJ 2012; Mills B 2012). 

 

Physiological intimal hyperplasia occurs during closure of the ductus arteriosus after 

birth and during involution of the uterus (Slomp J 1992). It is also observed in the 

aging human aorta (Orekhov AN 1984). The most common pathological process 

causing intimal hyperplasia is atherosclerosis, which is characterized by an 

expansion of the VSMC population in the intima, together with an infiltration of 

inflammatory cells such as monocytes, T-cells and other leukocytes from the plasma 

(Newby AC 2000). Pathological intimal hyperplasia also occurs in hypertensive 

pulmonary arteries, homograft transplanted organs, venous and prosthetic bypass 

grafts and after injury of the luminal surface of arteries during percutaneous 

transluminal angioplasty (PTA), stent placement or surgical repair (Nugent HM 

1999; Newby AC 2000; Collins MJ 2012). 

 

The origin of neo-intimal SMC observed in pathological IH conditions is still 

unclear, although several theories have been proposed. One model is that of the 

phenotype switch (Newby AC 2000; Collins MJ 2012). According to this model fully 

differentiated medial SMC of adult vessels are normally in a “contractile” phenotype, 

which shows low rates of proliferation or death. During pathological processes EC, 
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VSMC, macrophages and platelets produce and release the growth factors PDGF, 

EGF and bFGF and cytokines such as IL-6 and IL-8 that cause a change in the gene 

expression profile in VSMC. This leads to the “synthetic” dedifferentiated 

phenotype, characterized by a high proliferation rate, increased cell migration and 

increased synthesis of cytoskeletal and contractile proteins (Newby AC 2000; Collins 

MJ 2012). Another scenario for the origin of SMC in IH is that fibroblasts residing in 

the adventitia transform into myofibroblasts that migrate to the media to become 

SMC and then move within the intima, contributing to IH (Roy-Chaudhury P 2009; 

Havelka GE 2011). It has also been proposed that circulating bone marrow-derived 

progenitor cells may be incorporated into the affected vessel wall and differentiate 

into EC, myofibroblasts or synthetic SMC (Sata M 2002). 

 

Though the key characteristic of intimal hyperplasia is the proliferation of VSMC 

and their accumulation in the tunica intima, it is important to highlight the fact that 

the loss of normal EC function and inflammatory reactions are mainly responsible 

for triggering and supporting these events. Pathological IH is generally caused by 

three key stimuli: inflammation, injury, and increased mean wall stress (figure 2) 

(Newby AC 2000). 

 

Inflammation is a common and complicated feature of most vascular injury models. 

In response to inflammation platelets are activated and start releasing PDGF, which 

in turn activates EC. These PDGF-activated EC together with macrophages produce 

cytokines, growth factors and MMP that trigger SMC activation, migration and 

proliferation from the media (Newby AC 2000; Collins MJ 2012). As inflammation 

is an important component of many vascular diseases and a response to physical 
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injury to the vessels, it is considered the key stimulus responsible for development of 

intimal hyperplasia in most clinical cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Injury can be restricted to the endothelium or stretched to the media. A typical 

example of endothelial injury is observed when percutaneous transluminal 

angioplasty (PTA) is performed. This technique is used to mechanically widen a 

narrowed or obstructed blood vessel, usually an atherosclerotic coronary artery. A 

balloon catheter, namely a collapsed balloon on a guide wire, is placed into the 

narrowed vessel and inflated to a fixed size, so to open up the vessel and improve the 

blood flow. The balloon is then deflated and withdrawn. In some cases a mesh tube 

(stent) is inserted to ensure the vessel remains open. It has been shown that this 

procedure cause complete endothelial denudation of the treated area and a tear that in 

50% of cases extends through the internal elastic lamina and into the media to a 

Figure 2: Schematic representation of the molecular mechanisms 
underlying intimal hyperplasia development. 
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variable depth (Steele PM 1985). Endothelial denudation and/or medial tearing 

activate heparanases and other proteases that destroy and loosen the ECM around the 

SMC in the tunica media. Injury causes the contractile-to-synthetic phenotypic 

switch in SMC, which leads to a change in intracellular proteins and to altered 

regulation of several ECM molecules (Newby AC 2000; Collins MJ 2012). 

Moreover, endothelial injury exposes collagen, which causes platelet adhesion, 

activation and aggregation. Activation of tissue factor also occurs, leading to 

thrombin production. Thrombin further activates platelets, which produce PDGF that 

acts as chemoattractant, causing SMC from the media to migrate towards the intima 

and proliferate there. Matrix metalloproteinases (MMP) facilitate the process by 

remodelling the ECM. PDGF also causes an increase in collagen and proteoglycan 

(PG) synthesis. Other growth factors are probably also involved in the process 

(Newby AC 2000). 

 

The role of increased mean wall stress in the development of intimal hyperplasia is 

supported by the fact that pulmonary hypertension and vein grafting show a close 

relationship between intimal hyperplasia and wall stress (Newby AC 2000; Havelka 

GE 2011). However, the exact mediators and mechanisms involved in the process are 

still not clear. 

 

1.5 Current treatment of intimal hyperplasia 

Endothelial injury typically occurs after PTA and in approximately 30-50% of the 

treated vessels it activates a process of IH that leads to critical narrowing (restenosis) 

within 6-12 months (Nugent HM 2009). Restenosis is also responsible for 30-60% of 
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vascular graft failures and proliferative vascular disease in both transplanted organs 

and arteriovenous fistulae created for haemodialysis access (Nugent HM 1999; 

Collins MJ 2012). Although much effort and many resources have been dedicated to 

the development of an effective approach to treat and prevent IH, restenosis is still a 

major problem. The issue is complicated by the fact that the mechanisms leading to 

IH and affecting treatment are influenced by the location of the injury in the vascular 

system. 

 

For the past four decades PTA has been the most important and widely used 

treatment for patients with coronary obstruction. Intravascular stents were introduced 

to prevent early complications of PTA, such as elastic recoil and arterial dissection, 

but rates of restenosis remained consistently high (Jukema JW 2012). For this reason 

in 2003 drug eluting stents (DES) were introduced in clinical practice. These metal 

stents are coated with a pharmacological agent known to interfere with VSMC 

activation and proliferation, sometimes embedded in a polymer for slow release (Hao 

H 2011). Sirolimus (rapamycin)- and paclitaxel-eluting stents were the first DES to 

be approved for use in humans (Jukema JW 2012). Currently DES are the best 

approach for restenosis prevention after coronary angioplasty. Various clinical 

studies have showed their efficacy in reducing restenosis and the incidence of 

repeated PTA (Windecker S 2007; Sastry S 2010); however, significant long-term 

safety concerns have arisen. Problems associated with DES include stent 

malposition, delayed re-endothelization of the treated vessel, hypersensitivity to the 

polymer releasing the drug or the metal used for the stent, late stent thrombosis, 

inflammatory reactions and some rare cases of myocardial infarction and death (Hao 

H 2011; Jukema JW 2012). These problems have fuelled research in stent 
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development and alternative approaches such as gene-based therapy (Jukema JW 

2012). Additionally, systemic delivery of anti-proliferative or anti-inflammatory 

drugs has been explored (Kakio T 2004; Jukema JW 2012). However, this approach 

presents serious problems of toxicity and off-site effects, which make it inferior to 

DES.  

 

Although for the past decade DES have been used extensively and with overall 

success in the treatment of arterial restenosis, it is important to remember that using 

drugs, either locally or systemically, in order to treat and/or prevent IH strongly 

alters the normal function of EC and therefore affects vessel homeostasis. Another 

important aspect to consider with regards to IH is that the mechanisms responsible 

for its development might differ depending on the location in the vascular system. 

Vascular vein grafts in particular are exposed to unique factors that are not 

experienced by arterial vessels, such as surgical manipulation and trauma, 

mechanical forces at the anastomotic site. In the case of prosthetic conduits, 

bioincompatibility contributes to IH development (Collins MJ 2012). These aspects 

make the treatment of IH in vascular grafts quite complicated. Similarly to arterial 

IH, many interventions have been tried to treat and prevent venous IH, but despite all 

these efforts, such strategies seem only to delay, not to reduce or prevent, the 

development of IH (Collins MJ 2012). Clearly, novel approaches are needed in order 

to effectively treat IH in all its forms and locations. 
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1.6 Cell-based therapeutic approaches to treat intimal hyperplasia 

More promising attempts to treat IH have been made using a cell-based therapeutic 

approach. Innovative EC-based tissue engineering studies to repair injured blood 

vessel, especially by promoting re-endothelization of the injured endothelium have 

been reported (Wilson JM 1989; Conte MS 1994). Indeed, VSMC proliferation in the 

intima is inhibited by restoration of the endothelium (Davies MG 1993; Rubanyi GM 

1993). However, tissue engineering attempts aimed at re-endothelization of injured 

vessels have failed to prevent IH development, mostly because of technical issues 

with the delivery and viability of the EC. Moreover, animal studies suggest that 

restoration of an intact EC layer may not be necessarily required to block IH (Nathan 

A 1995; Nugent HM 1999; Nugent HM 2009; Nugent HM 2012). What appears to be 

more important is the restoration of the biochemical regulatory activity of the 

endothelium, which may be provided even by EC that do not reside at the luminal 

interface.  

 

The first evidence of tissue-engineered EC being able to regulate vascular injury 

when placed at a distance from the lumen was provided almost 20 years ago in a rat 

model (Nathan A 1995). Bovine aortic EC engrafted in a collagen matrix sponge 

(EC/matrix) were placed around the carotid artery after balloon denudation. After 14 

days animals treated with the EC/matrix showed reduced cell proliferation and 

hyperplasia compared to controls; immunostaining showed no recovery of 

endogenous EC or migration of the engrafted EC towards the injured area. Similar 

results were later reproduced in a porcine model at 28 days post-angioplasty in the 

carotid arteries (Nugent HM 1999). The EC/matrix was able to inhibit intimal 

thickening and thrombosis. Immunostaining with EC-specific markers showed 
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Figure 3: Representative day-90 angiograms (A) and photomicrographs of Verhoeff’s 
elastin-stained arterial cross-sections (B). Comparison of the angiograms shows an increase 
in stenosis in the stented region of control arteries (left and middle panels, black arrows) 
compared with arteries treated with porcine aortic EC (PAE)/matrix particles (right panel). 
Histologic sections show significantly greater intimal area in control sham (left panel) and 
matrix (middle panel) arteries compared with arteries treated with PAE/matrix. I, Intima; L, 
lumen; M, media (Nugent, 2012). 

complete re-endothelization only in two control arteries (one treated with a heparin-

releasing device and one with a cell-free collagen matrix), suggesting once again that 

repairing the intact architecture of the endothelium is not sufficient to stop IH 

development (Nugent HM 1999). This EC/matrix approach has been further 

developed, and in more recent years a less invasive, injectable collagen particles/EC 

matrix has been tested in porcine stent models (Nugent HM 2009; Nugent HM 

2012). When injected into the perivascular space, the EC/matrix particles were able 

to significantly decrease the percentage of stenosis and the intimal area, while 

increasing the lumen area of the treated vessel at 4 weeks (Nugent HM 2009) and 90 

days post injury (figure 3) (Nugent HM 2012). 

 

Furthermore, the perivascular EC/matrix particles were able to significantly decrease 

the levels of local inflammation in the injured vessels, suggesting this anti-
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inflammatory activity is likely to also play a role in reducing IH (Nugent HM 2012). 

These data suggest that the therapeutic effects provided by the engrafted cells placed 

outside the injured vessels were not mediated by a mechanical barrier function, but 

were, at least in part, the result of secreted, EC-derived products that provided 

biochemical regulation. 

 

As described above, EC control vascular homeostasis through the production and 

release of a wide range of molecules, and soluble factors released from the 

EC/matrix (placed at a distance from the vascular lumen, in the perivascular space) 

can restore function to an injured vessel that has lost its biochemical and homeostasis 

regulatory activity. The possibility of inhibiting IH through soluble factors produced 

by engrafted EC is very important for the development of a novel effective treatment. 

Indeed, it suggests an EC/matrix-conditioned medium might be produced to use as a 

therapeutic agent in place of the cell-based formulation. Cell-based therapy has great 

potential, but it also has many issues: possible rejection; difficult reproducibility and 

inconsistency; problems with the delivery, shelf-life and storage of the product and 

ethical issues regarding the source and use of human cells. For these reasons the 

possibility of using cell-conditioned medium is of great advantage. In fact, 

preliminary experiments performed by Pervasis (an American biotech company that 

sponsored part of this PhD project) showed that the conditioned medium collected 

from EC grown on collagen sponge has a broad and strong anti-inflammatory 

activity and effectively reduces the effects of PF4 on EC in vitro (Nugent HM 2012). 

Moreover, it has been reported that supernatant from EC/matrix decreases the 

maturation of dendritic cells and significantly increases their production and release 

of IL-10 and TGF-β1 (Methe H 2007). Since maturation of dendritic cells is pivotal 
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in priming the immunological reaction (Banchereau J 2000), and since IL-10 and 

TGF-β1 are known for their anti-inflammatory activity (see Chapter 3.3), these 

results support the anti-inflammatory therapeutic potential of EC-conditioned 

medium and its possible application for the treatment of IH and other vascular 

inflammatory diseases, such as those affecting the eye. 

 

1.7 Anatomy of the eye 

The in vivo experiments presented in this thesis are based on experimental and 

genetic models of eye inflammation in the mouse. These models were chosen 

because they provide a localized and isolated ocular inflammation that can be easily 

monitored before, during and after treatment and they allow the exploration of the 

systemic effects of novel drugs, which can be administered by intraperitoneal 

injection, at a big distance from the eye. Moreover, various techniques are available 

to study different aspects of the inflammatory reaction and the effect of treatment on 

the eye. To better understand the in vivo experiments and their results, a brief 

description of the eye anatomy is provided, with particular focus on the retina and the 

choroid. 

 

The eye is a highly specialised organ of photoreception. Specialized nerve cells in 

the retina, the rods and cones, undergo physiological changes in response to light 

from the environment; these changes produce nerve action potentials that are 

transmitted to the optic nerve and then to the brain, where the information is 

processed and perceived as vision. Other structures in the eye participate in the 

support of this basic physiological process: the cornea, lens, iris and ciliary body 
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focus and transmit light onto the retina, while the choroid, aqueous outflow and 

lacrimal systems nourish and protect the tissues of the eye (Forrester J 1996). Figure 

4 shows the main components of the eye. 

 

 

 

 

 

 

 

 

Retina 

The retina comprises light-sensitive layers of neurons positioned at the back of the 

eye. It converts relevant information from the image of the outer environment into 

neural impulses that are transmitted to the brain for decoding and analysis. The retina 

consists of two main layers: an inner neurosensory retina and an outer epithelium 

called the retinal pigmented epithelium (RPE). The neurosensory retina is a thin, 

transparent layer of neuronal tissue composed mainly of specialized neural cells such 

as photoreceptors, bipolar cells and ganglion cells, but it also includes glial cells, 

vascular endothelium, pericytes and microglia. These retinal cells are highly 

organized in eight distinct layers. The RPE is a continuous monolayer of hexagonally 

shaped, tightly packed epithelial cells containing pigment granules. Functions of the 

RPE include regeneration of the visual cycle, preserving adhesion of the 

neurosensory retina, providing a selectively permeable barrier between the choroid 

and the neurosensory retina, light absorption, phagocytosis of photoreceptor outer 

Figure 4: Anatomy of the eye (adapted from 
virtualmedicalcentre.com). See text for details. 
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segments, synthesis of interphotoreceptor matrix, transport and storage of 

metabolites and vitamins, spatial ion buffering and immune modulation (Forrester J 

1996). 

 

Choroid 

The choroid is a thin, highly pigmented and highly vascularised connective tissue 

situated between the sclera and the RPE. Its main function is to nourish the highly 

metabolically active outer layers of the retina containing the photoreceptors. 

Absorption of light by choroidal pigment also contributes to vision, and regulation of 

blood flow by choroidal vessels influences photoreceptor metabolism. The choroid 

consists of five layers: the Bruch’s membrane, the choriocapillaris, two vessel layers 

and the suprachoroid. Bruch’s membrane lies beneath the RPE. It is a modified 

multi-layered ECM membrane that includes the RPE basal lamina, an inner 

collagenous zone, a middle elastic layer, an outer collagenous zone and the basement 

membrane of the EC in the choriocapillaris. The choriocapillaris is a vast assembly 

of wide-bore, fenestrated capillaries that deliver nutrition to the outer retina. SMC 

are usually absent. Beneath the choriocapillaris is the vascular layer, which can be 

divided into an outer part of major arteries and veins (Haller’s layer) and an inner 

layer of intermediate-sized arterioles and venules (Sattler’s layer). The suprachoroid 

represents a thick transition zone between choroid and sclera. It is formed by 

interconnected melanocytes, fibroblasts and connective tissue fibres and does not 

contain blood vessels. Importantly for the work presented in this thesis, the choroid 

comprises resident populations of immunocompetent cells including plasma cells, 

lymphocytes, macrophages, dendtritic cells and perivascular mast cells (Forrester J 

1996; Spencer WH 1996). 
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1.8 Choroidal neovascularisation as a model of inflammation-driven 

angiogenesis 

Choroidal neovascularization (CNV) is defined as growth of new blood vessels from 

the choroid, between the basement membrane of the RPE and the remainder of 

Bruch’s membrane, and often invading into the subretinal space (Spencer WH 1996). 

It is the major complication associated with many retinal degenerative or 

inflammatory pathologies, especially age-related macular degeneration (AMD) 

(Spencer WH 1996; Espinosa-Heidmann DG 2003). In fact, about 10% of AMD 

patients develop CNV, and yet CNV is responsible for 90% of severe vision loss in 

AMD (Vinores SA 2006). Currently the molecular mechanism for CNV development 

is not fully understood. CNV represents a non-specific wound repair response to an 

underlying disease and, although different in intensity and cellular components 

depending on the specific causal pathology and stage of development, all CNV 

lesions involve inflammation (Grossniklaus HE 2004). 

CNV can grow between the RPE and Bruch’s membrane (type 1), between the retina 

and the RPE (type 2) or a combination of both (combined type). The new blood 

vessels are capillary-like and, with time, they display arterial and venous 

characteristics (Grossniklaus HE 2004). During the first, dynamic stages of 

development, CNV lesions are characterised by high levels of vascular endothelial 

growth factor (VEGF), IL-8 and monocyte chemoattractant protein (MCP) produced 

by the RPE, the retinal photoreceptors and the EC of the choroid vessels. 

Macrophages are attracted from the choriocapillaris and release TNFα, which in turn 

stimulates additional production of VEGF, IL-8 and MCP. TNFα also stimulates 

integrins expression in the RPE, with subsequent activation of tyrosine kinase 

pathways that mediate migration of EC and macrophages (Grossniklaus HE 2004). 
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After this initial stage, CNV grows during the inflammatory active stage. In this 

phase EC and macrophages produce MMPs that enable the lesions to pass through 

tissue planes. Macrophages also express tissue factor, which stimulates the 

production of a fibrin scaffold on which the CNV lesion can grow. Angiopoietins 

and their receptors (Tie-1 and -2), FGF, TGF-β, VEGF, PDGF, pigmented 

epithelium derived factor (PEDF), plasminogen, fibrin and tissue inhibitors of MMPs 

(TIMPs) are produced by the RPE and the vascular endothelium during this process 

until at some point the balance shifts towards anti-angiogenic, anti-proteolytic and 

anti-migratory signals (Grossniklaus HE 2004). This is the inflammatory inactive or 

involutionary stage of CNV, during which the lesions may become collagenized and 

display a disciform shape (Grossniklaus HE 2004).  

 

Inflammation is a key component in the growth of CNV. Significant macrophage 

infiltration is observed in surgically excised CNV lesions, and these macrophages 

appear to be synthesizing cytokines and growth factors (Grossniklaus HE 2000; 

Grossniklaus HE 2002). Moreover, macrophages migrate to experimentally-induced 

CNV lesions and seem to contribute to the neovascularization (Ishibashi T 1985). It 

has been suggested that macrophages might be a stimulus for CNV, since they are a 

common factor linking the many different pathologies associated with CNV. In fact, 

it has been shown that macrophage depletion decreases the size and severity of the 

lesions in a mouse model of CNV (Espinosa-Heidmann DG 2003). This evidence 

suggests there is great therapeutic potential for anti-inflammatory drugs to correct 

CNV, which until about a decade ago was usually treated with laser 

photocoagulation, ionizing radiation or surgical removal (Grossniklaus HE 2004). A 

more recent therapy uses the drug verteporfin in photodynamic therapy, which 
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causes local EC damage, platelet aggregation and eventually thrombosis with 

occlusion of the vessels (Couch SM 2011). Several anti-VEGF therapeutics have also 

been approved for use in the treatment of CNV (Campochiaro PA 2013). These 

drugs act as anti-angiogenic and anti-permeabilization agents and, since they have 

shown a significant short-term benefit to patients’ vision, they have become the 

standard of care for most patients with CNV (Couch SM 2011). It is of interest to 

note that overexpression of VEGF results in pro-inflammatory effects such as 

expression of endothelial adhesion molecules and monocyte chemoattraction 

(Takahashi H 2005; Luo J 2011). Anti-VEGF therapies might therefore have anti-

inflammatory effects in addition to their direct effects on vascular cells. 

 

1.9 Inflammatory cytokines and chemokines and their effect on endothelial cells 

Platelet factor 4 (PF4), TNFα and IL-6 are known pro-thrombotic and pro-

inflammatory molecules. Because of these properties they were used in the 

experiments described in this thesis, providing an in vitro model of inflammation to 

study the effects and mechanism of action of the EC-conditioned medium. A 

description of these cytokines and chemokine is provided. 

PF4 

PF4 was the first member of the chemokine family to be discovered (Kasper B 

2011). This large group consists of cytokines that share the common ability to induce 

a direct cellular migration, especially of immune cells. PF4 is a member of the CXC 

subfamily of chemokines, which is characterized by four conserved cysteines, where 

the first two are divided by an amino acid residue (CXCCC) (Handin RI 1976; 



44 

 

Stringer SE 1997). Biosynthesis of PF4 is almost exclusively in megakaryocytes that 

will later mature into platelets, with only a very small portion produced in activated 

monocytes (Kowalska MA 2010). This chemokine accounts for almost 2% of the 

total α-granule storage in platelets (Kowalska MA 2010). Normal plasma levels of 

PF4 are below 1 nM (Kasper B 2011), but upon platelet activation the concentration 

in serum reaches 2 µM, with an even higher estimated concentration of 25 µM at 

localized sites of injuries and 280 µM within a thrombus (Fukami MH 2001; 

Kowalska MA 2010). At physiological pH PF4 exists as a tetramer (Kowalska MA 

2010) and binds with high affinity to heparin and other negatively charged 

molecules, such as the cell surface glycosaminoglycans heparan sulphate, 

chondroitin sulphate and dermatan sulphate (Handin RI 1976; Stringer SE 1997; 

Kowalska MA 2010). Although a definite receptor for PF4 has yet to be identified, 

there is evidence that PF4 can bind with nM affinity to the receptor CXCR3B, which 

is expressed in the human heart, liver, kidneys and skeletal muscles, as well as on 

proliferative microvascular endothelium and EC in neoplastic tissues (Lasagni L 

2003).  It has also been reported that PF4 binds to lipoprotein receptor-related protein 

1 (LRP1), a member of the low-density lipoprotein receptor superfamily. Interaction 

with this receptor in human umbilical vein endothelial cells (HUVEC) induced 

expression of E-selectin in a NF-kB-dependent manner (Yu G 2005).  

Even though it was identified as the first chemokine, today it is clear that purified 

PF4 lacks chemotactic activity for neutrophils and monocytes (Kowalska MA 2010). 

The specific biological functions of PF4 and the pathways activated by the molecule 

are still not fully understood; however, various in vitro and in vivo studies suggest 

roles in thrombosis, atherosclerosis, angiogenesis and immune modulation (Sachais 

BS 2004; Kowalska MA 2010; Kasper B 2011).  
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TNFα 

TNFα is a pro-inflammatory cytokine that belongs to the TNF superfamily and is 

mainly produced by macrophages (Aggarwal BB 2003; Chu WM 2013). Most of the 

TNF family members are physiologically expressed as transmembrane proteins to act 

locally, but during disease and/or injury they can be shed and released in the blood 

stream (Aggarwal BB 2003). Specifically, a metalloproteinase called TNFα-

converting enzyme can derive soluble TNFα from the transmembrane cytokine 

(Black RA 1997).  

 

There are two receptors for TNFα: TNF receptor 1 (TNFR1), expressed in most cells 

of the body; and TNFR2, found mainly on lymphocytes and the endothelium 

(Aggarwal BB 2003; Chu WM 2013). When binding to these receptors TNFα can 

induce tumor cell necrosis, fever and acute and chronic inflammatory reactions. The 

TNFα pathway is also involved in autoimmune diseases and in tumor progression, 

invasion and metastasis (Chu WM 2013). In EC, TNFα induces protein synthesis-

dependent and -independent changes, which ultimately affect vascular permeability 

and tone, coagulation, apoptosis, leukocyte adhesion and leukocyte activation 

(Madge LA 2001). The effects of TNFα on EC are largely dependent on TNFR1 

(Loetscher H 1993).  None of the TNFRs has any intrinsic enzymatic activity 

(Madge LA 2001; Aggarwal BB 2003). The different cellular responses elicited by 

TNFα result from the recruitment of a wide range of adaptor proteins to the activated 

receptor (figure 5) (Madge LA 2001).  
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Figure 5: Intracellular signalling upon TNFα binding to 
TNFR1 or TNFR2 (adapted from Aggarwal BB, 2003) 

 

 

 

 

 

 

 

 

 

 

 

In the case of TNFR1, binding of TNFα induces the recruitment of TNFR-associated 

death domain protein (TRADD) to the intracellular domain of the receptor (Madge 

LA 2001; Aggarwal BB 2003; Pober JS 2007). TRADD in turn recruits the 

serine/threonine kinase receptor-interacting protein 1 (RIP1) and the ubiquitin ligase 

TNFR-associated factor 2 (TRAF2) (Madge LA 2001; Aggarwal BB 2003; Pober JS 

2007). This complex mediates the activation of gene transcription through different 

signalling cascades, the most prominent of which involves NF-kB (Madge LA 2001; 

Aggarwal BB 2003; Hayden MS 2008).  The NF-kB family of transcription factors 

consists of five members: p50, p52, p65 (RelA), c-Rel and RelB (Hayden MS 2008). 

