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Abstract

AMPA receptors (AMPARs) are crucial for fast excitatory synaptic transmission through-

out the mammalian central nervous system (CNS). At the molecular level, these re-

ceptors are tetramers of GluA1-4 subunits, which can be homomeric or heteromeric,

incorporating the Ca2+-impermeable GluA2 subunit. Although the basic tetrameric

AMPAR is sufficient for expression of functional channels in a recombinant system,

native AMPARs are associated with a number of auxiliary proteins, which modify their

trafficking as well as their biophysical and pharmacological properties.

The first AMPAR auxiliary protein discovered was stargazin (γ-2), a transmembrane

protein related to the γ-1 subunit of voltage gated Ca2+- channels. The lack of γ-2

in the naturally occurring mouse mutant stargazer was found to produce a loss of

AMPAR-mediated transmission at the cerebellar mossy fibre to granule cell synapse.

This led to the discovery, that γ-2 is crucial for AMPAR trafficking. Subsequent studies

focusing on this protein showed that it is also able to modify the functional properties

of AMPARs, such as deactivation and desensitization kinetics, single-channel con-

ductance and susceptibility of Ca2+-permeable AMPARs to block by intracellular and

extracellular polyamines. In addition, a family of related proteins, known as Trans-

membrane AMPA Receptor Regulatory Proteins (TARPs) has been identified. As well

as γ-2, this includes the subunits γ-3,-4,-5,-7 and -8. All TARPs are related to γ-2

in structure and function, although certain properties vary between the family mem-

bers.

Since the discovery of TARPs, more proteins modulating AMPAR function have been

identified, so that a complex network of AMPAR interacting partners is apparent from

the literature in the field. Surprisingly, little focus had been put on how AMPARs in-

teract with auxiliary proteins at the molecular level. Enhancing our knowledge about

these interactions could provide insights into the role of AMPARs in synaptic transmis-

sion, plasticity and neurological diseases. The aim of my thesis was thus to provide

insight into the role of TARPs in modulation of AMPAR complexes and the molecular

mechanisms that underlie this modulation. I used a recombinant expression system to

identify the physiological relevance of different AMPAR/TARP interaction regions, as

well as to investigate the role of TARP stoichiometry on AMPAR/TARP function.

The initial part of my thesis focused on the molecular interactions of AMPARs with

their TARP auxiliary subunits. Our experiments showed that various regions of the

first extracellular loop (Ex1) of γ-2 play a role in modulation of a number of functional

properties of both GluA1 and GluA2(Q) subunits. We also aimed to obtain insight into

the corresponding AMPAR regions important for interaction with the TARP. We there-
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fore focused on the possible novel role of the AMPAR N-terminal domain (NTD) in

TARP-AMPAR interaction and found that, although this domain plays a role in AMPAR

function, it has little effect on the modulation of AMPARs by TARPs.

The first two Chapters of my thesis were aimed at answering the question - how

do TARPs and AMPARs interact at the molecular level? The work presented in the

final Chapter attempted to expand on this question and focused on the role of TARP

stoichiometry in AMPAR function. Using tandem TARP-AMPAR constructs expressed

in a recombinant system, we have studied the properties of TARP/AMPAR assemblies

that contain a known number of γ-2 molecules. This allowed us to identify some of

the AMPAR properties that are sensitive to TARP stoichiometry.

As most neurons in the brain express more than one TARP, we also investigated the

pharmacological consequences of the simultaneous presence of two TARPs (γ-2 and

γ-7) within a single TARP/AMPAR assembly, a possibility that has previously received

little attention.
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Introduction

Glutamate is the predominant neurotransmitter at the majority of excitatory synapses

in the mammalian central nervous system (CNS). Glutamate signalling is mediated by

two broad classes of receptors: ionotropic glutamate receptors and metabotropic (G

protein-coupled, mGluR) receptors. The latter will not be discussed further in this the-

sis. Ionotropic glutamate receptors can be divided into three major types, named after

their selective synthetic agonists: N-methyl-D-aspartate (NMDA), α-Amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors. Kainate receptors

are often located presynaptically and have been reported to modulate neurotransmit-

ter release (Lerma, 2006). NMDA receptors (NMDARs) are located at both presynap-

tic (Glitsch and Marty, 1999) and postsynaptic sites. Post-synaptically, they mediate

long-lasting excitatory post-synaptic potentials (EPSPs) (Cull-Candy and Leszkiewicz,

2004). However, due to their block by extracellular Mg2+, NMDARs require membrane

depolarization to allow ion flow (Nowak et al., 1984; Mayer and Westbrook, 1987;

Ascher and Nowak, 1988; Burnashev et al., 1992b). This depolarisation is generally

provided by the activation of AMPARs (Collingridge et al., 1988), which mediate the

majority of fast glutamatergic transmission in the mammalian brain.

AMPARs across the CNS are thought to associate with auxiliary subunits (Hashimoto

et al., 1999; Schwenk et al., 2009; von Engelhardt et al., 2010; Tomita, 2010; Schwenk

et al., 2012). Transmembrane AMPA Receptor Regulatory Proteins (TARPs) were the

first auxiliary subunits of AMPARs discovered (reviewed in Tomita 2010 and Jackson

and Nicoll 2011). TARPs are though to modulate the majority of central AMPARs.

Thus, studying AMPAR/TARP interactions at the molecular level could provide insights

into AMPAR involvement in excitatory synaptic transmission and related processes,

such as synaptic plasticity, neural development and pain perception. This Thesis

describes several molecular features of AMPAR/TARP complexes, including the role of

interaction regions on both the TARP and on the AMPAR, as well as the effect of TARP
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stoichiometry on AMPAR properties. The Introduction aims to provide background

information on the relevant molecular biology of AMPARs and TARPs and outline our

current understanding of AMPAR/TARP interaction.

1.1 Ionotropic glutamate receptors

Protein subunits of the ionotropic glutamate receptors were identified in the late 1980s

and early 1990s by molecular cloning and functional expression techniques (reviewed

in Hollmann and Heinemann 1994). All ionotropic glutamate receptors appear to as-

semble as tetramers of pore-forming subunits. Three NMDAR subunit types have

been identified to date (Moriyoshi et al., 1991; Monyer et al., 1992; Kutsuwada et al.,

1992), GluN1, GluN2 and GluN3 (Das et al., 1998; Perez-Otano et al., 2001). There

are 8 known subtypes of GluN1 (all arising from a single gene), 4 of GluN2 and 2

of GluN3. Most NMDARs appear to be heteromers composed of two GluN1 and two

GluN2 subunits (Cull-Candy and Leszkiewicz, 2004). However, Tovar and Westbrook

(1999) suggested that in cultured rat hipocampal neurons, two GluN1 and two GluN2B

subunits are incorporated at immature synapses, forming diheteromeric receptors;

while mature synapses express triheteromeric NMDARs (GluN1/GluN2A/GluN2B). In

contrast to GluN1 and GluN2 subiunits, the role of the GluN3 subunits remains unclear

(Pachernegg et al., 2012). To date, 5 kainate receptor subunits have been cloned:

GluK1-5 (Bettler et al., 1990, 1992; Egebjerg et al., 1991; Herb et al., 1992). However,

GluK5 and GluK6 do not form homomeric channels (Herb et al., 1992). NETO (neu-

ropilin (NRP) and tolloid (TLL)-like) proteins have been identified as auxiliary subunits

of kainate receptors (Straub et al., 2011; Tang et al., 2011). However, these proteins

have also been reported to affect NMDARs (Ng et al., 2009; Tang et al., 2011; Wyeth

et al., 2014).

AMPARs are composed of four pore-forming subunits: GluA1-4, each subunit arising

from its corresponding gene (GRIA1-4). AMPAR subunits were cloned using the same

methods that were later applied to identify NMDAR and kainate receptor subunits

(Hollmann et al., 1989; Keinänen et al., 1990; Nakanishi et al., 1990; Boulter et al.,

1990) and are described in more detail below. Table 1.1 lists the subunits of ionotropic

glutamate receptors and their corresponding genes.

Not included in this Table are the GluD receptors. GluD1-2 are distantly related to

both AMPARs and NMDARs (< 25 % sequence similarity with other ionotropic gluta-

mate receptor subunits). However, they do not respond to glutamate (or any other
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Receptor Subunits Subunit genes

AMPARs GluA1-4 GRIA1-4

NMDARs GluN1, GluN2A-D, GluAN3A-B GRIN1, GRIN2A-D, GRIN3A-B

kainate receptors GluK1-5 GRIK1-5

Table 1.1: Ionotropic glutamate receptors. Summary of protein subunits of ionotropic glu-

atamate receptors and their corresponding genes (Collingridge et al., 2009).

known ligands) and do not form functional channels when expressed in a recombi-

nant system alone or with other ionotropic glutamate receptor subunits (Lomeli et al.,

1993).

1.2 AMPAR pore-forming subunits

Pore-forming subunits of AMPARs (GluA1-4) share about 70 % sequence homology

(Keinänen et al., 1990) and are each ∼100 kDa in molecular weight (Rogers et al.,

1991). The structure of all four pore-forming subunits is broadly similar, with an ex-

tracellular N-terminus and intracellular C-terminus. AMPARs have four membrane re-

gions (M1-4), of which M1, M3 and M4 are membrane-spanning helices, while the M2

region is a re-entrant loop, which lines the channel pore (Sobolevsky et al., 2009). An

outline of the tertiary structure of an AMPAR subunit is shown in Fig. 1.1 below.

1.3 Domain organisation of AMPARs

As shown in Fig. 1.1, AMPARs are organised into distinct domains. This domain or-

ganisation is prevalent both at the level of a single subunit and at the level of the com-

plete tetramer. Each of these domains appears to play a defined role in determining

receptor properties. In addition, it is worth noting that despite their tetrameric struc-

ture, AMPARs are not simply symmetrical. In comparison to the N-terminal domain

(NTD) layer, the ligand-binding domain (LBD) layer is rotated relative to the two-fold

symmetry axis of the receptor, so that the two layers are not aligned vertically. The

transmembrane domains, on the other hand, show a four-fold rotational symmetry.

Thus, the overall tetrameric AMPAR structure is relatively complex (Sobolevsky et al.,

2009).
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Figure 1.1: Tertiary structure of an AMPAR pore-forming subunit (Traynelis et al., 2010).

(A) Schematic representation of the primary (polypeptide) structure of an AMPAR subunit

showing the different domains. (B) Tertiary structure of an AMPAR subunit. Note that two of

the domains: NTD and LBD are located extracellularly, while the CTD is intracellular. The two

segments: S1 and S2 form the two lobes of the LBD, despite being separated by M1-M3 in the

polypeptide chain. NTD (light grey): N-terminal domain, LBD (blue): ligand-binding domain,

M1-M4 (purple): membrane domains 1-4, CTD (dark grey): C-terminal domain.

1.3.1 N-terminal domain

The NTD of AMPARs, much like the LBD described below, forms a clamshell-like

structure, composed of two distinct lobes (L1 and L2) (Clayton et al., 2009; Jin et al.,

2009). GluA4 lacking this domain forms functional channels, albeit with altered prop-

erties: prolonged τ desensitization and slightly reduced surface expression. However,

binding of both glutamate and the allosteric modulator cyclothiazide (CTZ) remain un-

changed in the absence of the NTD (Pasternack et al., 2002). The NTD contains a

conserved IQI motif, a trafficking signal important for anterograde trafficking and sur-

face expression in neurons (Xia et al., 2002). This motif is, however, not required

for GluA1/2 heteromerization, despite the major role of the AMPAR NTD in AMPAR

assembly. Briefly, AMPARs assemble as dimers of dimers and the initial dimerisation

process is mediated by tight association of the NTDs (Jin et al., 2009; Rossmann

et al., 2011).
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In a native environment, the NTD protrudes significantly into the synaptic cleft, which

measures approximately only 0.024 µm (Zuber et al., 2005). Thus, the NTD is well-

located to bind proteins located within the synapse. GluA2 NTD interaction with N-

cadherin promotes formation of dendritic spines and synapses (Saglietti et al., 2007),

while the interaction between GluA4 NTD and the neuronal protein pentraxin NP1

is necessary for synaptic clustering of GluA4 (Sia et al., 2007). Another neuronal

pentraxin, Narp, interacts with the AMPAR extracellular domain and clusters GluA1-3

(but, interestingely, not GluA4) at the synapse (O’Brien et al., 1999). In addition to

these well-defined binding partners, the AMPAR NTD may also bind other synaptic

proteins. Nonetheless, the role of the AMPAR NTD is still poorly understood. Our

studies designed to further investigate the role of this domain in AMPAR function and

TARP interaction are outlined in Experimental Chapter 2 (Chapter 4).

1.3.2 Ligand-binding domain

As outlined in Fig. 1.1, the LBD of AMPARs is composed of two distinct segments,

S1 and S2 (Stern-Bach et al., 1994), similar in structure to the bacterial periplasmic

amino acid binding proteins and the bacterial glutamate receptor ion channel (GluR0,

Chen et al. 1999; Mayer et al. 2001). The two segments form a clamshell-like struc-

ture, with two lobes, D1 and D2. Most of the D1 lobe is formed by the S1 segment,

immediately proximal to M1, while most of the D2 lobe is formed by the S2 segment,

located on the extracellular loop between M3 and M4. The agonist-binding pocket is

located between the two lobes (Armstrong et al., 1998). Thus, each of the four AMPAR

subunits in the complete receptor forms one glutamate binding site. The number of

bound glutamate molecules directly correlates with single-channel conductance lev-

els in both recombinant (Rosenmund et al., 1998) and native (Smith and Howe, 2000;

Gebhardt and Cull-Candy, 2006) AMPARs.

Artificial peptide linkers have been used to connect the discontinuous S1 and S2 seg-

ments in order to crystallize the LBD. The LBD of AMPARs has been crystallised in

complex with both agonists and antagonists (Armstrong et al., 1998; Armstrong and

Gouaux, 2000; Hogner et al., 2003; Lunn et al., 2003). Several regions and residues

have been reported as important for agonist binding (Jin et al., 2002; Kasper et al.,

2002; Hogner et al., 2002; Armstrong et al., 2003), with the specific residues differ-

ing slightly, depending on the agonist. The LBD of AMPARs is highly dynamic (Lau

and Roux, 2007, 2012), surprisingly, also in the absence of the agonist (Plested and

Mayer, 2009). Agonist binding produces closure of the LBD cleft, with the degree

of cleft closure being larger for full than for partial agonists (Armstrong and Gouaux,

2000; Jin and Gouaux, 2003; Jin et al., 2003). In other words, full agonists bring the
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two lobes of the LBD closer together than do partial agonists. The movement of the

LBDs upon agonist binding is translated to the channel pore via linkers (Sobolevsky

et al., 2009; Dong and Zhou, 2011). Their corkscrew-like motion produces conforma-

tional changes leading to channel opening. These conformational changes seem to

be elicited by the M3-S2 linker movement, which repositions the M3 helix, allowing

the channel to open (Meyerson et al., 2014).

At the level of the AMPAR tetramer, LBDs form a dimer of dimers structure. LBD

dimerisation is thought to follow NTD dimerisation and occur upon transition into the

tetrameric state (Shanks et al., 2010). Destabilization of the intradimer interface leads

to receptor desensitization: closure of the channel in the presence of glutamate (Sun

et al., 2002; Meyerson et al., 2014). Modifications which reduce AMPAR desensitiza-

tion, such as the L483Y (GluA2) mutation, (Stern-Bach et al., 1998) or the use of CTZ

(Yamada and Tang, 1993) stabilise the intradimer interface. The non-desensitising

(L483Y) GluA2 mutant shows impaired tetramerization, suggesting that the delayed

dimerisation of the LBDs is important for efficient AMPAR expression (Shanks et al.,

2010).

By contrast, mutations which promote desensitization, such as S754D (GluA2), desta-

bilise the intradimer interface (Sun et al., 2002). Several detailed desensitization

mechanisms have been proposed (see for instance Sun et al. 2002; Sobolevsky et al.

2009). However, it is still unclear how LBD separation is translated into channel clo-

sure upon desensitization. Such analysis has proven difficult, as several desensitized

AMPAR states appear to exist, differing in the degree of subunit separation, mostly

at the NTD level (Meyerson et al., 2014). Previous studies suggest, however, that

AMPAR desensitization most likely involves the linkers between the LBD and the

transmembrane domains, as mutations in the M3-S2 linker disrupt desensitization

(Yelshansky et al., 2004).

1.3.3 Transmembrane domains

Early topology studies (Hollmann et al., 1994) used N-glycosylation sites as a re-

porters for extracellular localisation. The model for AMPAR structure proposed from

these studies was related to the structure of the potassium channel (Doyle et al., 1998;

Long et al., 2005) and was later confirmed when the GluA2 cystal structure was ob-

tained (Sobolevsky et al., 2009). The membrane topology of AMPARs is outlined in

Fig. 1.1.

Transmembrane domains of the AMPAR show a four-fold rotational symmetry (Sobolevsky
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et al., 2009). On the outer face of the plasma membrane, a short helix region preced-

ing M1 (pre-M1) is almost perpendicular to the membrane plane and forms contacts

with the extracellular ends of helices M3 and M4. Pre-M1 forms a ’collar’ around the

transmembrane domain bundle and may contribute to receptor gating. M3 helices

are positioned on the inside of the channel domain, while the M2 loop regions line

the channel pore, with the central cavity positioned immediately above the Q/R edit-

ing site. The M3 helices cross near the extracellular side of the membrane (at the

level of pre-M1), forming a gate in the proposed path for ion permeation (Sobolevsky

et al., 2009). Disruption of that gate in GluD2 by introducing the A636T mutation

produces channels with spontaneous activity, resulting in the neurodegeneration phe-

notype seen in Lurcher mice (Zuo et al., 1997). M1 and M4 helices are positioned on

the outside of the channel domain, with the M4 helix forming extensive subunit-subunit

contacts (Sobolevsky et al., 2009).

The M4 helix is necessary for AMPAR function (Wollmuth and Sobolevsky, 2004), de-

spite its location on the outside of the channel pore (Sobolevsky et al., 2009). The

requirement for the M4 domain is also common to the NMDARs, as these recep-

tors lacking the M4 region and the C terminus are not functional, but some channel

activity can be rescued by co-expressing M4 as a separate protein (Schorge and

Colquhoun, 2003). The presence of the M4 domain is one of the features distinguish-

ing ionotropic glutamate receptors from the structurally similar K+ channels (Wollmuth

and Sobolevsky, 2004; Sobolevsky et al., 2009).

1.3.4 C-terminal domain

The intracellularly located C-terminus of AMPARs (see Fig. 1.1) contains a PDZ do-

main, which is responsible for binding to a number of trafficking and synaptic anchor-

age proteins (reviewed in Malinow and Malenka 2002). The length of the C-tail varies

between subunits. The C-terminal domains of GluA3 and the most abundant (short)

form of GluA2 are 50 amino acids in length. By contrast, the C-terminal domains of

GluA1 and GluA4 are respectively 81 and 68 residues long (Kolleker et al., 2003).

Additionally, in certain brain regions alternative splicing generates C-terminal variants

of GluA2 and GluA4. The short C-tail of GluA4 (GluA4c) is similar in sequence to

that seen in GluA2 and GluA3. This form of the GluA4 subunit is expressed pre-

dominantly in cerebellar granule cells (Gallo et al., 1992). In the hippocampus, an

alternatively spliced form of GluA2 (GluA2L) possessing a long C tail (Köhler et al.,

1994) is thought to contribute to GluA1-independent plasticity mechanisms (Kolleker

et al., 2003).
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The C-terminal domain of AMPARs is thought to play a key role in receptor trafficking

and AMPAR-mediated synaptic plasticity. The role of the C-terminal AMPAR domain

is discussed briefly below.

Long-term synaptic plasticity

Changes in synaptic transmission have long been believed to form the molecular ba-

sis of learning and memory (see Kandel 1997 for discussion). Long-term potentiation

(LTP) describes a prolonged strengthening of synaptic efficacy (Bliss and Collingridge,

1993). Initial studies on the molecular basis of learning and memory formation fo-

cused on the hippocampus, following observations on patient HM, whose memory

was severely impaired after medial temporal lobe surgery aiming to treat epilepsy.

During the surgery, both of his hippocampi, as well as the entorhinal cortex, which

forms the major hippocampal input, were removed. The result was a nearly complete

anterograde amnesia, with strongest memory loss relating to events in the time pre-

ceding the surgery and more distant memories remaining intact (Scoville and Milner,

1957). Thus, the hippocampus emerged as a structure crucial to the formation of

memory.

Indeed, initial studies on the hippocampus showed that high-frequency stimulation of

the perforant path produced a long-term strengthening of the synaptic response, ob-

served in both anaesthetised (Bliss and Lomo, 1973) and awake (Bliss and Gardner-

Medwin, 1973) rabbits. By contrast, low-frequency stimulation was found to produce

the opposite phenomenon: a long-term decrease in synaptic efficacy, termed long-

term depression (LTD, Barrionuevo et al. 1980). These early findings initiated exten-

sive research on the molecular basis of LTP and LTD. AMPARs emerged as a central

element of the post-synaptic plasticity mechanisms, and their role in LTP has been

extensively reviewed (Malinow and Malenka, 2002; Barry and Ziff, 2002; Song and

Huganir, 2002). Notably, the altered post-synaptic response has been attributed to

changes in AMPAR trafficking.

AMPAR trafficking and synaptic plasticity

One of the best understood mechanisms of AMPAR trafficking in plasticity is that

present in hippocampal CA1 pyramidal neurons. GluA2/3 heteromeric AMPARs show

a continuous cycle of membrane insertion and internalization, while GluA1/2 het-

eromer insertion into the post-synaptic membrane is activity dependent (Shi et al.,

21



2001). The constant cycling of GluA2/3 AMPARs is dependent on their interaction

with NSF and group II PDZ binding proteins. The activity-dependent insertion of het-

eromeric GluA1/2 AMPARs also requires binding to PDZ binding proteins (Hayashi

et al., 2000; Shi et al., 2001). Thus, the differences in trafficking of distinct AMPAR

subtypes relates to their interactions with PDZ binding proteins.

PDZ proteins often bind to the C-terminus of their interacting partners, due to the

presence of a carboxylate binding loop (R/K-XXX-GLGF), and are divided into three

classes depending on the final 4 amino acids that they recognise in the C-terminal

peptide (Sheng and Sala, 2001). The final amino acids of GluA1 (TGL) form a binding

site for SAP-97, a Class II PDZ binding protein (Leonard et al., 1998). The similar

C-terminal sequences in GluA4 (SDLP) and GuA2L (TDLS) are also proposed PDZ

ligands (Barry and Ziff, 2002). On the other hand, the short AMPAR C-tails contain the

C-terminal sequence SVKI (GluA2 and GluA3) or SIKI (GluA4c), which form binding

sites for GRIP1/2 (Dong et al., 1997, 1999; Osten et al., 2000) and PICK1 (Xia et al.,

1999; Dev et al., 1999), also members of Class II of PDZ binding proteins. In addi-

tion, the short form subunits GluA2 and GluA4c contain binding sites for NSF (Song

et al., 1998). Interaction with NSF may stabilise AMPARs at the synapse by disrupting

GluA2-PICK1 complexes (Hanley et al., 2002).

In addition, a number of other proteins have been implicated in AMPAR trafficking

and synaptic plasticity, both in the hippocampus and in other brain regions (see for

instance Henley et al. 2011 for review). Although the importance of NMDARs in LTP

induction was reported early on (Collingridge et al., 1983), CP-AMPARs (see for in-

stance Plant et al. 2006, and the review by Hanley 2014) may provide another mech-

anism for the postsynaptic Ca2+-entry required forhippocampal LTP induction (Lynch

et al., 1983). Their involvement in hippocampal LTP, however, remains controversial,

in contrast to other brain regions such as the cerebellum, where CP-AMPARs have

been described to contribute to synaptic plasticity (Liu and Cull-Candy, 2005).

1.4 RNA editing and alternative splicing of AMPARs

The mRNA of AMPAR subunits is subject to extensive alternative splicing and RNA

editing. The alternative splicing in the C-terminal regions of GluA2 and GluA4 is

described above and other sites for these modifications are outlined in this section.

The alternative splicing and editing sites are summarised in Fig. 1.2.
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Figure 1.2: Alternative splicing and RNA editing in the pore-forming AMPAR subunits

shown in relation to the position of the four membrane regions. The pore-lining M2 he-

lices are shown in light blue. Indicated by the grey line is the S2 region of the LBD, harbouring

the flip/flop alternatively spliced region (all subunits, blue rectangle) and the R/G editing site

(GluA2-4, blue circle). The flip/flop alternative splicing is a common feature of all AMPAR

pore-forming subunits, while the R/G editing occurs in GluA2-4 subunits only. The Q/R RNA

editing site of GluA2 is indicated in red. Differential lengths of the C-termini of GluA2 and

GluA4 are indicated by dashed lines.

1.4.1 Q/R site

As mentioned above, AMPARs form as homomeric or heteromeric assemblies of

GluA1-4. GluA2 subunit co-expression was, early on, found to have profound effects

on AMPAR properties. Unlike receptors composed of GluA1, 3 or 4, GluA2-containing

heteromeric AMPARs display a linear I-V relationship (Boulter et al., 1990; Nakanishi

et al., 1990). Heteromeric AMPARs differ from homomers in a number of proper-

ties. These crucial differences are determined by a single amino acid (Q586R) switch

within the GluA2 subunit, produced by RNA editing in virtually all copies of the GluA2

RNA (Sommer et al., 1991), which renders GluA2-containing AMPARs impermeable

to Ca2+ (Burnashev et al., 1992a).

This Q/R editing site is located immediately adjecent to the M2 helix, which, as men-

tioned above, lines the channel pore (Sobolevsky et al., 2009). The mechanism of

the RNA editing at this crucial site is quite well defined. The codon CAG, normally

coding for glutamine, is edited by adenosine deaminase acting on RNA 2 (ADAR2) to

CIG. Inosine is recognised as guanine during translation, which results in an arginine

residue being inserted into the polypeptide chain (Yang et al., 1995; Melcher et al.,

1996). It is the replacement of the neutral glutamine residue with positively charged
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arginine at this site, that defines the lack of GluA2 permeability to Ca2+ (Burnashev

et al., 1992a; Geiger et al., 1995), and lowers single-channel conductance (Swanson

et al., 1997). AMPARs lacking edited GluA2 remain Ca2+-permeable.

Mice which lack GluA2 editing, either due to the introduction of editing-incompatible

GluA2 (Brusa et al., 1995), or due to ADAR2 knockout (Higuchi et al., 2000) suffer

from epilepsy and die within 3 weeks from birth. This phenotype can be rescued by a

point mutation introducing the R form of GluA2 (Higuchi et al., 2000). Underediting of

GluA2 is thought to be a major contributor to the pathology of a number of important

neurological diseases, including amyotrophic lateral sclerosis (ALS or motor neuron

disease, Hideyama et al. 2010) and malignant gliomas (Maas et al., 2001).

Unlike Q/R edited GluA2-containing receptors, Ca2+-permeable AMPARs (CP-AMPARs)

are blocked by endogenous intracellular polyamines at positive membrane poten-

tials. Polyamine block is the cause of inwardly rectifying current-voltage relation-

ships (Bowie and Mayer, 1995; Kamboj et al., 1995; Koh et al., 1995) and induces

a frequency-dependent facilitation of response at synapses containing these recep-

tors (Bowie et al., 1998; Rozov et al., 1998).

In addition, Q/R editing is a crucial determinant of GluA2 trafficking. The R form of

the GluA2 subunit is retained in the ER in hippocampal neurons, although forward

trafficking is also regulated by the PDZ domain (Greger et al., 2002). In addition,

tetramerization of GluA2R is not favoured. This results in accumulation of GluA2R

dimers in the ER, a process which facilitates the formation of heteromeric AMPAR

tetramers (Greger et al., 2003). It is, however, worth noting that prominent ER reten-

tion of GluA3 also occurs, despite this subunit being Ca2+-permeable (Q form at the

Q/R site). Two residues located within the S1 region of the ligand-binding domain:

Y454 and R461 have been identified as crucial for ER retention of GluA3. Interest-

ingly, heteromerization facilitates GluA3 surface expression, most likely by masking

these residues (Coleman et al., 2010). Indeed, the LBD of GluA2 has also been

implicated in receptor export from the ER, since the L483Y mutation, stabilising the

LBD dimer interface, inhibits GluA2 surface trafficking (Greger et al., 2006). Thus, de-

spite the role of multiple AMPAR domains in receptor assembly, insertion of the edited

GluA2 subunit is a crucial determinant of AMPAR properties, since these receptors

tend to preferentially heteromerise (Mansour et al., 2001).
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1.4.2 R/G site

The R/G site is located within the LBD of GluA2,3 and 4 (but not GluA1) subunits and

immediately precedes the flip/flop alternative splicing region described below (Lomeli

et al., 1994). In GluA2 this is the 743 position, where the codon AGA coding for argi-

nine, is converted to IGA. During translation IGA is recognised as GGA coding for

glycine. The R/G site is efficiently edited by both ADAR1 and ADAR2 (Melcher et al.,

1996). R/G editing affects kinetic properties of AMPARs. Edited receptors, containing

a glycine residue at this site, show slower desensitization, faster recovery from de-

sensitization and increased fraction of steady-state current (Lomeli et al., 1994). The

proportion of edited transcripts increases during development in a subunit-specific

manner (Lomeli et al., 1994) and varies across neuronal cell types (Geiger et al.,

1995). The unedited (R form at the R/G site) of GluA2 (R at the Q/R site) appear to

exit the ER and express at the cell surface more efficiently than the edited (G form)

receptors, while the edited (G) form of the same subunit accumulate in the ER. How-

ever, the magnitude of the R/G editing effect on GluA2(R) ER exit depends also on

the flip/flop splice variant and is more prominent in the flop form (Greger et al., 2006).

In summary, the developmentally regulated R/G editing may result in accumulation

of GluA2 in the ER and promote formation of AMPAR heteromers, contributing to

the developmental switch from CP-AMPARs to GluA2-containing, Ca2+-impermeable

heteromers seen in a number of cell types (see for example Kelly et al. 2009).

1.4.3 Alternative splicing: flip/flop

The diversity of AMPAR subunits is further increased by alternative splicing in the

flip/flop region located within the S2 segment of the LBD (Sommer et al., 1990). The

flop forms of GluA3 and GluA4, as well as GluA2(flop)-containing heteromers have

been shown to desensitize up to 4 times more rapidly than the flip forms. However,

no difference in desensitization time constant was observed for the flip and flop forms

of homomeric GluA1 (Mosbacher et al., 1994). The relative abundance of mRNA for

the two splice forms varies among cell types (Geiger et al., 1995) and can also be

developmentally regulated. In cerebellar granule cells, the GluA4 isoform changes

from predominantly flip in early development to mostly flop in the adult (Mosbacher

et al., 1994).

In GluA2 the alternative flip and flop exons differ in 9 residues, a change sufficient to

affect ER retention and surface expression in neurons, as described above (Greger

et al., 2006). Indeed, flop forms of AMPARs have been reported to show impaired
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ER exit and poor expression compared to flip forms when examined in a recombinant

system (Coleman et al., 2006, 2010). In GluA4, the difference in surface trafficking

between flip and flop forms appears to be largely determined by a single residue at

position 780, valine in the flip form and leucine in the flop form (Coleman et al., 2006).

Swapping of this residue between the two isoforms resulted in a ∼ 50 % change

surface expression (increase in the case of flop form and decrease in the flip form).

Importantly, efficient expression of GluA4 flop was observed in transfected mouse

cortical neurons in the same study, suggesting that some compensatory mechanism

may exist to facilitate flop form trafficking in neurons.

In addition to the effect on AMPAR trafficking, alternative splicing in the flip/flop region

also affects the pharmacology of AMPAR allosteric modulators. This is of particu-

lar interest as AMPAR allosteric potentiators have been shown to affect hippocampal

LTP (Stäubli et al., 1994) and are promising targets for cognitive enhancement ther-

apy in humans (see for example Waegemans et al. 2002). Cyclothiazide (CTZ) is

an allosteric potentiator, which increases the amplitude of glutamate-evoked currents

and blocks AMPAR desensitization (Yamada and Tang, 1993). The efficacy of CTZ is

greater for flip AMPARs than for the flop isoforms (Partin et al., 1994, 1995), a differ-

ence which appears to be dependent on a single residue at the position 750 in GluA1:

serine in the flip form and asparagine in the flop form (Partin et al., 1995). Indeed,

the analogous position in flip GluA2 (754) is also a serine, which, in a crystallography

study, has been shown to form part of the CTZ binding site at the LBD dimer interface

(Sun et al., 2002). By contrast, another positive allosteric modulator, aniracetam, ap-

pears to be more efficacious on the flop forms of AMPARs (Johansen et al., 1995).

Its modulation of deactivation and desensitization of GluA1 AMPARs also depends

on the 750 residue (asparagine in the case of flop forms), however mutations at this

site have a less striking effect on the action of aniracetam than on that of CTZ (Partin

et al., 1996). Aniracetam has subsequently been shown to bind at the LBD dimer in-

terface of the non-desensitized receptor (Jin et al., 2005; Ahmed and Oswald, 2010),

which stabilises the LBD in an agonist-bound state, resulting in a profound slowing of

AMPAR deactivation.

1.5 Post-translational modifications of AMPARs

AMPARs are subject to extensive post-translational modifications, which alter their

properties. These include phosphorylation, glycosylation, palmitoylation and ubiquiti-

nation.
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1.5.1 AMPAR glycosylation

N-linked glycosylation

The extracellular regions of AMPARs are extensively glycosylated. N-linked glycosy-

lation occurs within the ER on asparagine residues located within the consensus se-

quence NX(S/T) (X in this case stands for any amino acid apart from proline). AMPAR

subunits have 4-6 consensus sequences for N-linked glycosylation, localised to the

NTD and the signal peptide (Hollmann et al., 1994; Standley and Baudry, 2000). In

the case of GluA1 all of the 6 consensus sites appear to be glycosylated, as deter-

mined by the shifts in molecular weight upon glycosylation site removal (Hollmann

et al., 1994).

Pre-treatment of cells with tunicamycin, which abolishes N-linked glycosylation, sug-

gests that glycosylation is not required for AMPAR function in a recombinant system.

However, responses to both glutamate and kainate appear to be affected by loss of

glycosylation in a manner specific to subunit and flip/flop splicing state. In addition, the

susceptability of AMPARs to current potentiation by the lectin Concanavalin A (ConA)

appears to be determined by glycosylation. GluA1 is ConA-sensitive, while GluA2

is not. This difference has been attributed to GluA1 glycosylation at N45 and N239

(Everts et al., 1997).

In addition to the modulation of agonist-evoked currents, glycosylation may prevent

degradation of AMPARs. Loss of glycosylation at the N387 site within GluA3 results

in degradation by granzyme B and has been implicated in the autoimmune response

present in Rasmussen’s encephalitis, a form of childhood epilepsy (Gahring et al.,

2001).

O-linked glycosylation

O-linked glycosylation occurs within the Golgi apparatus and involves the attachment

of sugars (usually O-N-acetylglucosamine) to serine or threonine residues of the tar-

get protein. No consensus sequence for this type of glycosylation appears to be

established. However, O-linked glycosylation often occurs at the same sites as phos-

phorylation and the two modifications are mutually exclusive.

Jacalin, a lectin specific for O-linked oligosachcharides, was found to bind to AMPARs,

suggesting that these receptors are targets for O-linked glycosylation (Hullebroeck
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and Hampson, 1992). Subsequent studies suggested that this form of glycosyla-

tion may play a role in AMPAR-mediated plasticity. Abolishing O-linked glycosylation

with alloxan (inhibitor of O-linked beta-N-acetylglucosamine transferase) potentiated

GluA1-mediated currents. The potentiation was dependent on a single site, S831

(the calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylation site

described below). In addition, alloxan enhanced hippocampal LTP and promoted sur-

face expression of GluA1 and GluA2 subunits (Kanno et al., 2010), suggesting that

this bidirectional modification may be important in synaptic plasticity. A similar bidi-

rectional regulation mechanism has been proposed (see Din et al. 2010) for the S880

PKC phosphorylation site on GluA2 (Seidenman et al., 2003).

