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Abstract 

Investigations into a number of hetero-junction and nanoceramic materials systems for metal oxide 

semiconductor (MOS) gas sensing for potential environmental and bio-sensing applications are 

presented.  

The hetero-junction study encompasses investigations into various composite n-n hetero-contact 

systems such as WO3-ZnO and SnO2-ZnO and a p-n hetero-contact system, specifically CTO 

(Chromium Titanium Oxide) - ZnO. The facile fabrication of various arrays of hetero-junction MOS gas 

sensor devices has been demonstrated. A simple change in the compositional contribution of an 

individual metal oxide within a composite, exhibits the ability to tune the composite’s responsivity and 

selectivity. The hetero-junction systems were characterized by various techniques including Scanning 

Electron Microscopy (SEM), Raman spectroscopy, X-Ray Diffraction (XRD) and X-Ray Photoelectron 

Spectroscopy (XPS) and the influence of the physical and chemical properties of these materials 

towards the associated gas sensing properties, deduced. Further, the influence of fundamental 

properties of junctions such as contact potential and packing structure, towards the sensing properties, 

are also discussed. 

The nanomaterials study encompasses investigation into ZnO semiconducting oxides fabricated by 

various emerging fabrication technologies including Continuous Hydrothermal Flow Synthesis (CHFS) 

and other relatively high temperature routes. The chemical and physical properties of the 

nanoceramics have been investigated by various techniques including Transmission Electron 

Microscopy (TEM), Scanning Electron Microscopy (SEM) and Brunauer Emmett Teller (BET) surface 

area measurements. The investigation demonstrates emerging techniques for the production of 

nanomaterials, which can be successfully used in MOS gas sensing for the desired applications. 

Further, the study shows that the behaviour of the nanomaterials is complex and material surface area 

is not the only deterministic factor of enhanced responsivities, but microstructural factors such as 

morphology and particle size, as well as heat-treatment conditions are all influential over the overall 

sensing properties. 

This thesis presents an overview of emerging material systems for MOS gas sensing applications. 
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Chapter 1 : Introduction  

1.1 Gas Sensor Technology 

Chemical gas sensing technology stands as a prominent area of research and development in a 

diverse number of academic and industrial fields, in particular those spanning the physical sciences, 

materials science and electronics engineering. This motivation is driven by the significance of this 

technology in a diverse number of areas such as environmental monitoring, the security sector, 

medical diagnostics and the food industry [1, 2]. Recently, in an article by ‘Global Industry Analysts 

Inc.’, it was reported that the global chemical sensing market is projected to reach $17.28 billion 

dollars by 2015 [3]. 

Amongst the chemical sensor technologies that span the capability to detect gases, electrochemical 

sensors, optical sensors, thermal sensors, and chemiresistive sensors are examples of the most 

widely used detection technologies in the field [4, 5].  

Of all the mentioned sensor types, electrochemical sensor technology is the largest and oldest group 

of chemical sensor types [6], in which an electric signal is generated when a chemical oxidation or 

reduction reaction occurs (between the gas and the electrodes) in an electrochemical cell [7]. During 

the process of this electrochemical reaction, chemical changes occur at the electrodes, as well as 

charge conduction taking place through the bulk of the electrolyte (which is in contact with the 

electrode) [6]. Chemical modulation of the reactions that occur at the electrodes, as well as the charge 

transport, serve as a basis of the sensing process [6], with the generated electric current from the 

reaction being measured. Advantages of this technology are the immediate generation of electric 

signals i.e. quick response times [8], as well as the linearity which allows ease of calibration and more 

precise detection of low concentration ranges [7]. However the nature of the transduction principle, 

limits the technology to gases which are active to oxidation and reduction reactions; and inadvertently 

introduces cross-sensitivity issues as one or more gas in the environment where detection is taking 

place, may be susceptible to reduction or oxidation as well the target gas [7]. Further, the detection 

limits of this technology are poor with respect to that of other sensor technologies. 

Optical gas sensing is a significantly more modern technology to that of electrochemical, and is a 

technique which works on the basis of spectroscopic methods, based on the chemical principles of 

adsorption and emission [4]. An Infra-Red (IR) sensor is a classic example used for gas sensing and 

works on the principle of molecular absorption, whereby the gas which has a particular IR absorption 

fingerprint, will absorb a particular wavelength from the broad range of wavelengths emitted by the IR 

source. A filter will filter out all wavelengths except that which is absorbed by the gas, and an IR 

detection unit will detect the absorbed wavelength and in this way the gas is detected [4]. The mode of 
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detection is commended due to its stability, sensitivity, selectivity in comparison to methods which are 

not optical. Further, the techniques are not disturbed by harsh environments or poisoning caused by 

some gases and thus have long shelf lives. However, the large and delicate nature of the technique 

means that its miniaturisation and mobility are limited; large spaces are required for its operation and 

large costs are required for maintenance purposes [4, 9]. In particular with miniaturised optical 

sensors, getting appropriate paths lengths is vital in order to enable appropriate responsivities.  

Thermal sensors are generally used for combustible gas detection and work on the principle of a 

resistance change of a semiconducting catalytic material, which has a temperature dependent 

conductivity [10]. When the target combustible gas comes into contact with the catalytic material of the 

thermal sensor, an exothermic combustion reaction takes place releasing heat which causes the 

temperature of the catalytic material to rise [10]. When the temperature of the sensor has equilibrated 

(promoted by heat conduction), the resulting temperature difference between the material and the 

ambient is measured indirectly by measuring the change in resistance of the material by an integrated 

thermistor [10]. The extent of heat released by the reaction, is dependent on the concentration of the 

target combustible analyte in the air and as such, the method is able to detect the concentration of the 

target gas in the environment [10]. The nature of the detection method makes it essential to find 

selective catalysts for combustible gases, otherwise it can suffer from cross-sensitivity issues. Further 

the method is only limited to the detection of inflammable gases such as hydrogen, hydrogen sulphide 

and carbon monoxide [4, 10].    

The final group of sensors, chemiresistive sensors, work on the principle of a gas sensor element 

exhibiting a change in resistance or conductance, upon exposure to the target analyte. The change in 

resistance of the element is promoted by surface induced adsorption, desorption and oxidation 

reactions of the analyte molecules upon its surface and subsequent change in charge carrier 

concentration [11, 12]. Usually the gas sensor element is a high operating temperature ceramic 

semiconducting metal oxide, and as such chemiresistive sensors are more popularly called Metal 

Oxide Semiconducting (MOS) gas sensors, which is the technology of focus in this thesis. Detailed 

introduction to this technology, the mechanism by which gas response occurs and the advantages and 

disadvantages in comparison to the other technologies, have been presented further in this Chapter in 

sections 1.2, 1.4 and 1.5. The Taguchi sensor [11, 13, 14], alluded to further in section 1.8.2, is one of 

the oldest and most commonly used chemical sensors based on MOS technology and is a device built 

around pressing and sintering powdered metal oxide materials.  

Independent of the transduction function of the technology utilised for gas sensing applications, all 

sensor devices are desired to encapsulate some fundamental properties that make them useful for 

practical applications, some of which have already been alluded to above. The most fundamental of 

these is the responsivity which is the output of the sensor as a function of the quantity applied to its 
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input, which is very commonly and incorrectly called the sensitivity [15]. The selectivity is another 

property; which is a term used to describe if a sensor responds selectively to a group of analytes or 

specifically to a single analyte [5]. A fast response time, which is the time taken for a sensor to 

respond from zero concentration to a step change in concentration [5] and a fast recovery time (which 

is the exact opposite of the response time) are also important factors that dictate assimilation of the 

kinetics of the device and its applicability in environments, particularly where immediate warning is 

required. Both these kinetic terms are usually represented as the t90 and t-90 respectively, which have 

been introduced further in this Chapter in section 1.3. The reproducibility of the sensor device in terms 

of its response and its manufacture is also an important factor for practical reasons, which will support 

the reliability of the sensor device, which is particularly important for life-threatening applications. An 

extension to the reproducibility, is the repeatability of the response of single device for reliable and 

practical purposes and a long shelf life [5]. The stability and baseline stability of the sensor as a 

measure of the performance of the sensor for a period of time is another important measure of the 

reliability of the device, with the drift of the device used as a measure of this factor [5]. A lower power 

consumption of a sensor device is a further attractive quality and ensures economic viability, making it 

attractive for expansive industrial applications. The linearity of the device (associated values of which 

are specified for a certain concentration range) which is a relative measure of an experimentally 

determined calibration graph from an ideal straight line [5] is another important factor which adds to 

the reliability of the device and supports the ability to model the behaviour of the sensor. A final 

requirement of any practical sensor that is to be used in practice, is resistance towards humidity as 

well as harsh environmental conditions, which demand the need for robust and durable sensor 

devices.  
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1.2 Metal Oxide Semiconductor (MOS) Sensors 

As introduced above, within the large assortment of chemical gas sensors, metal oxide semiconductor 

(MOS) based gas sensors, illustrated in Figure 1–1, are one of the most widely investigated 

technologies [16, 17].   

 

 

 

 

 

 

Such sensor devices consist of an insulating substrate such as alumina, which encompasses screen-

printed gold interdigitated electrodes on the top and a platinum heater track at the bottom, illustrated in 

Figure 1–1 (a). A semiconducting metal oxide film such as WO3, ZnO, SnO2, In2O3 or Cr2O3 is 

deposited onto the top of the substrate on the gold electrodes using thick-film methods such as 

screen-printing or thin-film methods such as CVD, amongst a variety of other examples [18, 19]. When 

integrated into a circuit, the printed gas responsive semiconducting metal oxide can be heated to 

higher temperatures of operation via the platinum heater track at the bottom. Such sensors are usually 

operated at temperatures of 200 - 400 °C [20]. The device is then able to exhibit changes in its 

electrical resistance (or conductance) due to surface mediated chemical decomposition/oxidation 

reactions with the various target analytes it is exposed to [21].  

MOS sensor technology has many advantages and the concentrated research effort behind the 

technology arise due its economic and easy fabrication process which imply low production costs for 

the manufacturer. At the back end, utilisation of the device for the end-user is very simple [12] with no 

training required. As such, this technology is commercially very attractive in comparison to larger 

and/or more complex optical sensors and electrochemical sensors. Further, controllable, well-

established and commercially attractive printing processes such as screen-printing [12], introduced 

further in section 1.6, can be used in conjunction with this technology for the deposition of the gas 

Figure 1–1. a) MOS gas sensor substrate strip with the face comprising of gold interdigitated electrodes and the 
back comprising of a platinum heater track and (b) semiconducting metal oxide film partially deposited on to face of 
sensor substrate and corresponding back of sensor substrate with platinum heater track to heat metal oxide film to 
desired operating temperature.  
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responsive metal oxide, adding to the commercial scalability of the technology and the production of 

devices which exhibit repeatable response characteristics. 

The development of deposition technologies such as chemical vapour deposition, physical vapour 

deposition and sputtering techniques, among a host of others, for the deposition of 1- dimensional thin 

films and 2-dimensional nanostructures which are gas responsive, have allowed the advancement of 

research and development of next generation sensor devices, which have improved response 

performances, due to the inherently large surface area associated to the deposited materials. Such 

techniques have also allowed the potential to miniaturize MOS sensor devices, which conventionally 

are based on bulky substrates, requiring large heating powers due to their bulky nature [12, 22]. The 

large power consumption is a severe drawback of MOS technology, however the development of 

advanced deposition technologies of the gas responsive films, allow the miniaturization of the device 

onto micro-fabricated substrates [22].  

In terms of performance, MOS sensor devices are associated to large responsivities to the target 

analytes, robustness and quick response and recovery times. The high operating temperatures 

required by the technology, allows for control of the response and recovery kinetics depending on the 

application. Unlike electrochemical sensors however, room temperature operation of MOS sensors 

results in poor responses, and as such the technology is limited to high temperature applications [4]. 

However unlike thermal pellistors which are limited to the detection of inflammable gases, MOS 

sensors are open to sensing a host of analytes which are not inflammable such as NO2 [23] , NH3 [24], 

CO2 [12], HCl [25] and SO2 [26]. As such, the commercial applicability of MOS sensors is open to wider 

variety of settings. Some of the aforementioned gases however, such as H2S, NH3 and SO2 can result 

in the conditioning of the surface of the metal oxide resulting in surface poisoning, sensor drift, and 

alteration of the gas sensing properties of the material, another drawback of MOS sensor technology 

[27-30]. Such conditioning problems can however be overcome with temperature pulsing techniques 

which can regenerate the surface of the metal oxide and aid to bring back the original properties of the 

sensor device.  

Apart from surface poisoning, the presence of humidity can lead to drift of MOS sensors, particularly n-

type metal oxides, due to the nature of their sensing mechanism via the Electron Depletion Layer 

(EDL), which has been illustrated further in section 1.5. However p-type metal oxides in contrast, have 

a greater resistance to humidity due to electron conduction through the Hole Accumulation Layer 

(HAL) (illustrated in section 1.5 and in section 5.1, Chapter 5) making them more applicable materials 

for practical purposes. The lack of selectivity of MOS sensors is another key drawback of the 

technology and as such, the technology suffers from cross-sensitivity issues, making it difficult to 

interpret which gas the response signal observed, belongs to [12, 30]. Section 1.9 in this Chapter, 

alludes to various solutions that have been developed to overcome selectivity issues with MOS 
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sensors. MOS sensors also suffer from poor repeatability issues, which subsequently effects the 

reliability. Factors such as the method of temperature control, cross-sensitivity and surface poisoning 

which leads to drift, are examples that contribute its lack of repeatability and thus lack of linearity.   

The responsivity, as well as the stability and the selectivity [31, 32], are imperative in establishing the 

performance of this solid-state gas sensor [21]. In particular, excellent responsivity towards the target 

analyte(s) is logically one of the most fundamental requirements of a sensing device and is 

significantly influenced by parameters such as the microstructure, morphology and composition of the 

gas sensitive MOS layer [33-35]. These parameters have a profound effect on the response because 

the gas sensing mechanism is predominantly a surface process, constituting complex and speculative 

surface reactions, such as redox as well as adsorption and desorption processes [17, 36]. Thus, the 

ability of the MOS sensor to function effectively is also very much influenced by the surface 

characteristics of the gas sensitive material.  
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1.3 Interpretation of Sensor Response Trace/Curve 

A typical response trace from a MOS gas sensor device, when exposed to a pulse of the target 

analyte for a given time period, has been presented in Figure 1–2, which has been redrawn and 

adapted from O.A.Afonja [37].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1–2 presents a typical sensor response trace obtained from the exposure of a MOS sensor 

device to a gas pulse. The sensor trace demonstrates the responsivity of the material towards the 

analyte with respect to baseline response which is 1 (calculated as R0/R0). The conductive response of 

a sensor device is defined as a ratio of the sensor resistance during exposure to air (R0) over the 

resistance of the sensor during exposure to the target gas (Rg) i.e. the conductive response = R0/Rg. 

The resistive response in contrast is defined as a ratio of the resistance of the sensor during exposure 

to the target gas (Rg) as a ratio of the sensor resistance during exposure to air (R0) i.e. resistive 

response = Rg/R0 [38].  

The response trace also allows assimilation of the response and recovery kinetics for the sensor 

device before and after exposure of a certain pulse of the target analyte, respectively. The response of 

a sensor device is defined as the time it takes for the sensor to reach 90 % of its final response and is 

denoted as t90. The recovery of a sensor device is defined as the time it takes for the sensor to reach 

Figure 1–2. Typical response signal from metal oxide semiconductor gas sensor upon exposure to gaseous analyte. 
The diagram indicates when the pulse of gas is switched on and when it is switched off. Further, t90 represents the 
response time of the sensor device to reach 90% of its maximum response and t-90 is the recovery time of the sensor 
device to be within 10% of the baseline value. {Diagram redrawn and adapted from O.A.Afonja [37]}. 
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to 10% of the baseline response value and is denoted as t-90 [39]. Figure 1–2 presents the regions 

within which both the response and recovery times lie; ideally a sensor device should respond and 

recover in the 10s of seconds [40] to the target analyte for practical applications. The figure also 

shows that the equilibration of the response trace i.e. the response trace reaching steady state or 

saturation is likely to occur with a longer duration of gas exposure.  

1.4 n-type and p-type Semiconductors 

Semiconductors are classed into two groups, the first being intrinsic semiconductors and the second 

being extrinsic semiconductors. Extrinsic metal oxides, contain impurities or defects in the form of a 

loss of oxygen species (donor impurity) which can leave behind extra electrons in the lattice, i.e. 

creation of excess negative charge carriers, producing an n-type semiconductor. Alternatively, they 

can be in the form of extra oxygen species, which introduce electronic holes in the lattice, i.e. excess 

positive charge carriers, producing a p-type semiconductor [41].   

1.4.1 Intrinsic Semiconductors 

Intrinsic semiconductors contain no impurities, and as such these materials contain an equivalent 

number of charge carriers in the valence band (holes) and in the conduction band (electrons). At 

absolute zero temperature, the probability of the conduction band being occupied is zero, and the 

probability of the valence band being occupied is 1 [42]. When the temperature is increased to a high 

enough temperature, electrons in the valence band have enough energy to jump across the band gap 

to the conduction band, leaving vacant holes in the valence band. Because of the ideal nature of the 

semiconductor, for every electron that is excited to the conduction band, a hole is generated in the 

valence band. In such semiconductor the Fermi level is placed at the centre of the semiconductor, 

given that the probability of occupation of both bands is 50 % [42]. Figure 1–3 (b), illustrates the band 

diagram of an intrinsic semiconductor.   

1.4.2 Extrinsic Semiconductors: n-type and p-type Semiconductors 

In extrinsic semiconductors, the conductivity is controlled by the introduction of acceptor impurities or 

donor impurities in the semiconductor lattice [42-44]. In the case of n-type semiconductors, donor 

impurities are introduced into the lattice. These impurities contain a donor electron, which is occupied 

within a donor state. [42]. The donor electrons only require very little energy to be able to enter the 

conduction band, as they have very small binding energies, implying that the donor state is located 

just below the conduction band [42, 43]. The excitation of the donor electrons to the conduction band 

is how an n-type semiconductor conducts. In such a semiconductor, the position of the Fermi level is 

positioned depending on two extremes of temperature [42]. At absolute zero [42], all electron states up 

to and including the donor state, are occupied, implying that the lowest vacant state would be in the 
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conduction band. Thus, the Fermi level is placed half way between the donor state and the conduction 

band. At higher temperatures [42] however, the intrinsic carriers becomes comparable to the number 

of donor electrons, and so the material behaves like an intrinsic semiconductor with the Fermi level 

close to the centre of the band gap [42]. Schematic of the band diagrams of an n-type semiconductor 

are shown in Figure 1–3 (a) and (ai).  

In contrast in a p-type semiconducting oxide, acceptor impurities are introduced into the lattice. These 

impurities contain an acceptor hole, which is occupied within an acceptor state [42]. In order for holes 

to conduct in the valence band, the acceptor holes need to be ionised [42]. This is done by exciting a 

valence electron up to the acceptor state and in this way; the p-type semiconductor conducts. Little 

energy is required for the valence electrons to be excited to the acceptor state, as they have very 

small binding energies, implying that the acceptor state lies close to the valence band [42, 43]. The 

positon of the Fermi level, again like the n-type semiconducting oxide lies in different positions, 

depending on the temperature of operation. At high temperatures it behaves like an intrinsic 

semiconductor, however at absolute zero, the higher occupied state is at the top of the valence band 

and the lowest occupied state is at the acceptor level, so the Fermi level is half way between the 

acceptor state and valence band [42]. Schematic of the band diagrams of a p-type semiconductor are 

shown in Figure 1–3 (c) and (ci).  
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Figure 1–3. Band Diagrams for (ai) n-type semiconducting oxide when T = 0 K, (aii) n-type semiconducting oxide when temperature is applied, (b) intrinsic semiconductor when temperature is 
applied, (ci) p-type semiconductor when T = 0 K and (cii) p-type semiconducting oxide when temperature is applied. {Diagrams (ai), (aii), (ci) and (cii) adapted and redrawn from Turton [42] and 
Atkins and de Paula [44] and diagram (b) adapted and redrawn from Turton [42] and Hofman [43]}. 
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1.5 Gas Sensing Mechanism in MOS Sensors 

The gas sensing mechanism of semiconducting metal oxides is predominantly a surface process, 

constituting complex and speculative surface reactions, examples being redox [4] as well as 

adsorption and desorption processes [17, 36]. These reactions directly cause a change to the 

population of charge carriers in the semiconducting oxide materials, which are the source of the 

electrical resistance (or conductance) changes observed [12]. 

 Figure 1–4 illustrates the conduction-oxidation response mechanism [1, 45, 46] of an n-type 

semiconducting oxide such as WO3, ZnO or SnO2, with the aid of diagrams which have been modified 

and adapted from a report by Kim et al. [46].  

(b) 

(a) 

Figure 1–4. Gas sensing mechanism of n-type semiconducting oxide upon interaction with (a) air, in which an 
electron depletion layer (EDL) is formed on the surface of the metal oxide, upon interaction with O2 molecules and 
subsequent adsorption and ionisation of oxygen species on its surface and (b) the target analyte CO (a reducing 
gas), which interacts with the adsorbed ionic oxygen species on the surface of the metal oxide, forming the product 
CO2 and releasing electrons in the process. This induces a decrease in the width of the electron depletion layer, 
and resultantly increases the conductivity of the n-type metal oxide. The gold percolation arrows illustrate the 

direction of electron conduction in the material. {Diagram redrawn and adapted from Kim et al. [46]}. 
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Figure 1–4 shows that the reaction initiates with the adsorption of oxygen molecules from the air, on 

the surface of the n-type particles, in the form of various anionic oxygen species such as O- or O2-; the 

exact type of anionic oxygen species is dependent on the operating temperature of the sensor [1, 45]. 

For these anionic oxygen species to form and stabilise on the surface of the metal oxide, the oxygen 

molecules from ambient air need to be reduced by the uptake of electrons (i.e. they need to be 

ionized) [46]. These electrons are extracted from the conduction band of the metal oxide and trapped 

at its surface. This process leads to the formation of an electron depletion layer (EDL) or space-charge 

layer at the surface of the metal oxide, which is a zone depleted of electrons [1, 45, 46].  

Following this, the second part of the reaction may occur, which is illustrated Figure 1–4 part (b). Here 

the target analyte, in this case CO (which is a reducing gas) undergoes oxidation reactions with the 

adsorbed anionic oxygen species forming CO2 molecules, which desorb off the surface, and in the 

process of the oxidation reaction, remnant electrons are released into the EDL / space-charge layer. 

This reaction causes a decrease in the thickness of the EDL and as a result of this release of electrons 

back into the bulk of the material, which in effect implies a change in the charge carrier concentration 

of the material, a decrease in the height of the potential barrier (also called the Schottky barrier) 

between the two consecutive n-type grains occurs. As such, an increase in the conductance of the 

material is then observed [1, 45]. The electron conduction that occurs in the gas sensitive material is 

represented by the gold percolation arrows observed in Figure 1–4 part (b).  

Had the n-type material been exposed to an oxidising gas such as NO2, a resistance increase in the 

material would have been observed. This is due to trapping of and subsequent abstraction of electrons 

from the bulk of the material upon exposure to the oxidising gas, leading to a decrease in the charge 

carrier concentration in the bulk and an increase in the size of the electron depletion layer. Resultantly, 

an increase in the potential barrier height is induced and an increase in the resistance of the gas 

sensitive material is observed.  

Conversely with p-type semiconducting oxides such as Cr2-xTixO3 (chromium titanium oxide) – 

shortened to CTO hence forth [47, 48], Cr2O3, NiO, CuO or Co3O4 [18, 46, 49], the reaction initiates 

with the adsorption of oxygen molecules from the air, on the surface of the p-type particles, in the form 

of various anionic oxygen species such as O- or O2-. The formation of the anionic species on the 

surface of the p-type semiconducting oxide forms a hole accumulation layer (HAL) [46] at the surface 

of the p-type particles due to the dominant population of holes in the valence band of p-type 

semiconductors and the attraction of the electrons to stabilise the oxygen species on the surface [46]. 

When the p-type materials are then exposed to a reducing environment of CO, the CO molecules will 

interact with the surface adsorbed oxygen anions and release electrons into the material, which 

interact with the positive holes in the HAL through electron-hole recombination reactions, reducing the 
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concentration of the holes in the HAL [46]. As such, the resistance of the p-type material will increase 

upon exposure to a reducing gas. 

Upon interaction with an oxidising gas, the concentration of electrons on the surface of the p-type 

semiconducting oxide will decrease as the oxidising gas will abstract them from the surface, resulting 

in an increase in the conductivity of the material as the extracted electrons result in the generation of 

holes in the valence band [49].  

1.6  Thick-Film vs. Thin-Film Metal Oxide Gas Sensing Materials  

In general, the gas sensitive MOS layer is classified either as a product of thick-film or thin-film 

materials fabrication technology. Thick-films are in the broad µm range of thickness values and are 

generally produced by screen printing; such sensors are termed “first generation” devices [31]. Screen 

printing is a very attractive commercial process with the ability to mass produce a large number of 

sensor chips in one printing cycle. Further, the controlled deposition associated to the technique 

ensures consistent printing and limits the batch-to-batch variability between each sensor device. The 

technique is simple and requires forming a printable viscous paste of the desired metal oxide powder, 

by mixing the powder with an organic vehicle. The organic vehicle contains a binder which ensures 

strong adherence of the printed metal oxide to the substrate. The formed ink is then printed onto an 

alumina tile, with one tile containing more than 200 sensor chips. As highlighted, the ability to print a 

large number of sensor chips simultaneously, is commercially attractive and ensures repeatability 

between each device. The shapes of the gas responsive layer to be printed onto the individual chips 

on the alumina tile, are dictated by a screen which contains a stencil of the shapes. The ink is pressed 

down through and along the screen onto the alumina tile using a squeegee. The print is then dried and 

further prints can be made, depending on the thickness desired. Finally the printed layer is heat-

treated to burn off the organic vehicle and ensure strong adherence between the sensing layer and the 

tile.  

Another method of thick-film deposition is drop coating which as the name suggests encompasses the 

deposition of drops of the gas responsive metal oxide material onto the sensor substrate [50]. The 

method involves the creation of a metal oxide solution, a known volume of which can be dropped onto 

the sensor substrate by the use of a calibrated volumetric pipette. The solution is prepared using a 

solvent and thus after deposition, evaporation of the solvent leads to a dry deposit of the metal oxide 

[51]. In comparison to screen printing, the preparation of a group of sensor devices cannot occur 

simultaneously, but rather individually. Further irreproducibility between devices is inherent to the 

technique unlike screen-printing. Despite the drawbacks of the technique, drop coating has been 

reported to lead to highly stable and reproducible sensors with large responsivities and was adapted 
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as a thick film deposition technique for the large-scale commercialisation of metal oxide sensors by 

AppliedSensor GmbH, Germany, for the automotive industry [52, 53]. Further, the technique is 

compatible with miniature MOS sensor device fabrication, which uses micro-hotplate technology. This 

is possible by utilising capillaries for drop coating deposition, helping to fabricate devices with 

significantly lower power consumption, than the bulky counterparts [52]. 

Flame spray pyrolysis (FSP) is another method for thick-film deposition, which encompasses spraying 

liquid precursors, which form a flame [52]. Reaction of the precursors occurs in gas phase with 

subsequent particle formation. The method has been shown to be compatible with large MOS sensor 

substrates as well as smaller hotplate based devices and has been reported as having effective 

control over morphological characteristics, with annealing not required for films which are a few 

micrometres thick [52].  

In contrast to thick-film technology, thin-film technology targets the production of films which are in the  

low µm range - nm range of thickness and is based on more complex deposition methods such as 

chemical vapour deposition (CVD) or physical vapour deposition (PVD) such as Aerosol Assisted 

Chemical Vapour Deposition [54, 55], Atmospheric Pressure Vapour Deposition [33, 56], electron 

beam evaporation and sputtering [52], amongst others [35, 56, 57], and sensors associated to such 

materials are termed “second generation” devices [31]. The PVD techniques involve physical 

processes such as evaporation or sputtering for vapour formation from liquid or solid sources followed 

by subsequent transport and deposition [58], whereas the CVD process involves the formation of a 

vapour from a volatile precursor, followed by the transport and chemical reaction of the vapour phases 

upon a heated surface [59], with both processes resulting in the formation of thin films. Both 

techniques are particularly complementary to miniature gas sensor devices, as they both commonly 

used in the semiconductor industry [52].  

Sol-gel based techniques are another method of thin film deposition; a method which involves the 

formation of a colloidal suspension of precursor species, called a sol. Gelation of the sol then allows 

cross-linking between the precursor species. For the formation of a ceramic film, the sol undergoes 

evaporation, forming a highly porous xerogel film. Heating the film then causes the formation of a 

dense ceramic material upon the substrate surface [60].  

The key difference between both thick- and thin- film technologies is that thin-films, potentially provide 

greater control of the gas sensor material and further, are associated to a more automated production 

process. CVD technology in particular, affords films which are economical, strongly bound and 

reproducible with low impurity levels and thus in many ways, this is an advantageous technique 

compared to thick-film technology [56, 61]. However, the dense films produced via thin-film techniques 

generally suffer from reduced sensing performance compared to their thick-film counterparts [32, 62]. 
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Greater porosity of the gas sensing material, which thick-film technology generally provides, in 

comparison to thin film technology, is an important requirement as it encourages an augmented 

material surface area [21] which in-turn implies an increase in the reaction sites for the target analyte 

on the sensing material [2].  

Lee et al. [63, 64] had reported that in a thick porous metal oxide (specifically SnO2) film, fabricated via 

a metal organic decomposition route, that consisted of loosely interconnected small crystallites, the 

grain boundaries were present in all directions within the sensor matrix. These crystallites provided 

significant number of surface sites for the surface reactions to occur. In contrast, they had reported 

that in a compact SnO2 thin film, fabricated via Metal Organic Chemical Vapour Deposition (MOCVD), 

which consisted of a dense columnar structure, only a limited surface area which is exposed to the 

gas, could contribute to the overall responsivity. Sharma et al. [63] resultantly concluded that the 

responsivity of high surface area porous gas sensors reside in the number of high-resistivity grain 

boundary point contacts, and that to promote the responsivity of a material, the number of these 

contact points should be maximised.  

Figure 1–5, redrawn and adapted from a review by Sharma et al. [63] presents the variation in particle 

density of a thick screen-printed film in (a) versus a thin-film in (b) and illustrates the extent of gas 

permeation throughout the sensor matrix. Figure 1–5 (a) shows the advantage of using a thick-film 

which promotes greater permeation and diffusion of the gaseous reactant and product molecules 

throughout the sensor matrix, with contact of the gaseous molecules seen to occur with the surface 

and the bulk of the material. Figure 1–5 (b) shows the limitation of using a thin-film of semiconducting 

material, which due to its increased density, limits the permeation of the gaseous reactant and product 

molecules to predominantly the surface of the material. 
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Figure 1–5. Illustration of diffusion/permeation pathway of the gaseous reactants and products in (a) porous 
metal oxide gas sensing film or where particles in the gas sensing film are loosely packed and (b) in tightly 
packed metal oxide gas sensing film or where particles are agglomerated together. The blue arrows 
represent the pathways of gas diffusion of the reactant analyte molecules and the pink presents the pathways 
of diffusion of the decomposed/oxidised products. {Diagram redrawn and adapted from Sharma et al. [63]}. 

(a) (b) 
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1.7 Physicals and Chemical Influences on Gas Response  

The gas sensor response of a metal oxide is affected by many of its inherent physical and chemical 

properties, some of which include the microstructure, the acid and basic properties of the metal oxide 

and the morphology. The impact of these properties on the response characteristics are briefly 

discussed here.  

1.7.1 Microstructural effects  

 

 

 

 

 

 

 

 

 

One of the key parameters influencing the responsivity of a sensor is the microstructure of the 

material, a property associated to the porosity and extent of sintering of the gas sensing material 

matrix [65]. Williams et al. [65, 66] have highlighted, in a number of studies, the importance of the role 

of microstructure of a gas sensing material on the gas sensor response. They have demonstrated this 

through comparing the three main regions of the gas sensitive material, which are the surface, the bulk 

and the particle boundary to a simple model based on a network of three resistors as seen in Figure 

1–6 (b) [65].  

Figure 1–6. (a) The geometry of a solid composed of fused spherical particles, with the three key regions: the 
surface, the bulk and the particle boundary. The lilac dashed line represents the length to which the surface 
extends, which is equivalent to the Debye length or the Depletion Layer – (this represents the depth to which 
electrons are depleted on the surface of the metal oxide, upon surface adsorption of oxygen ions on the surface 
of the metal oxide) and (b) A network resistor model representing the three key regions of the gas sensitive 
material: the particle boundary, the surface and the bulk. The model illustrates how each region relates to each 
other within a solid composed of fused spherical particles {Diagram redrawn and adapted from Naisbitt et al. 