In resting cells NF-kB dimers are retained in the cytosol due to interaction with the 

inhibitors IkB (IkBα, β and ε or p100 and p105), which mask the nuclear localization 

sequence of the transcription factors (Hayden MS 2008). Activation of the pathway 

leads to degradation or processing of IkBs and subsequent release of NF-kB dimers, 

which move to the nucleus, bind to the target DNA sequence and regulate gene 
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transcription through recruitment of co-activators and co-repressors (Hayden MS 

2008). The responses activated by TNFα typically involve the NF-kB dimer p65:p50 

and the inhibitor IkBα in what is called the “canonical NF-kB pathway” (Hayden MS 

2008; Brasier AR 2010) (figure 6). When the complex TRADD/RIP1/TRAF2 is 

formed, it activates the inhibitor of NF-kB kinase (IKK) complex (made by the 

subunits IKKα, β and NEMO), which in turn mediates the phosphorylation of IkBα. 

Phosphorylated IkBα is targeted for rapid ubiquitination and degradation through the 

proteasome. Once the inhibitor is degraded, NF-kB (p65:p50) is free to shuttle to the 

nucleus to activate transcription (figure 6). 

 

 

 

 

 

 

 

 

 

 

Alternatively, formation of the TRADD/TRAF2 complex upon binding of TNFα to 

TNFR1 activates a MAP/ERK kinase kinase 1 (MEKK1)/MAPK kinase 7 

(MKK7)/JNK kinase pathway that leads to activation of AP1 (figure 5) (Aggarwal 

BB 2003; Pober JS 2007); the TRADD/RIP1/TRAF2 complex also elicits MKK3 

and p38 MAPK, but the mechanism is not yet fully understood (Aggarwal BB 2003). 

TRADD is also essential for the recruitment of proteins involved in the pro-apoptotic 

Figure 6: The canonical NF-kB pathway activated by 
TNFα (adapted from Iwai K and Tokunaga F, 2009). 
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activity of TNFα (figure 5) (Madge LA 2001; Aggarwal BB 2003). In fact, TRADD 

can interact with Fas-associated death domain protein (FADD) to form a complex 

that recruits and activates caspase-8. This results in a hierarchical cascade of caspase 

stimulation that culminates in the activation of caspase-3, which is responsible for 

cell apoptosis through the proteolysis of a large number of substrates (Madge LA 

2001; Aggarwal BB 2003). Most cell types, including EC, are not sensitive to TNFα–

induced apoptosis unless mRNA or protein synthesis is blocked (Madge LA 2001). 

This observation is attributed to the ability of TNFα to induce gene expression of 

anti-apoptotic products (Madge LA 2001).  Binding of TNFα to TNFR2 activates the 

same signalling cascades as TNFR1 through direct recruitment of TRAF2 to the 

intracellular domain of the receptor (figure 5) (Aggarwal BB 2003). 

 

Protein synthesis-independent effects of TNFα on EC have also been observed; these 

include alteration of the cytoskeleton and subsequent changes in cell shape, motility 

and permeability (Madge LA 2001). The specific mechanisms mediating those 

effects are still not clear, although they probably involve small G proteins, 

particularly of the Rac, cdc42 and Rho family, which are known to regulate actin 

organization (Madge LA 2001). 

 

IL-6 

IL-6 is a cytokine produced by activated monocytes, T- and B cells, endothelial cells, 

fibroblasts, keratinocytes, mesangial cells, adipocytes and some tumour cells (Mihara 

M 2012). IL-6 is a multifunctional cytokine that regulates inflammation, 

hematopoiesis, immune responses and acute phase inflammatory responses (Sprague 

AH 2009). It stimulates differentiation of lymphocytes and macrophages, 
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proliferation of thymocytes and peripheral T cells, expression of acute phase proteins 

in the liver and development of fever (Libermann TA 1990; Mihara M 2012). There 

is also evidence of IL-6 stimulating EC proliferation in vitro (Holzinger C 1993). IL-

6 gene expression is induced by a plethora of inflammatory stimuli, including 

bacterial lipopolysaccharide (LPS), viral infection, TNFα, IL-1 and PDGF 

(Libermann TA 1990).  

 

IL-6 signal transduction involves two receptors: gp130 and IL-6 receptor α (IL-6R) 

(Heinrich PC 1998), both of which are expressed in EC (Yuen DYC 2009). IL-6 

specifically binds to IL-6R, which has no intrinsic kinase activity, but efficiently 

recruits two subunits of the corresponding signal-transducing receptor gp130 

(Heinrich PC 1998). Hence, IL-6/IL-6R/gp130 is the functional receptor complex. 

The major mediators of IL-6 signalling are Jak kinases and the factor signal 

transducer and activator of transcription 3 (STAT3) (figure 7) (Heinrich PC 1998; 

Heinrich PC 2003). Specifically, Jak1, Jak2 and Tyk2 kinases are associated with the 

Figure 8: IL-6-activated pathways (adapted 
from the Cell Signalling pathways library). 

Figure 7: STAT3 activation through the 
IL-6/IL-6R/gp130 complex (adapted 
from Walters TD and Griffiths AM, 
2009). 
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intracellular domain of gp130.  Upon gp130 stimulation the Jak kinases are activated 

and phosphorylate the cytoplasmic tail of gp130. The phospho-residues on gp130 

serve as docking sites for the transcription factor STAT3, which also becomes 

phosphorylated, forms dimers and translocates to the nucleus to regulate transcription 

of target genes. 

 

Stimulation of gp130 and the corresponding Jak kinases can also activate the 

Ras/Raf/MAPK pathway, which ultimately phosphorylates STAT3 (figure 8) 

(Heinrich PC 1998; Heinrich PC 2003). While the specific role of the kinase ERK1/2 

in this process has been established, other findings have shown activation of different 

MAPK such as p38 and JNK, though this activity remains poorly understood 

(Heinrich PC 2003). IL-6 can lead to the activation of another signalling pathway 

involving phosphatidylinositol 3-kinase (PI3K) and Akt kinase (figure 8) (Heinrich 

PC 2003). However, this activation seems to happen in a cell-specific manner, 

mediating an anti-apoptotic effect in cardiomyocytes and carcinoma cells (Heinrich 

PC 2003). The molecular mechanism linking gp130 to the stimulation of PI3K/Akt 

signalling is still unknown. 

 

1.10 Leukocyte adhesion molecules 

Adhesive interactions between different cells, and between cells and the ECM are 

crucial to many tissue and cellular functions, including the inflammatory response 

(Crockett-Torabi E 1998). During inflammation leukocyte interaction with EC is 

essential for recruitment of the immune cells to the affected area. The specificity of 

leukocyte homing to inflamed tissues is defined by the chemokines released in the 
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microenvironment and by the adhesion molecules and counter-receptors expressed 

on EC and leukocytes, respectively (Cook-Mills JM 2011). The pro-inflammatory 

molecules that activate the endothelium determine the type of adhesion molecules 

expressed by EC (Cook-Mills JM 2011).  

Vascular recruitment of leukocytes is a three-step process: 1) leukocytes roll on the 

endothelium, forming weak and transient interactions with the selectins expressed on 

EC; 2) high-affinity interactions with ICAMs and VCAM-1 allow the firm arrest of 

leukocytes on the endothelium; and 3) leukocytes transmigrate through the 

endothelium into the inflamed tissue (Carlos TM 1994; Cook-Mills JM 2011). 

 

As mentioned previously, adhesion molecules expressed on the endothelium can be 

divided in three families: selectins, integrins and ICAMs. Each one is involved in a 

specific phase of leukocyte adhesion and migration through the endothelium, and the 

synchronization of their expression and function is crucial for the process. 

Inappropriate or abnormal sequestration of leukocytes at specific sites is involved in 

the development of many autoimmune and inflammatory diseases such as diabetes, 

ischemic and reperfusion injury, allograft organ rejection and hypersensitivity 

reactions (Tedder TF 1995). Since adhesive molecules play such an important role in 

the inflammatory response at the endothelium level, the experiments described in this 

thesis focus on expression of two adhesive molecules on EC induced by 

inflammatory cytokines: E-selectin and VCAM-1.  

 

Expression of E-selectin and VCAM-1 largely depends on de novo synthesis of 

mRNA and protein (Carlos TM 1994). The promoters of both genes comprise short 

cytokine-responsive regions with multiple NF-kB binding sites that interact with 
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other elements to induce transcription. Indeed, the synergy between NF-kB and other 

transcription factors and activators seems to be a common feature of cytokine-

induced gene expression (Collins T 1995).  

 

E-selectin 

The selectin family consists of three closely related cell-surface proteins designated 

by the prefixes E (endothelial), P (platelet) and L (leukocyte) (Carlos TM 1994). All 

selectins have an extracellular region composed of an amino-terminal, Ca2+-

dependent lectin domain, an epidermal growth factor (EGF)-like domain and two to 

nine short consensus repeat (SCR) units homologous to domains found on 

complement regulatory proteins (Tedder TF 1995). E-selectin has six SCR units 

(Tedder TF 1995). E-selectin binds the fucosylated tetrasaccaride sialyl Lewis X or 

closely related structures (on proteins or glycolipids) which are abundantly expressed 

on neutrophils, monocytes and natural killer (NK) cells (Carlos TM 1994).  

 

E-selectin is not normally detected on the surface of resting EC, but its expression is 

strongly induced by various inflammatory mediators, including TNFα, IL-1β, LPS 

and interferon γ (IFNγ) (Collins T 1995; Tedder TF 1995). Therefore, E-selectin is 

highly present on endothelial cells at sites of injury and inflammation (Tedder TF 

1995). The regulatory elements necessary for cytokine-induced E-selectin expression 

are localized in the first 170 base pairs (bp) upstream of the transcription start site 

(Whelan J 1991). In particular, the region between residues -170 and -85 is essential 

for induction by TNFα (Schindler U 1994). Figure 9 illustrates the four positive 

regulatory domains in the gene’s promoter, named PDI-IV (Whitley MZ 1994).  
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Figure 10: Model of the 
transcription complex regulating 
cytokine-induced E-selectin 
expression (adapted from Collins 
et al, 1995). 

Figure 9: E-selectin promoter region, regulatory domains and transcription 
factors involved in its regulation. See text for details (Collins et al, 1995). 

 

PDI, PDIII and PDIV are NF-kB binding sites; PDII is an activating transcription 

factor (ATF)-like site (Schindler U 1994; Collins T 1995). Induction of E-selectin 

expression requires NF-kB to bind to PDI, PDIII and PDIV (mainly in the forms of 

p50:p65 heterodimers) (Schindler U 1994; Collins T 1995). The high mobility group 

protein I (HMG I(Y)) is also required for interaction with PDIII and PDIV, 

enhancing NF-kB binding to those elements (Lewis H 1994; Whitley MZ 1994). 

PDII displays a sequence that is typically recognized by the ATF family of 

transcription factors. In fact, PDII has been shown to be bound by recombinant ATF-

a, ATF-2, ATF-3, c-Jun and CREB (Kaszubaka W 1993; De Luca LG 1994). 

Moreover, members of the ATF family can interact with both NF-kB and HMG I(Y) 

(Kaszubaka W 1993).  
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Transcription of E-selectin involves NF-kB transcription factor (Montgomery KF 

1991; Collins T 1995), but this is not sufficient for cytokine-induced expression; 

HMG I(Y) and ATF-2 are also required to form a unique transcription-activating 

complex with NF-kB (Collins T 1995). Taking this into account, a model for 

enhanced cytokine-induced E-selectin expression has been proposed (figure 10) 

(Collins T 1995). Heterodimers of NF-kB (p50:p65), an ATF-2/c-Jun heterodimer or 

an ATF-2 homodimer bind to the promoter. HMG I(Y) binds on multiple sequences 

and increases the affinity of NF-kB and ATF-2 for their respective sites; it also bends 

the DNA to facilitate the physical interaction between factors and formation of a 

higher order complex necessary for transcription. This unique transcription complex 

then acts as a unit, possibly involving additional co-activators or transcription 

factors. 

 

E-selectin protein half-life in vitro is quite short. The protein appears at 1-2 hours 

post-induction, peaks at 4-6 hours and returns to basal levels within 24 hours, even in 

the continuous presence of cytokine (Carlos TM 1994; Collins T 1995; Tedder TF 

1995). Its short surface presence is largely due to a process of endocytosis (Carlos 

TM 1994).  

 

A soluble version of E-selectin (sE-selectin) has been detected in the supernatants of 

cytokine-activated EC in vitro (Pigott R 1992) and in human serum, where its levels 

correlated with inflammatory states (Gearing AJH 1992; Tedder TF 1995). Since 

there is no evidence of a naturally-occurring soluble splice variant of the protein, 

shedding of E-selectin from its membrane form is more likely. Possible biological 

roles for sE-selectin include: clearing of adhesion molecules to control leukocyte 
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adhesion on EC, chemoattraction and/or activation of immunological cells. 

 

VCAM-1 

VCAM-1 belongs to the immunoglobulin (Ig) superfamily of proteins, which are 

characterized by several extracellular Ig-like domains. In the case of VCAM-1, the 

extracellular region comprises seven Ig-like domains (Cook-Mills JM 2011). 

VCAM-1 binds to integrins expressed by eosinophils, basophils, lymphocytes, mast 

cells and monocytes (Cook-Mills JM 2011). It is the activation state of these 

integrins that regulates their binding to VCAM-1 (Cook-Mills JM 2011). VCAM-1 is 

typically expressed on the cell surface of activated endothelium, but it can also be 

released in a soluble form (sVCAM-1) by the cleavage activity of disintegrin and 

metalloproteinase 17 (Cook-Mills JM 2011). This sVCAM-1 is thought to limit 

binding of leukocytes to VCAM-1 or act as chemoattractant for leukocytes (Cook-

Mills JM 2011). 

 

VCAM-1 expression is induced by cytokines, high levels of ROS, oxidized LDL, 

high glucose, turbulent shear stress and microbial infection (Cook-Mills JM 2011). 

Figure 11 shows the small region (~100 bp) upstream of the transcriptional start site 

that is involved in cytokine-induced VCAM-1 gene expression. The VCAM-1 

promoter contains a Sp1 element (Neish AS 1995), an interferon regulatory factor-1 

(IRF-1) element (Neish AS 1995) and two tandem NF-kB binding sites (Iademarco 

MF 1992; Ahmad M 1995; Collins T 1995).  

 

Both NF-kB sites are necessary for transcription. Heterodimeric p50:p65 NF-kB 

binds to the VCAM-1 promoter and is responsible for cytokine-induced expression 
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Figure 11: VCAM-1 promoter region and transcription factor binding 
sites involved in its regulation. See text for details (Collins et al, 1995). 

of the gene (Neish AS 1995). The p65 unit acts as a powerful activator of 

transcription, while p50 seems to have more of a regulatory role (Ahmad M 1995; 

Neish AS 1995). IRF-1 can bind p50 and cooperates with NF-kB to increase VCAM-

1 expression (Neish AS 1995). Sp1 is required for a maximal cytokine-induced 

response of the promoter (Neish AS 1995). The peak of expression for VCAM-1 

protein in vitro is reached at 3-6 hours, and the expression persists for 72 hours after 

induction by cytokines (Carlos TM 1994).  

 

 

 

 

 

 

 

VCAM-1 not only functions as an adhesion molecule, but also as an “outside-in” 

signal transducer. Through intracellular Ca2+ release and subsequent ROS generation 

VCAM-1 can activate p38 MAPK, protein kinase Cα and protein tyrosine 

phosphatase 1B and therefore regulate formation of cell junctions between EC, an 

important process for leukocyte transmigration (Cook-Mills JM 2011). 

 

VCAM-1 represents an important therapeutic target in the treatment of vascular 

diseases due to its significant role during inflammation. VCAM-1 also plays 

prominent roles in embryonic development of the cardiovascular system and in 

cardiovascular diseases (Gurtner GC 1995). Various publications have shown that 

VCAM-1 is expressed in atherosclerotic lesions, and in advanced stages of 
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atherosclerosis VCAM-1 can be expressed by SMC (Collins T 1995; Iiyama K 

1999). Furthermore, siRNA or antibodies against VCAM-1 reduced experimental 

neointima formation in rodents (Barringhau KG 2004; Qu Y 2009). VCAM-1 is also 

linked to calcification of aortic stenosis during coronary artery disease (Linhartova K 

2009). 
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Hypothesis and aims of the PhD project 

EC grown on a collagen matrix produce soluble factor(s) that can inhibit angioplasty-

induced restenosis in vivo. Part of this beneficial effect seems to depend on the 

inhibition of the inflammatory reactions which are characteristic of IH development. 

Based on this observation, the conditioned medium obtained from EC grown on 

collagen particles (ECPCM) is expected to contain anti-inflammatory soluble factors. 

The goals of this PhD project are to confirm the presence of anti-inflammatory 

molecules in ECPCM, identify and/or partially purify the active factor(s), determine 

the molecular mechanism of action of the anti-inflammatory activity and evaluate its 

therapeutic potential in vivo. 
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Chapter 2: Materials and Methods 

2.1 Cell culture 

Human aortic endothelial cells (HAEC; Lonza) were grown in endothelial growth 

medium 2 (EGM2; Lonza) and used at passages 7 to 8. Human umbilical vein 

endothelial cells (HUVEC) were grown in EGM2 (Lonza) and used at passages 6 to 

7. Both lines of EC were plated in EGM2 without hydrocortisone (Lonza) and treated 

using the control collection medium (phenol red free-endothelial basal medium 

(EBM; Lonza), 0.5% fetal bovine serum (FBS), 50 µg/ml gentamicin) or ECPCM.  

All cytokines and chemokines were purchased from Peprotech as human 

recombinant proteins and used at the following concentrations: 64.1 nM PF4, 2.39 

nM IL-6, 0.1 nM TNFα, 120 pM TGF-β1. 

 

2.2 Production of cells on particles-conditioned media 

Collagen Gelfoam® powder for endothelial cell culture was prepared by wetting 1 g 

of powder (Pfizer) with 65 ml of EGM2 media, 10% FBS and by leaving it to fully 

hydrate at 37⁰C, 5% CO2 for 16-18 hours. About 5 ml (75 mg) of the gel was then 

aliquoted into 50 ml tubes (Corning). HAEC were seeded on the gel at the 

concentration of 5-7 x 105 cells/tube. Five to ten minutes after seeding 10 ml of 

EGM2, 10% FBS medium was added to each tube. The cells were cultured at 37⁰C, 

5% CO2 in EGM2, 10% FBS for 10 days, changing the medium every other day. On 

the 10th day of culture the medium was changed to regular EGM2 (containing 2% 

FBS). The cells were then grown for an additional 5 days at 37⁰C, 5% CO2, changing 
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the medium every 2 days. On day 15 of culture, one tube was use for cell counting. 

Cells on the gel were rinsed once with 10 ml HEPES buffered saline solution 

(Lonza) before addition of 5 ml collagenase type 2 (Worthington) at 37°C for 5-20 

minutes. Once the collagen particles were completely dissolved, the cells were 

centrifuged at 106 x g for 5 minutes, trypsinized, diluted with trypan blue (Sigma) 

and counted in a hemacytometer. A value equal to or higher than 1.5 x 106 cells/tube 

was considered optimal for ECPCM production.  

After evaluation of cell number, the remaining tubes were used to generate 

conditioned medium. After careful removal of the growth medium, cells on the gel 

were rinsed once with 30 ml of washing medium (phenol red free-EBM, 50 µg/ml 

gentamicin) and incubated at 37⁰C, 5% CO2 for 30 minutes. The washing medium 

was then removed and about 7 ml of collection media was added to each tube. The 

cells were cultured at 37⁰C, 5% CO2 for 24-27 hours before collection of ECPCM, 

which was then filtered (Durapore® 0.2 µm filter, Millipore), aliquoted and stored at 

-80⁰C. 

Cell-free particle-conditioned medium (PCM) was obtained by applying the above 

procedure to collagen gel only. Conditioned media from aortic SMC (passage 8; 

Lonza) and human embryonic kidney 293 (HEK293) cells were obtained by seeding 

~ 5 x 105 cells/tube on the collagen gel. The cells were then cultured for 15 days in 

their respective growth media (smooth muscle growth medium 2 (SmGM2; Lonza) 

for SMC and Dulbecco’s modified Eagle’s medium (DMEM; Gibco) + 10% FBS for 

HEK293 cells). Cell counting and washing before conditioning was performed as for 

the EC. About 7 ml of collection medium was then added to each tube for 24-27 

hours at 37⁰C, 5% CO2. SMC on particles-conditioned medium (SMCPCM) and 
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HEK293 on particles-conditioned medium (293PCM) were then collected, filtered 

(Durapore® 0.2 µm filter, Millipore), aliquoted and stored at -80⁰C. 

 

2.3 Cytokine and chemokine treatment for real-time polymerase chain reaction 

(PCR) 

HAEC and HUVEC were seeded onto 24-well plates (50,000 cells/well) and grown 

at 37⁰C, 5% CO2 in EGM2 without hydrocortisone. When ~80% confluence was 

reached, the cells were serum-starved in collection medium for 16 hours before 

treatment. Cytokines and chemokines were added to collection medium (control) or 

ECPCM, then the cells were incubated for 4 hours (PF4) or 2 hours (IL-6 and TNFα) 

at 37⁰C, 5% CO2. HAEC were co-treated with TGFβ and IL-6 or TNFα in collection 

medium for some experiments. For pre-treatment of HAEC with ECPCM, serum-

starved cells were placed in ECPCM for 2 hours, then the medium was changed to 

collection medium containing IL-6 or TNFα for another 2 hours. RNA samples were 

harvested after each treatment. 

 

2.4 RNA extraction, reverse transcription and real-time PCR 

RNA samples were harvested from each well using the RNeasy Mini spin column kit 

(Qiagen) according to the manufacturer’s instructions. The resulting total RNA was 

treated with DNAse I to remove any contaminating genomic DNA and quantified by 

optical density at 260 nm. Around 300 ng of total RNA was then used for reverse 

transcription using the QuantiTect RT kit (Qiagen) according to the manufacturer’s 

instructions. Quantitative real-time PCR was performed using specific human 
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TaqMan probes (Applied Biosystems) for E-selectin (Hs00950401_m1) and VCAM-

1 (Hs01003369_m1). A human hypoxantine-guanine phosphoribosyl transferase 

(HPRT1) TaqMan gene assay (4333768F) was used as the house-keeping gene. 

 

2.5 Real-time PCR data analysis 

The experiments were performed using triplicate samples, and the data represent the 

average of at least three experiments ± standard deviation. GraphPad Prism software 

was used for statistical analysis. All data from real-time PCR were normalized to the 

background control (collection medium) to determine E-selectin and VCAM-1 gene 

expression changes for each condition. Percentage of gene expression induction by 

PF4, IL-6 or TNFα and inhibition by ECPCM was determined by comparing the fold 

difference of chemokine/cytokine in ECPCM-treated samples to the 

chemokine/cytokine in collection medium-treated samples. Differences between 

multiple groups were compared using one-way ANOVA followed by the post hoc 

Tukey test. The criterion for statistical significance was p-value < 0.05, 0.01 or 

0.001, depending on the experiment, as specified in figure legends. 

 

2.6 ECPCM IC50 calculation 

HAEC were seeded on 24-well plates (50,000 cells/well) and grown to confluence in 

EGM2 without hydrocortisone. Cells were serum-starved in collection medium for 

16 hours before treatment.  ECPCM was serially diluted 1:2 in collection medium, 

giving a total of four concentrations of ECPCM: 100%, 50%, 25% and 12.5%. Each 

concentration, as well as the collection medium control, was tested on HAEC in the 
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presence of IL-6 or TNFα for 2 hours at 37⁰C, 5% CO2. Cells were then processed 

for gene expression analysis by real-time PCR as described above. Relative E-

selectin and VCAM-1 gene induction was expressed as percentages. GraphPad Prism 

software was used to produce a dose-response curve and calculate the IC50 value of 

ECPCM for each gene and cytokine treatment. 

 

2.7 Electron microscopy 

HAEC were seeded on a Gelfoam® sponge at the concentration of 5 x 105 

cells/sponge. Two hours after seeding 10 ml of EGM2, 10% FBS medium was added 

to each tube. The cells were cultured at 37⁰C, 5% CO2 in EGM2, 10% FBS for 10 

days, changing the medium every other day. On the 10th day of culture the medium 

was changed to regular EGM2 (containing 2% FBS). The cells were then grown for 

an additional 5 days at 37⁰C, 5% CO2, changing the medium every 2 days. On day 

15 of culture, one sponge was use for cell counting. On day 16 the remaining 

sponges were immersion fixed overnight in 3% glutaraldehyde and 1% 

paraformaldehyde buffered to pH 7.4 with 0.08 M sodium cacodylate/HCl buffer. 

The sponges were rinsed twice for 10 minutes with cacodylate buffer, post-fixed in 

1% aqueous osmium tetroxide for 2 hours and then dehydrated by passage through 

ascending alcohols (50%, 70%, 90% and 100% ethanol, 10 minutes each). Gels were 

then immersed in propylene oxide (twice for 15 minutes) and infiltrated overnight 

with a 1:1 mixture of propylene oxide/araldite CY212. After an additional infiltration 

of 6 hours with the full resin, samples were embedded and cured overnight at 60°C.  

Semi- and ultra-thin sections were cut using a diamond knife of the appropriate 

grade. Semi-thin sections were stained with a 1% mixture of toluidine blue-borax in 
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50% ethanol, and ultra-thin sections sequentially contrasted with lead citrate for 

imaging in a JEOL 1010 TEM operating at 80kV. Images were captured using a 

Gatan Orius CCD camera and the Digital Micrograph software.  