1.5.2 Palmitoylation

Palmitoylation is the attachment of a fatty acid chain (usually a palmitoyl group), which

occurs on cysteine residues, increasing the hydrophobicity of the protein. To date, two

conserved palmitoylation sites on AMPARs have been identified, one located within

the M2 and one in the C-terminal domain close to M4. Palmitoylation of the cysteine

residue within the M2 (C610 in GluA2) catalysed by GODZ palmitoyl transferase pro-

duces accumulation of AMPARs in the Golgi and reduces their surface expression.

Palmitoylation of the C terminus (C836 in GluA2) disrupts interaction with the cy-

toskeletal protein 4.1N (Hayashi et al., 2005). This interaction appears to be important

for hippocampal LTP and is additionally regulated by protein kinase C (PKC)-mediated

phosphorylation (Lin et al., 2009). Activation of glutamate receptors appears to induce

AMPAR depalmitoylation (Hayashi et al., 2005), a mechanism likely to be important

for synaptic plasticity.

1.5.3 Ubiquitination

Ubiquitination describes the attachment of the small protein ubiquitin, usually via an

isopeptide bond, to a lysine residue of the target protein. The addition of K48-linked

ubiquitin chains is well studied and known to target proteins for proteasomal degra-

dation. However, other processes such as protein localisation and protein-protein

interactions can also be modified by ubiquitination (see Komander and Rape 2012 for

review). Prolonged treatment with the GABAA receptor antagonist bicuculline causes

a reduction in the amplitude of miniature excitatory post-synaptic currents (mPSCs).

This homeostatic mechanism appears to involve ubiquitination of GluA1 and its sub-

sequent proteasomal degradation, a process mediated by EphA4 signalling (Fu et al.,
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2011). Ubiquitination of GluA1 on its C-terminus appears to be involved in GluA1

internalisation and lysosomal degradation following stimulation with AMPA. However,

since internalisation was shown to be defective in a GluA1 mutant where all four C-

terminal lysine residues were replaced with arginines, it is unclear which residue is

the target for ubiquitination (Schwarz et al., 2010).

1.5.4 Phosphorylation

The role of AMPAR phosphorylation has been widely studied, particularly in relation

to synaptic plasticity (Malinow and Malenka, 2002). AMPARs are targets for phospho-

rylation by both serine/threonine kinases and tyrosine kinases.

GluA1 phosphorylation

GluA1 is phosphorylated in its C-terminal domain by PKC and CaMKII at S831 and

by protein kinase A (PKA) at S845 (Roche et al., 1996; Mammen et al., 1997). Phos-

phorylation of S831 by CaMKII increases single-channel conductance (Derkach et al.,

1999), by increasing the frequency of opening to the highest conductance level (Kris-

tensen et al., 2011), although this effect is absent in GluA1/2 heteromers (Oh and

Derkach, 2005) unless these are associated with a TARP (Kristensen et al., 2011).

Phosphorylation of S845 by PKA, on the other hand, has been reported to increase

peak open probability of GluA1 (Banke et al., 2000). Phosphorylation of GluA1 by both

CaMKII and PKA appears to be required for synaptic trafficking of GluA1, whereas

for GluA4 the activity of PKA alone seems sufficient (Esteban et al., 2003). Indeed,

CaMKII has been reported to phosphorylate GluA1 on S831 upon LTP induction in

naive synapses, while high-frequnency stimulation of a previously depressed synapse

results in GluA1 phosphorylation by PKA at S845. Similarly, dephosphorylation of

S845 is implicated in LTD induction in naive synapses, while de-potentiation of a pre-

viously potentiated synapse appears to require dephosphorylation of S831 (Lee et al.,

2000). Thus, a two-step model for synaptic delivery of AMPARs emerged: phospho-

rylation by PKA appear to target GluA1 to extrasynaptic sites, while their synaptic in-

corporation requires neuronal activity resulting in CaMKII activation (Oh et al., 2006)

and interactions mediated by the C-terminal PDZ domain of GluA1 (Hayashi et al.,

2000).

Phosphorylation of GluA1 by PKC at S816 and S818 promotes its interaction with

4.1N, which is important for hippocampal LTP, as described above (Boehm et al.,
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2006; Lin et al., 2009). PKC was also found to phosphorylate GluA1 at T840 in an in

vitro assay (Lee et al., 2007). Another study showed that this site may be a target for

phosphorylation by p70S6 kinase and that its dephosphorylation occurs during LTD

in the hippocampus (Delgado et al., 2007). Mice lacking the S831, S845 and T840

phosphorylation sites (due to serine to alanine substitutions) showed normal basal

synaptic transmission. However, LTP was impaired with the precise effect dependent

on age and induction protocol (Lee et al., 2007).

GluA2 phosphorylation

GluA1 phosphorylation and dephosphorylation is an important mechanism in LTP and

LTD respectively. GluA2 phosphorylation, on the other hand, appears important for

synaptic localisation of AMPARs. S880 is located within the C-terminal PDZ domain

of GluA2 and is phosphorylated by PKC. Phosphorylation of this site disrupts GluA2

interaction with GRIP, leading to removal of synaptic AMPARs and LTD (Seidenman

et al., 2003). However, PICK1 also binds to the C-terminal domain of GluA2 in a

S880 phosphorylation-dependent manner. This interaction has been implicated in

hippocampal LTD (Kim et al., 2001). Indeed, disassembly of the GluA2-PICK1 com-

plex by NSF appears to stabilise GluA2 at synapses (Hanley et al., 2002).

Y876 phosphorylation by Src has also been implicated in LTD. Dephosphorylation of

this site activates BRAG2, leading to activation of Arf6 GTP-ase and internalisation of

GluA2-containing AMPARs during hippocampal LTD (Scholz et al., 2010). In addition,

the loss of phosphorylation at this site due to the Y876F mutation causes reduced

surface expression and synaptic clustering of GluA2 (Hayashi and Huganir, 2004).

Thus, GluA2 phosphorylation at Y876 may stabilise GluA2-containing AMPARs at

synapses.

GluA2L is additionally subject to phosphorylation by JNK1 on T912. Increased gluta-

matergic activity results in dephosphorylation of this site. Conversely, reducing activity

with TTX promotes T912 phosphorylation. Although surface and synaptic expression

of GluA2L is not affected by altering the T912 phosphorylation state, JNK1 activity

is required for membrane re-insertion of internalised GluA2L. A corresponding site

(T855) has also been identified on GluA4 and shown to be phosphorylated by JNK1

in response to changes in neuronal activity (Thomas et al., 2008).
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1.6 Native AMPARs are associated with TARPs

Early studies on AMPARs expressed in recombinant systems failed to reproduce cer-

tain properties of native AMPARs (see for instance Nakanishi et al. 1990). An explana-

tion for this phenomenon emerged following the characterisation of the spontaneous

mouse mutant stargazer (stg). Stg mice have absence epilepsy and impaired move-

ment. The phenotype can be attributed to the insertion of the ETn retrotransposon

into intron 2 of the CACNG2 gene, coding for γ-2 (Letts et al., 1998), a protein homol-

ogous to the γ-1 subunit of voltage-gated Ca2+ channels located in skeletal muscle

(Jay et al., 1990).

A role for γ-2 different from the modulation of voltage-gated Ca2+ channels emerged

upon the discovery that stg mice lack AMPAR-mediated transmission at the cerebellar

mossy fibre-granule cell synapses (Hashimoto et al., 1999). It became evident that γ-

2 may modulate AMPARs directly, since transfection of γ-2 into stg cerebellar granule

cells was sufficient to rescue AMPAR-mediated synaptic currents (Chen et al., 2000).

Indeed, subsequent studies defined γ-2 as the prototypical TARP (also known as

stargazin), with the complete family comprising 6 functional members in total (Tomita

et al., 2003; Kato et al., 2007; Soto et al., 2009). TARPs are often divided into two

major groups, depending on their function (Straub and Tomita, 2012): type I (γ-2,

-3, -4 and -8) and type II (γ-5 and -7, Kato et al. 2008). Type I TARPs are further

subdivided into type Ia (γ-2 and -3) and type Ib (γ-4 and -8, Cho et al. 2007).

Although all 6 members of the TARP family have been shown to modulate multiple

properties of AMPAR, as described below, a controversy has arisen with regard to the

role of γ-5. Early studies on TARPs often used γ-5 as a negative control, as it was ini-

tially thought not to be functional (see for instance Tomita et al. 2005). Subsequently,

γ-5 was indentified as a TARP independently by two different labs. However, their

results differed profoundly. Kato et al. (2008) suggested that γ-5 specifically modu-

lates GluA2-containing, Ca2+-impermeable AMPARs and shows opposite effects from

other TARPs on deactivation and desensitization kinetics and glutamate potency. By

contrast, Soto et al. 2009 found that γ-5 selectively modulates AMPAR subunits with

long C-tails. The two studies, in fact, agreed only on the point that γ-5 fails to promote

AMPAR surface expression. Thus, the precise role of γ-5 in the modulation of distinct

AMPAR populations remains uncertain.

TARPs are differentially expressed among cell types and brain regions (Tomita et al.,

2003; Fukaya et al., 2005), and are considered vital components of most AMPAR

complexes in the brain. TARP proteins and their corresponding genes are listed in

Table 1.2 below.
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TARP Gene

γ-2 CACNG2

γ-3 CACNG3

γ-4 CACNG4

γ-5 CACNG5

γ-7 CACNG7

γ-8 CACNG8

Table 1.2: TARP family members and the corresponding genes.

γ-1 and γ-6 are not included in this Table, despite being closely related to TARPs.

As mentioned above, γ-1 is a subunit of voltage-gated Ca2+ channels. A role in Ca2+

channel modulation has also been described for γ-6 (Hansen et al., 2004).

1.7 TARP protein structure

TARPs have 4 transmembrane domains, with intracellular N- and C-termini. The

molecular weight of γ-2 is 37 kDa (Kim et al., 2010), but the individual family members

vary in size slightly. The length of the C-terminus also varies between TARP family

members (Chu et al. 2001, reviewed by Chen et al. 2007).The structure of TARPs is

related to that of claudins, a family of tight junction proteins (Morita et al., 1999). The

overall structure of the TARP family members is shown in Fig. 1.3 below.

The close structural similarity between TARPs and claudins suggests that TARPs may

also play a role in cell adhesion in vivo. γ-2, similar to claudin-1, was found to promote

aggregation of L-fibroblast cell lines, in a manner dependent upon γ-2 glycosylation

at N48 (Price et al., 2005). Indeed, type I TARPs have been implicated in the regu-

lation of dendritic growth (Hamad et al., 2014), suggesting that the effect of TARPs

on synaptic transmission may extend beyond direct regulation of AMPAR-mediated

currents.
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Figure 1.3: Schematic tertiary structure of the TARP family members. TARPs have 4

transmembrane domains (TM1-4). The N and C termini are located intracellularly. The two

extracellular loops labelled Ex1 and Ex2 are approximately 70-85 and 30 residues long, re-

spectively, and are important for interaction with AMPARs. The C-terminus of TARPs affects

AMPAR trafficking and varies between family members (alternative C-tail lengths are indicated

by red lines). Adapted from Deng et al. (2006).

1.8 TARPs modulate the biophysical and pharmacological properties of AMPARs

1.8.1 Modulation of AMPAR deactivation and desensitization

Type I TARPs prolong AMPAR deactivation and desensitization and increase the frac-

tion of steady-state current (Priel et al., 2005; Turetsky et al., 2005; Tomita et al.,

2005). In addition, GluA1 recovery from desensitization is accelerated by γ-2 (Priel

et al., 2005). However, the magnitude of TARP effect on desensitization and deacti-

vation of AMPARs depends on TARP isoform (Milstein et al., 2007) and the AMPAR

subunit present (Kott et al., 2007). Type Ib TARPs, γ-4 and γ-8 appear to be more

efficient than type Ia (γ-2 and γ-3) at prolonging GluA1 deactivation and desensiti-

zation. A similar difference in modulation of desensitization τw between γ-8 and γ-2

has been reported for co-expression with GluA1/2 heteromers (Cho et al., 2007). The

sensitivity to TARP-mediated modulation of kinetics varies between AMPAR subunits.

Notably, GluA3 appears to be only weakly sensitive to modulation of deactivation and

desensitization by γ-2 or γ-3 and is most efficiently modulated by γ-4 and γ-8 (Suzuki

et al., 2008).
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Type II TARPs differ from type I TARPs in respect to modulation of AMPAR deactiva-

tion and desensitization. Deactivation of GluA1 is only weakly prolonged by γ-7 and

not prolonged by γ-5. In contrast, desensitization of GluA1 is prolonged to an equal

extend by γ-7 and γ-2 and only slightly (and insignificantly) prolonged by γ-5 (Kato

et al., 2007). GluA4 desensitization is not prolonged by γ-5 (Soto et al., 2009). Thus,

type II TARPs have overall less effect than type I TARPs on AMPAR deactivation and

desensitization kinetics.

The TARP-mediated modulation of deactivation and desensitization is also reflected

in the effect of TARPs on the decay of AMPAR-mediated mEPSCs. In stg neurons,

γ-4 was found to slow mEPSC decay to a larger extent than γ-2. On the other hand,

γ-3 had less effect than γ-2, while γ-8 and γ-2 did not differ from each other in their

effect on mEPSC decay time (Milstein et al., 2007).

1.8.2 TARPs affect polyamine block of AMPARs

.

As described above, GluA2-lacking, Ca2+-permeable AMPARs are blocked by en-

dogenous intracellular polyamines. TARPs partially relieve polyamine block (Soto

et al., 2007), resulting in biphasic current-voltage relationships similar to those seen

in native AMPARs (see for example Nakanishi et al. 1990). The relief of polyamine

block is reflected in the shift of the conductance-voltage relationships to the right, and

a positive shift in V 0.5, the voltage at which spermine block is half-maximal (Soto et al.,

2007). However, similar to the effect of TARPs on deactivation and desensitization,

the extent to which spermine block is attenuated by TARPs varies amongst the dif-

ferent isoforms. γ-2 and γ-3 were found to relieve GluA4 block by spermine to the

largest extend, with γ-4, -8 and -7 having an intermediate effect an γ-5 showing the

smallest (although still significant) relief of spermine block (Soto et al., 2009).

It is at present unclear whether the effect of TARPs on AMPAR rectification also in-

volves modulation of Ca2+ permeability. Soto et al. (2007) demonstrated that γ-2 lacks

an effect on Ca2+ permeability of GluA4, while Kott et al. (2009) showed that TARPs

γ-2 and γ-4 increase Ca2+ permeability of GluA1. It is possible that these discrepan-

cies are caused by differences in the expression system and experimental protocol

between the two studies.

AMPARs are also blocked at negative membrance voltages by extracellular polyamines

- naturally occurring toxins and their synthetic analogues. The block of GluA2/4 het-
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eromeric AMPARs by Philantotoxin-74 (PhTx-74) is increased by TARPs and depends

on TARP isoform in a manner which correlates with AMPAR mean-single channel con-

ductance. Similarly, the block of Ca2+-permeable GluA4 AMPARs depends on both

TARP co-expression (although not the exact type of TARP present) and on the ag-

onist (glutamate or kainate) used to evoke the current (Jackson et al., 2011). This

is most likely caused by the TARP-dependent increase in kainate efficacy described

below. However, TARPs have also been reported to reduce the susceptibility of GluA1

to block by NASPM, an effect dependent on TARP subtype (Kott et al., 2009).

It is worth noting that the sensitivity of AMPARs to block by PhTx-74 depends not only

on TARP co-expression, but also on the AMPAR subunit present. GluA2-containing

heteromeric AMPARs are over 100-fold less sensitive to PhTX-74 than the corre-

sponding Ca2+-permeable homomers, but γ-2 co-expression reduces PhTx-74 block

of both receptor types. By contrast, GluA2(R) homomeric AMPARs are almost insen-

sitive to PhTx-74 block, despite the presence of γ-2 (Poulsen et al., 2014a).

1.8.3 TARPs increase single-channel conductance of AMPARs

Prior to the discovery of TARPS, single-channel recording of recombinant AMPARs

(Swanson et al., 1997) failed to reproduce results obtained from native receptors

(Wyllie et al., 1993). AMPARs are known to display multiple subconductance states

(Cull-Candy and Usowicz, 1987), dependent on the number of glutamate molecules

bound to the tetrameric receptor (Rosenmund et al., 1998; Smith and Howe, 2000).

Direct evidence from single-channel recording showed that TARPs γ-2, -4 and -5 in-

crease single-channel conductance of GluA1. In addition, in the presence of γ-4 a

fourth subconductance state was observed, in contrast to the three states seen with

the TARPless receptor or with other TARPs. This additional state corresponded to a

very high conductance level (>50 pS) (Shelley et al., 2012). Of note, co-expression

of TARPs γ-2 or γ-8 is also required for the increase in single-channel conductance

of GluA1/2 heteromers upon GluA1 phosphorylation at S831 by CaMKII (Kristensen

et al., 2011).

An additional line of evidence for the TARP-mediated increase in AMPAR single-

channel conductance comes from studies using non-stationary fluctuation analysis to

estimate mean-single channel conductance from macroscopic currents. Mean single-

channel conductance of GluA1 is increased by TARPs γ-2, -4 and -8, while peak open

probability (Po) is significantly increased only by γ-2 (Suzuki et al., 2008). GluA4

mean-single channel conductance is increased by all TARPs (γ-2, -3, -4, -5, -7 and

-8) (Soto et al., 2009). In the same study, γ-5 was found to reduce Po of GluA4,
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while other TARPs lacked any effect on this measure. In contrast, Po of GluA2Q was

increased by γ-2 but not γ-5.

Thus, all TARPs appear to increase single-channel conductance of Ca2+-permeable

AMPARs, but vary in their effect on Po. Interestingly, when GluA2/4 heteromers are

examined, TARPs γ-2, -3, -4 and -8 all increase mean-single channel conductance,

but γ-8 appears to do so to a larger extent than γ-2. None of the above TARPs

appears to affect Po of GluA2/4 heteromers (Jackson et al., 2011).

1.8.4 TARPs modify AMPAR pharmacology

In addition to altering the affinity for polyamine channel blockers, TARPs have pro-

found effects on other pharmacological properties of AMPARs.

TARPs increase glutamate potency

γ-2 has been widely reported to increase the potency of glutamate, as determined by

a shift of the dose-response curve to glutamate to the left and a reduction in EC50

(Yamazaki et al., 2004; Priel et al., 2005; Tomita et al., 2005). Other type I TARPs

have also been reported to increase glutamate potency in a subtype-specific manner.

GluA1 dose-response curves to glutamate exhibited a larger leftward shift upon co-

expression with γ-2 or -3 than γ-4 or -8 (Kott et al., 2007). Although all Type I TARPs

increase glutamate potency, the precise effects of different TARP isoforms appear to

vary slightly between AMPAR subunits (Suzuki et al., 2008).

Type II TARPs differ from Type I in their effect on glutamate potency. γ-7 fails to

increase GluA1 affinity for glutamate (Kato et al., 2007). γ-5 overexpression has been

reported, paradoxically, to reduce the potency of glutamate in cultured rat cortical

neurons (Kato et al., 2008).

TARPs alter relative kainate efficacy

Kainate is a partial agonist at AMPARs (Patneau and Mayer, 1991), which, compared

to glutamate, causes AMPARs to preferentially occupy lower conductance states (Swan-

son et al., 1997). The dose-response curve of kainate, much like that of glutamate,
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is shifted to the left in the presence of γ-2 (Turetsky et al., 2005). The ratio of re-

sponses to kainate and glutamate (KA/Glu ratio) is also increased by co-expression

of AMPARs with γ-2 (Tomita et al., 2005; Turetsky et al., 2005). A similar increase in

kainate/glutamate ratio has also been reported for γ-3, -4 and -8. The KA/Glu ratio is

also affected by the AMPAR subunit present and its flip/flop splicing state. However,

overall γ-2 and -3 appear to increase the KA/Glu ratio more than do γ-4 or -8 (Kott

et al., 2007; Suzuki et al., 2008).

Kainate efficacy is yet another factor in which type I and II TARPs differ. γ-7 co-

expression increases the KA/Glu ratio for GluA1 only weakly, compared to γ-2 (Kato

et al., 2007). γ-5, on the other hand, fails to increase the KA/Glu ratio (Turetsky et al.,

2005; Tomita et al., 2005).

The KA/Glu ratio is a measure of TARP efficacy sensitive not only to TARP co-

assembly as such, but also to TARP stoichiometry. In AMPARs associated with γ-2 or

γ-8, the KA/Glu ratio increases with increasing TARP stoichiometry, from 0 to 2 to 4

TARP molecules per AMPAR (Shi et al., 2009). By contrast, AMPARs associated with

2 γ-7 molecules appear to exhibit a higher KA/Glu ratio than those associated with

4 molecules of this TARP (Gill et al., 2011). However, a study by Kim et al. (2010),

showed that even co-injection of small amounts of γ-2 is sufficient to enhance kainate

efficacy on GluA1 in oocytes (albeit to a smaller level that co-injection of larger γ-2

amounts), suggesting that even a single molecule of γ-2 associated with an AMPAR

may enhance kainate efficacy.

CNQX acts as a partial agonist at AMPARs associated with type I TARPs

CNQX (6-cyano-7-nitroquinoxaline-2,3- dione) has been widely used as an AMPAR

antagonist. However, studies on native AMPARs suggested that it may, paradox-

ically, enhance neuronal activity (Brickley et al., 2001; Maccaferri and Dingledine,

2002). Indeed, CNQX has been demonstrated to be a partial agonist at both na-

tive and recombinant AMPARs, an action entirely dependent on the presence of γ-2

(Menuz et al., 2007). CNQX-evoked currents can also be detected upon co-assebly

of TARPs γ-3,-4 and -8 (Menuz et al., 2007; Kott et al., 2009). However, the am-

plitude of CNQX-evoked currents seems to vary slightly between the TARP isoforms

(Kott et al., 2009). Of note, 6,7-dinitroquinoxaline-2,3-dione (DNQX) also behaves

as a partial agonist on AMPARs associated with γ-2, while 2,3-dihydroxy-6-nitro-7-

sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) does not (Menuz et al., 2007).

In contrast to γ-2, γ-7 fails to convert CNQX from an antagonist to a partial agonist
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(Bats et al., 2012), providing another important means of differentiating pharmaco-

logically between AMPARs associated with Type I and Type II TARPs. It remains

undetermined whether AMPARs associated with γ-5 show CNQX-evoked currents.

However, since GluA1 co-expressed with a chimera in which the first extracellular

loop of γ-2 has been exchanged with that of γ-5 shows no CNQX-evoked current

(Cokić and Stein, 2008), it is plausible that γ-5 does not convey CNQX-sensitivity on

AMPARs.

TARPs affect AMPAR allosteric modulation

The affinity of GluA1 for the positive allosteric modulator CTZ is enhanced by γ-2.

In addition, γ-2 enhances the CTZ-mediated potentiation of Glu-evoked current from

GluA1 flop, the splice variant which, in the absence of TARP, is modulated by CTZ to

a much lesser extend than flip. In addition, the effect of CTZ on GluA1 flop deactiva-

tion is enhanced by γ-2 co-assembly (Tomita et al., 2006). In contrast to CTZ, 4-[2-

(phenylsulfonylamino)ethylthio]-2,6-difluorophenoxyacetamide (PEPA) acts preferen-

tially on the flop isoforms of AMPARs (Sekiguchi et al., 1997). Co-expression of γ-2

enhances the potentiation of Glu-evoked currents from both flop and flip GluA1 by

PEPA (Tomita et al., 2006).

Another study, however, showed that the potentiation of Glu-evoked currents by CTZ

is reduced when GluA1 flip is co-expressed with TARPs γ-2,–3 and -4, but not -8 (Kott

et al., 2007). The action of another allosteric potentiator related to CTZ, trichlorme-

thiazide (TCM, Yamada and Tang 1993), also appeared reduced by TARPs, in an

isoform-specific manner (Kott et al., 2009). The reason for the discrepancies between

these studies remain unclear.

Co-expression with γ-2 increases the affinity of GluA1 for the negative allosteric mod-

ulator GYKI 53655, an effect independent of AMPAR desensitization and mediated by

the first extracellular loop (Ex1) of γ-2 (Cokić and Stein, 2008). γ-2 also enhances

AMPAR affinity of LY450295 and promotes its displacement by the negative allosteric

modulators GYKI 53655 and CP-465,022 (Schober et al., 2011). Thus, it appears that

γ-2 is important for the formation of the binding site for these drugs.
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1.8.5 Other effects of TARPs on AMPAR-mediated currents

Resensitization

Resensitization, a feature of certain TARPs, is an increase in steady-state current

following AMPAR desensitization. It was first observed when AMPARs were co-

expressed with γ-7 (Kato et al., 2007). Subsequent studies showed that TARPs γ-4,

-7 and -8, but not γ-2,-3 or -5 cause GluA1 to resensitize. All AMPAR subunits co-

expressed with γ-8 display varying extent of resensitization. However, hippocampal

neurons expressing γ-8 do not (Kato et al., 2010a). It was later demonstrated that

receptors with low stoichiometry of γ-7 or γ-8 do not show resensitization. In the

hippocampus cornichon homolog-2 (CNIH-2), another auxiliary subunit of AMPARs,

associates with neuronal AMPARs and promotes low γ-8 stoichiometry, thus convey-

ing a non-resensitizing phenotype on hippocampal AMPARs (Gill et al., 2011). It is

thus unclear if resensitization has a physiological relevance.

Autoinactivation

Autoinactivation is the term used to describe the bell-shaped dose-response curves to

glutamate obtained in the presence of TARP. Bell-shaped steady-state dose-response

relationships to glutamate have been observed in various types of neurons, such as

chick spinal chord neurons (Vlachová et al., 1987), cerebellar unipolar brush cells and

granule cells (Kinney et al., 1997) and neurons of the avian cochlear nucleus (Raman

and Trussell, 1992). This reduction in response to glutamate has been termed autoin-

activation and explained by dissociation of TARPs at high glutamate concentrations

(Morimoto-Tomita et al., 2009). However, a more recent paper showed that autoinac-

tivation occurs even when γ-2 is covalently linked to the AMPAR in an AMPAR-TARP

tandem construct, and thus unable to dissociate. The study suggest that autoinacti-

vation results from conformational changes within the AMPAR/TARP complex, rather

than from TARP dissociation, and that the phenomenon depends on the AMPAR sub-

unit and flip/flop splicing (Semenov et al., 2012).

1.9 TARPs affect AMPAR trafficking

As described above, γ-2 has been initially identified as the factor required for synap-

tic trafficking of AMPARs in cerebellar granule cells. It was subsequently shown that
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this trafficking effect depends on the C-terminal domain of γ-2, since a γ-2 construct

where the C-terminus was deleted failed to rescue mEPSCs in stg granule cells (Chen

et al., 2000). γ-2,-3,-4 and -8, but not γ-5 also rescued AMPAR-mediated synap-

tic transmission in stg granule cells (Tomita et al., 2003). γ-7, on the other hand,

appears to selectively traffic CP-AMPARs to the cell surface and the synapse (Stud-

niarczyk et al., 2013). Several studies have shown that TARPs are crucial to matura-

tion, surface trafficking and synaptic localisation of AMPARs. Association of AMPARs

with TARPs, unlike with other AMPAR trafficking factors, appears to be both abundant

and stable (Vandenberghe et al., 2005b), corresponding with the dual role of TARP

auxiliary subunits as modulators of both AMPAR trafficking and functional properties.

The key findings showing the importance of TARPs for AMPAR trafficking are outlined

below.

AMPARs are synthesised in the ER as monomers, which subsequently dimerise. The

complete AMPAR is a tetramer (dimer of dimers). γ-2 has been shown to asso-

ciate predominantly with the AMPAR tetramer (Shanks et al., 2010). Tomita et al.

(2003) showed that in stg cerebellum GluA2 is highly sensitive to EndoH glycosi-

dase, which selectively removes high-mannose sugars characteristic for immature

(ER-localised) receptors. In addition, upregulation of ER chaperones following induc-

tion of the unfolded protein response appears to mimic the effects of γ-2 on GluA1

trafficking (Vandenberghe et al., 2005a). Thus, the initial interaction between AMPARs

and TARPs occurs in the ER and facilitates maturation and ER export of AMPARs.

Subsequent studies in heterologous expression systems showed that TARPs greatly

enhance AMPAR surface expression (see for instance Yamazaki et al. 2004; Tomita

et al. 2005), but do not affect the trafficking of the closely related kainate receptors

(Chen et al., 2003).

TARP association does not appear to inhibit AMPAR endocytosis (Vandenberghe

et al., 2005a). In fact, endocytosis in response to agonist stimulation has been re-

ported to involve TARP dissociation from the AMPAR (Tomita et al., 2004).

Similar to the C termini of AMPARs, C-termini of TARPs also contain PDZ ligands.

The final four amino acids of Type I TARPs (TTPV) form a type I PDZ ligand, while the

four most distal amino acids in the C-tail of γ-5 (SSPC) and γ-7 (TSPC) are atypical

PDZ ligands (Kato et al., 2010b). PSD-95 is a synaptic scaffolding protein which inter-

acts with the C-terminus of γ-2 (Chen et al., 2000). The levels of γ-2 appear to control

the amount of surface AMPARs, while the amount of PSD-95 available for binding to

γ-2 seems to regulate the number of synaptic AMPARs (Schnell et al., 2002). Palmi-

toylation of PSD-95 has been shown to stabilise AMPARs at the synapse (Schnell

et al., 2002; El-Husseini et al., 2002). The crucial role of γ-2 interaction with PSD-
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95 was demonstarted by Bats et al. (2007). This study used a γ-2 construct lacking

the C terminus to show that the interaction between PSD-95 and the PDZ domain

of γ-2 regulates lateral diffusion of AMPARs. Disruption of this interaction prevents

AMPAR clustering at synapses. A similar enhancement of AMPAR lateral mobility has

been noted when γ-2 interaction with PSD-95 was disrupted using dominant-negative

biomimetic ligands (Sainlos et al., 2011). Of note, other synaptic scaffolding proteins,

such as SAP-97, PSD-93 and SAP-102 have also been shown to interact with γ-2

(Chen et al., 2000).

1.10 Post-translational modification of TARPs

The C-termini of type I TARPs contain multiple phosphorylation sites. The use of

phosphomimetic mutants showed that phosphorylation of T321 (located within the

C terminal TTPV PDZ ligand) by PKA disrupts γ-2 binding to PSD-95 and reduces

AMPAR-mediated synaptic transmission in hippocampal neurons (Chetkovich et al.,

2002; Choi et al., 2002). However, incubation of cultured neurons with forskolin, which

increases intracellular cAMP levels, failed to alter synaptic localisation of AMPARs

(Chetkovich et al., 2002). It is thus possible that γ-2 is phosphorylated by PKA af-

ter reaching the synapse and that other synaptic scaffolding proteins interacting with

TARPs (or directly with AMPAR subunits) may be important for retaining AMPARs at

the synapse.

The T321 residue is also phosphorylated by mitogen activated protein kinase (MAPK).

Mutations of consensus sequences for PKA and MAPK phosphorylation showed that

phosphorylation by the two kinases bidirectionally regulates synaptic localisation of

γ-2 during plasticity. Phosphorylation of T321 by PKA, but not by MAPK is required

for synaptic clustering of γ-2 during chemical LTP in cultured hippocampal neurons.

On the other hand, induction of LTD in response to mGluR agonist DHPG appears

to require γ-2 phosphorylation by MAPK, but not by PKA (Stein and Chetkovich,

2010).

The C-terminus of type I TARPs contains 9 conserved serine residues, which are tar-

gets for phosphorylation by PKC and CaMKII. In hippocampal neurons, a phospho-

mimetic mutant in which all of these serines are phosphorylated enhances synaptic

trafficking of AMPARs, occludes LTP and largely prevents LTD induction. The con-

verse mutant, where all these phosphorylation sites are removed, prevents LTP in-

duction (Tomita et al., 2005). Experiments in knock-in mice showed that in cerebellar

granule cells, the phosphomimetic mutant of γ-2 showed increased mEPSC amplitude
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reflecting an increase in synaptic AMPAR trafficking. The mechanism of increased

synaptic trafficking of γ-2 upon its phosphorylation relies on the regulation of the in-

teractions with lipid bilayers. Dephosphorylated γ-2 interacts with lipid bilayers, which

compete for γ-2 interaction with PSD-95 (Sumioka et al., 2010). Indeed, phosphory-

lation of the γ-2 C-terminus by CaMKII induces synaptic trapping of γ-2-associated

AMPARs by promoting interactions of the γ-2 C-terminus with synaptic scaffolding pro-

teins. This appears to reduce the paired-pulse ratio in cultured hippocampal neurons,

most likely due to inhibition of replacement of desensitizied AMPARs with functional

ones by lateral diffusion (Opazo et al., 2010).

γ-2 has also been shown to be regulated by S-nitrosylation at C302. S-nitrosylation

of γ-2 enhances its binding to GluA1 and promotes surface expression of both GluA1

and γ-2. Since NMDA treatment of cerebellar granule cells enhances S-nitrosylation

of γ-2, this post-translational modification may play an important role in synaptic plas-

ticity (Selvakumar et al., 2009).

1.11 AMPAR-TARP interaction

The molecular basis for AMPAR-TARP interaction is one of the major questions inves-

tigated in this Thesis. To date, several regions of both the TARP and the AMPAR have

been identified as important for this interaction.

Interaction regions on the TARP

The Ex1 of γ-2 is one notable domain important for interaction with the AMPAR. In-

sertion of a HA tag into the C-terminal part of the γ-2 Ex1 loop reduced the amount of

co-precipitated GluA2 and the amplitude of Glu-evoked current, suggesting that Ex1

is important for the binding and modulation of AMPARs by this TARP (Tomita et al.,

2004). A chimeric construct in which Ex1 of γ-2 was replaced with that of γ-5 showed

a greatly reduced KA/Glu ratio compared to wt γ-2, but did not affect GluA1 surface

expression (Tomita et al., 2005). Another study showed that the replacement of Ex1

of γ-2 with that of γ-4 prolonged desensitization of GluA1 responses to a level seen

with wt γ-4. The converse operation, replacing Ex1 of γ-4 with Ex1 of γ-2, produced

responses with desensitization kinetics mimicking that of γ-2 (Cho et al., 2007). In ad-

dition, TARP isoform-specific effects on mEPSC amplitude, decay and rise time also

appear to be governed by Ex1 (Milstein et al., 2007).
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TARPs have been shown to contribute to the membrane density of AMPAR complexes

isolated from rat brain (Nakagawa et al., 2005). In addition, the replacement of Ex1

and TM2 of γ-5 with that of γ-2 was sufficient to increase kainate efficacy to levels

seen when GluA1 was co-expressed with wt γ-2, suggesting that TM2 may also con-

tribute to modulation of kainate efficacy by TARPs (Tomita et al., 2005).

C-terminal truncations (Tomita et al., 2004) of γ-2 and chimeras with γ-5 (Tomita et al.,

2005) showed that the C-terminus of TARPs is important for the enhancement of

AMPAR surface trafficking by TARPs. The C-terminal interaction, however, appears

not to affect the TARP-mediated increase in KA/Glu ratio (Tomita et al., 2005).

Despite previous studies providing some insight into TARP regions important for AMPAR/TARP

interaction, the detailed map of the regions involved remains unresolved. Multiple do-

mains might contribute to the modulation of native receptors by TARPs, as a construct

containing the cytoplasmic domain of γ-2 and the transmembrane and extracellular

(Ex1 and Ex2) domains of γ-8 increased amplitude and decay time constant of mEP-

SCs relative to γ-8 alone, when expressed in stg cerebellar granule cells (Milstein and

Nicoll, 2009).