[65]}.  

(a) 

(b)

) 
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In this model, the surface and the bulk are in parallel to each other, whilst the particle boundary is in 

series to both. An assumption of the model is that the accessible surface is the only gas responsive 

element and therefore it is the only region that can exhibit a change in resistivity upon exposure to the 

target analyte. Thus from the three regions of the gas responsive element, the surface region which 

can extend to a size which is equal to the depth of the Debye length (alternatively called the Electron 

Depletion Layer (EDL) or space charge region)[63], is gas responsive. In contrast, the bulk of the 

material has an invariant resistance which does not contribute to the responsivity, and therefore is 

associated to a resistance independent of the concentration of the gas. The net accessible surface 

(which is gas responsive) is made up of the surface and the particle boundary. The contribution of the 

particle boundary to the accessible surface is dependent on the extent to which the material is 

sintered. When sintered, necks between the particles are formed at the particle boundaries; for highly 

sintered materials, only the outer region of the neck will be gas sensitive, whilst the inner region will 

not, as it contributes to the bulk. As such, the necks in this situation are practically non-resistive, 

implying that the electrons need to surmount a lower energy barrier to move through the highly 

sintered grains. For less sintered materials, the whole of the neck will be considered as contributing to 

the surface, and thus it is gas sensitive. In such a case, the necks are associated to larger energy 

barriers that the electrons need to overcome. For materials where the particles are barely touching, a 

Schottky barrier may exist between the particles. The second situation is generally the case for 

practical MOS sensors. If both the neck and the surface are responsive as per the second case, then 

they are both contributory to the net responsivity of the material. If the responsivities of the surface and 

the neck are equivalent, then both the surface and the neck will be in series to each other in the circuit.  

In contrast, the as-drawn diagram illustrating the parallel arrangement of the surface and bulk regions 

in Figure 1–6(b), suggests that only the surface is contributory however, changing the magnitude of 

one region, will still lead to a change of the other. This model therefore exemplifies the importance of 

the role of the surface and the particle boundary of the gas sensitive material in gas response. Apart 

from sintering, the network resistor model can also be applied for effects like agglomeration, where 

loose agglomeration and dense agglomeration are likely to behave in similar way to loosely sintered 

and heavily sintered materials [67]. 
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Figure 1–7. Models illustrating the crystallite size effects and their determination of the element controlling the 
responsivity. In (a), the crystallite size is siginificantly larger than twice the Debye length and the responsivity Is 
grain boundary controlled. In (b), the crystalite size is similar to the twice the Debye length and the responsivity is 
neck controlled and in (c), the crystallite size is much smaller than twice the size of the Debye layer, and so the 
responsivity is grain controlled. {Diagram redrawn and adapted from Sharma et al. [63]}. 

 

D >> 2L (grain boundary control) 
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D ≥ 2L (neck control) 
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Grain boundary contributions to the overall responsivity of a material, are particularly size dependent.  

Xu et al. [63, 68]  had proposed schematic models, consisting of a chain of crystallites to address what 

governed the gas responsivity of their porous SnO2 based semiconductor sensors. The group had 

come up with three models [68] which have been redrawn and adapted from Sharma et al. [63] and 

presented in Figure 1–7.  Xu et al. had suggested that when the size of the crystallite (D) was larger 

than twice the size of the Debye layer (L), then the grain boundary contacts were attributed to the 

highest resistance and the gas sensing materials were grain boundary controlled as observed in 

Figure 1–7(a). At this stage the size of the particles are very large and therefore the surface: bulk ratio 

is very small. As the size of the grain (D) reduces and become equivalent to twice the size of the 

Debye layer (L), then the necks become more resistant and therefore they dominate the gas 

responsivity as observed in Figure 1–7(b). The extent of contribution of the neck to the overall 

responsivity is then determined by the extent of sintering. Finally if the size of the grain (D) becomes 

significant smaller than twice the size of the Debye layer (L), then the grain themselves become the 

most resistive and gas responsivity is controlled by the grains as seen in Figure 1–7 (c). This latter 

model is associated to the  highest response of all three models because very small grains are thought 

to be associated to a very large surface : bulk contributions and as such thought to be associated to 

no bulk region, and therefore the whole of the grain is thought to contribute to the surface region [12]. 

This model therefore illustrates the size effects of grains on the responsivity of the materials, with 

smaller sized particles attributed to largest responsivities.  

1.7.2 Acidic/Basic nature of metal oxides 

The acidic or basic nature of the metal oxide is another factor that can affect the response properties 

of a metal oxide; this is through a direct impact on the nature of the oxygen species of the oxide. The 

oxygen species on the surface, depending on the pH of the metal oxide, can play a role to influence 

the catalytic decomposition pathway of the target analyte. The catalytic decomposition pathway of 

such metal oxides is usually demonstrated in literature with ethanol as a popular example analyte [69]. 

The decomposition of ethanol has been described to undertake a dehydrogenation reaction upon a 

basic metal oxide, resulting in the formation of acetal and hydrogen as the intermediates as seen in 

Equation 1–1. 

Equation 1–1  24252 22 HOHCOHHC 
  

 

 In contrast, the decomposition of the ethanol on an acidic oxide undergoes a dehydration reaction to 

ethene and water as seen in Equation 1–2. 
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Equation 1–2  OHHCOHHC 24252   

In either case, the intermediates further breakdown into CO, CO2 and H2O. Xu et al. [69] have reported 

on the alcohol sensing mechanism of ZnO based sensors, and have interpreted the responsiveness of 

ZnO which is a basic oxide, to be dependent on the conversion ratio of ethanol to acetal. The group 

report that ZnO is actually more responsive to acetal, which is what makes ZnO a solid choice for 

ethanol sensing. This shows that the acidic or basic nature of a metal oxide determines the 

responsivity of the metal oxide towards a particular analyte. It has also been reported that responsivity 

to acidic gases such as H2S or basic gases such as NH3, can be increased by incorporation of a 

corresponding acidic or basic oxide, respectively, forming adsorption sites for the gases [22]. Metal 

oxides such as WO3 can also act as acid or base catalysts, with brief details of its catalytic nature 

presented further in section 1.8.3. 

1.7.3 Morphological effects 

The morphology of a material is associated to the size and shape of the particles within the metal 

oxide material, which together control the overall surface area of contact with the target analyte. The 

smaller a particle and the greater the number of dimensions it has, the larger number of surface sites 

the material has for the surface induced oxidation reactions, and as such this can lead to an enhanced 

responsivity of the gas sensing materials, as opposed to a material having much larger particles with 

lower dimensions. Chapter 6, section 6.1 alludes to the various morphologies of ZnO that have been 

researched and developed, giving an idea of the variety of morphologies that have potential in gas 

sensing applications. Korotchenkov [70] has reported that various studies show that the development 

of high surface area materials can lead to the development of highly responsive metal oxide gas 

sensors.  However, such materials do suffer from a disadvantage of low temporal and thermal stability 

[70], leading to significant sintering of the particles. This results in a decrease in porosity and thus a 

reduced number of surface sites, for analyte interaction; this then relates back to the microstructural 

effects on the gas sensing properties, and as such the morphology and microstructure are inter-

related. A more detailed study on the effects of morphology on the gas sensor response has been 

discussed in Chapter 6. 

1.8 Metal Oxides of Interest  

A host of metal oxide materials are used for MOS technology, with examples being n-type ZnO, WO3, 

SnO2, In2O3, γ-Fe2O3 and p-type Cr2O3, CTO, CuO [71-73] and Co3O4. Some of the metal oxides given 

here are those which have been reported to exhibit significant gas responsivity. However due to issues 

of stability, In2O3, SnO2 and WO3 have been mainly adopted as materials for practical applications [74]. 
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Despite the stability and responsivity of the metal oxides as single component materials, sensitizers 

are usually added to them in the form of noble metal oxide nanoparticles, metal oxide nanoparticles, a 

second metal oxide powder or a binder. These are added to enhance the responsivity characteristics 

of the base metal oxide and the selectivity, as explained further in section 1.9. Sensitizer materials are 

all called foreign and antenna materials [74, 75] and are added to be able to optimize a combination of 

both the receptor and the transduction function. Very established examples of such systems are the 

SnO2 doped Pt and a combination of  SnO2-PdO which are well-known combinations for effective CO 

and hydrocarbon sensing [74]. Other examples of sensitized metal oxide gas sensing materials are 

Au- and Pt- WO3 for NH3 sensing [74, 75], CuO-SnO2 for H2S sensing [74, 75], SnO2-Co3O4 for CO 

sensing, SnO2-AgO for H2 sensing, In2O3-PdO for CO and odorant gases, SnO2-La2O3-Pt and SnO2-

CaO for ethanol sensing, SnO2-Fe2O3 for NO2 sensing, amongst a whole host of other combinations 

[74]. Some of these sensitizers such as Pt, PdO, AgO2 and CuO are examples of oxidising catalysts 

for reducing gases [74] and as such the catalytic activity of these sensitizers contributes to their overall 

antenna / sensitizing effect.  

The next part of this section will give a brief introduction to the semiconducting metal oxides that are 

specifically of interest to this thesis. These are ZnO, SnO2, WO3 and CTO, with specific advantages of 

these metal oxides as gas sensing materials, highlighted.  

1.8.1 Zinc Oxide (ZnO)  

ZnO is an n-type semiconducting oxide, with a direct band gap 3.37 eV – 3.44 eV [76, 77] at room 

temperature, known to be associated to three crystal structures: hexagonal wurtzite, cubic zinc blende 

and cubic rock-salt (which is rarely observed) [76, 78, 79]. The hexagonal wurtzite phase is the most 

thermodynamically stable form, under ambient conditions, in which the Zn2+ and O2- ions are 

tetrahedrally co-ordinated [76, 78-80] as observed in Figure 1–8. 
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The electrical, optical and thermal properties specific to ZnO have made it attractive for an system of 

applications [76]. For example, it is used in the pigments industry due to its high refractive index [76, 

81] and its high temperature stability, making it suitable for incorporation into ceramics [76]. Further, 

the incorporation of ZnO into various clinical products is also well-established, due to its antimicrobial 

properties [76, 82].  

The response and variation of the metal oxide’s electrical resistance to various gases, makes it a 

prime candidate for gas sensing applications [76]. Further, ZnO has been associated to adopting a 

variety of morphological architectures. In particular, in terms of 1D nanostructures, it is one of the most 

popular oxides studied [76, 79, 83, 84]. A host of examples of ZnO based 1D nanostructures has been 

given in Chapter 6, section. 6.1. The ability to adopt an system of high surface area morphological 

architectures is a key advantage for gas sensing applications, in which the contribution of surface is 

the most influential on the overall response properties.  

Figure 1–8. Hexagonal wurtzite ZnO crystal structure in which Zn2+  

ions (represented as Zn) and O2- ions (represented as O) are 
tetrahedrally co-ordinated. {Diagram redrawn and adapted from 
Ozgur et al. [78] and [80]}. 
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ZnO is one of the most investigated gas sensing materials alongside SnO2 [18] and its nanostructured 

forms in particular, have been reported by various studies to be successful for the detection of both 

oxidising and reducing gases which include: NO2 [85], ethanol [69], and acetone [86] amongst a range 

of other gases [18, 79]. Doping of the metal oxide with metals such as Aluminium [18, 87], Indium and 

Gallium [18, 88] has been observed to effect an enhancement in the response properties of ZnO 

towards NH3 and amine based gaseous species e.g. trimethylamine.  

Apart from its predominance in nanostructured materials gas sensor research, ZnO has been reported 

as popular in the application of hetero-structure based systems [18] with popular examples in the 

literature being ZnO-CuO systems [89, 90] and ZnO-SnO2 systems [91-93]. 

1.8.2 Tin Oxide (SnO2) 

SnO2 is another n-type semiconducting metal oxide, with a band gap of 3.6 eV [94], which adopts a 

tetragonal rutile crystal structure in which the Sn2+ ions are six-fold co-ordinated to three-fold co-

ordinated O2- ions [94, 95] as observed in Figure 1–9.  

 

 

 

 

 

 

 

 

 

 

The metal oxide is particularly well known for three major applications, which include optoelectronic 

applications, heterogeneous catalysis and solid-state sensing [94]. The electrical conductivity and 

optical transparency of the metal oxide, make it a prime candidate as Transparent Conducting Oxides 

(TCOs) for optoelectronic applications such as liquid crystal displays (LCDs), plasma display panels 

and light emitting diodes (LEDs)  [94, 96-98]. 

Figure 1–9. Tetragonal SnO2 crystal structure in which Sn2+ ions (represented as 
Sn) are six-fold co-ordinated to three-fold O2- (represented as O) ions. {Diagram 
redrawn and adapted from [95]}. 
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SnO2 is the most utilized semiconducting metal oxide of all metal oxides for MOS gas sensing [18, 94] 

since it was the first metal oxide to be patented by Taguchi as a chemiresistive gas detecting device in 

the early 70s [13, 20]. SnO2 has been reported as a popular choice towards the detection of mainly 

reducing combustible and poisonous gases such as CH4 and CO respectively [99, 100], amongst a 

range of other inflammable and toxic types such as LPG, ethanol and CO2 [101]. The metal oxide is 

associated to low baseline resistances and stability, making it an established choice for a MOS based 

gas sensor.   

1.8.3 Tungsten Oxide (WO3) 

WO3 has been shown in the literature as a versatile wide band gap n-type semiconducting metal 

oxide, possessing a band gap value of 2.62 eV at room temperature, when in the monoclinic bulk 

form[102]. The metal oxide with the crystals of the metal oxide generally formed by WO6 octahedra 

which share the corner and edges [102] as seen in Figure 1–10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1–10. Crystal structure of WO3 showing corner sharing WO6 octahedra. 
{Diagram redrawn and adapted from Zheng et al. [102]} 
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The crystal phase of WO3 is reported to change with temperature, with the most important ones 

between room temperature and higher temperatures of 800 °C being the monoclinic phase (γ-WO3) 

obtained between 17 °C – 330 °C and orthorhombic phase (β-WO3) adopted at higher operating 

temperatures of 330 °C – 740 °C [102].  

An assortment of applications of this metal oxide have been reported in the literature, which include 

photocatalysis [103, 104], electrochromic and photochromic coatings [105], and solid-state gas 

sensing [54, 106, 107].  

WO3 is the key semiconducting metal oxide, with both its thick and thin films known for their sensing 

properties of NO2 [18, 23, 38, 55, 108-110]. Further it has been reported as a particularly attractive 

metal oxide semiconductor, as it is contributes to catalytic oxidation and reduction reactions, by acting 

as a solid acid/alkaline catalyst and such provides Bronsted or Lewis acid/base sites  (i.e. H+/OH- 

species) or a combination of both upon which oxidation or reduction catalysis can occur [111, 112].  

In particular for NOx compounds, pure WO3 has outstanding sensitivity at both low and more elevated 

temperatures [18]. WO3 has also been reported as an established candidate for sensing O3, CO, H2S 

[17, 18, 113] and is also a promising metal oxide as it exhibits less cross-sensitivity at low operating 

temperatures, than other metal oxides [18]. When doped with noble or transition metals such as 

copper and vanadium, WO3 has been observed to be an effective sensor candidate for NH3 and amine 

based analytes [18, 114, 115].  

1.8.4 Chromium Titanium Oxide (CTO = Cr2-xTixO3) 

CTO (Cr2-xTixO3 , where x = 0.05 – 0.4), which is also called titanium substituted chromium oxide, was 

the first p-type gas sensitive material to be commercialised by City Technology. [116]. CTO is a solid 

solution of TiO2 in Cr2O3, which can occur due to the very similar ionic radii (0.060 ±0.001 nm) of both 

Cr3+ and Ti4+ species [48, 117, 118]. Thus, the crystal structure adopted by CTO is analogous to 

Cr2O3, the latter of which is presented Figure 1–11, with compounds adopting a corundum (Al2O3) 

crystal structure which consists of layers of distorted hexagonally closed packed O2- ions with the Cr3+ 

ions occupying two-thirds of the octahedral holes [47, 48, 116, 119-121].  
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In comparison to SnO2, CTO has been associated to various advantages which include baseline 

stability, negligible humidity interference and selectivity [116]. The lower humidity interference and 

therefore greater baseline stability of this material, is due to its p-type nature and the reasoning behind 

this, has been presented in significant detail in Chapter 5. CTO has been reported in the literature to 

be prepared via two key methods which are either by a high temperature solid-state reaction route 

between Cr2O3 and TiO2 [47, 120, 122] or via a sol-gel route method [116, 117]. The former poses an 

advantage as a commercially attractive method. However, is also associated to negative factors that 

can impact the gas sensing properties. These disadvantages are poor chemical homogeneity, 

introduction of chemical impurities and poor microstructural control during the sintering stage of 

fabrication. The latter method in contrast is reported to be an ideal way to control particle size, shape 

and sample purity  [116]. Apart from these two methods of CTO fabrication for thick film devices, 

emerging methods for thin film devices of the material such as electrostatic spray assisted vapour 

deposition by Du et al. [123] and Atmospheric Pressure Chemical Vapour Deposition (APCVD) by 

Shaw et al. [124]  have also been reported in the literature. 

Niemeyer [125] reported that the addition of TiO2 to Cr2O3 reduced the conductivity of the material by 

reducing the Cr (VI) acceptor state (empty Cr 3d states) density of the surface region. A high density 

of Cr (VI) surface accepter states in the surface region, results in very little variation in the conductivity 

of the material. This is because when oxygen adsorbs on the surface of the metal oxide, it also acts as 

a surface accepter state and therefore the net responsivity of the surface to the variation in the surface 

acceptor state density is minimal, implying minimal response to a variation in surface oxygen 

concentration [125]. Given that oxygen is primarily responsible for the gas sensing transduction 

function, a significant response to a variation in its concentration needs to be induced, to achieve 

effective responses. Ti substitution, enhanced by its surface segregation, can induce effective 

Figure 1–11. Layer of corundum crystal structure of Cr2O3, with hexagonally closed packed O2- ions 
(represented as O) in octahedral co-ordination with Cr3+ ion (represented as Cr). {Diagram redrawn 
and adapted from [121]}. 
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responses by decreasing the surface concentration of the Cr (VI) acceptor state density. This 

reduction resultantly increases the resistance of the material, inducing a greater response of the 

material upon adsorption of oxygen acceptor states on the surface i.e. a variation of the surface 

oxygen concentration [125]. Apart from its presence on the surface, the presence of Ti4+ ions in the 

bulk implies it also decreases the bulk acceptor state density, hence decreasing the conductivity of the 

bulk region. Since the bulk contributes to limiting the gas sensing performance, in contrast to the 

surface, then a decrease in the bulk acceptor states acts to enhance the gas sensing performance of 

the material [125]. This decrease of the overall conductivity of the CTO material, particularly at the 

surface, by the substitution of Ti4+ as well as the surface segregation of Ti4+, are said to control the gas 

sensing behaviour and show that the addition of Ti4+ ions to the matrix of Cr2O3 has a particularly 

advantageous and influential effect on the overall gas sensing properties of CTO [125].  

CTO has been reported successful for the detection of reducing gases such as ethanol [116, 124, 

126], acetone [127],  NH3 [48, 122, 128, 129], H2S [130], CO [130] and very recently a report on the 

responsivity of CTO towards NO2 [120] has been reported.  

1.9 New Materials in Metal Oxide Gas Sensing 

Currently significant research is being carried out to investigate novel gas sensing materials for MOS 

technology, which may potentially help to enhance the responsivity and selectivity associated to these 

sensing devices. A few examples of such material systems include nanostructured metal oxides [19, 

35], metal oxides with noble nanoparticles [54, 72], complex oxides [131-135] and metal oxide based 

composites [45, 89, 91, 92, 136]. In particular, it is both the former and the latter, that this thesis will 

focus on; namely metal oxide based composite materials and metal oxide based nanomaterials for 

MOS gas sensing technology.  

Section 1.8 alluded to some of the sensitized metal oxide systems that use catalytic metal dopants 

and other minority metal oxide dopants, as established and conventional ways for improving 

responsivity and selectivity. Apart from the use of catalysts and promoters or more surface specific 

additives as a method of improving responsivity and selectivity, another method includes the use of 

filters or chromatographic columns to discriminate between gases on the basis of molecular size or 

other physical properties [137]. One example of such a route includes the use of zeolites as catalytic 

filter layers, which are deposited on top of the metal oxide of interest [23, 138, 139]. Such zeolitic 

layers are thought to take part in the catalytic breakdown of certain gaseous analytes in a mixed 

analyte atmosphere, and as such make the sensor device selectively response to a particular gas. 

Alternatively, the zeolites take part in the catalytic conversion of a target analyte to a by-product which 

the sensor device is more likely to be responsive too, in comparison to its response towards the target 
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gas. A third method of improving selectivity is changes in the analyte concentration and the sensor 

operating temperature, in particular temperature modulation is a very effective method [137]. Lee has 

reported that the simplest way to observe temperature-dependent dynamic sensor response is to 

switch the sensor power supply on and off, in the presence or absence of gas. Such an approach he 

has reported, was adopted by Hiranaka et al. [137, 140] on Taguchi type Figaro SnO2 sensors. The 

group had exposed sensors pre-heated to a temperature corresponding to 5 V, and then switched off 

the power and the sensor response monitored over a period of 60 seconds. The resulted in a transient 

response in which the sensor peaked at a time characteristic of the analyte gas and to a lesser 

degree, its concentration. In this way the group demonstrated the possibility for a sensor device to 

distinguish between different target analytes [137]. Another method to improve the responsivity and 

selectivity is through the physical preparation of the sensor material [137], varying for example the 

morphological and microstructural characteristics for example the development of technologies for the 

development of vast of nanomaterials, which have an enhanced surface area, ideal for MOS sensor 

technology.  

The research and development of nanomaterials for metal oxide gas sensing is a well-established line 

of research [1, 2, 19, 141]. The advantage of a reduced crystallite size has been highlighted in the 

previous section (1.7) and therefore the prime reason for the research and development of 

nanomaterials for metal oxide gas sensing application has been established. Further, the larger 

surface to bulk ratios in nanomaterials, makes it clear that the yield of surface reactions are enhanced 

compared to larger particle sizes. In this thesis, the specific aim in the research study of nanomaterials 

(specifically ZnO nanomaterials), is the demonstration of the emerging synthetic routes, in particular 

Continuous Hydrothermal Flow Synthesis (CHFS) [142, 143], as successful for the fabrication for 

nanostructured metal oxides. Further the aim is to demonstrate the potential these nanostructured 

materials hold for MOS gas sensing applications. As such, a detailed introduction to this unique part of 

the thesis has been presented in Chapter 6, which discusses the nanomaterial research investigation.  

Since the main focus of the research presented here however, is on hetero-junction based materials 

systems, the next two sections will give a brief introduction to such systems as well as a brief 

introduction on the theoretical and qualitative basis behind the utilisation of such materials in gas 

sensing applications.   

1.9.1 Mixed Metal Oxide Gas Sensors 

The utilisation of gas sensitive materials based on semiconducting metal oxide mixtures in the solid 

state gas sensing field is a relatively fresh trend of research and development [36]. Intensive studies 

into these materials is based on the knowledge that a multiple number of desired parameters in 

semiconducting metal oxide materials exist, with catalytic activity, large sensitivity, effective adsorption 
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ability and thermodynamic stability being just some examples. However, difficulty lies in attempting to 

find all these benefits in a single oxide [45]. The fabrication and utilisation of mixed metal oxides can 

potentially lead to novel materials which encompass many of these desired properties required in a 

gas sensor and thus lead to enhanced sensitivities and selectivities towards the target analyte(s) [24, 

36, 144-147].  

In a recent article by Kaciulis et al. [148] it was reported that one of the aims of using a mixed metal 

oxide system in gas sensing technology, is improvement in the gas selectivity through a combination 

of the catalytic properties of some oxides with the effective sensitivity of other oxides. Wang et al. [45], 

also reported various studies on binary oxide materials as sensitive materials in gas sensing 

applications, one example being a ZnO-SnO2 system fabricated through a mechanical mixture of the 

individual oxides [91]. This system was generally attributed to significantly higher responses towards 

1-butanol gas, than sensors made from the individual components alone. The synergistic coupling of 

SnO2 as a dehydrogenator of butanol to butanal and ZnO as an effective catalyst for the breakdown of 

butanal, was considered to be the reason behind the effectiveness of this system.  

A large number of groups, some of them cited here [144, 148, 149], have established that mixed oxide 

systems can be classified into three different groups [149]. These are as either compounds, as solid 

solutions or as neither of the first two. An example of the first is the ZnO-SnO2 system mentioned 

previously, forming compounds such ZnSnO3 and Zn2SnO4, which have been shown to be candidates 

for ethanol and hydrogen detection [144, 149-151]. An example of a solid solution system is TiO2-SnO2 

system reported by Radecka et al. [149, 152] who investigated this system for the detection of 

hydrogen gas. The final group is one where neither compounds nor solid solutions are formed, an 

example being a TiO2-WO3 system reported by Zhu et al. [153] for the detection of benzene, toluene 

and xylene (BTX) [154]. Such systems contain an intimate mixture of metal oxides which are 

interacting with each other potentially via weak Van der Waals forces of interaction, and thus this 

implies that there is no strong chemical bonding between the individual components [155]. 

Interestingly Trakhtenberg et al. [144] suggest that only systems in this latter category of the three, can 

actually be regarded as composite materials. 

One of the key factors determining the particular type of mixed oxide system formed is the 

corresponding fabrication method and preparation conditions [148, 155] via which the mixed oxide 

system is made. This implies that the preparation method plays a very influential role in determining 

the type and strength of interactions formed between the individual components in the mixed oxide 

material. Reddy et al. [155] for example, report that a mixed oxide material consisting of TiO2 and ZrO2 

can be formed by physically mixing the individual components together, which  results in a weak Van 

der Waals force of interaction or they can be formed such that chemical bonds are established 

between the individual components, in the form of Ti-O-Zr linkages. The existence of chemical 
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bonding between the components, leads to a mixed oxide system which has very different 

physiochemical and reactivity properties in comparison to a system made by simple mechanical 

mixing of the two components [148, 155]. This therefore demonstrates that the preparation method 

and the conditions employed during fabrication of the mixed oxide system, can result in very different 

mixed oxide materials which may constitute the same individual components, but are so different due 

to the extent of interaction that exists between the individual metal oxide components within the 

system. Further, it implies that solid solutions and compounds which are associated to strong chemical 

interactions of the components, may lead to nicer dispersion of the individual oxides in the mixed oxide 

system. In contrast mechanical mixtures would constitute an uneven distribution or polarisation of the 

individual components in the mixture, as they are associated to very weak forces of interaction [155]. 

Apart from influencing the chemical nature of the mixed oxide system formed, the fabrication method 

equally plays an important role in controlling the overall microstructure of a gas sensitive material. As 

mentioned earlier, the microstructure of gas sensitive materials contributes significantly to their 

responsivity and therefore differing fabrication and deposition methods of single and mixed oxide 

compounds such as screen-printing, sol-gel, CVD, PVD e.g. sputtering [144, 148] can ultimately lead 

to very different gas sensitive materials.  

A more theoretical approach of the enhancement effect of binary mixed oxide materials has been 

reported by Zakrzewska [149], among other research groups [156], who report that the formation of 

mixed oxides modifies the electronic structure of the bulk and the surface components of the system. 

The former includes the band gap, the position of the Fermi level and transport properties; and such 

properties are affected mainly in compound and solid solution phases of mixed oxide systems. The 

surface component of the system, is affected in all phases of mixed oxide systems, and is expected to 

be influenced by new boundaries between grains constituting different chemical composition. All of 

these factors are expected to contribute positively towards the gas sensing characteristics and in 

particular, it is the boundaries that exist between the grains of the semiconducting oxide materials of 

different chemical composition, which are reported as the basis of the enhancement of utilising 

composite systems in gas sensing [18] in a number of sources of literature.  

This boundary enhancement effect is termed hetero-junction enhancement or hetero-contact 

enhancement. Hetero-junction enhancement in composite sensors has been reported in a number of 

literature reports [75, 156, 157].  The following section will give a brief introduction about the theory of 

hetero-junctions and their role in gas sensing applications.  
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1.9.2 Hetero-junctions 

Junctions are fundamental to all composite systems and are usually classified as either being graded 

or abrupt. Graded junctions are those attributed to a gradual change of composition over macroscopic 

dimensions. Examples of where graded junctions occur are during a film growth process where a 

change in composition of the film occurs or an change in composition through the occurrence of inter-

diffusion or homogenous mixing at high temperatures in processes such as alloying [158]. Abrupt 

junctions in contrast, are those where a change in property occurs over a distance that is comparable 

to or less than the width of the space-charge region [158, 159]. In regular semiconductors, according 

to Schubert, the chemical transition from one semiconductor to another semiconductor is abrupt, 

suggesting that in general, most junctions formed are abrupt [160]. Another classification that junctions 

can be subdivided into, are homo-junctions and hetero-junctions. The former exists at the interface of 

the same semiconductor material or alternatively, this can be rephrased as an interface where the 

same band gap exists at both of sides of the interface. A difference that can exist on either side of the 

homo-junction is a difference in doping; where the material exists as a n-type semiconductor on one 

side of the junction and as a p-type semiconductor on the other side of the junction; an example could 

be the interface between n-TiO2 and p-TiO2 [161, 162].  

The hetero-junction in contrast, exists at the interface between two very different semiconductor 

materials, i.e. those which have different band gaps, and therefore different work functions from each 

other. It is this latter category which is of importance to this thesis; as the experimental investigations, 

have focussed upon bringing two very different semiconducting oxides together and characterising 

their gas sensing properties. A further sub-classification exists within the group of hetero-junctions in 

the form of isotype and anisotype junctions. The isotype is the interface between two p-type or two n-

type semiconductors [163], whilst anisotype is the interface between an n-type and a p-type 

semiconductor; this thesis presents investigations into both types of systems.  

It has been widely stated in a number of sources of literature that when two solids, which have 

different work functions, are brought into contact, the Fermi level of the two solids must be in thermal 

equilibrium. This equilibrium state is reached when the electrons from the material with the lower work 

function flow to the adjacent material, until the Fermi levels equilibrate [164]. Zakrzewska [149] reports 

that it is believed that this equilibration of the Fermi levels through a mixed oxide semiconductor is 

responsible for the associated electrical and gas-response properties, although he does not report on 

how the gas sensing enhancement effect actually occurs. However his report on the equilibration of 

the Fermi levels has been justified in a number of different sources, of which Figure 1–12 {Diagram 

redrawn and adapted from Wager [163] , van der Krol et al. [165] and Roy [166]} is one example 

illustration. 
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Figure 1–12 (ai) and (aii) present band diagrams for an ideal abrupt n-n hetero-junction and (bi) and 

(bii) present band diagrams for an ideal p-n hetero-junction. Figure 1–12 (ai) and (bi) are the band 

diagrams between two n-type and a p-type and n-type semiconductors prior to intimate contact, 

respectively. Figure 1–12 (aii) and (bii) are the band diagrams after the corresponding two 

semiconductors are in intimate contact.  

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

Figure 1–12. Energy band diagram for (ai) two isolated n-type semiconductors (valence band not shown) 
with ɸ2 < ɸ1 and (aii) the corresponding hetero-junction band structure for an ideal n-n interface (i.e. when 
the charge carrier exchange occurs through Fermi level alignment) & (bi)  isolated p-type and n-type 
semiconductor with ɸ2 < ɸ1 and (bii) the corresponding hetero-junction band structure for a p-n interface.In 
the diagram, ɸ1 and ɸ2 represent the work-functions, Ec1 and Ec2 represent the conduction bands, Ev1 and 
Ev2, Eg1 and Eg2 represent the band gaps, Ef1 and Ef2 represent the Fermi energy levels and Ex1 and Ex2 
represent the electron affinities of semiconductors 1 and 2 respectively, Evac is the vacuum level, ELvac is 

the local vacuum level and  Ec is the conduction band discontinuity and  Ev is the valence band 
discontinuity. {Diagram (ai) and (aii) redrawn and adapted from Wager [163] and diagram (bi) and (bii) 
redrawn and adapted from van der Krol et al. [165] and Roy [166]}.  
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It can be seen from Figure 1–12 that electron flow occurs from semiconductor 2, which has the lower 

work function, to semiconductor 1, which has the higher work function, until the equilibration of the 

Fermi levels of both solids has occurred, when the two component n-type oxides are in contact with 

each other. Such a hetero-junction is commonly termed an n-n type junction or interface. This 

illustrates that Fermi levels equilibrate as a result of the local exchange of charge carriers i.e. electrons 

or holes [167]. The energy bands of both semiconductors bend upon contact of the two materials, 

because the exchange of charge carriers that occurs during the Fermi level equilibration, causes the 

energies of these charge carriers to change, resulting in curvature to the energy diagram at the 

interface [163, 167]. The negative curvature of the conduction band in semiconductor 1 indicates the 

transfer of the negative charge from semiconductor 2 to semiconductor 1.   