 

2.8 Immunofluorescence 

For the characterisation of EC growing on collagen particles, HAEC were seeded on 

Gelfoam® powder and grown for 13 to 14 days as for ECPCM production. For 4',6-

diamidino-2-phenylindole (DAPI) staining, samples were fixed with 4% 

paraformaldehyde (PFA) for 20 minutes at room temperature, then incubated with 

3µM DAPI (Invitrogen) in PBS for 5 minutes at room temperature and rinsed once 

with PBS. The Live/Dead Cell staining kit (Abcam) was used following 

manufacturer’s instructions to visualise live EC on collagen particles. After each 

staining, a small amount of particle was mounted on glass slide with cover slip for 

imaging.  

Glass coverslips were placed in a 24-well plate and covered with 1% Type B bovine 

collagen (Sigma) for 20 minutes at room temperature. Collagen was then removed 

and the coverslips allowed to dry at room temperature. EC were seeded on the 

coverslips and grown to confluence.  Cells were then serum-starved in collection 

medium for 16 hours before being treated with 64.1 nM PF4, 2.39 nM IL-6 or 0.1 

nM TNFα, in collection media (control) or ECPCM, for 5, 10 and 30 minutes and 1 

or 2 hours at 37⁰C, 5% CO2.  For analysis of phospho-Stat3, p65 and PECAM-1, 

cells were fixed in 4% PFA for 20 minutes at room temperature, washed three times 

in phosphate-buffered saline (PBS; 5 minutes per wash) and permeabilized with ice-

cold methanol (MeOH) for 10 minutes at -20⁰C. Cells were washed again three times 
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in PBS before addition of blocking buffer (5% bovine serum albumin (BSA), 0.3% 

Triton X100 in PBS) for 1-2 hours at room temperature. Immunofluorescence 

staining was performed in dilution buffer (1% BSA, 0.3% Triton X100 in PBS) for 

16-18 hours at 4⁰C using the following primary antibodies: rabbit anti-phospho-Stat3 

(1:100; Cell Signalling), rabbit anti-p65 (1:100; Cell Signalling), sheep anti-

PECAM-1 (1:40; R&D Systems). After three washes in PBS (5 minutes each), cells 

were incubated with the secondary antibodies AlexaFluor® 594 donkey anti-sheep 

and 488 donkey anti-rabbit (1:600; Invitrogen) for 1 hour at room temperature. Cells 

were washed three times in PBS (5 minutes each) before staining with 3µM DAPI 

(Invitrogen) for 3 minutes at room temperature. Cells were washed three times in 

PBS and once in water, then coverslips were mounted with ProLong® Gold anti-fade 

reagent (Invitrogen). Slides were analysed with an Olympus BX51 microscope and 

pictures were taken using the 60X objective. 

For E-selectin staining, HAEC were treated for 6 hours in collection medium 

(control) or ECPCM containing PF4, IL-6 or TNFα.  Cells were fixed in a 1:1 

mixture of acetone:methanol for 15 minutes at -20°C. After three washes in PBS, 

blocking buffer was added to the cells for 2 hours at 4°C. Cells were then incubated 

with primary antibody mouse anti-E-selectin (1:50; R&D Systems) in blocking 

buffer for 16-18 hours at 4⁰C. After three washes in PBS (5 minutes each), cells were 

incubated with the secondary antibody AlexaFluor® 488 donkey anti-mouse (1:600; 

Invitrogen) for 30 minutes at room temperature. Incubation with the secondary 

antibody only was also performed as a control for unspecific staining. The cells were 

washed three times in PBS (5 minutes each), then the coverslips were mounted with 

ProLong® Gold anti-fade reagent (Invitrogen). Slides were analysed with an 

Olympus BX51 microscope and pictures were taken using the 20X objective. 
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2.9 Fluorescence-activated cell sorting (FACS) 

HAEC were seeded on a 6-well plate (4-5 x 105 cells/well) and grown to confluence 

in EGM2 without hydrocortisone. Cells were serum starved in collection medium for 

16 hours before being treated with 0.1 nM TNFα or 2.39 nM IL-6 in collection 

medium (control) or ECPCM for 6 hours at 37⁰C, 5% CO2.  Cells were washed twice 

with ice-cold PBS and trypsinized at room temperature for 10 minutes. Cells were 

then transferred to a 1.5 ml tube, centrifuged at 400 x g for 1 minute, and 

resuspended in PBS with 10% goat serum and 1% BSA at a volume of 1 x 106 

cells/100 μl. The cells were then incubated for 30 minutes at 4°C on an end-to-end 

rotator. After two washes in PBS with 1% BSA, cells were stained with 

phycoerythrin-conjugated anti-VCAM-1 (0.125 μg/sample; eBioscience) or 

phycoerythrin-conjugated anti-E-selectin (0.5 μg/sample; eBioscience) in PBS with 

10% goat serum and 1% BSA for 30 minutes at 4°C on an end-to-end rotator. Cells 

were washed twice in PBS with 1% BSA, centrifuged at 400 x g for 5 minutes and 

resuspended in 200 μl of PBS for immediate FACS analysis. Stained samples were 

compared to negative unstained controls (which underwent the same preparation, 

with the exclusion of the antibody incubation step). A FACScalibur (Becton 

Dickinson) was used for the analysis. 

 

2.10 Cell viability assay 

For the trypan blue assay, HAEC were seeded onto 24-well plates (50,000 cells/well) 

and grown at 37⁰C, 5% CO2 in EGM2 without hydrocortisone. For the calcein assay, 

HAEC were seeded on collagen-coated coverslips (50,000 cells/well) in 24-well 

plates as for immunofluorescent staining and grown at 37⁰C, 5% CO2 in EGM2 
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without hydrocortisone. When ~80% confluence was reached, the cells were serum-

starved in collection medium for 16 hours and then incubated in collection medium 

(control) or ECPCM with or without IL-6 or TNFα for 2, 4 and 6 hours at 37⁰C, 5% 

CO2. Cell viability was determined at time 0 (starting time of treatments) and at each 

time point using the trypan blue or the calcein assay. For the trypan blue assay, cells 

in each well were trypsinized and then resuspended in 1ml of PBS + 5% FBS. The 

cell suspension was mixed 3:1 with trypan blue (Sigma) and cells were counted using 

a hemocytometer to determine the total number of live cells/ml. For the calcein 

assay, medium was removed, 250µl of 2 µM calcein AM (Invitrogen) in PBS were 

added to each well and then cells were incubated at 37⁰C, 5% CO2 for 10-20 minutes 

in the dark. Using a BX51 microscope, images of three non-overlapping fields of 

each well, on duplicate coverslips were taken at a magnification of 10X. Cells were 

counted using the automated cell counting software Image Pro Plus (Media 

Cybernetics). Cell viability at each time point was expressed as percentage of the 

total number of cells in control samples (time 0). 

 

2.11 U937 attachment assay 

For the fluorescence analysis, HAEC were seeded onto 96-well plates (5,000 

cells/well) and grown at 37⁰C, 5% CO2 in EGM2 without hydrocortisone. For the 

counting of adherent cells, HAEC were seeded on collagen-coated coverslips (50,000 

cells/well) in 24-well plates as for immunofluorescent staining and grown at 37⁰C, 

5% CO2 in EGM2 without hydrocortisone. When confluence was reached, the cells 

were serum-starved in collection medium for 16 hours and then incubated in 

collection medium (control) or ECPCM with or without 2.39 nM IL-6 or 0.1 nM 
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TNFα for 5 hours at 37⁰C, 5% CO2. U937 cells (passage 4 to 7) were stained with 2 

μM calcein AM (Invitrogen) in PBS for 20 minutes at 37⁰C, 5% CO2 .and rinsed 

once in PBS before use. After 5 hours of cytokine treatment, the media on HAEC 

was removed and U937 cells resuspended in EGM2 without hydrocortisone were 

added on top of the EC (30,000 cells/well on the 96-well plate and 300,000 cells/well 

on the 24-well plate). After 30 minutes at 37⁰C, 5% CO2 the media was removed and 

EC were washed three times with PBS. Fluorescence quantification was performed 

immediately on the 96-well plate using a Modulus™ microplate reader (Turner 

Biosystems) (excitation at 490 nm; emission at 510-570 nm). Counting of the U937 

cells attached to HAEC was performed using an Olympus BX51 microscope and a 

10X objective: images of three non-overlapping fields of each well, on triplicate 

coverslips, were taken. The number of adherent U937 cells was determined using the 

automated cell counting software Image Pro Plus (Media Cybernetics). Variation in 

the number of cells was expressed as fold increase compared to the untreated control 

(collection medium). Differences between treatments were compared using Graph 

Pad software and one-way ANOVA followed by the post hoc Tukey test. The 

criterion for statistical significance was p-value < 0.05. 

 

2.12 Treatment of ECPCM with proteinase K, RNase, agarose and heparin-

conjugated agarose beads 

For the proteinase K treatment 1 ml of ECPCM was heated at 95°C for 15 minutes. 

Approximately 0.2 units (5.5 mg) of the enzyme bound to agarose beads (Sigma) 

were added to the sample, which was then incubated at 55°C for 16 hours. The 

enzyme was removed from the medium by centrifugation at 2660 x g for 10 minutes 
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at 4°C. RNase A/T1 mix (Fermentas) was used to eliminate single-strand RNA from 

ECPCM. For this treatment, 1 ml of conditioned medium was incubated with 20 µl 

of the enzyme mix at 37°C for 1 hour. After each treatment the ECPCM was cooled 

on ice and then stored at 4°C until use. 

About 2 ml of agarose or heparin-agarose beads (Sigma) were washed twice with 

PBS and then incubated with 4 ml of ECPCM or collection medium at 4°C for 16 

hours with gentle rotation. The beads were centrifuged at 106 x g for 3 minutes and 

the supernatant (agarose- or heparin-unbound collection medium or ECPCM) 

recovered and stored at 4°C until use. 

 

2.13 Coomassie blue polyacrylamide gel staining 

Forty µl of proteinase K-treated or untreated ECPCM were mixed 1:5 with a 

reducing lane marker sample buffer (Thermo Scientific) and boiled at 95⁰C for 5 

minutes. Samples were loaded on a 7.5% polyacrylamide gel for SDS-PAGE. The 

gel was then fixed for 30 minutes in 50:10:40 methanol:acetic acid:H2O and stained 

another 30 minutes in Coomassie blue working solution (concentrated Coomassie 

blue solution (2 g brillant blue in 50 ml methanol + 6 ml acetic acid) diluted 3:58 in 

5:40:10 methanol:acetic acid:H2O). De-staining was performed in 45:10:45 

methanol:acetic acid:H2O until no background staining was observed. 
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2.14 Griess Reaction 

Griess reagent kit for nitrite determination was purchase from Invitrogen and used 

according to manufacturer’s instructions to calculate NO levels in collection 

medium, ECPCM, SMCPCM, 293PCM and PCM. 

 

2.15 Enzyme-linked immunosorbent assay (ELISA) 

ELISA kits for TGF-β1, IL-10, cAMP (all from R&D Systems) and PGI2 

(MyBioSource) were used, according to the manufacturer’s instructions, to determine 

concentrations of these molecules in collection medium, ECPCM, SMCPCM, 

293PCM and PCM.  

An ELISA kit (eBioscience) was also used to evaluate the total and phosphorylated 

Stat3 levels in protein extracts. For this purpose HAEC were seeded on 6-well plates 

(4-5 x 105 cells/well) and grown to confluence in EGM2 without hydrocortisone. 

Cells were serum-starved in collection medium for 16 hours before being treated 

with 2.39 nM IL-6 in collection medium or ECPCM for 30 minutes, then ELISA was 

performed according to the manufacturer’s instructions. 

 

2.16 Dexamethasone and RU486 treatment 

HAEC were seeded on 24-well plates (50,000 cells/well) and grown to confluence in 

EGM2 without hydrocortisone. Cells were serum-starved in collection medium for 

16 hours before treatment. Dexamethasone (DEX) (Sigma) was resuspended in 

ethanol and used at a concentration of 100 nM; RU486 (Sigma) was also dissolved in 
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ethanol and used at a concentration of 1 µM. HAEC were treated with each drug or a 

combination of the two in collection media (control) or ECPCM with IL-6 or TNFα 

for 2 hours at 37⁰C, 5% CO2 and processed for gene expression analysis by real-time 

PCR as described above. A control treatment of 1 µl/ml ethanol in collection medium 

with IL-6 or TNFα was also included in the experiment to assess the effect of the 

solvent on gene expression. 

 

2.17 Resolvins treatment 

HAEC were seeded onto 24-well plates (50,000 cells/well) and grown to confluence 

in EGM2 without hydrocortisone. Cells were serum-starved in collection medium for 

16 hours before treatment. Human resolvin D2 and resolvin E1 (Cayman Chemical) 

were resuspended in dimethyl sulfoxide (DMSO) and used at concentrations of 10 

nM and 50 nM. HAEC were treated with resolvin D2 or -E1 in combination with IL-6 

or TNFα in collection medium (control) or ECPCM for 2 hours at 37⁰C, 5% CO2. 

Cells were then processed for gene expression analysis by real-time PCR as 

described above. A control treatment of 1 µl/ml DMSO in collection medium with 

IL-6 or TNFα was also included in the experiment. 

 

2.18 Protein extraction and western blot 

EC were seeded onto 6-well plates (4-5 x 105 cells/well) and grown to confluence in 

EGM2 without hydrocortisone. Cells were serum-starved in collection medium for 

16 hours before being treated with 2.39 nM IL-6 or 0.1 nM TNFα in collection 

medium (control) or ECPCM for 30 minutes or 6 hours –depending on the 
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experiment- at 37⁰C, 5% CO2. Cellular proteins were then extracted from each well. 

Cells were washed twice with PBS, scraped and centrifuged at 2660 x g for 1 minute. 

Pellets were resuspended in about 100 µl of radioimmunoprecipitation assay buffer 

(RIPA buffer; Sigma) with protease and phosphatase inhibitors (Thermo Scientific), 

left on ice for 10 minutes and cleared at 2820 x g for 10 minutes at 4⁰C. Supernatant 

from each sample was collected, mixed 1:5 with a reducing lane marker sample 

buffer (Thermo Scientific) and heated at 98⁰C for 5 minutes. SDS-PAGE was 

performed by loading 25-40 µl of each sample into a well in a 10% polyacrylamide 

gel. Proteins were then transferred onto a Hybond membrane. The membrane was 

incubated in a blocking solution (Tris-buffered saline (TBS) with 0.5% Tween and 

5% BSA or non-fat dehydrated milk) at room temperature for 2 hours before 

incubation with the appropriate primary antibody dilution in blocking solution at 4⁰C 

for 16-18 hours. The following primary antibodies were used: mouse anti-VCAM-1 

(1:100, Santa Cruz Biotechnology); rabbit anti-E-selectin (1:200, Santa Cruz 

Biotechnology); mouse anti-β-actin (1:3000; Sigma); mouse anti-phospho-tyrosine 

(1:2000; Cell Signaling); mouse anti-annexin A2 (1:1000; AbCam); mouse anti-

phospho-annexin A2 (1:1000, R&D Systems); rabbit anti-IkBα (1:5000; AbCam); 

rabbit anti-Stat3 (1:1000; Cell Signaling); rabbit anti-phospho-Stat3 (1:12,000; 

AbCam). After primary antibody incubation, membranes were washed at least three 

times for 10 minutes in TBS 0.5% Tween, then incubated for 1 hour at room 

temperature with the appropriate secondary antibody conjugated to horseradish 

peroxidase (GE Healthcare) diluted 1:1000 in blocking solution. Blots were 

developed using the GE Healthcare ECL+ System according to the manufacturer’s 

instructions. Quantification of protein bands was performed using ImageJ software: 

for each sample, the density value of E-selectin and VCAM-1 bands was normalized 
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to the value of the β-actin loading control band and protein levels were expressed as 

relative density. 

 

2.19 Phospho-tyrosines and mass spectrometry analysis 

HAEC were seeded, grown and treated in collection medium or ECPCM with or 

without IL-6 as for the western blot analysis. The protein extract was divided in two 

and run simultaneously in the same chamber in separate polyacrylamide gels of the 

same percentage (10%). One gel was used for western blot anti-phospho-tyrosine 

analysis, whilst the other underwent coomassie blue staining. The anti-phospho-

tyrosine blot was used to identify the differentially phosphorylated bands in ECPCM 

samples on the coomassie blue-stained gel. These bands were cut from the gel (using 

a clean blade for each one) and sent for mass spectrometry identification. Protein 

isolation from the gel and mass spectrometry analysis were performed by the 

proteomic facility at the UCL Institute of Child’s Health, which uses an ESI-QTOF 

mass spectrometer. 

 

2.20 Inhibition of NF-kB and Stat3 

BAY 1170-85 (Enzo Life Sciences) and Stattic (Santa Cruz) were used to inhibit NF-

kB and Stat3 activation, respectively. Each drug was dissolved in DMSO and used at 

a concentration of 2 µM.  

For the western blot analysis, HAEC were seeded onto 6-well plates (4-5 x 105 

cells/well) and grown to confluence in EGM2 without hydrocortisone. Cells were 
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serum-starved in collection medium for 16 hours before treatment. For NF-kB 

inhibition, HAEC were treated for 30 minutes with TNFα in collection medium with 

or without BAY 1170-85 or DMSO as vehicle control. To block Stat3 activation, 

HAEC were pre-treated for 1 hour with Stattic or DMSO in collection medium, then 

treated for another 30 minutes with IL-6 in collection medium with Stattic or DMSO 

as vehicle control. Protein extraction was performed after each treatment as 

described above.  

To determine the effect of the inhibitors on E-selectin and VCAM-1 gene expression, 

HAEC were seeded onto 24-well plates (50,000 cells/well) and grown to confluence 

in EGM2 without hydrocortisone. Cells were serum-starved in collection medium for 

16 hours before being treated for 2 hours with either TNFα in collection medium, 

with or without BAY 1170-85 or DMSO, or IL-6 in collection medium, with or 

without Stattic or DMSO. RNA extraction, reverse transcription and real-time PCR 

were then performed as described above. All treatments were performed at 37⁰C, 5% 

CO2. 

 

2.21 mRNA stability assay 

HAEC were seeded onto 24-well plates (50,000 cells/well) and grown at 37⁰C, 5% 

CO2 in EGM2 without hydrocortisone. When cells reached 80% confluence they 

were serum-starved for 16 hours in collection medium. HAEC were pre-treated for 2 

hours with IL-6 or TNFα in collection medium before changing the medium to 

collection medium (control) or ECPCM with IL-6 or TNFα and 3 µg/ml of 

actinomycin D (Sigma). Cells were treated for 30 minutes, 1, 2 or 4 hours at 37⁰C, 
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5% CO2 and processed for gene expression analysis by real-time PCR as described 

above. 

 

2.22 Chromatin immunoprecipitation (ChIP) 

HUVEC were seeded onto 10 cm dishes (6 x 106 cells/dish) and grown to confluence 

in EGM2 without hydrocortisone. Cells were serum-starved in collection medium for 

16 hours before being treated with 0.1 nM TNFα in collection medium (control) or 

ECPCM for 1 hour at 37⁰C, 5% CO2. Three 10 cm dishes were used for each 

treatment and cells were pooled together in one tube after scraping (see below). After 

cytokine treatment HUVEC were processed for chromatin fixation and extraction 

using the ChIP-IT Express kit (Active Motif) according to the manufacturer’s 

instructions. Briefly, cells were fixed with 1% formaldehyde in washing medium 

(phenol red-free EBM, 50 µg/ml gentamicin) for 10 minutes at room temperature. 

The fixation reaction was stopped by adding the Glycine Stop-Fix Solution for 5 

minutes at room temperature. Cells were then collected by scraping, centrifuged for 

10 minutes at 660 x g at 4°C and lysed in 500 µl Lysis Buffer for 30 minutes on ice. 

To ensure cell lysis, cells were further homogenized with four strokes through a 32 

gauge needle. Nuclei were pelleted by centrifugation for 10 minutes at 2660 x g at 

4°C and then resuspended in 350 µl of Shearing Buffer. Sonication was performed 

on ice using a Sonopuls HD2070 ultrasonic homogenizer (Bandelin). Samples were 

subjected to four rounds of 11-second pulses at 30% power, with a 30-second rest on 

ice between pulses. Sheared chromatin was centrifuged for 10 minutes at 20820 x g 

at 4°C. Fifty µl of supernatant were used to assess the efficiency of the DNA 
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shearing and determine the DNA concentration (see below). The remaining 

chromatin was aliquoted and stored at -80°C until use in the immunoprecipitation.  

DNA clean-up to evaluate DNA shearing and concentration was performed using 

phenol/chloroform extraction according to the ChIP kit manufacturer’s instructions. 

DNA concentration was determined by measuring absorbance at 260 nm with a 

spectrophotometer. 

Immunoprecipitation was performed using ~10 µg of DNA in all ChIP reactions and 

4 µl of anti-p65 antibody (Active Motif) or control rabbit IgG (Cell Signaling). 

Samples were immunoprecipitated for 16-18 hours at 4°C on an end-to-end rotator. 

Final washing and DNA elution steps were performed according to the ChIP kit 

manufacturer’s instructions. The obtained DNA was further purified using the 

Chromatin IP DNA Purification kit (Active Motif) and then used in real-time PCR. 

The primers and TaqMan probes used in the PCR reaction were designed by and 

purchased from Integrated DNA Technologies. The sequences are reported in Table 

1. 

E-selectin promoter 

Forward 5'-TTG TCC ACA TCC AGT AAA GAG G-3' 

Reverse 5'-AGG CAT GGA CAA AGG TGA AG-3' 

Probe 5'-/56-FAM/CCC CAA TGG CAT CCA AAA ACT TTC CC/36-
TAMSp/-3' 

VCAM-1 promoter 

Forward 5'-TTA ATA GTG GAA CTT GGCTGG G-3' 

Reverse 5'-GGA GTG AAA TAG AAA GTC TGT GC-3' 

Probe 5'-/56-FAM/TGT TGC AGA GGC GGA GGG AAA T/36-
TAMSp/-3' 

 Table 1: Primers and probes used for ChIP analysis of the E-selectin and VCAM-1 
promoters. 
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The immunoprecipitated DNA was quantified by creating a standard curve with 

known concentrations of the input DNA used in the ChIP analysis. Binding of the 

transcription factor to the specific promoter was calculated as fold-enrichment of the 

ChIP samples relative to the IgG samples. 

 

2.23 In vivo experiments 

Zymosan intra-peritoneal (IP) injection was performed in C57/BL6 female mice, 10-

12 weeks old (Harlan laboratories) to induce peritonitis. 0.5 mg of zymosan (Sigma) 

resuspended in 1 ml of either collection medium or ECPCM were used for the 

treatment. After 1, 2, 4, 6, 8, 16, 18 or 24 hours mice were sacrificed and a peritoneal 

lavage was performed: a horizontal skin incision was made 1/3 of the distance from 

the anus and 5 ml of ice-cold PBS, 3% FBS were injected in the peritoneal cavity 

after the peritoneum had been lifted up to prevent bowel perforation. After about 1 

minute of gentle abdominal massage the lavage liquid was recovered with a syringe. 

Inflammatory cells in the lavage were centrifuges at 100 x g for 5 minutes and 

resuspended in 10 ml PBS. Trypan blue exclusion cell counting was then performed. 

The cell number was adjusted to the volume recovered from each animal after 

peritoneal lavage to express the total cell number/ml. 

The leukostasis assay was performed by perfusion-labelling with fluorescein 

isothiocyanate (FITC)-coupled concanavalin A lectin (Con A) (Vector). Deep 

anaesthesia was induced using ketamine/xylazine, then the chest cavity was opened 

and a 27 G cannula was introduced into the left ventricle. After injection of 10 ml of 

PBS to remove erythrocytes and non-adherent leukocytes, 10 ml of FITC-conjugated 

Con A lectin were perfused. The eyes were then enucleated and the retinas dissected 
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and flat-mounted. Retinas were imaged using a fluorescence microscope (Olympus 

BX51) and the total number of Con A-stained adherent leukocytes per retina was 

determined. 

Experiments were performed on JR5558 mice on a C57Bl/6 background kept as a 

homozygous line (Jackson Laboratory). Animals were kept on a 12-hour light–dark 

cycle and all experiments were conducted in accordance with the ARVO Statement 

for the Use of Animals in Ophthalmic and Vision Research. At the age of postnatal 

day (P) 22 mice were assessed for CNV lesions through fundus fluorescein 

angiography. The pupils of the mice were dilated with 2.5% tropicamide (Bausch & 

Lomb), and 0.2 ml of 2% fluorescein sodium (Bausch & Lomb) diluted in water was 

administered by intraperitoneal injection. Fluorescein angiograms were obtained at 

early (~90 seconds after fluorescein injection) and late (~6 minutes after injection) 

phases of dye transit using a Kowa Genesis-Df fundus camera (Kowa). The animals 

received daily intraperitoneal administration of 0.5 ml of ECPCM for 7 days, from 

P22 to P28. At the age of P29 CNV lesions were analysed again by fluorescein 

angiography. The area of the lesions was calculated using Photoshop software: for 

each FA image, the CNV lesions were circled using the lasso tool and the area 

(expressed in pixels) was measured and recorded using the measurement log. 

Measurements of all CNV lesions from each eye were added together to provide a 

total area of CNV per retina. Macrophage quantification was performed by direct cell 

counting on masked samples: three CNV lesions were analysed on three separate 

eyes for each group, for a total of nine images for each treatment. Statistical analysis 

to compare the lesions’ areas and the macrophages number in PBS- and ECPCM-

treated mice was performed with GraphPad software using the Mann-Whitney t- test. 
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On P30 mice were euthanized in a CO2 chamber. Eyes were enucleated and fixed 

with 4% PFA for 16-18 hours. Eyes were then dissected to isolate the eyecup 

(consisting of the RPE, choroid and sclera), permeabilized in 0.5% Triton X-100 for 

at least 2 hours at room temperature and incubated in blocking buffer (5% BSA in 

PBS) for another 2 hours. Staining was performed by incubating the eyecups for 16 

or 18 hours at 4°C with rabbit anti-PECAM-1 and rat anti-F4/80 primary antibodies 

(both at 1:300; Abcam) in 0.5% Triton X-100 with 5% BSA. AlexaFluor® 488-

conjugated goat anti-rabbit and AlexaFluor® 594-conjugated goat anti-rat secondary 

antibodies (1:600; Invitrogen) in 0.5% Triton X-100 with 5% BSA were then applied 

for 1½ hours at room temperature. Images were obtained with an Olympus BX51 

microscope using the 20X objective. 
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Chapter 3: Results 
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Chapter 3.1: Characterisation of endothelial cells grown on 

collagen particles 

3.1.1 Establishment of optimum culturing conditions for endothelial cells on 

collagen particles 

Before starting the investigation of ECPCM anti-inflammatory effects, the optimal 

culturing conditions for EC grown on collagen particles were established, including 

the amount of FBS in the culture media, and the optimum length of time to allow the 

cells to grow to confluency and thus become quiescent.  