Interaction regions on the AMPAR

Previous studies suggest that γ-2 can still modulate GluA2 surface trafficking in the

absence of the NTD (Bedoukian et al., 2006). Similarly, the γ-2-mediated slowing

of GluA2 desensitization (Bedoukian et al., 2006) and enhancement of KA efficacy

on GluA1 (Tomita et al., 2007) are retained in the absence of the NTD. However,

none of these studies investigated whether the magnitude of γ-2 effect is the same

in the absence of the NTD, a question which is addressed in Experimental Chapter 2

(Chapter 4) of this Thesis.

γ-2 has also been reported to interact with the LBD of AMPARs. The L497Y mutant

of GluA1 disrupts AMPAR desensitization by altering the LBD conformation, as de-

scribed above (Sun et al., 2002). When co-expressed with this mutant, γ-2 failed to

enhance Glu-evoked current and showed only a small (albeit significant) increase in

KA/Glu ratio (Tomita et al., 2007).

Another region implicated in AMPAR-TARP interaction are the linkers connecting AMPAR

LBD to the membrane domains. As mentioned above, γ-2 appears to contribute to

the binding site for the negative allosteric modulators GYKI 53655 and CP-465,022.

These drugs have been shown to bind to the S1-M1 and S2-M4 linkers (Balannik
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et al., 2005). The γ-2-mediated enhancement of GYKI 53655 binding to GluA1 is

largely mediated by Ex1 of γ-2, since the co-expression of a chimeric TARP in which

Ex1 of γ-2 has been replaced with that of γ-5 reduced GYKI 53655 binding compared

to wt γ-2 (Cokić and Stein, 2008). Thus, previous studies suggest that Ex1 of γ-2

interacts with the LBD-membrane domain linker region of AMPARs, a finding which

appears consistent with the results shown in Experimental Chapter 1 (Chapter 3) of

this Thesis.

There is also evidence for involvement of AMPAR transmembrane domains in TARP

modulation. The A636T mutation targets a GluA1 residue located in the channel

gate formed by the M3 helix, as described above, and is analogous to the mutation

found in Lurcher mice. The A636T GluA1 mutant showed no enhancement of Glu-

evoked current upon γ-2 co-assembly. γ-2 also failed to modulate KA/Glu ratio and

surface expression of this mutant, suggesting a critical role of this membrane region

in TARP interaction (Tomita et al., 2007). Mutations of the Q/R site also affect γ-2-

mediated increase in GluA1 surface trafficking and KA/Glu ratio as well as the slowing

of desensitization upon γ-2 co-assembly (Körber et al., 2007).

It is worth noting, that in the study by Körber et al. (2007) γ-2 did not appear to af-

fect GluA1 block by NASPM, irrespective of the amino acid present at the Q/R site.

NASPM, like other extracellular polyamines, is though to bind directly to the channel

pore in a manner dependent on Q/R editing. Thus, the lack of TARP effect on NASPM

block suggests that the effect of the Q/R site on TARP function may arise from an

allosteric interaction elsewhere in the AMPAR. Further research would be required

to determine the involvement of the AMPAR channel pore in TARP interaction and

to explain the conflicting reports on the effect of TARPs on AMPAR block by extra-

cellular polyamines (compare for instance Körber et al. 2007; Kott et al. 2009 and

Jackson et al. 2011). Indeed, it appears that there is a complex allosteric interaction

between γ-2 and the membrane and LBD regions of the AMPAR, since the effect of

γ-2 on extracellular polyamine block is strongly dependent on the efficacy of the ago-

nist used to activate AMPARs (Poulsen et al., 2014b) and thus on the degree of LBD

cleft closure.

Finally, as described above, the C-terminus of γ-2 is critical for surface and synaptic

trafficking of AMPARs. This interaction appears to be controlled by the C-terminus

of AMPARs, since C-terminal truncation mutants of GluA1 or GluA2 showed little en-

hancement of surface trafficking upon γ-2 co-expression. On the contrary, the γ-2-

mediated slowing of GluA1 desensitization was unaffected in the C-terminal GluA1

mutant (Bedoukian et al., 2006). However, the details of γ-2 interaction with the

AMPAR C-terminus appear elusive, as the study failed to identify amino acids in the
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AMPAR C-terminus responsible for γ-2-mediated increase in surface expression.

1.12 The role of TARPs in disease

Studies employing genetic analysis suggests TARPs may be linked to a variety of neu-

rological diseases. Homozygosity analysis of a family with high incidence of epilepsy,

hearing impairment and schizophrenia showed that the disease loci mapped to a

region of chromosome 22 where the CACNG2 gene is located. However, no muta-

tions in the exons of CACNG2 were found (Knight et al., 2008). On the other hand,

CACNG3 (located on chromosome 16; Everett et al. 2007) but not CACNG2 (Abouda

et al., 2010) has been implicated in a specific form of epilepsy, namely childhood

absence epilepsy.

Changes in TARP protein levels were found in a rat model of schizophrenia (Drum-

mond et al., 2013). Indeed, genetic analysis showed that the CACNG2 gene may

be implicated in a subpopulation of schizophrenia patients (Liu et al., 2008). In addi-

tion, post-mortem analysis of brains from schizophrenia patients revealed abnormally

increased γ-2 expression in the dorsolateral prefrontal cortex (Beneyto and Meador-

Woodruff, 2006).

Polymorphisms in the CACNG2 gene have also been implicated in bipolar disorder

and susceptibility to lithium treatment (Silberberg et al., 2008). γ-2 also appears to

affect pain processing in mice. Polymorphisms in the CACNG2 gene appear to asso-

ciate with chronic pain following breast surgery in cancer patients (Nissenbaum et al.,

2010).

1.13 Other AMPAR auxiliary subunits

CNIH proteins

TARPs were the first auxiliary AMPAR subunits identified. The proteomic approach,

involving mass spectrometry investigation of native AMPAR precipitates, has since

been successfully employed to identify other auxiliary subunits of AMPARs. CNIH-2

and CNIH-3 have been shown to form complexes with AMPARs and modulate AMPAR

properties, such as deactivation and desensitization kinetics and surface expression

(Schwenk et al., 2009; Coombs et al., 2012). However, unlike TARPs, CNIH-2 has
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little effect on recovery from desensitization (Schwenk et al., 2009) or KA/Glu ratio

(Shi et al., 2010).

In neurons CNIH-2 appears to be restricted to certain cell types. CNIH-2 fails to res-

cue synaptic currents in stg mice, but increases whole-cell currents, consistent with

enhancement of surface trafficking of AMPARs. In addition, its expression in cerebel-

lar granule cells from stg heterozygotes has no effect on AMPAR kinetics (Shi et al.,

2010). Similarly, in cerebellar Purkinje cells CNIH-2 apparently fails to reach the cell

surface (Gill et al., 2011). In the hippocampus, on the other hand, γ-8 and CNIH-2

appear to co-assemble in the same complexes to modulate AMPAR responses (Kato

et al., 2010a; Gill et al., 2011). Of note, Shi et al. (2010) found no evidence for slowing

of AMPAR gating kinetics upon CNIH-2 transfection into CA1 hippocampal pyrami-

dal cells in slice cultures. However, the result could potentially be explained by the

use of wt mice, where AMPR stoichiometry was already saturated, so that addition

of more CNIH-2 failed to affect AMPAR properties. A recent study showed, that the

CNIH-2-mediated slowing of AMPAR deactivation and desensitization, even more pro-

nounced than that seen with TARPs, modulates synaptic currents in the hippocampus

in a cell-specific manner (Boudkkazi et al., 2014). The interaction between AMPARs

and CNIH-2 is also likely to be subunit-specific, as CNIH-2 knockout mice display a

profound loss of synaptic GluA1 (Herring et al., 2013).

CKAMP44

The hippocampus is also the predominant site of expression of another AMPAR aux-

iliary subunit, CKAMP44 (cystine-knot AMPAR modulating protein, von Engelhardt

et al. 2010). Its expression appears to be particularly high in the dentate granule

cells. CKAMP44 increases the rate of AMPAR desensitization and slows recovery

from it. Overexpresion of this protein also slows deactivation of AMPARs. In addition,

CKAMP44 increases the potency of the agonist glutamate and reduces the potency

of the allosteric potentiator CTZ, suggest a role in modulation of AMPAR pharmacol-

ogy. Physiologically, CKAMP44 knock-out results in increased paired-pulse ratio upon

stimulation of the lateral or medial perforant path, suggesting a role for this protein in

synaptic transmission in the dentate gyrus.
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GSG1L

GSG1L is a protein related to claudins and TARPs, which has been recently identified

as an auxiliary AMPAR subunit (Shanks et al., 2012). Co-expression of this pro-

tein with GluA2Q appears to slow both desensitization and recovery from it. GSG1L

seems to efficiently increase AMPAR surface expression in a recombinant system

and, transfected into cultured cortical neurons, colocalises with AMPAR subunits at

the cell surface and the synapse.

AMPARs form multicomponent complexes

A recent study (Schwenk et al., 2012) employed the proteomics approach to reveal

a great diversity of putative AMPAR auxiliary subunits. While some of them, such

as TARPs and CNIH proteins, are relatively well studied, very little is known about

other candidates. Multiple auxiliary proteins may co-assemble with varying stoichiom-

etry, suggesting a complex regulation of native AMPARs in different brain regions, cell

types and developmental stages. The study also suggests that the binding of some

AMPAR auxiliary subunits may be mutually exclusive, suggesting additional means

for AMPAR regulation by competition for AMPAR binding between different auxiliary

proteins.
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2

Materials and Methods

2.1 HEK-293 cell culture

HEK-293, HEK-293T or tsA201 cells were cultured in DMEM (Sigma) supplemented

with 10% FBS (LifeTechnologies) and 5% penicillin/streptomycin (LifeTechnologies).

Cells were maintained at 37◦C and 5% CO2 in a humidified incubator.

2.2 Heterologous expression of AMPARs

Cells were grown in a T-25 flask as described above, until a confluent monolayer was

formed. Cells were then washed with PBS (LifeTechnologies), incubated with 0.5 ml

of 0.05% trypsin-EDTA (Sigma) at 37◦C for approximately 2 minutes, resuspended in

5-6 ml of culture media and mechanically dissociated by pipetting. The cells were then

seeded in a 4-well plate (0.5 ml of cell suspension per well) and transfected with the

appropriate DNA using Lipofectamine 2000 (LifeTechnologies), according to the pro-

tocol provided by the manufacturer. A total of 1 µg of DNA was used per transfection.

The medium used for transfection was OptiMEM (LifeTechnologies). Transfection was

terminated after 4-14 hours, cells were dissociated with trypsin-EDTA and seeded

onto glass cover slips pre-coated with poly-L-lysine (0.02 mg/ml, Sigma). Following

transfection, the media was supplemented with 50-200 µM NBQX to avoid AMPAR-

mediated toxicity. Cells were used for electrophysiological recordings 24-72 hrs after

transfection.

For the whole-cell experiments described in Experimental Chapter 3 (Chapter 5), a

slight modification of the transfection procedure was introduced, in order to better
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control the final cell density and allow whole-cell recording from isolated cells. The

transfection was terminated after 4-10 hrs by replacement of media. The cells re-

mained in the incubator until approximately 12 hours before recording, when they were

trypsinised and seeded onto glass cover slips. Reducing the time between seeding

the cells and recording limited cell division on the cover slips, providing more single,

isolated cells than the approach typically used to prepare cells for outside-out patch

recordings.

Although AMPARs posses several trypsin cleavage sites, and trypsin is often used to

digest AMPARs into peptides (see for instance Schwenk et al., 2012) trypsinization of

cells after transfection was unlikely to affect the experiments described here. Previous

studies report turnover half-lives of 18 ± 5 hrs and 23 ± 8 hrs for total GluA2/3 and

GluA4, respectively, measured in cultured celebellar cells (Huh and Wenthold, 1999).

The half-lives of surface receptors were similar at 17 ± 4 and 21 ± 5 h for GluR2/3 and

GluR4 subunits, respectively (Huh and Wenthold, 1999). Since for the experiments

described in this thesis the cells were trypsinised 12 hours or more before recordings,

this should have permitted the exchange of a large proportion of trypsin-digested

receptors.

2.2.1 DNA constructs

All rat AMPAR subunits used for the recordings were R/G edited and flip. Both the

unedited (Q) and edited (R) forms of the GluA2 subunit were used, as indicated in

the appropriate Chapters. The GluA3 subunit used (whether alone or in a TARP-

containing tandem construct) contained the R461G mutation, which has been re-

ported to facilitate surface expression (Coleman et al., 2010).

To allow visualisation of transfected cells, cDNA of interest was cloned into the pIRES-

EGFP vector (Clontech) or co-transfected with GFP at a fixed GFP amount of 60 ng

per each 1 µg total DNA tranfection.

Two TARPs were used in the experiments described here: rat γ-2 (including all mu-

tants and tandem contructs) and human γ-7 (used in tandem AMPAR-TARP con-

structs).
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2.2.2 Transfection ratios

AMPAR:TARP ratio

All experiments with TARPed AMPARs were performed at 1:6 AMPAR subunit:TARP

ratio. The 6-fold excess of the TARP was used to maximise the fraction of fully-

TARPed AMPARs in the transfected cells.

Heteromeric GluA2R-containing AMPARs (whole-cell experiments in Experimen-

tal Chapter 3)

In order to facilitate heteromeric AMPAR assembly, both the TARPless GluA2/3 con-

trols and the tandem AMPAR-TARP contructs were transfected at a 2:1 GluA2:GluA3

ratio, so that the GluA2(R) subunit was in excess.

Heteromeric GluA2R-containing AMPARs (outside-out patch experiments in Ex-

perimental Chapter 3)

In order to facilitate heteromeric AMPAR assembly, the ratio of GluA2(R) to GluA1

was adjusted for each type of transfection, however, the GluA2(R) subunit was always

in excess. The most commonly employed GluA1:GluA2 ratio for each transfection is

indicated in bold.

TARPless GluA1/2: 1:2 or 1:5

GluA1-γ-2 tandem + GluA2 (2 TARP) 1:5 or 1:20

GluA1 + GluA2-γ-2 tandem (2 TARP) 1:5 or 1:20

GluA1-γ-2 tandem + GluA2-γ-2 tandem (4 TARP) 1:2, 1:5, 1:10 or 1:20

2.3 Cloning of the GluA3-containing tandem constructs

The whole-cell experiments described in Experimental Chapter 3 (Chapter 5) required

cloning of two tandem constructs: GluA3-γ-7 and GluA3-γ-2. Both constructs were

cloned into the pIRES-EGFP. Phusion HF Master Mix polymerase (Finnzymes) was

used for all PRC reactions and all primers were from Sigma Genosys. The pIRES-

EGFP vector was also used by Dr Ian Coombs to clone the GluA1-γ-2 and GluA2(R)-

γ-2 constructs used in the experiments described in Experimental Chapter 3. A

schematic plasmid map for all tandem constructs is shown in Fig 2.1 A, while the

individual restriction sites are listed in Fig 2.1 B.
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Figure 2.1: Schematic maps of the AMPAR-TARP tandem constructs used in this the-

sis. (A) Location of the AMPAR and TARP inserts in relation to the selected elements of the

pIRES - EGFP vector: 1. the CMV promoter used for expression of the tandem construct in

mammalian cells, 2. the AMPAR insert (with endogenous stop codon removed as described

below), 3. the linker and 4. the TARP insert. The inserts are followed by 4. IRES (internal

ribosome entry site) used for expression of the GFP; 5. GFP and 6. the poly-A tail. The

approximate location of the Kan/Neo resistance gene is also indicated. The relative sizes of

the individual elements are not drawn to scale. Position of the restriction sites used to create

the tandem constructs is indicated by dashed red lines and the sites are numbered 1-4 from

N- to C-terminal end of the tandem construct. Please note, that the restriction sites used are

all within the multiple cloning site of the vector. (B) The identity of the restriction sites used to

generate tandem AMPAR-TARP constructs. The sites are numbered 1-4 in consistence with

the map in panel A. Please note that no restriction sites were used for the GluA3-γ-2 tan-

dem. This construct was generated by replacing γ-7 with γ-2 in the GluA3-γ-7 tandem, using

a blunt-end ligation as described in the text. Note: The GluA1-γ-2 and GluA2-γ-2 tandems

were made by Dr Ian Coombs.
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2.3.1 GluA3-γ-7 tandem

GluA3 was first amplified using the following primers:

• forward primer: 5‘ AAAAAGCTAGCATGGGGCAAAGCGTGCTC 3‘

the NheI restriction site introduced immediately before the start of GluA3 is in-

dicated in bold.

• reverse primer: 5‘ AAAAACTCGAGCCGATCTTAACACTTTCTGTTCC 3‘

the XhoI restriction site introduced immediately after the last codon of GluA3 is

indicated in bold. Note that the STOP codon at the end of GluA3 was removed

with this primer, which allowed the AMPAR and the TARP to be translated con-

tinuously as a single protein.

The PCR product was subsequently digested with NheI and XhoI (both enzymes from

New England Biolabs). The γ-7 construct in pIRES-EGFP was also digested with

the same enzyme pair. Both the GluA3 insert and the γ-7-containing vector were run

on a 1% agarose (Sigma) gel and purified using the PureLink Quick Gel Extraction

and PCR Purification Combo kit (LifeTechnologies). The vector was subsequently

dephosphorylated using Antarctic Phosphatase (New England Biolabs) and purified

using High Pure PCR Cleanup Micro kit (Roche). To generate the tandem GluA3-

γ-7 construct, a sticky-end ligation was performed using the Rapid DNA Ligation kit

(Roche). Construct was confirmed using DNA sequencing of the linker region, how-

ever, the full length of the construct was not sequenced.

The final sequence of the 9 amino acid linker between GluA3 and γ-7 was: GGC TCG

AGC TCA AGC TTC GAA TTC GGA, corresponding to G S S S S F E F G.

2.3.2 GluA3-γ-2 tandem

The GluA3-γ-2 tandem construct was cloned by substituting γ-7 in the GluA3-γ-7

tandem with γ-2. This was achieved by amplifying the pIRES-EGFP vector (complete

with GluA3 and the linker) in one PCR reaction and separately amplifying γ-2, followed

by a blunt-end ligation.

The primers for the GluA3 + linker + vector PCR were as follows:
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• forward primer: 5‘ GTCGACGGTACCGCGGG 3‘

This primer was designed to read into the pIRES-EGFP vector after γ-7.

• reverse primer: 5‘ TCCGAATTCGAAGCTTGA 3‘

This primer was designed to amplify the vector from the end of the linker (start-

ing immediately before γ-7).

The primers for the γ-2 (insert) PCR were as follows:

• forward primer: 5‘ P -ATGGGGCTGTTTGATCGA 3‘

Phosphorylated primer amplifying from the start of γ-2.

• reverse primer: 5‘ P- TCATACGGGCGTGGTCCG 3‘

Phosphorylated primer amplifying from the end of γ-2 (including the STOP

codon).

Both the vector (pIRES-EGFP + GluA3 + linker) and insert (γ-2) PCR products were

treated with DpnI (New England Biolabs) to remove template DNA, run on a 1%

agarose gel and purified using the PureLink Quick Gel Extraction and PCR Purifi-

cation Combo kit, according to the manufacturer instructions. Blunt-end ligation was

performed with the Rapid DNA Ligation kit. The sequence of the linker between GluA3

and γ-2 was the same as described above for γ-7. Construct was confirmed using

DNA sequencing of the linker region, however, the full length of the construct was not

sequenced.
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2.4 Drugs and abbreviations

Abbreviation Full name Mechanism of action Manufacturer

CNQX 6-cyano-7-nitroquinoxaline-2,3-
dione

competitive antagonist /
partial agonist

Abcam or
Tocris
Bioscience

CTZ cyclothiazide allosteric potentiator and
desensitization blocker

Abcam or
Tocris
Bioscience

Glu L-glutamate agonist Sigma

KA kainate partial agonist Abcam or
Tocris
Bioscience

NBQX 2,3-dihydroxy-6-nitro-7-sulfamoyl-
benzo[f]quinoxaline-2,3-dione

competitive antagonist Abcam or
Tocris
Bioscience

PhTx-74 philantotoxin-74 channel blocker Tocris
Bioscience

spermine spermine tetrahydrochloride channel blocker
(CP-AMPARs)

Sigma

Table 2.1: List of drugs and their abbreviations. Abbreviations in the first column are widely

used in the text and figures in this Thesis. The mechanism of action (3rd column) refers to

AMPARs.

2.5 Electrophysiological recordings

Cells were visualised using a fixed stage upright microscope (Axioskop; Zeiss). Cur-

rents were recorded using an Axopatch-1D amplifier and a Digidata 1322A A-to-D

interface (both Axon Instruments).

2.5.1 Patch electrodes

Thick walled borosilicate glass (1.5mm o.d., 0.86 mm i.d.; Harvard Apparatus) was

used to pull patch electrodes using a two-step vertical puller (Narishige). Electrical

capacitance of the electrodes was reduced by coating with Sylgard (Dow Corning

184), which was solidified using a heating coil. The electrodes were heat-polished
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to achieve resistance of 6-14 MΩ for outside-out patch experiments and 4-6 MΩ for

whole-cell experiments. Electrodes were filled with internal solution, containing 145

mM CsCl, 2.5 mM NaCl, 1 mM EGTA-Cs, 4 mM MgATP, 10 mM HEPES, adjusted

to pH 7.3 with CsOH. All chemicals were from Sigma, Fisher or VWR. Internal solu-

tion was supplemented with spermine tetrahydrochloride (100 µM) for all experiments

apart from those involving the measurement of KA/Glu response ratios.

2.5.2 Fast agonist application to outside-out patches

The bath was perfused with standard external solution (145 mM NaCl, 2.5 mM KCl,

1 mM CaCl2, 1 mM MgCl2, 10 mM glucose and 10 mM HEPES, adjusted to pH 7.3

with NaOH). However, bath perfusion was typically stopped during the recording to

minimise noise arising from both the perfusion itself and the suction. Rapid appli-

cation of agonist solution to outside-out patches pulled from HEK-293, HEK-293T or

tsA201 cells was achieved using a fast application tool made from theta glass (2mm

o.d.; Hilgenberg GmbH) pulled to a tip diameter of approx. 200 µm. The fast applica-

tion tool was mounted on a piezoelectric translator (Burleigh PZ-150M). Control and

drug solutions flowed continuously through the two barrels of the theta glass. Perfu-

sion was achieved by raising the reservoirs (50 ml syringe tubes) feeding into the fast

application tool (gravity perfusion). In addition to standard external solution, drug so-

lution contained L-glutamate (10 mM) and was supplemented with 2.5 mg/ml sucrose

to allow visualisation of the solution interface. The control solution was a standard

external solution diluted by 5% with distilled water to reduce osmolarity, allowing the

liquid junction current to be measured. Currents were low-pass filtered at 10 kHz and

digitised at 50 kHz. At the end of each experiment the speed of solution exchange

was assessed by destroying the patch and measuring the liquid-junction current at

the open pipette tip. Typically, the 20-80% rise time of the liquid-junction current was

< 200 µs.

Patches with a seal resistance of <4 GΩ were rejected, as were those in which the

current amplitude was small and the holding current amplitude exceeded that of the

peak current. Sweeps with external noise were excluded and only epochs with sta-

ble current amplitudes and current shapes were analysed. If enough stable sweeps

could not be obtained, the records were rejected. The liquid-junction currents were

examined for abnormalities of glutamate application, such as additional brief gluta-

mate application following the intended one, and patches where these abnormalities

occurred were also rejected. In addition, for the analysis of deactivation, currents with

a 20-80% rise time of >300 µs (usually coupled with an aberrant current shape and

prolonged decay) were also rejected. The latter selection criterium was established
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due to the consistent observation that a very slow rising current was often coupled

with a slow decay (despite the solution exchange speed being normal). This could re-

flect delayed glutamate perfusion onto the patch due to folding of excess membrane

at the electrode tip (Ruknudin et al., 1991) or the patch being positioned too far up the

electrode (Suchyna et al., 2009).

2.5.3 Whole-cell electrophysiology

The bath was constantly perfused with standard external solution (composition as de-

scribed above). Local application of agonist solutions to tsA201 cells was achieved

using a fast application tool made from theta glass mounted on a piezoelectric trans-

lator as described above. However, rapid solution exchange was not performed. In-

stead, the cell was constantly bathed in control solution (standard external solution),

and, when required, the perfusion was switched to the other barrel of the theta glass

containing agonist solution. The recordings were performed by repeatedly applying

a -5 mV voltage step (10 ms duration) at the rate of 1 Hz. This allowed measure-

ment of the agonist response (by measuring the change in holding current, Ihold) and

simultaneous monitoring of changes in series (Rs) and input resistances. Currents

were low-pass filtered at 10 kHz and digitised at 100 kHz (CNQX/Glu ratio) or 5 kHz

(voltage ramps).

Currents were included in the analysis when the change in Rs during the course of

the record was < 30%. Rs change was measured as the difference in Rs between

the last control sweeps prior to application of CNQX and the last control sweep prior

to application of Glu. Cells where the ratio of the initial Ihold (average in control prior

to CNQX application) to whole-cell capacitance exceeded 15 pA/pF were excluded,

as were cells where fluctuations in Ihold occluded the measurement of agonist re-

sponses.

2.5.4 Application of multiple agonists

To allow switching between multiple agonists a modification of the standard solution

delivery system was used. This modified approach was required for the measurement

of KA/Glu and CNQX/Glu response ratios, as well as for experiments involving PhTx-

74 block.

Instead of connecting the fast-application tool directly to the perfusion system, a di-
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vider made from theta glass was introduced between the perfusion tubing and the fast

application tool. This allowed two different solutions to be fed into each barrel of the

fast application tool, as shown schematically in Fig. 2.2 below. Switching between the

solutions was achieved by closing one of the two lines and simultaneously opening

the other, allowing the new solution to fill the fast application tool. The completion of

the solution exchange was assessed by visualising the response.

Figure 2.2: Modification of the solution delivery system used for application of multiple

agonists. Each barrel of the fast application tool was connected to a divider via a piece of

tubing (represented by a dashed line). The divider, made from theta glass itself, was in turn

connected to two perfusion lines, allowing the flow in each barrel of the fast application tool

to be switched between two solutions. Thus, up to four different soltuions (instead of the

standard two) could be used during each experiment.

For KA/Glu response ratios this method was used to switch between Glu and KA

(control solution flowed continuously in the other barrel).

For the whole-cell measurements of CNQX/Glu ratio, dividers were connected to both

barrels of the theta glass, so that the solution in each barrel could be switched be-

tween one of the agonists and control. This allowed rapid onset and offset of both

CNQX and Glu current: the cell could be rapidly exposed to agonist or control by

switching the perfusion between the two barrels of the theta glass. However, this

method required a period of solution exchange in both barrels between the record-

ings of the currents evoked by the two agonists.

Outside-out patch experiments involving PhTx-74 block were performed in a manner

similar to that described above. One barrel of the fast application tool was connected
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to two control solutions: standard control solution and control solution supplemented

with 100 µM CTZ. The other barrel was connected to two Glu-containing solutions:

one containing 10 mM Glu only and the other further supplemented with 100 µM

CTZ and 1 mM PhTx-74 . Solutions flowed continuously through both lines of the

fast application tool. Rapid exchange between control and Glu-containing solutions

was achieved as described above. This method allowed measurement of the Glu

response first and subsequent visualisation of PhTx-74 block by switching to solutions

also containing CTZ and CTZ + PhTx-74.

2.6 Data analysis

All data were acquired using Clampex 8.2.0.232 (Axon Instruments) and analysed

using IGOR Pro (version 6.20, Wavemetrics) and NeuroMatic (version 2.5;

http://www.neuromatic.thinkrandom.com).

2.6.1 Deactivation kinetics

Deactivation kinetics was studied using 1 ms applications of 10 mM Glu at -60, -80 or

+40 mV as indicated. Selected sweeps were aligned at the 20% current rise (mea-

sured at 4 kHz low-pass filtering to obtain accurate rise times regardless of current

amplitude). The decay of the average current was typically fitted with a single or dou-

ble exponential constrained to reach the abscissa. In some cases, a triple exponential

fit was required.

Single exponential:

I(t) = I0 + Ae
−(x−x0)

τ (2.1)

Double exponential:

I(t) = I0 + Afaste
−(x−x0)

τ fast + Aslowe
−(x−x0)

τslow (2.2)

Triple exponential:

I(t) = I0 + A1e
−(x−x0)

τ1 + A2e
−(x−x0)

τ2 + A3e
−(x−x0)

τ3 (2.3)

For the double and triple exponential fits weighted τ (τw) was calculated as the mathe-

matical average of the τ for each component weighted by their relative amplitudes.
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2.6.2 Desensitization kinetics

Desensitization was produced by 100 ms applications of 10 mM Glu at -60, -80 or +40

mV as indicated. Selected sweeps were aligned at the 20% current rise (measured

at 4 kHz low-pass filtering). Decay of the current was fitted with a single or double

exponential (equations 2.1 and 2.2), as described above for deactivation kinetics, but

with no constraints on any of the parameters. The extent of desensitization was quan-

tified by calculating the% of peak current remaining at the end of Glu application (%

steady-state current, Iss), according to the equation:

%Iss =
A0

(Afast + Aslow + A0)
× 100 (2.4)

2.6.3 Recovery from desensitization

A paired-pulse protocol was used to assess the rate of recovery from desensitization.

The patches were held at -80 or +40 mV as indicated. A desensitizing 100 ms pulse

of 10 mM Glu was followed by a 10 ms pulse (10 mM Glu). The inter-pulse interval

was initially set at 5 ms and increased with every sweep: first in 5 ms increments (10

sweeps), then in 10 ms increments (10 sweeps) and finally in 20 ms intervals (varying

the number of sweeps until recovery was complete). For every cell, each inter-pulse

interval was repeated (typically 3-5 times) and the the ratios of the 2nd peak to 1st

peak amplitudes were averaged for each inter-pulse interval. The currents were low-

pass filtered to 1 kHz to minimise the effect of noise on amplitude measurements.

For each patch, the average amplitude ratio was plotted (on a linear scale) against

the inter-pulse interval (on a logarithmic scale) and the data was fitted to a Hodgkin-

Huxley-type function (Carbone and Plested, 2012):

N = N0 + (1 −N0)(1 − e(−krec∆t))
n

(2.5)

where N is the fraction of active receptors at the given time difference (∆t) between

the first and second pulse, N0 is the fraction of active receptors at the end of the first

pulse, n is a slope factor and k rec is the rate of recovery from desensitization. The

time needed for the second peak to recover to 50% of the first peak (t50) was then

obtained from the fit.
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2.6.4 Kainate/Glutamate ratios

KA/Glu ratios were recorded at -60 mV using 500 µM KA (in standard external so-

lution) and 500 µM Glu (in external solution supplemented with 2.5 mg/ml sucrose).

The control solution (diluted with 5% dH2O) as well as both agonist solutions were

supplemented with 100 µM CTZ to limit AMPAR desensitization (Yamada and Tang,

1993) and allow comparison of the steady-state current evoked by the two agonists.

Fifteen 100 ms agonist pulses were recorded for each application. The patch was first

exposed to Glu before switching to KA and back to Glu. To minimize the influence of

any gradual decline in peak response on the estimate of KA/ Glu ratio, the response

to Glu used to calculate the ratio was an average of the response to Glu preceding

and following the application of KA.

2.6.5 CNQX/Glutamate ratios

Whole-cell responses to CNQX (10 µM) and Glu (50 µM) were measured by locally

applying the agonists, as described above, and measuring the changes in Ihold. Con-

trol, Glu and CNQX solutions were supplemented with 50 µM CTZ to limit AMPAR

desensitization. Cells were held at +40 mV in the presence of intracellular spermine

(100 µM) to minimise the contribution of Ca2+-permeable GluA3 homomers. CNQX

and glutamate were applied for 20 sweeps each. To minimise the effect of small base-

line fluctuations on the measurement of CNQX and Glu currents, the response was

calculated as the difference between the agonist Ihold and the average of the control

Ihold (before and after the agonist). The CNQX-evoked current was then expressed as

a % of the Glu-evoked current.

2.6.6 PhTx-74 block

Patches were held at -80 mV and, initially, rapidly exposed to 10 mM Glu (100 ms) as

described above. After the response to Glu alone was obtained, both solutions were

replaced. The control solution (diluted with 5% distilled H2O) was replaced with a so-

lution additionally supplemented with 100 µM CTZ to limit AMPAR desensitization and

allow observation of PhTx-74 block (Jackson et al., 2011). The Glu solution (supple-

mented with sucrose, as described above) was replaced by a solution containing 10

mM Glu, 100 µM CTZ and 1 mM PhTx-74. The patch was then rapidly exposed to the

new solution pair (100 ms). PhTx-74 block could thus be observed in every sweep.

However the degree of block could not be quantified, since PhTx-74 was applied only
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in the Glu solution and not in the control.

2.6.7 Non-stationary fluctuation analysis (NSFA)

Non-stationary fluctuation analysis allows one to deduce single-channel properties

from macroscopic responses, such as those seen in outside-out patches. Glutamate

(10 mM) was applied to AMPAR-containing outside-out patches (100 ms) and the

ensemble variance of all successive pairs of current responses was calculated to

minimise the effect of time-dependent changes on current variance estimate (Conti

et al., 1980). The mean current was divided into 10 bins of equal amplitude and

so was the corresponding enseble variance. The single-channel current (i) and the

total number of channels in the patch (N) were determined by plotting this ensemble

variance (σ2) against mean current (Ī) and fitting with a parabolic function (Sigworth,

1980):

σ2 = iĪ − Ī2

N
+ σ2

B (2.6)

where σ2
B is the background variance.

In addition to the expected variation in current amplitudes due to stochastic channel

gating, some patches showed gradual changes in peak amplitude (rundown). Thus,

the mean response was calculated from epochs containing a minimum of 30 stable

amplitude responses. The mean single-channel conductance was calculated by divid-

ing the single-channel current (i) obtained from equation 2.6 by the holding potential

(assuming the reversal potential was 0 mV). Peak open probability (Po) was estimated

by dividing the mean peak current (Ī) by the mean single-channel current (i) and the

number of channels in the patch (N).

To plot the mean parabolic variance-current relationships, current variance for each

patch was normalised to the size of the current by dividing it by the mean peak current

for that patch. Mean current was also normalised for each bin, by dividing it by the

maximum peak current (1st amplitude bin). NSFA was carried out using a custom

macro for IGOR Pro and NeuroMatic, written by Prof. Mark Farrant, which provided

an estimate of the fit parameters together with their standard deviation.
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2.6.8 Current-voltage plots: homomeric AMPARs

For the experiments described in Experimental Chapters 1 and 2, peak I-V plots

were generated from responses to 1 ms applications of 10 mM Glu. The voltage was

stepped from -100 mV to +60 mV in 10 mV increments and Glu was applied at each

voltage. Mean current amplitudes at each voltage (low-pass fitered to 1kHz to allow

accurate amplitude measurement) were normalised to the peak current at -100 mV

and plotted against the membrane potential. The I-V relationships were fitted with

8th-9th order polynomials.

2.6.9 Quantification of rectification: homomeric AMPARs

Rectification index (RI) was determined from current-voltage relationships described

above, as the ratio of slope conductance at positive potentials (between +40 mV and

+60 mV) and negative potentials (between -60 mV and -40 mV). Slope conductance

was calculated by fitting the I-V relationships in these two voltage regions to a linear

function:

y = ax+ C (2.7)

where a is the slope conductance. Thus, for a completely linear I-V relationship,

rectification index equaled 1.