Roy, [166] explained that bringing together semiconductors of different energy gaps and work-

functions results in the energy band discontinuities at the interfacial region due to the alignment of the 

Fermi level to achieve thermal equilibrium.  

The phenomenon of Fermi level equilibration, upon contact of two differing semiconducting oxides, 

has also  been reported in a recent publication by Zeng et al. [168]. Here the group reported on the 

enhanced gas sensing properties of SnO2 nanosphere functionalised TiO2 nanobelts towards various 

VOCs such as methanol, ethanol, formaldehyde and acetone and compared the gas sensing 

characteristics of this hybrid oxide system, to pure TiO2 nanobelts. In this study, they had reiterated 

like most other sources of literature, the phenomenon of Fermi level equilibration upon contact of the 

two different n-type oxides. As mentioned earlier, for pure n-type semiconducting oxides, adsorption of 

O2 molecules occurs on the surface of the gas sensitive oxide in the form of various anionic species, 

through extraction of electrons from the conduction band and subsequent trapping of the electrons on 

the surface of the material. This process causes the formation of a space-charge region – a zone 

which is depleted of electrons. Subsequent reaction of the adsorbed oxygen species on the surface of 

the gas sensitive material, with reducing gases will release electrons back into the space-charge layer 

and decrease its thickness. Release of electrons back into the bulk of the material also implies an 

increase in conductivity of the gas sensitive material. In the case of the hybrid system Zeng et al. 

explain that additional to the depletion layer that forms at the surface of both the oxides individually, 

further depletions occur at the interface between the SnO2 nanospheres and the TiO2 nanobelts, upon 

alignment of the Fermi levels between both oxides, due to significant adsorption of oxygen species at 

this interfacial region. The adsorption of the oxygen species at the interfacial region promotes, easier 

injection of electrons to the conduction band through thermally induced charge transfer, enhancing the 

conductivity of the hybrid oxides in an atmosphere of VOCs. This suggests that these additional 

depletions in the interfacial region, are critical in contributing to the enhancement of the gas response 

properties of these hybrid materials, in comparison to the pure metal oxides. The group conclude that 
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the contact regions between both semiconducting oxides, play a critical role in inducing more active 

gas reactions and improving the response properties of this hybrid system. Thus the interfacial 

regions, where the hetero-junction effects occur, act as additional reaction sites by enhancing the 

adsorption of oxygen species, promoting the system to be highly responsive.  

In another study, Beckermann et al. [169] had reported that the p-n junctions that existed between the 

Co3O4 and ZnO metal oxides in the Co3O4 and ZnO nanocomposites they had fabricated by plasma 

enhanced chemical vapour deposition (PECVD), played a significant role in the responsivity of their 

optimal composite sensor towards ethanol, acetone and NO2. They had reported that the p-n junction 

produced an improved charge separation at the interfacial region between both the metal oxides. This 

charge separation region they reported was thought to induce an enhanced conduction modulation 

when the composite material was exposed to the target analytes, which resultantly enhanced the 

responsivity of the material.  

In another study by Yoon et al. [89] the CO gas sensing properties of a p-n hetero-junction system 

based on CuO-ZnO composites were reported. They had found that CuO-ZnO composites in which 

the CuO was doped with aluminium (Al), were seen to exhibit substantial responsivities towards CO, 

particularly at high loadings of Al-doped CuO in the ZnO metal oxide matrix. The group had reported 

that increasing the loading of the Al-doped CuO in ZnO matrix i.e. increasing the composite nature of 

the gas sensing material, would result in the fractions of n-p (ZnO - CuO) and p-p (CuO - CuO) 

contacts to increase, while those of n-n (ZnO – ZnO) contacts would decrease. Thus the two most 

probable paths of charge carrier percolation would be the n-n (ZnO–ZnO) contacts and the n-p (ZnO - 

CuO) contacts (not the p-p contacts as the host matrix was ZnO into which CuO was being loaded, so 

the ZnO was still the dominant metal oxide). In such a scenario, the resistive n-p hetero-contacts they 

reported are likely to dominate the percolation of charge carriers through the composite, as opposed to 

the n-n homo-contacts. This is because of the higher resistance potential energy barriers that exist at 

the p-n hetero-contacts as opposed to the lower resistance potential energy barriers that exist at the n-

n hetero-contacts. Thus a change in the analyte environment around the p-n junction is likely to 

contribute significantly to the overall responsivity of the sample. These examples show the advantages 

of using n-n or p-n hetero-junction materials systems for gas sensing applications.  

Yamazoe et al. [170, 171] complement the theory of the Fermi level alignment, by introducing the 

concept of the contact potential, qδp seen in Equation 1–3. 

Equation 1–3    qqEEq
fffFfFp )(2)(1)(1)(2
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In Equation 1–3 [170, 171] qɸ1(f) and qɸ2(f) or E F1(f) and E F2(f) are work function or Fermi levels of grain 

1 and grain 2 or material 1 and 2, at free state respectively. They suggest that this component is 

always generated in the presence of a hetero-contact or a contact between grains where non-

uniformity exists at both sides, such as the difference in size of both grains or difference in their 

chemical composition. This contact potential or electrostatic potential compensates for the difference 

in Fermi level that existed between both grains, prior to contact. The electrostatic equilibrium 

inherently induces a difference in the conduction band edge, δEC, between the contacting grains which 

is generated to establish an exchange current across the contact at equilibrium.  

Yamazoe et al. have shown that the contact potential acts to attenuate the drift mobility, µ, of electrons 

that travel in the direction against it, and as such influences the resistance (increasing the resistance) 

of the associated hetero-contact [170, 171]. The implication is that the hetero-contact is sensitive to a 

change in the ambient gaseous environment and is affected in two ways by gaseous analytes. The 

first way, which is well established in gas sensing theory, is through change in the electron density on 

the surface of the grains, which is a receptor function effect of the gas sensitive grains. The second is 

through the change in drift mobility of electron flow, which is the contact potential effect. This therefore 

shows that the hetero-contact resistance is more sensitive compared to homo-contact resistance and 

as such exploitation of hetero-contacts, can render a new generation of gas sensitive materials [170, 

171].  

Depending on the way the two component oxides are mixed and the way the grains of each are 

positioned with respect to each other, an effective use of the change in the electron mobility can occur, 

which changes the resistance of the hetero-contact in such a way, that it is possible to enhance the 

response of the composite device as compared to a conventional single component semiconducting 

metal oxide device. Yamazoe et al. term the way in which the metal oxides are mixed and the grains 

are positioned with respect to each other as the ‘packing structure’ and they report that this packing 

structure significantly influences the role of the contact potential, towards the enhancement of 

composite materials in a gas sensing application [170, 171].  

The group report that for randomly distributed grains as seen in Figure 1–13 or a one- or two-

dimensional packing scenario, a large number of homo-contacts maybe present in parallel to the 

hetero-contacts and thus, the effect of the hetero-contacts will be significantly diminished as the homo-

contacts, which are unable to modulate the drift mobility, μ, will dominate this packing structure. The 

presence of a large number of parallel homo-contacts, potentially makes them analogous to a rate-

limiting step in a chemical reaction, i.e. their abundant presence, will not lead to a significant 

enhancement in the gas sensing properties of the composite materials.  
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In contrast to the random packing structure or a one- or two-dimensional scenario, hetero-contacts are 

suggested to be more influential in layer-by-layer structures or core-shell packing structures as seen in 

Figure 1–14 or in a three-dimensional scenario and potentially some two-dimensional scenarios. In 

such systems, the percolation pathways will be hetero-contact dominated and thus the effect of the 

hetero-contacts will be significant, implying such systems to be associated to enhanced gas sensing 

properties [170, 171].  

 

 

 

 

Figure 1–13. Random packing structure of hetero-contact device where purple circles represent metal oxide 
grains of material A and the green circles represent the metal oxide grains of material B. {Diagram adapted and 
redrawn from Yamazoe et al. [170]}. 

(a) (b) 

Figure 1–14. Packing structures of (a) layer-by-layer hetero-contact device. Here the purple circles represent 
metal oxide grains of material A and green circles represent metal oxide grains of material B and (b) core-
shell hetero-contact device. Here the purple circles represent the metal oxide grains of material A and green 
circles represent shells of material B, which encapsulates material A. {Diagram (a) adapted and redrawn 
from Yamazoe et al. [170]}.  
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Thus Yamazoe et al. suggest that the effectiveness of the mixing in the hetero-junction devices and 

metal oxide deposition techniques, will heavily influence the packing of the grains and therefore 

ultimately the overall responsivity of the material. This shows that the influence of hetero-contacts on 

the sensing properties of the composite system, is significantly dependent on the extent of mixing and 

the positioning of the grains. Their reports are potentially indicative of behaviours of varying composite 

systems, differing through a number of fabrication methods.  

1.10 Target Analytes of Interest 

In this section, an overview of the target analytes of interest (in this thesis), sources of their exposure, 

importance of their detection as well as their surface oxidation reaction mechanisms with metal oxide 

surfaces, are presented. Specific ranges of the analytes that the sensor devices reported in this thesis 

can be applied towards, have been summarised in Chapter 7, section 7.1.3, after evaluating their 

response performances.  

1.10.1 Nitrogen Dioxide (NO2) (Oxidising Gas) 

Cars, power plants and combustion engines are a major cause of polluting nitrogen oxides (NOx) in 

the air, such as NO and NO2 [38, 172]. Of these gases, NO2 is the most toxic, with a Threshold Limit 

Value (TLV) of 3 ppm [38, 172]. The respiratory system is the target system under attack from NO2, 

causing adverse health conditions like asthma, emphysema, bronchitis and eventually heart disease, 

leading to hospitalisation and premature deaths [173]. The severity of exposure to this analyte, 

illustrates the importance for the detection of NO2 in the environment.  

Reports in the literature have suggested that the surface oxidation reaction of NO2 on the surface of a 

n-type semiconducting metal oxide has been reported to undergo direct chemisorption on the surface 

and abstract electrons as seen in Equation 1–4 [16, 23]: 

 

Equation 1–4     

 

1.10.2 Ethanol (Reducing Gas) 

Ethanol detection is particularly important in the food and drinks industries. Quality control processes 

such as the food packaging safety is one example where ethanol gas sensors are used [174]. 

Industrial processes such as fermentation and distillation, can cause the concentration of ethanol to 

reach toxic levels, with irritation of the eyes, nose and skin, and alcohol poisoning being the possible 

symptoms, depending on exposure levels [175]. 1000 ppm is the Threshold Limit Value (TLV) or 

NOeNO



22
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maximum concentration of acceptable ethanol exposure in a work place [175, 176]. This VOC (volatile 

organic compound) is also a key bio-marker for detection of alcohol content from breath samples of 

drunk drivers [177] and is therefore key in road safety control and regulation, with the legal limit of the 

blood alcohol content in the UK reported to be 7.5 parts per thousand [178]. 

The surface oxidation reaction of ethanol has been proposed to undergo two possible reactions on the 

surface of an n-type metal oxide depending on whether the oxide surface is acidic or basic [69]. On 

the surface of an acidic oxide the alcohol is reported to undergo a dehydration reaction, which forms 

ethene as an intermediate, as seen in Equation 1–5 and Equation 1–6 as follows [69]: 

 

Equation 1–5                   OHHCOHHC 24252
  

Equation 1–6        eOHCOOHC 6223 22

2

242


  

 

On the surface of a basic oxide, the reaction is thought to undergo a dehydrogenation reaction, which 

forms acetal as an intermediate, as follows [69, 179]: 

Equation 1–7                    HCHOCHOHHC 2352 22                               

Equation 1–8                     eOHCOOCHOCH 104452 22

2

23


         

The conversion of the ethanol to acetal i.e. the dehydrogenation reaction, has been reported as the 

dominant reaction to occur on the surfaces of ZnO [69], SnO2 [180] and WO3 [181].  

1.10.3 NH3 (Reducing Gas) 

The control of ammonia gas is important in variety of different environments, one prominent example 

being the food industry where the detection and control of the analyte is important in being able to 

determine the freshness of food [114]. The gas is also important in agricultural applications in order to 

control the farming environment for human comfort [114] and is an important precursor to food and 

fertilizers for the nutritional needs to all living organisms [38]. The detection of the volatilite is also 

important in the automotive industry for combustion exhaust control in diesel engines, for the reduction 

of toxic NOX emissions. Toxic concentration of NOX emissions are lowered by the selective catalytic 

reduction (SCR) with NH3, the latter of which is injected into the exhaust system converting the NOX to 

N2 in the process [114, 182]. Interestingly, the analyte is also important as the building block in the 

direct or indirect synthesis of many pharmaceuticals and used as a component in household cleaning  

products [38]. These applications illustrate that the detection of ammonia is widespread and is crucial 
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as it is caustic and hazardous to human life, particularly when the concentration is above the 

Threshold Limit Value (TLV) of 25 ppm [38]. 

The oxidation reaction mechanism of the reducing gas NH3 is complex as it is reported to occur via a 

number of routes, resulting in several competitive processes taking place at the same time. Three of 

the main reactions that occur for NH3 decomposition have been presented in Equation 1–9, Equation 

1–10 and Equation 1–11 below [114, 115]: 

Equation 1–9                       eOHNONH 3332 223


       

Equation 1–10     eOHNOONH 53252 23


    

Equation 1–11      eOHONONH 4342 223


    

The dominance of Equation 1–10 in NH3 decomposition reactions can lead to an unconventional 

switch in semiconductor behaviour (for example an n-type semiconductor can exhibit p-type response 

behaviour towards the reducing gas) [114, 115]. This is because nitrous oxide is known to be very 

unstable and can readily oxidise to NO2, which is a well-established oxidising gas [114], causing a 

switch in semiconducting behaviour of the sensor device towards the original NH3 analyte. In the case 

of an n-type material, conventional response towards NH3 would be an increase in conductive 

response and if NH3 is converted to an oxidising gas, then an increase in resistive response is 

observed. For a p-type semiconducting oxide, the opposite behaviour would be observed i.e. increase 

in resistive response upon NH3 exposure and an increase in conductive response, if NH3 converts to 

an oxidising gas.  

1.10.4 Acetone (Reducing Gas) 

Acetone has been reported to be a key biomarker for patients suffering from diabetes with the levels of 

acetone found in the breath of a diabetes sufferer being above 1.8 ppm [23]. The analyte is also an 

important biomarker for ketosis control [183]. Ketosis is a condition characterised by ketone bodies 

such as acetone and acetoacetate, in the blood, which are produced from the fat stores when blood 

glucose levels are low. Factors that can cause ketosis could be prolonged fasting, unbalanced 

diabetes or an in-take of ketogenic diets as well as high fat, low carbohydrate and low protein diets 

[184, 185]. The need to detect acetone as a biomarker for the determination of potential health issues 

is at significantly lower concentrations, in comparison to the threshold limit value (TLV) of the analyte 

which has been reported to be 500 ppm [176]. Acute inhalation of the analyte has been reported by 

the Centre of Diseases and Control (CDC) to induce the effect of narcosis, and inflammation of the 

respiratory tract, stomach and small intestine [186].  
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The surface oxidation reaction mechanism of acetone vapour on the surface of an n-type 

semiconducting oxide has been proposed to undergo two possible surface reactions [107, 187], which 

comprise either oxidation with an oxygenated anion (Equation 1–12 - Equation 1–14) or oxidation via a 

reaction with a hydroxyl species (Equation 1–15 - Equation 1–17).  

Equation 1–12         eOCHOCCHOgasCHCOCH


 3333 )(                             

Equation 1–13        COHCOCCH 


33
           

Equation 1–14        eCOOCO



2

       

Or  

Equation 1–15     OCHOCHCHOHgasCHCOCH


 3333 )(                    

Equation 1–16    eOHHCCOCHOgasCHCOCH


 2333 )(                              

Equation 1–17    OCOOHCHOgasCHOCH vacanciesbulk )(3)(3 )(        

            

1.10.5 CO (Reducing Gas) 

Carbon Monoxide is a very well-studied odourless toxic gas, the main source of its production being 

the incomplete combustion reactions of fuels [38] and it is common to find this analyte emitted from car 

exhausts and in fires. The gas is particularly toxic as it has been reported to irreversibly bind to the Fe 

centre of the haemoglobin metal-protein complex, which is the key protein that delivers oxygen to the 

body via blood [12, 38]. The irreversible binding means that oxygen can no longer be absorbed by the 

molecule which reduces the level of oxygen transport around the body and increases the transport of 

CO, causing significant exposure of the body to CO and ultimately death [12, 38]. The extent of harm 

of CO as a function of concentration of exposure has been presented in a literature study by Fine et al. 

[12, 23], who have reported that concentration of 35 ppm can cause dizziness and headaches within 6 

- 8 hours of exposure, with the TLV of the analyte reported to be 25 ppm [176]. Concentrations above 

800 ppm of the analyte have been reported to cause death with a maximum of 30 minutes [12, 23].  

The oxidation reaction mechanism of CO vapour (illustrated earlier with the gas sensing mechanism), 

on the surface of an n-type semiconducting oxide has been proposed as follows [46]: 

Equation 1–18  eCOOgasCO



2)(  
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1.10.6 Toluene (Reducing Gas) 

Toluene is one of the main VOCs contributing to environmental pollution alongside other VOCs such 

as benzene, ethylbenzene, and xylene all of which are collectively known as BTEX [188]. Among the 

group of VOCs in BTEX, benzene is the most commonly used chemical in industrial processes for the 

manufacture of rubber, lubricants, dyes, detergents, drugs, pesticides, etc. However the 

carcinogenicity of benzene deems its use very limited and is therefore replaced with toluene [188]. 

Apart from the importance of toluene detection in process monitoring, it is also important in 

applications such as environmental monitoring and work place safety and efficiency in bioremediation 

[154]. Toluene has also interestingly been reported as a primary pathogen for the cause of ‘sick house 

syndrome’, which is an illness attributed to occupants in a building primarily due to poor indoor air 

quality [189, 190]. Exposures to high concentrations of toluene are hazardous and life-threatening with 

the volatilite primarily known to be attributed to neurotoxicity [189, 191]. The TLV of the volatilite has 

been reported to be 50 ppm [176]. 

The decomposition of toluene is reported to be complex, with  Santra et al. [192] only reporting the first 

stage of the decomposition reaction on the surface of an n-type semiconducting metal oxide, 

presented in Equation 1–19: 

Equation 1–19 eOHOHCOHC 22 26787


           

Trushkin et al.[193] however had reported a more detailed stage by stage decomposition mechanism 

of the analyte when it is was subjected to atmospheric pressure glow discharge in an atmosphere of 

N2 : O2 : H2O gas mixture. The decomposition reactions have been presented below in three stages. In 

some stages of the reactions, specifically in stage 1: Equation 1–21 and stage 2: Equation 1–24, the 

group had presented the decomposition reaction of the analyte with a hydroxyl radical species. Such 

reactions they suggested were likely to be due to the humidity caused by the presence of water vapour 

in the plasma. In the case of MOS sensing, it is likely that the reaction of the hydroxyl species will take 

place in a humid atmosphere, where water vapour is introduced into the gas flow. In the case of a dry 

atmosphere however, it is likely that the reaction will take place with anionic oxygen species.  

Equation 1–20   OHCHHCOCHHC 
256356

 

Equation 1–21 OHCHHCOHCHHC 2256356
       

Equation 1–22 HCHOHCOCHHC 
56256

 

Equation 1–23 OHCOHCOCHOHC 
5656
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Equation 1–24 OHCOHCOHCHOHC 25656
    

1.11  Project Aims 

The research and development of new materials in MOS based gas sensing is a growing field. The 

applications of hetero-junction systems has various advantages that a single metal oxide system 

cannot provide; key factors being the synergy, specifically the combination of the sensing strengths 

and catalytic properties of the individual metal oxides as well as the specific compositional contribution 

of each metal oxide to the hetero-junction system. A second advantage being the electronic 

enhancement effects of a combination of two semiconducting oxides. Applications of nanomaterials is 

a mature subject in MOS sensing technology, however emerging routes to fabrication of new 

nanostructured materials are continuously being developed, particularly those techniques which have 

potential commercial viability. The aim of this thesis is to present a comprehensive materials and gas 

sensing characterisation investigation of emerging hetero-junction and nanomaterials systems for 

MOS semiconductor gas sensing.  

The novelty of the hetero-junction research in this thesis is three-fold. The first lies in the route of the 

design of the systems of the various hetero-junction systems, specifically the compositions of hetero-

junction devices prepared and the fabrication of the MOS sensor devices. The second lies in some of 

the combinations of metal oxides used, for example WO3-ZnO; this combination of metal oxides has 

been studied before, however not to the extensive detail presented here. The combination of CTO-

ZnO on a sensor is novel and has not been reported before. The final novelty lies in the method 

through which the sensors have been characterised for their gas sensing properties; this testing has 

been conducted in a novel gas sensing rig, designed and developed by O.A.Afonja [194].    

Particular aims with the research associated to the hetero-junction systems are: 

 To determine if responsivities are improved with particular combinations of mixtures of metal 

oxides with respect to the single metal oxide counterpart  

 To understand which particular combinations of metal oxides give the best responses and 

interpret the enhancement effects  

 To assimilate which particular combinations of metal oxides give poor responses, with 

respect to the single metal oxide counterpart, and interpret possible causes 

 To aim to interpret any possible electronic interactions or synergistic effects with the various 

hetero-junction systems investigated  

 To understand if random packing structures are an effective way to promote hetero-junction 

enhancement effects 
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 To understand if selectivity can be achieved with such hetero-junction systems 

 Finally to understand potential effects of microstructure, material composition, junction effect, 

packing structure, temperature and analyte concentration on the general behaviour of the 

material systems 

The nanomaterials research part of this thesis establishes new emerging technologies, such as CHFS, 

among a host of other relatively high temperature techniques, for the synthesis of nanostructured 

metal oxides (specifically ZnO) for MOS gas sensing. The gas sensing properties of CHFS based 

materials have been reported previously in the literature [142, 143], however a comprehensive gas 

sensing characterisation study has not yet been conducted. The novelty of the investigation in this 

thesis lies in the comprehensive gas sensing characterisation of newly fabricated CHFS based ZnO 

materials, screen-printing as a deposition method for these materials as well the materials and gas 

sensing characterisation study of newly synthesised ZnO ceramics fabricated by various high 

temperature synthesis routes.    

Particular aims with the research associated to the nanomaterials systems are: 

 To identify influential microstructural factors on the response behaviours of nanomaterials 

 To assess the potential of emerging fabrication technologies as a route to synthesis of ZnO 

nanomaterials for MOS gas sensing 

1.12  Summary of Thesis 

The following Chapters present investigations of the applications of a variety of emerging hetero-

junction and nanomaterial material systems for MOS gas sensing applications. Chapter 2 presents the 

method of sensor device fabrication, gives an overview of all metal oxides investigated and synthesis 

details and introduces the materials and gas sensing characterisation techniques used to undertake 

the research. Chapter 3 is the first experimental Chapter which presents a material and gas sensing 

characterisation study of an n-n hetero-junction system based on WO3 - ZnO composites. Chapter 4 

furthers the investigation of the application of n-n hetero-junction systems, focussing on a material and 

gas sensing characterisation study of a SnO2 – ZnO composite system. Chapter 5 extends the 

application of the hetero-junction system approach to MOS sensing, however introduces a p-n hetero-

junction system based on CTO and ZnO composites. The final experimental Chapter 6 extends the 

theme of the application of ZnO based materials to MOS gas sensing, focusing on emerging 

nanostructured ZnO fabrication technologies and materials. The concluding Chapter, Chapter 7 

concludes the main findings from the various investigations in the thesis and proposes investigations 

that can be conducted in future work to further explore the potential of the materials systems 

investigated.               
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Chapter 2 : Materials and Experimental Method 

This Chapter presents an overview of all materials used in the fabrication of the various systems of 

sensor devices, presented in this thesis. Further, details of all the instruments and techniques used for 

elucidation of the physical and chemical characteristics of the materials, and for their functional gas 

sensing characterisation, throughout this thesis, have also been presented in this Chapter. 

Experimental procedures specific to a certain Chapter, for example the fabrication of a specific 

material or particular system of sensors, have also been presented here.   

 

2.1 Materials Investigated 

Table 2–1 presents all materials (solid-state powders) which have been fully characterised and 

investigated for their gas sensing properties in this thesis. Further, it specifies the supplier of the 

chemical, and the Chapter number and associated title within which the material has been reported. 

Many metal oxide samples were synthesised ‘in-house’, i.e. in laboratories at UCL, and the associated 

Chapter and section within it, have been indicated and should be referred to for detailed experimental 

fabrication procedure. Some metal oxide samples have been supplied by internal/external sources and 

where this is the case, these sources have been acknowledged.  
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Table 2–1. All materials investigated in thesis, corresponding supplier, and associated Chapter number and 
associated Chapter title within which the material has been investigated.   

Material Supplier Chapter Chapter title 

WO3 New Metals Chemicals 
Ltd. 

3 WO3-ZnO based n-n 
hetero-junction system. 

Zinc Tungstate 
ZnWO4 

Synthesised ‘in-house’, 
See section 2.3.1.1. 

3 As above 

Acid SnO2 Keeling and Walter. 4 SnO2-ZnO based n-n 
hetero-junction system. 

CTO (Cr2-xTixO3) 
Where X = 0.05  
i.e. Cr1.95Ti0.05O3 

Synthesised ‘in-house’ 
See section 2.3.3.1. 

5 CTO-ZnO based p-n 
hetero-junction system. 

ZnO Sigma Aldrich. 3 
4 
5 
 

See above. 
See above. 
As above. 

Nanostructured ZnO 
(3 samples) 

Fabricated via Continuous 
Hydrothermal Flow 

Synthesis 

Synthesised ‘in-house’, 
See section 2.3.4.1. 

6 Emerging ZnO Materials 
for MOS sensing. 

Nano- and Micron-sized 
ZnO 

fabricated via: 
Molten Salt synthesis, 

Solid-State metathesis and 
Hydrothermal synthesis 

methods 
(3 samples) 

Dr. Kristin Poduska, 
Memorial University, 

Canada. 

6 As above 
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2.2 Sensor Fabrication 

Figure 2–1 presents a schematic of the sensor fabrication process that was used throughout this 

thesis for the build-up of all MOS sensor devices. 

 

Within each Chapter, a system of sensors associated to a particular material or combination of 

materials, was investigated. Each sensor device within the system was fabricated by forming a screen-

printable ink of the constituent metal oxide(s) with an organic vehicle, ESL 400 (Agmet Ltd.), in an 

agate pestle and mortar, illustrated in Figure 2–2 (a). Each device either constituted a single metal 

oxide or a composite of two metal oxides – details of how both types of inks were fabricated, have 

been presented below in sections 2.2.1 and 2.2.2, respectively. Once the inks were formed, they were 

screen-printed using a DEK 1202 screen-printer (DEK) (Figure 2–2 (b)), onto a gas sensor substrate 

strip containing 23 2 x 2 mm wide gap alumina chips (Capteur Sensors), which consisted of 

interdigitated gold electrodes on the top, with a gap of 171 ± 10 µm between the electrodes, and a 

platinum heater track on the bottom, as observed in Figure 2–2 (c), (d) and (e). Four layers of each ink 

were screen-printed onto the individual strips, and each layer was dried under an Infra-Red (IR) lamp 

seen in Figure 2–2 (f), for 10 ± 2 minutes to ensure it was dry before the subsequent layer was  

printed, preventing potential smudging effects. Once the ink layers were printed, individual chips from 

the strip were broken and heat-treated in a muffle furnace (Elite Thermal Systems Limited), seen in 

Figure 2–2 (g), at 600 °C for 1 hour. Reasons for heat-treatment were two-fold, the first to ensure that 

the organic vehicle (used to form the inks) was burnt off to prevent its interference with the gas 

sensing performance of the materials; and the second was to ensure that the screen-printed material 

Figure 2–1. Schematic of MOS sensor device fabrication process implemented for all sensor devices 
investigated in this thesis. 
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adhered well to the alumina substrate. The ramp rate of the furnace, to increase the temperature from 

ambient conditions to 600 °C, was set at 5 °C / minute, ensuring the materials experienced a gradual 

increase, rather than sudden increase, in temperature. After the printed sensor chips were heat-

treated, 50.8 µm platinum wires (0.002 inches in diameter, 99.95% metal basis, Alfa Aesar) were spot 

welded to the platinum pads at the back and gold pads on the top of the individual chips, using a 

Macgregor DC601 parallel gap resistance welder, seen in Figure 2–2 (h). In a final step, the chips 

were further spot-welded to the high density polyethylene 4-pin sensors housings, producing the final 

device prototypes as observed in Figure 2–1, to carry out physical, chemical and functional analysis.   
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Figure 2–2. (a) Screen-printable ink fabricated with agate pestle and mortar, (b) DEK 1202 screen-
printer for screen-printing inks on to MOS sensor substrates, (c) Single wide gap sensor substrate chip 
with interdigitated gold electrodes on top and platinum heater track at bottom, (d) SEM images of wide 
gap sensor substrates top and bottom, (e) SEM images of measured electrode spacing on wide gap 
substrate, (f) Infra-Red (IR) heat lamp for drying screen-printed layers, (g) muffle furnace for heat-
treating sensor chips and (h) Macgregor DC601 parallel gap resistance welder for spot welding of Pt 
wires onto individual MOS gas sensor chips. 

(a) 

(c) 

(h) 

(b) 

(f) 

(g) 

(d) 

(e) 



Chapter 2: Materials and Experimental Method 

80 

 

2.2.1 Single metal oxide sensor devices 

Single metal oxide sensors were fabricated as the pure counterparts in each composite system 

studied in Chapter 3, Chapter 4 and Chapter 5 or were fabricated as part of the Chapter focussing on 

emerging technologies for the fabrication of nanostructured semiconducting metal oxides in Chapter 6. 

Each sensor consisted of 100 weight percent (wt.%) of the individual metal oxide powder in order to 

fabricate the associated sensor.  

In the fabrication of such devices, a screen-printable ink of a single metal oxide material was prepared 

by mixing a certain mass of the single metal oxide powder with an appropriate mass of organic vehicle 

ESL 400 (Agmet Ltd.), which allowed for the production of the appropriate consistency of ink for 

subsequent screen-printing, using an agate pestle and mortar. All powders were ground with the 

organic vehicle, until the ink had a smooth viscous consistency. Further fabrication of the sensor 

devices followed the method described in section 2.2.  

Details (i.e. compositions and concentrations) of the single metal oxide sensor devices have been 

tabulated in the appropriate table in the individual Chapter, and can be identified in the tables as those 

devices with an asterix beside them. Details include the chemical composition of the metal oxide, its 

mass and the mass of ESL 400, required to make the corresponding ink for each device.  

2.2.2 Composite metal oxide sensor devices 

In the case of each composite system studied, fabrication of a system of composite sensor devices 

involved simple mechanical mixing of certain masses of two metal oxides, with ESL 400 (Agmet Ltd.) 

in an agate pestle and mortar. Variable masses of each metal oxide was used in order to achieve a 

certain weight percent (wt.%) of each component metal oxide within the composite mixture. The 

composite sensors in each system were always fabricated with a fixed set of ratios between both 

metal oxides denoted in Table 2–2 as Metal Oxide A (MO A) and Metal Oxide B (MO B): 

Table 2–2. Composition of Metal Oxide A (MO A) and Metal Oxide B (MO B) used as a basis for the formation 
and investigation of all composite sensor devices in this thesis. 

wt.% MO A – wt.% MO B 

10 wt.%  - 90 wt.% 

30 wt.% - 70 wt.% 

50 wt.% - 50 wt.% 

70 wt.% - 30 wt.% 

90 wt.% - 10 wt.% 

 

After the formation of an appropriate consistency of composite inks, the fabrication of the sensor 

devices followed the method described in section 2.2. 
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Details (i.e. compositions and concentrations) of the component metal oxides within the composite 

metal oxide sensor devices have been tabulated in the appropriate table in section 2.3. Details include 

the chemical composition of the individual metal oxides, their masses and the mass of ESL 400, 

required to make the corresponding ink for each device.  

2.3 Sensor Devices and Materials Syntheses 

This section presents the compositions of the individual sensor devices fabricated and studied in each 

Chapter, as well as specific synthesis details of various materials prepared in each Chapter.  

2.3.1 Chapter 3: WO3-ZnO composite system 

The metal oxide semiconductor (MOS) sensor devices fabricated for this Chapter have been 

presented in Table 2–3 with composition details of the WO3 and ZnO pure and composite inks used in 

the fabrication of the associated sensor devices. Additionally in this Chapter, a ZnWO4 sensor was 

fabricated. This was to understand the response effects that this tertiary phase, which was present in 

all the WO3-ZnO composites, had on the composite sensor devices. Description of the synthesis of 

this tertiary phase has been presented in section 2.3.1.1.  