Preliminary data from Pervasis showed that growth of HAEC on collagen particles in 

standard EGM2 medium did not produce the desirable cell yield in three weeks, as 

less than 1.5 million cells were produced per culture (data not shown). In order to 

improve the growth profile, additional fetal bovine serum (FBS) was added. HAEC 

were cultured on collagen particles in 50 ml tubes with growth medium containing 

2% FBS (standard EGM2), 5% FBS, 7% FBS and 10% FBS for 14 days. Cell counts 

were performed at days 5, 8, 12 and 14 of culture. The resulting growth curves for 

each condition are shown in figure 12. In general, media containing higher 

percentages of FBS promoted greater cell growth; by day 14 the 10% FBS cultures 

yielded more than 2.5 x 106 cells, compared to less than 1 x 106 cells in the 2% FBS 

condition. The 5% and 7% FBS cultures had cell yields higher than that of the 2% 

cultures, but still lower than the 10% condition. Medium containing 10% FBS was 

subsequently used to support the robust growth of HAEC on collagen particles.  
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Figure 12: Viable HAEC number per tube at various days of culture on collagen 
particles using EGM2 medium supplemented with different concentrations of 
FBS. The experiment was repeated three times. 

 

 

 

 

 

 

 

Since experiments on EC using conditioned media are usually performed in standard 

EGM2 medium (2% FBS) and/or EGM2 with only 0.5% FBS, the amount of FBS in 

the culture medium must be reduced from 10% to 2% before the EC/matrix culture 

can be used for ECPCM production. To facilitate this change, the optimal culture 

time with medium containing 10% FBS before switching to regular EGM2 media 

with 2% FBS was determined. Cells were transitioned from 10% FBS to regular 2% 

FBS EGM2 media at days 6, 8 and 10; then cells were cultured to day 13 in standard 

EGM2. The effects of the medium switch on EC growth and on growth factor levels 

were determined by counting the number of viable cells at each time point and by 

measuring transforming growth factor beta 1 (TGF-β1) concentration in the 

conditioned medium on the last day of culture. Figure 13 and table 2 show that 

medium switch on day 10 provided the best cell growth and appropriate TGF-β1 

concentration at about 500 pg/mL. A minimum TGF- β1 concentration of 300 pg/mL 

has been established by Pervasis to be one of the criteria for establishing a mature 

and quiescent EC/matrix culture ((Nugent HM 2009). Therefore, for subsequent 

studies, EC/particles were cultured in medium containing 10% FBS for the first 10 
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days and 2% FBS for an additional three days prior to generating ECPCM.  Numbers 

of viable cells and levels of TGF-β1 were determined from a selected tube from each 

lot of EC/particle cultures on day 14 to confirm the consistency of the cultures prior 

to ECPCM production. 

 

 

 

 

 

 

 

 

 

 

 

 D6 Day 13 D8 Day 13 D10 Day 13 

TGF-β1 
(pg/ml) 451 504 552 

 

 

3.1.2 Phenotype characterisation of endothelial cells growing on collagen 

particles 

In order to study the phenotype of EC growing on collagen particles, the cellular 

morphology was analysed by immunocytochemistry and electronic microscopy 

(EM). 

Table 2: Average concentration of TGF-β1 in culture medium at day 13 after 
switching from 10% to 2% FBS at day 6, day 8 or day 10 (D6, D8, D10). 

Figure 13: Number of viable cells in EC/particle cultures grown in 
EGM2 containing 10% FBS for 6 days, 8 days or 10 days before 
changing to EGM2 medium containing 2% FBS. 
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HAEC were grown on collagen particles for 14 days, and then stained with DAPI 

(nuclear stain) or a live/death kit to visualize the growth pattern of EC on the 3-D 

matrix. Figure 14 shows that HAEC growing on collagen particles were abundant, 

alive and well-distributed throughout the matrix. Cells appeared confluent and 

organized into a loosely connected network that followed the particle surface to give 

total coverage; however, there is no strong evidence of any tube-like vascular 

structures within the matrix and therefore no obvious evidence of angiogenesis by 

EC in the 3-D particle culture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Collagen particles 
seeded with HAEC after 13 
days of culture. A) light 
microscopy image; B) viable 
EC (green) after staining with 
the live/death kit; C) DAPI 
nuclear staining (blue). 
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Collagen particles seeded with EC have a soft, jelly-like consistency; their very low 

density prevented any examination by EM. However, the collagen sponges from 

which the collagen particles are made have a matrix that is significantly denser. 

Collagen sponges were therefore used to grow EC and were subsequently processed 

for EM analysis. The collagen sponge and the particles are made of identical 

materials and provide a similar 3-D environment for EC growth; therefore the sponge 

represents a valid surrogate to study morphology of EC grown on a 3-D collagen 

matrix.  

HAEC were seeded on collagen sponges, grown for 14 days as on the particles and 

then processed for EM analysis. Figure 15 shows that EC largely adhered to the 

surface of the collagen matrix, and spread by following the contour of the matrix. 

Areas of wrinkled cell membrane that did not contact the matrix were visible (figure 

15-B, C and E), and regions of apparent collagen degradation were also observed 

(figure 15-A, B and D); however, these phenotypes were observed only infrequently. 

In other areas, production of a basement membrane and ECM was evident (figure 15-

G). Although in most images only a single EC was visible, examination of serial EM 

images demonstrated that EC in this environment extend protrusions to contact other 

EC in their proximity (figure 15-C, left corner), forming a network structure similar 

to that observed by light microscopy of collagen particles. Formation of tube-like 

structures resembling blood vessels was not observed. Overall, EM analysis shows 

that HAEC grown on a collagen matrix formed connecting networks, but not vessel-

like luminal structures, and this unique morphology is significantly different from 

that of HAEC grown on tissue culture plastic, as cells cultured on plastic flatten and 

form a continuous sheet.   
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Figure 15: EM images of HAEC grown on collagen sponge for 14 days (10 days in 
medium containing 10% FBS followed by 4 days in medium containing 2% FBS). 
D-G are higher magnifications of A. 
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3.1.3 Characterisation of endothelial cells grown on collagen particles: 

conclusions and discussion 

As mentioned in the introduction, normal EC are usually in a quiescent state that 

promotes vascular homeostasis. Endothelial quiescence is achieved and maintained 

through cell contact between confluent EC and through the production and release of 

a wide array of anti-inflammatory, anti-thrombotic and anti-coagulant factors 

(Davies MG 1993; Sumpio BE 2002; Pober JS 2007). Since ECPCM is obtained 

from quiescent EC, it should contain anti-inflammatory activity, activity that could 

account for the therapeutic effects of Vascugel® in supressing IH and might also 

suppress inflammatory neovascularization in the eye.  

The results presented in this section show that collagen particles in a 50 mL tube 

provide an effective culturing system for the growth of EC and the production of 

ECPCM. HAEC grown on this 3-D matrix for up to 14 days were abundant and 

viable when EGM2 medium supplemented with 10% FBS was used for the first 10 

days, and then switched to regular EGM2 with 2% FBS for the last 3-4 days of 

culture. EC displayed an interesting network morphology, with long cytoplasmic and 

plasma membrane extensions allowing interaction with neighbouring cells, that 

covered the available surface of collagen matrix. The culture reached 

confluency/quiescence in 13 days.  Further evidence of the quiescent nature of the 

EC/particles was provided by the high levels of TGF-β1 detected in the conditioned 

media on day 13. 

Over the past three decades 3-D matrices of various types have been used for in vitro 

studies of angiogenesis, a process in which new vessels develop from the pre-

existing vasculature. These methods included Matrigel, a mixture of ECM and 
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basement membrane proteins; fibrin clots; and co-culture of EC with fibroblasts or 

other perivascular cells, with or without addition of ECM (Staton CA 2004). In these 

assays the 3-D matrix offers physical support to the EC, allowing the EC to form 

capillary-like tubule structures in a process that resembles the angiogenic events that 

take place in vivo. EC engaged in angiogenesis have different proliferation, 

migration, rearrangement and differentiation properties compared to quiescent EC 

(Staton CA 2004). The fact that no tube-like structures were observed in the images 

obtained from HAEC grown on collagen particles suggests that EC were not 

involved in an angiogenic program, but rather formed a network and became 

quiescent, in this 3-D culture system. 

A successful method for culturing HAEC on collagen particles was established. EC 

in this system grow as a complex cellular network and achieve a quiescent state. This 

culturing method was used to generate EC/particle cultures for the production of 

ECPCM containing anti-inflammatory activity. 
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Chapter 3.2: Demonstration of ECPCM anti-inflammatory 

activity in vitro 

3.2.1 ECPCM inhibits E-selectin and VCAM-1 expression in EC in vitro 

In order to study the anti-inflammatory activity of ECPCM, an in vitro assay based 

on gene expression analysis was developed. Conditions of the assay were optimized 

by testing different kinds of primary human endothelial cells (aortic, microvascular 

and umbilical vein EC), different cytokines at various concentrations and different 

durations of treatment. The expression of various genes known to be involved in 

inflammation was tested under these conditions. The optimal in vitro assay was 

obtained by using HAEC or HUVEC stimulated with 64.1 nM PF4 for 4 hours or 

with 2.39 nM IL-6 or 0.1 nM TNFα for 2 hours (data not shown). Among the genes 

tested, E-selectin and VCAM-1 showed the highest induction by each of the three 

chemokines/cytokines, therefore they were chosen as inflammation markers in 

subsequent real-time PCR analysis.  

Although IH affects both arteries and veins (see Introduction), most clinical cases are 

caused by angioplasty to treat atherosclerosis in coronary arteries and large arteries 

in peripheral artery disease (Nugent HM 1999; Newby AC 2000; Collins MJ 2012). 

In addition, this thesis is based on preliminary data obtained from HAEC in culture 

and animal models of angioplasty performed on large arteries (Nathan A 1995; 

Nugent HM 1999; Nugent HM 2009; Nugent HM 2012). For these reasons arterial 

EC were used for most of the in vitro experiments presented in this thesis, and 

HUVEC were used when large number of cells were needed for the experiment, for 

example in the chromatin immunoprecipitation (ChIP) assay. 
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In order to test the anti-inflammatory activity of ECPCM, HAEC were treated in 

collection (control) medium or ECPCM in the absence or presence of PF4, IL-6 or 

TNFα using the concentrations and times noted above. As shown in figure 16, 

ECPCM was able to strongly inhibit the expression of E-selectin stimulated by all 

three factors. Compared to the controls containing collection medium and the 

stimulatory factor, ECPCM reduced E-selectin expression in response to PF4 

treatment by 88% (p<0.001), in response to IL-6 treatment by 56% (p<0.001), and in 

response to TNFα treatment by 50% (p<0.001). The inhibition of VCAM-1 

expression by ECPCM was lower, but still significant: ECPCM reduced TNFα-

induced VCAM-1 expression by 38% (p<0.001), PF4-induced expression by 44% 

(p<0.001) and IL-6-induced expression by 51% (p<0.001) compared to controls. 
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Figure 16: Inhibition of E-
selectin and VCAM-1 gene 
expression by ECPCM. HAEC 
were treated with 64.1 nM PF4 
for 4 hours or 2.39 nM IL-6 or 
0.1 nM TNFα for 2 hours in 
collection medium or ECPCM. 
CNTRL: collection medium 
alone.  Coll: collection medium. 
*p-value <0.001 compared to 
treatment with PF4, IL-6 or 
TNFα in collection medium. 
Data = mean ± SD; n (individual 
well) = 12 per group. 
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Expression of E-selectin and VCAM-1 was also analysed at the protein level in 

HAEC treated with PF4, IL-6 and TNFα, with and without ECPCM treatment. 

Immunofluorescent analysis showed that ECPCM suppressed E-selectin protein 

expression in response to all three of the pro-inflammatory molecules tested (figure 

17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: ECPCM decreases 
E-selectin protein expression 
induced by TNFα, IL-6 and 
PF4. Representative image of 
immunofluorescent staining of 
E-selectin (green) in HAEC 
treated for 6 hours with 0.1 
nM TNFα, 2.39 nM IL-6 or 
64.1 nM PF4, in collection 
medium or ECPCM. Control: 
cells not treated with 
chemokines/cytokines. Ab 
control: cells treated with 
TNFα and then incubated only 
with the secondary antibody 
for unspecific staining control. 
The experiment was repeated 
three times with similar 
results. 

60 μm  
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To further investigate the effect of ECPCM on cytokine-induced E-selectin and 

VCAM-1 protein expression in EC, FACS and western blot analyses were performed 

on HAEC treated for 6 hours with TNFα or IL-6 in collection medium or ECPCM. 

As shown in figures 18 and 19, ECPCM suppressed the cytokine-induced expression 

of E-selectin and VCAM-1 proteins compared to treatment in collection medium 

control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: ECPCM decreases cytokine-induced E-selectin and VCAM-1 protein 
expression by FACS analysis. HAEC were treated for 6 hours with or without 0.1 
nM TNFα or 2.39 nM IL-6 in collection medium or ECPCM and then processed for 
FACS analysis with anti-E-selectin or anti-VCAM-1 antibody. Protein expression is 
presented as fluorescence mean value (upper graphs) and percentage of positively 
stained cells (lower graphs).  In all experiments, cytokine treatment significantly 
induced E-selectin and VCAM-1 protein levels, and ECPCM reduced TNFα- and IL-
6-induced expression of both adhesion molecules. Data = mean ± SD, n (individual 
well) = 6 per group.  
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At the time point tested, cytokines-induced E-selectin and VCAM-1 protein 

expression quantification by FACS and western blot analyses showed a strong trend 

of reduction upon ECPCM treatment, and significant reduction in TNF-α-induced E-

selectin protein expression was detected by western blot (Figure 19-B). The lack of 

significant results was mostly because of technical difficulties for detecting both E-

selectin and VCAM-1 proteins by using commercially available antibodies. 

However, as a whole, a reduction of E-selectin and VCAM-1 protein levels in EC 

Figure 19: ECPCM decreases cytokine-induced E-selectin and VCAM-1 protein 
expression by western blot analysis. A) HAEC were treated for 6 hours with or 
without 0.1 nM TNFα or 2.39 nM IL-6 in collection medium or ECPCM. Western 
blot analysis was performed with anti-VCAM-1, anti-E-selectin and anti-β-Actin 
antibodies. The image is representative of three separate experiments. B) Relative 
density quantification of western blot bands performed using ImageJ software. E-
selectin and VCAM-1 bands were normalised to the β-Actin loading control band. 
Data = mean ± SD; n = 3 per treatment. *p-value <0.05. 
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treated with ECPCM was evident, validated the real-time PCR gene expression data 

and confirmed the anti-inflammatory effects of ECPCM in vitro.  Therefore, 

monitoring of gene expression for E-selectin and VCAM-1 via real-time PCR 

analysis as a more sensitive and robust assay was used to assess the anti-

inflammatory activity of ECPCM in vitro.  

 

3.2.2 ECPCM treatment does not affect viability of EC 

In order to verify that the ECPCM-mediated decrease in E-selectin and VCAM-1 

expression was not caused by an increase in cell death, EC viability was analysed 

during treatment. HAEC were treated in collection medium or ECPCM for 2, 4 and 6 

hours with or without IL-6 or TNFα, and the number of live cells was determined at 

each time point using two different stains: trypan blue and calcein AM. Trypan blue 

is a dye commonly used to count viable cells in a cell suspension and it is based on 

the principle that live cells with an intact cell membrane exclude the dye and show a 

clear cytoplasm, whereas dead cells appear blue under a light microscope. Calcein 

AM is a cell-permeable fluorogenic dye that in live cells is converted by intracellular 

esterases into calcein, the fluorescent product, whereas no fluorescent product will be 

made in dead cells.  

As shown in figure 20, ECPCM did not affect cell viability compared to treatment in 

collection (control) medium. Although very small differences in cell viabilities were 

observed between the collection medium control and ECPCM group during IL-6 and 

TNFα treatments, they were not statistically significant.  
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Figure 20: Cell viability during treatment in ECPCM or collection medium. HAEC were treated 
for 2, 4 or 6 hours in collection medium or ECPCM with or without IL-6 or TNFα. The number 
of live cells was determined at each time point using trypan blue exclusion or a calcein AM 
staining assay. The survival rate was expressed as percentage of the total number of live cells in 
control samples (time 0) in the calcein assay and as the total number of live cells/ml in the 
trypan blue assay. Data = Mean ± SD; n (individual well) = 3 for each group. 

These data show that ECPCM does not affect cell viability and prove that the 

reduction in E-selectin and VCAM-1 gene and protein expression during cytokine 

treatment in EC was a specific effect induced by ECPCM. These results also validate 

the in vitro gene expression assays as a tool to study ECPCM anti-inflammatory 

activity. 

 

 

 

 

 

 

 

 

 

 

 

3.2.3 ECPCM reduces attachment of U937 monocyte-like cells to HAEC 

In order to study the functional effects of ECPCM anti-inflammatory activity, an in 

vitro monocyte-EC attachment assay was developed. For this purpose U937 cells 

were used as the monocytes; these cells are derived from a leukemic monocyte 
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lymphoma line and display many characteristics of monocytes and macrophages, 

including attachment to EC in response to inflammatory stimuli. 

HAEC were activated with inflammatory cytokines TNFα or IL-6 in collection 

medium (control) or ECPCM for 5 hours, then U937 cells previously stained with the 

fluorogenic dye calcein AM were added on top of the EC and allowed to attach for 

30 minutes. After extensive washing with buffer to remove non-adherent cells, 

attachment of U937 cells to the activated EC was quantified both with a fluorometer 

and by counting the monocytes under the microscope. 

Treatment in ECPCM caused a significant reduction in the number of U937 cells 

attached to cytokine-activated EC, based on both the fluorescence emission and cell 

counting methods (figures 21 and 22). 

 

 

 

 

 

 

 

 

 

 

Figure 21: U937 attachment assay. HAEC were treated for 5 hours in collection medium or 
ECPCM with or without TNFα or IL-6. U937 cells were stained with calcein AM and then 
placed on top of HAEC for 30 minutes. After three rinses with PBS, U937 attachment to EC was 
determined by counting the fluorescent cells with a microscope (A) and by fluorescence 
quantification with a fluorometer (B). Variations in the number of attached cells or fluorescence 
intensity are expressed as fold changes over the control (treatment in collection medium).  
p-value:  *< 0.05; **< 0.001. Data = Mean ± SD; n (individual well) = 3 for each group. 
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These data suggest that ECPCM treatment inhibits immune cell attachment to 

cytokine-activated EC, likely by reducing expression of adhesion molecules such as 

E-selectin and VCAM-1 by the EC, and confirm an anti-inflammatory effect of 

ECPCM on the endothelium.  

 

3.2.4 ECPCM anti-inflammatory effects are dose-dependent 

In order to determine if the inhibitory effects of ECPCM on cytokine/chemokine-

induced expression of E-selectin and VCAM-1 by HAEC are mediated by soluble 

factors, and to quantify this inhibitory activity, ECPCM was serially diluted in 

collection (control) medium and tested in the in vitro gene expression assay.  

Data from the in vitro gene expression assay clearly showed a dose-dependent anti-

inflammatory effect of ECPCM, in which IL-6- and TNFα-induced expression of 

both E-selectin and VCAM-1 was progressively lower with increasing doses of 

Figure 22: Representative images of U937 cells attached to cytokine-activated HAEC 
treated in collection medium or ECPCM. 
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Figure 23: ECPCM anti-inflammatory effects are dose dependent. HAEC were 
treated for 2 hours with 2.39 nM IL-6 or 0.1 nM TNFα in collection medium, 
ECPCM or serial dilutions (1:2) of ECPCM in collection medium. The graphs 
show E-selectin and VCAM-1 % expression relative to treatment in the absence of 
ECPCM. Data = Mean ± SEM. 

ECPCM (figure 23). Inhibition of IL-6-induced gene expression by ECPCM was 

particularly strong. Indeed, during treatment with this cytokine half of the inhibition 

potency was delivered by a formulation containing between 23% and 33% ECPCM 

(table 3). The half-maximal inhibitory concentration (IC50) of ECPCM against 

TNFα treatment was slightly higher (~50% ECPCM) for both E-selectin and VCAM-

1 genes (table 3).  These data further support the idea that soluble factors in the 

ECPCM are responsible for its anti-inflammatory effects. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ECPCM IC50 

 E-selectin VCAM-1 

IL-6 23% 33% 

TNFα 57% 46% 

Table 3: IC50 of ECPCM expressed as % of ECPCM in collection medium. 
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3.2.5 Pre-treatment with ECPCM reduces inflammatory gene expression in 

response to IL-6 but not TNFα 

To better understand the kinetics and molecular mechanism of the anti-inflammatory 

effects of ECPCM, HAEC were incubated with EPCPM for 2 hours and then treated 

with IL-6 or TNFα in collection medium for an additional 2 hours. The expression 

levels of E-selectin and VCAM-1 were then determined by real-time PCR. 

The results suggest that the effect of the pre-treatment in ECPCM was different for 

the two cytokines (figure 24): IL-6-induced expression of both E-selectin and 

VCAM-1 was significantly reduced after the pre-incubation in ECPCM, although 

this treatment strategy was less potent than direct treatment with ECPCM. On the 

other hand, pre-treatment with ECPCM had no inhibitory effect on the gene 

expression induced by TNFα.  

The results suggest the anti-inflammatory factor(s) in ECPCM has a short-term and 

reversible effect on both IL-6- and TNFα-induced expression of E-selectin and 

VCAM-1, although its anti-inflammatory effect on IL-6-induced gene expression 

seems to last longer. 
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3.2.6 Conditioned medium derived from human aortic SMC has anti-

inflammatory effects.  

In order to determine if the anti-inflammatory activity of ECPCM is dependent on 

EC-specific products, human aortic SMC and human embryonic kidney (HEK) 293 

cells were grown on collagen particles to produce the respective conditioned media 

(SMCPCM and 293PCM). These conditioned media were tested in the in vitro gene 

expression assay using HAEC treated with IL-6 or TNFα; conditioned medium from 

cell-free collagen particles (PCM) was used as a negative control. 

Figure 24: E-selectin and VCAM-1 expression in HAEC with or without 2 hours pre-
incubation in ECPCM followed by 2 hours treatment in collection medium with 2.39 
nM IL-6 (A) or 0.1 nM TNFα (B). p-value: *<0.05; **<0.01; ***<0.001 compared to 
treatment in collection medium+IL-6 or TNFα. Data = mean ± SD; n (individual 
well) = 6 for each group. 
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Figure 25:  E-selectin and VCAM-1 gene expression in HAEC treated for 
2 hours with 2.39 nM IL-6 or 0.1 nM TNFα in collection medium 
(control), ECPCM, SMCPCM, 293PCM or PCM. Ctk = cytokine. p-value 
*<0.05; ** <0.01; *** <0.001.  Data = Mean ± SD; n (individual well) = 6 
per group. 
 

Upon IL-6 treatment SMCPCM showed an anti-inflammatory activity comparable to 

that of ECPCM on E-selectin expression, whereas VCAM-1 inhibition was not 

statistically significant (figure 25). For TNFα treatment the inhibitory effect on both 

E-selectin and VCAM-1 expression was greater with SMCPCM than with ECPCM, 

but this difference was not statistically significant.  The 293PCM had no anti-

inflammatory effects on gene expression induced by IL-6 or TNFα. As expected, 

PCM also had no detectable effect on cytokine-induced expression of E-selectin or 

VCAM-1.  
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These results suggest that not only HAEC, but also aortic SMC grown on a 3D 

matrix are able to produce and release soluble anti-inflammatory factors that affect 

the endothelium and possibly vascular homeostasis. Since conditioned medium from 

HEK 293 cells grown on 3D does not provide anti-inflammatory activity against IL-6 

and TNFα effects on gene expression, the anti-inflammatory activity of cell-PCM 

may be limited to the cells of the vessels. The anti-inflammatory activity is clearly 

cell-based, since PCM did not have any detectable activity. 

 

3.2.7 ECPCM anti-inflammatory activity in vitro: conclusions and discussion 

The data presented in this chapter show that HAEC grown on a 3D collagen matrix 

release anti-inflammatory molecules that inhibit PF4-, TNFα- and IL-6-induced 

expression of the inflammatory adhesion molecules E-selectin and VCAM-1 in 

HAEC. The data confirm previously published data, in which Nugent et al showed 

that the conditioned medium collected from EC grown on collagen sponge has anti-

inflammatory activity and effectively reduces PF4-induced gene expression of 

VCAM-1, ICAM-1, E-selectin, tissue factor and IL-8 in EC in vitro (Nugent HM 

2012).  The conditioned medium was also able to reduce growth factor-stimulated 

SMC proliferation in vitro (Nugent HM 2012). In addition, the experiments 

presented herein show that the effect of ECPCM on gene expression in cytokine-

stimulated HAEC was not only potent (38% to 88% inhibition of gene expression), 

but also multi-targeted. PF4, TNFα and IL-6 belong to different classes of pro-

inflammatory molecules that act on different receptors and activate different 

signalling pathways in EC, and the fact that ECPCM inhibited the gene expression 

induced by all three of these pro-inflammatory molecules suggests the factor (or 
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factors) responsible for the observed effects inhibits the inflammatory activity of the 

three different molecules in a similar way, perhaps by activating a common anti-

inflammatory pathway. This anti-inflammatory mechanism might not be limited to 

aortic EC; similar ECPCM anti-inflammatory activity is also observed when 

HUVEC are treated with TNFα and IL-6 (see chapter 3.5.10). Although HAEC and 

HUVEC are both EC, they come from different types of vessels (artery vs. vein) and 

from different locations (aorta vs. umbilical vein). These different characteristics can 

influence the phenotype of the EC and their reaction to various stimuli. However, 

TNFα and IL-6 activate expression of E-selectin and VCAM-1 in HAEC and 

HUVEC, and ECPCM inhibited these pro-inflammatory effects in both cell types 

with similar potencies. Together, the data suggest that EC of different origin are 

similarly activated by pro-inflammatory cytokines, and that ECPCM likely exerts its 

anti-inflammatory effects via the same mechanism in arterial and venous EC. 