2.6.10 Conductance-voltage plots

Current-voltage plots were generated as described above. The average peak cur-

rent at each voltage was then divided by the holding potential to obtain conductance

measurements. The data was fitted to the Boltzmann equation:

G(V m) = Gmax
1

1 + e(
Vm+V 0.5

k
)

(2.8)

between -100 mV and -10 mV. The data was then normalised by dividing conductance

values by the maximal conductance (Gmax) value obtained from the fit, so that the plots

show normalised peak conductance (G) plotted against membrane voltage (V m). The

fit allowed to obtain estimation of V 1/2, which is the voltage at which spermine block

is half-maximal and k, which is a slope factor describing the membrane potential shift
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necessary to cause an e-fold change in conductance.

2.6.11 Quantification of rectification: heteromeric AMPARs

For the outside-out patch experiments described in Experimental Chapter 3, a less

refined method of estimating rectification was used. To assess whether heteromeric

assembly (indicated by a linear I-V relationship) had been achieved, the patch was

first held at -60 mV and a 100 ms pulse of 10 mM Glu was applied. The patch was

then stepped to +60 mV and another 100 ms pulse of 10 mM Glu was applied. The

ratio of the peak responses at +60 and -60 mV (low-pass filtered to 1 kHz) was used

to quantify RI, assuming the reversal potential was 0 mV. Thus, for a completely linear

I-V relationship, rectification index equaled 1.

2.6.12 Whole-cell measurement of RI

For the whole-cell experiments described in Experimental Chapter 3, RI was deter-

mined by ramping V m from +60 to -60 mV in the presence and absence of Glu (50

µM). Control and Glu solutions were supplemented with 50 µM CTZ. The I-V relation-

ship obtained in the absence of Glu was then subtracted from that obtained in Glu.

RI was calculated as the ratio of slope conductance at positive potentials (between

+40 mV and +20 mV) and negative potentials (between -20 mV and -40 mV). Slope

conductance was calculated by fitting the I-V relationships in these two voltage re-

gions to a linear function (equation 2.7), as described above. Using this method, for a

completely linear I-V relationship, rectification index equaled 1.

2.7 Statistics

Summary data are presented in the text as mean ± standard error (s.e.m.).

All analyses were performed using the R statistical software (The R Foundation for

Statistical Computing, http://www.r-project.org/) running in RStudio 0.96.331 (RStu-

dio, Inc.). To test for differences between multiple groups (differing in a single fac-

tor), we used Welch heteroscedastic one-way ANOVA, which does not assume equal

variances in the test groups. Subsequent pairwise comparisons also used a het-

eroscedastic test, in this case Welch two-sample t-test with Holm’s sequential Bon-
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ferroni correction.

When the test groups varied in two factors (such as the co-expressed TARP and the

presence or absence of the NTD), a Welch heteroscedastic two-way ANOVA was per-

formed. Pairwise comparisons used a Welch two-sample t-test with Holm’s sequential

Bonferroni correction.

The difference between groups was considered significant when P < 0.05. In all data

figures, a single marker (such as ∗) denotes P < 0.05, a double marker (∗∗) indicates

P < 0.01 and a triple one (∗∗∗) P < 0.001.
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3

Experimental Chapter 1: Mutations in the first

extracellular loop of γ-2 affect functional properties of

AMPAR/γ-2 complexes

3.1 Summary

The aim of the work described in this Chapter was to investigate the molecular ba-

sis of AMPAR/TARP interaction. Some experiments were conducted in collaboration

with Ingo Greger and colleagues (MRC LMB Cambridge). Our collaborators used

peptide arrays to determine regions of interaction in the first extracellular loop (Ex1)

of γ-2 that are responsible for binding to GluA2Q. They generated a range of γ-2

Ex1 mutants corresponding to GluA2Q interaction regions that had been identified by

the array. We subjected these Ex1 mutants to functional studies using outside-out

patches pulled from HEK cells and employed a number of measures to investigate

the role of the Ex1 interactions in AMPAR/TARP complex function. These included

deactivation and desensitization kinetics, the fraction of the steady-state current in

response to desensitizing glutamate pulses, the mean single-channel conductance

(estimated from NSFA), rectification and relative KA efficacy. Ex1 mutants were co-

expressed with GluA1 or GluA2Q subunits and compared with TARPless AMPARs as

well as with AMPARs co-expressed with wild-type (wt) γ-2.
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3.2 Introduction

Previous studies on AMPAR/TARP interactions suggest that three main regions of

the TARP protein are important for its regulation of the AMPAR pore-forming sub-

units. The C terminus of TARPs regulates AMPAR trafficking (Chen et al., 2000;

Tomita et al., 2005; Bats et al., 2007; Opazo et al., 2010). The two domains impor-

tant for modulation of AMPAR functional properties, such as desensitization kinetics

and KA/Glu ratio, are the first extracellular loop (Ex1) and the second transmembrane

domain (TM2) of TARPs (Tomita et al., 2005; Cho et al., 2007). The evidence for the

involvement of TARP Ex1 in modulation of AMPAR properties is particularly strong,

as described in the Introduction. Briefly, Ex1 swapping between TARPs appears to

largely convey the properties of the Ex1 donor TARP. This has been demonstrated in

both recombinant (Cho et al., 2007; Tomita et al., 2005) and native systems (Milstein

et al., 2007). Thus, based on the literature available to date, Ex1 emerged as an

interesting candidate domain for the more detailed molecular study described in this

Chapter.

Our collaborators performed experiments in which GluA2Q interaction sites within

the extracellular domain (Ex1 and the second extracellular loop Ex2) of γ-2 and γ-8

were mapped using peptide arrays. They generated γ-2 constructs which contained

mutations in Ex1 designed to abolish specific local interactions with the pore-forming

subunit. This was achieved by either replacing the naturally occurring amino acid

residues with alanine (A) or glycine (G), or by simply deleting the residues important

for the interaction. These specific amino acids were chosen for substitution mutations,

due to both A and G side-chains being simple in structure (a single hydrogen atom

in G and a methyl group in A) and thus unable to mediate complex polar, aromatic or

hydrophobic interactions. Where feasible, A residues were used preferentially to G, so

as not to allow too much additional flexibility within the protein, which could result from

insertion of multiple glycines. Only one Ex1 mutant shown in this Chapter, HFPE82-85

is a deletion, the remaining mutations are all substitutions (see Fig. 3.1). This was

deliberate, as any mutation involving a deletion may produce its effects not only by

removal of the relevant interaction, but also by disruption of protein structure due to

shortened length.

The Ex1 mutants that we investigated in this Chapter were the ones shown by our

collaborators to disrupt interaction with both the ligand-binding domain (LBD) and the

N-terminal domain (NTD) of the pore-forming GluA2Q subunit. The exception is the

HFPE82-85 deletion mutant, as these residues were present in peptides both positive

and negative for GluA2Q binding. It was therefore unclear whether the functional

effects of this mutation were produced by removing the interaction with GluA2Q or
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by shortening the Ex1 loop and thus disrupting its structure. A summary of the γ-2

mutants investigated here is shown in Fig. 3.1.

Since GluA2 pre-mRNA is almost completely edited at the Q/R site (Sommer et al.,

1991; Burnashev et al., 1992a), the Q form of GluA2 is not a "physiological" subunit.

Despite the fact that GluA2 is not normally expressed in its Q form, this form was

chosen to allow analysis of the structural aspects of AMPAR/TARP interaction, since

GluA2Q crystal structure is the only complete structure of an AMPAR subunit currently

available (Sobolevsky et al., 2009). In order to determine whether the functional con-

sequences of manipulating γ-2-AMPAR interactions were similar when a physiolog-

ically expressed subunit was used, we also co-expressed the Ex1 γ-2 mutants with

GluA1.

Figure 3.1: Mutations introduced into γ-2 Ex1 to disrupt interactions with GluA2Q. Four

mutations were introduced into Ex1 of γ-2 to alter interactions with GluA2Q, as detected using

peptide arrays. From the N to C terminal end of the loop these included: WRT64-66 substitued

with GGA, KGL74-76 substituted with AAA, KQID78-81 substituted with AAAA and a deletion

of four amino acids HFPE82-85. Note that the constructs were generated by members of the

Greger lab.

Association with TARPs profoundly affects a number of functional properties of AMPARs.

Many of the TARPs slow AMPAR deactivation and desensitization kinetics (Milstein

et al., 2007; Cho et al., 2007). The effect of Ex1 mutations on the ability of γ-2 to slow
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GluA1 and GluA2Q deactivation and desensitization kinetics was investigated by fit-

ting the decay of responses to 1 ms and 100 ms glutamate (Glu) pulses, respectively.

Currents were recorded at -60 mV.

The CP-AMPARs investigated in this Chapter are blocked by endogenous intracel-

lular polyamines at positive membrane potentials, however, γ-2 co-expression has

been reported to partially relieve spermine block (Soto et al., 2007). The effect of

the mutations in Ex1 of γ-2 on the I-V relationship of the co-expressed AMPARs was

determined in the presence of 100 µM intracellular spermine by comparing the rec-

tification index (RI) calculated as slope conductance ratio at positive and negative

membrane voltages.

TARPs increase the mean single-channel conductance of AMPARs (Tomita et al.,

2005; Soto et al., 2009; Jackson et al., 2011; Shelley et al., 2012; Zhang et al., 2014).

We used NSFA to estimate mean single-channel conductance of GluA1 and GluA2Q

receptors that were TARPless, or co-expressed with wt γ-2 or the Ex1 mutants.

Finally, TARPs modify AMPAR pharmacology, resulting in increased relative efficacy

of kainate (Turetsky et al., 2005; Tomita et al., 2005; Shi et al., 2009; Gill et al., 2011).

KA/Glu ratios were examined to investigate how the efficacy of KA relative to Glu is

affected by the disruption of the γ-2 Ex1 interactions with GluA1 and GluA2Q.

The experiments that lead to the generation of the Ex1 γ-2 mutants were performed

by Ingo Greger and colleagues (MRC LMB Cambridge).
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3.3 Results

3.3.1 Peptide array indentified residues in Ex1 of γ-2 which are important for

binding to the NTD and LBD of GluA2Q

Our collaborators used an array of peptides containing both extracellular loops of

TARPs γ-2 and γ-8 to identify residues that contact the NTD and LBD of GluA2. Inter-

actions of GluA2 with γ-8 are shown here as they were part of the same experiment

that mapped γ-2 interactions. However, no functional experiments were carried out

for γ-8 and this interaction will not be discussed further.

As seen in panel B in Fig. 3.2 there were extensive NTD contacts on both Ex1 and,

surprisingly, on the smaller Ex2 loop of γ-2. As this loop is only ∼30 residues long, it

is not expected to reach far above the plasma membrane. Very little non-specific sig-

nal was observed from the antibody alone, when the NTD probe was omitted (Fig. 3.2

B, upper panel). The NTD interaction region on Ex1 spanned not only the center of

the loop surrounding the highly conserved GLWRxC67 motif, but also the membrane-

proximal N- and C-termini. This suggests that TARP interaction may result in signifi-

cant conformational changes within the AMPAR, resulting in relative repositioning of

the NTD and LBD.

The γ-2 interaction regions of the LBD partially overlapped with those of the NTD.

Compared to the NTD interaction, the LBD interactions were shifted towards the N-

terminus of Ex1, with a weaker interaction at the center of the loop and very little

interaction at the C-terminus (Fig. 3.2 C, upper panel). This suggests that although

the Ex1 of γ-2 interacts with both the NTD and LBD of GluA2, the distribution and

intensity of the interaction within different parts of the loop varies between those two

GluA2 domains. It is worth noting that very little binding of GluK2 LBD to the γ-2 mem-

brane was observed. This further confirms the specificity of the interactions mapped

using the peptide arrays, as TARPs are AMPAR auxiliary subunits and are thus ex-

pected to show no significant binding to kainate receptor subunits. The sequences of

the γ-2 array peptides (Cais et al., 2014) are shown in Table 3.1.
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Figure 3.2: Peptide arrays were used to map contacts between the NTD and LBD of

GluA2Q and the extracellular domain of TARPs γ-2 and γ-8. (A) Alignment of rat TARP

extracellular loops (Ex1 and Ex2). Conserved residues are shaded in brown, highly conserved

residues are surrounded by a grey box. The four cysteine residues highlighted in yellow are

thought to be important for maintaining the secondary structure of Ex1. The R65 residue im-

portant for NTD binding (see Experimental Chapter 2) is highlighted in bold. Curved brackets

above the γ-2 alignment (green) and below the γ-8 alignment (blue) indicate the GluA2Q inter-

action region located in the center of Ex1, which was mapped functionally in this Chapter. (B)

TARP array containing Ex1 and Ex2 loops of γ-2 (green box) and γ-8 (blue box) probed with

the NTD of GluA2. The array contained 46 15-mer overlapping peptides shifting by 4 residues,

as shown in the inset. Top panel: Non-specific signal, resulting from direct anti-GluA2 anti-

body binding to the membrane. The membrane was exposed for 5 minutes. The dashed

line indicates the division between Ex1 and Ex2 peptides. Lower panel: the same membrane

was exposed to the rat GluA2 NTD and probed with rabbit anti-GluA2 antibody (Alomone,

1:250) followed by a HRP-conjugated anti-rabbit antibody (Pierce, 1:1500). The membrane

was exposed for 3 minutes. (C) TARP array probed with the LBD of GluA2. Top panel: LBD

interaction with γ-2. The membrane was exposed to Flag-tagged GluA2 LBD and probed

with monoclonal anti-Flag M2 antibody (Sigma, 1:1000), followed by a HRP-conjugated anti-

mouse antibody (Pierce, 1:1000). Middle panel shows the same experiment with the γ-8 array.

Bottom panel shows the control experiment, in which the γ-2 membrane was exposed to Flag-

tagged LBD of the kainate receptor subunit GluK2 and probed with the same antibodies as

in the top GluA2 panel. The membrane was exposed for 50 minutes. The negative control,

probed with monoclonal anti-Flag AB only is not shown, as there was no binding. Bottom right:

(Inset) Summary of the NTD and LBD interactions with the extracellular domain of γ-2. Note:

All work that lead to the generation of this figure was conducted by members of the Greger

lab. The figure was adapted from Cais et al. (2014).
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Peptide number Peptide sequence

Ex1
1 DYWLYSRGVCKTKSV
2 YSRGVCKTKSVSENE
3 VCKTKSVSENETSKK
4 KSVSENETSKKNEEV
5 ENETSKKNEEVMTHS
6 SKKNEEVMTHSGLWR
7 EEVMTHSGLWRTCCL
8 THSGLWRTCCLEGNF
9 LWRTCCLEGNFKGLC
10 CCLEGNFKGLCKQID
11 GNFKGLCKQIDHFPE
12 GLCKQIDHFPEDADY
13 QIDHFPEDADYEADT
14 FPEDADYEADTAEYF
15 ADYEADTAEYFLRAV
16 YEADTAEYFLRAVRA

Ex2
17 VYISANAGDPSKSDS
18 ANAGDPSKSDSKKNS
19 DPSKSDSKKNSYSYG
20 SDSKKNSYSYGWSFY
21 DSKKNSYSYGWSFYF

Table 3.1: Sequences of the γ-2 peptides immobilised on the array shown in Fig. 3.2,

as per Cais et al. (2014), supplementary information. The peptides showing strong binding to

GluA2 (NTD and/or LBD) are indicated in bold.

3.3.2 Mutations in Ex1 affected the ability of γ-2 to prolong GluA1 deactiva-

tion

We used fast application of glutamate to outside-out patches pulled from transfected

HEK cells to determine the effect of the γ-2 Ex1 mutants on AMPAR decay kinetics.

1 ms pulses of 10 mM Glu were used to specifically examine AMPAR deactivation.

Currents were recorded at -60 mV.

Compared with GluA1 expressed alone, co-expression of wt γ-2 slowed the time con-

stant of deactivation ∼3-fold (from 0.72 ± 0.11 ms for GluA1 alone to 2.56 ± 0.33

ms for GluA1 + wt γ-2, P= 0.0031). Ex1 mutants (KGL74-76, KQID78-81 and HFPE82-85)

also slowed GluA1 deactivation significantly, but the effect was less pronounced than

that of wt γ-2 (τw = 1.55 ± 0.20 ms for KGL74-76, P= 0.016 ; 1.85 ± 0.21 ms for

KQID78-81, P= 0.0042 and 1.30 ± 0.13 ms for HFPE82-85, P= 0.025). Compared with

wt γ-2, mutants KGL74-76 (P= 0.043) and HFPE82-85 (P= 0.021), but not KQID78-81 (P=

0.093) produced currents with significantly faster deactivation when co-expressed with

GluA1. This suggests that different regions of Ex1 may play a role in the regulation
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Figure 3.3: Co-expression of GluA1 with the Ex1 mutants resulted in deactivation ki-

netics intermediate between GluA1 alone and GluA1 + wt γ-2. (A) Normalised mean

response to 1 ms applications of 10 mM Glu from GluA1-containing patches (black tarce).

Grey shading denotes the SEM. The black bar on top of the figure marks the duration of Glu

application. Mean currents from individual patches were normalised to the peak and aligned

at the 20 % rise time before averaging. (B-E) As for A, but for patches expressing GluA1 +

wt γ-2, + KGL74-76, + KQID78-81 and + HFPE82-85 respectively. (F) Histogram showing τw of

deactivation for each of the Ex1 mutants as well as GluA1 and GluA1+ wt γ-2 controls. Bars

denote the SEM and the n numbers for each group are indicated in white at the bottom of the

histogram. One-way ANOVA showed a significant effect of γ-2 variants on GluA1 deactivation

(F (4, 16.19) = 11.15, P= 1.55 × 10-4). For pairwise tests, asterisks mark significant difference

vs. GluA1 alone (∗ P< 0.05, ∗∗ P< 0.01; Welch t-test), while hashes mark significant differ-

ence vs. GluA1 + wt γ-2 (# P< 0.05; Welch t-test).
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of GluA1 deactivation. The effects of Ex1 mutations on GluA1 deactivation are sum-

marised in Fig. 3.3.

3.3.3 The effect of γ-2 on GluA1 desensitization was disrupted by mutations in

Ex1

Desensitization time constant (τw) was quantified by fitting the decay of current re-

sponses to 100 ms pulses of 10 mM Glu, recorded at -60 mV.

As shown in Fig. 3.4, wt γ-2 prolonged GluA1 desensitization τw ∼2.5-fold (from 2.36

± 0.20 ms for GluA1 alone to 5.01 ± 0.43 ms for GluA1 + wt γ-2, P= 5.04 × 10-5).

All three Ex1 mutants acted as TARPs, in that they associated with AMPARs and

significantly prolonged GluA1 desensitization (KGL74-76: 3.22 ± 0.23 ms P= 0.028,

KQID78-81: 3.89 ± 0.31 ms, P= 0.0025, HFPE82-85: 4.94 ± 0.50 ms, P= 0.0020). The

two most C-terminal mutants, KQID78-81 and HFPE82-85, prolonged GluA1 desensiti-

zation to the same extent as wt γ-2 (P= 0.085 and 0.92 for KQID78-81 and HFPE82-85

respectively), suggesting that interactions in these regions of Ex1 do not play a role in

modulating GluA1 desensitization. The remaining mutant, KGL74-76 had significantly

less effect on GluA1 desensitization than wt γ-2 (P=0.0039).

In addition to desensitization kinetics, the extent of desensitization was also analyzed.

We quantified the steady-state current as percentage of the peak current amplitude.

The results are summarised in Table 3.2. Overall, there was a significant effect of

γ-2 variants on GluA1 steady-state current percentage (F (4, 26.4) = 14.39, P= 2.34 ×
10-6). Wt γ-2 (P= 0.0019), as well as KQID78-81 (P= 0.0020) and HFPE82-85 (P= 0.022)

significantly increased the steady-state current fraction, while KGL74-76 (P= 0.052) did

not. None of the γ-2 mutants differed significantly from wt γ-2 in their action on the

percentage of steady-state current (P= 0.16, 0.69 and 0.91 for KGL74-76, KQID78-81

and HFPE82-85 respectively).

Mean (%) SEM n

GluA1 0.73 0.14 10
wt γ-2 6.41 1.27 20
KGL74-76 3.30 0.89 14
KQID78-81 4.94 0.85 13
HFPE82-85 6.64 1.62 11

Table 3.2: Mutations in Ex1 did not affect γ-2-mediated increase in steady-state current

percentage.
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Figure 3.4: Effect of γ-2 Ex1 mutants on GluA1 desensitization. (A) Normalised mean

response from GluA1-containing patches (black trace) to 100 ms applications of 10 mM Glu.

Grey shading denotes the SEM. The black bar on top of the figure marks the duration of Glu

application. Mean currents from individual patches were normalised to the peak and aligned

at the 20 % rise time before averaging. (B-E) As for A, but for patches expressing GluA1 + wt

γ-2, + KGL74-76, + KQID78-81 and + HFPE82-85 respectively. (F) Histogram showing τw of de-

sensitization for each of the Ex1 mutants as well as GluA1 and GluA1+ wt γ-2 controls. Bars

denote the SEM and the n numbers for each group are indicated in white at the bottom of the

histogram. One-way ANOVA showed a significant effect of γ-2 variants on GluA1 desensiti-

zation (F (4, 29.7) = 12.33, P= 5 × 10-6). Asterisks mark significant difference vs. GluA1 alone

(∗ P< 0.05, ∗∗ P< 0.01, ∗∗∗ P< 0.001; Welch t-test), while hashes mark significant difference

vs. GluA1 + wt γ-2 (## P< 0.01; Welch t-test).
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3.3.4 Ex1 γ-2 mutants showed rectification intermediate between GluA1 alone

and GluA1 + wt γ-2

The effect of Ex1 mutants on rectification, produced by 100 µM intracellular spermine,

was determined by applying 1 ms glutamate pulses at holding potentials from -100 mV

to +60 mV, increasing in 10 mV increments. Rectification index was then quantified

as slope conductance ratio. Wt γ-2 (RI= 0.365 ± 0.031) as well as all three Ex1 γ-2

mutants: KGL74-76 (0.238 ± 0.024), KQID78-81 (0.251 ± 0.030) and HFPE82-85 (0.214

± 0.040) acted as TARPs, partially relieving spermine block of GluA1 homomers at

positive membrane potentials, which resulted in a significant increase in RI compared

to TARPless GluA1 (0.042 ± 0.018). However, the relief of block was less pronounced

than with wt γ-2. The statistical comparisons between Ex1 mutants and the controls

are shown in Table 3.3.

Test No. Test pair P-value

1 GluA1 vs. GluA1 + wt γ-2 8.31 × 10-6

2 GluA1 vs. GluA1 + KGL74-76 0.00011
3 GluA1 vs. GluA1 + KQID78-81 0.00085
4 GluA1 vs. GluA1 + HFPE82-85 0.0203
5 GluA1 + wt γ-2 vs. GluA1 + KGL74-76 0.0203
6 GluA1 + wt γ-2 vs. GluA1 + KQID78-81 0.026
7 GluA1 + wt γ-2 vs. GluA1 + HFPE82-85 0.026

Table 3.3: Mutations in Ex1 affected the ability of γ-2 to relieve spermine block of GluA1.

As seen in Fig. 3.5 C, at negative membrane voltages the I-V relationship for GluA1

alone was clearly different from that seen when GluA1 was co-expressed with wt γ-

2 or any of the Ex1 mutants. This effect of wt γ-2 on the I-V relationship of GluA1

is consistent with previous reports (Soto et al., 2007), suggesting that co-expression

of γ-2 enhances charge transfer by reducing polyamine affinity. The I-V plots for wt

γ-2 and all three Ex1 mutants were almost overlaid at negative membrane voltages

which is shown more clearly in the conductance-voltage plots (Fig. 3.6). At positive

membrane potentials I-V relationships of all Ex1 mutants clearly deviated from that of

GluA1+ wt γ-2, resulting in a significant difference between the Ex1 mutants and wt

γ-2 in the effect on GluA1 rectification. Indeed, all 3 Ex1 mutants relieved polyamine

block only to about 70% of the RI value seen with wt γ-2.

Similar to previously published results (Soto et al., 2007), wt γ-2 produced a +28.4

mV shift in the voltage at which spermine block is half-maximal (Fig. 3.6). The Ex1

mutants produced a very similar shift of the G-V relationship to that produced by

wt γ-2 (Fig. 3.6), which may suggest that the affinity for spermine is unaffected by

mutations in Ex1. However, the significant difference in RI (see Fig. 3.5) might imply
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that permeation of spermine through the GluA1 channel pore at positive membrane

potentials is reduced due to mutations in Ex1 of γ-2.

Figure 3.5: Rectification index of Ex1 mutants co-expressed with GluA1 was intermedi-

ate between GluA1 alone and GluA1 + wt γ-2.(A) Peak I-V plots for from individual repre-

sentative patches for each construct. Note the strong spermine block of GluA1 responses at

positive membrane potentials, and a relief of block seen with wt γ-2. Ex1 mutants showed a

degree of block that is intermediate between GluA1 alone and GluA1 + wt γ-2. Peak currents

at each holding potential were normalised to the peak at -100 mV. Insets show average traces

for that patch at -100, -80, -60, 0 and +60 mV as indicated, normalised to the peak at -100 mV.

(B) Average normalised peak I-V plots for GluA1 alone, GluA1 + wt γ-2, GluA1 + KGL74-76,

GluA1 + KQID78-81 and GluA1 + HFPE82-85. Peak currents from each patch were normalised

to the peak at -100 mV before averaging.
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Figure 3.5 continued: (C) Histogram showing rectification index calculated as slope con-

ductance ratio, for GluA1 alone, GluA1 + wt γ-2, GluA1 + KGL74-76, GluA1 + KQID78-81 and

GluA1 + HFPE82-85. Bars denote SEM and n numbers are indicated at the bottom of the

histogram. One-way ANOVA showed a significant overall effect of γ-2 variants on GluA1 rec-

tification (F (4, 14.91) = 24.22 , P= 2.24 × 10-6). Asterisks mark significant difference compared

with GluA1 alone (∗ P< 0.05, ∗ ∗ ∗ P< 0.001; Welch t-test), while hashes mark significant

difference compared with GluA1 + wt γ-2 (# P< 0.05; Welch t-test).

Figure 3.6: The shift in G-V relationship at negative membrane potentials was simi-

lar when GluA1 was co-expressed with Ex1 mutants and with wt γ-2. Normalised peak

conductance was plotted against membrane voltage for GluA1 alone, or GluA1 co-expressed

with wt γ-2, KGL74-76, KQID78-81 or HFPE82-85 and fitted to the Boltzmann equation (2.8 on

page 62) between -100 mV and -10 mV. Wt γ-2 produced a +35.8 mV shift in the G-V re-

lationship for GluA1. The magnitude of the shift was similar for all of the Ex1 mutants. The

parameters of the Boltzmann fits are summarized in Table 3.4.

GluA1 + wt γ-2 + KGL74-76 + KQID78-81 + HFPE82-85

Boltzmann fit (5) (9) (10) (7) (6)
V 0.5 (mV) -66.4 -30.6 -33.5 -33.5 -33.7
k (mV) 18.3 17.6 14.7 15.7 14.3
V 0.5 shift (mV) +35.8 +33.0 +33.0 +32.8

Table 3.4: Parameters of the Boltzmann fits to G-V relationships for GluA1 alone and

co-expressed with wt γ-2 or Ex1 mutants. Conductance-voltage plots were created from

an average I-V from (n) patches for each condition and fitted to the Boltzmann equation (2.8

on page 62) between -100 mV and -10 mV. V 0.5 shift is the positive shift from GluA1 alone

produced by the different variants of γ-2 (calculated as V 0.5 for the given γ-2 variant - V 0.5 for

GluA1).
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3.3.5 GluA1 mean single-channel conductance was increased by KGL74-76 and

KQID78-81 mutants

γ-2 has previously been reported to increase mean single-channel conductance of

AMPARs (Soto et al., 2009; Jackson et al., 2011; Shelley et al., 2012), including GluA1

homomers (Coombs et al., 2012). We estimated mean single-channel conductance of

GluA1 alone and GluA1 TARPed with wt γ-2 or the Ex1 mutants by fitting the parabolic

NSFA equation to the current responses to 100 ms pulses of 10 mM Glu recorded at

-60 mV.

Wt γ-2 showed a tendency to increase mean single-channel conductance of GluA1.

The increase was ∼1.5-fold (from 17.9 ± 2.0 pS for GluA1 alone to 27.8 ± 3.2 pS for

GluA1 + wt γ-2), but the difference in conductance compared with GluA1 alone was

not statistically significant (P= 0.096). This failure of wt γ-2 to significantly increase

GluA1 mean single-channel conductance most likely results from the complexity of

the statistical analysis performed. Appropriate P-value corrections were applied to

the results, due to the need to perform multiple statistical tests within the same data

set, so that despite the trend to increase mean-single channel conductance, the ef-

fect of γ-2 on this measure was not significant. However, the result may also arise

from a biological cause. Out of 16 patches where NSFA was applied, no plausible fit

could be obtained in 5, and the remaining patches showed a relatively large scatter

in conductance values (from 14.7 pS to 53.1 pS). This could be caused by the pres-

ence of multiple channel populations with different conductances, for instance due

to the TARP decoupling during glutamate application (Morimoto-Tomita et al., 2009;

Semenov et al., 2012).

The KGL74-76 and KQID78-81 mutants significantly increased mean single-channel con-

ductance of GluA1 (to 30.7 ± 2.1 pS, P= 0.0020 and 31.3 ± 2.1 pS, P= 0.0015

respectively), as seen in Fig. 3.7F. The mean single-channel conductance for the

HFPE82-85 mutant co-expressed with GluA1 was 21.3 ± 1.8 pS. This mutant was not

significantly different from GluA1 alone (P= 0.66). None of the Ex1 mutants differed

significantly from wt γ-2 in its effect on GluA1 conductance (P= 0.75, 0.75, and 0.40

for KGL74-76, KQID78-81 and HFPE82-85 respectively).
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Figure 3.7: γ-2 variants showed differential effects on GluA1 mean single-channel con-

ductance and Po. (A) Average normalised current-variance relationship for GluA1 alone.

Mean current (x-axis) was normalised to the peak (1st bin). Variance was also normalised

to the peak current after subtracting σb. Vertical and horizontal error bars on the data points

indicate the variance and mean current SEM respectively. The grey shading covers the area

between the 95% confidence interval bands for the parabolic NSFA fit (black line) to equa-

tion 2.6 on page 61. The fit was weighted by the SEM and the σb parameter was constrained

to 0.
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Figure 3.7 continued: (B-E) As for A, but for GluA1 + wt γ-2, + KGL74-76, + KQID78-81 and +

HFPE82-85 respectively. (F) Histogram showing mean single-channel conductance for GluA1

alone, GluA1 + wt γ-2, GluA1 + KGL74-76, GluA1 + KQID78-81 and GluA1 + HFPE82-85. Bars

denote SEM and n numbers are indicated at the bottom of the histogram. One-way ANOVA

showed a significant overall effect of γ-2 variants on GluA1 conductance estimates (F (4, 22.95)=

7.84, P= 3.88 × 10-4). Asterisks mark significant difference compared with GluA1 alone (∗
∗ P<0.01; Welch t-test). (G) Histogram showing peak open probability for GluA1 alone, or

co-expressed with the different γ-2 variants. Bars denote SEM and n numbers are indicated

at the bottom of the histogram. One-way ANOVA showed no significant overall effect of γ-2

variants on GluA1 Po (F (4, 22.67)= 2.58, P= 0.0645).

We also examined the effect of γ-2 variants on the peak open probability (Po) of

GluA1 (Fig. 3.7G), however, no significant overall effect on this measure was detected

(F 4, 22.67= 2.58, P= 0.0645). This result differs from that of a previous study, which

showed that γ-2 increased Po of GluA1 (Suzuki et al., 2008). The Po values for the

different GluA1/TARP combinations are shown in Table 3.5.

Mean (%) SEM n

GluA1 0.51 0.07 10
wt γ-2 0.72 0.04 11
KGL74-76 0.62 0.05 10
KQID78-81 0.72 0.04 10
HFPE82-85 0.73 0.05 10

Table 3.5: Po values for the different GluA1/TARP combinations.

The results described above suggest that the KGL74-76 and KQID78-81 mutants act as

TARPs increasing GluA1 conductance, while the HFPE82-85 mutation may disrupt this

property of γ-2. By contast, GluA1 Po was not affected by mutations in Ex1.

3.3.6 Mutations in Ex1 affect the γ-2 mediated increase in kainate efficacy (rel-

ative to glutamate) on GluA1

AMPAR/TARP interaction mediated by Ex1 of γ-2 is known to be important for potenti-

ation of AMPAR responses to kainate (Tomita et al., 2005). We measured the KA/Glu

ratio by holding the patch at -60 mV and exposing it to 500 µM Glu then to 500 µM KA

and again to Glu, both in the presence of 100 µM CTZ which greatly reduced AMPAR

desensitization. The KA/Glu ratio was then quantified as the ratio of the steady-state

response to KA and the average of the two responses to Glu.
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Figure 3.8: Mutations in Ex1 disrupted the γ-2-mediated increase in kainate/glutamate

ratio on GluA1. (A) Mean responses from representative patches showing the initial response

to 500 µM Glu (left), followed by 500 µM KA (middle) and a recovery of response to Glu (right).

Control and agonist solutions contained 100 µM CTZ to inhibit desensitization. The KA/Glu

ratio for the representative patch is shown next to the trace. (B) Box and whisker plot of the

KA/Glu ratios (measured as the ratio of the steady-state responses in CTZ). The box shows

the 25-75 percentile, while the whiskers are the 10-90 percentile. Individual data points are

overlaid on the plot (open circles). One-way ANOVA showed a significant overall effect of

γ-2 variants co-expressed with GluA1 (F (4, 11.91) = 56.59 , P= 1.18 × 10-7). Asterisks mark

significant difference compared with GluA1 alone (∗ ∗ P< 0.01, ∗ ∗ ∗ P< 0.001; Welch t-test),

while hashes mark significant difference compared with GluA1 + wt γ-2 (# P< 0.05; Welch

t-test).
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When wt γ-2 was co-expressed with GluA1, there was a ∼6-fold increase in the

kainate to glutamate response ratio (KA/Glu ratio= 0.66 ± 0.03, n=5, for wt γ-2 vs.

0.09 ± 0.02, n=4, for GluA1 alone, P= 1.71 × 10-5). Ex1 mutants also acted as

TARPs judged on this measure, as they increased the efficacy of kainate, albeit to a

lesser extent than wt γ-2 (∼5-fold). The KA/Glu ratio was 0.53 ± 0.04 for KGL74-76

(n=6); 0.44 ± 0.06 for KQID78-81 (n=7) and 0.47 ± 0.06 for HFPE82-85 (n=7). Thus,

co-expression of these Ex1 mutants resulted in a significant increase in KA/Glu ra-

tio compared to TARPless GluA1 (P= 6.93 × 10-5, 0034 and 0.0012 for KGL74-76,

KQID78-81 and HFPE82-85 respectively).

All three γ-2 mutants were significantly less efficient at modulating kainate efficacy

than wt γ-2 (P= 0.035 for all three mutants). This suggests that the mutations in the

Ex1 of γ-2 disrupt AMPAR/TARP interaction in a way that might affect the degree of

GluA1 LBD cleft closure, as this is known to determine the efficacy of partial agonists

(Jin et al., 2003).
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3.3.7 Ex1 mutations affected GluA2Q and GluA1 deactivation kinetics differ-

ently

The experiments described above for GluA1 were subsequently repeated with the

GluA2Q subunit, in order to elucidate the functional consequences of removing sites

of AMPAR/TARP interaction mapped by our collaborators in the peptide array (Fig.

3.2). One additional γ-2 Ex1 mutant was also tested with GluA2Q. This was the

WRT64-66 mutant, in which the naturally occurring amino acid residues (WRT) were

replaced by GGA. This mutation targets the residues at the very tip of Ex1 which

interact with both the NTD and LBD of GluA2Q and which, upon refinement of bio-

chemical data, were considered a good target for functional studies, as it was thought

the mutation may alter the positioning of γ-2 Ex1 relative to the NTD and LBD of

GluA2Q.