Table 2–3. All MOS sensor devices fabricated for Chapter 3, which investigates the application of a system of 
WO3-ZnO n-n hetero-junction composite devices for MOS sensing. Those sensor devices with an asterix (*) are 
single component metal oxide MOS sensor devices, all others are dual component metal oxide MOS sensor 
devices.  

Sensor device Metal oxide powder(s) & 
mass (g) 

Metal oxide powder(s) & 
moles (mol) 

Mass of ESL 400 
(g) 

*100 wt.% WO3 WO3 – 3.44 WO3 – 0.015 2.41 

90 wt.% WO3 –         
10 wt.% ZnO 

WO3 – 1.80 
ZnO – 0.20 

WO3 – 0.008 
ZnO – 0.002 

1.10 

70 wt.% WO3 –        
30 wt.% ZnO 

WO3 – 2.12 
ZnO – 0.92 

WO3 – 0.009 
ZnO – 0.011 

1.20 

50 wt.% WO3 –        
50 wt.% ZnO 

WO3 – 2.84 
ZnO – 2.86 

WO3 – 0.012 
ZnO – 0.035 

2.39 

30 wt.% WO3 –        
70 wt.% ZnO 

WO3 – 0.62 
ZnO – 1.42 

WO3 – 0.003 
ZnO – 0.017 

0.95 

10 wt.% WO3 –        
90 wt.% ZnO 

WO3 – 0.22 
ZnO – 1.83 

WO3 – 0.001 
ZnO – 0.022 

1.15 

*100 wt.% ZnO ZnO – 2.00 ZnO – 0.025 1.10 

*100 wt.% ZnWO4 ZnWO4 – 1.52 ZnWO4 – 0.005 1.18 

 

2.3.1.1 Synthesis of ZnWO4 

In this study, the presence of a tertiary phase, ZnWO4, within the WO3-ZnO composites, was detected 

via X-Ray Diffraction (XRD) and Raman spectroscopy characterisation methods. To understand the 

influence of this compound on the responsivity of the composite sensor devices, it was synthesised 
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prior to subsequent functional and material characterisation, through a solid-state synthesis method 

reported by Phani et al. [195]. Some modifications were made to the method reported in literature.   

Synthesis encompassed ball milling equimolar ratios of WO3 (New Metals Chemicals Ltd.) and ZnO 

(Sigma Aldrich) powders in 20 mL of ethanol in a Nannetti Speedy 1 ball mill. The mixture was ball 

milled, with 6 mm alumina grinding balls for 6 minutes. Following milling, the mixture and residue were 

decanted (removing the alumina media in the process) and washed with ethanol, with the final mixture 

suspended in ~ 150 mL solvent. After evaporation of the solvent, the mixture was dried in a furnace 

(Elite Thermal Systems Limited) at 100 °C, for 24 hours which ensured removal of any remaining 

ethanol. The dry light yellow powder was then ground in an agate pestle and mortar and sieved 

through a 150 µm sieve before being fired again, this time at 1000 °C for 16 hours, resulting in the 

final product, a white powder.  

2.3.2 Chapter 4: SnO2-ZnO composite system  

The metal oxide semiconductor (MOS) sensor devices fabricated for this Chapter have been 

presented in Table 2–4 with composition details of the SnO2 and ZnO pure and composite inks used in 

the fabrication of the associated sensor devices.  

Table 2–4. All MOS sensor devices fabricated for Chapter 4, which investigates the application of a system of 
SnO2-ZnO n-n hetero-junction composite devices for MOS sensing. Those sensor devices with an asterix (*) are 
single component metal oxide MOS sensor devices, all others are dual component metal oxide MOS sensor 
devices.  

Sensor device Metal oxide powder(s)            
& mass (g) 

Metal oxide powder(s) 
& moles (mol) 

Mass of ESL 400 
(g) 

*100 wt.% SnO2 SnO2 – 2.10 SnO2 – 0.014 1.61 

90 wt.% SnO2 – 
10 wt.% ZnO 

SnO2 – 1.83 
ZnO – 0.21 

SnO2 – 0.012 
ZnO – 0.003 

1.24 

70 wt.% SnO2 – 
30 wt.% ZnO 

SnO2 – 1.42 
ZnO – 0.62 

SnO2 – 0.009 
ZnO – 0.008 

0.74 

50 wt.% SnO2 – 
50 wt.% ZnO 

SnO2 – 1.51 
ZnO – 1.52 

SnO2 – 0.010 
ZnO – 0.019 

1.08 

30 wt.% SnO2 – 
70 wt.% ZnO 

SnO2 – 0.60 
ZnO – 1.41 

SnO2 – 0.004 
ZnO – 0.017 

0.85 

10 wt.% SnO2 – 
90 wt.% ZnO 

SnO2 – 0.21 
ZnO – 1.80 

SnO2 – 0.001 
ZnO – 0.022 

1.06 

*100 wt.% ZnO ZnO - 2.00 ZnO – 0.025 1.18 
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2.3.3 Chapter 5: CTO-ZnO composite system 

The MOS sensor devices fabricated for this Chapter have been presented in Table 2–5 with 

composition details of the CTO and ZnO pure and composite inks used in the fabrication of the 

associated sensor devices. The synthesis of CTO was done in–house and has been presented in 

section 2.3.3.1.  

Table 2–5. All MOS sensor devices fabricated for Chapter 5, which investigates the application of an system of 
CTO-ZnO p-n hetero-junction composites for MOS sensing. All sensor devices were fabricated by screen-
printing method, details of which have been given in Chapter 2. Those sensor devices with an asterix (*) are 
single component metal oxide MOS sensor devices, all others are dual component metal oxide MOS sensor 
devices.  

 

2.3.3.1 Synthesis of Cr1.95Ti0.05O3 (CTO) 

The CTO in this study, with target stoichiometry: Cr1.95Ti0.05O3, was synthesised through a solid-state 

ceramic ‘shake and bake’ method, in accordance with studies reported by Henshaw et al. [122, 126] 

and Dawson et al. [126, 128]. Some modifications were made to the methods reported in literature.   

Synthesis of Cr1.95Ti0.05O3 was carried out by ball milling stoichiometric amounts of TiO2 powder 

(Sigma Aldrich) and Cr2O3 powder (Sentury Reagents, 99.9%) in 32 mL of Iso-Propyl-Alcohol (IPA) 

(Emplura, Merck). The mixture was ball milled, with 6 mm alumina grinding balls in a Nannetti Speedy 

1 ball milling machine for 15 minutes in three intervals of 5 minutes each, forming a viscous mixture. 

After evaporation of the solvent, the powder was dried at 100 ºC in a furnace (Elite Thermal Systems 

Limited) for 5 hours to ensure complete evaporation of any remaining IPA. The dried powder was then 

ground in an agate pestle and mortar and sieved through a 150 µm sieve, before undergoing further 

heat-treatment again; this time at 900 ºC for 12 hours, for the final product to form.  

 

 
Sensor device 

Metal oxide powder(s) 
& mass (g) 

Metal oxide 
powder(s) & moles 

(mol) 

Mass of ESL 400 (g) 

*100 wt.% CTO CTO - 1.36 CTO – 0.009 1.37 

90 wt.% CTO – 
10 wt.% ZnO 

CTO – 2.71 
ZnO – 0.31 

CTO – 0.018 
ZnO – 0.004 

3.57 

70 wt.% CTO – 
30 wt.% ZnO 

CTO – 2.11 
ZnO – 0.93 

CTO – 0.014 
ZnO – 0.011 

2.80 

50 wt.% CTO – 
50 wt.% ZnO 

CTO – 1.40 
ZnO – 1.41 

CTO – 0.009 
ZnO – 0.017 

2.43 

30 wt.% CTO – 
70 wt.% ZnO 

CTO – 0.90 
ZnO – 2.10 

CTO – 0.006 
ZnO – 0.026 

3.01 

10 wt.% CTO – 
90 wt.% ZnO 

CTO – 0.31 
ZnO – 2.71 

CTO – 0.002 
ZnO – 0.033 

2.57 

*100 wt.% ZnO ZnO - 2.16 ZnO – 0.027 2.15 
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2.3.4 Chapter 6: nanostructured ZnO system  

The MOS sensor devices fabricated for this Chapter have been presented in Table 2–6 with 

composition details of the ZnO inks used in the fabrication of each device. The synthesis of CHFS 

based ZnO materials was done in-house, details of which have been presented in section 2.3.4.1.  

Table 2–6. All MOS sensor devices fabricated for Chapter 6, which investigates emerging ZnO semiconducting 
metal oxides for MOS sensing. In the study nanostructured ZnO sample A, ZnO sample B and ZnO sample C 
were fabricated by Continuous Hydrothermal Flow Synthesis (CHFS), and MS-ZnO was fabricated by Molten-
Salt synthesis, SS-ZnO was fabricated by Solid-State metathesis and Zn-ZnO was fabricated by Hydrothermal 
synthesis. All sensor devices were fabricated by screen-printing method, details of which have been given in 
Chapter 2. All sensor devices are asterixed (*) indicating single metal oxide component MOS sensor devices. 

Sensor device ZnO Mass (g) ZnO Moles (mol) Mass of ESL 400 
(g) 

*100% Nano ZnO sample 
A (CHFS) 

0.61 0.007 1.46 

*100% Nano ZnO sample 
B (CHFS) 

1.33 0.016 1.53 

*100% Nano ZnO sample 
C (CHFS) 

1.31 0.016 1.88 

*100% ZnO (MS ZnO) 
(Molten-Salt synthesis) 

0.45 0.006 0.24 

*100% ZnO (SS ZnO) 
(Solid-State Metathesis) 

0.61 0.007 0.87 

*100% ZnO (ZN ZnO) 
(Hydrothermal 

synthesis) 

0.87 0.011 0.79 
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2.3.4.1 Synthesis of Nanostructured ZnO Materials via CHFS  

ZnO nanomaterials were synthesised via a CHFS process on a pilot plant scale, a schematic of which 

has been presented in Figure 2–3 [143, 196]. Detailed literature which includes information on the 

actual CHFS process and the rig’s construction and its validation can be found in literature [196-199].  

 

For the syntheses of CHFS based nanostructured ZnO, zinc (II) nitrate hexahydrate [Zn (NO3)2.6H2O] 

(Sigma Aldrich), potassium hydroxide (KOH) pellets (Alfa Aesar) and 10 MΩ deionised water were 

used. 

CHFS based ZnO nanomaterials were produced by reacting a supercritical water flow issuing from P-1 

at 450 °C, 240 bar (400 mL min-1) with an ambient temperature flow of precursor solutions issuing 

from P-2 (Zn (NO3)2.6H2O aqueous solution) and P-3 (KOH aqueous solution), both at 200 mL min-1, in 

a confined jet mixer (CJM) [196] yielding a reaction point temperature of 335 °C. When the precursors 

and supercritical water were fully mixed, rapid hydrolysis and dehydration of the zinc salt led to the 

formation of many particle nucleates with minimal growth. After formation in the CJM, the particles 

were cooled in flow and collected as a slurry at the end of the process, after passing through a back 

pressure regulator which was used to maintain a pressure of 240 bar. The slurry was cleaned by 

centrifuging (4500 rpm), then decanting and replacing the supernatant with clean deionised water, 

ensuring to shake each time to encourage re-dispersion of the solids. This centrifugation process was 

Figure 2–3. Schematic of Continuous Hydrothermal Flow Synthesis (CHFS) pilot plant, where P-1, P-2 and 
P-3 represent pump 1 from which super critical water and pump 2 and pump 3 from which the precursors, 
are pumped into the confined jet mixer (CJM) / Reactor. PT in the schematic represents a Pressure 
Transducer and PD represents a Pulsation Dampener. Figure from [143, 196].  
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carried out a number of times till the supernatant reached close to neutrality, indicated by pH indicator 

paper. After cleaning, all slurries were subsequently dried in a freeze drier (Virtis Genesis 35 XL) by 

slowly heating a sample from -60 °C to 25 °C, over 24 hours under vacuum of 100 mTorr generating 

the final material. In a final step, all materials were ground in an agate pestle and mortar to attain them 

in free flowing powder form before further processing. A summary of the synthesis conditions 

employed for each fabricated CHFS based metal oxide sample, has been presented in Table 2–7.  

Table 2–7. Summary of CHFS synthesis conditions for the fabrication of ZnO sample A, sample B and sample C, 
that were characterised for their materials and gas sensing properties in Chapter 6. Fabrication of samples A, B 
and C involved a reaction of ambient flows of 0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O aqueous solution and KOH 
aqueous solution respectively (each flowing at 200 mL min-1) with a supercritical water flow at 450 °C and 240 
bar (flowing at 400 mL min-1) in a confined jet mixer.  

 

P-2 = precursor concentration issuing from pump 2, P-3 = precursor concentration issuing from pump 3, Q P-2 = 
volumetric flow of precursor from pump 2, Q P-3 = volumetric flow of precursor from pump 3, QSW = volumetric 
flow of supercritical water issuing from pump 1. 

 

2.3.4.2 ZnO Ceramic Samples from other high temperature synthetic methods 

This Chapter also reports on various ZnO ceramic samples, prepared by molten-salt synthesis, solid-

state metathesis and hydrothermal synthesis provided by Dr. Kristin Poduska and her research group 

from Memorial University, New Foundland, Canada. These samples have been tabulated in Table 2–

8.  

Table 2–8. ZnO ceramic samples prepared by Molten-Salt synthesis (MS-ZnO), Solid-State metathesis (SS-
ZnO) and Hydrothermal synthesis (Zn-ZnO) supplied by Dr. Kristin Poduska and her research group at Memorial 
University, New Foundland, Canada.  

Sample No. Sample Name Synthesis Method 

1 MS - ZnO Molten-Salt synthesis 
2 SS - ZnO Solid-State metathesis 
3 Zn - ZnO Hydrothermal synthesis 

 

 

Sample 
No. 

Sample 
Name 

P-2 
(Zn/M) 

P-3 
(KOH/M) 

Q P-2 
(ml min-1) 

Q P-3 
(ml min-1) 

Q SW 
(ml min-1) 

1 ZnO A 0.1 0.1 200 200 400 
2 ZnO B 0.2 0.2 200 200 400 
3 ZnO C 0.45 0.45 200 200 400 
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2.4 Material characterisation 

This section presents the details of all the material characterisation techniques that were used to 

investigate the chemical and physical properties of the metal oxide materials.  

2.4.1 Scanning Electron Microscopy (SEM) 

Top down Scanning Electron Microscopy (SEM) imaging was carried out on a JEOL JSM-6301F field 

emission scanning electron microscope (FE-SEM) instrument in secondary electron mode. Prior to 

analysis, all samples were carbon coated using an Edwards Auto 306 vacuum carbon coater, to 

prevent charging of the sample and enhance its conductivity during imaging. The acceleration voltage 

used for all samples was 5 kV and the probe current (µA) was very much sample dependent and 

varied according to the magnitude that gave the best image clarity. Data acquisition was conducted 

with SemAFORE software and images were taken at magnifications of x 10,000, x 20,000, x 30,000, x 

40,000, x 50,000 and x 100,000. 4-5 images were taken per sample at different areas across the 

sample to ensure the images obtained were representative of the whole sample.  

Images of the sensor chips and measurements of the wide gap electrode spacings within them, were 

taken using a Hitachi S-3400N environmental scanning electron microscope (E-SEM) instrument. 

Sensor chips were mounted on flat sensor stubs and imaged using an accelerating voltage of 10.0 kV, 

and the probe current was in the µA range in both secondary and back-scattered electron modes. 

2.4.2 Transmission Electron Microscopy (TEM) 

Transmission Electron Microscopy (TEM) imaging was carried out on all nanomaterials investigated in 

this thesis. The instrument used to conduct the imaging was a 200 keV JSM-2100 Transmission 

Electron Microscope instrument, which used a Lanthanum Hexaboride LaB6 electron source. Samples 

were prepared by creating a dispersion of each in methanol through ultrasonication, and drop coating 

onto carbon-coated grids (Holey carbon film, 300 mesh Cu, Agar Scientific), after which imaging was 

conducted. A number of images, at a variety of magnifications, were taken to ensure the images were 

representative of each sample as a whole and to obtain detailed image analysis. All images were 

acquired using Gatan Digital Micrograph software and particle size distributions determined using 

imageJ software. 

 

 



Chapter 2: Materials and Experimental Method 

88 

 

2.4.3 X-Ray Diffraction (XRD) 

X-Ray Diffraction (XRD) data was obtained from a number of different instruments throughout this 

project. Details of each instrument are given in this section.  

2.4.3.1 Bruker D4 Endeavour Powder X-ray Diffractometer (PXRD) 

XRD patterns of all powder samples were obtained using a Bruker D4 Endeavour powder X-Ray 

Diffractometer instrument using Cu Kα1+2 radiation (λ = 1.546 Å). DIFFRAC Plus XRD software was 

used for instrument control, data acquisition and diffraction data processing. Crystallite sizes of 

nanomaterials were evaluated from diffraction patterns acquired on the Bruker D4 diffraction 

instrument, using fityK software [200].  

2.4.3.2 Bruker Discover D8 Diffractometer with a wide angle Gadds detector 

XRD patterns of some thick-film sensor devices, investigated at the early-mid stage of this project, 

were taken using a Bruker Discover D8 diffractometer with a wide angle Gadds detector using Cu 

kα1+2 radiation (λ = 1.546 Å) in reflection mode using a glancing incident angle of  5°. The X-Ray 

generator operated at 40 kV and 40 mA. The scans were taken using a 0.5 mm collimator with θ1 = 5 

° and θ2 = 22 °, (frame width 34 °) with 2 frames per scan, with each frame having a total count of 200 

seconds. Gadds software was used for instrument control, data acquisition and 2-D diffraction data 

processing. 

2.4.3.3 Bruker D8 Discover D8 diffractometer with Vantec 500 detector 

XRD patterns of some thick-film sensor devices, investigated towards the latter stage of this project, 

were taken using a Bruker D8 Diffractometer with a Vantec 500 detector using Cu kα1+2 radiation (λ = 

1.546 Å) source. The X-Ray generator operated at 50 kV and 100µA.  XRD patterns were collected 

using a 0.3 mm collimator, over range of 20 ° – 65 ° with a time step of 100 second / step and 4 steps 

/ scan. Diffrac.Commander software was used for instrument control, data acquisition and 2-D 

diffraction data processing.  

All XRD patterns were evaluated using EVA software and data extracted to plottable formats using 

convx and PowDLL converter softwares.  

2.4.4 Raman Spectroscopy 

Raman spectroscopy of all samples was carried out using a Renishaw inVia Raman (Renishaw 

Raman System 1000) microscope using a green argon-ion laser of wavelength 514.5 nm. The laser 

power varied with each sample and was chosen on the basis that it gave the pattern with optimum 

clarity peaks and at the same time did not saturate the signal. The exposure times were 10 seconds 

/scan. 4-5 scans were taken in different areas across the sample, to ensure the scans obtained were 

representative of the whole sample.  
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2.4.5 X-Ray Photoelectron Spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy (XPS) was carried out using a Thermo K-Alpha spectrometer using 

monochromated Al Kα radiation, with survey scans collected over the 0 – 1400 eV binding energy 

range with 1 eV step size and a pass energy of 200 eV. Higher resolution scans (step size: 0.1 eV) 

were carried out around the principle peaks for each element and were collected at a pass energy of 

50 eV. All XPS data was evaluated and extracted into a plottable format using Casa XPS software. All 

XPS spectra were charge corrected against the reference C 1s peak at 284.6 eV [201-203] . 

2.4.6 Brunauer-Emmett-Teller (BET) surface area measurements 

Brunauer-Emmet-Teller (BET) surface area measurements were carried out on CHFS nanomaterials 

using N2 in a Micromeritics ASAP 2420 instrument with six parallel analysis stations. The samples 

were degassed at 150 °C for 12 hours prior to measurements. 
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2.5 Gas Sensing Characterisation 

Gas sensing experiments were carried out using an in-house automated test rig, developed by O. A. 

Afonja [194], a schematic of which is presented in Figure 2–4 and an image of which is presented in 

Figure 2–5.  
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Figure 2–4. Schematic of the gas sensing rig used for gas sensing experiments. In the schematic, the MFC 
represents a Mass Flow Controller, the SV represents a Solenoid Valve, and NO and NC represent open and 
close ports respectively, through which the gas is allowed access to the exhaust or test cell, 
respectively.{Diagram from O.A. Afonja [194]}.  
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Figure 2–5. Image of the gas sensing rig used for gas sensing experiments. 
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As observed in Figure 2–4, the rig contained a test cell which was made of solid 

Polytetrafluoroethylene (PTFE), a material which has established chemical inertness to a wide variety 

of chemicals [204]. The cell was able to accommodate eight sensors at any one time and all sensors 

were situated radially and equidistant around a circular test cell, as seen in Figure 2–6, from the 

centre, where the air/gas inlet was located allowing all sensors to “experience” the exposure 

conditions synchronously. The total internal volume of the 8 channel test cell, calculated by the 

summation of the volume of each of the 8 channels, was 34 cm3 [205]. This small internal volume of 

the test cell, ensured minimal lag in the gas flow towards the sensors and allowed for short 

measurements times [204]. The direction of the gas flow was at right angles to the sitting position of 

the sensor devices in the gas rig as observed in Figure 2–7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Direction of 

gas flow 
 

Figure 2–7. Illustration of the direction of the gas flow that the sensor device 
experiences when placed in gas sensing rig. 

 

Figure 2–6. Circular test cell in which gas sensors are placed radially from the centre from where 
the gas and air inlet is located. The arrow leads to a picture of the sensor mount, in which the 4-
pin sensor housing is seated.  
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The sensors were held at constant operating temperatures via a Wheatstone Bridge heater driver 

circuit, an image of which is presented in Figure 2–8 and circuit diagram of which is presented in 

Figure 2–9, which were connected to each sensors’ platinum heater track. The heater circuits were 

used to set the sensors at a range of operating temperatures between 250 °C and 500 °C, in 50 °C 

increments. The desired operating temperature was established via an iterative heater calculation 

programme written by Dr. Keith Pratt in Microsoft Excel [206]. The programme provides the voltage 

ratios required between A-B and B-C as illustrated in Figure 2–9, to provide the appropriate current, 

based on ambient conditions, through the selection of appropriate resistance values on the circuit’s 

potentiometer, in order to establish the desired operating temperature [206].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2–9. Circuit diagram of Wheatstone bridge circuit. {Diagram redrawn and adapted from O.A. 
Afonja [194]}. 

 

Figure 2–8. Wheatstone Bridge heater circuit.  
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Sensor conductance measurements were obtained through potentiostat circuits, presented in Figure 

2–10. Specifically, the measurement sections of the potentiostat circuits were based on an inverting 

operational amplifier, a circuit diagram of which is presented Figure 2–11. The potential value was 

measured across the gold electrodes as illustrated in Figure 2–12 and could be converted to the 

associated resistance using the inverting operational amplifier equation seen in Equation 2–1: 

Equation 2–1   
R

R
vv

in

fb

inout
   

 

In the equation, vout
 is equivalent to Vsensor and is the measured output voltage, vin

is the probe 

voltage, which is 100 mV, R fb
the feedback resistor value and Rin

is equivalent to R sensor, which is 

the unknown resistance of the sensor material to be calculated.   

 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 2–10. Potentiostat circuit board. 

Figure 2–11. Circuit diagram of inverting operational amplifier segment of potentiostat measurement circuit. The 
sensor resistance is calculated using the following components of the circuit: Vp, the sensor device probe 
voltage, Rs, the unknown resistance of the sensor device, Rfb, the resistance of the feedback resistor and Vs, 
the measured potential across the sensor device. {Diagram redrawn and adapted from O.A. Afonja [194]}. 
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Raw resistance data was transformed into conductive response and resistive response values in this 

thesis. The conductive and resistive responses were calculated as ratios of R0/Rg and Rg/R0, 

respectively. For each test cycle, the baseline value R0 of an individual sensor, was calculated by 

taking its average resistance in air, in the first thirty seconds, prior to the first gas purge. This value of 

R0 was then kept as a static value for the corresponding test cycle, and resistance of the sensor device 

factored against its corresponding R0 value. Thus the absolute responses have been calculated as 

opposed to the relative responses - where each response value is calculated by taking R0 to be the 

value prior to the corresponding gas injection. The R0 value was calculated this way, as it ensured a 

standard baseline resistance value of the device, which was not in any way affected by a pre-

conditioned gas sensor surface, that could subsequently change the  resistance value. 

The sensor devices were tested against a range of gases, which comprised of an oxidising gas: NO2 in 

air, (100 – 800 ppb) and various reducing gases: ethanol in synthetic air, (5 - 100 ppm), acetone in air, 

(1 – 10 ppm), CO in synthetic air, (100 - 1000 ppm), NH3 in air, (5 - 20 ppm) and toluene in synthetic 

air (10 – 50 ppm); all gas tests were carried out under dry air conditions and no water was added to 

the Dreschel bottles throughout the duration of this investigation. A variety of concentrations of each 

gas was obtained through dilution of the original concentration with compressed air (79% nitrogen, 

21% oxygen). All gases were obtained from the British Oxygen Company. All concentrations of the 

gases tested were below the accredited toxic limit values (TLV) levels described in Chapter 1, except 

for CO, where higher concentrations than the TLV level were required for a quantifiable sensor 

response to be observed.  

The gas delivery part of the rig observed in Figure 2–4 consisted of 5 MKS mass flow controllers 

(MFCs), 3 Takasago solenoid valves (SVs) and 2 Platon flow meters [194]. Gas supply to the test cell 

was controlled by MFC-1 which could be used in conjunction with MFC-4 for diluting the gas with dry 

 

Potential measured across 

gold electrode pads 

Figure 2–12. Illustration of the two-point potential measurement of the sensor material being made across the 
gold pads of sensor substrates.  
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air to the desired concentration or with both MFC-4 and MFC-5 to obtain the diluted gas mixture in a 

humid atmosphere. In the absence of any water in the Dreschel bottles, the dry air flow could be split 

between both MFC-4 and MFC-5, to obtain a dilute mixture of the gas in dry air; this is analogous to 

diluting the target gas with full flow of the dry air through only MFC-4. MFC-2 supplied dry air to 

determine the baseline resistance of the sensors in dry air and MFC-2 and MFC-3 together combined, 

enabled the determination of the baseline resistance of the sensors under humid conditions. Once 

again, in the absence of any water in the Dreschel bottles, the dry air flow could be split between both 

MFC-2 and MFC-3, for determination of the baseline resistance of the sensors in dry air; this is 

analogous supplying the full flow of dry air through only MFC-2, to determine the baseline resistance 

of the sensors. In the case of this experimental work, as no water was added to the Dreschel bottles 

during any period of the investigation, the dry air flows were split between MFC-4 and MFC-5 for 

diluting the target gas in dry air and between MFC-2 and MFC-3 for determination of the baseline line 

resistance of the sensor in dry air.   

In this investigation, the required concentration of a particular gaseous analyte was achieved by 

varying the flow rate through MFC-1 (controlling target gas flow) and MFC-4 and MFC-5 combined 

(controlling dry air flow) and the baseline of the sensors in dry air was determined by splitting the dry 

air flow between MFC-2 and MFC-3.  

The SVs in the gas delivery part of the system controlled the delivery of the gas and air (from the 

MFCs) to the test cell and the exhaust and were controlled by binary numbers 0 and 1, where 0 

represented flow in the direction of the NO (normally open) port towards exhaust and 1 represented 

flow in the direction of the NC (normally closed) port towards the test cell as seen in Figure 2–4. SV-1 

controlled the baseline air flowing from MFC-2 and MFC-3. SV-2 controlled the air (which was mixed 

with the target gas) flowing from MFC-4 and MFC-5. SV2 also controlled the gas flow into the test cell 

and therefore by default when SV-2 was set to 1, then SV-3 had to always be set to 0. If SV-3 were set 

to 1, the gas would by-pass the cell and flow to the exhaust, as observed in the schematic in Figure 2–

4.  

When setting up a gas test method file, the value assigned to an individual MFC was a % value of the 

full scale flow into the test cell. The total flow directed to the test cell always add up to 100%, which 

was representative of a total full scale flow of 1L/min, i.e. 100% = 1L/min or 1000 cc/min into the test 

cell. The minimum flow value of a MFC was set to 5%, which represented 5% of the total full scale  

flow of a MFC which was 1L/min i.e. 5% = 50 mL/min or 50 cc/min; any value below 5% was thought 

to be subject to fluctuations and errors and so 5% was a standard minimum flow rate. Thus whatever 

value was assigned to MFC 1 represented a % of the original concentration of the target gas, 

delivered to the test cell.  
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Table 2–9, presents an example of a gas test method file for a NO2 test (original concentration in 

cylinder = 1000 ppb). A minimum flow rate of 5% was kept on all MFCs throughout most phases, so as 

not to hold the MFCs low powered state, which allowed a smooth transition to a high powered state, 

with an increased flow rate, in the succeeding phase. However despite the MFCs being set on 5%, the 

associated SV was always set to 0, and so the flow of gas/air always by-passed the test cell and went 

straight to the exhaust, so as to not disturb the input flow into the test cell in any way and ensure that 

the full scale flow into the cell was always 100% or 1L. 

Table 2–9. Example of a gas testing method file for a NO2 test, containing 12 phases. The original concentration 
of the NO2 cylinder was 1000 ppb, however upon dilution with dry air, concentrations in the range of 50 – 800 
ppb could be achieved. Each MFC was set a % of full scale flow into the test cell, which was 100%. In phases 
where the SV is set to 0, flow from the associated MFCs is directed to the exhaust, ensuring that the total flow 
inside the test cell is always only 100%. Where the SV is set to 1, flow from the associated MFCs is directed to 
the test cell. No water was added to the Dreschel bottles during anytime of testing and so the dry air flows could 
be split between a dry air and its corresponding wet air MFC.  

Phase 
No. 

Time 
(seconds) 

MFC-1 
(Gas) 

MFC-2 
(Dry Air) 

MFC-3 
(Wet Air) 

MFC-4 
(Dry Air) 

MFC-5 
(Wet Air) 

SV-1 (MFC 
- 2/3) 

SV-2 (MFC 
- 4/5) 

SV-3 
(MFC - 1) 

NO2 
concentration 

(ppb) 

0 20 0 0 0 0 0 0 0 0 0 

1 1200 5 50 50 5 5 1 0 0 0 

2 600 5 5 5 47.5 47.5 0 1 0 50 

3 1200 5 50 50 5 5 1 0 0 0 

4 600 10 5 5 45 45 0 1 0 100 

5 1200 5 50 50 5 5 1 0 0 0 

6 600 20 5 5 40 40 0 1 0 200 

7 1200 5 50 50 5 5 1 0 0 0 

8 600 40 5 5 30 30 0 1 0 400 

9 1200 5 50 50 5 5 1 0 0 0 

10 600 80 5 5 10 10 0 1 0 800 

11 1200 5 50 50 5 5 1 0 0 0 

 

In the table, phase 1 shows all MFCs were held in a powered low state and reset themselves for the 

first 20 seconds of the test, ensuring that a previous test setting is not carried over, just in case it was 

stopped in the middle of testing. In phase 2, a full scale flow of dry baseline air is directed into the test 

cell via SV-1 for 30 minutes followed by phase 3 in which 50 ppb of NO2 is directed to the test cell via 

SV-2 for 10 minutes. Within each gas sensing test, sensor devices were exposed to a particular 

concentration of the target analyte for 600 seconds and dry air for 1200 seconds.  A longer time was 

given in baseline air for the sensor to recover after exposure to the target analyte from the proceeding 

phase.  

All gas sensing experiments were repeated in triplicate to ensure the responsivities observed were 

repeatable, with one type of each sensor device from each system, characterised for gas sensing 
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behaviour. The gas sensing results of the final repeat test (graphical form) have been presented in the 

thesis with examples of various preceding repeat tests (in graphical form) presented in the Appendix. 

Further throughout each section, average responses (calculated from all repeat tests) of the sensor 

devices from some of the gas sensing tests, and the associated errors in the form of 95% confidence 

intervals (CIs), have been tabulated. The 95% confidence interval (CI) is a useful method of estimating 

variability in gas sensing based experiments, as it assumes a random order in the response 

magnitude with sequential tests conducted. These error values indicate the interval which has a 95% 

probability of containing the average response value, illustrate the variability and repeatability of the 

response measurements and indicate the stability of sensor performance.  