Interestingly, it has been reported that supernatant from EC/matrix decreases the 

maturation of dendritic cells and significantly increases the production and release of 

IL-10 and TGF-β by these dendritic cells (Methe H 2007). Since maturation of 

dendritic cells is pivotal in priming the immunological reaction (Banchereau J 2000), 

and since IL-10 and TGF-β are known for their anti-inflammatory activity (see 

chapter 3.4), these results support the anti-inflammatory therapeutic potential of EC-

conditioned medium. 

Treatment of HAEC with serially diluted ECPCM showed that the anti-inflammatory 

activity is dose-dependent. The IC50 data strongly suggest a soluble nature of the 

molecule(s) responsible for the anti-inflammatory effects and introduce the 

possibility of concentrating the anti-inflammatory molecule(s) for increased activity 
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and therapeutic use. However, the IC50’s of ECPCM were different against TNFα 

and IL-6, and for E-selectin expression vs. VCAM-1 expression. ECPCM seemed to 

be more effective in inhibiting IL-6 effects than TNFα effects. This is likely because 

TNFα can trigger a much higher gene expression response in EC than does IL-6. 

Another possibility is that the anti-inflammatory factor (or factors) in ECPCM is 

simply more potent in inhibiting IL-6-induced inflammation. 

Pre-treatment of HAEC with ECPCM prior to treatment with pro-inflammatory 

cytokines did not suppress TNFα induction of E-selectin or VCAM-1, but was 

sufficient to mediate inhibition of inflammatory gene expression induction by IL-6. 

These results could be due to anti-inflammatory molecules in ECPCM that act with 

dissimilar potencies against the different signalling pathways and the transcription 

factors activated by IL-6 and TNFα. Whereas IL-6 activates a Stat3-dependent 

response, TNFα effects are mediated by activation of NF-kB. The anti-inflammatory 

factors in ECPCM could have differential effects on Stat3 and NF-kB transcriptional 

activity, which could explain the different inhibitory effect of the pre-treatment on 

the two cytokines. As mentioned above, the broad-spectrum activity of ECPCM on 

different pro-inflammatory cytokines and different types of EC suggests a common 

mechanism of action. Perhaps the molecular mechanism responsible for ECPCM 

anti-inflammatory activity is the same for both IL-6 and TNFα-induced 

inflammation, but the kinetics are different. ECPCM may affect the pathways 

activated by IL-6 and TNFα with different timing and/or magnitude, thereby 

affecting the potency and duration of the anti-inflammatory effects.  The data from 

the pre-treatment experiment support this possibility. 
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Conditioned medium from aortic SMC, but not HEK 293 cells derived from the 

embryonic kidney, grown on a 3D collagen matrix also showed anti-inflammatory 

activity. Indeed, SMCPCM significantly inhibited IL-6-induced expression of E-

selectin and TNFα-induced expression of both E-selectin and VCAM-1 in HAEC. It 

is possible that the molecule (or molecules) responsible for these anti-inflammatory 

effects in SMCPCM is the same as in ECPCM. In this case the difference in the 

potency of the formulations is likely caused by different concentrations of the soluble 

factor(s) in ECPCM and SMCPCM. Alternatively, HAEC and SMC could produce 

different anti-inflammatory molecule(s) that act via different mechanisms but 

mediate a similar inhibitory effect on the expression of endothelial adhesion 

molecules.  It is interesting to note that both the EC and the SMC used to produce the 

anti-inflammatory conditioned media were isolated from the aorta. Since the 

phenotype of vascular cells is strongly affected by their location in the vascular 

system, this is an important aspect to take into consideration for future development 

of therapeutics derived from ECPCM and SMCPCM and for the analysis of their 

molecular mechanisms.   

The data presented here raise the possibility that cells such as EC and SMC of the 

healthy vessel may naturally produce soluble anti-inflammatory molecules to 

maintain the homeostasis of the vasculature.  This hypothesis is consistent with the 

observation that systemic cardiovascular diseases are associated with increased risk 

of developing vascular complications in the eye. These comorbidities may occur 

because the vessels in the disease state are less able to produce anti-inflammatory 

molecules, among other important beneficial factors, to maintain the overall 

homeostasis of the vasculature. 
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In summary, HAEC in 3D culture produce a soluble, potent and broad-spectrum anti-

inflammatory activity that can significantly suppress the activation of EC by PF4, IL-

6 and TNFα and reduce the adhesion of immune cells to the EC following treatment 

with these inflammatory factors.  Further study into the mechanism of action for this 

anti-inflammatory activity and identification of the molecules responsible may result 

in development of novel therapeutic strategies for vascular pathologies associated 

with local inflammation. 
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Chapter 3.3: Characterization of the molecule(s) 

responsible for the anti-inflammatory activity of ECPCM 

3.3.1 The anti-inflammatory activity of ECPCM is proteinase K- and RNase-

resistant 

Proteins, acting as adaptors, co-factors or active enzymes, are responsible for most of 

the signalling between and within cells. To determine if the anti-inflammatory 

activity of ECPCM is protein-mediated, the ECPCM was treated with proteinase K, a 

broad-spectrum protease. Coomassie blue staining of untreated and proteinase K-

treated ECPCM separated on a polyacrylamide gel 

confirmed the full digestion of proteins in the media 

(Figure 26). 

When tested using the in vitro gene expression assay, 

the proteinase K-treated ECPCM significantly 

inhibited IL-6-, TNFα- and PF4-induced gene 

expression of both E-selectin and VCAM-1 (Figure 

27). More specifically, during treatment with IL-6 

and TNFα, the inhibition of E-selectin and VCAM-1 

expression by the proteinase K-treated ECPCM was 

similar to that observed with the untreated ECPCM. 

Proteinase K-treated ECPCM was not as effective as the untreated ECPCM at 

inhibiting the PF4-induced E-selectin expression, although the inhibition was still 

significant compared to control. On the other hand, inhibition of PF4-induced 

VCAM-1 expression was better with proteinase K-treated ECPCM.  

Figure 26: Representative 
image of coomassie blue 
staining of untreated and 
proteinase K-treated ECPCM. 
The band of ~65kDa in the 
ECPCM lane corresponds to 
serum albumin. Absence of 
this band in the proteinase K-
treated ECPCM confirmed 
complete protein digestion. 
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Figure 27: ECPCM anti-inflammatory activity is proteinase K- and 
RNase-resistant. Expression of E-selectin and VCAM-1 was 
analysed after treatment for 2 hours with 2.39 nM IL-6 (upper panel) 
or 0.1 nM TNFα (middle panel) or for 4 hours with 64.1 nM PF4 
(lower panel). HAEC were treated in collection medium (control), 
ECPCM or ECPCM previously treated with proteinase K or RNase. 
*p value<0.001 compared to treatment with IL-6, TNFα or PF4 in 
collection media. Data = mean ± SD; n = 6 per group. 
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In recent years, it has been demonstrated that RNA molecules play important roles in 

mediating signals and controlling specific functions in cells, as described in detail 

below. To determine the role of RNA molecules in the anti-inflammatory effect, 

ECPCM was treated with an RNase A/T1 mix. RNase A and T1 enzymes are exo-

ribonucleases that degrade single strand RNA (ssRNA). Upon IL-6, PF4 or TNFα 

treatment the RNase-treated ECPCM inhibited E-selectin and VCAM-1 expression in 

HAEC to levels comparable to those observed with untreated ECPCM (figure 27). 

Based on these experiments it can be concluded that the factor (or factors) mediating 

ECPCM anti-inflammatory activity is not ssRNA and, if it is a protein, it is 

proteinase K-resistant. 

 

3.3.2 Agarose affects ECPCM activity 

Heparin is a highly sulphated glycosaminoglycan produced by mast cells (Bjorn I 

1982). When it is released in the blood it acts as an anti-coagulant and anti-

thrombotic agent by activating anti-thrombin III, which in turn inactivates thrombin, 

factor Xa and other protease involved in the clotting cascade (Bjorn I 1982). Because 

of its highly negative charge, heparin is typically used in affinity chromatography to 

isolate molecules (proteins in particular) based on their electric charge. For this 

reason, in the attempt to identify the molecule(s) responsible for ECPCM anti-

inflammatory activity and to obtain some information about its chemical and 

physical properties, ECPCM was incubated with heparin-conjugated agarose beads 

to remove positively charged molecules and tested in the in vitro gene expression 

assay. As a control, ECPCM was also incubated with empty agarose beads.  
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As shown in figure 28, ECPCM that was treated with heparin-conjugated agarose 

beads lost its inhibitory activity on IL-6-induced E-selectin expression. It also 

showed less inhibition of VCAM-1 induction by IL-6 and E-selectin induction by 

TNFα. However, after heparin bead treatment ECPCM showed increased inhibition 

of TNFα-induced VCAM-1 expression. These results would suggest the presence in 

ECPCM of multiple anti-inflammatory factors with different properties, with the 

one(s) responsible for E-selectin expression inhibition being heparin-binding and 

positively charged molecule. 

HAEC were also treated with IL-6 and TNFα in ECPCM previously incubated with 

agarose beads. Surprisingly, this control treatment affected ECPCM activity as well 

as did the heparin-conjugated agarose (figure 28), suggesting that the effects of 

heparin-conjugated agarose are due to the agarose rather than the heparin. 

These data demonstrate the non-specific effects of the heparin-agarose and agarose 

beads. Because of this, heparin and agarose could not be used further in molecular 

identification of the anti-inflammatory factor(s) in ECPCM – a limitation that greatly 

diminished the array of treatments and procedures that could be applied in the 

identification process. 
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Figure 28: Incubation of ECPCM with agarose beads affects E-selectin and VCAM-1 
expression in HAEC. ECPCM was incubated with heparin-agarose beads or agarose 
beads and tested on HAEC. Cells were treated for 2 hours in collection media or with 
2.39 nM IL-6 or 0.1 nM TNFα in Collection media, ECPCM or ECPCM post incubation 
with heparin-agarose or agarose beads.  Data = mean ± SD; n = 3 per group. p-value:      
* <0.05; ** <0.01 compared to treatment in collection media + IL-6 or TNFα. 

*  **      **      ** 

* *         * 
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3.3.3 Molecular characterization: conclusions and discussion 

Identification of the soluble anti-inflammatory molecule(s) responsible for ECPCM 

activity was not possible given the technical limitations in this study, but certain 

characteristics could be defined: namely that the factor(s) partly bind to agarose, are 

resistant to proteinase K digestion, and are not ssRNA-based. 

The agarose beads used as a control for the heparin-agarose binding experiment are 

highly inert, but proteins such as the pentraxin serum amyloid P (SAP) have been 

shown to bind to agarose (Hind CRK 1984). Pentraxins are a superfamily of serum 

multifunctional proteins with a pentameric structure that are involved in foreign 

antigen and altered self-antigen recognition and activate the innate immune response 

(Du Clos TW 2013). SAP is produced in the liver and is present at constitutive levels 

in human plasma. It inhibits fibrocyte differentiation after tissue damage (Pilling D 

2003) and it acts as an acute phase protein induced by IL-6 in mice, but not in 

humans (Du Clos TW 2013). Although a role in inflammation is possible, at the 

moment there is no evidence of SAP’s anti-inflammatory activity in humans, 

therefore it can be excluded as main mediator of ECPCM activity. 

Other generally inert materials were used to try to isolate the anti-inflammatory 

factor(s) in ECPCM. These included size-fractionation tubes and dialysis cassettes, 

both made of regenerated cellulose membranes in a range of molecular weight cut-

offs. Like agarose, cellulose is characterized by high stability and low chemical 

complexity; therefore it is not expected to interact with many other molecules. 

However, the effects on EC using cellulose filter-treated ECPCM and cellulose filter-

treated collection medium were comparable (data not shown). Surprisingly, both 

media showed pro-inflammatory effects even in the absence of cytokines (data not 
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shown). The fact that inert materials such as agarose and cellulose alone were able to 

change the activity of ECPCM and of the basic EC-growing medium that is the 

collection medium suggests that EC growing in vitro require a very delicate balance 

of molecules for physiological quiescence.  

Another process that was attempted was the Folch method for lipid isolation. This is 

a well-established protocol that uses organic solvents to isolate lipid molecules in a 

solution (Folch J 1957). Application of this method to ECPCM led to the production 

of an aqueous and a lipid phase, which were then tested on HAEC with or without 

cytokines (data not shown). Although much care was put in the removal of any 

residual organic solvent, a small quantity of it remained in solution and greatly 

affected the in vitro assay. In fact, both aqueous and lipid phases disturbed EC 

phenotype and survival even in the absence of cytokines. For these reasons this 

method of lipid isolation could not be applied to identify the anti-inflammatory 

factor(s) in ECPCM.  

Similarly, in an attempt to investigate the role of carbohydrates in the anti-

inflammatory activity, ECPCM was treated with glycosidases (sialidase A and β–N-

acetylhexosaminidase). For these treatments, the small volume of buffer necessary 

for proper enzyme activity was added to the ECPCM. Unfortunately, even in the 

absence of enzyme, the buffers impaired ECPCM activity (data not shown). This was 

probably because of the high salt concentration in the buffers. Filters could not be 

used to eliminate the extra salt after glycosidase treatment because typical cellulose 

filters used for this purpose affect ECPCM activity, as mentioned above. Since 

enzyme treatments could not be used on ECPCM, exploration of the possible role of 

carbohydrates in ECPCM activity was ended.  
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The above studies eliminated the possibility of using solvents, buffers, cellulose and 

agarose in further characterization, severely reducing the amount of protocols 

applicable in the identification process. Fortunately, RNase and proteinase K 

treatments do not require addition of buffer for activity. 

Proteinase K is a broad-spectrum serine protease that digests proteins in their native 

and denatured forms and is stable over a wide range of temperature and pH (Ebeling 

W 1974). ECPCM was treated with proteinase K and then tested on EC in the 

presence of IL-6 or TNFα. Since after this treatment ECPCM was still able to inhibit 

the cytokine-induced expression of E-selectin and VCAM-1, the molecule(s) 

mediating the effect are either non-protein or proteins that are resistant to proteinase 

K. Besides proteinase K itself, to date some forms of α-synuclein, β-amyloid and 

prion proteins are known to be (at least partially) resistant to the protease digestion 

(Forloni G 1996; Miake H 2002). These proteins are not expressed in EC and have 

no anti-inflammatory activity but are, instead, localized in the brain and implicated in 

neurodegenerative diseases (Forloni G 1996; Miake H 2002). For these reasons they 

can be excluded as potential mediators of ECPCM anti-inflammatory effects. SAP 

has also been shown to be resistant to proteinase K degradation (Manning M 2004). 

Given the lack of evidence of anti-inflammatory activity of SAP in humans, this 

protein can also be excluded as the one responsible for ECPCM effects. 

It could be argued that the observed results were caused by a residual proteinase 

activity that digested the cytokines used to stimulate EC in vitro during the assay, 

thus degrading the cytokines before they could mediate their effect on EC. However, 

proteinase K treatment was performed using the enzyme attached to agarose beads, 

which were then carefully removed by centrifugation. Therefore, residual proteinase 
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K activity at the time when the in vitro assay was performed is highly unlikely. In 

this case incubation with agarose bead carriers did not seem to affect ECPCM’s 

activity, probably because a very small quantity was used compared to the 

experiments using heparin-conjugated agarose beads.  

ECPCM was also treated with a mix of RNase A and -T1, which are both exo-

ribonucleases specific for ssRNA. Since this treatment did not eliminate the anti-

inflammatory activity, ssRNA molecules can be excluded as mediators of ECPCM 

effects. This is not surprising, given that there is no evidence of ssRNA being 

released from cells and directly mediating biological effects. On the other hand, 

double strand RNA in the form of microRNA (miRNA) is known to be an important 

player in gene and protein expression. Indeed, miRNA can negatively regulate post-

transcriptional events by inducing mRNA degradation and/or inhibition of translation 

(He L 2004). No enzyme is currently available to directly remove double strand 

RNA in solution; therefore, it cannot be excluded that miRNAs have a role in the 

anti-inflammatory activity of ECPCM. Indeed, various miRNAs that regulate EC 

adhesion molecule expression have been discovered. These include miR126, which 

downregulates VCAM-1 (Harris TA 2008); miR-31, which affects E-selectin (Suarez 

Y 2010); and miR-10a, which mediates inhibition of both molecules (Fang Y 2010). 

 To date, there is no evidence for direct secretion of free miRNA from mammalian 

cells, nor is there knowledge of a specific pathway that would allow these molecules 

to reach the cytosol of an eventual target cell. However, what has been reported is the 

release from stem cells of microparticles containing miRNA (Ratajczak J 2006; 

Deregibus MC 2007; Hunter MP 2008; Yuan A 2009; Koh W 2010). Microparticles 

are small vesicles with variable diameter (0.1-1 µm) that can be found in human 
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plasma and are released by various types of cells. Microparticles are released through 

remodelling of the phospholipids in the cellular membrane and express 

phosphatidylserine and antigens typical of their parent cell (Leroyer AS 2010; 

Dignat-George F 2011). On their surface, endothelial microparticles (EMP) present 

oxidised bioactive lipids, membrane receptors involved in coagulation (endothelial 

protein C receptor, thrombomodulin and tissue factor) and adhesion molecules (E-

selectin, VCAM-1, ICAM-1, PECAM-1). They also harbour MMPs, growth factor 

receptors and receptors of the plasminogen activation system (urokinase plasminogen 

activator and its receptor) (Leroyer AS 2010). Some microparticles can express 

immunoglobulins and major histocompatibility molecules on their surface and 

enclose transcription factors, mRNA and miRNAs (Leroyer AS 2010). As can be 

easily deduced from their composition, EMP regulate vessel homeostasis by 

affecting thrombosis, coagulation, angiogenesis, vascular tone, cell survival, 

inflammation and transmission of cell information (Leroyer AS 2010; Dignat-George 

F 2011). Depending on the specific composition, pathological context and stimulus, 

and mechanism and site of release, EMP can either promote or disrupt endothelial 

function (Dignat-George F 2011). 

It is conceivable that EC grown on a collagen matrix release microparticles and that 

these mediate the anti-inflammatory activity of ECPCM, for example by carrying the 

miR-126, -31 or -10a. However, most of the data published up to now show that 

EMP have pro-inflammatory effects. In fact, increased levels of EMP are associated 

with IL-6 release, increased expression and shedding of ICAM-1 and, more in 

general, with diseases such as diabetes, acute coronary syndrome, stroke and 

hypertension (Leroyer AS 2010; Dignat-George F 2011). Other microvescicles 

released by EC include exosomes and apoptotic bodies. Exosomes are less than 100 
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nm in diameter, contain RNA and miRNA, and seem to have a role in vascular 

development (Dignat-George F 2011). Apoptotic bodies are larger than 

microparticles (1-5 μm diameter) and deliver oncogenes, DNA or miRNA (Dignat-

George F 2011). These varied, EC-derived microvescicles have ambivalent 

biological effects that are still debated and need further investigation. With regards to 

this thesis, it will be of great interest to evaluate the role of EMP in the anti-

inflammatory activity of ECPCM. 
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Table 4: Average concentration of known anti-inflammatory molecules in collection 
medium, ECPCM, SMCPCM, 293PCM and PCM, as assessed by ELISA (TGF-β, IL-10, 
cAMP, PGI2) or the Griess reaction (NO). 

Chapter 3.4: The roles of known anti-inflammatory 

molecules in mediating ECPCM effects 

3.4.1 Exploration of known anti-inflammatory mediators 

As noted in the introduction, EC produce and release many molecules that control 

vascular physiology and homeostasis. Among these are many with anti-inflammatory 

effects. NO and PGI2 have already been mentioned. Other molecules that affect 

inflammation include TGF-β, IL-10, steroids, resolvins and cyclic AMP (cAMP). 

Given the importance of these molecules in inflammation, their levels in ECPCM 

were determined and various experiments performed to verify if any might mediate 

the ECPCM effects.  

Levels of TGF-β1, IL-10, cAMP, NO, and PGI2 in the ECPCM were compared to the 

levels detected in collection medium, SMCPCM, 293PCM and PCM (Table 4). 

Levels of TGF-β1 were far greater in ECPCM than in the collection medium or any 

of the other conditioned media. Levels of IL-10, on the other hand, were lower in 

ECPCM than in collection medium or the other conditioned media.  Levels of cAMP 

and PGI2 did not vary among the samples tested, and levels of NO were lower in all 

conditioned media compared to collection (control) medium. 
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3.4.2 TGF-β1 can inhibit cytokine-induced expression of E-selectin and   

VCAM-1 

The TGF-β family of cytokines plays a role in a wide range of events: cell growth, 

differentiation and apoptosis, fibrosis, angiogenesis, immune response and 

inflammation (Massague J 1990; Pintavorn P 1997; Akhurst RJ 2012). TGF-β 

cytokines consist of three highly homologous isoforms: TGF-β1, expressed in 

epithelial cells, EC, SMC, hematopoietic cells and fibroblasts; TGF-β2, localized on 

epithelial cells and neurons; and TGF-β3, expressed primarily in mesenchymal cells 

(Ghosh J 2005). TGF-β is synthesized within the cell and released in a dimeric large 

latent complex consisting of TGF-β, a latent TGF-β-binding protein and a latency-

associated peptide (Suwanabol PA 2011; Akhurst RJ 2012). Once in the ECM, active 

TGF-β is released from the large latent complex by specific enzymes, mechanical 

stress, extreme pH and heat (Suwanabol PA 2011; Akhurst RJ 2012). 

Quiescent EC produce basal low levels of TGF-β1. Its synthesis and activation are 

enhanced in cytokine-activated cells and in EC stimulated by hemodynamic forces 

(Pintavorn P 1997). Up-regulation of TGF-β1 was also observed at sites of vascular 

injury in both human and animal studies (Suwanabol PA 2011). Various in vitro 

models have showed that TGF-β is able to inhibit leukocyte adhesion and 

transmigration across cytokine-activated endothelium (Gamble JR 1988; Cai JP 

1991; Gamble JR 1993; Smith WB 1996). This is due, at least in part, to inhibition of 

E-selectin expression (Cai JP 1991; Gamble JR 1993).  

As shown in table 4, the average concentration of TGF-β1 was more than 10 times 

higher in ECPCM compared to collection medium (749.4 pg/ml and 61.81 pg/ml, 

respectively) and about double that of SMCPCM and 293PCM (227 pg/ml and 
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246.05 pg/ml respectively). These values suggest that the cytokine might have a part 

in mediating the anti-inflammatory effects of ECPCM. 

To investigate the role of TGF-β1 in the anti-inflammatory activity of ECPCM, 

HAEC were treated with IL-6 or TNFα in collection medium (control) with the 

addition of activated TGF-β1 at various concentrations. It is important to note that 

TGF-β1 effects on the vasculature are context- and concentration-dependent, being 

influenced by type and status of cells, genetic variations, conditions of culture in 

vitro, phase of disease or development in vivo, and interaction with other signalling 

pathways (Pintavorn P 1997; Akhurst RJ 2012). Gene expression analysis showed 

that at low concentrations (300 pg/ml) TGF-β1 did not inhibit IL-6- or TNFα-

induced expression of E-selectin or VCAM-1; similar results were obtained when 

cells were treated with a level of TGF-β1 comparable to that observed in ECPCM 

(1000 pg/ml; figure 29). Since the anti-inflammatory effects of ECPCM are dose 

dependent (figure 15), a concentration of TGF-β1 four times higher than that 

measured in ECPCM (3000 pg/ml) was also tested in the in vitro assay. At this 

concentration the cytokine inhibited both IL-6- and TNFα-induced expression of E-

selectin and VCAM-1 to levels similar to those obtained during ECPCM treatment 

(figure 29). 

These results show that TGF-β1 can inhibit cytokine-induced expression of E-

selectin and VCAM-1 in a dose-dependent manner in HAEC; the molecule might 

therefore have a role in mediating ECPCM anti-inflammatory activity. However, 

TGF-β1 did not inhibit gene expression of the adhesion molecules at a concentration 

similar to that measured in ECPCM. These data, together with the proteinase K 

findings presented in chapter two, suggest a different molecule in the formulation is 

mainly responsible for the anti-inflammatory effects. 
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Figure 29: TGF-β1 effects on cytokine-induced E-selectin and VCAM-1 gene 
expression. HAEC were treated for 2 hours with 2.39 nM IL-6 (upper panel) or 0.1 
nM TNFα (lower panel) in ECPCM, collection medium or collection medium with 
increasing amounts of TGF-β1. *p-value <0.05 compared to treatment in collection 
medium with IL-6 or TNFα.  Data = mean ± SD; n = 5 per group. 
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3.4.3 IL-10 does not mediate the anti-inflammatory effects of ECPCM 

IL-10 was first described for its ability to inhibit activation of and cytokine 

production by TH1 cells (Fiorentino DF 1989). Later studies showed a much broader 

anti-inflammatory activity of IL-10. In fact, the protein not only can inhibit cytokine 

synthesis by both T cells and natural killer cells, but it also affects expression of 

cytokines, soluble mediators and cell surface molecules by myeloid cells, thereby 

modulating their ability to stimulate and sustain immune and inflammatory responses 

(Moore KW 2001). Similarly, IL-10 inhibits cytokine and chemokine production by 

neutrophils (Moore KW 2001). IL-10 affects the generation and maturation of 

immature dendritic cells and induces survival, proliferation and isotype switching of 

B cells (Moore KW 2001). It was recently shown that IL-10 decreases TNFα-

induced inflammation in EC by reducing TNFα-dependent ROS production, ICAM-1 

expression and leukocyte adhesion to the endothelium (Huet O 2013). IL-10 has also 

been reported to reduce endothelial dysfunction in vessels stimulated with various 

pro-inflammatory molecules (Kang H 2008; Zemse SM 2008; Didion SP 2009; 

Zemse SM 2010).  