As shown in Fig. 3.9, when compared with GluA2Q alone, wt γ-2 appeared to slow

deactivation almost 2-fold, but the effect was not significant (τw = 0.71 ± 0.07 ms, vs.

0.41 ± 0.06 ms for GluA2Q alone). The Ex1 mutants also failed to significantly slow

the deactivation of GluA2Q (τw = 0.64 ± 0.04 ms for KGL74-76; 0.62 ± 0.04 ms for

KQID78-81, 0.46 ± 0.04 ms for HFPE82-85 and 0.54 ± 0.06 ms for WRT64-66). Indeed,

none of the Ex1 mutants different from wt γ-2 in their effect on deactivation. The

statistical comparisons are listed in Table 3.6.

Test No. Test pair P-value

1 GluA2 vs. GluA2 + wt γ-2 0.061
2 GluA2 vs. GluA2 + KGL74-76 0.086
3 GluA2 vs. GluA2 + KQID78-81 0.097
4 GluA2 vs. GluA2 + HFPE82-85 0.79
5 GluA2 vs. GluA2 + WRT64-66 0.66
6 GluA2 + wt γ-2 vs. GluA2 + KGL74-76 0.79
7 GluA2 + wt γ-2 vs. GluA2 + KQID78-81 0.79
8 GluA2 + wt γ-2 vs. GluA2 + HFPE82-85 0.086
9 GluA2 + wt γ-2 vs. GluA2 + WRT64-66 0.40

Table 3.6: Neither wt γ-2 nor the Ex1 mutants significantly prolonged GluA2Q deactiva-

tion.

The fact that mutations in Ex1, which disrupt AMPAR/TARP interaction affect deac-

tivation kinetics of GluA1 (see Fig. 3.3) but not GluA2 (Fig. 3.9), suggests that the

degree to which TARPs prolong AMPAR deactivation is likely to be AMPAR subunit-

specific. Previously, GluA3 deactivation has been found to be unaffected by γ-2

(Suzuki et al., 2008). The same study showed only a weak effect of γ-2 on GluA2Q

deactivation, while the prolongation of GluA1 deactivation time constant was much

more pronounced. This supports the view that GluA2Q may be less sensitive than
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GluA1 to the γ-2-mediated slowing of deactivation kinetics.

Figure 3.9: γ-2 Ex1 mutants did not affect GluA2 deactivation kinetics. (A) Normalised

mean response to 1 ms applications of 10 mM Glu from GluA2-containing patches. Grey

shading denotes the SEM. The black bar on top of the figure marks the duration of Glu ap-

plication. Mean currents from individual patches were normalised to the peak and aligned

at the 20 % rise time before averaging. (B-F) As for A, but for patches expressing GluA2 +

wt γ-2, + KGL74-76, + KQID78-81, + HFPE82-85 and + WRT64-66 (G) Histogram showing τw of

deactivation for each of the Ex1 mutants as well as GluA2 and GluA2+ wt γ-2 controls. Bars

denote the SEM and the n numbers for each group are indicated in white at the bottom of the

histogram. Although one-way ANOVA showed that the data did not represent a single popu-

lation (F (5, 19.24) = 3.71, P= 0.0162), the pairwise tests failed to show significant differences

between the individual groups.
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3.3.8 The HFPE82-85 mutation inhibited the effect of γ-2 on GluA2 desensitiza-

tion

As shown in Fig. 3.10, wt γ-2 prolonged GluA2 desensitization ∼2-fold (τw= 9.44

± 0.62 ms for wt γ-2 vs. 4.84 ± 0.28 ms for GluA2 alone, P= 4.1 × 10-5). The

KGL74-76 and KQID78-81 mutants had a similar effect on GluA2 desensitization (7.64 ±
0.25 ms, P= 3.34 × 10-6 for KGL74-76; 10.25 ± 0.5 ms, P= 1.05 × 10-5 for KQID78-81)

and were not significantly different from wt γ-2 (P= 0.051 and P= 0.32 respectively).

The HFPE82-85 mutant did not significantly prolong desensitization kinetics compared

with GluA2 alone (5.90 ± 0.35 ms P= 0.066) and differed significantly from wt γ-2

(P= 6.54 × 10-4). By contrast, the WRT64-66 mutant significantly prolonged GluA2Q

desensitization (6.95 ± 0.27 ms, P= 1.17 × 10-4) and its effect on desensitization was

different from that of wt γ-2 (P= 0.0087).

Two interesting points arise from the above results. First, it appears that compared

with GluA1 (see Fig. 3.4), GluA2Q desensitization kinetics is regulated by a more

C-terminal part of Ex1, as seen by comparing the effects of KGL74-76 and HFPE82-85

mutants on the two subunits. The γ-2-mediated prolongation of GluA1 desensitization

was disrupted by the KGL74-76 but not the more C-terminal HFPE82-85 mutation, while

with GluA2Q the reverse pattern was observed. Second, the WRT64-66 mutant upon

co-expression with GluA2Q produced receptors with properties intermediate between

TARPless GluA2 and GluA2 + wt γ-2. The residues mutated in WRT64-66 are close to

the double cysteine (residues 67-68) and are part of a motif highly conserved in the

CACNG family, which suggests that these residues may be vital for maintaining the

correct structure of the TARP protein. Thus, the effects of this mutation may arise from

disruption of the interaction with the pore-forming subunit as well as from changes in

Ex1 structure.

Mean (%) SEM n

GluA2 1.21 0.25 10
wt γ-2 5.03 0.61 12
KGL74-76 3.43 0.30 12
KQID78-81 7.02 1.09 8
HFPE82-85 2.76 0.55 7
WRT64-66 1.51 0.31 14

Table 3.7: HFPE82-85 and WRT64-66 mutants did not increase GluA2 steady-state current

fraction.

In addition to desensitization kinetics, the extent of desensitization (quantified as %

steady-state current) was also analysed and is summarised in Table 3.7. The regula-

tion of the extent of GluA2 desensitization by Ex1 mutants showed a pattern similar to
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Figure 3.10: Ex1 mutants HFPE82-85 and WRT64-66 differed from wt γ-2 in their effect on

GluA2 desensitization. (A) Normalised mean response to 100 ms applications of 10 mM

Glu to GluA2-containing patches (black trace). Grey shading denotes the SEM. The black bar

above the trace marks the duration of Glu application. Mean currents from individual patches

were normalised to the peak and aligned at the 20 % rise time before averaging. (B-F) As for

A, but for patches expressing GluA2 + wt γ-2, + KGL74-76, + KQID78-81, + HFPE82-85 and +

WRT64-66 (n=12, 12, 8, 7 and 14 respectively). (G) Histogram showing τw of desensitization

for each of the Ex1 mutants as well as GluA2 and GluA2 + wt γ-2 controls. Bars denote the

SEM and the n numbers for each group are indicated in white. One-way ANOVA showed

a significant effect of γ-2 variants on GluA2 desensitization (F (5, 23.94) = 24.13 , P= 1.26 ×
10-8). Asterisks mark significant difference compared with GluA2 alone (∗ ∗ ∗ P<0.001; Welch

t-test), while hashes mark significant difference compared with GluA2 + wt γ-2 (## P<0.01,

### P<0.001; Welch t-test).
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the regulation of desensitization kinetics. There was an overall significant effect of γ-2

variants on the percentage of GluA2 steady-state current (F (5, 23.23) = 14.39 , P= 1.82

× 10-6). Wt γ-2 significantly increased the % of steady-state current when compared

with GluA2 alone as did KGL74-76 and KQID78-81. By contrast, HFPE82-85 and WRT64-66

mutants were ineffective at increasing the steady-state current fraction. The WRT64-66

mutant differed significantly from wt γ-2 in its effect on the extent of GluA2 desensi-

tization, while the remaining mutants did not. The statistical tests are summarised in

Table 3.8.

The data shown here suggest that GluA2 steady-state current percentage is affected

by Ex1 mutants differently to that of GluA1 (see Fig. 3.4 and Table 3.2), since the

KGL74-76, and not the HFPE82-85 mutant, lacked an effect on GluA1 steady-state cur-

rent fraction.

Test No. Test pair P-value

1 GluA2 vs. GluA2 + wt γ-2 0.00032
2 GluA2 vs. GluA2 + KGL74-76 0.00012
3 GluA2 vs. GluA2 + KQID78-81 0.0054
4 GluA2 vs. GluA2 + HFPE82-85 0.12
5 GluA2 vs. GluA2 + WRT64-66 0.45
6 GluA2 + wt γ-2 vs. GluA2 + KGL74-76 0.12
7 GluA2 + wt γ-2 vs. GluA2 + KQID78-81 0.27
8 GluA2 + wt γ-2 vs. GluA2 + HFPE82-85 0.066
9 GluA2 + wt γ-2 vs. GluA2 + WRT64-66 0.00061

Table 3.8: HFPE82-85 and WRT64-66 failed to increase the percentage of GluA2 steady-

state current.

3.3.9 HFPE82-85 and and WRT64-66 mutations affected the ability of γ-2 to relieve

spermine block of GluA2

As seen in Fig. 3.11, wt γ-2 relieved spermine block of GluA2 at positive membrane

potentials (RI = 0.383 ± 0.033 for wt γ-2 vs. 0.042 ± 0.006 for GluA2 alone, P=

3.64 × 10-5). The KGL74-76 and KQID78-81 mutants were not significantly different from

wt γ-2 (P= 0.33 and 0.84 respectively) and showed a large relief of GluA2 spermine

block (RI= 0.325 ± 0.022, P= 1.2 × 10-7 for KGL74-76 and 0.393 ± 0.037, P= 6.48 ×
10-5 for KQID78-81). HFPE82-85 and WRT64-66 mutants relieved GluA2 spermine block

to a significant degree (0.179 ± 0.020, P= 8.64 × 10-4 for HFPE82-85 and 0.182 ±
0.018, P= 3.58 × 10-4 for WRT64-66). However, the relief of spermine block with these

two mutants was ∼50 % smaller than that seen with wt γ-2 (P= 7.82 × 10-4 for both

HFPE82-85 and WRT64-66).
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Figure 3.11: HFPE82-85 and WRT64-66, but not other Ex1 mutations, reduced the effect of

γ-2 on GluA2 rectification. (A) Peak I-V plots for from individual representative patches for

each construct. Note the strong block of GluA2 responses at positive membrane potentials,

and a relief of block seen with wt γ-2. With KGL74-76 and KQID78-81 mutants rectification

was similar to γ-2, while HFPE82-85 and WRT64-66 mutants showed an effect on RI that was

intermediate between wt γ-2 and TARPless GluA2. Peak currents at each holding potential

were normalised to the peak at -100 mV. Insets show average traces for that patch at -100, -80,

-60, 0 and +60 mV as indicated, normalised to the peak at -100 mV. (B) Average normalised

peak I-V plots for GluA2 alone, GluA2 + wt γ-2, + KGL74-76, + KQID78-81, + HFPE82-85 and

+ WRT64-66. Peak currents from each patch were normalised to the peak at -100 mV before

averaging. (C) Histogram showing rectification index calculated as slope conductance ratio,

for GluA2 alone or co-expressed with the different γ-2 variants. Bars denote SEM and n

numbers are shown on the histogram. One-way ANOVA showed a significant overall effect

of γ-2 variants on GluA2 rectification (F (5, 19.74) = 65.25 , P= 1.36 × 10-11). Asterisks mark

significant difference compared with GluA2 alone (∗ ∗ ∗ P< 0.001; Welch t-test), while hashes

mark significant difference compared with GluA2 + wt γ-2 (### P< 0.001; Welch t-test).
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As seen in panel C Fig. 3.11, the I-V relationships for HFPE82-85 and WRT64-66 mu-

tants appeared more rectifying at positive membrane potentials compared with either

wt γ-2 or the KGL74-76 and KQID78-81 mutants. However, at negative membrane volt-

ages the I-V relationships for wt γ-2 and the Ex1 mutants were almost overlaid, which

was confirmed by fitting G-V plots to the Boltzmann equation (2.8 on page 62) in

Fig. 3.12. The difference in I-V relationships at positive, but not negative membrane

potentials suggest, that as for GluA1 (see Fig. 3.5), mutations in Ex1 may affect

permeation of spermine through the channel pore.

Figure 3.12: When co-expressed with GluA2, the Ex1 mutants and wt γ-2 produced

similar shifts in G-V relationship at negative membrane potentials. Normalised peak

conductance was plotted against membrane voltage for GluA2 alone, or co-expressed with

wt γ-2, KGL74-76, KQID78-81, HFPE82-85 or WRT64-66 and fitted to the Boltzmann equation

(2.8 on page 62) between -100 mV and -10 mV. Wt γ-2 produced a +28.4 mV shift in the

G-V relationship for GluA2. The magnitude of the shift was similar for all of the Ex1 mutants.

Parameters of the Boltzmann fits are summarized in Table 3.9.

GluA2 + wt γ-2 + KGL74-76 + KQID78-81 + HFPE82-85 + WRT64-66

Boltzmann fit (9) (9) (12) (9) (7) (8)
V 0.5 (mV) -62.0 -33.6 -30.8 -29.8 -32.3 -36.3
k (mV) 15.9 12.5 14.0 13.4 13.2 12.1
V 0.5 shift (mV) +28.4 +31.1 +32.2 +29.7 +25.7

Table 3.9: Parameters of the Boltzmann fits to G-V relationships for GluA2 alone and

co-expressed with wt γ-2 or Ex1 mutants. Conductance-voltage plots were created from

an average I-V relationship from (n) patches for each condition and fitted to the Boltzmann

equation (2.8 on page 62) between -100 mV and -10 mV. The parameters of the Bolztmann

fits (V 0.5 and k ) are shown above.
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3.3.10 Ex1 mutants increased GluA2 mean single-channel conductance

Wt γ-2 and all Ex1 mutants increased the mean single-channel conductance of GluA2

receptors (Fig. 3.13G). Wt γ-2 increased mean single-channel conductance ∼1.5-fold

compared with GluA2 alone (32.6 ± 2.0 pS for GluA2 + wt γ-2 vs. 21.1 ± 1.8 pS for

GluA2 alone. Co-expression of the Ex1 mutants with GluA2Q resulted in a similar in-

crease in mean single-channel conductance. The mean single-channel conductance

estimates were 35.3 ± 1.4 pS for KGL74-76, 38.1 ± 2.0 pS for KQID78-81, 34.7 ± 1.4

fro HFPE82-85 and 32.3 ± 1.6 for WRT64-66. The results of the statistical comparisons

are listed in Table 3.10.

Test No. Test pair P-value

1 GluA2 vs. GluA2 + wt γ-2 0.0023
2 GluA2 vs. GluA2 + KGL74-76 0.00014
3 GluA2 vs. GluA2 + KQID78-81 0.00021
4 GluA2 vs. GluA2 + HFPE82-85 0.00030
5 GluA2 vs. GluA2 + WRT64-66 0.0014
6 GluA2 + wt γ-2 vs. GluA2 + KGL74-76 0.85
7 GluA2 + wt γ-2 vs. GluA2 + KQID78-81 0.28
8 GluA2 + wt γ-2 vs. GluA2 + HFPE82-85 0.85
9 GluA2 + wt γ-2 vs. GluA2 + WRT64-66 0.90

Table 3.10: The Ex1 mutants increased GluA2Q mean single-channel conductance to

the same level as wt γ-2.

In addition to increasing GluA2 mean single-channel conductance, wt γ-2 increased

peak Po (Fig. 3.13H) of GluA2 receptors ∼1.5-fold (from 0.55 ± 0.05 for GluA2 alone

to 0.82 ± 0.03 for GluA2 + wt γ-2, P= 0.0073). The KGL74-76 and KQID78-81 mutants

also increased GluA2 Po (to 0.82 ± 0.01, P= 0.0085 and 0.78 ± 0.03, P= 0.023,

respectively). Those two mutants were not significantly different from wt γ-2 (P= 0.98

and 0.70, respectively). The HFPE82-85 and WRT64-66 mutants did not significantly

increase GluA2 Po (0.70 ± 0.03, P= 0.087 and 0.72 ± 0.02, P= 0.073 respectively)

and did not differ significantly from wt γ-2 (P= 0.071 and 0.073 for HFPE82-85 and

WRT64-66, respectively). This suggests that the Ex1 region of γ-2 may affect peak Po

but GluA2 single-channel conductance is regulated by interactions with TARP regions

distinct from Ex1.
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Figure 3.13: All Ex1 mutants increased GluA2Q single-channel conductance but they

varied in their effect on Po. (A) Average normalised current-variance relationship for GluA2

alone. Mean current (x-axis) was normalised to the peak (1st bin). Variance was also nor-

malised to the peak current after subtracting σb. Vertical and horizontal error bars on the data

points indicate the variance and mean current SEM respectively. The grey shading covers

the area between the 95% confidence interval bands for the parabolic NSFA fit (black line)

to equation 2.6 on page 61. The fit was weighted by the SEM and the σb parameter was

constrained to 0. (B-F) As for A, but for GluA2 + wt γ-2, + KGL74-76, + KQID78-81, + HFPE82-85

and + WRT64-66, respectively.
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Figure 3.13 continued: (G) Histogram showing mean single-channel conductance for Ex1

mutants as well as GluA2 alone and GluA2 + wt γ-2 controls. Bars denote SEM and n numbers

are indicated at the bottom of the histogram. One-way ANOVA showed a significant overall

effect of γ-2 variants on GluA2 conductance (F (5, 22.37) = 10.13 , P= 3.61 × 10-5). Asterisks

mark significant difference compared with GluA2 alone (∗ ∗ P< 0.01, ∗ ∗ ∗ P< 0.001; Welch

t-test). (H) Histogram showing peak open probability for Ex1 mutants as well as GluA2 alone

and GluA2 + wt γ-2 controls. Bars denote SEM and n numbers are indicated at the bottom of

the histogram. One-way ANOVA showed a significant overall effect of γ-2 variants on GluA2

Po (F (5, 20.68) = 8.15, P= 2.2 × 10-4). Asterisks mark significant difference compared with

GluA2 alone (∗ P< 0.05, ∗ ∗ P< 0.01; Welch t-test).

3.3.11 Ex1 mutants showed effects on kainate efficacy (relative to glutamate)

that were intermediate between GluA2 alone and GluA2 + wt γ-2

Co-expression of wt γ-2 resulted in more than 6-fold increase in the KA/Glu ratio

compared with GluA2Q alone (0.62 ± 0.03, n=5 for wt γ-2 vs. 0.08 ± 0.03, n=4, for

GluA2 alone; P= 3.33 × 10-5). All of the Ex1 mutants significantly increased kainate

efficacy when compared with GluA2 alone (KGL74-76: 0.61 ± 0.07, n=7, P= 0.001;

KQID78-81: 0.39 ± 0.06, n=5, P= 0.015; HFPE82-85: 0.43 ± 0.04, n=6, P= 0.00038;

WRT64-66: 0.21 ± 0.02, n=8, P= 0.026). However, all Ex1 mutants apart from KGL74-76

(P= 0.95) produced changes that differed significantly from that of wt γ-2 (P= 0.028,

P= 0.015 and P= 0.00021 for KQID78-81, HFPE82-85 and WRT64-66, respectively).

The results obtained when the γ-2 mutants were co-expressed with GluA2 differed

from results obtained when they were co-expressed with GluA1, where the KGL74-76

mutation reduced kainate efficacy compared with wt γ-2 (compare Figs. 3.14 and

3.8). This suggests, that distinct regions of Ex1 may affect the LBD cleft closure to dif-

fering extents, depending on which AMPAR subunit is present. The WRT64-66 mutant

increased KA/Glu ratio only weakly compared with TARPless GluA2. As mentioned

above, due to its key position for Ex1 structure, this mutation may exert its effects

through disruption of that structure, as well as through direct removal of AMPAR/TARP

interaction.
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Figure 3.14: Ex1 mutants increased kainate efficacy (relative to glutamate) compared

with GluA2 alone, but with the exception of KGL74-76, were less effective than wt γ-2.
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Figure 3.14 continued: (A) Mean responses from representative patches showing the initial

response to 500 µM Glu (left), followed by 500 µM KA (middle) and a second response to

Glu (right). Both Glu and KA were supplemented with 100 µM CTZ to limit desensitization.

(B) Box and whisker plot of the KA/Glu response ratios (measured as a ratio of the steady-

state responses in CTZ). The box shows the 25-75 percentile, while the whiskers are the

10-90 percentile. Individual data points are overlaid on the plot (open circles). One-way

ANOVA showed a significant overall effect of γ-2 variants co-expressed with GluA2 on KA/Glu

response ratio (F (5, 11.65) = 38.36 , P= 7.62 × 10-7). Asterisks mark significant difference

compared with GluA2 alone (∗ P< 0.05, ∗ ∗ P< 0.01. ∗ ∗ ∗ P< 0.001; Welch t-test), while

hashes mark significant difference compared with GluA2 + wt γ-2 ( # P< 0.05, ### P<

0.001; Welch t-test).

94



3.4 Discussion

The Ex1 region of TARPs is a known AMPAR interaction domain (Tomita et al., 2005;

Cho et al., 2007; Milstein and Nicoll, 2009). The individual mutations in Ex1 that we

examined affected different measures of TARP efficacy to varying extents, suggesting

that specific regions of Ex1 are involved in modulating different AMPAR biophysical

properties. In addition, the fact that the effects of a given Ex1 mutation often differed

between GluA1 and GluA2 subunits, suggests that the interaction between Ex1 of

TARPs and the AMPAR pore-forming subunits may exhibit some interesting subunit

specificity.

All of the γ-2 mutants examined gave responses that were more rectifying (greater

degree of block by intracellular spermine) than those seen when GluA1 was co-

expressed with wt γ-2. In other words, the Ex1 mutants were less effective than

wt stragazin at relieving polyamine block. Ca2+-permeability of AMPARs and block

by polyamines are determined by the presence of a neutral glutamine (Q) residue at

the Q/R site located in the pore region of each of the AMPAR subunits that assem-

ble to form the tetrameric receptor. The presence of edited (arginine, R form) GluA2

subunit within the receptor renders AMPARs Ca2+-impermeable and no longer sus-

ceptible to block by polyamines (Bowie and Mayer, 1995; Kamboj et al., 1995; Koh

et al., 1995).

The presence of γ-2 is known to greatly reduce polyamine block of CP-AMPARs (Soto

et al., 2007), an effect mediated in part by the proximal part of the γ-2 C-tail (Soto

et al., 2014). However deletion of the C-terminus appeared insufficient to completely

abolish the γ-2-mediated relief of spermine block (Soto et al., 2014). It is thus of

interest, that in the study presented here, all three Ex1 mutants co-expressed with

GluA1 showed rectification intermediate between GluA1 alone and GluA1 + wt γ-2.

On the other hand, when Ex1 mutants were co-expressed with GluA2, the mutants

KGL74-76 and KQID78-81 reduced GluA2 spermine block to the same extent as wt γ-

2, while the mutants HFPE82-85 and WRT64-66 were significantly less efficient than wt

γ-2.

With either GluA1 or GluA2, the I-V relationships for the Ex1 mutants were almost

identical to the I-V for wt γ-2 at negative membrane potentials and any differences

were observed only at positive membrane potentials. This could suggest that while

the Ex1 region of TARPs does not play a role in regulating spermine binding to the

AMPAR channel pore, it may affect the permeation of spermine through the AMPAR

channel at positive potentials. Thus, it appears that both extracellular and intracel-

lular (Soto et al., 2014) regions of the TARP are required for regulation of AMPAR
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rectification.

γ-2 has been reported to increase mean single-channel conductance of AMPARs

(Soto et al., 2009; Jackson et al., 2011; Shelley et al., 2012; Coombs et al., 2012;

Zhang et al., 2014). None of the mutations in Ex1 affected the ability of γ-2 to in-

crease GluA2 single-channel conductance. Together with only a partial effect of Ex1

mutants on rectification, these results suggest that other regions of the TARP, such

as TM2 (Tomita et al., 2005) may also play an important role in modulating AMPAR

properties, particularly those related to ion permeation, where the effect of the TARP

may result from AMPAR/TARP interactions within the channel pore region (Soto et al.,

2014).

Figure 3.15: Ex1 of γ-2 may contact both the NTD and LBD of GluA2 and wedge between

these two domains. Proposed relative arrangement of GluA2 domains in the absence of

TARP (left) and in complex with γ-2 (right). When the AMPAR co-assembles with the TARP,

the Ex1 of γ-2 contacts both the NTD and the LBD of GluA2 and wedges between the two

domains, altering their relative position. AMPAR domains: NTD: N-terminal domain, LBD:

ligand-binding domain, TMD: transmembrane domain. TARP regions: Ex1: first extracellular

loop, Ex2: second extracellular loop.

The fact that different mutations in Ex1 affected GluA1 and GluA2 rectification differ-

ently, may suggest that the interaction is subunit-specific, which may result from struc-

tural differences in the arrangement of the Ex1 region in different AMPAR/TARP com-

plexes. Regulation of deactivation kinetics also differed between GluA1 and GluA2.

While wt γ-2 and all of the Ex1 mutants significantly increased the time constant of
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deactivation of GluA1 AMPARs, the deactivation of homomeric GluA2Q receptors was

unchanged by the presence of wt γ-2 or any of the Ex1 mutants. GluA2 has previously

been reported to be only weakly sensitive to γ-2 -mediated modulation of deactivation

and a complete lack of sensitivity was observed with GluA3 (Suzuki et al., 2008). This

again suggests that the interaction between Ex1 of TARPs and the AMPAR exhibits

subunit-dependent properties. It would be thus of interest to obtain structural data on

γ-2 interaction with GluA1.

A number of other functional properties of AMPARs, including desensitization kinetics,

the extent of desensitization, channel open probability and the relative efficacy of

kainate also differed between individual Ex1 mutants, and (within the same mutant)

between co-expression with GluA1 and GluA2. However, at all times the Ex1 mutants

retained some TARP-like properties, suggesting that none of the mutations alone was

sufficient to completely abolish TARP interaction with either GluA1 or GluA2. The

impact of the WRT64-66 mutation on the multiple functional properties of GluA2 was

the most consistent and most profound amongst all the Ex1 mutants. This specific

mutation targets a region highly conserved in the CACNG family, and may disrupt the

secondary structure of Ex1 due to its location in the proximity of the double cysteine

(residues 67-68, Fig. 3.2).

Structural differences between different AMPAR subunits may add to the diversity of

functional effects observed here. While the regions of Ex1 we have investigated are

known to interact with both LBD and NTD of GluA2, the relative affinities of the differ-

ent Ex1 regions for the two AMPAR domains are not the same. Previously published

data suggest that partial agonist efficacy is regulated by the LBD only (Jin et al.,

2003). Thus disruption of γ-2 interaction with the LBD of AMPAR could explain the

reduced kainate efficacy seen with the Ex1 mutants. The role of the NTD in the reg-

ulation of AMPAR properties by TARPs is less clear. The NTD has been reported to

affect AMPAR assembly (Rossmann et al., 2011). However, it is known that AMPARs

lacking the NTD remain functional (see Pasternack et al. 2002). The role of the NTD

in AMPAR/TARP complex function is investigated further in the next Chapter.

The fact that Ex1 contains both NTD and LBD interaction patches may imply substan-

tial reconfigurations of the AMPAR upon TARP interaction. Based on the structural

and functional data obtained so far, the proposed structure of the AMPAR/TARP com-

plex is that the Ex1 of γ-2 interacts with both NTD and LBD of GluA2 and wedges

between these two domains (see Fig. 3.15). The AMPAR interaction region spans

a substantial part of Ex1, which could explain the incomplete loss of TARP-like prop-

erties by the Ex1 mutants. However, peptide arrays utilize linear peptides, lacking

secondary or tertiary structure. It is thus not possible to deduce which of these in-
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teractions occur when a full-length TARP forms a complex with an AMPAR tetramer.

Further structural data would therefore be necessary to determine the physiological

importance of the interactions described here.
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4

Experimental Chapter 2: The role of the N-terminal

domain of GluA2 in AMPAR/TARP interaction

4.1 Summary

The data shown in Experimental Chapter 1 (Chapter 3) suggested that the extracellu-

lar domains of γ-2 (Ex1 and Ex2) interact with both the N-terminal domain (NTD) and

the ligand-biding domain (LBD) of GluA2Q. This Chapter expands on these findings

to explore the specific role of GluA2Q NTD in AMPAR/TARP interaction. Part of the

work described here was carried out in collaboration with Ingo Greger and colleagues

(MRC LMB Cambridge). Our collaborators set out to investigate the specific single

amino acid residues in Ex1 of γ-2 that are responsible for its binding to the NTD of

GluA2Q. They designed both deletion and alanine (Ala) substitution peptide arrays

spanning the Ex1 of γ-2 and identified three residues which interact strongly with the

GluA2Q NTD. They then generated mutants of γ-2, where the residues identified with

the peptide arrays were substituted with Ala. In addition to disrupting γ-2/NTD inter-

action by mutating the relevant residues on γ-2 Ex1, our collaborators also designed a

GluA2Q construct lacking its NTD (GluA2Q∆NTD), thus disrupting the γ-2/NTD inter-

action from the AMPAR side. We co-expressed the relevant γ-2 Ex1 mutants with wt

or ∆NTD GluA2Q and investigated the effect of disrupting TARP/NTD interaction on

a number of AMPAR functional properties, including deactivation and desensitization

kinetics, steady-state current fraction, rectification, mean single-channel conductance

and KA/Glu ratio.
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4.2 Introduction

The NTD of AMPARs spans the first ∼400 amino acids of the receptor immediately

following the signal peptide, which targets the AMPAR to the membrane and is later

cleaved off by proteolysis. At its C-terminal end, the NTD is connected to the LBD

via a flexible ∼16 amino acid linker (Sobolevsky et al., 2009). The NTD layer of

AMPARs forms a clamshell composed of two distinct lobes (Jin et al., 2009), ren-

dering a structure similar to that proposed for kainate receptor NTD (Kumar et al.,

2009) and the NTD of NMDARs. The clamshell of the AMPAR NTD appears to be

dynamic and the movements within the NTD layer are similar to those seen in NM-

DARs (Dutta et al., 2012). In NMDARs, the NTD is the site of action for allosteric

modulators, which can increase NMDAR activity by promoting clamshell cleft open-

ing (Gielen et al., 2009) or reduce the activity through cleft closure (Karakas et al.,

2009). In contrast with the NMDAR NTD, no ligands for the AMPAR NTD have been

identified to date. Despite some sequence similarity to the mGluR LBD and the bacte-

rial periplasmic leucine/isoleucine/valine-binding protein (LIVBP) (O’Hara et al., 1993;

Paas, 1998), the AMPAR NTD is thought to lack an amino acid binding site (Jin et al.,

2009); however, a putative ligand-binding site within the AMPAR NTD has been re-

ported (Sukumaran et al., 2011).

The NTD of AMPARs is thought to provide the specificity needed for correct AMPAR

assembly. Early biochemical studies used chimeras with kainate receptors to show

that the NTD is critical for the assembly of AMPAR subunits with each other, as as-

sessed by Co-IP (Leuschner and Hoch, 1999). However, it was later revealed that

other domains, such as the LBD and the TMs are also important for the assembly of

functional channels (Ayalon and Stern-Bach, 2001). This is reflected in the fact that

within the AMPAR tetramer, subunit-subunit dimers are different in the NTD and LBD

layers (Sobolevsky et al., 2009), supporting the view that the NTD alone is insufficient

to drive the formation of functional AMPAR tetramers. Therefore, the NTD is thought

to mediate the initial assembly of AMPAR subunits into dimers. The isolated NTDs of

GluA1 and GluA2 were shown to form tight homomeric dimers in solution (Jin et al.,

2009). However, dimerisation of GluA3 homomers is not favoured and the remain-

ing AMPAR subunits preferentially heteromerize with the critical GluA2 subunit at the

dimer level, a process also mediated by the NTD (Rossmann et al., 2011). The NTD

of AMPARs appears therefore to govern the initial dimerisation of AMPAR subunits,

defining the final stoichiometry of AMPARs. It thus plays a major role in determination

of several AMPAR biophysical properties, such as inward rectification, which is lacking

in GluA2R-containing AMPAR heteromers.

Roles of the NTD, other than those in AMPAR assembly, have been poorly charac-
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Figure 4.1: Mutations introduced into γ-2 Ex1 to disrupt interaction with the NTD of

GluA2. Two mutations were introduced into Ex1 of γ-2 to disrupt interactions with GluA2

NTD detected using peptide arrays. These included: the single residue mutant R65 substitued

with Ala, and a triple Ala substitution mutant R65NF72-73, in which apart from the R65, two

additional NTD binding sites at N72 and F73 were also disrupted. Note that the constructs

were generated by members of the Greger lab.

terised. Recombinant AMPARs lacking the NTD are functional (Pasternack et al.,

2002) and differ only subtly from wt AMPARs. Although the NTD is located ∼60

angstrom away from the plane of the plasma membrane, and is thus thought to be

beyond the reach of the assiociated TARP, our data suggest that GluA2 NTD interacts

with stargazin via the TARP extracellular domain (Experimental Chapter 1). In support

of our findings, structural data showed that glutamate-sensitive dynamic rearrange-

ments of the NTD layer can been observed in native (Nakagawa et al., 2005), but not

recombinantly expressed AMPARs (Tichelaar et al., 2004; Midgett et al., 2012). The

major difference between these studies is that native AMPARs were strongly associ-

ated with TARPs (Nakagawa et al., 2005), while the recombinant receptors in the two

studies mentioned above lacked these auxiliary subunits.

NTD deletion has been previously reported to affect neither the γ-2-mediated facili-

tation of trafficking, nor the increase in desensitization τw (Bedoukian et al., 2006).

However, the data presented in that study showed only that the TARP can still affect

GluA2 properties when the NTD is deleted from the AMPAR, and lacked the compar-

ison to a wt receptor. It thus did not permit comment on the relative magnitude of the

’TARP effect’ in the absence and presence of the NTD. In order to shed some light

on the role of the NTD in the function of AMPAR/TARP complexes, our collaborators
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used peptide arrays to identify specific single residues on the Ex1 of γ-2 which interact

with the NTD of GluA2. They then generated two γ-2 mutants in which the interaction

with AMPAR NTD was disrupted, due to substitution of the amino acids important for

this interaction with Ala residues (the singly-substituted R65 and the triple Ala mutant

R65NF72-73, Fig. 4.1). We co-expressed these γ-2 mutants with wt GluA2Q or GluA2Q

lacking the N-terminal domain (GluA2Q ∆NTD, see Fig. 4.2), in order to investigate

the effects of the complete disruption of TARP-NTD interactions. We then investigated

how disrupting these interactions between the GluA2 NTD and γ-2 affects a number of

functional AMPAR properties, including deactivation and desensitization τw, steady-

state current, rectification, mean single-channel conductance (estimated from NSFA)

and the relative efficacy of the partial agonist kainate.

Figure 4.2: The GluA2Q ∆NTD construct was used to ensure complete disruption of

TARP-NTD interactions. In comparison with wt GluA2Q (left), GluA2Q ∆NTD (right) lacked

the whole N-terminal domain and a substantial part of the NTD-LBD linker (deletion up to

N385 within the linker, signal peptide not included in the count). Linker truncation was intro-

duced to minimise any non-specific effects arising from abnormal interactions of the flexible,

unstructured linker in the absence of the NTD. Note: The signal peptide was also removed in

the GluA2Q ∆NTD construct and replaced with the following sequence: MGILPSPGMPALL-

SLVSLLSVLLMGCVAETG, which resulted from its insertion into the pHLsec vector (Aricescu

et al., 2006). An N-terminal HA tag (YPYDVPDYA) was also introduced immediately after the

signal sequence. Note that the construct was generated by members of the Greger lab.
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4.3 Results

4.3.1 Identification of residues important for interaction between the NTD of

GluA2 and the Ex1 of γ-2

Our collaborators used two distinct types of peptide array to identify the single amino

acid residues responsible for γ-2 binding to the NTD of GluA2. Both arrays contained

peptides from the central part of stragazin Ex1, which appears to interact with the NTD

as suggested by our earlier data (see Experimental Chapter 1, Fig. 3.2 on page 70.)