Generally, response results were seen to be repeatable and stable at low concentrations of gas 

exposure, but were associated to greater variation at the highest concentrations of gas exposure 

and/or with composite materials consisting of a significant contribution of both metal oxides. In most 

cases, preceding repeat tests showed a response signal for all devices, but in some cases where the 

response magnitude of the device was very high (usually towards the highest concentrations of 

analyte exposure) capping out of the signal was observed, due to the electronic limits of the digital 

multimeter integrated into the gas rig. This limited the calculations of errors on sporadic response 

magnitudes of some devices, and where this is the case, this has been indicated in the error tables. 

Brief error analysis has been presented in the summary and conclusion sections of most chapters, and 

a more detailed analysis of potential sources of error in the response measurements, have been 

discussed in Chapter 7. The baseline resistance ranges for each sensor device have also been 

tabulated in the Appendix for reference.  
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Chapter 3 : WO3-ZnO based n-n hetero-junction system  

In this first experimental Chapter, an in-depth investigation of materials and gas sensing 

characterisation study based on a n-n hetero-junction system of WO3 and ZnO composites is 

presented.   

3.1 Introduction 

Literature on the gas sensing properties of a hybrid system containing WO3 and ZnO are very limited, 

and more work is required to explore the potential of this combination of metal oxides. The 

combination of certain proportions of both these metal oxides, has been reported as an effective way 

to enhance gas sensing performance [207]. For example, in a recent study by Siriwong et al. [207], a 

report on the gas sensing properties of WO3 doped ZnO nanoparticles made by Flame Spray Pyrolysis 

were reported. In their study, they prepared control ZnO nanoparticles as well as doping varying 

concentrations of WO3 (0.25 mol.%, 0.5 mol.% and 0.75 mol.%) into ZnO nanoparticles. TEM imaging 

showed the particles to be attributed to spheroidal and hexagonal morphologies of size 5 - 25 nm and 

rod like morphologies with width of 5 – 10 nm and lengths of 10 - 25 nm. The nanoparticles were 

deposited onto gas sensor substrates by spin-coating and gas sensing characteristics tested against 

NO2, CO and H2 at operating temperatures between 300 °C – 400 °C. When exposed to increasing 

concentrations of NO2 gas between 1 - 50 ppm at an operating temperature of 400 °C, the 0.5 mol% 

WO3-ZnO sensor exhibited the highest resistive response with a 5-fold enhanced response with 

respect to the pure ZnO counterpart toward 50 ppm of NO2, showing the properties of a ZnO film could 

be dramatically improved by addition of a specific amount of WO3. Interestingly, the gas sensing 

responsivities of the doped nanoparticulate films were seen to decrease as a function of operating 

temperature, but that of the pure ZnO particles was seen to increase, showing the films had different 

temperature-conductance profiles [20, 137, 208]. Exposure of the sensors towards 100 ppm of CO as 

a function of increasing operating temperatures showed that the WO3 doping had very little effect to 

the responsivity, with respect to the pure ZnO counterpart, and that all sensors showed negligible 

response towards the gas compared to NO2. The same observation had occurred when the materials 

were exposed to 2000 ppm H2, with the WO3 doping having no effect on the responsivity of the films. 

The group had concluded that the combination of the appropriate proportion of each of the oxides was 

a useful approach to enhance gas sensing-performance of the multi-component metal oxide system. 

Further, the group had reported that the preparation technique would considerably affect the physical, 

chemical and gas sensing properties of the mixed-oxide sensors because these factors are dependent 

on the essential surface activity of the layers, which are of course controlled by the method of 

fabrication. 
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In another more recent study by An et al. [209], a report on the enhanced NO2 gas sensing properties 

of WO3-ZnO core-shell architectures was reported. The hybrid materials were prepared by a dual 

method; the first encompassed the fabrication of the WO3 core by catalyst-free thermal evaporation of 

WO3 powder and graphite in an oxidising atmosphere, producing WO3 nanorods and the latter 

encompassed atomic layer deposition (ALD) of ZnO around the WO3 nanorods, producing WO3-ZnO 

core-shell architectures. A schematic of these architectures has been presented in Figure 3–1.  

 

 

 

 

 

 

 

The nanorod sample was prepared as a gas sensor by dispersion of the individual fabricated nanorod 

metal oxide materials into a mixture of deionised water and iso-propyl alcohol (IPA) and subsequent 

drop coating of the dispersion onto gas sensor substrates, forming multi-networked core-shell WO3-

ZnO nanorod sensors. The nanorods were seen to exist in a few tens to a few hundreds of nm in width 

and few tens of micrometres in length. When sensors were operated at 300 °C and exposed to 

increasing concentrations of NO2 in the range 1 – 5 ppm, it was found that the bare WO3 sensor 

showed responses of 7, 14, 19, 26 and 30 % towards 1, 2, 3, 4, and 5 ppm NO2. In contrast the WO3-

ZnO core-shell hybrid nanorods were seen to show responses of 50, 87, 143, 201 and 281 % towards 

1, 2, 3, 4 and 5 ppm NO2, showing enhancements of 7, 6, 8, 8 and 9 with respect to the pure WO3 

counterparts. The WO3-ZnO core-shell combination was reported to be attributed to a 5 times higher 

response than previous results of SnO2-ZnO core-shell nanofibres, which were exposed to the same 

concentrations.  

The group had explained the enhancement effect of the WO3-ZnO hybrid system by a space charge 

model, whereby adsorption of NO2 molecules on the surface of the hybrid metal oxide results in an 

increase in the size of the depletion layer or space charge layer on the surface. This is because the 

NO2 molecules were thought to be able to deplete electrons from both the WO3 and ZnO materials, as 

the surface layer size was an order of the Debye length. Thus, they proposed that the hetero-junction 

existing at the interface of both metal oxides was an important factor contributing to the enhancement 

Figure 3–1. Schematic of WO3 core nanorods and WO3-ZnO core-shell nanorod 
architectures fabricated by An et al. [209].   
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of the device, as the transport of electrons is modulated by the hetero-junction, when they are 

depleted from both the WO3 core and ZnO shell. Further, upon switching off the NO2 gas, the electrons 

are released back into the conduction band of not only the ZnO shell, but also of the WO3 core via the 

hetero-junction. As such, the hetero-junction was thought to act as a lever which could modulate the 

electron transfer (facilitation or restraint) in the hybrid system by adjusting the height of the effective 

energy barriers at the hetero-interfaces, resulting in the enhanced gas sensing properties observed. 

The literature studies illustrate the effective gas sensing properties of a combination of both WO3 and 

ZnO against NO2 and suggest that the enhancement effects in such systems are complex, with a 

variety of factors such as specific combinations of both metal oxides as well as the hetero-junctions 

that exist at the interface, being influential factors contributing to the enhancement of the hybrid 

system.  

In this investigation, an in-depth materials and gas sensing characterisation study on a hetero-junction 

system based on WO3 and ZnO composites is presented. Based on literature searches, this is the first 

study based around composite packing structures of both metal oxides and a first to present the gas 

sensing properties of the hybrid system, against such an extensive range of analytes.   
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3.2 Results and Analysis 

3.2.1 Scanning Electron Microscopy (SEM) 

SEM imaging characterisation of all seven sensors in the WO3-ZnO composite system was carried out 

to observe the microstructure of each material. The SEM images of all sensor materials in the WO3-

ZnO system presented in Figure 3–2.  
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Figure 3–2. SEM images of (a) 100 wt.% WO3 x 10,000 magnification, (b) 100 wt.% WO3 x 20,000 magnification, 
(c)  90 wt.% WO3 – 10 wt.% ZnO x 10,000 magnification, (d)  90 wt.% WO3 – 10 wt.% ZnO x 20,000 magnification, 
(e) 70 wt.% WO3 – 30 wt.% ZnO x 10,000 magnification, (f) 70 wt.% WO3 – 30 wt.% ZnO x 20,000 magnification, 
(g) 50 wt.% WO3 – 50 wt.% ZnO (area 1) x 10,000 magnification, (h) 50 wt.% WO3 – 50 wt.% ZnO (area 1) x 
20,000 magnification, (i) 50 wt.% WO3 – 50 wt.% ZnO (area 2) x 10,000 magnification, (j) 50 wt.% WO3 – 50 wt.% 
ZnO (area 2) x 20,000 magnification, (k) 30 wt.% WO3 – 70 wt.% ZnO x 10,000 magnification, (l) 30 wt.% WO3 – 
70 wt.% ZnO x 20,000 magnification, (m) 10 wt.% WO3 – 90 wt.% ZnO x 10,000 magnification, (n) 10 wt.% WO3 – 
90 wt.% ZnO x 20,000 magnification, (o) 100 wt.% ZnO x 10,000 magnification and (p) 100 wt.% ZnO x 20,000 
magnification. All materials were screen-printed and heat-treated at 600 ºC before imaging. 
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SEM imaging characterisation of the sensor devices showed that the WO3 particles observed in Figure 

3–2 (a) and (b) were attributed to flat-faced platelet like morphologies with particle sizes observed to 

be as large as 1 µm in width and 0.125 µm in height. In contrast the ZnO particles observed in Figure 

3–2 (o) and (p) were attributed to 3-dimensional cuboid shapes with rounded edges, with particle 

observed to be in the range of 0.1 µm to 1 µm. 

A variation in the overall microstructure of the composite materials as a function of changing 

concentration of both metal oxides was observed, however minimal difference was observed between 

the 100 wt.% WO3 and 90 wt.% WO3 – 10 wt.% ZnO  sensor devices , observed in Figure 3–2 (a) & (b) 

and (c) & (d), respectively and in the 10 wt.% WO3 – 90 wt.% ZnO and 100 wt.% ZnO sensor devices, 

observed in Figure 3–2 (m) & (n) and (o) & (p), respectively, with the host metal oxides dominating the 

microstructure in the composite devices. This suggested that both composites devices were 

significantly homo-contact dominated, with the localised dispersion of WO3-ZnO hetero-contacts 

present within the sensor matrix. In contrast, the 50 wt.% WO3 – 50 wt.% ZnO and 30 wt.% WO3 – 70 

wt.% ZnO sensor devices observed in Figure 3–2 (i) & (j) and (k) & (l), showed more of a 

heterogeneous dispersion of both metal oxide grains within the sensor matrix, suggesting that the 

presence of WO3-ZnO hetero-contacts were more delocalised within and around the WO3–WO3 and 

ZnO-ZnO homo-contacts.  

The ability of gas molecules to not only interact with the material surface, but also with the body of the 

material, was evident through low agglomerated network of metal oxides grains in most devices. Thus, 

voids between the grain interfaces suggested the provision of pathways for gas molecules to diffuse 

and percolate through the body of the sensor matrix. Such a microstructure is favourable for gas 

sensing applications as it inherently increases the surface site interaction of the target analyte(s), 

leading to a higher yield of surface reactions between the analyte and the metal oxide surface, and 

ultimately increasing the responsivity of the material towards the target analyte. In contrast, a more 

compact gas sensing film inhibits the pathways for gas diffusion and as such, the target analyte 

interacts predominantly with the surface and in comparison, has limited interaction with the body of the 

sensor material.  

In some devices however, gross intimate contact between the metal oxide grains was observed, an 

example being the 70 wt.% WO3 - 30 wt.% ZnO sensor device observed in Figure 3–2 (e) and (f). 

Such intimate contact of the grains was suggestive of extensive agglomeration between the grains, 

which suggested a lower diffusion pathway of the gas molecules into the body of the sensor matrix. 

However despite the large inter-grain agglomeration, spaces between the agglomerates suggested 

that inter-agglomerate diffusion of the gas molecules was apparent in the sensor device, suggesting 

that diffusion of the gas molecules into the body of the sensor matrix could occur.   

   

   

1 µm x 20,000 
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The 50 wt.% WO3  - 50 wt.% ZnO device was observed to be associated to a contrast in grain contact 

within the sensor matrix. One part of the sample, observed in Figure 3–2 (g) and (h) was seen to be 

associated to extensive agglomeration between the grains, however another region of the sample, 

observed in Figure 3–2 (i) and (j) was seen to be associated to loosely held grains. The observed 

inhomogeneous microstructure of the sample, suggested a disadvantage in the preparation method 

(i.e. mechanical mixing) of the composite inks. Sun et al. [210] had reported in their study, where they 

had mixed powders (Cr2O3 and WO3) using sonication and then drop-coated the suspension onto gas 

sensor substrates, that the irreproducibility that was associated to mixing powders was due to 

differences in the size and density differences of the particles and the different settling dynamics upon 

depositing the ink onto the alumina substrate.  

The difference in particle sizes between both metal oxides suggested that within the composite, not 

only were hetero-junction effects introduced by the presence of grains of differing chemical natures, 

but also they were present due to the stark contrast in grains sizes. Yamazoe et al. [170, 171] had 

reported on hetero-junction effects within devices incorporating grains which were non-uniform. They 

had reported that the simplest factor in hetero-junction devices that contributed to the non-uniformity 

between the grains, was the differences in grain sizes between the grains. Thus, in the WO3–ZnO 

composite system that was examined here, multiple in-homogeneities existed to exert hetero-junction 

enhancement effects, which are expected to play a positive role in the overall gas-sensing properties 

of the materials.  

Evidence of fusing between the hetero-contacts in most sensor devices was not evident, however 

some localised fusing between the homo-contacts, in the sensor materials rich in WO3 or ZnO, was 

observed. It is likely that higher thermal energy would be required to promote the fusing and sintering 

of the hetero-contacts, with reports in the literature suggesting that sintering of a composite material is 

difficult to achieve [89]. Too much thermal energy however, has a number of unfavourable implications 

associated to it. The first, specific to this WO3-ZnO composite system, is the formation of the tertiary 

phase zinc tungstate, ZnWO4, which was experimentally found present in the composite sensor 

devices, as a minor phase, after heat-treatment at 600 °C, data of which has been presented further in 

the Chapter in sections 3.3 and 3.4. Secondly, under very high-temperature conditions the 

microstructure suitable for gas-sensing applications will be compromised, with the formation of profuse 

“open necks” between the grains [65, 211]. These necks inhibit the formation of potential energy 

barriers between the grains, thus creating paths of low resistance for the charge carriers to travel 

across, such a microstructure restricts the surface-site accessibility of the gas as the neck region 

contributes to the bulk of the material; both these factors contributing to reducing the overall 

responsivity of the gas sensitive material [65]. Low sintering between grains in contrast, promotes the 

formation of a “closed neck” [65, 211] case, where there exists more resistive potential barriers 
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between the grains that charge carriers must overcome. Further, such a microstructure promotes more 

contact of the surface of gas sensitive material with the analyte, as the neck contributes to the surface 

component of the gas sensitive material [65]. Such a microstructure would enhance the overall gas 

sensing properties of the material. This apparent difference in extent of sintering, suggests a possible 

influence of microstructure on the electron percolation pathways between the different composites and 

variation in the extent of surface site accessibility of the analyte within the individual composites.   

SEM imaging of the solid-state synthesised ZnWO4 was also conducted and the associated images 

have been presented in Figure 3–3.  

 

 

 

 

 

 

 

SEM images of the sensor device of the tertiary phase, ZnWO4, shown in Figure 3–3 (a) and (b) was in 

stark contrast to the microstructure of the WO3 and ZnO pure and composite sensor devices. The 

images show huge grain sizes, larger than 1 μm, with sintering evident between the grains. This is a 

likely result of firing the compound to 1000 °C for 16 hours, during the solid-state synthesis method.  

Yamazoe et al. [170] have reported that the formation of gross necks in the literature has been 

reported under harsh conditions, of which firing at 1000 °C, is experimentally as seen above, an 

example. As such, the sintered necks are likely to contribute insignificantly to the overall material 

resistance and therefore this material is likely to be associated to low gas responsivity, if any, in 

comparison to the pure and composite WO3 and ZnO based materials. However the inherent 

responsivity of ZnWO4 is not expected to diminish completely despite its highly sintered 

microstructure; only the amplitude of its response signal is expected to be lower in comparison to the 

response magnitude from a microstructure, which has many more grain boundaries. Firing at 

excessive temperatures for long periods of time does promote grain growth [65, 195] and as such, the 

microstructure obtained experimentally here, can be justified. 

The ZnWO4 was experimentally in this thesis synthesised by a solid-state method reported by Phani et 

al.[195]. The difference in microstructure of the tertiary phase obtained in this thesis to that reported in 

Figure 3–3. SEM images of (a) 100 wt.% ZnWO4 x 10,000 magnification and (b) 100 wt.% ZnWO4 x 20,000 
magnification. The material was screen-printed and heat-treated at 600 ºC before imaging. 
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the literature[195], could be attributed to the fact that Phani et al. fired the final ZnWO4 at 1000 °C for 

24 hours, as opposed to the 16 hour period that the ZnWO4 was heat-treated at, experimentally.   

3.3 XRD (X-Ray Diffraction) 
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(b) 

Figure 3–4. XRD patterns of (a): 100 wt.%  WO3, 90 wt.%  WO3 – 10 wt.%  ZnO, 70 wt.%  WO3 – 30 
wt.%  ZnO, 50 wt.%  WO3 – 50 wt.%  ZnO and 30 wt.%  WO3 – 70 wt.%  ZnO sensor devices and (b): 
10 wt.%  WO3 – 90 wt.%  ZnO and 100 wt.%  ZnO sensors. The strongest reflections of WO3 are 
indicated in black and ZnO are in red. The peaks marked with an * correspond to the tertiary phase, 
ZnWO4. All materials were screen-printed and heat-treated at 600 °C, prior to XRD measurements.  
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Glancing angle X-Ray Diffraction (XRD) seen in Figure 3–4 showed that both WO3 and ZnO samples 

were crystalline. Phase identification analysis found that that commercial WO3 powder corresponded 

to randomly oriented monoclinic γ-crystal phase matching the reference pattern (ICDD 43-1035). The 

random orientation of the WO3 crystallites in the samples, was indicated by the large intensities of the 

three closely spaced reflections (002, 020, 200) [109] in the region of 22-25 °2θ.  

The commercial ZnO powder matched the reference ZnO pattern (ICDD 36-1451) [212], indicating that 

the ZnO corresponded to a hexagonal wurtzite crystallite structure [77, 213, 214].  

The XRD patterns of the composite samples were clearly indicative of the change in ratio of WO3 and 

ZnO, with the ZnO diffraction peaks becoming more intense and the WO3 peaks concurrently 

decreasing in intensity, as the concentration of ZnO increased with respect to a decrease in 

concentration of WO3. Further, the patterns indicated that the composite materials were physically 

composites and not chemical compounds or solid solutions, evidenced through clearly distinguishable 

XRD peaks of both individual metal oxides and absence of any peak overlap between them. 

XRD patterns of all the composites indicated the presence of ZnWO4, as minority phase. The peaks at 

approximately 18.6 °2θ and 30.55 °2θ corresponding to this tertiary phase (seen in Figure 3–5) have 

been marked with an asterix (*). Empirical evidence suggests through the comparison of the peak 

intensities of ZnWO4 between each composite pattern, and the ZnWO4:ZnO relative peak ratios of 

each composite pattern that the concentration of this tertiary phase increases as the concentration of 

ZnO decreases and that of WO3 begins to increase. A limit is reached at the 50 wt.%:50 wt.% 

WO3:ZnO composite, after which further increase in WO3 composition and a subsequent decrease in 

ZnO, results in less ZnWO4 formation. A similar observation in variation of zinc tungstate content 

relative to ZnO and WO3 concentration, has been observed and reported previously in the literature 

[111]. The formation of this phase was inevitable due to exposure of the composite to the large 

thermal energy from firing the sensors at 600 °C.  
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PXRD of the tertiary phase, ZnWO4, has been presented in Figure 3–5. The experimental pattern was 

in agreement with the reference pattern corresponding to JCPDS 15-0774 [215], with tungstate 

adopting a pure monoclinic wolframite structure. The two peaks which have been marked with an 

asterix (*), are those which could be identified in the XRDs of the WO3-ZnO composite materials, 

presented in Figure 3–4.  

 

 

 

 

 

 

 

 

 

Figure 3–5. PXRD pattern of pure zinc tungstate (ZnWO4), experimentally synthesised by a solid-state method 
reported by Phani et al. [192].  
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3.4 Raman Spectroscopy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 3–6. Raman patterns of (a): 100 wt.%  WO3, 90 wt.%  WO3 – 10 wt.%  ZnO, 70 wt.% WO3 – 
30 wt.%  ZnO, 50 wt.%  WO3 – 50 wt.%  ZnO and 30 wt.%  WO3 – 70 wt.%  ZnO sensor devices 
and (b): 10 wt.%  WO3 – 90 wt.%  ZnO and 100 wt.%  ZnO sensors. The modes of WO3 are 
indicated in black and ZnO are in red. The modes marked with an * correspond to the tertiary 
phase, ZnWO4. All materials were screen-printed and heat-treated at 600 °C, prior to Raman 
spectroscopy measurements. 
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Raman spectroscopy in Figure 3–6 corroborated the findings from the XRD characterisation, with the 

spectrum of WO3 in Figure 3–6 (a) showing the Raman shifts at 810 cm-1, 720 cm-1, 335 cm-1 and 276 

cm-1. All of these bands have been observed in similar positions in the literature before, with the former 

two attributed to the W-O-W stretching modes of the bridging oxygen and the latter two attributed to 

the associated bending modes of monoclinic γ-WO3 [34, 55, 103, 216, 217].  

Bands observed experimentally for ZnO in Figure 3–6 (b) at 335 cm-1, 388 cm-1, 436 cm-1, have also 

been observed and reported in the literature, with the first and last being associated to a second order 

Raman spectrum, occurring due to zone boundary phonon modes of the ZnO crystal: 3E2H-E2L (335 

cm-1) and E2H (436 cm-1) and the band observed at 388 cm-1 corresponding to the A1(TO) phonon 

mode of the ZnO crystal [218-220].  

Figure 3–6 (a) shows that most composites show mainly the presence of WO3, with ZnO being largely 

unidentifiable, as WO3 is a much greater scatterer than ZnO. This is because vibrational frequencies 

are atomic mass dependent, with WO3 having a significantly greater molecular mass than ZnO.  

However, the 10 wt.%:90 wt.% WO3:ZnO sample observed in Figure 3–6 (b) shows evidence of each 

component within the composite system being individually identifiable and present.  

Appearance of the stretch at 911cm-1, marked with an asterix (*), was observed only in the composite 

materials, but not in the pure oxides. The appearance of this peak has been observed as the most 

intense peak in the Raman spectra of ZnWO4, presented in Figure 3–7, and is attributed to a WO6 

symmetric stretch vibration, which is associated to the isolated WO6 wolframite crystal structure of 

ZnWO4 [221-223].  

 

 

 

 

 

 

 

 

 



Chapter 3: WO3-ZnO based n-n hetero-junction system 

112 

 

 

 

Figure 3–7 presents the Raman spectrum of ZnWO4, which was in agreement with Raman patterns 

reported in the literature, such as that by Kalinko et al. [222] and Liu et al. [221] . These groups report 

that the vibrational frequencies at 908 cm-1, 788 cm-1 and 409 cm-1 are associated to the symmetric 

stretching vibration associated to the isolated WO6 wolframite crystal structure of ZnWO4 [223].   

 

 

 

 

 

 

 

 

Figure 3–7. Raman pattern of pure zinc tungstate (ZnWO4), experimentally synthesised by a solid-state method 
reported by Phani et al. [192]. The peak with the asterix (*) is the high intensity ZnWO4 peak that was observed 
in the Raman patterns of the composite materials in Figure 3–6.   
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3.5 X-Ray Photoelectron Spectroscopy (XPS)  

 

XPS measurements were conducted on all sensors within the system, with two binding energy peaks 

of each metal observed for the corresponding metal oxide. All spectra (with a ± 0.1 eV experimental 

measurement error) were standardized against the C1s binding energy of 284.6 eV obtained from the 

reference database [201] and from literature [202, 203]. For all WO3 containing samples, a W 4f7/2 

peak in the range of 35-36 eV was observed and for all ZnO containing samples, a Zn 2p3/2 peak 

occurred in the range of 1021-1023 eV. All the observed peaks were experimentally in agreement with 

the reference database [201] and accompanied by spin-orbit doublets. For the Zn species, Zn 2p3/2 

and Zn 2p1/2 splitting values in the range of 22.9 – 23.2 eV were in close agreement to literature values 

[224]. For the W species, W 4f7/2 and W 4f5/2 splitting values in the range of 2.0 - 2.2 were in close 

agreement to literature values [225, 226].  XPS did not show evidence of any remnants such as silica 

from the organic vehicle in any of the sensor devices. Calculation of the relative binding energies, by 

finding the difference between the binding energies of the Zn 2p3/2 and the W 4f7/2 peaks, as a function 

of increasing WO3 composition in the composites, gave evidence of interactions taking place between 

the individual oxides. Since XPS binding energies are referenced to the Fermi Level (EF), a change in 

the relative positions of the W and Zn core levels indicates a change in EF relative to the energy levels 

in WO3 and ZnO phases. Figure 3–8 shows that the difference between the W and Zn core lines 

Figure 3–8. XPS relative binding energies (B.E.) (calculated by taking the difference between the B.E. of the Zn 

2p3/2 peak and the B.E. of the W 4f7/2 peak) for all the associated WO3-ZnO composites as a function of wt.% 

WO3 in each composite. 
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increases as a function of increasing WO3 phase fraction, showing that the ZnO energy levels move 

down and the WO3 energy levels move up relative to EF. This is consistent with increasing electron 

donation from WO3 to ZnO. As such, the Fermi level of WO3 effectively decreases, whilst that of the 

ZnO effectively increases, maintaining the equilibration of the Fermi level throughout all the 

composites in the system. As these shifts occur as a function of changing composition, a change in 

the relative binding energy is observed. XPS data therefore gave evidence of an electronic interaction 

within the hetero-junction mixed-oxide system.  

3.6 Gas Sensing  

3.6.1 Gas Sensing Properties of ZnWO4 

 

 

 

 

 

 

The observation of the presence of ZnWO4 in the composite materials, prompted investigation of the 

responsivity of the tertiary phase against the two main test gases NO2 and ethanol, that have been 

investigated against all systems reported in this thesis.  Figure 3–9 presents the responsivity of the 

tertiary phase against increasing concentration of both analytes at the optimal operating temperatures 

of the WO3-ZnO composite system (presented further in the Chapter) which was 300 °C against NO2  

as seen in Figure 3–15 and 350 °C against ethanol as seen in Figure 3–12. Figure 3–9 (a) presents 

the conductive response of ZnWO4 against increasing ppm concentrations of ethanol and Figure 3–9 

(b) presents the resistive response of ZnWO4 against increasing ppb concentrations of NO2. The 

figures show that the tertiary phase was associated to no responsivity towards both analytes, 

suggesting that its presence in the composite materials had no role towards promoting the responsivity 

of the materials. 

In the literature, the number of reports on ZnWO4 as a gas sensor are very limited, but a few do exist 

[227, 228]. In one report, Cao et al.[227] had reported on the use of nanosized ZnWO4 for a 

Figure 3–9. (a) Conductive response of ZnWO4 at 350 °C exposed to increasing concentrations: 5, 10, 20, 40, 
80 and 100 ppm ethanol gas and (b) Resistive response of ZnWO4 at 300 °C exposed to increasing 
concentrations: 100, 200, 400 and 800 ppb NO2 gas.  

(a) (b) 
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cataluminescence sensor – a sensor which emits cataluminescence in the process of catalytic 

oxidation, in this case for the detection of ether. Specifically, the process involves the emission of 

electromagnetic radiation (most commonly in the UV-Vis or Infrared region), due to the catalytic 

oxidation of organic molecules on solid catalyst surfaces. The surfaces generally yield the excited 

intermediates of the organic molecules in the excited electronic states, producing light when they 

recover back to the ground electronic state. The group had reported that the sensor had performed 

optimally at an operating temperature of 330 °C with a detection limit of 8.7 ppm ether. When exposed 

to a range of VOCs at 200ppm that included ethanol, acetone and ether, the sensor was found to be 

selective to ether, with no responsivity towards ethanol and hardly any towards acetone.  

In another study by Tamaki et al. [228], the group had observed ZnWO4 to exhibit a responsivity of 2.6 

and 1.8 towards 200 ppm NO at 450 °C and 500 °C, respectively and responsivities of 34.7 and 14.8 

towards 50 ppm NO2 at 450 °C and 500 °C, respectively. The response behaviour of this material, 

alongside other metal tungstates, had been attributed to p-type behaviour. This literature study [228] 

suggests that this tungstate may be responsive towards NO2 gas at very high concentrations in the 

ppm range. In contrast, the concentrations studied in this thesis are in the ppb range. Further reports 

in the literature have also shown ZnWO4 to be a potential candidate as a humidity sensor [229].  

Given that the presence of the tertiary phase was minimal in comparison to the content of the 

individual oxides in the various composite mixtures, inferred from empirical evidence of relative 

intensities of ZnWO4 versus the WO3 and ZnO reflections, in the XRD patterns in Figure 3–4, and 

given that the tertiary phase showed no responsivity towards ethanol and NO2 as observed in Figure 

3–9, analysis suggested that the tertiary phase did not play an active role towards enhancing the 

response of the composite systems. This inference is in contrast to a report of the function of ZnWO4 

in ZnO and WO3 composites reported by Ge et al.[111]. The group reported that an appropriate 

amount of the tungstate phase in WO3-ZnO composites, can act to enhance the gas sensing 

properties.  

The SEM of ZnWO4 in Figure 3–3  showed that the microstructure of the synthesised tertiary material 

is significantly different to that of the system of WO3-ZnO composites observed in Figure 3–2, with the 

ZnWO4 seen to have larger particle sizes and fused grains. As such, it can be argued that its 

microstructure may have played a role in inhibiting the responsivity of this compound. However, MOS 

sensor responsivity is promoted through the fundamental principle that the surface sites of the gas 

sensitive material can adsorb [1, 45, 230], and subsequently stabilise the adsorption of the ionised 

oxygen species [137]. The reaction of the adsorbed oxygen species with the target analyte will 

promote a change in the charge carrier concentration, resulting in changing the resistance (increase or 

decrease) of the semiconducting oxide. Thus the inherent response characteristic of a material, if any, 

is always present, independent of the microstructure of the material. The microstructure would 
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however, play a significant role in the amplification of the response trace, depending on size effects, in 

terms of particle size, agglomeration and thickness of the film and the extent of sintering [1, 65, 231].  

3.6.2 Gas Sensing Properties of WO3-ZnO hetero-junction system 

This section presents an in-depth gas sensing functionality study of all sensor devices in the WO3-ZnO 

composite system against ppm concentrations of ethanol and ppb concentrations of NO2. Further gas 

sensing studies against a range of reducing gases: CO, NH3 and acetone has also been presented. 

Results of all sensor devices within the system have been presented here, except the 70 wt.% WO3 – 

30 wt.% ZnO sensor device, which was attributed to significant electrical digitisation to its response 

signals, which invalidated subsequent interpretation and analysis of the response behaviour. A second 

device of this composition was built and tested to confirm the effect seen with this composition and 

again the second device confirmed that this particular composition was attributed to significant noise.  

3.6.2.1 Ethanol Sensing 

 

The conductive response of the WO3-ZnO system against increasing concentrations of ethanol at an 

operating temperature of 350 °C, have been presented in Figure 3–10. Tabulation of the mean 

responses values of the devices in the WO3-ZnO system from the repeat tests against exposure 

Figure 3–10. Conductive response traces of the WO3-ZnO system towards 10, 20, 40, 80 and 100 ppm ethanol 
gas, at an operating temperature of 350 °C.  
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towards the various ethanol concentrations at 350 °C and the associated 95% confidence intervals 

have been presented in Table 3–1.  

Table 3–1. Average conductive responses of sensors devices in WO3-ZnO system from all repeat tests against 
various ethanol concentrations at 350 °C and associated errors in the form of 95% CIs.  

 
10 ppm 20 ppm 40 ppm 80 ppm 100 ppm 

Device 
Average  

Response 
95% 
CI 

Average  
Response 

95% 
CI 

Average  
Response 

95% 
CI 

Average  
Response 

95% 
CI 

Average  
Response 

95% 
CI 

100 wt.% WO3 
 

6.69 ±0.20 11.62 ±0.35 16.62 ±1.32 22.85 ±2.35 25.09 ±2.72 

90 wt.% WO3   – 
10 wt.% ZnO 

 
2.68 ±0.10 4.24 ±0.10 7.77 ±1.24 8.35 ±0.58 9.23 ±0.65 

50 wt.% WO3  – 
50 wt.% ZnO 

 
4.83 ±0.20 11.86 ±0.71 20.20 ±2.34 33.08 ±3.27 36.18 ±3.85 

30 wt.% WO3  – 
70 wt.% ZnO 

 
3.61 ±0.12 8.54 ±0.66 14.30 ±0.01 28.11 ±4.89 32.41 ±9.44 

10 wt.% WO3  – 
90 wt.% ZnO 

 
2.83 ±0.25 5.52 ±0.64 5.90 ±0.21 10.77 ±1.10 13.22 ±1.58 

100 wt.% ZnO 2.46 ±0.38 4.15 ±0.72 3.93 ±1.95 6.44 ±2.18 6.82 ±2.82 

 

350 °C was the temperature at which most of the sensor devices within the system exhibited optimal 

response performance, except for the 100 wt.% ZnO sensor device which was seen to perform 

optimally at 450 °C, as seen further in Figure 3–12. The observed increase in the conductive response 

of the system of devices against ethanol, suggested that the conductivity occurred via the n-type 

percolation pathways that were present between the WO3 - WO3 n-n homo-contacts and ZnO - ZnO n-

n homo-contacts in the pure and composite materials and the WO3 – ZnO n-n hetero-contacts in the 

composite materials, with both metal oxides being well-established to exhibit n-type semiconductor 

behaviour i.e. an increase in conductivity upon exposure to ethanol [220, 232].  