Table 4 shows that IL-10 concentration was actually lower in ECPCM compared to 

collection medium (45 pg/ml and 78 pg/ml, respectively). Concentration of the 

cytokine in SMCPCM was quite high (~110 pg/ml), nearly three times the amount 

detected in ECPCM. Cell-free PCM and 293PCM, which exhibited no anti-

inflammatory activity, showed the highest levels of IL-10 (both around 120 pg/ml). 

Based on these findings IL-10 was excluded as the molecule potentially responsible 

for ECPCM anti-inflammatory activity. 
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3.4.4 Cyclic AMP does not mediate the anti-inflammatory effects of ECPCM 

Cyclic adenosine monophosphate (cAMP) is a ubiquitous regulator of inflammatory 

and immune responses. It blocks lymphocyte activation, inhibits the release of pro-

inflammatory cytokines from macrophages, and suppresses the expression of 

adhesion molecules in peripheral EC and astrocytes (Pober JS 1993; Balyasnikova 

IV 2000). Indeed, pharmacologic agents that elevate cAMP in HUVEC and cAMP 

analogues inhibit the TNFα-induced expression of E-selectin and VCAM-1, but not 

ICAM-1 (Pober JS 1993).  

As reported in table 4, ECPCM and collection medium showed the same very low 

concentration of cAMP (< 7 pmol/ml). SMCPCM and 293PCM contained a similarly 

small amount of the molecule. These data suggest that cAMP is not responsible for 

the anti-inflammatory effects of ECPCM.  

 

3.4.5 NO does not mediate the anti-inflammatory effects of ECPCM  

NO inhibits platelet aggregation and has relaxing effects on vascular tone (Davies 

MG 1993; Sumpio BE 2002; Pober JS 2007). It also inhibits the expression of 

adhesion molecules. Since platelet activation, aggregation, and ROS production 

characterize inflammatory reactions, NO can be classified as an anti-inflammatory 

molecule for its ability to block these events.  

Given the volatile and unstable nature of NO, which is rapidly oxidized to nitrite 

and/or nitrate by oxygen (Sun J 2003), it was unlikely that this is the factor mediating 

ECPCM beneficial effects. Nevertheless, the concentration of NO was verified in 

various samples of ECPCM through the Griess reaction colorimetric assay. This is a 
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method which allows estimation of NO levels in a biological sample by determining 

the concentration of nitrite end products (Sun J 2003). Table 4 shows that collection 

medium contained nearly 22 µM of NO, whereas the concentration of the molecule 

in ECPCM was almost zero. SMCPCM, which showed anti-inflammatory activity 

similar to that of ECPCM, also showed very low levels of NO. Based on these 

findings, NO was excluded as the factor mediating ECPCM anti-inflammatory 

effects. 

 

3.4.6 PGI2 does not mediate the anti-inflammatory effects of ECPCM 

PGI2 is a potent vasodilator, platelet anti-aggregator and pro-fibrinolytic agent 

(Davies MG 1993; Sumpio BE 2002; Pober JS 2007). The anti-inflammatory effects 

of PGI2 analogs have also been linked to the inhibition of maturation, cytokine 

production and T cell stimulatory function of dendritic cells (Zhou W 2007; Yeh CH 

2011).  

PGI2 has a very short half-life both in vivo and in vitro, ranging from 30 seconds to a 

few minutes. For this reason it was highly improbable that this molecule was 

responsible for ECPCM anti-inflammatory activity. Indeed, table 4 shows that 

concentration of PGI2 was very low (< 2.5 ng/ml) in ECPCM and also in collection 

medium. In SMC- and 293PCM the levels of the molecule were similarly low.  

These data suggest that PGI2 does not mediate the anti-inflammatory activity of 

ECPCM. 
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3.4.7 Glucocorticoids do not mediate the anti-inflammatory effects of ECPCM 

Glucocorticoids are a class of potent anti-inflammatory steroid hormones that are 

released from the adrenal cortex within minutes in response to stress and tissue injury 

in order to control the severity of the inflammatory response (Newton R 2000). Most 

of the effects of glucocorticoids on cells are mediated via the glucocorticoid receptor 

(GR), a member of the superfamily of ligand-regulated nuclear receptors (Newton R 

2000; Rhen T 2005), which is usually found in the cytoplasm. Thanks to their 

hydrophobic nature, glucocorticoids can easily pass through the plasma membrane 

and enter the cells following release into the blood stream. Once in the cytoplasm, 

glucocorticoids bind with high affinity to GR (Rhen T 2005). This binding promotes 

the dissociation of molecular chaperones from the receptor. The glucocorticoid-GR 

complex then moves to the nucleus and binds as a homodimer to specific 

glucocorticoid-responsive DNA sequences, resulting in activation of anti-

inflammatory genes and/or repression of pro-inflammatory genes (Newton R 2000; 

Rhen T 2005); alternatively, the complex can also interact with other transcription 

factors, such as AP1 and NF-kB, and block their transcriptional activity (Newton R 

2000; De Bosscher K 2006). 

To test if glucocorticoids might be responsible for the anti-inflammatory effects of 

ECPCM, experiments were performed using RU486 (also called mifepristone), a 

powerful GR antagonist. Dexamethasone (DEX), a synthetic steroid drug that acts as 

anti-inflammatory agent and immunosuppressant, was used as a positive control. To 

determine if gene expression of E-selectin and VCAM-1 is responsive to 

glucocorticoid-mediated inhibition, HAEC were treated with IL-6 or TNFα in 

collection medium with 100 nM DEX. To determine if the anti-inflammatory effects 
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of the formulation were mediated by glucocorticoids, HAEC were treated with IL-6 

or TNFα in ECPCM with 1 µM RU486. To check the ability of RU486 to antagonize 

glucocorticoid-mediated inhibition of gene expression, cells were also treated with 

IL-6 or TNFα in collection medium with both 100 nM DEX and 1 µM RU486. The 

experimental concentration of RU486 was determined empirically by dose curve 

treatments (data not shown). Since both drugs were dissolved in ethanol, a control 

treatment of IL-6 or TNFα in collection medium with ethanol was included in the 

experiment. 

Figure 30 shows that DEX inhibited E-selectin and VCAM-1 expression induced by 

IL-6 or TNFα and that RU486 reverted this inhibition of gene expression, except 

from the VCAM-1 expression induced by TNFα. Even higher concentrations of 

RU486 were still not able to reverse the DEX inhibition in the presence of TNFα 

(data not shown). Since reversal of DEX/GR trans-repression of TNFα-induced E-

selectin by RU486 was also partial and not as good as the reversal observed for the 

same gene during IL-6 treatment, this suggests that DEX/GR affects Stat3 and NF-

kB differently. Most likely, the DEX/GR complex exerts a strong and more stable 

repression of NF-kB than Stat3. Moreover, for TNFα-induced VCAM-1 expression, 

the timing of analysis might not be ideal to detect the impact of RU486 on the 

DEX/GR complex; later or earlier time points could be a better choice to observe the 

effect.  Importantly, RU486 did not reverse the anti-inflammatory effects of ECPCM 

against both TNFα and IL-6 treatments, suggesting the anti-inflammatory effects of 

ECPCM are not mediated by GR. Indeed, ECPCM inhibited the expression of both 

E-selectin and VCAM-1, with and without RU486, with comparable potencies. 

These results suggest that glucocorticoids are not responsible for the anti-

inflammatory activity of ECPCM. 
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**   **   ** **   **   ** 

Figure 30: The GR antagonist RU486 does not suppress the anti-inflammatory 
activity of ECPCM. Gene expression of E-selectin and VCAM-1 was 
analysed in HAEC treated for 2 hours with 2.39 nM IL-6 (upper panel) or 0.1 
nM TNFα (lower panel) in collection medium (control), collection medium 
with 100 nM DEX, collection medium with 100 nM DEX and 1 µM RU486, 
ECPCM, ECPCM with 1 µM RU486 or collection medium with ethanol. p-
value **<0.001; *<0.05 compared to treatment in collection medium with IL-
6 or TNFα. Data = mean ± SD; n = 6 per group. 

 

* * * * * * * 
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3.4.8 Resolvins do not mediate the anti-inflammatory effects of ECPCM 

Resolvins are a novel family of lipid mediators that show beneficial actions in 

inflammatory diseases (Serhan CN 2008). They are produced from the precursor 

essential omega-3 polyunsaturated fatty acids eicosapantaenoic acid (EPA) and 

docosahexaenoic acid (DHA). Depending on which polyunsaturated fatty acid they 

derive from, resolvins are divided into the E-series (from EPA) and D-series (from 

DHA). Each series show a chemically unique structural form (Serhan CN 2008). 

Both in vivo and in vitro, vascular EC treated with aspirin convert EPA to the 

intermediate fatty acid 18R-HEPE, which is released and then converted to the 

bioactive form of resolvins E1 and E2 (RvE1 and -2) by the action of 

polymorphonuclear leukocytes (PMN) (Serhan CN 2007). RvE1 reduces PMN 

infiltration and general inflammation in animal models; RvE2 stops PMN infiltration 

in vivo (Serhan CN 2007). When treated with aspirin and DHA, EC release a 

different intermediate fatty acid (17R-HDHA), that is then converted by COX-2 in 

neutrophils to resolvins D1-4 (RvD1-4) (Serhan CN 2007). RvD1-4 inhibit PMN 

infiltration, reduce inflammation in various animal models and inhibit the TNFα-

induced production of IL-1β (Serhan CN 2008).  

Given the potent anti-inflammatory action demonstrated by resolvins on leukocytes 

in vivo, their possible role in mediating the beneficial effects of ECPCM on EC was 

investigated. To this end HAEC were treated with IL-6 or TNFα in collection 

(control) medium in the presence of one resolvin from each series: either RvE1 or 

RvD2. Two concentrations of the molecules were tested (10 nM and 50 nM). Since 

resolvins were dissolved in ethanol, HAEC were also treated with IL-6 or TNFα in 

collection medium with ethanol as vehicle control.  
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Upon treatment with IL-6, neither RvD2 nor RvE1 had any significant effect on the 

cytokine-induced gene expression of E-selectin and VCAM-1 by HAEC (figure 31). 

During treatment with TNFα, RvD2 was able to significantly inhibit both E-selectin 

and VCAM-1 expression at a concentration of 50 nM, whereas RvE1 caused a small 

decrease in E-selectin induction when used at 10 nM (figure 31). However, treatment 

with ethanol gave a similar pattern of inhibition (figure 31). This suggests the 

inhibitory effects observed during TNFα treatment in the presence of resolvins were 

due to the solvent and not to the specific action of the resolvins. Based on these 

observations, resolvins were excluded as major mediators of the anti-inflammatory 

activity of ECPCM. 

 

 

 

 

 

 

Figure 31: Gene expression of E-selectin and VCAM-1 is not affected by resolvins. HAEC 
were treated for 2 hours with 2.39 nM IL-6 or 0.1 nM TNFα in ECPCM, collection medium 
or collection medium with RvD2 or RvE1 (10 nM or 50 nM). Vehicle control treatment: 
collection medium with IL-6 or TNFα and ethanol. *p-value <0.05 compared to treatment 
in collection medium with IL-6 or TNFα. Data = mean ± SD; n = 3 per group. 

* * 

* * * 

* * * 



132 

 

3.4.9 Exploration of known anti-inflammatory mediators: conclusions and 

discussion 

Multiple and varied molecules known to mediate anti-inflammatory effects were 

studied to determine their possible roles in the activity of ECPCM. Proteins such as 

TGF-β and IL-10 were tested, though these protein mediators were unlikely 

candidates based on the proteinase K findings. The small quantity of IL-10 in 

ECPCM was sufficient to exclude it as the main anti-inflammatory factor in the 

formulation, however TGF-β levels were higher in ECPCM than in collection 

medium. Moreover, administration of TGF-β together with IL-6 or TNFα inhibited 

cytokine-dependent expression of E-selectin and VCAM-1. Nevertheless, inhibition 

of the cytokine-induced gene expression to the same extent as ECPCM required a 

concentration of TGF-β four times higher than that detected in ECPCM; use of TGF-

β at a similar concentration to that found in ECPCM did not inhibit gene expression 

of E-selectin or VCAM-1. These data suggest TGF-β might be partly responsible for 

ECPCM anti-inflammatory activity, but the results from proteinase K treatment 

argue against a prominent role for this protein.  

Quantification of NO, PGI2 and cAMP levels revealed very low concentrations for 

each of these molecules in ECPCM. This suggests none of those factors is 

responsible for the anti-inflammatory activity of ECPCM. For NO and PGI2 this is 

not surprising, given the highly unstable nature and short half-life of these molecules.  

In vitro experiments with RvE1 and RvD2 showed some anti-inflammatory effects, 

but these were not comparable to those obtained with ECPCM in terms of 

concentration-dependence, intensity, extent and specificity; therefore, these 

molecules are probably not involved in mediating the beneficial effects of ECPCM. 
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Lastly, pharmacological experiments showed that glucocorticoids are not responsible 

for the anti-inflammatory activity of ECPCM.  

Overall, the experimental evidence described in this thesis suggests that the soluble 

anti-inflammatory factor (or factors) in ECPCM is not ssRNA. If it is a protein, it is 

proteinase K resistant, and it is not any of the well-known anti-inflammatory 

molecules tested in the studies described above. It is possible that other, as-yet 

unidentified factors, possibly of lipid or saccharide nature or proteinase K-resistant 

peptides, are responsible for the anti-inflammatory activity of ECPCM.  
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Chapter 3.5: Molecular mechanism underlying the anti-

inflammatory effects of ECPCM 

3.5.1 ECPCM affects protein tyrosine-phosphorylation 

Phosphorylation is an important post-translational modification that controls many 

proteins’ function and localisation and mediates cell signalling. As a systematic 

approach to study the molecular mechanism behind ECPCM anti-inflammatory 

effects on EC, the protein tyrosine-phosphorylation (p-Tyr) profiles for HAEC 

treated with ECPCM or collection (control) medium, with or without IL-6, were 

analysed. Figure 32 shows that the pattern of p-Tyr in EC treated with ECPCM was 

different from that observed with collection medium treatment. More specifically, 

both in the presence and absence of the cytokine, ECPCM treatment increased the 

intensity of a p-Tyr band of ~40 kDa, accompanied by the appearance of one extra 

band just above it. Moreover, in EC treated with ECPCM+IL-6 another very faint 

band just below 37 kDa appeared. 

 

 

 

 

 

 

 

 

 

Figure 32: ECPCM affects the 
protein tyrosine phosphorylation 
pattern in EC. HAEC were 
treated for 30 minutes with 
collection medium (control) or 
ECPCM with or without 2.39 nM 
IL-6. Western blot analysis was 
performed using anti-phospho-
tyrosine and anti-β-Actin 
antibodies. The arrows indicate 
the bands showing a different 
pattern in ECPCM samples 
compared to collection medium 
treatment. The image is 
representative of three 
independent experiments. 
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3.5.2 Analysis of the differentially tyrosine-phosphorylated proteins observed 

during treatment with ECPCM 

ECPCM induced an increase in intensity or the appearance of three tyrosine-

phosphorylated proteins in EC. In order to identify these proteins and study their 

potential roles in ECPCM anti-inflammatory activity, the specific bands were 

isolated and analysed by mass spectroscopy. This approach identified annexins A1, 

A2 and A5 as the proteins potentially affected by ECPCM. 

Annexins are a large family of Ca2+-dependent, phospholipid-binding proteins which 

are involved in a variety of cellular functions: membrane organization and 

trafficking, endo- and exocytosis, apoptosis, inflammation and fibrinolysis (Gerke V 

2002; Gerke V 2005). The molecular weight of annexins varies between 36 and 39 

kDa. Annexin A1 promotes membrane fusion and multi-vesicular endocytosis; 

promotes apoptosis of neutrophils and Jurkat-T lymphocytes; regulates 

phospholipase A2 activity and displays anti-inflammatory activity similar to that 

mediated by glucocorticoids when administered in the extra-cellular environment 

(Gerke V 2005). Annexin A2 is involved in Ca2+-dependent exocytosis, including 

those events involving WPB and P-selectin exposure in EC; binds certain species of 

RNA, suggesting a role in controlling their transport or export from the nucleus; 

participates in the organization of lipid-raft-like domains at sites of actin recruitment; 

and stimulates fibrinolysis by acting as co-factor for tissue plasminogen activator and 

plasminogen (Gerke V 2005). An anti-coagulant role has also been proposed for 

annexin A5 (Gerke V 2005). Tyrosine phosphorylation has been reported for annexin 

A1 and A2 (Gerke V 2002; Gerke V 2005). This post-translational modification 

makes annexin A1 more susceptible to proteolysis (Gerke V 2002), whilst in the case 

of annexin A2 it decreases the annexin’s phospholipid binding affinity and stimulates 
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Figure 33: Gene expression of annexin A2 in HAEC. Cells were treated with 
or without 2.39 nM IL-6 in collection medium or ECPCM for 30 minutes 
and 1 or 2 hours. Cntrl = collection (control) medium only. Data = Mean ± 
SD; n (individual well) = 6 per group. 

translocation to the cell surface of EC in response to heath stress, where phospho-

annexin A2 seems to increase plasmin activity and therefore fibrinolysis (Gerke V 

2002; Deora AB 2004).  

Stress response and fibrinolysis are important events regulating vascular homeostasis 

after injury. Given the role of annexin A2 in these responses and its regulation by 

tyrosine-phosphorylation, further experiments focused on the possible role of 

annexin A2 in mediating ECPCM anti-inflammatory effects.  

Real-time PCR showed that expression of the annexin A2 gene in HAEC is quite 

stable over time and is not significantly affected by treatment with collection 

medium or ECPCM, with or without IL-6 (Figure 33).  

 

 

 

 

 

 

 

 

 

 

Western blot analysis of total and phosphorylated annexin A2 showed no differences 

between collection medium- and ECPCM-treated samples (Figure 34). 
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Figure 34: Protein levels of 
total and phosphorylated 
annexin A2 in HAEC. Cells 
were treated in collection 
medium (control) or ECPCM, 
with or without 2.39 nM IL-6 
for 30 minutes. Western blot 
analysis was performed using 
anti-β-Actin and anti-total- and 
phospho-annexin A2. The 
image is representative of three 
independent experiments.  

 

Based on these experiments annexin A2 and its phosphorylation were excluded as 

mediators of ECPCM anti-inflammatory activity in HAEC.  The potential roles of 

annexins A1 and A5 in the anti-inflammatory activity of ECPCM will also be 

investigated in the future in order to thoroughly utilize the results from the mass 

spectrometry screening.  

 

After this general analysis of phospho-tyrosines in EC, further experiments explored 

the specific pathways activated by TNFα and IL-6. 

 

3.5.3 NF-kB pathway activation is necessary for TNFα-induced E-selectin and 

VCAM-1 expression in HAEC 

NF-kB is a transcription factor known for its important role in modulating the 

immune and inflammatory response (Hayden MS 2008). As mentioned in the 

introduction, TNFα-induced gene expression is typically mediated by activation of 

NF-kB. Moreover, although the intracellular signalling cascade triggered by PF4 is 

still largely unknown, activation of NF-kB has been observed in HUVEC upon PF4 
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Figure 35: Inhibition of NF-kB activation by BAY 1170-85. HAEC were treated for 30 
minutes with 0.1 nM TNFα in collection medium with or without 2 µM BAY 1170-85 or 
DMSO as vehicle control. Western blot analysis was performed with anti-IkBα and anti-β-
Actin antibodies. The image is representative of three separate experiments. 

treatment (Yu G 2005). Based on this information, a possible association between the 

anti-inflammatory effects of ECPCM and the inhibition of NF-kB pathway was 

investigated. Activation of the pathway was assessed by looking at the protein levels 

of IkBα, the inhibitor that binds to NF-kB and retains it in the cytoplasm.  IkBα 

needs to be phosphorylated and then degraded through the proteasome in order for 

the transcription factor to move into the nucleus to activate gene transcription (see 

introduction).  

First, to verify that NF-kB is indeed necessary for TNFα-induced expression of E-

selectin and VCAM-1 in HAEC, cells were treated with the cytokine in collection 

medium with or without BAY 1170-85, an irreversible inhibitor of IkBα 

phosphorylation and degradation, and therefore an inhibitor of NF-kB activation. The 

efficacy of BAY 1170-85 in blocking the NF-kB pathway was confirmed by western 

blot (figure 35). 

 

 

 

 

Real-time PCR showed that inhibition of NF-kB activation during TNFα treatment 

blocked the induction of gene expression for E-selectin and VCAM-1 (figure 36). 

These data confirm the essential role of NF-kB in mediating the expression of the 

two adhesion molecules in HAEC upon TNFα treatment. 
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3.5.4 ECPCM does not affect IkBα degradation 

In order to investigate whether ECPCM affects NF-kB activation, IkBα protein levels 

were analysed in HAEC treated with TNFα in collection medium or ECPCM. 

Treatment with TNFα in collection (control) medium caused the complete 

degradation of IkBα, indicating activation of NF-kB pathway as expected (figure 37). 

Importantly, cells treated with TNFα in ECPCM showed a decrease in IkBα levels 

comparable to that observed during treatment in collection medium (figure 37). 

These results show that ECPCM anti-inflammatory activity is not mediated by the 

inhibition of NF-kB pathway activation. 

 

 

* * 

Figure 36: TNFα-induced gene expression for E-selectin and VCAM-1 is inhibited by 
BAY 1170-85. HAEC were treated for 2 hours with 0.1 nM TNFα in collection medium 
with or without 2 µM BAY 1170-85 or DMSO as vehicle control. *p-value <0.001 
compared to treatment in collection medium + TNFα. Data = mean ± SD; n = 9 per 
group. 

* * 
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Figure 37: ECPCM does not 
affect NF-kB activation. 
Western blot of IkBα and β-
Actin in HAEC treated for 30 
minutes with collection 
medium or with 0.1 nM TNFα 
in collection medium or 
ECPCM. A representative 
image of three different 
experiments is shown. 

 

3.5.5 ECPCM does not affect NF-kB translocation to the nucleus 

An alternative mechanism for ECPCM to affect the NF-kB pathway would be to 

inhibit translocation of the activated transcription factor to the nucleus (Hayden MS 

2008). To test this hypothesis, HAEC were treated for different times with TNFα in 

collection medium or ECPCM, then immunofluorescent staining was performed for 

p65 (RelA), which together with p50 makes up the activated NF-kB dimer for 

transcriptional activation (Hayden MS 2008). Figure 38 shows a clear accumulation 

of p65 in the nucleus after 30 minutes of treatment with TNFα in collection medium, 

with partial localization of the protein in the cytoplasm after 1 hour and a complete 

return of p65 to the cytosol after 2 hours of treatment. Interestingly, the staining 

pattern of p65 in HAEC treated with TNFα in ECPCM at various time points was 

very similar to that for TNFα in the collection medium control (figure 38). 

Quantification of p65 nuclear levels confirmed that there was no significant 

difference between ECPCM and collection medium treatment (figure 39). Based on 

these observations it can be concluded that ECPCM affects neither NF-kB activation 

nor its translocation into the nucleus. 
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Figure 38: ECPCM does not 
affect p65 translocation to the 
nucleus. HAEC were treated 
with 0.1 nM TNFα in 
collection medium or ECPCM 
for up to 2 hours. Control cells 
were incubated in collection 
medium or ECPCM for 2 
hours. After fixation in 4% 
paraformaldehyde and 
permeabilization with 
methanol, immunofluorescent 
staining was performed with 
anti-p65 (RelA) (green) and 
anti-PECAM-1 (red) 
antibodies. The image is 
representative of three separate 
experiments. 

30 μm 
 

30 μm 
Figure 39: Quantification of p65 
nuclear translocation in HAEC 
treated with 0.1 nM TNFα in 
collection medium or ECPCM for 
up to 2 hours. Data = Mean ± SD; 
n = 3 for each group. 
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3.5.6 IL-6 induces expression of E-selectin and VCAM-1 through activation of 

Stat3 and not NF-kB  

IL-6 is known to stimulate gene transcription through activation of the Stat3 

transcription factor (Heinrich PC 1998; Heinrich PC 2003). Although it is known that 

NF-kB is involved in gene expression of E-selectin and VCAM-1 (Montgomery KF 

1991; Collins T 1995; Cook-Mills JM 2011), to date there are no reports of Stat3 

being directly involved in the IL-6-induced transcription of these two genes. 

Nonetheless, in the in vitro assay described earlier IL-6 clearly induced both E-

selectin and VCAM-1. In order to determine if in HAEC the induction of E-selectin- 

and VCAM-1 expression is indeed mediated by Stat3, experiments were performed 

using Stattic, a specific inhibitor of the Stat3 transcription factor. Stattic is a small 

molecule that selectively inhibits the activation of Stat3 by blocking its 

phosphorylation and dimerization (IC50 5.1±0.8 μM after 1 hour incubation at 37°C) 

(Schust J 2006). HAEC were treated with IL-6 in collection (control) medium in the 

presence or absence of 2 µM Stattic or DMSO as vehicle control. Stat3 activation 

was verified by western blot, and gene expression of E-selectin and VCAM-1 was 

analysed by real-time PCR.  

As shown in figure 40, treatment with IL-6 induced Stat3 phosphorylation and 

therefore activation, whereas treatment in the presence of Stattic effectively blocked 

phosphorylation of the transcription factor. IL-6 did not activate the NF-kB pathway: 

IkBα levels were not affected by IL-6 treatment, which is in contrast with a dramatic 

reduction of IkBα upon TNFα treatment (positive control).  
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Figure 40: Effects of Stattic and IL-6 on the Stat3 and NF-kB pathways. After 1 hour pre-
treatment with 2 μM Stattic or DMSO in collection medium, HAEC were treated for 30 
minutes with 2.39 nM IL-6 in collection medium with or without Stattic or DMSO. 
Treatments in collection medium with IL-6 or 0.1 nM TNFα were also performed to verify 
activation of the Stat3 and NF-kB pathways, respectively. Western blot analysis was 
performed using antibodies specific for phosphorylated and total Stat3, IkBα and β-Actin. 
The image is representative of three separate experiments. 

Real-time PCR data showed a marked decrease in IL-6-induced gene expression of 

E-selectin and VCAM-1 upon Stattic treatment (figure 41), demonstrating the 

essential role of Stat3 in the IL-6-induced transcription of both genes in HAEC.  