The first array (Fig. 4.3, panel A) was an Ala substitution array, in which single natu-

rally occurring residues within the γ-2 Ex1 were sequentially replaced by Ala residues

with the increasing peptide count. The second array was a deletion array (Fig. 4.3,

panel B), where single amino acid residues were sequentially deleted from the γ-2

Ex1. Both arrays were probed with the NTD of GluA2, leading to the identification of

three residues crucial for binding of γ-2 to the NTD: R65, N72 and F73. The R65 residue

appeared to interact very strongly with the NTD, which could be observed in both the

Ala substitution and the deletion array. In the Ala substitution array (Fig. 4.3, panel A)

R65 was substituted with Ala in peptide 3, resulting in the loss of GluA2 NTD binding.

This result was confirmed in the deletion array (Fig. 4.3, panel B) where R65 was

deleted in peptide 14 which showed almost no binding to the NTD of GluA2.

The residues N72 and F73 were not substituted with Ala in panel A, but were removed

in the deletion array (Fig. 4.3, panel B). In peptides 5 and 6 N72 and F73 were sequen-

tially deleted, resulting in a reduced binding to the NTD of GluA2, as judged from the

signal intensity being lower than for the preceding peptide (peptide 4). The residues

identified as important for binding to the NTD were again confirmed in peptide 23 of

the deletion array, which lacked R65 on its N-terminal end and F73 on its C-terminal

end and showed almost no binding to the NTD. As the strongest decrease in NTD

binding throughout these experiments was observed with disruption of R65, it is likely

that the lack of binding seen in peptide 23 was mainly caused by deletion of that

residue rather than the F73.
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Figure 4.3: Peptide arrays were used to map contacts between the NTD of GluA2Q

and the central part of γ-2 Ex1. (A) Alanine substitution array containing peptides from the

central part of the γ-2 Ex1 loop probed with the NTD of GluA2. The array contained a series

of 13-mer peptides, with peptide 1 being the control peptide (wt γ-2 sequence from G62 to

K74) and the following peptides containing a single residue Ala substitution starting at W64 in

peptide 2 and shifting with each peptide by 1 residue towards the C-terminal end of the Ex1

loop. Top panel: Non-specific signal, resulting from direct anti-GluA2 antibody binding to the

membrane. The membrane was exposed for 20 minutes. Lower panel: the same membrane

was exposed to the rat GluA2 NTD and probed with rabbit anti-GluA2 antibody (Alomone,

1:250) followed by a HRP-conjugated anti-rabbit antibody (Pierce, 1:1500). The membrane

was exposed for 12 minutes. Peptide 3, which identified the R65 residue is indicated by a red

arrow. The sequences of all of the peptides are shown below the array. In peptide 3 sequence

the Ala residue used to substitute R65 is shown in red.
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Figure 4.3 continued: (B) Deletion array containing a series of variable length peptides from

the central part of γ-2 Ex1. Peptide 1 was the control peptide with γ-2 sequence from G62 to

L76. Compared to peptide 1 (control), peptides 2-10 contained a single residue deletion at the

C-terminal end, shifting by 1 residue from the preceding peptide. Peptides 11-19 contained

an analogous deletion at the N-terminal end. In peptides 20-24 there was a two-residue shift

in length from the preceding peptide (starting again from peptide 1 as the control), with one

residue deleted at the N-terminal end and one at the C-terminal end. Top panel: Non-specific

signal, resulting from direct anti-GluA2 antibody binding to the membrane. The membrane

was exposed for 25 minutes. Lower panel: the same membrane was exposed to the rat

GluA2 NTD and probed with rabbit anti-GluA2 antibody (Alomone, 1:250) followed by a HRP-

conjugated anti-rabbit antibody (Pierce, 1:1500). The membrane was exposed for 2 minutes.

Peptides 5 and 6, which identified the N72 and F73 residues, as well as peptides 14 and

23 which identified the R65 residue are indicated by red arrows above and below the array.

The sequence of all the peptides is shown next to the array, with peptides 5, 6, 14 and 23

in red and the key deleted residues highlighted in bold. (Note:) All work that lead to the

generation of this figure was conducted by members of the Greger lab. The methods used to

generate the arrays shown here were the same as those shown before in Fig. 3.2 on page 70

in Experimental Chapter 1.

The data from the peptide arrays therefore suggest that the primary residue respon-

sible for binding of γ-2 Ex1 to the NTD of GluA2 is the R65, while the residues N72

and F73 play an auxiliary role, supporting and strengthening the TARP/NTD interac-

tion. As mentioned above, based on the results of this peptide array, our collaborators

generated two γ-2 Ex1 Ala substitution mutants, the single R65 mutant and a triple

R65NF72-73 mutant, with the former removing the main NTD interaction site, and the

triple mutant removing both the primary site of interaction and the two auxiliary ones.

It is however worth noting, that while the biochemical data strongly supports the im-

portance of the R65 residue for NTD binding, it is less clear how important for NTD

binding the residues N72 and F73 are. This is due to the fact, that the result from

both the Ala substitution array and the deletion array were very clear for R65, while on

the other hand, N72 and F73 were not mutated in the Ala substitution array and were

identified only in the deletion array, where other factors, such as peptide length could

affect the binding.

4.3.2 Deletion of the N-terminal domain slows GluA2 deactivation

We expressed homomeric wt and ∆NTD GluA2Q AMPARs either alone, with wt γ-2 or

with the γ-2 mutants: R65 and R65NF72-73 and examined the effect that perturbation of

γ-2/NTD interaction had on the time constant of GluA2 deactivation (τw). Deactivation

was examined by fitting the decay of the current responses to 1 ms applications of 10
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mM Glu at -60 mV. We were particularly interested if TARP-dependent changes in

AMPAR properties were affected by disruption of γ-2 interactions with the NTD (i.e. in

a statistically significant interaction evident from two-way ANOVA).

As seen in Fig. 4.4, when GluA2Q deactivation was examined, we found that in the ab-

sence of the NTD the deactivation time constant was significantly prolonged (F (1, 42)=

18.305, P = 1.0644 × 10-4). There was, however, no significant overall effect of the

TARP (F (3, 42)= 2.7509, P= 0.0545) and no statistically significant interaction between

the effect NTD and that of the TARP (F (3, 42)= 0.4456, P= 0.7217). Deactivation time

constant was similar for TARPless wt GluA2 (0.57 ± 0.05 ms) and for the same re-

ceptor TARPed with γ-2 (0.99 ± 0.21 ms), R65 (0.65 ± 0.08 ms) and R65NF72-73 (0.52

± 0.09 ms). In the absence of the GluA2 NTD the time constant of deactivation was

prolonged, both for the TARPless ∆NTD GluA2 (1.02 ± 0.21) and for ∆NTD GluA2

TARPed with wt γ-2 (1.34 ± 0.17 ms) or the R65 (0.86 ± 0.10 ms) and R65NF72-73

(0.91 ± 0.05 ms) mutants. There was a slight trend towards an increase in deactiva-

tion time constant in the presence of wt γ-2, but that was non-significant for both wt

and ∆NTD GluA2. Indeed, subsequent pairwise comparisons revealed no significant

differences between the individual groups, as shown in Table 4.1.

The non-significant main effect of TARP on GluA2 deactivation time constant con-

trasts with the data shown in Experimental Chapter 1, where we found a slight overall

increase in the time constant of GluA2Q deactivation in the presence of the TARP.

However, it is worth noting that the data in Experimental Chapter 1 were examined

using a one-way ANOVA, while the analysis of the data shown here involved a two-

way ANOVA. Thus, the discrepancy can likely be attributed to the lower power of the

more complex statistical test used here.

Test No. Test pair P-value

1 GluA2wt vs. GluA2∆NTD 0.85
2 GluA2wt vs. GluA2wt + γ-2 0.85
3 GluA2wt vs. GluA2wt + R65 1.00
4 GluA2wt vs. GluA2wt + R65NF72-73 1.00
5 GluA2wt + γ-2 vs. GluA2wt + R65 1.00
6 GluA2wt + γ-2 vs. GluA2wt + R65NF72-73 0.85
7 GluA2∆NTD vs. GluA2∆NTD + γ-2 1.00
8 GluA2∆NTD vs. GluA2∆NTD + R65 1.00
9 GluA2∆NTD vs. GluA2∆NTD + R65NF72-73 1.00
10 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65 0.48
11 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65NF72-73 0.59

Table 4.1: Disruption of interactions with GluA2 NTD produced no significant differ-

ences in deactivation time constant from the controls.

The slowing of GluA2(flip) deactivation upon NTD deletion has been reported previ-
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ously (Bedoukian et al., 2006) and was robustly reproduced in this study. It is, how-

ever, interesting that neither of the two mutations in γ-2 was capable of reproducing

the effect on GluA2 deactivation seen with the NTD removal. Thus, it is possible that

removal of the NTD affects the conformation of the AMPAR itself, prolonging channel

deactivation, an effect independent of the interactions with the associated TARP.

Figure 4.4: Deletion of the NTD slowed the time constant of GluA2 deactivation.

(A) Average response to a 1 ms pulse of 10 mM Glu from a representative patch expressing

TARPless wt GluA2Q receptors. Individual sweeps were aligned at the 20% rise before aver-

aging. The horizontal bar marks the duration of Glu application. Deactivation τw for this patch

is indicated on the graph. (B) As for A, but for a patch expressing TARPless ∆NTD GluA2Q (C)

Histogram showing τw of deactivation for each of the AMPAR/TARP variants. Bars denote the

SEM and the n numbers for each group are indicated at the bottom of the histogram. Closed

bars indicate wt GluA2Q, open bars indicate ∆NTD GluA2Q. Two-way ANOVA showed a sig-

nificant main effect of the NTD on GluA2 deactivation (F (1, 42)= 18.305, P = 1.0644 × 10-4),

a non-significant main effect of the TARP (F (3, 42)= 2.7509, P= 0.0545) and a non-significant

interaction (F (3, 42)= 0.4456, P= 0.7217). There were no significant pairwise tests.
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4.3.3 γ-2 slows GluA2 desensitization in an NTD-independent manner

A number of previous studies reported a slowing of AMPAR desensitization upon γ-

2 co-expression (see for instance Tomita et al. 2005; Priel et al. 2005). In order to

assess if the γ-2-mediated slowing of GluA2 desensitization requires the TARP to in-

teract with the NTD, we examined the responses to 100 ms applications of 10 mM Glu

at -60 mV and compared the weighted time constant of desensitization, τw (see Fig.

4.5C). We found that, overall, TARP co-expression resulted in a slowing of GluA2 de-

sensitization (F (3, 87)= 24.875, P= 1.0284 × 10-11). Deletion of the NTD also resulted

in a slowing of GluA2 desensitization (F (1, 87)= 27.1923, P= 1.2302 × 10-6). The effect

of the TARP, however, was independent of that of the NTD, resulting in a statistically

non-significant interaction (F (3, 87)= 0.5155, P= 0.6727). The data shown here suggest

that the magnitude of the TARP-dependent slowing of desensitization is similar in the

presence and the absence of the GluA2 NTD. Thus, it appears that the interaction of

γ-2 with the NTD is unlikely to participate in the slowing of AMPAR desensitization by

the associated TARP.

Subsequent pairwise test (see Table 4.2) showed that wt γ-2 significantly prolonged

wt GluA2 desensitization (10.17 ± 0.78 ms) compared with the TARPless receptor

(4.93 ± 0.29 ms). This effect was retained in the absence of the NTD (∆NTD GluA2

+ γ-2: 12.42 ± 0.43 ms vs. 7.79 ± 1.00 ms for TARPless ∆NTD GluA2), in agree-

ment with a previous study by Bedoukian et al. (2006), which also showed that γ-2

prolongs desensitization of GluA2 AMPARs lacking the NTD. We found, that the R65

and R65NF72-73 mutants also acted as TARPs, prolonging the desensitization of both

wt GluA2 (9.83 ± 1.16 ms and 8.60 ± 0.82 ms for R65 and R65NF72-73 respectively)

and ∆NTD GluA2 (14.25 ± 1.62 ms and 12.30 ± 0.63 ms for R65 and R65NF72-73

respectively). None of the mutants acted differently from wt γ-2 and they did not ap-

pear to mimic the effect of NTD deletion when co-expressed with wt GluA2. Thus,

it appears that point mutations which disrupt TARP interactions with the NTD have a

different effect on AMPAR gating than does deletion of the whole N-terminal domain.

This implies that TARP interaction with the NTD may be involved in TARP-dependent

slowing of AMPAR desensitization, and also suggests that the NTD may play a TARP-

independent modulatory role in AMPAR gating.
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Figure 4.5: γ-2 mediated slowing of GluA2 desensitization was independent of the

TARP interaction with the NTD.

(A) Average response to a 100 ms pulse of 10 mM Glu from a representative patch expressing

TARPless wt GluA2Q receptors. Individual sweeps were aligned at the 20% rise before aver-

aging. The horizontal bar marks the duration of Glu application. Desensitization τw and the

Iss for this patch are indicated on the graph. (B) As for A, but for a patch expressing TARPless

∆NTD GluA2Q (C) Histogram showing τw of desensitization for each of the AMPAR/TARP

variants. Bars denote the SEM and the n numbers for each group are indicated at the bottom

of the histogram. Closed bars indicate wt GluA2Q, open bars indicate ∆NTD GluA2Q. Two-

way ANOVA showed a significant main effect of the NTD on GluA2 desensitization (F (1, 87)=

27.1923, P = 1.2302 × 10-6), a significant main effect of the TARP (F (3, 87)= 24.875 P= 1.0284

× 10-11) and a non-significant interaction (F (3, 87)= 0.5155, P= 0.6727).
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Figure 4.5 continued: (D) Histogram showing the steady-state current (Iss), calculated as %

peak current amplitude, for each of the AMPAR/TARP variants. Bars denote the SEM and the

n numbers for each group are indicated at the bottom of the histogram. Closed bars indicate

wt GluA2Q, open bars indicate ∆NTD GluA2Q. Two-way ANOVA showed a significant main

effect of the NTD on GluA2 steady-state current percentage (F (1, 87)= 28.6368, P = 6.9931 ×
10-7), a significant main effect of the TARP (F (3, 87)= 25.9212 P= 4.5016 × 10-12) and a non-

significant interaction (F (3, 87)= 1.1439, P= 0.336). For pairwise tests shown in panels C and

D, asterisks mark significant difference vs. TARPless wt GluA2 (∗ P< 0.05, ∗ ∗ P< 0.01 and

∗ ∗ ∗ P< 0.001; Welch t-test), while hashes mark significant difference vs. TARPless ∆NTD

GluA2 (# P< 0.05, # # # P< 0.001; Welch t-test).

Test No. Test pair P-value

1 GluA2wt vs. GluA2∆NTD 0.11
2 GluA2wt vs. GluA2wt + γ-2 8.102 × 10-5

3 GluA2wt vs. GluA2wt + R65 0.0095
4 GluA2wt vs. GluA2wt + R65NF72-73 0.0095
5 GluA2wt + γ-2 vs. GluA2wt + R65 1.00
6 GluA2wt + γ-2 vs. GluA2wt + R65NF72-73 0.72
7 GluA2∆NTD vs. GluA2∆NTD + γ-2 0.011
8 GluA2∆NTD vs. GluA2∆NTD + R65 0.022
9 GluA2∆NTD vs. GluA2∆NTD + R65NF72-73 0.013
10 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65 0.89
11 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65NF72-73 1.00

Table 4.2: Wt γ-2 as well as the γ-2 mutants prolonged GluA2 desensitization time

constant both in the presence and in the absence of the NTD.

As shown in Fig 4.5D, in addition to investigating the effect of disrupting TARP/NTD in-

teractions on GluA2 desensitization kinetics, we also examined how disrupting these

interactions affects the percentage of the steady-state current (Iss). Overall, TARP

co-expression increased the steady-state current percentage significantly (F (3, 87)=

25.9212, P= 4.5016 × 10-12). As seen in panel D Fig. 4.5, wt γ-2 increased the

steady-state current fraction of wt GluA2 (wt GluA2 + γ-2 8.86 ± 1.53 % vs. 1.46 ±
0.40 % for TARPless wt GluA2), as well as ∆NTD GluA2 (∆NTD GluA2 + γ-2 13.95

± 0.81 % vs. 5.38 ± 1.07 % for TARPless ∆ NTD GluA2). R65 and R65NF72-73 also

increased the steady-state current fraction of full-length GluA2 (8.67 ± 1.80 % and

5.93 ± 1.21 % for R65 and R65NF72-73 respectively) and of GluA2 lacking the NTD

(14.57 ± 2.29 % and 16.04 ± 2.84 % for R65 and R65NF72-73 respectively) and were

not significantly different from wt γ-2 (see Table 4.3).

Overall, deletion of the NTD also increased the percentage of the steady-state cur-

rent (F (1, 87)= 28.6368, P= 6.9931 × 10-7). This was evident even in the absence

of the TARP, when the steady-state currents from TARPless GluA2 wt and GluA2
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Test No. Test pair P-value

1 GluA2wt vs. GluA2∆NTD 0.032
2 GluA2wt vs. GluA2wt + γ-2 0.0026
3 GluA2wt vs. GluA2wt + R65 0.014
4 GluA2wt vs. GluA2wt + R65NF72-73 0.023
5 GluA2wt + γ-2 vs. GluA2wt + R65 1.00
6 GluA2wt + γ-2 vs. GluA2wt + R65NF72-73 0.59
7 GluA2∆NTD vs. GluA2∆NTD + γ-2 0.00014
8 GluA2∆NTD vs. GluA2∆NTD + R65 0.020
9 GluA2∆NTD vs. GluA2∆NTD + R65NF72-73 0.020
10 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65 1.00
11 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65NF72-73 1.00

Table 4.3: γ-2 increased GluA2 steady-state current even when the interactions with the

NTD were disrupted.

∆NTD were compared (see panel D Fig. 4.5 and Table 4.3). There was, however,

no statistically significant interaction between the effects of TARP and the NTD when

the steady-state current was examined (F (3, 87)= 1.1439, P= 0.336), suggesting that

the TARP-mediated increase in steady-state current fraction was independent of the

presence of the NTD, and, conversely, that deletion of the NTD resulted in an increase

in steady-state current irrespective of TARP co-expression. Thus, it appears that al-

though the NTD modulated AMPAR steady-state current, that modulation did not re-

quire TARP association. In addition, the increase in steady-state current mediated by

γ-2 still occurred when the NTD was absent, or when the TARP/NTD interaction was

disrupted by mutations in Ex1 of γ-2.

4.3.4 γ-2 co-expression partially relieves polyamine block of GluA2 regardless

of the presence of the NTD

The Q form of GluA2 used in this Chapter is Ca2+-permeable (Burnashev et al.,

1992a). At positive membrane potentials, CP-AMPARs are blocked by endogenous

intracellular polyamines, however, the block is partially relieved by γ-2 (Soto et al.,

2007). The susceptibility of wt and ∆NTD GluA2Q to block by 100 µM intracellu-

lar spermine was assessed by stepping the membrane voltage from -100 mV to +60

mV in 10 mV increments and applying a 1 ms pulse of 10 mM Glu at each voltage.

The peak currents at all voltages were normalised to the peak at -100 mV and plot-

ted against the membrane potential to obtain the I-V plots, from which rectification

index (RI) was quantified as the ratio of slope conductance at positive and negative

membrane voltages.

Our results agreed with the previous study by Soto et al. (2007) and with the re-
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sults shown in Experimental Chapter 1 of this Thesis, in that TARP co-expression

relieved spermine block of GluA2Q, resulting in a significantly higher rectification in-

dex in the presence of the TARP (F (3, 47)= 102.5631, P= 1.2251 × 10-20). As shown

in Fig. 4.6 and Table 4.4, wt γ-2 (RI= 0.318 ± 0.035) as well as R65 (0.305 ± 0.035)

and R65NF72-73 (0.298 ± 0.043) relieved polyamine block compared with TARPless wt

GluA2 (0.094 ± 0.022). The γ-2-mediated relief of spermine block was also evident

when the ∆NTD GluA2 was used. All three variants of γ-2 reduced the degree of

spermine block when co-expressed with ∆NTD GluA2. The RI was similar for wt γ-2

(0.351 ± 0.003), R65 (0.286 ± 0.025) and R65NF72-73 (0.332 ± 0.045) and was, in all

three cases, significantly different from that seen with TARPless ∆NTD GluA2 (0.075

± 0.015). The results are summarised in Fig. 4.6 and Table 4.4.

Test No. Test pair P-value

1 GluA2wt vs. GluA2∆NTD 1.00
2 GluA2wt vs. GluA2wt + γ-2 0.0035
3 GluA2wt vs. GluA2wt + R65 0.0032
4 GluA2wt vs. GluA2wt + R65NF72-73 0.013
5 GluA2wt + γ-2 vs. GluA2wt + R65 1.00
6 GluA2wt + γ-2 vs. GluA2wt + R65NF72-73 1.00
7 GluA2∆NTD vs. GluA2∆NTD + γ-2 0.00028
8 GluA2∆NTD vs. GluA2∆NTD + R65 0.00015
9 GluA2∆NTD vs. GluA2∆NTD + R65NF72-73 0.0029
10 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65 0.17
11 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65NF72-73 1.00

Table 4.4: γ-2 as well as the R65 and R65NF72-73 mutants relieved spermine block of wt

and ∆ NTD GluA2.

Unlike association with TARP, deletion of the N-terminal domain no had overall effect

on GluA2 rectification (F (1, 47)= 0.0022, P= 0.9626) and there was no statistically sig-

nificant interaction between the effect of TARP and that of the NTD (F (3, 47)= 0.528,

P= 0.6653).

Thus, it appears that the NTD of AMPARs does not play a role in the modulation of

polyamine block. Polyamines are blockers of the AMPAR channel, while the NTD is

the domain most distal from the channel pore and thus unlikely to directly contribute

to polyamine binding. The results shown here suggest that this domain also lacks any

indirect, allosteric effect on spermine binding or permeation. Furthermore, the two

Ex1 mutants examined here, R65 and R65NF72-73, unlike many of the mutants investi-

gated in Experimental Chapter 1, did not show a reduced ability to relieve spermine

block compared with wt γ-2. Thus it appears that the three residues in Ex1 that in-

teract strongly with the NTD do not contribute to the regulation of rectification by γ-2.

Furthermore, this implies that the impaired relief of spermine block seen with some

of the Ex1 mutants in Experimental Chapter 1 likely resulted from disruption of γ-2

interactions with AMPAR domains other than the NTD.
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Figure 4.6: TARP co-expression relieved spermine block regardless of the presence of

GluA2 NTD.

(A) Peak I-V plots for from individual representative patches for TARPless wt GluA2 (closed

circles) and TARPless ∆NTD GluA2 (open circles). The peak currents at each voltage were

normalised to the peak at -100 mV, plotted against the membrane potential and fitted with a 9th

order polynomial. The RI values for the representative patches are shown on the graph. (B)

Histogram showing RI for each of the AMPAR/TARP variants. Bars denote the SEM and the

n numbers for each group are indicated on the histogram. Closed bars indicate wt GluA2Q,

open bars indicate ∆NTD GluA2Q. Two-way ANOVA showed a non-significant main effect of

the NTD on GluA2 RI (F (1, 47)= 0.0022, P = 0.9626), a significant main effect of the TARP

(F (3, 47)= 102.563, P= 1.2251 × 10-20) and a non-significant interaction (F (3, 47)= 0.528, P=

0.6653). For pairwise tests, asterisks mark significant difference vs. TARPless wt GluA2 (∗
P< 0.05, ∗ ∗ P< 0.01; Welch t-test), while hashes mark significant difference vs. TARPless

∆NTD GluA2 (# # P< 0.01, # # # P< 0.001; Welch t-test).

4.3.5 γ-2 co-expression and NTD deletion have opposing, but independent ef-

fects on GluA2 mean single-channel conductance

TARP co-expression has been shown to increase AMPAR single-channel conduc-

tance (see for instance Soto et al. 2009; Jackson et al. 2011; Shelley et al. 2012).
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In this study, we used NSFA to investigate if the γ-2-dependent increase in mean

single-channel conductance of GluA2 depends on the interactions of this TARP with

the NTD of GluA2. Mean single-channel conductance of wt γ-2 as well as the R65

and R65NF72-73 mutants co-expressed with wt GluA2 or GluA2 ∆NTD was estimated

by fitting the parabolic NSFA function (2.6, Materials and Methods) to the current re-

sponses generated by 100 ms applications of 10 mM Glu at -60 mV. The data are

shown in Fig. 4.7 and the statistical tests are listed in Table 4.5. Similar to the results

shown in Experimental Chapter 1, in the present study TARP co-expression signifi-

cantly increased GluA2 mean single-channel conductance (F (3, 52)= 24.59, P= 4.8187

× 10-10). Indeed, co-expression of γ-2 (37.02 ± 2.27 pS) as well as the R65 (30.65 ±
1.94 pS) and R65NF72-73 (35.66 ± 2.39 pS) mutants increased mean single-channel

conductance compared with TARPless wt GluA2 (21.95 ± 1.00 pS). Thus, the data

shown here agree with previously published studies reporting an increase in AMPAR

mean single-channel conductance upon TARP co-expression.

Test No. Test pair P-value

1 GluA2wt vs. GluA2∆NTD 0.017
2 GluA2wt vs. GluA2wt + γ-2 0.00036
3 GluA2wt vs. GluA2wt + R65 0.019
4 GluA2wt vs. GluA2wt + R65NF72-73 0.019
5 GluA2wt + γ-2 vs. GluA2wt + R65 0.19
6 GluA2wt + γ-2 vs. GluA2wt + R65NF72-73 0.69
7 GluA2∆NTD vs. GluA2∆NTD + γ-2 0.0497
8 GluA2∆NTD vs. GluA2∆NTD + R65 0.040
9 GluA2∆NTD vs. GluA2∆NTD + R65NF72-73 0.015
10 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65 0.38
11 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65NF72-73 0.61

Table 4.5: γ-2 variants increased mean-single channel conductance of wt and ∆NTD

GluA2 receptors.

By contrast, deletion of the NTD resulted in an overall reduction in mean-single chan-

nel conductance (F (1, 52)= 33.9134, P= 3.6527 × 10-7). This was seen with the TARP-

less ∆NTD GluA2 receptors (15.88 ± 1.17 pS) as well as with the ∆NTD GluA2 co-

expressed with γ-2 (22.93 ± 2.00 pS) and the R65NF72-73 mutant (25.86 ± 1.85 pS),

but was less pronounced with the R65 mutant (29.22 ± 3.17 pS). The interaction be-

tween the effect of TARP and that of the NTD was statistically non-significant (F (3, 52)=

2.5799, P= 0.0634), suggesting that the magnitude of the TARP-mediated increase

in mean single-channel conductance is similar in the presence and in the absence

of the NTD. Thus, it appears that the effects of γ-2 co-expression and NTD deletion

on GluA2 mean-single channel conductance are opposing, but independent, and that

TARP interactions with the NTD are unlikely to play a role in the TARP-mediated in-

crease in mean-single channel conductance.
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Figure 4.7: Co-expression of wt γ-2 as well as the R65 and R65NF72-73 mutants increased

mean single-channel conductance of wt and ∆NTD GluA2. (A) NSFA fit to the average

current from an example patch expressing TARPless wt GluA2. Current variance was plotted

against mean current. The red horizontal line indicates the σb level and the red line through the

points shows the parabolic NSFA fit to equation 2.6. The mean single-channel conductance

(γ) and peak open probability (Po) values for this patch are shown on the graph. (B) As for A,

but for a patch expressing TARPless ∆NTD GluA2. (C) Histogram showing the mean single-

channel conductance for each of the AMPAR/TARP variants. Bars denote the SEM and the

n numbers for each group are indicated at the bottom of the histogram. Closed bars indicate

wt GluA2Q, open bars indicate ∆NTD GluA2Q. Two-way ANOVA showed a significant main

effect of the NTD on GluA2 mean single-channel conductance (F (1, 52)= 33.9134, P = 3.6527

× 10-7), a significant main effect of the TARP (F (3, 52)= 24.59 P= 4.8187 × 10-10) and a non-

significant interaction (F (3, 52)= 2.5799, P= 0.0634).
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Figure 4.7 continued: (D) Histogram showing the peak Po for each of the AMPAR/TARP

variants. Bars denote the SEM and the n numbers for each group are indicated at the bottom

of the histogram. Closed bars indicate wt GluA2Q, open bars indicate ∆NTD GluA2Q. Two-

way ANOVA showed a non-significant main effect of the NTD on GluA2 peak Po (F (1, 52)=

0.6795, P = 0.4135), a significant main effect of the TARP (F (3, 52)= 10.6052 P= 1.5066 ×
10-5) and a non-significant interaction (F (3, 52)= 2.36, P= 0.0821). For pairwise tests shown

in panels C and D, asterisks mark significant difference vs. TARPless wt GluA2 (∗ P< 0.05,

∗ ∗ P< 0.01 and ∗ ∗ ∗ P< 0.001; Welch t-test), while hashes mark significant difference vs.

TARPless ∆NTD GluA2 (# P< 0.05; Welch t-test).

In addition to providing information about the mean single-channel conductance, NSFA

also renders an estimate of the peak open probability (4.7D). γ-2 has previously been

reported to increase peak Po of GluA2 (Soto et al., 2009). Similarly, in this study we

found that, overall, Po was significantly higher in the presence of the TARP (F (3, 52)=

10.6052, P= 1.5066 × 10-5). Indeed, compared with TARPless wt GluA2 (0.46 ±
0.07), Po was increased upon co-expression with wt γ-2 (0.76 ± 0.03) as well as

with the R65 (0.83 ± 0.03) and R65NF72-73 (0.84 ± 0.03) mutants. Thus, it appears

that the residues substituted with Ala in these Ex1 mutants do not contribute to the

γ-2-mediated increase in peak Po of GluA2.

Test No. Test pair P-value

1 GluA2wt vs. GluA2∆NTD 0.60
2 GluA2wt vs. GluA2wt + γ-2 0.016
3 GluA2wt vs. GluA2wt + R65 0.0048
4 GluA2wt vs. GluA2wt + R65NF72-73 0.0042
5 GluA2wt + γ-2 vs. GluA2wt + R65 0.55
6 GluA2wt + γ-2 vs. GluA2wt + R65NF72-73 0.39
7 GluA2∆NTD vs. GluA2∆NTD + γ-2 0.072
8 GluA2∆NTD vs. GluA2∆NTD + R65 0.33
9 GluA2∆NTD vs. GluA2∆NTD + R65NF72-73 0.14
10 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65 0.39
11 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65NF72-73 0.60

Table 4.6: All three γ-2 variants significantly increased peak Po of wt GluA2, but not

GluA2 ∆NTD.

In the absence of the GluA2 NTD, there was also a slight trend towards an increased

Po when ∆NTD GluA2 AMPARs were co-expressed with γ-2 (0.86 ± 0.03 vs. 0.57

± 0.08 for TARPless ∆NTD GluA2) and the two mutants (0.76 ± 0.04 and 0.82 ±
0.03 for R65 and R65NF72-73 respectively), however, the individual combinations were

not significantly different from ∆NTD GluA2 alone (see Table 4.6). Deletion of the

NTD itself lacked an effect on GluA2 Po (F (1, 52)= 0.6795, P= 0.4135) and there was

no statistically significant interaction between the effects of the NTD and the TARP

(F (3, 52)= 2.36, P= 0.0821). Thus, it appears that the interaction between γ-2 and
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the NTD of GluA2 is not required for an increase in Po upon co-expression of the

TARP.

4.3.6 γ-2 increases relative kainate efficacy independently of its interaction

with the NTD of GluA2

γ-2 has reproducibly been shown to increase the relative efficacy of the partial agonist

kainate (see for instance Turetsky et al. 2005; Tomita et al. 2005 and Experimental

Chapter 1 of this Thesis). In the current study, we were particularly interested if γ-2

interactions with the NTD of GluA2 play a role in the modulation of KA/Glu ratio by

this TARP. The responses to KA and Glu were obtained by exposing the patch to 100

ms pulses of 500 µM Glu, then 500 µM KA and again to Glu (both agonists were

supplemented with 100 µM CTZ to reduce AMPAR desensitization). KA/Glu ratio was

calculated as the ratio of the steady-state response to KA and the average of the

steady-state responses to Glu (before and after KA application).

Overall, TARP co-expression significantly increased KA/Glu ratio (F (3, 60)= 358.9669,

P= 2.8699 × 10-38). When compared with TARPless wt GluA2 (0.029 ± 0.006), co-

expression of γ-2 (0.65 ± 0.033) as well as the mutants R65 (0.58 ± 0.034) and

R65NF72-73 (0.52 ± 0.044) resulted in a significantly higher KA/Glu ratio (see Fig. 4.8

and Table 4.7). The two Ex1 mutants increased KA/Glu ratio to the same levels as wt

γ-2, which suggests that the mutated residues in Ex1 are unlikely to contribute to the

γ-2-mediated increase in relative KA efficacy.

Test No. Test pair P-value

1 GluA2wt vs. GluA2∆NTD 0.17
2 GluA2wt vs. GluA2wt + γ-2 1.344 × 10-6

3 GluA2wt vs. GluA2wt + R65 3.291 × 10-7

4 GluA2wt vs. GluA2wt + R65NF72-73 3.289 × 10-6

5 GluA2wt + γ-2 vs. GluA2wt + R65 0.17
6 GluA2wt + γ-2 vs. GluA2wt + R65NF72-73 0.12
7 GluA2∆NTD vs. GluA2∆NTD + γ-2 3.291 × 10-7

8 GluA2∆NTD vs. GluA2∆NTD + R65 3.027 × 10-8

9 GluA2∆NTD vs. GluA2∆NTD + R65NF72-73 6.796 × 10-6

10 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65 0.17
11 GluA2∆NTD + γ-2 vs. GluA2∆NTD + R65NF72-73 0.17

Table 4.7: γ-2 as well as the mutants R65 and R65NF72-73 increased KA/Glu ratio when

co-expressed with wt GluA2 or with GluA2 ∆NTD..
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Figure 4.8: KA/Glu ratio of wt and ∆ NTD GluA2 was significantly increased in the pres-

ence of γ-2 or the R65 and R65NF72-73 mutants. (A) Mean responses from representative

patches showing the initial response to 500 µM Glu (left), followed by 500 µM KA (middle) and

a recovery of response to Glu (right). Both Glu and KA were supplemented with 100 µM CTZ

to limit desensitization. (B) As for A, but for a patch expressing TARPless ∆NTD GluA2. (C)

Histogram showing the KA/Glu ratio for each of the AMPAR/TARP variants. Bars denote the

SEM and the n numbers for each group are indicated at the bottom of the histogram. Closed

bars indicate wt GluA2Q, open bars indicate ∆NTD GluA2Q. Two-way ANOVA showed a sig-

nificant main effect of the NTD on KA/Glu ratio (F (1, 60)= 5.1105, P = 0.0274), a significant

main effect of the TARP (F (3, 60)= 358.9669 P= 2.8699 × 10-38) and a non-significant interac-

tion (F (3, 60)= 0.1146, P= 0.9512).
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In the absence of the GluA2 NTD, co expression of wt γ-2 (0.68 ± 0.034) as well as

R65 (0.59 ± 0.028) or R65NF72-73 (0.55 ± 0.047) also lead to a significant increase

in KA/Glu ratio compared with TARPless ∆NTD GluA2 (0.065 ± 0.014). This agrees

with a previous study by Tomita et al. (2007), which showed that γ-2 increased KA/Glu

ratio when GluA1 lacking the NTD was used. Interestingly, deletion of the NTD slightly,

but significantly increased KA/Glu ratio across all of the tested combinations (F (1, 60)=

5.1105, P= 0.0274), however, this effect was independent of that mediated by TARP

co-expression, resulting in a statistically non-significant interaction (F (3, 60)= 0.1146,

P= 0.9512).