Figure 3–10 showed evidence of the enhanced response of some of the composite devices in 

comparison to one or both of the pure counterparts devices: 100 wt.% WO3 and 100 wt.% ZnO. The 

largest response was observed by the 50 wt.% WO3 – 50 wt.% ZnO composite device which had a 

response of 37.9 towards 100 ppm at 350 °C, attributed to a 1.6-fold better performance than the pure 

WO3 sensor and a 6.6-fold better performance than the pure ZnO sensor under the same experimental 

conditions. The 30 wt.% WO3 – 70 wt.% ZnO sensor device was also seen to exhibit an enhanced 

response of 37.2 towards 100 ppm ethanol, which was a 1.6-fold better response than the pure WO3 

sensor and a 6.6-fold better response than the pure ZnO sensor device. Thus, the results gave 

evidence of an enhancement effect of a multi-component metal oxide system on the responsivity in 

comparison to the single metal oxide systems. Both the 50 wt.% WO3 – 50 wt.% ZnO and the 30 wt.% 
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WO3 - 70 wt.% ZnO devices, were seen from the SEM characterisation in Figure 3–3 (i) & (j) and (k) & 

(l) respectively, to contain a random dispersion of both metal oxides which suggested that the packing 

structures of both composite materials were attributed to WO3 –ZnO hetero-contacts as well as WO3-

WO3 and ZnO-ZnO homo-contacts. The random dispersion of both metal oxide grains observed was 

suggestive that both devices may have been attributed to a large concentration of delocalised contact 

potentials [170, 171], which played a role to enhance the responsivity of the materials, by  modulating 

the electron drift mobility and as such increase its overall response function [170, 171]. In particular, 

the higher resistance energy barriers that have been postulated to exist between to inequivalent grains 

[170], can act to increase the resistance of the hetero-contact, making it more sensitive to the 

atmosphere around it [170]. 

These results are in stark contrast to theory postulated by Yamazoe et al.[170, 171] who argued that a 

random packing structure of hetero-contacts has limited contribution to the overall transduction 

function of the device, due to competition between the homo-contacts and hetero-contacts connected 

in parallel, which act to cancel each other out, and as a result the transduction function can hardly 

change. However, the experimental evidence presented in Figure 3–10 suggests that random 2-

dimensional distribution of hetero-contacts [170, 171] can play an effective role in gas sensing 

applications. Further, the hetero-junctions in this study were not only due to the chemical 

inhomogeneity of both metal oxide materials, but also due to the differences in the particle sizes 

between the WO3 and ZnO grains [170, 171]. Significant differences in the particle size have been 

reported to increase the resistance of the hetero-contact [170, 171] and act to enhance the overall 

transduction function of the device. 

Figure 3–10 further shows that the two sensor devices which were dominated by the host matrix of 

metal oxide grains i.e. the 90 wt.% WO3 – 10 wt.% ZnO device, which was dominated by the WO3 

grains and the 10 wt.% WO3 – 90 wt.% ZnO device, which was dominated by the ZnO grains, also 

showed enhanced responses with respect to the pure ZnO sensor device. In particular the 10 wt.% 

WO3 – 90 wt.% ZnO device showed that the ability to enhance the responsivity of a sensor (with 

respect to pure ZnO sensor device) by a simple change in the concentration of WO3 and ZnO. 

However the relatively low responses of both these composite devices with respect to other 

composites in the system, maybe accounted for by the route of conduction being dominated by homo-

contacts. The percolation pathways in devices where the homo-contacts are more dominant than the 

hetero-contacts, are practically non-resistive. This implies that the electrons need to surmount a lower 

energy barrier to move through the same individual grains in the body of the material. This reasoning 

may justify the lower response of the 90 wt.% WO3 – 10 wt.% ZnO device and the 10 wt.% WO3 – 90 

wt.% ZnO device with respect to the 50 wt.% WO3 – 50 wt.% ZnO and the 30 wt.% WO3 - 70 wt.% 

ZnO devices.  
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As the concentration of ethanol increased, Figure 3–10 showed that the devices showed a gradual 

drift in the baseline. The behaviour was particularly apparent for the two best performing composites: 

the 50 wt.% WO3 – 50 wt.% ZnO and the 30 wt.% WO3 - 70 wt.% ZnO sensor devices. Such behaviour 

is thought to be induced by the production of H2O from the combustion reactions of the ethanol 

molecules on the surface of the metal oxides [69], which have been presented in Chapter 1. H2O 

molecules are thought to split at the surface of a metal oxide in the form of OH- and H+ ions [12]. The 

OH- ions are thought to introduce electrons to the surface of the metal oxide, which act to increase the 

conductivity of an n-type material [12]. Further, the H+ ions are also thought to increase the 

conductivity of the n-type material, by reacting with surface oxygen atoms and promoting the formation 

of negative holes [12]. N-type semiconductors in particular, are responsive to this introduction of 

electrons to their surface, as the EDL, positioned on the surface, is the layer through which 

conductivity takes place in such semiconducting oxides. In particular the dominant drift of both of the 

best performing composites may be accounted by their stronger intermolecular bonding to the water 

molecules, than other sensors devices within the system.  

Figure 3–10 shows that in terms of linear range of response, a steep increase in the response 

magnitudes of the 50 wt.% WO3 – 50 wt.% ZnO and 30 wt.% WO3 – 70 wt.% ZnO sensor devices was 

evident as the ethanol concentration was increased from 20 ppm to 40 ppm to 80 ppm. This behaviour 

may have been due to the larger number of surface sites available in these multi-component materials 

to accommodate the increasing number of ethanol molecules as a function of increasing concentration 

of exposure, and as such promote an increased yield of ethanol combustion reactions per unit time. 

Such a steep increase in linear range, as a function of increasing ethanol concentration, was not 

evident in the pure metal oxides and those composites associated to the 90 wt.% - 10 wt.% and 10 

wt.% - 90 wt.% ratios. In contrast, these materials displayed a shallow increase in response magnitude 

as a function of increasing ethanol concentration, which may be attributed to the limited number of 

reaction sites available in the materials, due to either absence or limited number of interfacial regions 

between WO3 and ZnO. This behaviour has been presented more clearly in Figure 3–11, which shows 

the larger gradient of linear range for the  50 wt.% WO3 – 50 wt.% ZnO and 30 wt.% WO3 – 70 wt.% 

ZnO devices and shallower gradients of the homo-contact dominated sensor devices in the system.   
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The presence of an enhanced number of reaction sites in a mixed oxide system has been reported by 

Zeng et al. [168] who had reported on the enhanced gas sensing properties of SnO2 nanosphere 

functionalised TiO2 nanobelts toward various VOCs, such as methanol, ethanol, formaldehyde and 

acetone. The group had observed enhanced gas sensing properties of the hybrid oxides compared to 

the sole TiO2 nanobelts. When discussing the gas sensing mechanism, they had reported that the 

hybrid oxides are associated to additional depletion regions that occur at the interfaces between the 

SnO2 nanospheres and the TiO2 nanobelts and that the hetero-junctions that exist between the 

interface of both the metal oxides, serve as additional reaction sites. The enhanced number of the 

reaction sites promoted by the significant dispersion of hetero-contacts within the packing structures of 

both the 50 wt.% WO3 – 50 wt.% ZnO and 30 wt.% WO3 – 70 wt.% ZnO composites, may explain the 

unsaturated shark-fin nature of the response traces observed with these composite materials and 

suggests a larger number of reaction sites available for the given number of ethanol molecules, that 

the materials are exposed to.  

Due to the baseline drift at 80 ppm and 100 ppm of ethanol exposure, response and recovery times 

have been evaluated at the lower concentration of 40 ppm, where the baseline is observed to be 

stable. Calculations of the t90 (40 ppm) values of the 100 wt.% WO3 and 100 wt.% ZnO devices were 

45 and 200 seconds, respectively. In contrast, the 50 wt.% WO3 – 50 wt.% ZnO and 30 wt.% WO3 – 

70 wt.% ZnO sensor devices were 173 and 133 seconds respectively. The calculations suggested no 

Figure 3–11. Conductive response of WO3-ZnO system towards 10, 20, 40, 80 and 100 ppm ethanol gas, at an 
operating temperature of 350 °C. 
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particular order of the response times (i.e. no correlation with the varying composition of the individual 

metal oxide), however suggested that the WO3 device responded the fastest, which was evident from 

its flat ‘box’ type [106] saturated response towards 40 ppm of the analyte, seen in Figure 3–10. In 

contrast, the ZnO material was seen to be attributed to very slow response, observed by its slow 

unsaturated ‘shark-fin’ [33] response in the same figure. The response time of the 30 wt.% WO3 – 70 

wt.% ZnO composite was seen to lie in between both the WO3 and ZnO materials, suggesting that its 

response was influenced by the speedy response of the WO3 and slow response of the ZnO. The 50 

wt.% WO3 - 50 wt.% ZnO composite sensor device was seen to be slower than the 30 wt.% WO3 – 70 

wt.% ZnO composite sensor. The response speed difference between both composites was indicated 

by the greater curvature of the 50 wt.% WO3 - 50 wt.% ZnO composite, which indicated the slower and 

unsaturated behaviour of the sensor, in comparison to the 30 wt.% WO3 - 70 wt.% ZnO composite, 

which was attributed to greater flatness in its response behaviour, indicating some saturation of the 

surface sites. The recovery times of the same four sensor devices after 40 ppm ethanol exposure i.e. 

the t-90 (40 ppm) values, were seen to be 606 seconds (100 wt.% WO3), 507 seconds (100 wt.% ZnO), 

918 seconds (50 wt.% WO3 - 50 wt.% ZnO) and 892 seconds (30 wt.% WO3 - 70 wt.% ZnO). The 

recovery times suggested that the composite materials were slower than both the pure metal oxide 

counterparts, which suggests slower diffusion of the ethanol molecules through the composite 

matrices during recovery period, in comparison to the pure metal oxide counterparts. A potentially 

larger number of surface sites in the composites, due to the hetero-contact interfaces, may also 

suggest longer desorption times of the all the molecules per unit time in comparison to the pure metal 

oxides, which are thought to have a lower number of surface sites, as they are dominated solely by 

homo-contacts. Further, slower recoveries of the composites indicate stronger intermolecular forces 

between the hetero-junctions and the surface adsorbed chemical species, in comparison to the pure 

metal oxides. Evaluation of the response and recovery kinetics and responsivities of the various 

sensors in the system, suggests the compromise of the kinetics for larger responsivities of the 

composite materials.   
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Figure 3–12 presents the conductive response of the system of sensors towards 100 ppm ethanol as a 

function of increasing operating temperature. The figure illustrates that 350 °C was the optimal 

operating temperature for almost all sensor devices, except for the 100 wt.% ZnO sensor device which 

was seen to exhibit optimal performance at 450 °C.  

The behaviour of increasing responsivity of ZnO towards ethanol as a function of increasing operating 

temperature has been reported previously in the literature. For example, in a literature report by Singh 

et al. [233] nanoparticulate and nanorod based ZnO powders, of hexagonal wurtzite crystal structure 

were synthesised and thick-films of these materials were coated onto gas sensor substrates. These 

sensors were tested against 250 ppm ethanol vapour at different operating temperatures (150 °C – 

400 °C). A similar trend in response characteristics was observed between the sensors, as a function 

of operating temperature, with their responsivities of the sensors increasing between 150 °C – 400 °C 

and then decreasing upon further increasing the operating temperature. Xu et al. [69] have also 

observed the increase in the response of a ZnO sensor towards ethanol as a function of increasing 

operating temperature and have accounted for the gas response behaviour of ZnO being strongly 

Figure 3–12. Conductive response of WO3-ZnO system towards 100 ppm ethanol as a function of increasing 
operating temperature.  
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dependent on the conversion of ethanol to acetal; with greater conversion of the alcohol to the 

aldehyde reported to occur as a function of increasing operating temperature.  

An interesting observation from Figure 3–12 is the gradual cross over in conductive response at 400 

°C, between the 100 wt.% WO3 and 100 wt.%  ZnO sensor devices, with respect to each other,  as the 

operating temperature increased from 300 °C to 500 °C. The figure illustrates that the ZnO material is 

more responsive than WO3 to ethanol at higher operating temperatures (as discussed earlier) and 

WO3 is more responsive to ethanol at lower operating temperatures. A possible explanation for this 

cross over behaviour as a function of increasing temperature could be associated to the optimum 

combustion environment as a function of temperature, associated to the particular semiconducting 

oxide. The number of ionised oxygen species that adsorb on the surface of the sensor material, is 

expected to increase as a function of operating temperature until a maximum limit of adsorption is 

reached (this is governed by the equilibrium between adsorption and thermally driven desorption) 

[234]. The response towards ethanol is therefore dependent on this magnitude of oxygen ion 

adsorption, with a larger number of adsorbed oxygen species implying a greater number of 

combustion reactions of the analyte. The greater the combustion rate of ethanol, the larger number of 

electrons released back into the space-charge layer and therefore the larger the response of the 

material toward the target gas [235-237]. The variation of the optimal performance of MOS sensor 

devices as a function of temperature modulation is a well know phenomenon, with all gas sensitive 

metal oxide materials known to be associated to characteristic temperature-conductance profiles [20, 

137, 208], where the response is seen to be the greatest at a moderate operating temperature, but 

lowest at both its highest and lowest extremes. Complexities such as the stability of the surface 

oxygen species adsorbed on the surface of the different materials and also the differing optimum 

oxidising temperatures of the target analytes, are factors which have been reported to influence the 

shape of these profiles [238].  Chemical and physical factors, such as the rates of adsorption and 

desorption of oxygen and the target analytes, or of oxidation products, the rate of surface 

decomposition of target analytes, the charge-carrier concentration (in the conduction band as well as 

the electron depletion layer) also contribute to the response of the sensor and thus its conductance-

temperature profile [137, 239].  

Figure 3–12 shows that as the operating temperature of the system was increased, the responsivity of 

most of the hybrid sensors converged and deteriorated in performance, with respect to their 

responsivities at lower operating temperatures. This indicates the breakdown of the hetero-junction 

enhancement effects at the higher operating temperatures, which can be accounted for by 

understanding the effect of elevated temperatures on the overall potential energy barrier of the system 

[240].  
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Increasing the operating temperature implies an increase in thermal energy. This increased thermal 

energy promotes a decrease in the work-function of the semiconductors, as thermally induced charge 

transfer within the semiconductors is energetically easier. As such, the charge carrier distribution 

within these semiconductors is subsequently affected, with a large number of electrons occupying the 

conduction bands. The relative decrease in work-function within the semiconductors and between 

them at an n-n interface, will therefore promote the junction effect to act negatively on the response. 

This is because the energy barrier for Fermi level equilibration is reduced, resulting in a decrease in 

the energy barrier for the local exchange of charge carriers across both semiconductors. As such, the 

effective energy barrier and resistance at the junction is decreased, weakening the overall junction 

effect. Hence higher temperatures cannot promote junction effects to play effective roles in enhancing 

gas sensing response and so the composites were seen to respond less than they had at lower 

operating temperatures.  

3.6.2.2 NO2 Sensing 

Figure 3–13 presents the resistive response traces of the system of sensors at the optimal operating 

temperature of 300 °C. Tabulation of the mean responses values of the sensor devices in the WO3-

Figure 3–13. Resistive response traces of the WO3-ZnO system towards 100, 200, 400 and 800 ppb NO2 gas, at 
an operating temperature of 300 °C. The inset projects the resistive response of the system towards 100 ppb 
NO2.  
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ZnO system from the repeat tests against exposure towards the various NO2 concentrations at 300 °C 

and the associated 95% confidence intervals have been presented in Table 3–2.  

Table 3–2. Average resistive responses of sensor devices in WO3-ZnO system from all repeat tests against 
various NO2 concentrations at 300 °C and associated errors in the form of 95% CIs.  

 
100 ppb 200 ppb 400 ppb 800 ppb 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

100 wt.% WO3 

 
2.38 ±1.35 5.26 ±3.46 15.50 ±4.16 53.29 ±7.33 

90 wt.% WO3   – 
10 wt.% ZnO 

 
2.23 ±1.20 12.52 ±6.09 15.72 ±5.20 

Electronic capping 
out  

50 wt.% WO3  – 
50 wt.% ZnO 

 
2.46 ±0.69 4.89 ±1.18 8.40 ±0.79 25.26 ±3.49 

30 wt.% WO3  – 
70 wt.% ZnO 

 
4.87 ±2.64 18.08 ±6.11 36.84 ±1.15 

Electronic capping 
out 

10 wt.% WO3  – 
90 wt.% ZnO 

 
8.65 ±0.15 25.29 ±1.27 47.34 ±6.39 157.52 ±7.36 

100 wt.% ZnO 2.87 ±0.04 5.56 ±0.43 9.96 ±0.93 26.54 ±3.49 

 

300 °C was the optimal operating temperature of most sensor devices, except for the 50 wt.% WO3 – 

50 wt.% ZnO sensor device which was seen to exhibit slightly better performance at  350 °C, as 

observed further in Figure 3–15. All sensors were seen to demonstrate the expected increase in 

resistive response at all concentrations of NO2, as expected with n-type semiconducting oxides, 

suggesting that the conduction took place via the n-type percolation paths of metal oxides.  

The figure illustrates that most of the composite sensors within the system, displayed an enhanced 

response to NO2 over the whole concentration range with respect to the pure metal oxide counterparts. 

The best device was observed to be the 10 wt.% WO3  - 90 wt.% ZnO sensor device, which was 

attributed to a response of 148 towards 800 ppb NO2, a 7-fold enhanced response than the pure ZnO 

sensor and a 3.5-fold better response than the pure WO3 sensor. This suggested that an incremental 

addition of WO3 to the host metal oxide ZnO, makes for an excellent material for NO2 detection. The 

enhanced performance of this material was surprising, as it constituted a greater proportion of ZnO 

than WO3, however WO3 is a well-established material for the detection of NO2 [241] with the WO3 

seen to response better towards NO2 than ZnO, as observed in Figure 3–13. The 90 wt.% WO3 - 10 

wt.% ZnO sensor device was also seen to display a substantially significant response towards 800 ppb 

NO2 again showing that an incremental addition of ZnO to the host metal oxide WO3, makes for an 

excellent material for NO2 detection.  SEM imaging in Figure 3–2 gave evidence of the microstructures 

of both these composite being dominated by the host metal oxides, suggesting that the packing 
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structures of both devices to be homo-contact dominated with a low frequency of hetero-contacts 

present. Such packing structures are likely to be attributed to highly localized contact potentials [170, 

171], with the associated response results showing such combinations of WO3 and ZnO, to be 

effective for NO2 detection.  

The 30 wt.% WO3 – 70 wt.% ZnO sensor device was also seen to perform well against NO2, with the 

highest response of 140 towards 800 ppb NO2, which was a 6-fold enhanced response with respect to 

the pure ZnO sensor and a 3.3-fold enhanced response with respect to the pure WO3 sensor, 

demonstrating the effectiveness of this hetero-junction system for NO2 detection. Interestingly 

however, the 50 wt.% WO3 – 50 wt.% ZnO sensor device (which was one of the best performing 

composites for ethanol detection)  was the only composite seen to show a relatively low response to 

the analyte, with the best response of 24.4 towards 800 ppb. This may be due to an insignificant 

change in charge carrier concentration and change in size of electron depletion layer upon interaction 

with NO2.  

In comparison to literature reports by An et al. [209] and Siriwong et al. [207], the WO3-ZnO 

composites reported in this Chapter are better with high responsivities towards ppb levels of NO2 in 

comparison to the ppm levels of NO2 that both groups have evaluated their  WO3-ZnO hybrid sensors 

against.  

All sensors demonstrated the expected increase in resistive response at all concentrations of the 

oxidising gas, except for the 100 wt.% WO3 and 90 wt.% WO3 – 10 wt.% ZnO sensor devices, which 

were seen to show a p-type behaviour (i.e. decrease in resistive response) towards 100 ppb of the 

analyte, as observed in the inset of Figure 3–13. Such p-type behaviour of WO3 towards NO2 has been 

reported previously in the literature by Wu et al. [242]. In their, study the group prepared hexagonal 

WO3 nanorods via a hydrothermal process and spin-coated them onto an alumina substrate with 

interdigitated Pt electrodes. The NO2 sensing characteristics of the nanorod sensor was evaluated by 

testing it against 0.5 ppm – 50 ppm NO2 between operating temperatures in the range of 25 °C – 250 

°C. Specifically, when they had exposed their sensor to 1 ppm of NO2 between 25 °C – 250 °C, they 

had found that the temperature effected a change in response behaviour of the material. The nanorod 

film was seen to be attributed to conventional n-type resistive response at temperatures between 50 

°C – 250 °C, but showed p-type behaviour at lower temperatures of 25 °C – 50 °C. The group [242] 

had evaluated this switch in behaviour, as a function of operating temperature, to be associated to the 

formation of an inversion layer at the surface of the WO3 nanorods. The inversion layer in the case of a 

n-type metal oxide is produced if the negative charge is too excessive which results in the reduction of 

electrostatic potential in the depletion layer with respect to the number of holes, forming an inversion 

layer [242].  Wu et al. had reported that the surface of the WO3 sample contained a space layer as well 

as a surface layer, the latter which was induced by the presence of dangling bonds, structural defects 
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and gas adsorption. Specifically in their case, they had found the presence of mixed phases in their 

WO3 sample to include non-stoichiometric as well as tetragonal WOx species, which were associated 

to a large number of oxygen vacancies Vo
2+. The stabilisation of the vacancies they reported was 

achieved via adsorption of oxygen species from the air. Adsorption of further oxygen molecules occurs 

on the surface when the nanorod sensor is exposed to the air and form chemisorbed oxygen species 

by capturing electrons from the adsorption sites on the oxide surface. Therefore ultimately, the 

concentration of the negative charge was too excessive on the surface of the metal oxide, which led to 

the decrease in the electrostatic potential in the space charge layer with respect to the concentration 

of holes, resulting in the formation of an inversion space-charge layer. At higher operating 

temperatures, the greater energy in the system would promote the desorption of the negative surface 

adsorbed NO2 species, causing an increase in the electrostatic potential in the space charge layer, 

with respect to the electron concentration, increasing the  size of the depletion layer, leading to an 

increase in the resistance of the material.  

In the case of this WO3-ZnO composite study, the p-type behaviour was observed with the 100 wt.% 

WO3 and 90 wt.% WO3 – 10 wt.% ZnO devices, at the lowest NO2 exposure concentration. Such 

behaviour, at lower NO2 concentrations, has been observed previously before in the literature [29, 242, 

243]. A lower concentration implies a lower number of NO2 molecules to interact with the metal oxide 

surface and as such a reduced number of electron abstracted from the conduction band of the metal 

oxide, in contrast to a high concentration of NO2. As such, the concentration of electrons in the metal 

oxide surface is higher at a lower exposure concentration of NO2 [29, 243] implying that the change in 

size of the space charge layer may have been minimal with respect to the concentration of holes. This 

then relates back to the idea of Wu et al. [242] that an excessive number of charge carriers in the 

surface may have led to a decrease in the electrostatic potential in the space charge layer, with 

respect to the concentration of holes, resulting in the formation of an inversion space-charge layer and 

therefore the decrease in the resistance. Further, the inverted behaviour specific to the two devices 

that were both dominated by WO3, may also suggest structural defects in the WO3, which may have 

also contributed the unconventional p-type behaviour.  
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Figure 3–14 shows that the increase in resistive response of most of the composite materials as a 

function of increasing NO2 concentration, was attributed to a significant change in response amplitude 

particularly between 400 ppb and 800 ppb NO2. In comparison, the pure metal oxide counterparts did 

not show a substantial increase. This trend is more clearly presented in Figure 3–14, which shows a 

larger rate of change of resistive response in most of the composite materials, particularly between 

400 ppb and 800 ppb NO2, in comparison to the shallow rate of change of response of the 50 wt.% 

WO3 – 50 wt.% ZnO sensor device and the pure metal oxide materials. This steep increase of the 

composites indicates their ability to accommodate the increasing number of NO2 molecules in the 

increasing exposure concentrations. In contrast, the behaviour of the pure 100 wt.% WO3 and 100 

wt.% ZnO sensors and the 50 wt.% WO3 – 50 wt.% ZnO composite sensor indicated that these 

materials were unable to occupy the increasing concentrations of NO2 molecules. Such large 

increases in the response amplitude as a function of increasing NO2 concentrations, have also been 

observed with zeolite systems, for example in a report by Varsani et al. [23]. In their study, Varsani et 

al. had reported the steep response behaviour of WO3 modified with H-ZMS 5 as a function of 

increasing NO2 concentration, particularly between 200 ppb and 400 ppb of the analyte, as a result of 

a catalytic effect of the zeolite, which may have acted to chemically modify the NO2 molecules 

Figure 3–14. Resistive responses of WO3-ZnO system towards 100, 200, 400 and 800 ppb NO2 gas, at an 
operating temperature of 300 °C. 
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diffusing towards the material, to form a product to which the underlying WO3 was more sensitive 

towards. Thus it is possible that a synergistic catalytic effect through a combination of specific 

amounts of WO3 and ZnO, may be contributing to the enhanced combustion of NO2, effectively 

changing the charge carrier concentration which induces significant increase in the resistance of the 

composite materials.          

  

In terms of kinetics, the two best performing composite devices: 10 wt.% WO3 – 90 wt.% ZnO and 30 

wt.% WO3 – 70 wt.% ZnO at 300 °C were attributed to  t90 (400 ppb) values of  208 and 328 seconds, 

respectively. In contrast, both the pure metal oxide counterparts: WO3 and ZnO, were associated to t90 

(400 ppb) values of 443 and 390 seconds, respectively. The response and recovery kinetics were 

calculated at 400 ppb and not 800 ppb, due to the electronic noise associated to both composite 

devices at the highest concentration of exposure, observed in Figure 3–13, which made kinetic 

evaluation difficult. The response values were not seen to be attributed to any form of order between 

the four sensor devices (i.e. no correlation with the varying composition of the individual metal oxide) 

however, the faster responses of the composites in comparison to the pure counterparts suggested 

faster diffusion of the oxidising analyte molecules into the matrix of the composite materials than the 

pure metal oxides, yielding rapid and a larger number of surface reactions per unit time, accounting for 

their enhanced responsivities as well as faster response times. The recoveries of the four devices after 

exposure to 400 ppb of the analyte i.e. the t-90 (400 ppb) values were 818 seconds (10 wt.% WO3 – 90 

wt.% ZnO), 822 seconds (30 wt.% WO3 – 70 wt.% ZnO), 710 seconds (100 wt.% WO3) and 953 (100 

wt.% ZnO). The values suggested that the recoveries of the composite devices existed between both 

the pure metal oxides, implying that the recoveries may have been influenced by the chemical 

properties of both metal oxides and a synergistic effect between them.  
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Figure 3–15 presents the resistive responses of the system of sensors towards 800 ppb of NO2 as a 

function of increasing operating temperature. Within the range of tested operating temperatures from 

300 °C – 500 °C, the graph shows that 300 °C was the optimal operating temperature of most sensor 

devices against exposure to NO2. However, given the nature of the response trend as a function of 

temperature i.e. increasing response magnitude as a function of decreasing operating temperature, 

then it is possible lower operating temperatures may have promoted better response performances of 

the sensor devices. As such the optimal operating temperature can be lower than 300 °C and further 

testing at lower operating temperature would aid to assimilate this. As the operating temperature was 

increased, the response of all devices was seen to decrease, with responses converging at the 

highest operating temperature of 500 °C. The higher operating temperature leads to higher thermal 

energy in the system [234], which promotes instantaneous adsorption and desorption reactions, 

leading to incomplete surface reactions, yielding an overall reduced number of surface combustion 

reactions and therefore a reduced responsivity magnitude.   

At the lower end of the operational temperature range, in which lies the optimal performance of the 

sensors, the kinetics are inherently slower than at higher temperatures in the range of 450 °C  – 500 

°C. This is due to the lack of the thermal energy to drive the kinetics of diffusion, adsorption and 

desorption, and thus temperature is a contributory factor to the slow recoveries observed. However, as 

Figure 3–15. Resistive responses of WO3-ZnO system towards 800 ppb NO2 gas, as a function of increasing 
operating temperature.  
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explained earlier in the Chapter, one of the advantages of the lower temperatures of operation for such 

hetero-junction based materials, is the retained nature of the hetero-junction enhancement effects. As 

such, the composite sensor devices are seen to perform optimally at 300 °C – 350 °C, exhibiting 

increased resultant change in charge carrier, resulting in increased response amplitudes.  

3.6.3 Further Gas Sensing Studies 

The system of WO3-ZnO sensor devices was tested for selectivity against a range of reducing gases: 

acetone, CO and NH3 (and ethanol presented earlier) by conducting further gas sensing studies, at an 

operating temperature of 350 °C. This was the optimal operating temperature of most sensor devices, 

when exposed to the main reducing gas of interest: ethanol, as observed in Figure 3–12.  

Figure 3–16 and Figure 3–17 show that the system was seen to perform poorly (relative to the 

performances against ethanol (Figure 3–10)  and acetone (Figure 3–18)) against the highest tested 

concentrations of CO (1000 ppm) and NH3 (20 ppm), respectively, with responsivities towards both 

analytes being close to the baseline response of 1. In particular this was true of the responses 

observed against NH3. In the case of CO, some of the devices were seen to be attributed to higher 

responses than 1, but were still relatively poor given that the CO exposure concentration was 1000 

ppm. However the poor response performance towards CO and NH3, demonstrated the selectivity of 

the devices towards a target gas such as ethanol acetone or NO2, if put in a mixed gas atmosphere.  

3.6.3.1 CO Sensing  

Figure 3–16 presents the resistive responses of the WO3-ZnO composite system against the highest 

tested concentration of CO exposure which was 1000 ppm. Tabulation of the mean responses values 

of the sensor devices in the WO3-ZnO system from the repeat tests against exposure towards 1000 

ppm CO at 350 °C and the associated 95% confidence intervals have been presented in  

Table 3–3. All devices were seen to show responsivities above a baseline response of 1, with the 

highest response of 2.5 associated to the 30 wt.% WO3 – 70 wt.% ZnO sensor device, exhibiting a 

higher response than both the pure WO3 and ZnO counterparts, which showed responses of 2.0 and 

1.5, respectively. The significantly low response of the devices towards 1000 ppm, suggested that 

exposure to lower concentrations would have shown negligible response, close to baseline response.  
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Table 3–3. Average resistive responses of sensor devices in WO3-ZnO system from all repeat tests against 1000 

ppm CO at 350 °C and associated errors in the form of 95% CIs. 

 

 
1000 ppm 

 

Device Average Response 95% CI 

100 wt.% WO3 2.00 ±0.03 

90 wt.% WO3   – 10 wt.% ZnO 1.96 ±0.07 

50 wt.% WO3  – 50 wt.% ZnO 2.03 ±0.18 

30 wt.% WO3  – 70 wt.% ZnO 2.47 ±0.12 

10 wt.% WO3  – 90 wt.% ZnO 1.94 ±0.04 

100 wt.% ZnO 1.50 ±0.09 

 

Interestingly all devices exhibited unconventional p-type behaviour towards the reducing gas. Such 

behaviour can be justified with reports from the literature that suggest that surfaces of transition metal 

oxides, within temperature ranges of 200 °C – 400 °C are known to be attributed to the formation of an 

inversion layer on the conduction surface due to oxygen adsorption [244, 245], which can cause a 

switch in the direction of response. In the case of this study however, the exclusive p-type behaviour of 

the whole system towards CO in comparison to that observed with NH3 in Figure 3–17 and acetone in  

Figure 3–18, against which most devices showed n-type behaviour, suggested a unique interaction of 

Figure 3–16. Resistive responses of WO3-ZnO system against 1000 ppm CO at an operating temperature 
of 350 °C.   
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CO with the surface of the materials [23] or the possibility that CO may be functioning as a surface 

acceptor [244, 246].  

3.6.3.2 NH3 Sensing 

The response results at 350 °C of the system against 20 ppm NH3, which was the largest 

concentration of the analyte that the system was exposed to, have been presented in Figure 3–17. 