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Stattic inhibits IL-6-induced E-selectin and VCAM-1 expression 
in HAEC. Real-time PCR was performed after 2 hours treatment in 
collection medium with 2.39 nM IL-6 with or without 2 µM Stattic or 
DMSO. P-value *< 0.01, **<0.001 compared to treatment in collection 
medium + IL-6. Data = mean ± SD; n = 6 for each group.  

* ** 
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Figure 42: ECPCM does 
not affect Stat3 activation. 
HAEC were treated for 30 
minutes with collection 
medium or with 2.39 nM 
IL-6 in collection medium 
or ECPCM. Western blot 
analysis was performed on 
β-Actin, total Stat3 and 
phosphorylated Stat3. The 
image is representative of 
three separate experiments. 

3.5.7 Stat3 activation is not affected by ECPCM 

In order to study the effect of ECPCM on Stat3 activation in HAEC during IL-6 

treatment, western blot analysis was conducted to visualize the total and the 

phosphorylated forms of the transcription factor. Figure 42 shows that IL-6 induced 

the phosphorylation of Stat3 in collection medium and ECPCM to similar levels, 

indicating that ECPCM does not affect the activation of Stat3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: ELISA detection 
(expressed in absorbance at 450 
nm) of total and phosphorylated 
Stat3 in HAEC treated for 30 
minutes with 2.39 nM IL-6 in 
collection medium or ECPCM. 
Data = mean ± SD; n = 3 per 
group 

Figure 44: Percentage of phosphorylation 
of Stat3 as detected by ELISA. Data = 
mean ± SD; n = 3 per group. 
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To better quantify the differences in the phosphorylation and therefore activation of 

the transcription factor, an ELISA for total and phosphorylated Stat3 was performed 

on HAEC treated with IL-6 in collection medium or ECPCM. Phosphorylation levels 

for Stat3 were similar between the two treatment conditions (figures 43 and 44), 

confirming that activation of the Stat3 transcription factor by IL-6 is not affected by 

ECPCM. 

 

3.5.8 Stat3 translocation to the nucleus is not affected by ECPCM 

In order to determine if ECPCM prevents activated Stat3 from translocating into the 

nucleus and stimulating expression of E-selectin and VCAM-1, immunostaining for 

phosphorylated Stat3 was performed. HAEC were treated with IL-6 in either 

collection medium or ECPCM and fixed at different time points. As shown in figure 

45, a similar pattern of staining was observed in cells treated with ECPCM and the 

collection medium control: activated Stat3 moved to the nucleus in the presence of 

collection medium or ECPCM; after only 5 minutes of IL-6 treatment an increase in 

nuclear phospho-Stat3 was observed, and even higher levels of the activated 

transcription factor in the nucleus were seen after 10 and 30 minutes. Phospho-Stat3 

nuclear staining declined after 1 hour of treatment, although by 2 hours it still had 

not disappeared completely. Quantification of Stat3 nuclear localisation confirmed 

that there was no significant difference between ECPCM and collection medium 

treatment (figure 46). These data suggest that ECPCM does not affect activation or 

translocation of Stat3 transcription factor upon IL-6 treatment. 
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Figure 45: ECPCM does not 
affect translocation of activated 
Stat3 to the nucleus. HAEC 
were treated with 2.39 nM IL-6 
in collection medium or 
ECPCM for up to 2 hours. 
Control cells were incubated in 
collection medium or ECPCM 
for 2 hours. After fixation in 4% 
paraformaldehyde and 
permeabilization in methanol, 
immunofluorescence staining 
was performed with anti-
phosphoStat3 (green) and anti-
PECAM-1 (red) antibodies 
followed by DAPI staining 
(blue). The image is 
representative of three separate 
experiments. 

30 μm 
 

30 μm 
Figure 46: Quantification 
of phospho-Stat3 nuclear 
translocation in HAEC 
treated with 2.39 nM IL-6 
in collection medium or 
ECPCM for up to 2 hours. 
Data = Mean ± SD; n = 3 
for each group. 
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3.5.9 ECPCM does not affect stability of E-selectin or VCAM-1 mRNA  

ECPCM affected neither activation nor translocation to the nucleus of NF-kB and 

Stat3, and yet it consistently inhibited TNFα- and IL-6-induced expression of E-

selectin and VCAM-1 at both the mRNA and protein levels. Since RNA stability 

affects mRNA levels and ultimately protein levels, the ability of ECPCM to affect 

the stability of E-selectin- and VCAM-1 mRNA was investigated. 

Gene expression was first induced in HAEC by treatment for 2 hours with TNFα or 

IL-6 in collection medium, then transcription was inhibited by addition of 

Actinomycin D, a polypeptide antibiotic that binds to DNA at the initiation of 

transcription complex and blocks RNA elongation and transcription by RNA 

polymerase (Sobell HM 1985). Next, cells were treated with IL-6 or TNFα in 

collection (control) medium or ECPCM in the presence of Actinomycin D for an 

additional 30 minutes, 1 hour, 2 hours and 4 hours. E-selectin and VCAM-1 mRNA 

levels were analysed at each time point by real-time PCR. The normal turnover of the 

mRNA for both E-selectin and VCAM-1 was also determined by treating HAEC for 

the same time with the cytokines in collection medium without Actinomycin D. 

Figure 47-A shows that after the initial 2 hours of cytokine treatment, continued 

treatment with IL-6 in collection medium, but without Actinomycin D, induced a 

small rise in E-selectin mRNA levels for 1 additional hour, then the mRNA quickly 

decreased and reached basal levels at 4 hours. However, treatment in collection 

medium with IL-6 and Actinomycin D showed a steady and slow decrease in E-

selectin mRNA levels from 30 minutes onwards. A similar trend in E-selectin mRNA 

reduction was observed during treatment with IL-6 and Actinomycin D in ECPCM. 

In HAEC treated with IL-6 but no Actinomycin D in collection medium, VCAM-1 
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mRNA levels rose for up to 2 hours past the initial induction and returned to initial 

levels after 4 hours (figure 47-B). In cells treated with IL-6 and Actinomycin D, 

mRNA levels of VCAM-1 at each time point were comparable between treatment in 

collection medium and ECPCM. In both cases the mRNA levels decreased regularly 

from 30 minutes of Actinomycin D addition, until reaching the initial levels after 4 

hours (figure 47-B).  

During TNFα treatment in collection medium, E-selectin mRNA levels increased for 

1 hour after the initial induction and then decreased after 4 hours (figure 47-C). 

Treatment in collection medium with TNFα and Actinomycin D showed a regular 

but small reduction in E-selectin transcript levels. Treatment with ECPCM in the 

presence of TNFα and Actinomycin D revealed a similar trend, with a slow but 

steady decrease in mRNA expression from 1 hour onwards after the initial induction. 

At all time points examined the E-selectin mRNA levels were comparable between 

the two treatments (figure 47-C). For VCAM-1 expression, after the initial induction 

the transcript levels rose for 2 more hours in the presence of collection medium with 

TNFα and without Actinomycin D. In the presence of TNFα and Actinomycin D, 

VCAM-1 mRNA levels increased slightly for 30 minutes and then decreased steadily 

at each time point, and were comparable throughout the experiment upon treatment 

with collection medium or ECPCM (figure 47-D). As was observed with E-selectin, 

overall levels of VCAM-1 transcripts after 4 hours of TNFα treatment were still quite 

high compared to those observed upon IL-6 treatment. This is probably due to the 

fact that TNFα induces a much higher level of gene expression than does IL-6. 
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Figure 47: mRNA stability assay on E-selectin and VCAM-1 transcripts. HAEC were 
treated with the cytokine (ctk) (2.39 nM IL-6 or 0.1 nM TNFα) in collection medium for 
2 hours. The media was then changed to collection medium + cytokine (dotted line), 
collection medium + cytokine + Actinomycin D (blue line) or ECPCM + cytokine + 
Actinomycin D (green line). Transcripts levels were assessed by real-time PCR after 30 
minutes, 1 hour, 2 hours and 4 hours of treatment.  Data = mean ± SD. 

A               C 

B               D 

 

Although the kinetics of mRNA decrease were different during treatment with IL-6 

and TNFα, and between E-selectin- and VCAM-1 genes, these results clearly show 

that ECPCM does not affect the mRNA stability of either gene. Therefore, it is 

highly unlikely that the anti-inflammatory effect of ECPCM involves the modulation 

of mRNA stability of the targeted genes.  
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3.5.10 ECPCM decreases TNFα-induced binding of p65 to the E-selectin and 

VCAM-1 promoters 

Since the stability of E-selectin and VCAM-1 transcripts induced by IL-6 and TNFα 

was not affected by ECPCM, and the activation and nuclear translocation of NF-kB 

and Stat3 were also not inhibited by ECPCM, the effect on transcription was 

examined next as a potential mechanism for the anti-inflammatory effect of ECPCM.  

To this end, the promoter DNA binding activity of the transcription factors was 

analysed using a chromatin immuno-precipitation assay (ChIP). Because ChIP 

experiments require a large number of cells to give sufficient genomic DNA, which 

was not possible to obtain with primary cultures of HAEC, HUVEC were used for 

these experiments. 

To validate HUVEC as a suitable cell type substitution for ChIP, IL-6 and TNFα 

treatment in collection medium or ECPCM was performed using the same timing and 

concentrations adopted for HAEC. Figure 48 shows that the anti-inflammatory 

activity of ECPCM on HUVEC is similar to that observed in HAEC. Indeed, 

ECPCM inhibited IL-6- and TNFα-induced expression of E-selectin by 85% and 

35%, respectively, whereas expression of VCAM-1 was inhibited by ECPCM by 

75% with IL-6 and 61% with TNFα treatment in HUVEC (figure 48). 

To further validate the use of HUVEC, molecular signalling pathways were analysed 

in the cells during cytokine treatment. Western blot and immunofluorescent 

experiments were performed on p65 and Stat3 in HUVEC treated with TNFα or IL-6, 

in collection medium or ECPCM.  
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Figure 48: Inhibition of E-selectin- and VCAM-1 gene expression by ECPCM in 
HUVEC. Cells were treated with 2.39 nM IL-6 or 0.1 nM TNFα for 2 hours in 
collection medium or ECPCM. Percentage of gene expression inhibition and p-value 
compared to treatment with IL-6 or TNFα in collection medium are shown. p-value: 
*** <0.001; ** <0.01; * <0.05. Data = mean ± SD; n = 9 for each group. 

 

 

 

 

 

 

 

 

 

As was observed with HAEC (see figures 37-40 and 42-46), treatment of HUVEC 

with TNFα in collection medium induced IkBα degradation (figure 49) and NF-kB 

pathway activation with p65 translocation to the nucleus (figures 50 and 51). 

Treatment in ECPCM did not affect the TNFα–dependent NF-kB activation and 

translocation (figures 50 and 51). Likewise, HUVEC treated with IL-6 showed 

activation and nuclear translocation of Stat3 in the presence of both collection 

medium and ECPCM (figures 49, 52 and 53). IkBα was not degraded during IL-6 

treatment, confirming that in HUVEC, as in HAEC, IL-6-induced expression of E-

selectin and VCAM-1 is Stat3- and not NF-kB-dependent. 
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These results demonstrate that IL-6 and TNFα activate the same molecular pathways 

in HAEC and HUVEC; they also show that ECPCM has comparable effects on the 

two cell lines. Therefore, HUVEC is a valid alternative to HAEC for ChIP 

experiments. 

 

 

 

 

 

Figure 49: ECPCM does not 
affect activation of NF-kB or 
Stat3 in HUVEC. Cells were 
treated for 30 minutes with 
collection medium, 0.1 nM 
TNFα in collection medium 
or ECPCM and with 2.39 
nM IL-6 in collection 
medium or ECPCM. 
Western blot analysis was 
performed on β-Actin, IkBα, 
total and phosphorylated 
Stat3. The image is 
representative of three 
separate experiments. 
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Figure 51: Quantification of p65 
nuclear translocation in HUVEC 
treated with 0.1 nM TNFα in 
collection medium or ECPCM for 
up to 2 hours. Data = Mean ± SD; 
n = 3 for each group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50: Translocation of 
activated p65 to the nucleus in 
HUVEC. Cells were treated 
with 0.1 nM TNFα in 
collection medium or ECPCM 
for 10 minutes, 30 minutes, 1 
hour or 2 hours. Control cells 
were incubated in collection 
medium or ECPCM for 2 
hours. After fixation in 4% 
paraformaldehyde and 
permeabilization with 
methanol, immuno-
fluorescence staining was 
performed with anti-p65 
(green) and anti-PECAM-1 
(red) antibodies. The image is 
representative of three 
separate experiments. 

30 μm 
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Figure 52: Stat3 activation 
and translocation to the 
nucleus in HUVEC. Cells 
were treated with 2.39 nM 
IL-6 in collection medium or 
ECPCM for 10, 30 minutes, 
1 or 2 hours. Control cells 
were incubated in collection 
medium or ECPCM for 2 
hours. After fixation in 4% 
paraformaldehyde and 
permeabilization with 
methanol, immuno-
fluorescence staining was 
performed with anti-
phospho-Stat3 (green) and 
anti-PECAM-1 (red) 
antibodies followed by DAPI 
staining (blue). The image is 
representative of three 
separate experiments. 

30 μm 
 

30 μm 

Figure 53: Quantification of 
phospho-Stat3 nuclear 
translocation in HUVEC treated 
with 2.39 nM IL-6 in collection 
medium or ECPCM for up to 2 
hours. Data = Mean ± SD; n = 3 
for each group. 
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Figure 54: Nucleotide sequence of the E-selectin and VCAM-1 promoters. Binding sites 
for specific transcription factors are highlighted in different colours. The sequences 
between the TaqMan primers (dotted boxes) were amplified using real-time PCR. 

 

For the ChIP experiment HUVEC were treated with or without TNFα in collection 

medium or ECPCM. After immunoprecipitation with an anti-p65 antibody, real-time 

PCR was used to determine the amount of DNA bound to p65 upon cytokine 

treatment. Isotype-matched IgG was used as a negative control for ChIP, and binding 

of p65 to its target DNA sequence was expressed as fold change over non-specific 

IgG binding. Primers and probes for real-time PCR were specifically designed to 

detect and amplify the regions recognized by p65 on E-selectin and VCAM-1 

promoters (figure 54).  
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As shown in figure 55, treatment of HUVEC with TNFα in collection (control) 

medium strongly induced p65 binding to E-selectin and VCAM-1 promoters. More 

importantly, ECPCM inhibited the binding of p65 to the promoters of both genes, 

down to levels comparable to the control treatment without TNFα. These data 

suggest ECPCM exerts its anti-inflammatory activity on TNFα mainly by inhibiting 

p65 binding to the promoters of E-selectin and VCAM-1 and thereby blocking their 

transcription. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

** * 

Figure 55: ECPCM significantly inhibits p65 binding to E-selectin and VCAM-1 promoters. 
HUVEC were treated for 1 hour with or without 0.1 nM TNFα in collection medium or 
ECPCM. The extracted chromatin was immunoprecipitated using anti-p65 antibody or 
isotype-matched IgG as control. The immunoprecipitated DNA was then quantified using 
real-time PCR. The level of p65 binding to the specific promoters was expressed as fold 
changes over the IgG control. p-value: *<0.01, **<0.001 comparing ECPCM + TNFα to 
collection medium + TNFα treatment.  Data = mean ± SD; n = 3 for each group. 

 

** * 
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3.5.11 Molecular mechanisms underlying the anti-inflammatory effects of 

ECPCM: conclusions and discussion 

In order to elucidate the molecular mechanism mediating ECPCM anti-inflammatory 

activity and the pathways affected by the formulation, analysis of protein tyrosine 

phosphorylation in HAEC was performed. Cells treated with ECPCM revealed a 

different pattern of tyrosine phosphorylation compared to collection medium 

treatment. Mass spectrometry analysis identified those differentially-phosphorylated 

proteins likely are annexins A1, A2 and A5. Further experiments analysing annexin 

A2 showed no changes in the level of gene expression or phosphorylation of the 

protein in EC upon ECPCM treatment, suggesting that annexin A2 is not affected by 

ECPCM and therefore is likely not involved in mediating its anti-inflammatory 

effects. Since the mass spectrometry analysis was performed only once, it is possible 

that the data obtained from that single experiment were not representative for 

changes in EC in the presence of ECPCM. Also, the mass spectrometry analysis 

provided a list of other proteins identified in the gel bands sent for investigation, and 

those proteins rather than annexin A2 might be the ones affected by ECPCM. 

Repeating the mass spectrometry analysis and exploring the role of other proteins 

identified in the list of potential candidates could provide interesting data on the 

molecular changes affecting EC response to inflammatory stimuli in the presence of 

ECPCM.  

Experiments performed on HAEC and HUVEC confirmed that the canonical NF-kB 

pathway is activated in EC upon TNFα treatment. The cytokine induced degradation 

of IkBα, localization of p65 to the nucleus and strong gene expression of the 

inflammatory adhesion molecules E-selectin and VCAM-1. Use of a selective NF-kB 
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activation inhibitor, BAY 1170-85, abolished both IkBα degradation and cytokine-

induced gene induction, proving the essential role of p65 in mediating the pro-

inflammatory effects of TNFα in EC.  

Stat3 is another pro-inflammatory transcription factor that is typically activated by 

IL-6. HAEC and HUVEC treated with IL-6 showed induction of Stat3 

phosphorylation, accumulation of the activated Stat3 in the nucleus, and no reduction 

in IkBα levels. Induction of E-selectin and VCAM-1 gene expression was observed 

at the same time. Moreover, treatment of HAEC with IL-6 in the presence of a 

specific inhibitor for Stat3 phosphorylation prevented the cytokine-dependent gene 

induction. These results proved that Stat3, and not NF-kB, is mainly responsible for 

the pro-inflammatory gene expression induced by IL-6 in EC. Whereas involvement 

of Stat3 in ICAM-1 transcription has been reported (Wung BS 2005; Chen SC 2006), 

to my knowledge this is the first evidence of Stat3 being involved in gene expression 

of VCAM-1 and E-selectin. 

Interesting, ECPCM did not prevent activation or nuclear translocation of p65 and 

Stat3 during treatment with TNFα and IL-6, respectively. Immunofluorescence 

analysis suggested that ECPCM did not affect the turnover or degradation of either 

activated transcription factor.   

During TNFα treatment p65 activity is shut down by a negative feedback loop in 

which p65 promotes IkBα transcription (Sun SC 1993). Newly synthesised IkBα 

binds to NF-kB in the nucleus and moves the transcription factor to the cytoplasm 

(Sun SC 1993; Hayden MS 2008). Analysis of IkBα levels was not performed; 

however, since p65 levels and nuclear localisation were not affected by ECPCM over 
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a period of 2 hours compared to the control treatment, it is unlikely that ECPCM 

affects IkBα transcription or synthesis.  

The mRNA stability of the cytokine-induced genes was also not affected by ECPCM. 

After inhibition of transcription, degradation of E-selectin and VCAM-1 mRNA was 

not enhanced by the presence of ECPCM. Based on the results of ECPCM digestion 

with proteinase K and RNase, miRNAs which are resistant to both enzymes were 

proposed as a possible mediator of ECPCM activity; these molecules are known to 

be involved in inhibition of adhesion molecule expression in EC (e.g. miR-126, -31 

and -10a). The miRNAs act by inducing degradation of gene transcripts (Harris TA 

2008; Fang Y 2010; Suarez Y 2010). More specifically, a recent publication suggests 

miRNAs mediate gene silencing by affecting protein translation first and mRNA 

deadenylation and decay second (Djuranovic S 2012). In the same study, inhibition 

of transcription with actinomycin D resulted in a substantial reduction in protein 

synthesis but no decline of mRNA levels at a single time point after induction. This 

scenario is not consistent with the ECPCM-mediated inhibition of E-selectin and 

VCAM-1 expression, which involved a decrease in levels of the genes transcripts 

first, at as early as 2 hours, and reduction of proteins levels later, after 5-6 hours. 

Based on these data miRNA molecules can be excluded as mediators of ECPCM 

activity. 

An explanation of the mechanism of action of ECPCM was provided by the ChIP 

experiments, which showed that ECPCM reduced p65 binding to E-selectin and 

VCAM-1 promoters in HUVEC. Binding of p65 to DNA is controlled by 

ubiquitination and acetylation; four lysine residues (Lys-122, -123, -314 and -315) 

are targets for both poly-ubiquitination and acetylation (Li H 2012). Ubiquitination 
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of p65 promotes its release from chromatin by targeting the protein for proteasomal 

degradation (Li H 2012). If ubiquitination was involved in ECPCM activity, it would 

cause a decrease in detectable p65 levels in EC treated with TNFα in the presence of 

ECPCM. Since western and immunofluorescence analyses showed no reduction in 

p65 levels upon ECPCM treatment, this degradation mechanism can be excluded. 

Ubiquitination of p65 can also have non-degradative effects on the transcription 

factor, for example by preventing acetylation events on the same lysine acceptor 

sites. Interestingly, Lys-122 and -123 are the only residues contacting DNA in the 

minor grove (Chen FE 1998) and their acetylation reduces p65 binding to DNA 

(Kiernan R 2003). On the other hand, acetylation of Lys-310 enhances p65 

transcriptional activity (Quivy V 2004; Schmitz ML 2004). It has been suggested that 

acetylated-p65 is more easily exported to the cytoplasm by IkBα (Kiernan R 2003). 

If that was the case, TNFα-induced p65 nuclear levels should decrease more quickly 

in EC treated in ECPCM compared to cells treated in collection medium. However, 

immunostaining data at different time points revealed no difference in the abundance 

and localization of p65 between ECPCM- and collection medium-treated EC. 

Nonetheless, it is still possible that ECPCM affects the DNA-binding ability of p65, 

for example by stimulating its acetylation on Lys-122 and -123.  

Phosphorylation of other sites on p65 has been described. Phosphorylation on Ser-

276, -311, -529, -536 and Thr-254 stimulates the transcriptional activity of the factor, 

either by increasing its stability and nuclear localization or by enhancing its 

interaction with DNA and co-factors; on the other hand, phosphorylation of Thr-435 

and -505 inhibits p65 transcriptional activity (Campbell KJ 2004). The 

phosphorylation status of p65 in EC during treatment in ECPCM was not analysed, 

therefore it cannot be excluded that ECPCM is affecting this post-translational 
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modification. In the future it would be of interest to verify if p65 phospho-sites are 

involved in the reduction of p65 DNA binding in the presence of ECPCM. Similarly, 

it would be interesting to analyse the phosphorylated status of NF-kB transcriptional 

co-factors. 

Alkylation on Cys-38 was shown to inhibit p65 binding to DNA (Garcıa-Pineres AJ 

2001; Pande V 2009). This type of chemical modification is induced by 

sesquiterpene lactones and epoxyquinone A. Sesquiterpene lactones are the active 

molecules in many medicinal plants from the Asteraceae family that are used in 

traditional medicine to treat inflammation (Garcıa-Pineres AJ 2001). Epoxyquinone 

A is a synthetic derivative of the natural epoxyquinol A (Pande V 2009). Neither 

molecule is produced by human EC, but a similar chemical compound and/or the 

same alkylation modification could be responsible for the reduction in p65 DNA 

binding induced by ECPCM. 

As mentioned in the introduction, p65 must interact with a number of co-factors in 

order to induce transcription of adhesion molecules. It is possible that the anti-

inflammatory factor (or factors) in ECPCM reduces p65 binding to E-selectin and 

VCAM-1 promoters by disturbing the interaction between the NF-kB subunit and 

one or more of its many co-factors. Alternatively, ECPCM might contain a molecule 

that binds to the actively transcribed DNA, and thereby preventing the binding of 

transcription factors to their target sequences. This general mechanism of 

transcription inhibition would have particularly strong effects on the expression of 

genes highly induced by the local environment, such as the pro-inflammatory milieu 

simulated by EC in vitro.  
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Chapter 3.6: Therapeutic effects of ECPCM in vivo 

3.6.1 A zymosan-induced peritonitis model of systemic inflammation was tested 

for study the anti-inflammatory activity of ECPCM activity in vivo 

To further explore the anti-inflammatory effects of ECPCM in vivo, an animal model 

involving zymosan-induced peritonitis was developed. Zymosan is a protein-

carbohydrate complex that is produced from the yeast cell wall and is able to activate 

an inflammatory reaction when injected into animals. It is a ligand for Toll-like 

receptor 2, which is part of the innate immune system and is involved in pathogen 

recognition and activation of non-specific immune reactions (Underhill DM 1999). 

Preliminary experiments were performed to determine the optimal dose of zymosan 

to induce detectable peritonitis. C57/BL6 female mice, 10-14 weeks old were used, 

and an intra-peritoneal (IP) injection of 0.5 mg of zymosan in 1 ml of collection 

medium was sufficient to induce a significant increase in the number of 

inflammatory cells in the peritoneum at 24 hours post-injection, as determined by 

peritoneal lavage (data not shown). To improve the assay, the time course of the 

zymosan treatment was also determined, with peritoneal lavage performed after 1, 2, 

4, 8, 18 and 24 hours following IP injection of the compound. The data from the time 

course experiment showed that the number of inflammatory cells reached a 

maximum at 8 hours post-injection, then started to decrease slowly, though 

inflammatory cell numbers remained high even at 24 hours post-injection (Figure 

56).  Based on this experiment, the optimum conditions for the peritonitis assay were 

established as 0.5 mg zymogen and cell count by peritoneal lavage at 16-18 hours 

post injection. This time point was selected for technical convenience and because 
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Figure 56: Time course of zymosan-
induced peritonitis as assessed by 
peritoneal lavage. The graph shows the 
total number of inflammatory cells/ml 
in the peritoneal lavage recovered from 
animals at 1, 2, 4, 8, 18 and 24 hours 
after IP injection of 0.5 mg zymosan in 
collection (control) medium (n=3 per 
time point). Data = Mean ± SEM. 

Figure 57: Number of 
inflammatory cells/ml in the 
peritoneal lavage recovered from 
animals 16-18 hours after 
injection with zymosan in 
collection medium or ECPCM 
(n=5 per treatment). The control 
animals (Cntrl) were injected 
with collection medium only. 
Data = Mean ± SEM. 

ECPCM anti-inflammatory effect was expected to be maximal before or after the 

peak of immune cell response. 