The ability to increase KA/Glu ratio was retained by the Ex1 mutants in which residues

interacting strongly with the NTD were substituted with Ala. In addition, γ-2 was still

able to increase KA/Glu ratio when ∆NTD rather than wt GluA2 was used. Thus, it

appears that TARP/NTD interaction is not required for the increase in KA/Glu ratio

upon TARP co-expression. However, a small but significant increase in KA/Glu ratio

upon NTD deletion was observed with both TARPless and TARPed receptors, sug-

gesting that the NTD itself may play a role in modulation of kainate efficacy. Since

the efficacy of partial agonists has been shown to be determined by the degree of the

LBD cleft closure (Jin et al., 2003), it is possible that the effect of NTD deletion is an

allosteric one, i.e. that the LBD cleft closes more efficiently when the NTD is absent,

which results in increased KA/Glu ratio.
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4.4 Discussion

The results described in this Chapter suggest that AMPARs lacking their NTD are

functional, which agrees with previously published studies (Pasternack et al., 2002;

Bedoukian et al., 2006). Similar to the results of Pasternack et al. (2002) obtained

with GluA4, we found that deletion of the NTD increased the desensitization time con-

stant of GluA2. In addition, GluA2 deactivation was also prolonged in the absence

of the NTD, in agreement with the previous report by Bedoukian et al. (2006). Thus,

it appears that the NTD plays a somewhat ’inhibitory’ role in AMPAR gating, limiting

the charge transfer through these receptors. Since the NTD is the most sequence-

diverse domain of the AMPAR, it is possible that this diversity contributes to shaping

the synaptic responses mediated by different AMPAR subtypes. However, a compar-

ison of the role of the NTD in other AMPAR subunits would be required for a more

detailed conclusion.

Furthermore, we found interesting effects of the NTD deletion on AMPAR properties

that are though to be primarily mediated by other receptor domains. Mean single-

channel conductance was found to be reduced in the absence of the NTD. The meth-

ods used in this study did not allow us to investigate whether this reduction in mean-

single channel conductance reflects a reduction in the conductance level as such,

or a shift towards the occupancy of lower conductance states (of this multiple con-

ductance channel) in the absence of the NTD. It is unclear how deletion of the NTD

could affect ion conduction through the AMPAR channel pore, if this was indeed the

mechanism for the reduction in mean single-channel conductance observed in the ab-

sence of the NTD. Furthermore, GluA2 block by spermine, which also binds within the

channel pore is unaffected by NTD deletion, suggesting that rather than affecting the

pore region through a currently unknown mechanism, the NTD may stabilise certain

AMPAR conformations, which correspond to higher conductance states. Thus, the

reduced mean single-channel conductance in the absence of the NTD may be better

explained by preferential openings to lower conductance states. However, this is only

a speculation which cannot be resolved using the data shown here. Single-channel

recordings, which were not performed in this study, could give more insight into the

detailed mechanism of this phenomenon.

Another interesting result was the small, albeit significant increase in KA/Glu ratio

upon NTD deletion. As mentioned above, the lower efficacy of partial agonists on

AMPARs is thought to result from the LBD cleft closing to a lesser extend than when

a full agonist is bound (Jin et al., 2003). It is thus possible, that the slight increase

in KA/Glu ratio observed upon NTD deletion reflects a higher degree of the LBD cleft

closure, due to less constraints being imposed on this domain in the absence of the
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NTD.

In agreement with previous studies we found that γ-2 can efficiently modulate a num-

ber of functional properties of AMPARs lacking the NTD, such as desensitization

(Bedoukian et al., 2006) and KA/Glu ratio (Tomita et al., 2007). We were particularly

interested to determine if the magnitude of "TARP effect" is different in the absence of

the NTD, which would suggest that interactions between γ-2 and the NTD of GluA2

contribute to the modulation of AMPAR properties by this TARP. Our results, however,

revealed no statistically significant interactions between the effect of TARP and the

NTD, i.e. the results suggest that the magnitude of TARP effect is generally similar for

wt and ∆NTD GluA2. Furthermore, the two Ex1 mutants, R65 and R65NF72-73, in which

regions of strong interaction with the NTD were disrupted, showed no difference from

wt γ-2 when the TARP effects on different AMPAR properties were examined. Thus, it

appears that these particular residues do not contribute to TARP-mediated modulation

of AMPAR function. In summary, the results shown here suggest that the reduced abil-

ity of some of the Ex1 mutants shown in Experimental Chapter 1 to modulate AMPAR

properties results from disruption of γ-2 interactions with AMPAR domains which are

distinct from the NTD.

The results described in this Chapter allow us to gain further insight into the role of the

NTD in AMPAR function, but also suggest that this domain plays little role in TARP-

mediated modulation of these receptors. This is surprising, given the extensive NTD

contacts revealed by the peptide arrays shown here and in Experimental Chapter 1. It

is possible, that the NTD plays a more structural role in supporting the TARP/AMPAR

interaction, consistent with the model in which the Ex1 of TARPs wedges between

the NTD and LBD of the AMPAR and brings the two domains closer together. Fur-

thermore, since the NTD of native AMPARs is though to contribute to extensive con-

tacts with binding partners located within the synapse (O’Brien et al., 1999; Saglietti

et al., 2007; Sia et al., 2007), it would be interesting to investigate how NTD deletion

and/or the mutations in Ex1 of γ-2 employed in this Chapter would affect the proper-

ties of AMPARs in a native system. It is possible, that a more pronounced role for the

TARP/NTD interaction could emerge in the presence of other synaptic proteins, which

could potentially affect this interaction.
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5

Experimental Chapter 3: TARP stoichiometry affects

functional properties of AMPARs

5.1 Summary

The experiments described in this Chapter were designed to provide further insight

into the mechanisms of TARP/AMPAR interaction. In the former Experimental Chap-

ters, we identified certain regions of the AMPAR that interact with γ-2. The experi-

ments described below have focused on AMPAR/TARP complexes as a whole. Specif-

ically, we have tried to relate TARP stoichiometry to functional properties of AMPARs.

By using tandem constructs of AMPR subunits covalently linked to TARPs, we have

been able to control TARP stoichiometry. We then designed experiments to investi-

gate how AMPAR properties change with γ-2 stoichiometry. The parameters exam-

ined included: AMPAR deactivation and desensitization kinetics, the fraction of the

steady-state current, the rate of AMPAR recovery from desensitization, and the mean

single-channel conductance.

In addition, we explored the possibility that AMPARs may simultaneously be com-

plexed with two different TARPs, γ-2 (Type Ia TARP) and γ-7 (Type II TARP). Since

these two TARPs differ in their CNQX sensitivity, we used this pharmacological feature

to investigate the TARP phenotype of AMPARs that contained two different TARPs.
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5.2 Introduction

The stoichiometry of AMPAR/TARP complexes, i.e. the number of TARPs that assem-

ble within a complex consisting of auxiliary subunits and the basic AMPAR tetramer,

is suggested to vary between different types of neurons and affect biophysical and

pharmacological properties of AMPARs (Shi et al., 2009). From experiments using

BN-PAGE, the TARP stoichiometry of heterologously expressed AMPARs has also

been suggested to vary in a way that depends on the amount of γ-2 available (Kim

et al., 2010). A recent study (Hastie et al., 2013), attempted to directly measure the

number of TARP molecules associated with an AMPAR by tagging the TARP with

GFP and counting the number of bleaching steps required to completely bleach the

fluorescence of GFP spots co-localised with mCherry-tagged GluA1. The study by

Hastie et al. (2013) suggested that a GluA1 tetramer may be associated with up to 4

molecules of TARPs γ-2 and γ-3, but only one or two molecules of TARP γ-4.

Evidence for variable TARP stoichiometry in native systems is indirect and comes

mostly from electrophysiological studies. Kainate efficacy was shown to vary depend-

ing on TARP stoichiometry in a heterologous expression system (Shi et al., 2009).

This pharmacological tool was used to investigate TARP stoichiometry in two distinct

subtypes of hippocampal neurons, with TARP stoichiometry apparently saturated (4

TARPs per AMPAR) in CA1 pyramidal cells but not in dentate granule cells. Another

recent study suggested that the number of γ-8 or γ-7 molecules in the AMPAR com-

plex affects the potentiation of kainate currents by cyclothiazide (CTZ) (Gill et al.,

2011), however the physiological relevance of these findings is unclear (Herring et al.,

2013). Currently available studies thus suggests that some of the AMPAR properties

vary depending on the number of associated TARP molecules. However, the amount

of information on AMPAR stoichiometry available in literature is limited, and there is

no clear consensus.

The aim of this Chapter was to investigate the influence of TARP stoichiometry on

AMPAR properties by using a fixed TARP stoichiometry of 0, 2 or 4 γ-2 molecules

per AMPAR. To achieve this, we used tandem AMPAR/TARP constructs, where the

N-terminus of the TARP was covalently attached to the C-terminus of the AMPAR

via a 9-amino acid linker (see Fig. 5.1 A). Heteromeric GluA1/2 AMPARs were used

(see Fig. 5.1 B), so that a linear I-V relationship indicated that the appropriate stoi-

chiometry had been achieved. To investigate which AMPAR properties vary with γ-2

stoichiometry, we used outside-out patches pulled from transiently transfected tsA201

cells. The properties examined included: AMPAR deactivation and desensitization ki-

netics, the fraction of steady-state current, the rate recovery from desensitization and

the mean single-channel conductance.
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Figure 5.1: Fixed γ-2 stoichiometry was achieved using tandem AMPAR-TARP con-

structs. (A) Schematic representation of an AMPAR-TARP tandem. The AMPAR (GluA1 or

GluA2R) part of the protein is coloured in grey, the linker is represented by a light blue box

and located intracellularly and the γ-2 part of the protein is coloured in blue. Linker peptide

sequences are shown at the bottom, preceded by the C-terminal sequence of the AMPAR

subunit and followed by the N-terminal sequence of the TARP (as indicated by the coloured

brackets). The GluA1-γ-2 and the GluA2-γ-2 tandems shared the same 9-amino acid liker

sequence. (B) The three TARP stoichiometries investigated in this Chapter resulted in four

possible permutations of the transfected constructs. From left to right: 0 TARP stoichiometry

was achieved by co-transfecting GluA1 and GluA2R subunits. The 2 TARP stoichiometry was

achieved in two different ways: by co-expressing the GluA1-γ-2 tandem with GluA2 or, con-

versely, by co-expressing the GluA2-γ-2 tandem with GluA1. Finally, the 4 TARP stoichiometry

was achieved by co-expressing the two tandems together (GluA1-γ-2 and GluA2-γ-2).
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Previous studies on TARP stoichiometry used mainly two TARPs, γ-2 and γ-8, albeit

not in combination with the same AMPAR. Experiments reported in literature, which

employed mass spectrometry (Schwenk et al., 2012) and imaging (Hastie et al., 2013)

predicted a variable stoichiometry of up to 4 γ-2 molecules per AMPAR. We therefore

investigated whether in receptors occupied by only two γ-2 molecules, the other two

putative sites may be available to bind another TARP. γ-2 and γ-7 are both abundant

in the cerebellum and previous studies have suggested that these two TARPs may

co-assemble in the same AMPAR/TARP complexes (Kato et al., 2007; Studniarczyk

et al., 2013). We thus chose to investigate GluA2/3 heteromeric receptors associated

simultaneously with γ-2 and γ-7.

γ-2 and γ-7 belong to two different classes of TARPs and regulate AMPARs differ-

entially. A previous study from our lab has shown that CNQX blocks but does not

activate γ-7-associated native and recombinant receptors (Bats et al., 2012), while it

is a partial agonist at γ-2-associated AMPARs (Menuz et al., 2007; Bats et al., 2012).

As whole-cell CNQX currents, should be relatively easy to detect if present, this differ-

ential sensitivity of the two TARPs to CNQX was chosen to probe the TARP phenotype

of AMPARs associated simultaneously with γ-2 and γ-7.

To investigate whether one of the TARPs is dominant in AMPARs that contain both γ-

2 and γ-7, or whether both TARPs co-modulate AMPAR properties, we used tandem

AMPAR-TARP constructs to express receptors containing simultaneously both γ-2

and γ-7, as shown in Fig. 5.2. Similar to the experiment described for γ-2 above,

we used heteromeric (GluA2/3) AMPARs, so that a linear I-V relationship indicated

that the desired TARP stoichiometry had been achieved. In addition, to minimize the

influence of GluA3 homomers on the whole-cell currents recorded, cells were held at

+40 mV.
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Figure 5.2: Tandem AMPAR-TARP constructs were used to ensure co-assembly of γ-2

and γ-7 in the same AMPAR complex. (A) Schematic of the tandem AMPAR-TARP con-

structs used for experiments on two-TARP containing AMPARs. The AMPAR (GluA2R or

GluA3) part of the protein is coloured in grey, the intracellular linker is represented as a light

blue box and the TARP (γ-2 or γ-7) part of the protein is coloured in blue. Linker peptide

sequences are shown at the bottom, preceded by the C-terminal sequence of the AMPAR

subunit and followed by the N-terminal sequence of the TARP (as indicated by the coloured

brackets). Note that although the lengths of the linkers used in GluA2 and GluA3 tandems

are the same, their sequences vary. (B) Schematic representation of an AMPAR/TARP com-

plex containing two different TARPs: γ-2 and γ-7. Due to the use of heteromeric AMPARs,

linear I-V relationship indicated successful co-assembly. Left: GluA3-γ-7 tandem construct

assembled with a GluA2(R)-γ-2 tandem. Right: The converse combination, GluA3-γ-2 tan-

dem construct assembled with GluA2-γ-7 tandem.

126



5.3 Results

5.3.1 Rectification was used to assess the assembly of tandem constructs into

AMPAR/TARP complexes with defined TARP stoichiometry

In order to assess how efficiently tandem AMPAR-TARP constructs assembled into

functional receptors, we measured the rectification index (RI) of AMPAR currents in

patches. RI was measured as the ratio of peak Glu responses at -60 and +60 mV, as

shown in panel A, Fig. 5.3. A linear I-V relationship indicated that most assemblies

were GluA2-containing heteromers, and thus indicated a TARP stoichiometry of 0, 2

or 4, as described above. TARPless AMPARs have been reported to preferentially

form heteromeric rather than homomeric assemblies (Mansour et al., 2001). In the

data set presented here TARPless AMPAR subunits also formed mainly heteromeric

assemblies as judged from their RI (0.566 ± 0.042, n= 47); however, some variability

in RI was observed (see panel B, Fig 5.3).

Similarly to the TARPless controls, AMPARs formed from tandem AMPAR-TARP con-

structs showed varying degrees of rectification. The RI of the fully TARPed (4 TARP

stoichiometry) GluA1/2 AMPARs (mean RI = 0.653 ± 0.027, n= 44; panel E Fig. 5.3)

was not significantly different from the TARPless control shown in Fig. 5.3 panel B (P=

0.084). The large scatter in both cases suggested a mixture of patches with Ca2+-

permeable and impermeable AMPARs. However, both 2 TARP-containing AMPAR

combinations showed a significant difference in RI from TARPless controls (for GluA1-

γ-2 + GluA2, panel C Fig. 5.3: mean RI= 0.808 ± 0.010, n= 76, P= 2.22 × 10-6; for

GluA2-γ-2 + GluA1, panel D Fig. 5.3: mean RI = 0.234 ± 0.035, n= 26, P= 2.2 ×
10-7). The 2 TARP-containing combinations were also different from the fully TARPed

receptors (GluA1-γ-2 + GluA2: P= 4.40 × 10-6 and GluA2-γ-2 + GluA1: P< 1 ×
10-8).

Comparison of the RI distribution histograms in panels C and D of Figure 5.3 suggests

that receptors containing two γ-2 molecules assembled well (i.e. formed heteromers)

when γ-2 was tethered to GluA1 (panel C) but not when it was tethered to GluA2

(panel D) . There was a significant difference in RI between these two variants of 2

TARP stoichiometry (P< 1 × 10-8), suggesting that in the presence of the GluA2-γ-2

tandem, GluA1 formed mostly homomeric AMPARs. It is thus possible, that the con-

straints imposed by covalently tethering the TARP affect the ability of γ-2 to efficiently

traffic AMPARs to the cell surface and that this is most pronounced for the GluA2 sub-

unit, which in its R form has been suggested to be largely retained in the ER (Greger

et al., 2002, 2003).
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Figure 5.3: Rectification index served as a measure of tandem construct assembly into

AMPAR/TARP complexes of defined TARP stoichiometry.

128



Figure 5.3 continued: (A) A representative average trace illustrating the protocol used to

obtain RI. A 100 ms pulse of 10 mM Glu (indicated by the black bar on top of the figure)

was applied while the patch was held at -60 mV. The patch was then stepped to +60 mV and

another 100 ms pulse of 10 mM Glu was applied. The RI was measured as the ratio of peak

amplitudes at +60 and -60 mV. (B) Frequency histogram of RIs from patches pulled from cells

transfected with TARPless GluA1/2 (n= 47). The count was normalised to probability density.

(C-E) As for B, but for GluA1-γ-2 + GluA2 (2 TARP, n= 76), GluA2-γ-2 + GluA1 (2 TARP, n=

26) and GluA1-γ-2 + GluA2-γ-2 (4 TARP, n= 44), respectively. (F) TARPless GluA1/2 control

patches from panel B subdivided into two groups based on the vector used for the GluA2

subunit during transfection. The RI values for the individual patches are shown as closed

circles for GluA1 + GluA2 + GFP co-transfection as 3 separate plasmids (left column) and as

open circles for the GluA1 co-transfection with GluA2(R) in the pIRES-EGFP vector. The triple

asterisk above the graph indicates a significant difference in RI between the two groups (P=

1.133 × 10-8, Welch two-sample t-test). (G) RIs for all of the stoichiometry groups investigated

here. The RI values for the individual patches are shown as closed circles. The red horizontal

lines represent the mean RI for each condition and the vertical bars show the SEM. One-way

ANOVA showed an overall significant difference in RI between the groups (F (3, 67.94) = 91.87 ,

P= 7.36 × 10-24). Asterisks mark significant difference vs. TARPless GluA1/2 (∗∗∗ P< 0.001;

Welch t-test), hashes mark significant difference vs. the fully TARPed GluA1-γ-2 + GluA2-γ-2

receptors (### P< 0.001; Welch t-test). while dollar signs mark significant difference vs.

GluA1-γ-2 + GluA2 ($$$ P< 0.001; Welch t-test).

In summary, a large variability in RI was observed in this data set, reflecting vary-

ing degrees of assembly of GluA2-containing heteromers. The process of AMPAR

heteromerization is mediated mainly through the NTD of AMPARs (Rossmann et al.,

2011), and it is the C terminus of AMPAR that is modified by TARP association in the

tandem construct. It is therefore unclear if the use of tandems affected heteromer-

ization directly. Another possibility is, that despite the efforts to optimize transfections

to facilitate heteromeric assembly by varying the GluA1:GluA2 transfection ratio (see

Materials and Methods), there was a difference in protein expression levels between

the vectors used for transfection, which affected the ability of tandem constructs to

assemble. Some dependence of rectification on the expression vector was observed

in TARPless controls (see panel F, Fig. 5.3), where the mean RI for GluA1/2 co-

expression with 60 ng GFP as 3 separate constructs was 0.81 ± 0.02 (n= 16), while

co-expression of GluA1 with GluA2(R) in pIRES-EGFP rendered currents with a sig-

nificantly lower RI (0.44 ± 0.05, n= 31, P= 1.133 × 10-8, Welch two-sample t-test).

Note that protein expression (surface or total) for the different constructs was not

quantified.

In order to compare all four AMPAR/TARP combinations shown in Fig. 5.1 B, we de-

cided to record all responses at +40 mV in the presence of 100 µM intracellular sper-
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mine. This approach was based on previous studies suggesting that at this holding

potential all TARPless and the vast majority of TARPed Ca2+-permeable GluA1 ho-

momers are blocked (Soto et al., 2007). Thus under these conditions, the majority of

receptors still conducting are expected to be GluA1/2 heteromers. We also assumed

that relatively few GluA2(R) homomers would form, as previous studies suggested

that edited GluA2 is mostly retained in the ER (Greger et al., 2002, 2003).

Where possible, currents were also examined at -80 mV. For the -80 mV recordings,

patches with an RI of 0.7 or more were analysed. The GluA1 + GluA2-γ-2 version of

the 2 TARP stoichiometry was therefore not included in the -80 mV analysis. Thus,

the 2 TARP stoichiometry at -80 mV is represented only by the GluA1-γ-2 + GluA2

combination. For +40 mV, data were included regardless of patch RI, resulting in the

2 TARP stoichiometry being achieved in two different ways, either by the use of a

GluA1-γ-2 tandem or by the use of GluA2-γ-2 tandem (as shown above in Fig. 5.1

B).

5.3.2 Deactivation time constant of GluA1/2 was slowed only when all subunits

were TARPed

Deactivation of heteromeric GluA1/2 AMPARs with a defined γ-2 stoichiometry was

measured by fitting the decay of current responses to 1 ms Glu pulses, as described

previously. It is worth noting that currents from several of the patches that expressed

fully-TARPed (GluA1-γ-2 + GluA2-γ-2) AMPARs required fitting to a triple exponential,

due to the presence of a prominent slow component. This was evident at both +40

mV (5 out of 8 patches) and -80 mV (4 out of 8 patches).

At +40 mV (Fig. 5.4), deactivation τw was significantly prolonged compared with

TARPless AMPARs only when GluA1/2 AMPARs were TARPed with four γ-2 molecules.

τw was increased almost ∼6-fold (from 1.073 ± 0.139 ms for TARPless GluA1/2 to

5.949 ± 1.013 ms for 4 TARPs; P= 0.011). Neither version of the 2 TARP stoichiom-

etry increased GluA1/2 deactivation time constant (τw of currents from GluA1-γ-2

tandem + GluA2: 1.067 ± 0.069 ms; P= 1.00; GluA2-γ-2 tandem + GluA1: 1.046

± 0.070 ms; P= 1.00). The two versions of 2 TARP stoichiometry were not signif-

icantly different from each other (P= 1.00) and were both significantly different from

the fully TARPed receptors (GluA1-γ-2 tandem + GluA2: P= 0.011; GluA2-γ-2 tandem

+ GluA1: P= 0.011).

Deactivation time constant showed a similar pattern of dependence on γ-2 stoichiom-

etry when the currents were recorded at -80 mV (Fig. 5.5). GluA1/2 receptors fully
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Figure 5.4: Deactivation of GluA1/2 AMPARs varied with γ-2 stoichiometry when the

patches were held at +40 mV. (A) Average response to a 1 ms pulse of 10 mM Glu from a

representative patch expressing TARPless GluA1/2 receptors. Individual sweeps were aligned

at the 20% rise before averaging. The horizontal bar marks the duration of Glu application.

Deactivation τw for this patch is indicated on the graph. (B-D) As for A, but for patches ex-

pressing GluA1-γ-2 + GluA2 (2 TARP), GluA2-γ-2 + GluA1 (2 TARP) and GluA1-γ-2 + GluA2-

γ-2 (4 TARP) respectively. (E) Histogram showing τw of deactivation for each of the TARP

stoichiometry variants. Bars denote the SEM and the n numbers for each group are indicated

in white at the bottom of the histogram. One-way ANOVA showed a significant effect of γ-2

stoichiometry on GluA1/2 deactivation (F (3, 17.78) = 7.24, P= 0.0022). For pairwise tests, as-

terisks mark significant difference vs. GluA1/2 alone (∗ P< 0.05; Welch t-test), while hashes

mark significant difference vs. GluA1-γ-2 + GluA2-γ-2 (4 TARP) (# P< 0.05; Welch t-test).
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TARPed with γ-2 showed a significantly slower deactivation time when compared with

TARPless controls (2.577 ± 0.458 ms vs. 0.776 ± 0.059 ms; P= 0.017). In contrast,

GluA1/2 AMPARs TARPed with only 2 molecules of γ-2 did not display prolonged

deactivation compared with TARPless AMPARs (0.862 ± 0.061 ms; P= 0.319). The

presence of only 2 TARPs was significantly less efficient at slowing deactivation than

the presence of 4 TARPs (P= 0.017).

Figure 5.5: Deactivation of GluA1/2 AMPARs varied with γ-2 stoichiometry when the

patches were held at -80 mV. (A) Average response to a 1 ms pulse of 10 mM Glu from a

representative patch expressing TARPless GluA1/2 receptors. Individual sweeps were aligned

at the 20% rise before averaging. The horizontal bar marks the duration of Glu application.

Deactivation τw for this patch is indicated on the graph. (B-C) As for A, but for patches ex-

pressing GluA1-γ-2 + GluA2 (2 TARP) and GluA1-γ-2 + GluA2-γ-2 (4 TARP) respectively.

(D) Histogram showing τw of deactivation for each of the TARP stoichiometry variants. Bars

denote the SEM and the n numbers for each group are indicated in white at the bottom of

the histogram. One-way ANOVA showed a significant effect of γ-2 stoichiometry on GluA1/2

deactivation (F (2, 14.4) = 7.49, P= 0.0059). For pairwise tests, asterisks mark significant differ-

ence vs. GluA1/2 alone (∗ P< 0.05; Welch t-test), while hashes mark significant difference vs.

GluA1-γ-2 + GluA2-γ-2 (4 TARP) (# P< 0.05; Welch t-test).

These results suggest that deactivation of AMPARs varies with TARP stoichiometry

both at positive and negative holding potentials. If such differences occur in native

132



receptors, variability in TARP stoichiometry could affect the decay of EPSCs. A similar

observation has been reported previously. Cerebellar granule cells from stargazer +/-

mice, which have been suggested to have a reduced TARP stoichiometry, displayed a

significantly faster mEPSC decay compared with wt. On the contrary, overexpression

of γ-2 in stg granule cells prolonged mEPSC decay compared to wt (Milstein et al.,

2007). This difference could likely reflect accelerated AMPAR deactivation.

5.3.3 TARP stoichiometry determines AMPAR desensitization

The effect of γ-2 stoichiometry on the time course and extent of AMPAR desensiti-

zation was examined at both +40 mV and -80 mV holding potentials. As described

previously, the responses to desensitizing (100 ms) pulses of 10 mM Glu were fitted

with a double exponential, allowing the desensitization time constant, τw, and the per-

centage of steady-state current (Iss) to be extracted from the fit. These parameters

were used as measures of desensitization time course and extent respectively.

At +40 mV both the desensitization τw and the Iss showed a similar pattern of depen-

dence on γ-2 stoichiometry (see Fig. 5.6). Desensitization τw was significantly slowed

compared with TARPless GluA1/2 AMPARs when receptors were TARPed with four

γ-2 molecules (10.813 ± 0.739 ms vs. 7.029 ± 0.676 ms, P= 0.0036). Similarly, fully

TARPed receptors showed a significantly larger Iss than TARPless controls (22.471 ±
1.748 % vs. 4.141 ± 1.344 %, P= 2.5 × 10-7).

Both variants of AMPARs TARPed with only two molecules of γ-2 showed no effect on

either desensitization τw or the Iss when compared with TARPless controls (GluA1-γ-2

+ GluA2: τw= 6.886 ± 0.321 ms P= 0.85 and Iss= 3.923 ± 0.677 P= 1.00; GluA2-γ-2

+ GluA1: τw= 5.706 ± 0.501 ms P= 0.254 and Iss= 4.001 ± 1.476 P= 1.00). The two

variants of 2 TARP stoichiometry did not differ from each other in desensitization τw

(P= 0.187) or the Iss (P= 1.00). Furthermore, they both were significantly less efficient

than fully TARPed receptors at slowing desensitization τw (GluA1-γ-2 + GluA2: P=

0.0013; GluA2-γ-2 + GluA1: P= 1.23 × 10-4) and had a significantly lower Iss than the

AMPARs containing 4 γ-2 molecules (GluA1-γ-2 + GluA2: P= 8.3 × 10-7; GluA2-γ-2

+ GluA1: P= 4.9 × 10-7).
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Figure 5.6: γ-2 stoichiometry affected the time course and extent of AMPAR desensi-

tization at +40 mV. (A) Average response to a 100 ms pulse of 10 mM Glu from a repre-

sentative patch expressing TARPless GluA1/2 receptors. Individual sweeps were aligned at

the 20% rise before averaging. The horizontal bar marks the duration of Glu application. De-

sensitization τw and the Iss for this patch are indicated on the graph. (B-D) As for A, but for

patches expressing GluA1-γ-2 + GluA2 (2 TARP), GluA2-γ-2 + GluA1 (2 TARP) and GluA1-γ-

2 + GluA2-γ-2 (4 TARP) respectively. (E) Histogram showing τw of desensitization for each of

the TARP stoichiometry variants. Bars denote the SEM and the n numbers for each group are

indicated in white at the bottom of the histogram. One-way ANOVA showed a significant effect

of γ-2 stoichiometry on GluA1/2 desensitization τw (F (3, 25.48) = 10.58, P= 1.06 × 10-4). (F)

Histogram showing the % of steady-state current for each of the TARP stoichiometry variants.

Bars denote the SEM and the n numbers for each group are indicated in white at the bottom of

the histogram. One-way ANOVA showed a significant effect of γ-2 stoichiometry on GluA1/2

steady-state current percentage (F (3, 24.55) = 32.13, P= 1.16 × 10-8). For pairwise tests shown

in panels E and F, asterisks mark significant difference vs. GluA1/2 alone (∗∗ P< 0.01, ∗∗∗
P< 0.001; Welch t-test), while hashes mark significant difference vs. GluA1-γ-2 + GluA2-γ-2

(4 TARP) (## P< 0.01, ### P< 0.001; Welch t-test).
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Figure 5.7: The time course and extent of desensitization were differentially affected by

γ-2 stoichiometry at -80 mV. (A) Average response to a 100 ms pulse of 10 mM Glu from a

representative patch expressing TARPless GluA1/2 receptors. Individual sweeps were aligned

at the 20% rise before averaging. The horizontal bar marks the duration of Glu application.

Desensitization τw and the Iss for this patch are indicated on the graph. (B-C) As for A, but

for patches expressing GluA1-γ-2 + GluA2 (2 TARP) and GluA1-γ-2 + GluA2-γ-2 (4 TARP)

respectively. (D) Histogram showing τw of desensitization for each of the TARP stoichiometry

variants. Bars denote the SEM and the n numbers for each group are indicated in white at the

bottom of the histogram. One-way ANOVA showed a significant effect of γ-2 stoichiometry on

GluA1/2 desensitization (F (2, 41.66) = 9.28, P= 4.63 × 10-4). (E) Histogram showing the % of

steady-state current for each of the TARP stoichiometry variants. Bars denote the SEM and

the n numbers for each group are indicated in white at the bottom of the histogram. One-

way ANOVA showed a significant effect of γ-2 stoichiometry on GluA1/2 steady-state current

percentage (F (2, 33.51) = 38.23, P= 2.25 × 10-9).
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Figure 5.7 continued: For pairwise tests shown in panels D and E, asterisks mark significant

difference vs. GluA1/2 alone (∗ P< 0.05, ∗∗∗ P< 0.001; Welch t-test), while hashes mark

significant difference vs. GluA1-γ-2 + GluA2-γ-2 (4 TARP) (### P< 0.001; Welch t-test).

At the holding potential of -80 mV (see Fig. 5.7), the Iss showed a similar pattern of

dependence on γ-2 stoichiometry as at +40 mV, while desensitization τw was affected

differently. Desensitization τw was significantly slowed compared with TARPless con-

trols (6.741 ± 0.326 ms) both by the presence of two γ-2 molecules (8.056 ± 0.444

ms, P= 0.042) and by the presence of four γ-2 molecules (8.765 ± 0.342 ms, P= 3.83

× 10-4). Thus, at -80 mV partially TARPed receptors (2 TARP stoichiometry) appeared

to be as effective as their fully TARPed counterparts at slowing desensitization τw (P=

0.213).

In contrast, the Iss at -80 mV was significantly increased only when GluA1/2 AMPARs

were fully TARPed (20.356 ± 1.903 % vs. 3.337 ± 0.694 %; P= 1.1 × 10-7) and not

partially TARPed (2.873 ± 0.628 % P= 0.62). The percentage of steady-state current

in AMPARs TARPed with two molecules of γ-2 was significantly less than in those

TARPed with four molecules of γ-2 (P= 1.1 × 10-7).

5.3.4 The effect of TARP stoichiometry on AMPAR recovery from desensitiza-

tion

Recovery from desensitization was measured using a paired pulse protocol (a desen-

sitizing 100 ms pulse was followed by a 10 ms pulse, both of 10 mM Glu) with increas-

ing interpulse interval. The data for each patch were fitted to a Hodgkin-Huxley-type

function (Carbone and Plested, 2012), allowing t50 (the time needed for the second

peak to recover to 50 % of the first peak) to be obtained from the fit.

At the positive holding potential of +40 mV (Fig. 5.8), t50 for fully TARPed GluA1/2

receptors was significantly briefer than for TARPless controls (19.138 ± 4.057 ms

vs. 41.033 ± 2.916 ms, P= 0.0029). By contrast, partially TARPed AMPARs showed

no significant speeding in their recovery from desensitization (GluA1-γ-2 + GluA2:

36.536 ± 4.186 ms P= 0.89; GluA2-γ-2 + GluA1: 35.479 ± 4.239 ms P= 0.89). Fur-

thermore, the two variants of 2 TARP stoichiometry showed no significant difference in

their t50 values from each other (P= 0.89) or from the fully TARPed GluA1/2 AMPARs

(GluA1-γ-2 + GluA2: P= 0.051; GluA2-γ-2 + GluA1: P= 0.053).
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Figure 5.8: Fully TARPed AMPARs showed a significantly faster recovery from desen-

sitization at +40 mV than TARPless controls. (A) Record of recovery from desensitization

from a representative patch expressing TARPless GluA1/2 receptors. The average responses

at each interpulse interval were aligned at the 20 % rise of the first peak and overlaid. (B) As

for A, but for a patch expressing GluA1-γ-2 + GluA2-γ-2 (4 TARP). (C) Hodgkin-Huxley-type

fit to the example TARPless GluA1/2 patch shown in panel A. The amplitude of the second

peak as fraction of the amplitude of the first peak was plotted on a linear scale against the

interpulse interval (logarithmic scale). t50 for this patch is indicated by the dashed line and

displayed on the graph. (D) As for C, but for a patch expressing GluA1-γ-2 + GluA2-γ-2 (4

TARP) (same patch as in panel B). (D) Histogram showing t50 for each of the TARP stoichiom-

etry variants. Bars denote the SEM and the n numbers for each group are indicated in white at

the bottom of the histogram. One-way ANOVA showed a significant effect of γ-2 stoichiometry

on GluA1/2 recovery from desensitization (F (3, 16.95) = 6.07, P= 0.0053). For pairwise tests,

asterisks mark significant difference vs. GluA1/2 alone (∗∗ P< 0.01; Welch t-test).
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Figure 5.9: γ-2 stoichiometry had no effect on GluA1/2 recovery from desensitization at

-80 mV. (A) Record of recovery from desensitization from a representative patch expressing

GluA1-γ-2 + GluA2-γ-2 (4 TARP). The average responses at each interpulse interval were

aligned at the 20 % rise of the first peak and overlaid. (B) Hodgkin-Huxley-type fit to the

example fully TARPed patch shown in panel A. The amplitude of the second peak as frac-

tion of the amplitude of the first peak was plotted on a linear scale against the interpulse

interval (logarithmic scale). t50 for this patch is indicated by the dashed line and displayed

on the graph. (C) Histogram showing t50 for each of the TARP stoichiometry variants. Bars

denote the SEM and the n numbers for each group are indicated in white at the bottom of

the histogram. One-way ANOVA showed no significant effect of γ-2 stoichiometry on GluA1/2

recovery from desensitization (F (2, 11.16) = 1.68, P= 0.231).