Tabulation of the mean responses values of the sensor devices in the WO3-ZnO system from the  

repeat tests against exposure towards 20 ppm NH3 at 350 °C and the associated 95% confidence 

intervals have been presented in Table 3–4. All sensor devices showed responsivities close to 

baseline response (1), with the largest response (conductive) of 1.25 exhibited by the 50 wt.% WO3 – 

50 wt.% ZnO device. The responsivities of the devices in the region of the baseline response in 

general, indicated the poor response of the materials against the analyte. Interestingly the 100 wt.% 

WO3 and 30wt.% WO3 – 70 wt.% ZnO devices exhibited p-type response behaviour towards the 

reducing gas, in comparison to all other sensor devices in the system which exhibited conventional n-

type behaviour.  

 

 

Such an n- to p- type response change has been observed previously with WO3 sensors and NH3 [114, 

115]. This is because NH3 under goes oxidation reactions on the surface of metal oxides [114, 115], 

and the reaction process can follow one of many routes, allowing several possible competing 

processes to all take place at the same time. One of the reactions leads to the combustion of NH3 to 

NO as explained in Chapter 1, which is easily converted to NO2 in the presence of oxygen. WO3 is a 

well-established metal oxide known for its responsivity NO2, which may have resulted in the increase 

in resistive response observed for WO3 sensor device and also the 30 wt.% WO3 – 70 wt.% ZnO 

sensor device.  

 

(a) (b) 

Figure 3–17. (a) Conductive responses and (b) Resistive responses of the WO3-ZnO system against 20 ppm 
NH3 at an operating temperature of 350 °C.   
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Table 3–4. Average responses of sensor devices in WO3-ZnO system from all repeat tests against 20 ppm NH3 
350 °C and associated errors in the form of 95% CIs. 

 

 
20 ppm NH3 

 

Device Average 95% CI 

100 wt.% WO3 1.10 ±0 

90 wt.% WO3   – 10 wt.% ZnO 1.09 ±0.01 

50 wt.% WO3  – 50 wt.% ZnO 1.25 ±0.01 

30 wt.% WO3  – 70 wt.% ZnO 1.04 ±0.01 

10 wt.% WO3  – 90 wt.% ZnO 1.11 ±0.04 

100 wt.% ZnO 1.14 ±0.04 

 

3.6.3.3 Acetone Sensing  

 

Figure 3–18. Conductive responses of WO3-ZnO system towards 1, 2, 4, 6, 8 and 10 ppm acetone gas, at an 
operating temperature of 350 °C.  
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Figure 3–18 presents the conductive response of the system of WO3-ZnO sensor devices against 

increasing concentrations of acetone at an operating temperature of 350 °C. Tabulation of the mean 

responses values of the sensor devices in the WO3-ZnO system from the repeat tests against 

exposure towards the various acetone concentrations at 350 °C and the associated 95% confidence 

intervals have been presented in Table 3–5. The response behaviour towards acetone exemplifies the 

enhanced response characteristics of the mixed-oxide composites, with the highest observed 

response of 13.5 exhibited by the 30 wt.% WO3 – 70 wt.% ZnO device towards 10 ppm of acetone, 

which was a 2.9-fold enhanced response with respect to the pure WO3 counterpart (which exhibited a 

response of 4.6) and a 7.1-fold enhanced response with respect to the pure ZnO counterpart (which 

exhibited a response of 1.9). The response of this composite was followed by the response of the 50 

wt.% WO3 – 50 wt.% ZnO device, which displayed the second best performance. Both these 

composites were also seen to dominate the conductive responses when exposed to 80 ppm and 100 

ppm ethanol seen in Figure 3–10. The results therefore suggest the suitability of both these devices, 

with the specific WO3 –ZnO ratios, for effective detection of VOC’s. 

In terms of the pure counterparts, Figure 3–18 showed that the response amplitude of the 100 wt.% 

ZnO sensor hardly changed as a function of increasing acetone concentration and that of the 100 

wt.% WO3 sensor was also seen to increase in amplitude only very slightly. In comparison, the 

responses of the 30 wt.% WO3 – 70 wt.% ZnO device was seen to increase rapidly, illustrating less 

saturation and greater number of surface sites to accommodate the increasing concentration of 

acetone molecules with time. Both the 90 wt.% WO3 – 10 wt.% ZnO and 10 wt.% WO3 – 90 wt.% ZnO 

devices were seen to exhibit very similar responses to the pure WO3 and ZnO sensor devices, 

respectively. This was accounted for by the domination of the host metal oxides in each of their 

packing structures observed by SEM imaging in Figure 3–2 (c) & (d) and (m) & (n), respectively, with 

the frequency of the hetero-contacts being localised and minimal. Instead both the 50 wt.% WO3 – 50 

wt.% ZnO and 30 wt.% WO3 – 70 wt.% ZnO sensor devices  were seen by SEM imaging in Figure 3–2 

(i) & (j) and (k) & (l) to be associated to a dispersion of both metal oxide grains, which suggests the 

prevalence and delocalisation of hetero-contacts in their packing structures. 

Interestingly in a study by Anno et al. [247] ZnO based semiconductor sensors for the detection of 

acetone and capronaldehyde in a vapour of consommé soup was reported. The detection of acetone 

was carried out as it was reported to be an important flavour component of the soup.  One of the ZnO 

sensors that the group fabricated was a 5 wt.% WO3-ZnO composite material. The fabrication of the 

composite first involved the formation of ZnO powder which was prepared by the neutralisation of 

ZnCl2 with ammonia, with the resulting precipitate filtered, dried and calcined in air at 600 °C for 5 

hours. The addition of 5 wt.% WO3 was conducted by mixing an associated aqueous precursor salt 

solution with the ZnO powder followed by evaporation to dryness and calcining in air at 600 °C for 5 
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hours. A sensor element in the form of a sintered block was formed from the powdered material. Gas 

sensing experiments were conducted in a wet atmosphere as water is a key component of soup. The 

electrical resistance of the sample was measured by measuring the electrical conductivity of the 

material in wet air and wet acetone gas, to obtain the responsivity of the material. The gas of the 

aqueous acetone solution was prepared by bubbling it through with dry air. The resulting concentration 

of the acetone in the sample gas was determined by analysis of the conversion product CO2, formed 

when the acetone was passed over an oxidation catalyst: Pt-alumina, via gas chromatography. 

Studies showed that a sensor element consisting of pure ZnO, had only limited responsivity towards 

20 ppm acetone at 500 °C. However the addition of WO3 (associated to a large electronegativity) 

dramatically increased the responsivity towards 20 ppm acetone to 60 at the same operating 

temperature. As the responsivity towards acetone correlated with additives with a high 

electronegativity, the group suggested that acidic surfaces were more favourable for the detection of 

acetone. As suggested previously in Chapter 1, section 1.8.3, WO3 acts as a solid acid/alkaline 

catalyst and such provides Bronsted or Lewis acid sites, or a combination of both upon which 

oxidation or reduction catalysis can occur [111, 112]. As an acid catalyst, WO3 is a source of H+ 

species which can catalyse the oxidation and catalytic breakdown of acetone and in this way, the 

composite material was able to response to acetone better in the presence of WO3. In a cross-

sensitivity study at 500 °C towards other important flavour components such as capronaldehyde, 

methylpyrozine, and dimethylsulfide in consommé soup, (all at 20 ppm concentrations), the WO3-ZnO 

element showed selectivity towards 20 ppm acetone. The group had concluded that the enhanced 

responsivity of the WO3-ZnO composite was attributed to its acidic surface, over which oxidation of 

acetone occurred through the formation of intermediates such as CO and CO2. Further they had 

reported that the modest catalytic activity of the composite allowed the acetone molecules as well as 

intermediates such as CO, to diffuse into the inner region of the sensor body and react with the 

adsorbed oxygen species, which also contributed to the high responsivity of the composite material. 

This study suggests that the acidic properties of the WO3-ZnO composites studied in this thesis, may 

have also contributed to their enhanced acetone responsivity properties, with respect to the pure 

counterparts.   

Comparison of the conductive responses of the devices between 10 ppm ethanol and 10 ppm 

acetone, showed that both the 50 wt.% WO3 – 50 wt.% ZnO and 30 wt.% WO3 – 70 wt.% ZnO sensor 

devices, in particular the latter device showed selectivity towards 10 ppm acetone. Comparison of the 

response values and 95% CIs of the two devices towards 10 ppm ethanol at 350 °C as seen in Table 

3–1, and towards 10 ppm acetone at 350 °C as seen in Table 3–5, show that the response and errors 

do not overlap, and as such the selectivity is demonstrated. The other sensor devices however, 

displayed very close conductive responses towards both analytes and therefore discrimination was not 
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as apparent. Kim et al. [248] have reported that discrimination between ethanol and acetone is difficult 

to achieve due to the similar chemical natures of both gases. However the WO3-ZnO composite 

sensors here show that specific combinations of both WO3 and ZnO can potentially achieve 

discrimination between both analytes.  

Table 3–5. Average conductive responses of sensor devices in WO3-ZnO system from all repeat tests against 1, 
2, 4, 6, and 10 ppm acetone at 350 °C and associated errors in the form of 95% CIs.  

 
1 ppm 2 ppm 4 ppm 6 ppm 8 ppm 10 ppm 

Device 
Average 

Resistance 
95% 
CI 

Average 
Resistance 

95% 
CI 

Average 
Resistance 

95% 
CI 

Average 
Resistance 

95% 
CI 

Average 
Resistance 

95% 
CI 

Average 
Resistance 

95% 
CI 

100 wt.% WO3 

 
1.54 ±0.04 2.19 ±0.10 3.04 ±0.26 3.71 ±0.33 4.14 ±0.40 4.33 ±0.43 

90 wt.% WO3   
– 10 wt.% ZnO 

 
1.95 ±0.20 2.70 ±0.01 3.56 ±0.11 4.21 ±0.13 4.62 ±0.15 4.89 ±0.17 

50 wt.% WO3  – 
50 wt.% ZnO 

 
1.80 ±0.20 3.22 ±0.04 4.80 ±0.43 6.61 ±0.95 7.82 ±0.99 8.75 ±1.27 

30 wt.% WO3  – 
70 wt.% ZnO 

 
2.41 ±0.20 4.36 ±0.04 6.46 ±0.15 8.77 ±0.20 10.94 ±0.23 12.76 ±1.45 

10 wt.% WO3  – 
90 wt.% ZnO 

 
1.27 ±0.00 1.52 ±0.02 1.95 ±0.04 2.34 ±0.05 2.70 ±0.15 2.74 ±0.08 

100 wt.% ZnO 1.22 ±0.02 1.35 ±0.05 1.60 ±0.07 1.81 ±0.09 1.91 ±0.09 1.83 ±0.05 
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3.7 Summary and Conclusions 

Results of the investigation have shown that the combination of WO3 and ZnO metal oxides in 

composite form was an effective and versatile strategy for obtaining enhanced responsivities, in 

comparison to the pure metal oxide counterparts. In particular, the combination of metal oxides proved 

to be particularly effective for the detection of ethanol, NO2 and acetone. 

The highest resistive response against NO2, was displayed by the 10 wt.% WO3  - 90 wt.% ZnO sensor 

device, which showed a response of 147 at 300 °C and a conductive response of only 4 towards 100 

ppm ethanol at the same operating temperature. This was one of the best performing composites for 

NO2 and displayed superior resistive responsivity towards 800 ppb NO2, across the whole range of 

operating temperatures between 300 °C – 500 °C. In comparison for ethanol, the device showed poor 

conductive responsivities across the same operating temperature range. This indicated that the device 

was able to discriminate between both the reducing and oxidising gas. For ethanol, the best 

performing composite was the 50 wt.% WO3 – 50 wt.% ZnO device, which showed a conductive 

response of 37 against 100 ppm of the analyte at 350 °C. The same device was seen to exhibit a 

resistive response of 33 towards 800 ppb NO2 at the same operating temperature. Between 300 °C -

500 °C, the device was seen to be attributed to similar responsivities between both ethanol and NO2, 

and as such this device could not clearly discriminate between both ethanol and NO2.    

At 350 °C, gas sensing tests towards a variety of reducing gases showed that the system responded 

poorly towards 1000 ppm CO and 20 ppm NH3, with most sensor devices showing responses 

(conductive/resistive) close to a baseline response of 1. However significant conductive responsivities 

towards acetone were observed, particularly at concentrations of 2 ppm and higher, with the best 

performing composite sensor device seen to be the 30 wt.% WO3 – 70 wt.% ZnO material. This 

composite was seen to be associated to enhanced conductive responsivities, with respect to the pure 

counterparts, at all concentrations of acetone exposure between 1 – 10 ppm. The maximum 

conductive response of this composite against acetone was of 14 against 10 ppm of the analyte.  

Comparison of the conductive responses of the system of devices between 10 ppm ethanol and 10 

ppm acetone at 350 °C, showed that both the 50 wt.% WO3 – 50 wt.% ZnO and 30 wt.% WO3 – 70 

wt.% ZnO sensor devices, in particular the latter device, showed selectivity towards 10 ppm acetone. 

This behaviour indicated that in a mixed atmosphere of both ethanol and acetone, both the 50 wt.% 

WO3 – 50 wt.% ZnO and 30 wt.% WO3 – 70 wt.% ZnO sensor devices maybe more selective to 

acetone. 

The enhanced responsivities of the composite metal oxides with respect to the pure counterparts, 

were thought to be influenced by a combination of hetero-junction enhancement effects as well as the 
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superior sensing properties of the individual metal oxides. XPS analysis did suggest an electronic 

interaction between both metal oxides, which supported the hypothesis of the influence of hetero-

junction enhancement effects towards some of the enhanced responsivities of the composite devices. 

Error analysis of the response values throughout the study, showed that in general the responses 

between repeat tests were repeatable. This was particularly apparent at exposures towards low 

concentrations of all analytes and with materials which were either pure or biased by the wt.% of either 

of the metal oxides. Further, lower error magnitudes were observed towards acetone, CO and NH3 in 

comparison to the higher concentrations of ethanol and NO2, towards which the devices were 

attributed to significant error. In particular, exposure towards 100 ppm ethanol, resulted in for example 

the 30 wt.% WO3 – 70 wt.% ZnO sensor device being associated to an error of ±9.4 and the 10 wt.% 

WO3 – 90 wt.% ZnO sensor device was associated to an error of ±7.4 towards 800 ppb NO2. The 

trends of the error values showed that both analytes towards which the group of sensors were most 

responsive towards i.e. ethanol and NO2, were associated to the largest errors. This suggested the 

possibility of several surface by-products forming or additional reactions occurring on the surface of 

the metal oxide device, promoting interference of the response magnitudes. The behaviour also 

suggested potential instability of such composite devices. In contrast, towards the lower 

concentrations of ethanol and NO2 and towards all exposed concentrations of CO, NH3 and acetone, 

the devices showed lower responsivities and also lower errors magnitudes, suggesting that the 

formation of interfering by-products or additional reactions occurring on the surface was lowered, due 

to the lowered concentrations of exposure or due to lack of reactivity. The error values suggest that 

comparative responsivity and selectivity between the best performing composite materials was difficult 

to conclude, due to the overlap of error ranges. However, the enhanced response of these composites 

with respect to the pure counterparts was evident. A more detailed discussion of error sources has 

been presented in Chapter 7.  
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Chapter 4 : SnO2-ZnO based n-n hetero-junction system  

In the previous Chapter an in-depth materials and gas sensing characterisation study an n-n hetero-

junction system based on WO3 and ZnO composites was presented. In this Chapter, an in-depth 

investigation of a materials and gas sensing characterisation study of another n-n hetero-junction 

composite system, this time based on SnO2 and ZnO composites, is presented.  

4.1 Introduction 

Hetero-junction material systems based on the combination of SnO2 and ZnO are one of the most 

investigated mixed metal oxide systems studied and applied to vapour sensing technology, as 

evidenced from the large number of reports in the literature [91, 93, 145, 156, 248-259].  

In the past, reports on the gas sensing studies of the SnO2-ZnO hybrid systems have differed through 

the route by which the composite system has been fabricated and subsequently deposited onto gas 

sensing substrates. Various examples include simple mechanical mixing of powders of both metal 

oxides resulting in the formation of physical mixtures of the two components and subsequent screen-

printing inks of the mixtures [91, 145, 156], combinatorial solution deposition to form thin films of the 

combination of oxides [248] to more advanced techniques such as vapour growth method or a 

combination of electro-spinning and Atomic Layer Deposition (ALD) to form more complex ZnO-SnO2 

core shell nanowire type structures [93, 249-254], among other processes. The utilization of this 

combination of metal oxides, subject to fabrication method, have been shown to promote enhanced 

responses towards a variety of environmentally important analytes such as NO2 [251], CO [250], VOCs 

[91, 145, 248, 256, 259] and hydrogen [254], in comparison to one or both of the single metal oxide 

counterparts.  

The observed effective enhancement with a combination of both these oxides has been reasoned due 

to a number of factors which primarily include hetero-junction enhancement effects [248-250] but also 

the synergistic advantages and catalytic activity of both metal oxide materials towards various 

compounds [91]. A number of literature studies, which have investigated this combination of both 

these metal oxides, have been referred to throughout this Chapter.  

In this investigation, a study of a composite system based on a combination of SnO2 and ZnO, has 

been presented.  
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4.2 Results and Analysis 

4.2.1 Scanning Electron Microscopy (SEM) 

SEM imaging characterisation of all seven sensors in the SnO2-ZnO composite system was carried out 

to gauge into the microstructure of each material. The SEM images of all sensor materials in the SnO2-

ZnO system presented in Figure 4–1, have been spread over the next two pages.  
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Figure 4–1. SEM images of (a) 100 wt.% ZnO x 10,000 magnification, (b) 100 wt.% ZnO x 20,000 
magnification, (c)  90 wt.% ZnO – 10 wt.% SnO2 x 10,000 magnification, (d)  90 wt.% ZnO – 10 wt.% 
SnO2 x 20,000 magnification, (e) 70 wt.% ZnO – 30 wt.% SnO2 x 10,000 magnification, (f) 70 wt.% 
ZnO – 30 wt.% SnO2 x 20,000 magnification, (g) 50 wt.% ZnO – 50 wt.% SnO2 x 10,000 magnification, 
(h) 50 wt.% ZnO – 50 wt.% SnO2 x 20,000 magnification, (i) 30 wt.% ZnO – 70 wt.% SnO2 x 10,000 
magnification, (j) 30 wt.% ZnO – 70 wt.% SnO2 x 20,000 magnification, (k) 10 wt.% ZnO – 90 wt.% 
SnO2 x 10,000 magnification, (l) 10 wt.% ZnO – 90 wt.% SnO2 x 20,000 magnification, (m) 100 wt.% 
SnO2 x 10,000 magnification and (n) 100 wt.% SnO2 x 20,000 magnification. All materials were 
screen-printed and heat-treated at 600 ºC before imaging. 
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SEM imaging of the sensor devices showed that the ZnO sample observed in Figure 4–1 (a) and (b) 

consisted of 3-dimensional cuboid shaped particles with curved edges, with a broad particle size 

distribution ranging between 0.1 to 1 µm, corroborating with the observation from Chapter 3. The 

morphology of the SnO2 material observed in Figure 4–1 (m) and (n) was attributed to smooth and 

jagged rock-like clumps ranging from a size of 0.25 µm to as large as 1.75 µm. The image of the 10 

wt.% ZnO – 90 wt.% SnO2  in Figure 4–1 (l) showed that some of the SnO2 clumps were as large as 4 

µm.  

Careful inspection of a higher magnification of the SnO2 sample at x 50,000 observed in Figure 4–2, 

showed that the rock-like clumps were actually agglomerates made up of spherical nano-SnO2 

particles of sizes less than 100 nm.  

 

 

 

 

 

 

 

 

The nanograin sizes of the SnO2 sample suggest a large surface to bulk ratio of the SnO2 grains 

inherent to all nano-sized materials. Such nanomaterials are likely to agglomerate as observed via 

SEM imaging in Figure 4–2 owing to the lower thermal stability of nanomaterials, due to a greater ratio 

of surface to bulk component. Prior to SEM imaging, all sensor devices were heat-treated at 600 °C, 

which would have likely caused the SnO2 particles to agglomerate together. SnO2 nanoparticles are 

known to sinter at temperatures as low as 400 °C [260], suggesting that heat-treatment at 600 °C may 

have promoted some sintering between the nano-structured SnO2 metal oxide grains, subsequently 

impacting the gas sensing performance. An agglomerated microstructure is not preferred for gas 

sensing applications due to a reduction in diffusion pathways for the gas molecules to travel into the 

bulk of the metal oxide, suggesting the surface site interaction is limited between the analyte 

molecules and the solid metal oxide.  

    

  
x 50,000 100 nm 

Figure 4–2. SEM image of 100 wt.% SnO2 at x 50,000 magnification.  
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Despite the effective inter-grain agglomeration between the SnO2 nanograins, the agglomerates 

themselves were seen to be loosely held together within the sensor matrix as observed in Figure 4–1 

(m) and (n) and Figure 4–2, suggesting the provision of diffusion pathways between the agglomerates 

[70] for the gaseous molecules to travel into and out of the body of the sensor matrix. The pure ZnO 

sensor sample in Figure 4–1 (a) and (b) showed that the ZnO grains were loosely held within the 

matrix of the material. Thus in contrast to the pure SnO2 material, where the diffusion pathways are 

seen to be present between the agglomerates within the sensor matrix, the ZnO sample showed that 

the diffusion pathways exist in between the ZnO grains within the sensor matrix.  

The stark contrast in the particle sizes of both metal oxides also suggested that within the composite, 

not only were hetero-junction effects introduced by the presence of grains of differing chemical 

natures, but also they were present due to the difference in grains size. Yamazoe et al. [170, 171] had 

reported on hetero-junction effects within devices incorporating grains which were non-uniform. They 

had reported that the simplest factor in hetero-junction devices that contributed to the non-uniformity 

between the grains, was the differences in grain sizes between the grains. This suggests that even in 

a sample which consists of particles of the same chemical nature i.e. a pure SnO2 sample for example, 

differences in the grain sizes between the SnO2 particles can induce contact potential enhancement 

effects, within the matrix of the sensing material. Therefore, this suggests that unless any sample 

contains superior particle size homogeneity, which is very ideal to realistically achieve, it is associated 

to hetero-junction enhancement effects. In the case of the SnO2–ZnO composite system examined 

here, multiple in-homogeneities existed to exert hetero-junction enhancement effects, which are 

expected to play a positive role in the overall gas-sensing properties of the materials.  

As the concentration of ZnO and SnO2 were varied, SEM imaging showed a variation in the 

microstructure of the sensor devices, however microstructures of the 90 wt.% ZnO – 10 wt.% SnO2 

and the 10 wt. ZnO - 90 wt.% SnO2 composite devices, were seen to be dominated by the dominant 

metal oxide i.e. ZnO and SnO2 respectively as observed in Figure 4–1 (c) & (d) and (k) & (l), 

respectively and as such, the microstructures of these composites resembled those of the 

corresponding pure metal oxides. This suggested domination of homo-contact dominated percolation 

paths within the sensor matrix of each composite device and a homo-contact dominated packing 

structure. The 70 wt.% ZnO – 30 wt.% SnO2, 50 wt.% ZnO - 50 wt.% SnO2 and 30 wt.% ZnO - 70 wt.% 

SnO2 composite devices observed in Figure 4–1 (e) & (f), (g) & (h) and (i) and (j) were seen to be 

associated to a dispersion of both metal oxide materials, suggestive of a hetero-contact dominated 

packing structure in these devices.  

SEM imaging did not show evidence of significant fusing between the ZnO and SnO2 grains in the 

composite materials, which gave evidence of the composite nature of the devices. Within the pure 

metal oxide materials, significant inter-grain agglomeration and sintering was seen between the SnO2 
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nano-grains, however the agglomerates remained independent of each other. With the ZnO material, 

some fusing was observed between the ZnO particles as observed in Figure 4–1 (b) and (d).   

SEM imaging in general showed evidence of loosely held grains within the metal oxide matrices. Such 

a microstructure in the thick-film devices ensured diffusion pathways for the analyte molecules to 

diffuse through, deep into the body of the sensor matrix and react with surface sites in the bulk as well 

as on the surface of the materials. Thus, the microstructural nature of the thick-films increased the 

surface site accessibility of the analyte molecules. The microstructure of the composite thick-films as 

well as the packing structure and hetero-junctions that existed between the hetero-interfaces are likely 

to all influence the overall gas sensing properties of the system of devices.  

4.2.2 X-Ray Diffraction (XRD) 

 

The glancing angle XRD patterns of the devices within the SnO2 and ZnO composite system are 

presented in Figure 4–3. The crystalline nature of both metal oxide compounds was confirmed through 

the observation of the sharp defined peaks of both metal oxides. The XRD pattern of the SnO2 sample, 

confirmed that the metal oxide crystallised in a tetragonal rutile structure, matching the reference 

pattern (JCPDS No. 41-1445) [261-263] seen in Figure 4–4 obtained from the ICSD database via the 

National Chemical Database Service [264], which stored the SnO2 rutile XRD data from a study by 

Figure 4–3. XRD patterns of pure and composite sensors based on SnO2 and ZnO metal oxides, in the SnO2-
ZnO composite system. All materials were screen-printed and heat-treated at 600 °C, prior to XRD 
measurements.  
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Bolzan et al. [265]. The strongest reflections of rutile have been presented in Figure 4–4. The XRD 

pattern of ZnO as discussed in Chapter 3, showed that the metal oxide adopted a wurtzite hexagonal 

crystal structure (JCPDS No. 36-1451) [77, 213, 214].  

The patterns showed the variation in the concentration of the SnO2 and ZnO components through the 

gradual change in intensity of the associated peaks in ascending or descending order. The 

observation of the peaks of the individual metal oxide crystal phases indicated that all materials 

existed in composite form. An observation of the alumina substrate was evident with the pure SnO2 

sensor. 

Figure 4–4. XRD pattern of SnO2 rutile from the ICSD reference database 
[264, 265].  
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Further confirmation of the composite nature of the materials was confirmed by the absence of any 

reflections associated to the formation of any tertiary phases that could have formed due to the solid-

state reaction of both metal oxides. The absence of the tertiary phase was confirmed by comparison of 

the experimental data with the reference patterns of the possible tertiary phases that could have 

formed, which were ZnSnO3 perovskite [151, 266] and ZnSn2O4 spinel [266]. The latter of these 

compounds, zinc orthostannate, is the most stable tertiary phase that crystallises via the solid-state 

reaction of both metal oxides at temperatures above 600 °C [266] and former is the metastable tertiary 

phase formed as an intermediate of the solid-state reaction, at 300 – 500 °C [266]. This suggests that 

any gas sensing behaviour observed was purely due to the presence of both metal oxide phases and 

was not influenced in any way by the presence of a tertiary phase. 

4.2.3 Raman Spectroscopy 

 

Raman spectra of the sensor devices within the SnO2-ZnO system, have been presented in Figure 4–

5. The results corroborated with XRD showing that the Raman bands of SnO2 matched those of a 

tetragonal rutile phase [263]. The three bands of SnO2 observed in the Raman data are reported to be 

the three most fundamental peaks of rutile SnO2, associated to the Eg (476 cm-1), A1g (633 cm-1) and 

Figure 4–5. Raman spectra of all sensor devices within SnO2-ZnO composite system. All sensors were heat-
treated at 600 °C, prior to Raman spectroscopy measurements.  
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B2g (774 cm-1) vibrational modes. The Raman bands of the ZnO sample were in agreement with a 

wurtzite hexagonal structure [218-220], in-depth analysis of which has been discussed in Chapter 3.  

The Raman data showed presence of both metal oxides within the mixed metal oxide materials, giving 

evidence of the composite nature of the mixtures. No peaks observed to any tertiary phases were 

observed in the Raman spectra, corroborating with XRD data, of the presence of only the two metal 

oxide phases in the materials.  

4.2.4 X-Ray Photoelectron Spectroscopy 

XPS measurements were conducted on all sensors within the SnO2 – ZnO system, with two binding 

energy peaks of each metal observed for the corresponding metal oxide. All spectra (with a ± 0.1 eV 

experimental measurement error), were standardized against the C1s binding energy of 284.6 eV 

obtained from the reference database [201] and from literature [202, 203]. For all SnO2 containing 

samples, a Sn 3d5/2 peak in the range of 486 - 487 eV was observed and for all ZnO containing 

samples, a Zn 2p3/2 peak occurred in the range of 1021-1023 eV. All the observed peaks were 

experimentally in agreement with the reference database [201] and accompanied by spin-orbit 

doublets. For the Sn species, 3d5/2 and 3d3/2 splitting values in the range of 8.4 – 8.7 eV were in close 

agreement with literature values [98] and for Zn species: Zn2p3/2 and Zn2p½ splitting values in the 

range of 23.0 – 23.1 eV which were also in close agreement with literature values [224]. XPS did not 

show evidence of any remnants such as silica from the organic vehicle in any of the sensor devices. 

Figure 4–6. XPS data of the relative binding energies (calculated by taking the difference between the B.E. 
of the Zn 2p3/2 peak and the B.E. of the Sn 3d5/2 peak) for all the associated composites as a function of 
wt.% SnO2 in each composite. 
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Calculation of the relative binding energies, by finding the difference between the binding energies of 

the Zn 2p3/2 and the Sn 3d5/2 peaks, as a function of increasing SnO2 composition in the composites, 

showed evidence of a slight increase in the relative positions of the Sn and Zn core levels, as a 

function of increasing SnO2 concentration, however these were within the instrumental error of the 

XPS instrument. As explained in Chapter 3 the XPS binding energies are referenced to the Fermi 

Level (EF) and thus a change in the relative positions of the Sn and Zn core levels indicates a change 

in EF relative to the energy levels in SnO2 and ZnO phases. However, the experimental data showed 

that the net change in the relative binding energies between the Sn and Zn core lines was generally 

within the instrumental error of the XPS instrument, which suggested a very weak electronic 

interaction, if any, between both metal oxide components. 

4.2.5 Gas Sensing Characterisation 

4.2.5.1 Ethanol Sensing 

The conductive response traces against increasing concentrations of ethanol at an operating 

temperature of 300 °C, have been presented in Figure 4–7. Tabulation of the mean responses values 

of the sensor devices in the SnO2-ZnO system from the repeat tests against exposure towards the 

various ethanol concentrations at 300 °C and the associated 95% confidence intervals have been 

presented in Table 4–1.  

 

 

 

 

 

 

 

 

 

Figure 4–7. Conductive response traces of SnO2-ZnO system towards 10, 20, 40, 80 and 100 ppm ethanol gas, 
at an operating temperature of 300 °C. The inset zooms into the conductive response traces against 10 ppm of 
the analyte.  
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Table 4–1. Average conductive responses of sensors devices in SnO2-ZnO system from all repeat tests against 
various ethanol concentrations at 300 °C and associated errors in the form of 95% CIs.  

 
10 ppm 20 ppm 40 ppm 80 ppm 100 ppm 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% CI 

 
SnO2 

 
1.79 ±0.04 4.21 ±0.07 10.08 ±0.18 20.67 ±0.26 24.15 ±0.75 

90 wt.% SnO2   – 
10 wt.% ZnO 

 
2.53 ±0.45 10.09 ±1.78 32.87 ±5.29 78.34 ±11.93 99.54 ±14.70 

70 wt.% SnO2   – 
30 wt.% ZnO 

 
2.19 ±0.21 8.6 ±1.19 26.32 ±2.41 79.35 ±8.67 109.09 ±10.89 

50 wt.% SnO2 –  
50 wt.% ZnO 

 
1.75 ±0.30 6.28 ±1.12 25.40 ±3.65 84.96 ±14.06 Electronic capping out 

30 wt.% SnO2 – 
 70 wt.% ZnO 

 
2.28 ±0.19 9.31 ±0.46 26.21 ±2.28 59.91 ±6.43 79.76 ±9.39 

10 wt.% SnO2  –  
90 wt.% ZnO 

 
1.83 ±0.06 4.90 ±0.39 9.39 ±0.86 15.96 ±1.52 19.79 ±2.11 

 
100 wt.% ZnO 

 
1.81 ±0.08 2.87 ±0.15 4.61 ±0.36 7.61 ±0.39 9.43 ±0.70 

 

300 °C was the temperature at which most of the sensors exhibited optimal response performance (as 

observed further on in Figure 4–13) except for the 100 wt.% ZnO and 90 wt.% ZnO – 10 wt.% SnO2 

sensor devices, both of which exhibited optimal performance at a higher temperature of 350 °C. The 

observed increase in conductive response of all devices against the reducing analyte is inherent to the 

nature of the n-type conductivity of both SnO2 and ZnO metal oxides, whose conductive response is 

seen to increase upon exposure to ethanol [248]. The response behaviour therefore gave evidence 

that the conductivity within the pure and composite materials occurred via the n-type percolation paths 

that existed between the ZnO-ZnO and SnO2-SnO2 homo-contacts and the ZnO-SnO2 hetero-contacts 

(the latter of which is only attributed to the composite materials).  