 

 

In order to test ECPCM activity in this model, animals were injected with 0.5 mg of 

zymosan resuspended in 1 ml of either collection medium or ECPCM. Injection of 

collection medium alone was used as a negative control for the assay. Peritoneal 

lavage and cell counting were performed at 16-18 hours post-injection. No 

significant difference in the inflammatory cell number/ml of peritoneal lavage was 

observed in animals treated with ECPCM compared to the collection medium-treated 

group (Figure 57). 

 

 

 

 

 

 

 

 



164 

 

These results suggest the ECPCM did not significantly suppress zymogen-induced 

peritonitis, likely because the dosage of zymosan at 0.5 mg was too high.  However, 

no further study of this peritonitis model was performed because a vascular 

inflammation model was deemed to be more suitable for testing the anti-

inflammatory activity of ECPCM. 

 

3.6.2 A retinal leukostasis assay was tested for study of the anti-inflammatory 

potential of ECPCM in vivo 

In order to evaluate the therapeutic activity of ECPCM in vivo, another animal model 

of vascular inflammation was developed: the retinal leukostasis assay. In this model 

inflammation is induced in the vasculature of the mouse retina through intra-vitreal 

(IVT) injection of a pro-inflammatory cytokine. After 24 hours cardiac perfusion 

with FITC-conjugated Concavalin A (Con-A) is performed. This allows staining of 

the blood vessels and leukocytes adhering to the luminal surface of the vasculature in 

areas of inflammation. The advantages of using this model to study vascular 

inflammation include the high vascularity of the retina, the accessibility of the tissue 

through IVT injections and the possibility to easily perform microscopic imaging of 

the retina. In pilot studies of the leukostasis assay, C57/BL6 mice received IVT 

injections of PBS, 2 pmol TNFα, and 1 or 2 pmol IL-6. After 24 hours the leukocytes 

adhering to the retinal vasculature were counted. As expected, treatment with pro-

inflammatory cytokines induced an increase in leukocyte recruitment in the retinal 

vasculature (Figure 58).  
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Figure 58: Induction of 
inflammation and leukocyte 
recruitment in the retinal 
vasculature. Mice received IVT 
injection of PBS, TNFα (2 pmol) 
or IL-6 (1 or 2 pmol); after 24 
hours cardiac perfusion with 
FITC-ConA was performed, 
retinas were dissected and whole 
mounted and leukocyte number in 
the vasculature of each retina was 
determined using a fluorescent 
microscope (n=4 per treatment). 
*p-value <0.05 compared to the 
PBS control. Data = Mean ± SEM. 

 

 

 

 

 

 

Further experiments were performed to study ECPCM effects. To this end, mice 

received IVT injections of 1 pmol IL-6, followed by IP injection of 1 ml collection 

medium (control) or ECPCM (treatment). After 24 hours the leukocytes in the retinal 

blood vessels were counted. Although the initial data were promising in that ECPCM 

treatment suppressed retinal leukostasis induced by IL-6, repeated experiments 

revealed that the assay was unreliable. In fact we discovered that due to an 

unanticipated technical issue, some of the retinas displayed insufficient and non-

uniform perfusion. The incomplete staining of the vasculature made leukocyte 

counting virtually impossible (data not shown). Various technical modifications to 

the assay were tested in hopes of resolving the issue, but to date these have failed to 

improve the quality of retinal perfusion with FITC-ConA. Because of these technical 

problems, the retinal leukostasis assay was not used for further study of ECPCM 

anti-inflammatory activity in vivo. 
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3.6.3 ECPCM treatment suppresses choroidal neovascularization (CNV) 

development in a novel animal model of spontaneous CNV 

Since the advantages of the retina for studying vascular inflammation remained, we 

turned to an alternate model of inflammatory vascular disease: CNV. The JR5558 

mouse line is a novel genetic model of multi-focal, bi-lateral, spontaneous CNV 

(Nagai N 2011). These mice harbour a recessive homozygous mutation in an 

unknown gene (or genes) that leads to formation of sub-retinal neovascular tufts 

originating from the choriocapillaris post-natally between P10 and P15. From early 

(P15) to late (P30) development, CNV lesions are accompanied by macrophage 

infiltration. Depletion of circulating macrophages decreases lesion size, but not 

lesion number, confirming that macrophages have a significant role in driving the 

growth of existing CNV in this model (Espinosa-Heidmann DG 2003). CNV 

represents a non-specific wound repair response to an underlying disease, and all 

CNV lesions involve inflammation (Grossniklaus HE 2004). Since inflammation is a 

major component of CNV, JR5558 mice were used to assess the therapeutic anti-

inflammatory effects of ECPCM in vivo.  

CNV is examined and analysed by using fluorescein angiography (FA). The lesions 

appear as lacy, nodular or irregular hyperfluorescence in the early phase of 

angiography (Spencer WH 1996). In the mouse eye CNV is apparent as round-

shaped areas of hyperfluorescence that increase in size over time. FA analysis was 

performed on JR5558 mice at P22 (day 0) to verify the presence of CNV and 

measure the baseline lesion area of each lesion in each retina. Animals were then 

treated for 7 days with daily IP injection of ECPCM or PBS. Lesion measurements 
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by FA were repeated at P29 (day 7), and eyes were collected for immunostaining 

analysis at P30 (day 8). 

As shown in figure 59, treatment with ECPCM for 7 days significantly reduced the 

area of CNV lesions per retina compared to the control PBS treatment. Indeed, from 

P22 (day 0) to P29 (day 7) the CNV area/retina increased by ~6% in mice treated 

with PBS, whereas it decreased by ~30% in animals treated with ECPCM. No 

decrease in lesion number was detected (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 59: ECPCM reduces 
CNV area. JR5558 mice 
received daily intraperitoneal 
injection of 0.5 ml ECPCM 
or PBS from P22 (day 0) to 
P29 (day 7) (n=4 per 
treatment). CNV area/retina 
was determined at baseline 
(day 0) and after the 
treatment (day 7) using FA. 
A: Representative early phase 
FA images obtained from 
JR5558 before and after 7 
days treatment with either 
PBS or ECPCM. B: 
Percentage of increase or 
decrease in CNV area/retina 
at day 7 compared to day 0 
(+5.9% and -29.89% after 
PBS or ECPCM treatment 
respectively). *p-value <0.02 
comparing ECPCM to PBS 
treatment.  Data = mean ± 
SEM. 

* 
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3.6.4 ECPCM reduces macrophage recruitment to CNV lesions in a 

spontaneous animal model of CNV 

After the final FA, the eyecups of JR5558 animals were analysed by 

immunohistochemical staining for macrophage infiltration using F4/80 and PECAM-

1 as markers of activated macrophages and EC, respectively. In animals treated with 

ECPCM, macrophage recruitment to the CNV lesions was significantly reduced 

compared to the recruitment observed in PBS-treated mice (figure 60). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 60: ECPCM reduces macrophage infiltration in spontaneous CNV lesions of 
JR5558 mice. A: Representative immunofluorescence images of the CNV. After 7 
days of treatment with ECPCM or PBS, eyecups were collected and stained with 
anti-F4/80 antibodies to mark macrophages (green) and anti-PECAM-1 antibodies 
to mark endothelial cells (red). B: Quantification of macrophage recruitment at 
CNV lesions (n=9 per treatment) expressed as macrophage number around each 
lesion. *p-value <0.02. Data = mean ± SD. 

A 

10 µm 

B 
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An important feature of the CNV development and growth in JR5558 animals is 

inflammation. ECPCM reduced both the CNV area/retina and the macrophage 

recruitment to CNV, even when it was delivered at a distance from the diseased area 

by IP injection. These in vivo results confirm the presence of a potent soluble anti-

inflammatory factor (or factors) in ECPCM and suggest its significant therapeutic 

potential. 

 

3.6.5 In vivo therapeutic effects of ECPCM: conclusions and discussion 

Establishing a suitable in vivo model to study the therapeutic effects of ECPCM was 

quite challenging. A major technical issue was the inability to concentrate the anti-

inflammatory factor(s) in ECPCM, which meant a relatively large volume of 

ECPCM had to be injected into animals. The duration of treatment was another 

important aspect to consider in determining the in vivo effects of the formulation. 

Finally, there were challenges with animal models of inflammation chosen for the in 

vivo studies. 

This project on ECPCM anti-inflammatory effects was inspired by preliminary data 

obtained from animal models of IH. Vascular inflammation is one of the important 

components in the pathogenesis of IH, which is a complex and multi-faceted disease 

accompanied by many other reactions (i.e. VSMC proliferation and migration) that 

are difficult to control in an experimental setting. For this reason experimental 

models of IH are not suitable for study of the anti-inflammatory effects of ECPCM.  

The first model that was tested was the zymosan-induced peritonitis model. The 

failure of the ECPCM to reduce inflammatory cells recruitment might be explained 

by the molecular mechanism by which zymosan activates the inflammatory response. 
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Zymosan is a ligand for TLR2, a receptor involved in pathogen recognition and 

innate immunity that typically activates a non-specific immune reaction and 

numerous downstream inflammatory pathways (Underhill DM 1999). It is possible 

that effects of ECPCM on a single inflammatory pathway would be masked in the 

TLR2-dependent immune response involving multiple inflammatory pathways. 

Another explanation is that ECPCM might be effective in inhibiting the local 

activation of inflammatory cells and/or their adhesion to the vascular endothelium 

(activities suggested by the effects of ECPCM in vitro), rather than their recruitment 

to the peritoneal cavity. In any case, zymosan-induced peritonitis was not the ideal 

model for testing ECPCM in vivo. 

In a second model, acute and robust vascular inflammation (leukostasis) was induced 

in the retina through intra-vitreal injection of pro-inflammatory cytokines such as IL-

6 and TNFα. Recruitment and adhesion of leukocytes to the luminal surface of blood 

vessels in the retina was subsequently analysed by FITC-ConA perfusion. Technical 

challenges with the perfusion prevented this model from being adopted. More 

experiments are currently being carried out in the laboratory in order to resolve this 

issue, and it is possible that in the future the leukostasis model will provide more 

information about ECPCM anti-inflammatory activity in vivo. 

The third model, an animal model of spontaneous CNV, was suitable for studying the 

anti-inflammatory activity of ECPCM. Since CNV is a major complication 

associated with AMD (Spencer WH 1996; Espinosa-Heidmann DG 2003), there is 

also great clinical relevance to a better understanding of this pathology. The JR5558 

mice develop spontaneous CNV lesions, providing an inflammation-based model of 

eye disease. Moreover, the JR5558 mouse line represents a robust and reproducible 



171 

 

animal model for testing new therapeutics that target vascular inflammation as a 

means of suppressing CNV development. 

JR5558 animals with established CNV lesions treated by intra-peritoneal injections 

of ECPCM for 7 days showed a significant decrease in CNV area/retina and a 

reduction in activated macrophage recruitment to the lesions. Since the growth of 

CNV lesions is supported by inflammatory events (see introduction), the reduction in 

the CNV area induced by ECPCM treatment is evidence of anti-inflammatory 

activity of ECPCM in vivo. The reduction in recruitment of macrophages to CNV 

lesions further demonstrates the in vivo anti-inflammatory effects of ECPCM. 

Importantly, these data support the idea of ECPCM containing soluble anti-

inflammatory factors that, following delivery to the peritoneum, are able to reach the 

vessels in the eye and affect the local inflammatory reactions. Given the limitation on 

the volume that could be injected into the animals and the dilute concentration of the 

anti-inflammatory factor(s) in ECPCM, these results also provide strong evidence for 

great anti-inflammatory potency of the formulation.  

Although the effects of ECPCM have promise with regards to treatment of CNV, it is 

possible that the anti-inflammatory effects observed with mouse CNV will not 

correlate with effects in human CNV. VEGF can mediate pro-inflammatory effects 

(Takahashi H 2005; Luo J 2011), and anti-VEGF treatments decrease leukocyte 

infiltration in experimental mouse models of CNV and ischemia/reperfusion liver 

injury, yet anti-VEGF treatment of human CNV has yielded surprising results 

(Tsuchihashi S 2006; Cao J 2010). Treatment of CNV with the anti-VEGF drug 

Bevacizumab in patients with AMD was paradoxically associated with an increase in 

the recruitment of leukocytes and especially macrophages to the CNV lesions, while 

having no effect on expression of E-selectin or ICAM-1 compared to untreated 
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controls (Tatar O 2008). It will be interesting to see if the promising therapeutic 

potential of ECPCM, which reduces both the CNV lesions’ area and the infiltration 

of inflammatory cells in mice, will translate to effective CNV treatment in humans. 

The experiments performed on the JR5558 mouse strain demonstrated how useful 

and powerful this animal model is. These mice with spontaneous CNV provide a 

model of inflammation in the eye, which can be easily analysed before, during and 

after treatment; they provide a localized and isolated site of inflammation, enabling 

the analysis of anti-inflammatory effects of systemic treatment with ECPCM. 

Moreover, each JR5558 animal provides data about both evolution of the CNV 

lesions and mediators of inflammatory reactions thanks to the compatible techniques 

of FA for CNV and immunohistological analysis for local inflammation. Gene 

expression analysis was not performed in this study, but it, too, is feasible.  

In summary, the JR5558 mouse model of spontaneous CNV was used to demonstrate 

effects of ECPCM on vascular inflammation in vivo. ECPCM delivered by IP 

injection reduced CNV lesion area and recruitment of activated macrophages, 

findings with promising implications for treatment of AMD.  In addition, the JR5558 

mouse was further established as a promising new model for spontaneous CNV.  
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      Chapter 4: Final discussion and future directions 
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4.1 Final discussion 

EC are important producers of molecules that regulate vascular homeostasis and 

therefore the body’s physiology and response to injury and disease. The factors 

released by the endothelium comprise a wide array of molecules, from proteins to 

lipids to gases. While the nature and mechanism of action for many of these 

molecules have been identified over the past three decades, other factors and/or their 

molecular effects remain to be understood. This thesis offers insight into the 

biochemical properties and mechanism of action for a potentially novel, soluble anti-

inflammatory factor released by EC in vitro. 

The work presented in this thesis was inspired by experiments performed using 

animal models of IH. In these experiments vessels were injured by angioplasty with 

or without stent placement, then a collagen matrix embedded with EC (EC/matrix) 

was placed around the damaged vessels. The animals treated with the EC/matrix 

showed less restenosis and reduced inflammation compared to control animals 

(Nathan A 1995; Nugent HM 1999; Nugent HM 2009; Nugent HM 2012). Since EC 

were placed at a distance from the injured luminal surface of the vessel, the data 

suggested that some soluble factors were being released from the EC/matrix, and that 

these factors were responsible for the positive effects on the vessels. Based on these 

observations, conditioned medium obtained from EC grown on a three-dimensional 

collagen matrix (ECPCM) was produced and analysed for its anti-inflammatory 

potential. Indeed, ECPCM was able to inhibit in vitro the cytokine-induced 

expression of pro-inflammatory adhesion molecules such as E-selectin and VCAM-1 

in different types of EC (HAEC and HUVEC) in a dose-dependent manner. ECPCM 
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also reduced neovascularization and inflammatory responses in a mouse model of 

CNV. 

Various experiments showed that previously identified anti-inflammatory molecules 

were not responsible for the beneficial effects of ECPCM; more precisely, TGF-β1, 

IL-10, cAMP, NO, PGI2, resolvins and glucocorticoids were excluded as mediators 

of the anti-inflammatory activity. Instead, the data suggested ECPCM contains an as-

yet unidentified anti-inflammatory molecule, or a mixture of molecules, which is 

resistant to both RNAse and proteinase K treatments. Moreover, the anti-

inflammatory factor (or factors) was affected by treatments that involved inert 

materials such as agarose and cellulose.  

The control exerted by ECPCM over EC activation by pro-inflammatory cytokines 

was mediated by the inhibition of transcription factors binding to pro-inflammatory 

gene promoters. In the presence of TNFα, ECPCM inhibited the binding of the 

transcription factor p65 to the promoters of E-selectin and VCAM-1. Given that 

ECPCM reduced not only TNFα inflammatory potential, but also IL-6- and PF4-

induced gene expression, inhibition of the binding of transcription factors to their 

target sequences on pro-inflammatory genes might be the common molecular 

mechanism by which ECPCM exerts its anti-inflammatory activity.  

It has been shown that the transcription factor Erg represses the expression of many 

NF-kB target genes in resting HUVEC by binding to the promoters of the genes, 

thereby preventing p65 binding (Dryden NH 2012). A similar mechanism of 

quiescence control could be provided by ECPCM in different ways: 1) ECPCM 

could potentiate the interaction between transcription regulators (such as Erg) 

already bound to the promoters of pro-inflammatory genes in quiescent EC; 2) 
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ECPCM might induce the rapid expression and/or the release from intracellular 

compartments of proteins that bind to the DNA and mask the promoters of pro-

inflammatory genes; 3) ECPCM could contain a molecule that is able to quickly 

reach the nucleus of EC and bind to the DNA at sites recognized by pro-

inflammatory transcription factors; 4) ECPCM could stimulate or inhibit post-

translational modifications of transcription factors (for instance NF-kB) and/or their 

co-factors in such a way to prevent them from binding to the promoters; and 5) 

ECPCM could induce modifications on the promoter DNA that prevent recognition 

and binding by transcription factors. In every case the end result would be reduced 

access of activated p65 and/or other transcription factors and co-factors to the 

promoters of pro-inflammatory genes. 

More experiments are needed to verify that ECPCM prevents transcription factor 

binding to pro-inflammatory promoters in the presence of IL-6 and PF4 as well as 

TNFα. Nevertheless, it is conceivable that the soluble factor (or factors) in ECPCM 

inhibits EC activation through maintenance of cell quiescence despite the presence of 

pro-inflammatory stimuli. The factor could mediate a general anti-inflammatory 

message throughout the blood vessel to promote homeostasis and avoid excessive or 

uncontrolled EC activation. Blockage of transcription factor binding to target 

sequences could serve as a gatekeeper function in EC responding to injury, in which 

accessibility to pro-inflammatory promoters is granted only when a certain stimulus 

level is sensed by EC. In this scenario, the endothelium would show a variable 

balance between anti- and pro-inflammatory factors recruited at the promoters of 

genes involved in inflammation. In normal physiologic conditions the balance would 

tilt towards quiescence due to the abundance of anti-inflammatory factors at the 

promoters, which counteract the smaller presence of pro-inflammatory factors and 
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act as a brake on gene expression. In the case of insult, the increase in concentration 

of pro-inflammatory factors would over-ride the anti-inflammatory factors and 

induce EC activation via binding to the promoters of inflammation-related genes. 

Given the dose-dependent anti-inflammatory effect of ECPCM, it is possible that 

quiescence-promoting/anti-inflammatory factors in ECPCM compete with the pro-

inflammatory stimuli and allow EC activation only when inflammatory stimuli are 

sufficient and/or prolonged.  

An endothelial-derived, anti-inflammatory molecule that does not inhibit the 

activation of a specific pro-inflammatory pathway in EC, but instead acts by 

controlling endothelial activation at the level of promoter recognition and binding, 

represents a new exciting finding in EC biology; importantly, it also offers new 

possibilities in drug discovery and development. Novel therapies could be 

established to inhibit the binding of pro-inflammatory transcription factors to their 

target promoters and/or to maintain the binding of repressors to the same promoters. 

A successful new treatment based on this concept could maintain or restore vascular 

homeostasis, providing unprecedented therapeutic impact in severe diseases in which 

endothelial inflammation is a major hallmark and trigger, including atherosclerosis, 

diabetes and metastatic cancer. 

The data presented in this thesis show that conditioned medium obtained both from 

EC and from aortic SMC partly inhibited the TNFα- and IL-6-induced expression of 

E-selectin and VCAM-1 in HAEC. It has not been determined if SMCPCM also 

prevents p65 binding to the promoters of inflammatory genes in the presence of 

TNFα, but it is conceivable that this mechanism of inhibition is shared between the 

two conditioned medium. If this hypothesis is confirmed, it would suggest that cells 
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in the vascular system (at least in the aortic/arterial system) produce and release 

soluble, anti-inflammatory factors that act as general controllers of vessel 

homeostasis. These factors would represent a novel mechanism of cell 

communication among the layers and cell types in the blood vessels, in which 

quiescence is sustained at the level of gene promoter binding. 

The in vivo experiments performed using an animal model of spontaneous CNV 

demonstrate the therapeutic potential of ECPCM. Indeed, ECPCM reduced the area 

of CNV and the recruitment of activated macrophages to the lesions, even when 

delivered at a great distance from the eyes, in the peritoneum. Since CNV growth is 

supported by local inflammation, this further supports the theory of ECPCM 

containing soluble anti-inflammatory factors. Additional experiments are required to 

elucidate the mechanism of action of ECPCM in this animal model. Notably, the data 

presented in this thesis suggest that the JR5558 mouse model of spontaneous CNV 

can be used not only as a model of neovascular eye diseases such as age-related 

macular degeneration, but also as a new vascular inflammation model which could 

provide insight into endothelial biology, immunology and drug discovery. 

The goal of cell-based therapies is to provide active biological substances to 

modulate cell biology in those tissues where physiological function is lost due to 

disease. This is of extreme importance in vascular biology, since the paracrine 

function of the endothelium is essential in controlling vascular homeostasis. 

However, tissue engineering approaches have severe limitations with regards to cell 

availability and survival, delivery and host rejection. In terms of inflammation, 

ECPCM showed beneficial effects similar to those delivered by the cell-based 

therapy (EC/matrix), but without many of its limitations. In fact, ECPCM provided 
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effective soluble factor(s) at sufficient quantity to prevent EC activation in an 

inflammatory environment; for this reason it represents an exciting novel therapy that 

could be used in place of the EC/matrix. It also provides a new tool for study of EC 

biology and control of cellular quiescence, since it clearly contains factors necessary 

for endothelial homeostasis. 

ECPCM offers exciting opportunities for personalised medicine. Production of 

ECPCM is a simple procedure, and personalised ECPCM could be made using EC 

isolated from the patient. Although endothelial control of vascular homeostasis is 

mediated by factors and molecular mechanisms shared among mammalian species, it 

cannot be excluded that each individual needs a different “mix” of factors released 

by the EC in order to maintain a healthy vascular system. In this respect, production 

of personalised ECPCM (with the potential to genetically enhance or modify its 

composition based on the needs of the patient) could provide the right type and 

amount of molecules required for proper vascular homeostasis in that specific 

patient. Personalized ECPCM might also be employed as a diagnostic tool. The 

formulation could provide important information regarding the status of the 

endothelium in that patient. Based on its composition, ECPCM could highlight 

imbalances in the paracrine function of EC and designate the most appropriate 

therapeutic intervention. This strategy would be of particular interest in the case of 

patients with inflammatory-based diseases (e.g. diabetes, cancer, atherosclerosis, 

hypertension, IH, transplant rejection) in which endothelial homeostatic control over 

the vasculature is lost. ECPCM produced with EC from these patients and used in in 

vitro and in vivo experiments could provide new insight into EC biology and its 

deregulation in pathology. 
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The findings presented in this thesis provide novel information about EC biology and 

confirm the prominence of EC control over the vascular system. They further suggest 

that paracrine activity of the endothelium is essential and as important as endothelial 

barrier function in regulating vascular homeostasis. 

 

 

 

 

 

 

 

 

 

 

 

 



181 

 

4.2 Future directions 

The major advantage – and, at the same time, the major limitation – of the work 

presented in this thesis is the use of a cell-based assay to study the biological effects 

of ECPCM. Although this assay gave important insight into EC biology and EC 

response to pro- and anti-inflammatory stimuli, it severely limited the process of 

identification and isolation of the molecule (or molecules) responsible for the anti-

inflammatory activity of ECPCM. Moreover, the lab lacked expertise in the 

biochemical processes necessary to isolate specific biological compounds. 

Nonetheless, useful information on the nature of the anti-inflammatory soluble 

factors was obtained. Future collaborations with laboratories specialized in analysis 

of complex solutions and identification and/or isolation of specific molecules will 

allow identification of the specific mediator of the ECPCM anti-inflammatory 

effects. Furthermore, although ChIP experiments provided a mechanism of action for 

ECPCM, these were preliminary findings; more in-depth studies are needed. 

Further research is necessary to fully elucidate the molecular mechanisms of the anti-

inflammatory activity of ECPCM. Additional experiments are required to understand 

how ECPCM affects p65 binding to the promoters of E-selectin and VCAM-1. For 

example, analysis of post-translational modifications known to affect p65 binding, 

such as acetylation, could give new insights into the mechanism. Since interactions 

between p65 and other co-factors might be affected by ECPCM, they should also be 

assessed. Moreover, it is possible that p65 binding to inflammatory gene promoters is 

prevented because other factors are already bound to the same sequences, thereby 

maintaining EC quiescence. One such candidate factor is Erg; analysis of Erg 
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binding to E-selectin and VCAM-1 promoters in the presence of ECPCM would be 

an appropriate starting point.  

Another future experiment of interest would involve performing ChIP on Stat3 in EC 

treated with IL-6, in order to verify that the binding of this transcription factor to E-

selectin and VCAM-1 promoters is affected by ECPCM. This experiment will 

demonstrate if inhibition of transcription factor binding to target sequences is a 

general mechanism of ECPCM-mediated anti-inflammatory activity or if other 

mechanisms are involved. ChIP data could also confirm the theory suggested in this 

thesis that Stat3, not p65, is essential in mediating IL-6-induced expression of E-

selectin and VCAM-1. Expanding research into the role of Stat3 in inflammation 

and, more specifically, in the regulation of adhesion molecule expression in EC 

would allow for a greater understanding of this protein’s role in vascular 

homeostasis. 

Lastly, additional in vivo experiments are required to validate the therapeutic 

potential of ECPCM. Though the results presented in this thesis clearly suggest anti-

inflammatory efficacy of ECPCM in vivo, the data were mainly qualitative. 

Quantification of macrophage recruitment is needed, together with analysis of the 

molecular pathways activated and/or repressed in the diseased eye (e.g. by western 

blot and immunofluorescent analysis of NF-kB and Stat3 pathways in the CNV 

lesions). Use of alternate animal models of inflammation, such as the leukostasis 

assay, would provide additional information about ECPCM efficacy and activity. 
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