At the -80 mV holding potential t50 was similar across TARP stoichiometries: TARP-

less GluA1/2: 31.163 ± 4.074 ms; GluA1-γ-2 + GluA2 (2 TARP): 34.008 ± 2.046 ms

and GluA1-γ-2 + GluA2-γ-2 (4 TARP): 27.965 ± 2.471 ms. Thus we did not detect

any overall effect of γ-2 stoichiometry on recovery from desensitization at -80 mV (see

Fig. 5.9).

The results shown above suggest that the effect of γ-2 on GluA1/2 recovery from

desensitization may depend on both TARP stoichiometry and the holding potential, so
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that the effect of γ-2 on GluA1/2 recovery from desensitization is more pronounced at

positive membrane potentials. By contrast, previous studies on GluA1 receptors (Priel

et al., 2005), suggested that γ-2 speeds GluA1 recovery from desensitisation at the

negative holding potential of -60 mV. However, Priel et al. (2005) used a different way

of quantifying recovery from desensitization: measured recovery time constant from

a single exponential fit, rather than the t50 obtained here from a Hodgkin-Huxley-type

fit. Thus, the differences in experimental methods could contribute to the discrepancy

between our findings and those of Priel et al. (2005). However, given that in our

recently published study, co-expression of γ-2 did not accelerate the recovery from

desensitization of either GluA2 or GluA3 (Cais et al., 2014), it is possible that the

accelerated recovery from desensitization upon γ-2 co-assembly is a feature specific

to GluA1 and does not apply to heteromeric GluA1/2 AMPARs.

5.3.5 Attempts to estimate single-channel conductance using NSFA provided

some insight into the assembly of AMPARs with different γ-2 stoichiome-

tries

As co assembly of AMPARs with TARPs is known to increase mean-single channel

conductance (Tomita et al., 2005; Shelley et al., 2012; Soto et al., 2007, 2009; Jackson

et al., 2011), we were also interested to determine how γ-2 stoichiometryinfluenced

this parameter. NSFA was applied to currents evoked by 100 ms applications of 10

mM Glu. For TARPless GluA1/2 AMPARs, NSFA provided parabolic fits to the data

points both at +40 mV (Fig. 5.10 panel A) and -80 mV (Fig. 5.11 panel A). It was,

however, more difficult to apply NSFA to data obtained from the tandem AMPAR-γ-

2 constructs. The low apparent Po, particularly of the GluA1-γ-2 tandem + GluA2

(2 TARP) combination at +40 mV (Fig. 5.10 panel B), meant it was not possible

to obtain a realistic estimate of the number of channels (very high estimates of N

were obtained). This suggested that rather than fitting a parabolic function, a straight

line could be fitted to the first 3 data points, giving only a conductance estimate. In

addition, upon the analysis of the currents from fully TARPed AMPARs, it became

evident that NSFA cannot be successfully applied to data from patches co-expressing

GluA1-γ-2 and GluA2-γ-2 tandems.

At both +40 mV (Fig. 5.10 panel D) and -80 mV (Fig. 5.11 panel C) the average

current variance vs. mean current plots for AMPARs TRAPed with 4 γ-2 molecules

failed to ass through the origin, suggesting the presence of a a component that added

some current, but little or no variance. When individual patches for the 4 TARP com-

bination were examined, the parabolic fit (constrained to go through the origin) was

often visibly shallower than the data points or the software used was unable to fit a
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parabolic relationship to the data points (fitting failed). A similar phenomenon had

previously been observed in the lab for GluA2(R) homomeric AMPARs TARPed with

γ-2. These receptors were shown to activate a mixture of low and high conductance

channels. This resulted in a shift of the current-variance plots from the origin, as the

low conductance openings added current but almost no variance (Dr Ian Coombs,

unpublished data).

Figure 5.10: At +40 mV, the current variance vs. mean current plot for fully TARPed

GluA1/2 AMPARs was shifted from the origin. (A) Average (n=15) normalised current-

variance relationship for TARPless GluA1/2. Mean current (x-axis) was normalised to the

peak (1st bin). Variance was also normalised to the peak current after subtracting σb. Vertical

and horizontal error bars on the data points indicate the variance and mean current SEM

respectively. The black line shows the parabolic NSFA fit to equation 2.6 on page 61 (weighted

by the SEM). The σb parameter of the fit was constrained to 0. Inset: NSFA fit to the average

current from an example TARPless GluA1/2 patch. Current variance was plotted against mean

current. The red horizontal line indicates the σb level and the red line through the points shows

the parabolic NSFA fit to equation 2.6. (B-D) As for A, but for GluA1-γ-2 tandem + GluA2 (2

TARP, n= 10), GluA2-γ-2 tandem + GluA1 (2 TARP, n= 12) and GluA1-γ-2 tandem + GluA2-

γ-2 tandem (4 TARP, n= 11) respectively. Fitting to equation 2.6 was not performed for these

groups, as explained in the text.
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Since the 4 TARP stoichiometry in this data set was achieved by co-expressing the

GluA2(R)-γ-2 tandem with the GluA1-γ-2 tandem, it is possible that these patches

contained a mixed population of AMPARs: the fully TARPed GluA1/2 heteromers

(GluA1-γ-2 tandem + GluA2(R)-γ-2 tandem), as well as a proportion of homomers

of the GluA1-γ-2 tandem and of the GluA2(R)-γ-2 tandem. The existence of the two

populations of homomers might be suggested by low RI (see Fig. 5.3), as GluA1-γ-2

homomers would be Ca2+-permeable and thus rectifying. It is also suggested by the

NSFA characteristics which are similar to those of GluA2(R) + γ-2 homomers.

The NSFA results shown above could thus be explained by the presence of a small

population of GluA2(R)-γ-2 tandem homomers. Another possibility, however, is that

like the TARPed GluA2(R) homomers, fully TARPed GluA1/2 heteromers also give rise

to a population of low and high conductance openings. In order to distinguish between

these two hypotheses we designed an additional experiment, using the polyamine

channel blocker Philantotoxin-74 (PhTx-74).

PhTx-74 is a use- and voltage-dependent blocker of the AMPAR ion channel pore,

which blocks both Ca2+-permeable and Ca2+-impermeable AMPARs, albeit with differ-

ent affinities (Kromann et al., 2002; Nilsen and England, 2007; Poulsen et al., 2014a).

Recent studies showed that although TARPs increase the sensitivity of AMPARs to

extracellularly applied polyamines (Jackson et al., 2011), 1 mM PhTx-74 should be

sufficient to non-selectively block GluA1 homomers as well as GluA1/2 heteromers in

the presence of γ-2, leaving unblocked only γ-2-TARPed GluA2(R) homomers, which

are relatively insensitive to this blocker (Poulsen et al., 2014a).

Thus, if the fully TARPed receptors were blocked by 1 mM PhTx-74, this would sug-

gest that few GluA2R-γ-2 homomers formed and thus GluA1/2 heteromers were giv-

ing rise to a mix of high and low conductance openings. On the other hand, the

presence of a fraction of current insensitive to PhTx-74 would suggest formation of

GluA2R-γ-2 tandem homomers.

As shown in Fig. 5.12 panel B, the steady-state current from Ca2+-permeable GluA1-

γ-2 tandem receptors evoked by co-application of Glu and CTZ was almost completely

blocked by PhTx-74 during the duration of the 100 ms pulse. This pattern of response

was observed in all patches for this condition (n= 5).

In contrast, the fully TARPed Ca2+-impermeable GluA1-γ-2 tandem + GluA2-γ-2 tan-

dem receptors displayed a proportion of steady-state current that was insensitive to

PhTx-74 (panel D, Fig. 5.12). This response pattern was observed in all patches

for this condition (n= 4). The large steady-state current seen in panel D likely indi-
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Figure 5.11: At -80mV the average current variance vs. mean current plot for fully

TARPed GluA1/2 AMPARs showed similar characteristics as at +40 mV. (A) Average

(n=11) normalised current-variance relationship for TARPless GluA1/2. Mean current (x-axis)

was normalised to the peak (1st bin). Variance was also normalised to the peak current after

subtracting σb. Vertical and horizontal error bars on the data points indicate the variance and

mean current SEM respectively. The black line shows the parabolic NSFA fit to equation 2.6

on page 61 (weighted by the SEM). The σb parameter of the fit was constrained to 0. Inset:

NSFA fit to the average current from an example TARPless GluA1/2 patch. Current variance

was plotted against mean current. The red horizontal line indicates the σb level and the red

line through the points shows the parabolic NSFA fit to equation 2.6. (B-C) As for A, but for

GluA1-γ-2 tandem + GluA2 (2 TARP, n= 16) and GluA1-γ-2 tandem + GluA2-γ-2 tandem (4

TARP, n= 12) respectively. Fitting to equation 2.6 was not performed for these groups, as

described in the text.
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Figure 5.12: Response to 1 mM PhTx-74 did not exclude the possibility that the fully-

TARPed GluA1/2 AMPARs do not heteromerize completely, forming a population of

GluA2(R)-γ-2 tandem homomers. (A) Average response to a 100 ms pulse of 10 mM Glu

from a representative patch expressing fully TARPed Ca2+-permeable GluA1-γ-2 receptors.

Individual sweeps were aligned at the 20% rise before averaging. The horizontal bar marks

the duration of Glu application. (B) Average response from the same patch as in panel A.

The patch was constantly exposed to 100 µM CTZ and rapidly jumped into 10 mM Glu + 1

mM PhTx-74 (100 ms pulse, duration marked by the horizontal bar). Individual sweeps were

aligned at the 20% rise before averaging. (C) and (D) as for A and B respectively, but for a

patch expressing the heteromeric combination of tandems: GluA1-γ-2 and GluA2(R)-γ-2.

cated the presence of GluA2R-γ-2 homomers that are insensitive to PhTx-74. How-

ever, the experimental design did not allow us to quantitatively estimate the fraction of

GluA2(R)-γ-2 homomers.

The results of the experiment involving PhTx-74 block suggest that the patches co-

expressing the GluA1-γ-2 and GluA2-γ-2 tandems contained a mixture of heteromers

and GluA2(R)-γ-2 homomers. In addition, it appears that some GluA1-γ-2 homomers

also formed, as the RI values (calculated as in Fig. 5.3) for the four patches express-

ing GluA1-γ-2 tandem + GluA2-γ-2 tandem, for which PhTx-74 block was examined,

ranged from 0.68 to 0.82. Therefore, it is possible that GluA1/2 heteromeric AMPARs
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fully TARPed with γ-2 have a limited ability to assemble and that a proportion of ho-

momeric receptors forms under these conditions.

5.3.6 AMPARs that contain more than one type of TARP are functional

TARP stoichiometry has mostly been considered in terms of the number of molecules

of a single type of TARP per AMPAR. The co-assembly of more than one TARP sub-

type in an AMPAR complex is a different aspect of TARP stoichiometry. Previous

studies suggest that TARPs γ-2 and γ-7 might co-assemble with the same receptor

(Kato et al., 2007; Studniarczyk et al., 2013). However this possibility has not been

directly investigated and it is not known whether such receptors are functional.

The experiments described below were designed to address this issue, and if these

receptors were functional, to investigate their properties. A previous study from our

lab showed that unlike AMPARs TARPed with γ-2, those TARPed with γ-7 are CNQX-

insensitive (Bats et al., 2012). Thus, we decided to examine CNQX pharmacology of

AMPARs TARPed simultaneously with γ-2 and γ-7. We used tandem AMPAR con-

structs and heteromeric GluA2/3 AMPARs to ensure a fixed stoichiometry of the re-

ceptors investigated (see Fig. 5.2). GluA2/3 heteromers as well as TARPs γ-2 and

γ-7 are present in the cerebellar stellate cells (Fukaya et al., 2005; Soto et al., 2007;

Bats et al., 2012). In addition, a recent study by Studniarczyk et al. (2013) showed

that γ-2 and γ-7 co-precipitate from cerebellar lysates. Thus, we decided to focus

specifically on the combination of GluA2/3 AMPARs with γ-2 and γ-7. 10 µM CNQX

was used as previously published (Bats et al., 2012).

Receptors containing both γ-2 and γ-7 (two possible permutations: GluA2(R)-γ-2

+ GluA3-γ-7 and the converse: GluA2(R)-γ-7 + GluA3-γ-2) were compared with

GluA2/3 AMPARs that were either TARPless or in which all subunits were TARPed

with γ-2 or with γ-7. In each cell, the current evoked by CNQX was quantified as a

percentage of Glu-evoked current (see Materials and Methods). Isolated tsA201 cells

were clamped at +40 mV to minimise the contribution of GluA3 homomers to the cur-

rents recorded. In addition, cells with RI < 0.7 (or those cells for which no RI measure

was obtained) were excluded from the analysis. The agonist application method was

validated using GluA4 + γ-2, an AMPAR/TARP combination that had previously been

reported to respond to CNQX (Bats et al., 2012). We obtained CNQX-evoked currents

(data not shown) in 4 out of 4 cells examined (Vh= -40 or -80 mV, in the presence of

100 µM intracellular spermine).
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Figure 5.13: CNQX is a partial agonist on AMPARs simultaneously TARPed with both

γ-2 and γ-7. (A) Top panel: The change in whole-cell holding current (Ihold) in response to

CNQX (10 µM) and Glu (50 µM) for a representative cell expressing GluA2-γ-2 and GluA3-γ-

7. The cell was constantly exposed to 50 µM CTZ. Holding current is plotted (on the y-axis)

against sweep number. The dashed line represents the initial Ihold level (in control before

CNQX application). Each dot represents the Ihold measurement for a single sweep. Appli-

cations of CNQX and Glu are of equal duration (20 sweeps) and are indicated on top of the

graph by a grey and black line respectively.
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Figure 5.13 continued: The gap between the CNQX and Glu applications represents the

wash-out period (not shown) in which the solutions in both lines of the application tool were

exchanged. CNQX/Glu ratio for that cell is shown above the trace. Inset: CNQX application

(with control being applied before and after) shown on a smaller current scale (indicated by

the scale bar). Each dot represents the Ihold measurement for a single sweep. Bottom panel:

Series resistance corresponding to the current trace shown in the top panel. Each dot repre-

sents the Rs measure for a single sweep. (B) As in A, but for a representative cell expressing

TARPless GluA2/3. Note that no response to CNQX could be observed. (C) Box and whisker

plot of the CNQX to Glu response ratios (whole-cell steady-state responses in CTZ; CNQX

current is expressed as % Glu current) for GluA2/3 (n= 8), GluA2(R)-γ-2+GluA3-γ-2 (n= 6),

GluA2(R)-γ-7+GluA3-γ-7 (n= 5), GluA2(R)-γ-2+GluA3-γ-7 (n= 7) and GluA2(R)-γ-7+GluA3-

γ-2 (n= 11). The box shows the 25-75 percentile, while the whiskers are the 10-90 percentile.

Individual data points are overlaid on the plot (open circles). The dashed line shows the 0

level. One-way ANOVA showed a significant overall effect of the different TARP combinations

on the CNQX to Glu response ratio (F (4, 14.64) = 4.08 , P= 0.0202). (D) Plot of CNQX/Glu ratio

against the Glu current amplitude for all the cells. Outliers are circled in red (the outlier point

is that located in the center of the red circle). Outliers were calculated as points outside 1.5

× IQR (inter-quantile range). Note that most of the outliers occur at low IGlu amplitudes (<

400 pA). This suggests that in some cells with relatively small currents, noise produced by

baseline fluctuations could affect the CNQX/Glu ratio measurement.

Furthermore, as expected no CNQX current was observed in cells transfected with

TARPless GluA2/3 (ICNQX/IGlu = -0.116 ± 1.130 %). Similarly, receptors fully TARPed

with γ-7 showed no response to CNQX (-0.088 ± 0.203 %), supporting the view

that AMPAR TARPed with γ-7 are CNQX-insensitive (Bats et al., 2012). However, as

the earlier study used native AMPARs (in cerebellar stellate cells) and recombinant

AMPARs co-expressed with γ-7, it was unclear whether the lack of CNQX sensitivity

was a property of γ-7 or whether it resulted, for example, from γ-7 stoichiometry being

different from that of γ-2. AMPARs investigated in the experiments shown above were

fully TARPed (4 TARP molecules per AMPAR), which suggest that, even at 4 TARP

stoichiometry, γ-7 conveys a lack of CNQX sensitivity on AMPARs.

By contrast, AMPARs fully TARPed with γ-2 responded to CNQX (1.736 ± 0.463

%), as did those TARPed with two γ-2 molecules and two γ-7 molecules (GluA2-

γ-2 + GluA3-γ-7: 3.542 ± 1.454 % ; GluA2-γ-7 + GluA3-γ-2: 0.558 ± 0.579 %).

However, the large degree of scatter seen in the data set and the fact that multiple

statistical tests were performed simultaneously (with appropriate P-value corrections)

resulted in no significant differences between the individual groups, despite an overall

significant effect of the different TARP variants on CNQX/Glu ratio. The statistical

tests performed to test between the individual groups are listed in Table 5.1.
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Test No. Test pair P-value

1 GluA2/3 vs. GluA2-γ-2 + GluA3-γ-2 0.81
2 GluA2/3 vs. GluA2-γ-7 + GluA3-γ-7 1.00
3 GluA2/3 vs. GluA2-γ-2 + GluA3-γ-7 0.57
4 GluA2/3 vs. GluA2-γ-7 + GluA3-γ-2 1.00
5 GluA2-γ-2 + GluA3-γ-2 vs. GluA2-γ-7 + GluA3-γ-7 0.091
6 GluA2-γ-2 + GluA3-γ-2 vs. GluA2-γ-2 + GluA3-γ-7 1.00
7 GluA2-γ-2 + GluA3-γ-2 vs. GluA2-γ-7 + GluA3-γ-2 0.80
8 GluA2-γ-7 + GluA3-γ-7 vs. GluA2-γ-2 + GluA3-γ-7 0.42
9 GluA2-γ-7 + GluA3-γ-7 vs. GluA2-γ-7 + GluA3-γ-2 1.00
10 GluA2-γ-2 + GluA3-γ-7 vs. GluA2-γ-7 + GluA3-γ-2 0.65

Table 5.1: Individual TARP combinations did not differ in CNQX/Glu ratio.

A notable observation from the experiments described above is that the CNQX-evoked

currents generally represented only a small fraction of the Glu-evoked currents. Sev-

eral factors could contribute to the relatively low CNQX/Glu ratios observed in this

study. Sensitivity to CNQX of AMPAR subunits TARPed with γ-2 appears to vary

(Bats et al., 2012), with GluA3 and GluA1 showing smaller CNQX/Glu ratios than

GluA4. No data on GluA2(R) seemed to be available in literature, presumably due

to poor expression of these receptors (Greger et al., 2002, 2003). From the exper-

iments described above it, appeared that GluA2/3 heteromers show relatively small

responses to CNQX, in line with the previous study by Bats et al. (2012) suggest-

ing that GluA3-containing AMPARs have limited CNQX sensitivity when TARPed with

γ-2.

Previous studies reporting CNQX-evoked currents used negative holding potentials

and large driving forces (-70 mV, Menuz et al. 2007 and -80 mV, Bats et al. 2012),

while here the cells were held at +40 mV. Thus it is possible that in some cells, we

failed to detect CNQX-evoked current due to the small driving force resulting in a low

current amplitude. Indeed, in the data set shown here CNQX-evoked currents rarely

exceeded 20 pA in amplitude and were only a small fraction of Glu-evoked currents.

As shown in Fig. 5.13 panel D, most of the outliers were cells in which the Glu current

amplitude was small. It is thus possible, that in some cells agonist-unrelated fluctua-

tions in Ihold affected the measurement of CNQX-evoked current. On the other hand,

in cells expressing CNQX-insensitive AMPARs, baseline fluctuations during CNQX

application would have a larger effect on the CNQX/Glu ratio measurement when the

Glu current was small, resulting in data points often falling further away from the zero

line than for larger Glu currents. Thus, it would be of interest to perform similar ex-

periments in a high-expression system, such as Xenopus laevis oocytes, which could

provide means to more accurately quantify the dependence of CNQX-evoked current

on TARP stoichiometry.
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5.4 Discussion

TARP stoichiometry is an aspect of TARP function which to date has been given rela-

tively little attention. Previous studies suggest that several properties of AMPARs vary

with TARP stoichiometry. Kainate efficacy (relative to glutamate) has been shown to

increase proportionally to the stoichiometry of TARPs γ-2 and γ-8 (Shi et al., 2009).

A study by Milstein et al. (2007) suggested that in comparison with wt, granule cells

from stg heterozygous mice showed a speeding of mEPSC decay time and a reduc-

tion in kainate potency. It is controversial whether γ-2 stoichiometry is reduced in stg

heterozygotes, since the ratio of kainate to AMPA responses in these cells has been

reported not to differ from that seen in wt granule cells (Kim et al., 2010). However,

overexpression of γ-2 in cerebellar granule cells from stg mice produced an increase

in mEPSC decay time and kainate potency relative to wild-type (Milstein et al., 2007),

so that when more TARP became available an increase in mEPSC decay time was

observed. This may suggest that the stoichiometry of γ-2 is normally not saturated

in cerebellar granule cells, allowing γ-2 overexpression in wt cells to affect mEPSC

properties. In our study, both deactivation and desensitization of AMPARs appeared

to depend on γ-2 stoichiometry. Since deactivation and desensitization are thought

to contribute to mEPSC decay, our findings support those previously presented in

literature, which suggested that gating of AMPARs is influenced by TARP stoichiome-

try.

Our findings suggest that some AMPAR parameters may depend both on TARP stoi-

chiometry and on the holding potential. The inclusion of both 2 and 4 γ-2 molecules

prolonged AMPAR desensitization when the currents were examined at -80 mV. How-

ever, at +40 mV, fully TARPed, but not partially TARPed receptors showed a slowing of

desensitization compared with TARPless GluA1/2 AMPARs. This suggests that par-

tially TARPed AMPARs may prolong desensitization when the cell membrane potential

is negative, but not when it is depolarised. Thus, charge transfer through these recep-

tors may be limited at depolarised membrane voltages, which could affect synaptic

transmission. It is worth noting, however, that fully TARPed AMPARs showed a slow-

ing of desensitization regardless of whether V m was positive or negative. This may

imply that some effects of TARP stoichiometry in native receptors could be influenced

by neuronal activity.

In summary, our findings suggest that a number of AMPAR functional properties are

modified by γ-2 stoichiometry. This could reflect an additive effect of the consecutive

γ-2 molecules assembled, or could result from the occupation of two types of non-

equivalent TARP binding sites (Schwenk et al., 2012), as shown schematically in Fig.

5.14. These two types of binding sites could result from the AMPAR symmetry at the
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LBD level observed in the GluA2 crystal structure (Sobolevsky et al., 2009). Irrespec-

tive of the molecular mechanism, however, it appears that TARP stoichiometry may

provide a mean for modulating native AMPAR responses. Thus, neurons may have,

as of yet unknown, mechanisms for controlling TARP stoichiometry.

The ratio of responses to KA and Glu has been previously reported to be a sensi-

tive measure of TARP stoichiometry (Shi et al., 2009; Gill et al., 2011). Together with

biochemical assays, the amplitude of kainate-evoked current was used in a study by

Kim et al. (2010) to suggest that in a recombinant system the stoichiometry of γ-2

increases when more TARP becomes available. Thus, it appears that in recombinant

system the amount of available TARP controls stoichiometry. By contrast, the con-

trol of TARP stoichiometry in neurons appears to be more complex. Previous reports

suggest that the stoichiometry of TARP γ-8 varies between hippocampal cell types

(Shi et al., 2009) and that cerebellar Purkinje cells contain two molecules of TARP

γ-7 per AMPAR (Gill et al., 2011). This could suggest, that in neurons, one or more

mechanisms for controlling TARP stoichiometry applies. TARP stoichiometry on na-

tive AMPARs could potentially be controlled by simultaneous co-assembly of TARPs

and other auxiliary subunits with the same AMPAR (Kato et al., 2010a; Gill et al.,

2011), however the detailed mechanism appears unclear (Herring et al., 2013).

An interesting finding has arisen from our experiments on PhTx-74 block of fully

TARPed GluA1/2 heteromers. The incomplete block of these receptors by PhTx-74

suggest that their ability to assemble may be limited, possibly resulting in simultane-

ous formation of heteromers as well as GluA1 and GluA2(R) homomers. This limited

assembly could result from the use of tandem constructs, but could also suggest a

correlation between TARP stoichiometry and AMPAR assembly, i.e. that fully TARPed

AMPARs form homomers more readily than partially TARPed ones. Thus it is possible

that AMPAR composition may depend on TARP stoichiometry. However, a number of

additional experiments would be necessary to gain further insight into the effect of

TARP stoichiometry on AMPAR assembly.

Native gel western blotting coupled with tagging of one of the tandem constructs used

here could allow separation of the putative receptor populations by molecular weight.

Thus, it could be possible to investigate whether three separate populations of recep-

tors indeed form upon co-transfection of the GluA1-γ-2 tandem with the GluA2(R)-

γ-2 tandem and, if so, what the relative contribution of each of these AMPAR pop-

ulations is. These additional biochemical experiments would also help to clarify our

findings and differentiate clearly between those effects observed in these study that

were produced by altering TARP stoichiometry and those that could have arisen from

contamination of the fully-TARPed receptor population by GluA1-γ-2 homomers and

GluA2(R)-γ-2 homomers.

149



Figure 5.14: Schematic representation of the four γ-2 binding sites at the level of

AMPAR LBD layer. The schematic representation of the AMPAR tetramer co-assembled

with four TARPs is overlaid on the cross-section of AMPAR taken at the LBD level (adapted

from Sobolevsky et al. 2009). Note that, as suggested by Schwenk et al. (2012), given the

LBD symmetry the γ-2 binding sites could form two equivalent pairs (marked purple and blue),

rather than all being equivalent.

In addition to investigating the effect of γ-2 stoichiometry on AMPAR properties, we

also used tandem constructs to co-express TARPs γ-2 and γ-7 in the same AMPAR

complex. AMPARs TARPed with two different TARPs simultaneously formed func-

tional channels, a finding which has no been reported previously. Furthermore, CNQX

currents were detected in cells transfected with GluA2/3 AMPARs co-assembled with

γ-2 or both γ-7 and γ-2, suggesting that two molecules of γ-2 per AMPAR are suffi-

cient to convey CNQX sensitivity on AMPARs, even when the other two TARP bind-

ing sites are occupied by a CNQX-insensitive TARP. Thus it is possible that in the

cerebellum, TARPs γ-2 and γ-7 co-assemble with the same AMPARs to modify their

properties, in line with the previous report of the two TARPs co-precipitating from

cerebellar lysates (Studniarczyk et al., 2013). In addition, we have confirmed pre-

vious results from our lab showing that AMPAR association with TARP γ-7 fails to

convert CNQX from an antagonist to a partial antagonist (Bats et al., 2012), and, by

fixing the stoichiometry of γ-7, we showed that the lack of CNQX sensitivity conveyed

upon AMPARs is a property of γ-7 that is independent of stoichiometry.
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The experiments described in this Chapter suggest that both the number of TARP

molecules associated with an AMPAR and simultaneous co-assembly of more than

one TARP subtype could shape AMPAR properties. However, TARPs are not the only

auxiliary AMPAR subunits known. In addition to the relatively well-studied CNIH pro-

teins (Schwenk et al., 2009; Kato et al., 2010a; Gill et al., 2011; Coombs et al., 2012;

Herring et al., 2013), a number of other AMPAR auxiliary subunits have been iden-

tified (von Engelhardt et al., 2010; Schwenk et al., 2012). Even for the best studied

of these, there is limited data available on the location of their binding site on the

AMPAR tetramer, or the co-assembly in the same complexes as TARP family mem-

bers. Thus, a complex network of AMPAR interacting partners emerges, with AMPAR

synaptic responses likely to be shaped by all the associated auxiliary proteins in ways

which are still poorly understood. However, as most native AMPARs are though to

co-assemble with TARPs, the number and nature of TARP molecules associated with

the AMPAR complex remains an important factor determining the properties of native

AMPAR responses.
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6

General Discussion

The experiments described in this Thesis aimed to provide insight into the molecular

mechanisms underlying AMPAR interaction with their auxiliary subunits, TARPs. We

focused mostly on the prototypical TARP γ-2. In the first two Experimental Chapters

we investigated regions of interaction within the extracellular domains of γ-2 and the

AMPAR, that had been identified by our collaborators using peptide arrays.

In Experimental Chapter 1 (Chapter 3) we focused specifically on the first extracel-

lular loop of γ-2 (Ex1), which has previously been reported to contribute to TARP

interaction with the AMPAR (Tomita et al., 2005; Cho et al., 2007; Milstein et al., 2007;

Milstein and Nicoll, 2009). We compared the ability of wt γ-2 and several γ-2 mutants

to modulate functional properties of GluA1 and GluA2Q AMPARs. All of the mutants

contained either Ala substitutions or deletions of 3-4 amino acids, which resulted in

disruption of specific regions of interaction between Ex1 of γ-2 and the AMPAR. The

mutants showed an impaired ability to modulate AMPAR function, when compared to

wt γ-2. However, they differed in their specific effects on the various AMPAR prop-

erties and often behaved differently depending on whether they were co-expressed

with GluA1 or with GluA2Q. Thus, the data presented in Experimental Chapter 1 sug-

gested that different regions of Ex1 modulate distinct AMPAR properties and, further-

more, that this interaction may be AMPAR subunit-specific. It is, however, worth noting

that all of the Ex1 mutants still acted as TARPs, affecting numerous AMPAR proper-

ties, some to the same extent as wt γ-2. This further supports the view that Ex1 is

not the only domain that binds to the AMPAR (Tomita et al., 2005), and highlights the

importance of other domains of γ-2 for AMPAR/TARP interaction.

The WRT64-66 mutation had the most profound and most consistent effect on the abil-

ity of γ-2 to modulate AMPARs. This mutation affected the tip region of Ex1, close

to the two cysteines, which are though to participate in maintenance of Ex1 struc-
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ture. Furthermore, the HFPE82-85 deletion showed multiple effects on the properties

of AMPARs examined, despite this region being present in array peptides that were

both positive and negative for AMPAR binding, suggesting that the effects of this mu-

tation may be produced by the shortened length of Ex1. Thus, it appears that a

specific conformation of Ex1 is important for the modulation of AMPAR properties by

γ-2, suggesting a specific arrangement of Ex1 in AMPAR/TARP complexes. Based on

our structural and functional data, we hypothesise that in an AMPAR/TARP complex

the Ex1 of γ-2 is located between the NTD and the LBD of the AMPAR and inter-

acts with both domains to bring them closer together. However, since our structural

data come from peptide arrays which use linear peptides rather than whole proteins

with a defined structure, it remains unclear which interactions occur when the com-

plete TARP and AMPAR assemble together. Some interaction regions identified by

the peptide array may not be available for AMPAR binding in native receptors. Thus,

further structural data would be required to reveal the detailed molecular arrangement

of the AMPAR/TARP complex.

Supported by structural and functional data, our hypothesis concerning the position

of Ex1 between the NTD and the LBD within the AMPAR/TARP complex suggests a

multifaceted interaction of Ex1 with these two distinct domains of the AMPAR. In con-

trast with the LBD, the role of the AMPAR NTD has been given relatively little attention

to date. Although previous studies have shown that AMPARs can still function in the

absence of their NTD (Pasternack et al., 2002) and that AMPAR modulation by γ-2 is

retained in these receptors (Bedoukian et al., 2006), we were interested if the NTD

contributes functionally to the modulation of AMPAR properties by γ-2.

The data presented in Experimental Chapter 2 (Chapter 4) suggest that the NTD of

GluA2 has a number of modulatory roles in receptor function. The absence of the NTD

resulted in prolonged deactivation and desensitization of both TARPless and TARPed

GluA2, suggesting an ’inhibitory’ effect of this domain on GluA2 gating. By contrast,

mean single-channel conductance was reduced when the NTD was lacking, which

suggests that the NTD may stabilise higher conductance states of the AMPAR, an

effect which could arise for instance from the NTD stabilising ligand binding. However,

our data suggest that NTD deletion does not affect the function of the associated

TARP. This suggests, that the interactions between the NTD and the TARP identified

using peptide arrays have little influence on TARP-mediated modulation of AMPAR

function. However, these interactions may play a more structural role, given that the

proposed arrangement of the TARP between the NTD and the LBD would require

substantial repositioning of the NTD. This structural role may be especially important

in native systems, where the NTD of AMPARs have been shown to interact with a

variety of synaptic partners (O’Brien et al., 1999; Saglietti et al., 2007; Sia et al.,
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2007). It is currently unclear if Ex1 of TARPs might also interact with synaptic partners

present in the cleft. Since a role for TARPs in dendritic growth has been reported

(Hamad et al., 2014), it would be interesting to investigate whether, together with

the AMPAR NTD, the Ex1 of TARPs may contribute to interactions with extracellular

synaptic structures.

In Experimental Chapter 3 (Chapter 5) of this Thesis, we described experiments that

were designed to add a broader context to the detailed molecular study described in

the first two Experimental Chapters. We investigated the properties of AMPAR/TARP

complexes as a whole, in particular with relation to TARP stoichiometry. By employ-

ing AMPAR-TARP tandem constructs, covalently linking the two proteins, we were

able to express AMPAR/TARP complexes with a defined γ-2 stoichiometry of 0, 2

or 4 TARP molecules. We found that a number of functional AMPAR properties,

such as gating kinetics and the fraction of the steady-state current, vary with γ-2

stoichiometry. This agrees with previous studies that have suggested that TARP sto-

ichiometry affects AMPAR function (Shi et al., 2009; Gill et al., 2011). Indeed, the

stoichiometry of native AMPARs has been proposed to vary (Shi et al., 2009) and

this variability may contribute to the diversity of AMPAR-mediated synaptic transmis-

sion. Furthermore, we found that at negative membrane potentials, GluA1/2 AMPARs

showed prolonged desensitization time constant when the receptors contained only

two molecules of γ-2. Thus, these ’partially TARPed’ receptors could be important for

shaping high-frequency responses at synapses where desensitization contributes to

EPSC decay.

We have also considered the possibility that two distinct TARP subtypes may co-

assemble within the same AMPAR complex. TARPs γ-2 and γ-7 have been shown

to co-precipitate from cerebellar lysates (Studniarczyk et al., 2013). However, it was

unclear whether this reflected co-assembly of the two different TARPs with the same

AMPAR, or the presence of distinct AMPARs linked together via synaptic scaffold-

ing proteins. We thus used tandem AMPAR/TARP complexes to express receptors

TARPed simultaneously with γ-2 and γ-7 to decide if these were functional.

Furthermore, we investigated the ability of CNQX to activate these AMPARs, since

TARPs γ-2 and γ-7 differ in their ability to convert CNQX into a partial agonist (Bats

et al., 2012). AMPARs containing both γ-2 and γ-7 were found to respond to CNQX,

suggesting that, in this respect, γ-2 dominates over γ-7. Thus, our results suggest

that when type I and type II TARPs co-assemble within the same AMPAR complex,

they produce functional receptors.

Given that the molecular weight of a native AMPAR complex as seen on BN PAGE is

154



more than 669 kDa (Vandenberghe et al., 2005b), which largely exceeds the molec-

ular weight that can be deduced for an AMPAR tetramer (a subunit is ∼100 kDa in

molecular weight, as reported by Rogers et al., 1991), it is possible that a number of

auxiliary AMPAR subunits, including TARPs, may be associated in a single complex

with native receptors. In light of the recent discoveries identifying a number of other

AMPAR auxiliary subunits (Schwenk et al., 2009; von Engelhardt et al., 2010; Shanks

et al., 2012; Schwenk et al., 2012), it appears that the co-assembly of two different

TARPs within the same complex, as well as the co-assembly of TARPs with other

auxiliary subunits proposed by Schwenk et al. (2012) could potentially increase the

diversity of AMPARs involved in fast excitatory transmission in the CNS. Indeed, as

suggested by Schwenk et al. (2012), AMPARs may form multimeric complexes with

an apparent molecular mass of 0.6-1 MDa, where the tetrameric receptor forms the

core of the complex with various auxiliary subunits in the periphery.
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