The response traces in Figure 4–7 showed evidence of an enhanced response of the composite 

devices compared to both the 100 wt.% SnO2 and 100 wt.% ZnO pure counterpart devices. The 

highest response achieved was against 100 ppm ethanol by the 50 wt.% ZnO - 50 wt.% SnO2 device 

which exhibited a response of 109.1, a 4.5-fold increase with respect to the pure SnO2 counterpart  

(which displayed a response of 24.4) and a 12.3-fold enhancement with respect to the pure ZnO 

counterpart (which was associated to a response of 8.9), towards the same concentration of the 

analyte.  
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This evidence demonstrates the enhanced response characteristics of a mixed-oxide system based on 

SnO2 and ZnO composites. The 30 wt.% ZnO – 70 wt.% SnO2 composite device also exhibited a 

response close to the 50 wt.% ZnO – 50 wt.% SnO2 device, with a response of 103.6 towards 100 ppm 

ethanol which was a 4.2-fold enhanced response with respect to the pure SnO2 counterpart and a 

11.6-fold enhanced response compared to the pure ZnO counterpart, both against 100 ppm ethanol. 

Both composite devices in terms of the mole ratios of ZnO:SnO2 observed in Table 2–4, are 

associated to a significant contribution of both metal oxide components, suggesting that the packing 

structures [170, 171] of the sensor materials are associated to a random dispersion of SnO2 and ZnO 

grains amongst each other to include SnO2-ZnO hetero-contacts as well as ZnO-ZnO and SnO2-SnO2 

homo-contacts, as observed in the illustrated schematic in Figure 4–8.  

 

 

 

 

 

 

 

 

The dispersion of both metal oxide grains within the sensor matrix, is further evident from the SEM 

images of the 50 wt.% ZnO – 50 wt.% SnO2 and 30 wt.% ZnO – 70 wt.% SnO2 devices observed in 

Figure 4–1 (h) and (j), respectively. This dispersion of the SnO2 and ZnO hetero-contacts within the 

matrix of the two sensor materials, is indicative of delocalised contact potentials, which may act to 

enhance the gas sensing response behaviour. As explained in Chapter 1, the enhancement effect is 

influenced by the modulation of the drift mobility of electrons travelling against the contact potential 

(which occurs through scattering away electrons that do not possess sufficient energy to overcome the 

energy barrier that exists between the hetero-contacts). As such the contact potential induces a 

potential energy barrier and therefore a resistance at the hetero-contact, making it more sensitive to a 

change in the atmosphere around it [170, 171].  

Figure 4–8. Schematic of random packing structure of metal oxide grains in 50 wt.% ZnO - 50 wt.% CTO  and 
30 wt.% ZnO – 70 wt.% ZnO sensor devices. In the diagram the green circles represent the smaller ZnO 
particles and the larger purple circles, the larger SnO2 agglomerates. Although the diagram presents the grains 
and agglomerates to be perfectly spherical for simplicity, this perfect spherical nature is not assumed.  
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Hetero-junction enhancement effects have been postulated in the literature as a key influential factor in 

the enhancement effects observed in SnO2-ZnO mixed oxide systems. Haeng Yu et al. [92] for 

example, reported on the CO gas sensing properties of ZnO–SnO2 composites. In their study, they 

had formed pellets containing mixtures of ZnO and SnO2, with each pellet containing different mol % 

concentrations of ZnO and SnO2. Upon exposure to 200 ppm of the analyte, the composite materials 

were attributed to enhanced responsivities with respect to the pure ZnO and SnO2 counterparts. In 

particular, the enhancement effect of those composites which contained a significant contribution of 

both SnO2 and ZnO metal oxides, were reported to be associated to the heterogeneous interfaces that 

existed between the ZnO and SnO2 phases. The materials that were associated to increasing ZnO 

concentration into the SnO2 matrix (specifically 20 mol% – 60 mol % ZnO), were reported to be 

associated to a significant number of SnO2/ZnO grain boundaries, which were reported to contribute to 

the enhancement in gas response properties.  

In another study by Song et al. [253] who had investigated a highly sensitive ethanol sensor based on 

mesoporous ZnO-SnO2 nanofibres, the group had reported that the hetero-junction structure between 

the SnO2 and ZnO interface, plays an important role to improve the sensing properties in such mixed 

oxide materials. Further, they had reported that it was well-established that an additional second 

component in a metal oxide semiconductor sensor could be exploited, with the interface between both 

metal oxides promoting an active site for the surface redox processes, suggesting an increased 

number of surface sites in a hetero-junction material, and further promoting free charge carriers which 

act to enhance the electronic conductance of the oxide films [168].  

The experimental evidence presented in Figure 4–7 shows that a random packing structure of hetero-

contacts can act to drastically enhance the transduction function of the sensor device. In this study, not 

only was the contact potential component influenced by the chemical non-uniformity between both 

component metal oxides, but was influenced by the significant difference in particle sizes of both 

component metal oxides [170]. Significant differences in the particle size have been reported to 

increase the resistance of the hetero-contact [170] and act to enhance the overall transduction function 

of the device. 

Figure 4–7 further shows that the 10 wt.% ZnO – 90 wt.% SnO2 and 70 wt.% ZnO – 30 wt.% SnO2 

sensor devices also exhibited enhanced responses in comparison to the pure ZnO and SnO2 

counterparts, with the former exhibiting a response of 85.1 against 100 ppm ethanol (a 3.5-fold 

enhancement compared to the pure SnO2 device and a 9.6-fold enhance compared to the pure ZnO 

device) and the latter exhibiting a response of 80.5 towards 100 ppm ethanol (a 3.3-fold enhanced 

response compared to the pure SnO2 device and 9-fold enhanced response compared to the pure 

ZnO device). Both these devices however were not associated to responses as pronounced as the 50 

wt.% ZnO – 50 wt.% SnO2 and the 30 wt.% ZnO – 70 wt.% SnO2 composite devices.  
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Comparison of the contributions of metal oxides in the 10 wt.% ZnO – 90 wt.% SnO2 and 70 wt.% ZnO 

– 30 wt.% SnO2 from Table 2–4 shows that in the former device, there was a significantly greater 

contribution of the SnO2 material, with the packing structure indicative of ZnO grains dispersed in the 

host matrix of SnO2 grains. In the latter device, the contribution of the ZnO was significantly greater 

than that of the SnO2, and therefore the packing structure was suggestive of SnO2 grains dispersed in 

the host matrix of ZnO grains. SEM imaging corroborates with the suggested packing structures of 

both devices, showing that the 10 wt.% ZnO – 90 wt.% SnO2 device as observed in Figure 4–1 (l) was 

dominated by SnO2 grains and the 70 wt.% ZnO – 30 wt.% SnO2 device Figure 4–1 (f) was dominated 

by the ZnO grains. Thus for both devices, the ratio of the homo-contacts (of the dominant metal 

oxide):hetero-contacts was large, suggesting that the homo-contacts were more competitive than the 

hetero-contacts and the devices consisted of more localised contact-potentials. This suggests why 

both composite devices did not perform as well as the 50 wt.% ZnO – 50 wt.% SnO2 and the 30 wt.% 

ZnO – 70 wt.% SnO2 composite sensors.  

The percolation pathways of devices where the homo-contacts are more dominant than the hetero-

contacts, are practically non-resistive. This implies that the electrons need to surmount a lower energy 

barrier to move through the same individual grains in the body of the material. This reasoning may aid 

in  justifying the lower response of the 10 wt.% ZnO – 90 wt.% SnO2 and 70 wt.% ZnO – 30 wt.% SnO2 

composites compared to the 50 wt.% ZnO – 50 wt.% SnO2 and the 30 wt.% ZnO – 70 wt.% SnO2 

composite devices. The significant response however of both the 10 wt.% ZnO – 90 wt.% SnO2 and 70 

wt.% ZnO – 30 wt.% SnO2 devices with respect to the pure SnO2 and ZnO counterparts, suggested 

that packing structures contained localized contact potentials that played a role to enhance the 

response function of the devices. Such packing structures were also observed to be effective as gas 

sensing materials in the Chapter 3 focussing on a WO3-ZnO composite system.  

The 90 wt.% ZnO – 10 wt.% SnO2 composite device was the only mixed metal oxide sensor that 

displayed a response behaviour which was slightly better than the ZnO counterpart, but worse than the 

pure SnO2 counterpart. The device exhibited a response of 19.8 towards 100 ppm ethanol, which was 

a 2-fold enhanced response compared to the unmodified ZnO sensor but a 1.2-fold times poor 

response compared to the unmodified SnO2 sensor, both against 100 ppm ethanol. The composition 

of this particular device as observed in Table 2–4, showed that its matrix was dominated almost totally 

by the ZnO grains with very little contribution of the SnO2 material. This suggested that the fraction of 

the SnO2 grains that were present within the sea of ZnO grains, were limited. As such, the percolation 

pathways were mainly dominated by the ZnO-ZnO homo-contacts, with hardly any percolation paths 

between the SnO2-ZnO hetero-contacts, which did not influence the performance of the device with 

respect to the unmodified ZnO counterpart.  
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Apart from the hetero-junction enhancement effects associated to the SnO2 and ZnO binary system, 

the synergy of the combination of both metal oxides can be postulated as playing a key role in 

influencing the enhanced response behaviour observed. De Lacy Costello et al. [91] have reported 

that both SnO2 and ZnO are well known dehydrogenation catalysts for VOCs such as methanol and 2-

butanol and ethanol [267, 268]. The group itself had reported on the catalytic and vapour sensing 

properties of various SnO2 – ZnO composite devices: 1) 25 mass%:75 mass%, 2) 50 mass%:50 

mass% and 3) 75 mass%:25 mass% SnO2 – ZnO, at 350 °C towards 1-butanol. They had reported 

that composites of both metal oxides were more responsive to butanol than the pure metal oxide 

counterparts; and had attributed this behaviour to the synergistic action of both metal oxides towards 

the catalytic breakdown of butanol via a dehydrogenation route (as opposed to a dehydration route). 

The dehydrogenation has been observed to be the more dominant pathway of the catalytic breakdown 

of ethanol on the surface of metal oxides [69, 180, 181]. Specifically, they had reported that the SnO2 

was very effective in the dehydrogenation of butanol to butanal, and the ZnO was particularly effective 

not only at the dehydrogenation of the butanol to butanal, but further for the breakdown of butanal.  As 

such they reported that combining both metal oxides was attributed to enhanced responsivity towards 

the analyte, due to the independent but synergistic catalytic butanol breakdown mechanisms of each 

metal oxide. In a similar way, the catalytic dehydrogenation of ethanol may also have been influenced 

by the synergistic combination of both SnO2 and ZnO metal oxides.  

In comparison to the observed responses to ethanol exhibited by the SnO2-ZnO composite system 

presented in this thesis, de Lacy Costello et al. [145] had reported a very similar study on SnO2 and 

ZnO composite sensors for the detection of ethanol. The group had fabricated pastes containing a 

variation of the mass % ratios of both metal oxides (100:0, 75:25, 50:50, 25:75, 0:100 SnO2:ZnO) and 

then applied 3 mg of the prepared paste using a micro spatula to alumina sensor substrates. The 

pastes were equilibrated at room temperature for 24 hours, followed by heat-treatment at 350 °C for 

another 24 hours, prior to gas sensing tests. All sensors were tested at an operating temperature of 

350 °C toward ppb concentrations of ethanol. The group had observed enhanced response 

characteristics of the composite sensors, with respect to the pure metal oxide counterparts when 

exposed to both 10 ppb and 100 ppb of ethanol. In particular the 25 mass%:75 mass% SnO2:ZnO 

sensor device was the most responsive and exhibited a maximum response of 86 % change in 

conductivity, compared to 22 % exhibited by the pure SnO2 sensor device and 60 % exhibited by the 

pure ZnO sensor device, all against 100 ppb ethanol. Although a direct comparison cannot be made 

between the literature study and that being reported here, the sensor devices reported by de Lacy 

Costello et al. [145] are seen to be very responsive, with the ability to detect ppb levels of ethanol, 100 

times less concentrated than the concentrations studied experimentally in this thesis. However both 

studies do establish the enhancement effects achieved through a combination of SnO2 and ZnO metal 

oxides.  
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In another study by Song et al. [93] who had reported on the characterization of ZnO–SnO2 nano-

fibres for an ethanol sensor, the group prepared the nano-fibres through in-situ electro-spinning 

technique and calcination. Three samples of nano-fibres were prepared with the molar ratios of the 

precursor sols of the Zn:Sn being varied in the ratios of 2:1, 1:1 and 1:2. Each sample of nano-fibres 

was mixed with water to form individual pastes, which were then coated around a ceramic tube, which 

contained pre-printed gold electrodes and which was temperature controlled by an inserted Ni-Cr wire. 

When the materials were operated at 300 °C, against increasing concentrations of ethanol, the ratio of 

2:1 Zn:Sn sol prepared nano-fibres out-performed the other two sample of nano-fibres, with a 

response of just above 10 for 50 ppm ethanol and a response of 19 towards 100 ppm ethanol. In 

contrast the other two samples showed responses of 5 towards 50 ppm and responses in the range of 

8-10 towards 100 ppm of the analyte. No responsivity comparisons were made by the group between 

the mixed oxide sensors and the pure SnO2 and ZnO counterparts. Although a direct comparison is 

not possible between the literature and this thesis study, the results of responsivities obtained in this 

thesis are better than those obtained by Song et al. [93]. 

The kinetic behaviour observed from the response traces of the system in Figure 4–7, showed that the 

response of the composite materials was significantly slower than that of the pure metal oxide 

materials. This was indicated by the slower unsaturated shark-fin response traces of all the composite 

materials (except the 90 wt.% ZnO – 10 wt.% SnO2 composite), as opposed to the saturated almost 

box-type traces (with slight shark-fin characteristics) of the pure metal oxides. The two best performing 

composite materials: 50 wt.% ZnO – 50 wt.% SnO2 and 30 wt.% ZnO – 70 wt.% SnO2 were attributed 

to a t90 (100 ppm) of 463 seconds and 425 seconds and a t-90 (100 ppm)  of 1096 and 1035 seconds, 

respectively. In contrast the pure SnO2 and ZnO counterparts were attributed to a t90 (100 ppm) of 236 

seconds and 241 seconds towards 100 ppm ethanol and a t-90 (100 ppm) of 702 and 778 seconds, 

respectively. Thus the two composites responded almost twice as slowly and recovered almost 1.5 

times as slowly as the pure counterparts. This illustrates the compensation of the kinetics of response 

and recovery, for the enhanced responsivity of composite materials and suggests that the composite 

need to be catalytically modified to optimise the kinetics of response and recovery.  

The shark-fin behaviour of the response traces of both composites was suggestive of unsaturated 

sensor surfaces, with 10 minutes of ethanol exposure proving to be insufficient time to attain steady-

state saturation. This unsaturated behaviour was suggestive of a large number of reaction sites, with 

adsorbed oxygen anions readily available to react, in both composite materials for the given 

concentration of ethanol exposure, or alternatively, too large concentrations of ethanol for the given 

number of reaction sites. The shark-fin behaviour was very gradual for these two best performing 

composites, which suggested very slow response behaviour. In stark contrast, the pure metal oxide 

materials exhibited saturated behaviour within the 10 minutes of exposure to ethanol, suggesting the 
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presence of a limited number of reaction sites, or a limited number of adsorbed oxygen anions 

available, for the given concentration of ethanol exposure.  

As discussed in Chapter 3, an enhanced number of reaction sites in a mixed oxide system has been 

reported by Zeng et al. [168] who had reported on the enhanced gas sensing properties of SnO2 

nanosphere functionalised TiO2 nanobelts toward various VOCs, such as methanol, ethanol, 

formaldehyde and acetone. The group reported that the hybrid oxides are associated to additional 

depletion regions that occur at the interface between the SnO2 nanospheres and the TiO2 nanobelts 

and that the hetero-junctions that exist between the interfaces of both the metal oxides, serve as 

additional reaction sites. Thus, the enhanced number of the reaction sites promoted by the significant 

dispersion of hetero-contacts within the packing structures of both the 50 wt.% ZnO – 50 wt.% SnO2 

and 30 wt.% ZnO – 70 wt.% SnO2 composites, can explain the unsaturated shark-fin nature of their 

response traces, and suggests a larger number of reaction sites available for the given number of 

ethanol molecules in the exposure. As such, the reaction sites of the composite materials are 

unsaturated and therefore associated to slower response times. In contrast, a limited number of 

reaction sites in the pure metal oxide materials suggest faster saturation of the surfaces, accounting 

for the faster response times. 

The shark-fin behaviour for the 10 wt.% ZnO – 90 wt.% SnO2 and 70 wt.% ZnO – 30 wt.% SnO2 

composites, was less pronounced (compared to the 30 wt.% ZnO – 70 wt.% SnO2 and 50 wt.% ZnO – 

50 wt.% SnO2 devices) and therefore both associated devices were attributed to relatively faster 

kinetics, with a t90 (100 ppm) of 294 and 299 seconds and a t-90 (100 ppm) of 1073 and 1063 seconds, 

respectively. The faster behaviour of both these composites suggested a reduced number of reaction 

sites of interaction for the given number of ethanol molecules they were exposed to, justified by the 

homo-contact dominated packing-structures of both composites.  

The recoveries of all composite sensors were observed to be significantly slower than of the pure 

metal oxides, observed by comparison of the t-90 values and indicated by their gradual return to 

baseline response. In stark contrast, faster recovery of the pure metal oxides was indicated by the 

steep gradient of return back to baseline upon switching off the ethanol gas. The faster return back to 

baseline was suggestive of a limited number of ethanol molecules that desorbed from the limited 

number of available reaction sites in the pure materials i.e. the desorption yield was significantly lower 

in the pure materials than in the composite materials. The slower recovery of the composite materials 

suggested that the composites have a greater number of occupied surface sites, due to the presence 

of the hetero-junction interfaces, and therefore needed more time to fully recover back to baseline 

response.  
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It was interesting to observe the cross over behaviour between the four best performing composite 

materials, with the 10 wt.% ZnO – 90 wt.% SnO2 and 70 wt.% ZnO – 30 wt.% SnO2 devices exhibiting 

the best performance towards 10, 20 and 40 ppm ethanol and then the 30 wt.% ZnO – 70 wt.% SnO2 

and 50 wt.% ZnO – 50 wt.% SnO2 devices crossing-over between 40 ppm and 80 ppm and exhibiting 

the best performance towards 80 ppm and 100 ppm ethanol. This demonstrated how a simple change 

in the composition of a composite material, could tune the selectivity of the sensors towards particular 

analyte concentrations. Further, it showed how a simple change in composition of the metal oxides 

could manipulate the yield of the ethanol combustion reactions, which influenced the concentration of 

charge carriers released into the electron depletion layer (EDL) of the metal oxide, ultimately 

determining the magnitude of conductive response.  

Figure 4–9 presents the increase in the conductive response of the sensor devices within the SnO2 –

ZnO composite system as a function of increasing concentration of ethanol at an operating 

temperature of 300 °C. The graph presents a steep increase in response magnitude of the four best 

performing composite materials, and in stark contrast, the shallow increase in the magnitude of the 

pure metal oxide devices and the 90 wt.% ZnO – 10 wt.% SnO2 device. The steep rate of increase in 

response magnitude or linear range of the four best performing composite devices, suggests that the 

number of available reaction sites in their corresponding sensor matrices, are able to occupy the 

increasing number of ethanol molecules, As such, the yield of ethanol combustion reactions is 

Figure 4–9. Conductive response of SnO2-ZnO system towards 10, 20, 40, 80 and 100 ppm ethanol gas, at an 
operating temperature of 300 °C. 
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effectively increasing with these materials, as the concentration of ethanol exposure increases. The 

large number of reaction sites, may be accounted for by the presence of a larger number of hetero 

contacts between the SnO2 and ZnO grains, accounted for by the small mole ratio of SnO2:ZnO in the 

corresponding sensor matrices from Table 2–4, Chapter 2. The pure ZnO and SnO2 materials as well 

the 90 wt.% ZnO – 10 wt.% SnO2 sensor device in contrast, are unable to occupy the increasing 

number of ethanol molecules that they are exposed to as a function of time, accounted for by the 

homo-contact dominated packing structure. One of the key observances from Figure 4–9, is the poor 

response of the 90 wt.% ZnO - 10 wt.% SnO2 sensor device towards ethanol as opposed to the much 

larger response of the  10 wt.% ZnO – 90 wt.% SnO2 sensor device, given that both are homo-contact 

dominated materials. This observation can however be justified by calculation of the mole ratio of the 

metal oxides in each sensor; with the former having a SnO2:ZnO ratio of 1 : 22 and the latter having a 

ratio of 1 : 0.25. The ratios show that the 90 wt.% ZnO - 10 wt.% SnO2 is significantly more homo-

contact dominated by the ZnO grains, and is effectively as good as a pure metal oxide. The 10 wt.% 

ZnO – 90 wt.% SnO2 sensor device in contrast has a lower ratio of both grains, and therefore is likely 

to comprise a larger number of hetero-contacts, which aid to enhance its response behaviour. This 

example shows how a simple change in the compositional contribution of either metal oxide can 

significantly tune the response properties of such devices.  

The shallower linear range of the pure ZnO material relative to the pure SnO2 material, suggests that 

the ZnO material has limited surface adsorption sites compared to SnO2. This is unusual as SEM 

imaging shows that the ZnO material constitutes particles in the range of 0.1 µm – 1 µm size and the 

SnO2 material is observed to constitute agglomerates in the µm range, some larger than 2-3 µm. 

Thus, the particle sizes suggest that the SnO2 materials should have a shallower linear range due to 

the larger particle sizes and therefore reduced surface area. However, this behaviour may be 

explained by differences in density that exist at the junction of the grains, with the ZnO having greater 

density between the grain and therefore limiting the diffusion pathways for the gas molecules to travel 

into the matrix of the material. In contrast, the SnO2 material maybe associated to lower density at the 

junctions between the grains, providing greater pathway for gas diffusion.  
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The operating temperature of 300 °C was the optimal temperature of operation for the system of 

sensor devices, with a large distribution of response magnitudes exhibited by the system of sensor 

devices, against the range of concentrations of ethanol exposure. In contrast, Figure 4–10 shows that 

at the lowest temperature of operation which was 200 °C, the poor response performance of all sensor 

devices, narrowed the distribution of conductive response magnitudes observed.  

The highest response observed at 200 °C was of the 30 wt.% ZnO – 70 wt.% SnO2 sensor device of 

25.5 against 100 ppm ethanol, which was a 5.4-fold enhanced response with respect to the pure SnO2 

and 10.6-fold enhanced response with respect to the pure ZnO counterparts, against the same 

concentration of ethanol exposure. The response traces of the sensor devices in Figure 4–10 showed 

the responses to be associated to significant drift accounted for by the unstable baseline, which 

increasingly drifted as a function of time and as the concentration of ethanol exposure increased. The 

traces showed that 20 minutes was not enough to recover the devices back to baseline response and 

that further recovery time e.g. 30 minutes, was required to fully recover the surface of the materials.  

 

Figure 4–10. Conductive response traces of SnO2-ZnO system towards 10, 20, 40, 80 and 100 ppm 
ethanol gas, at an operating temperature of 200 °C. The inset zooms into the conductive response 
traces of all sensor devices towards 10 ppm ethanol.  
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The lack of resistance of the n-type metal oxides to humidity, aids to explain the drift towards higher 

conductive responses observed in the sensor devices in Figure 4–9. Further the lower operating 

temperature implies that the surface of the metal oxides are not fully recovered in comparison to 

higher operating temperatures, suggesting potential interference of the surface adsorbed species 

which act to  modulate the stability of the sensor devices.  

Due to the lack of complete recovery of the sensor surfaces, prior to the introduction of a new 

concentration of ethanol, the responses observed at 200 °C were greater than the true response 

magnitudes. This observation was warranted by the nature of the response calculations, where the R0 

value was kept static throughout calculation of the responses as explained earlier in Chapter 2, section 

2.5. Had the relative response ratio been calculated as a ratio of the span of the individual response 

trace, where the R0 value was the resistance prior to gas injection, then the relative response could be 

calculated, despite the baseline drift. The best performing composite, the 30 wt.% ZnO – 70 wt.% 

SnO2 device, was attributed to a t90 (10 ppm) of 241 seconds at 200 °C and the same composite 

exhibited a t90 (10 ppm) of 36 seconds at 300 °C. The same composite exhibited a t-90 (10 ppm) 

recovery time of 716 seconds when at 200 °C and a t-90 (10 ppm) recovery time of 357 seconds when 

at 300 °C. A concentration of 10 ppm ethanol was the best concentration for comparison of the t90 and 

t-90 values between the different temperatures of operation, as the baseline was stable at both 

operating temperatures, prior to exposure to this specific concentration of ethanol. Comparison of the 

t90 and t-90 values between both operating temperatures at the higher concentration regions, was 

difficult as the baseline drift artificially shortened these values at 200 °C, due to incomplete recovery of 

the surface of the material. This incomplete recovery was warranted in accordance to the nature of the 

t90 and t-90  calculations which were calculated with respect to the absolute R0 values, as opposed to 

the relative  R0 values, to maintain consistency with response calculations. 

Comparison of the t90 and t-90 values between 200 °C and 300 °C, showed that the kinetics of the 

surface reactions were thermally induced, with quicker response and recovery times at 300 °C. 

Increased operating temperatures are likely to quicken the rate of the ethanol surface combustion 

reactions with the surface adsorbed oxygen anions and therefore quicken the response of the sensor 

material towards the exposed analyte. However, increasing the operational temperature is also likely 

to reduce the residence time of the adsorbed oxygen anions on the surface of the metal oxide, in 

comparison to a reduced operating temperature. As such, this implies a low stability of adsorption of 

the anionic oxygen species or a very high level of diffusion of the analyte molecules, which statistically 

reduces the overall yield of ethanol surface reactions that are probable. Thus a higher temperature, 

provides greater energy to the ethanol molecules to desorb and diffuse away from the metal oxide 

surface as well as reduce their stability of adsorption, and as such leads to faster 

regeneration/recovery of the metal oxide surface.   
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The best response performance of most of the sensors at an operating temperature of 300 °C, 

suggested this was the ideal operating temperature. A number of reasons can contribute to this 

observation, with the first being an ideal environment for the promotion of the hetero-junction 

enhancement effects with an ideal potential energy barrier level, which is controls the local exchange 

of charge carriers across both semiconductors. The second reason being that 300 °C was a suitable 

temperature to promote synergistic dehydrogenation reactions of ethanol, with the sensors being 

potentially responsive and reactive towards the by-products of the ethanol combustion reactions under 

these temperature conditions. A third reason maybe that this temperature may have promoted the 

required concentration of electrons in the conduction band of the n-type semiconductors, in contrast to 

lower operating temperatures. Thus, the increased electron density in the conduction band is likely to 

have stabilised sufficient number of oxygen ions on the surface of the metal oxides. Subsequently, this 

is likely to yield the optimal number of ethanol surface reactions, increasing the concentration of 

electrons released back in to the conduction bands of the n-type semiconductors, and therefore 

promote the best responsivity of the materials.  

As observed in Figure 4–10, at the lower operating temperature of 200 °C, the hetero-junction 

enhancement effects were still visible with enhanced response of the composite materials with respect 

to the pure counterparts. The narrowed distribution of response magnitudes of the system of sensors 

observed at this reduced operating temperature, presented more clearly in Figure 4–11, suggested 

however, that the temperature played a significant role to swamp the hetero-junction enhancement 

effects.  

 

 

 

 

 

 

 

 

Figure 4–11. Conductive response of SnO2-ZnO system towards 10, 20, 40, 80 and 100 ppm ethanol gas, at an 
operating temperature of 200 °C. 
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This can be explained by understanding that at reduced operating temperatures, the thermal energy of 

the system is low. The lower thermal energy suggests that the thermally induced charge transfer within 

the semiconductors is subsequently more difficult, with a reduced number of electrons occupying the 

conduction bands of both metal oxides. This suggests that the work-function between the interfacial 

region of SnO2 and ZnO at the n-n interface, will impact the junction effect on the responsivity in a 

negative way as the energy barrier for the Fermi level equilibration is increased, resulting in an 

increased energy barrier for the local exchange of charge carriers across both semiconductors. In 

such a situation, the resistance at the junction is increased. The charge carriers have less than 

available energy to overcome the increased energy barriers between the grains and therefore lower 

operating temperatures are unlikely to promote the hetero-junction enhancement effects, and hence 

the composites are seen to exhibit weakly enhanced response behaviour. Further, the reduced 

occupation of electrons in the conduction band suggests a lower occupation of oxygen anions on the 

surface of the metal oxides, and therefore a lower yield of surface reactions between the ethanol 

molecules and the adsorbed oxygen anions, lowering the overall response magnitude of the device at 

200 °C.   

The conductive response of the system of sensors at the highest operating temperature of 500 °C 

seen in Figure 4–12 showed that responses of all sensor devices significantly decreased in 

comparison at the response magnitudes observed at the lower operating temperatures of 200 °C and 

300 °C.  

Figure 4–12. Conductive response traces of SnO2-ZnO system towards 10, 20, 40, 80 and 100 ppm 
ethanol gas, at an operating temperature of 500 °C. 
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The highest response observed was attributed to the ZnO sensor of 9.9 towards 100 ppm ethanol. The 

composites were attributed to responses which were lower than the pure ZnO sensor, showing that the 

hetero-junction enhancement effects diminished at the higher operating temperature. Further, they all 

exhibited very similar responses at the higher temperature of operation, and therefore no 

discrimination between the response magnitudes were observed in comparison to that observed at 

200 °C and 300 °C. In comparison to the pure ZnO sensor, the pure SnO2 sensor exhibited a 

conductive response of 3.4 towards the same concentration of 100 ppm, which may be accounted for 

by the ZnO materials as a better dehydrogenation catalyst of ethanol at the higher operating 

temperature. As reported in Chapter 3, Xu et al.[69] reported that the gas response of ZnO is strongly 

dependent on the conversion of ethanol to acetal, and the conversion of the alcohol to the aldehyde is 

reported to increase as a function of increasing operating temperature. 

The response traces of the pure ZnO metal oxide device were interesting as they were attributed to 

fast ‘box’ like [106] ‘pseudo’ n-type behaviour, particularly towards 80 ppm and 100 ppm ethanol. Here 

‘pseudo’ suggests lack of full conventional n-type behaviour, but instead a mix of both n-type and p-

type response characteristics. The fast response of the ZnO device was justified by its t90 (100 ppm) of 

9.2 seconds and t-90 (100 ppm) value of 10.9. The ‘pseudo’ n-type response behaviour of the ZnO 

sensor device, suggested that the concentration of ethanol molecules may have been significantly 

higher than the concentration of adsorbed oxygen anions on the surface of the metal oxides. A higher 

operating temperature is likely to severely decrease the residence time of the oxygen anions on the 

surfaces of the metal oxides. As such, the rate of depletion of electrons from the conduction bands of 

the metal oxides, due to the instantaneous adsorption and desorption of the oxygen anions from the 

surfaces, is likely to be accelerated. Thus the statistical probability of the ethanol surface reactions is 

lowered. Further, the lowered electron density in the conduction band is likely to promote p-type 

conductivity. Another cause of the p-type behaviour may have been a reaction which occurred 

between the ethanol molecules and the surface of the ZnO material, which promoted the formation of 

an oxidising by-product. Exposure to such a species, can cause the resistance of the material to 

increase. The observation of both n-type and p- type responses in this case, suggest different time 

scales of interaction towards both the reducing and oxidising species, warranted by each species 

being associated to different adsorption and desorption isotherms.  

 In contrast, all other sensor devices exhibited fast ‘box’ like [106] saturated steady-state n-type 

behaviour which suggested complete saturation of the metal oxide surfaces. At the higher 

temperatures of operation, the frequency of ethanol reactions is expected to increase dramatically 

[234]. As such the saturation of the response signal is expected as a greater number of surface 

combustion reactions imply a greater removal of the oxygen anions from the metal oxide surfaces 

[234]. As such with higher and higher concentrations of ethanol, a limit is reached as to the amount of 
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oxygen that can be removed from the surface and as such a saturated response is observed [234]. 

The steady-state nature of the response curves suggests the adsorption and desorption reactions of 

the gaseous species are thermodynamically and kinetically equilibrated, implying the rate of the 

reaction of the ethanol molecules with the surface adsorbed oxygen anions is as fast as the 

subsequent formation and desorption of the reaction products formed as a result of those reactions. 

The SnO2 sensor was attributed to a t90 (100 ppm) of 17 seconds and a t-90 (100 ppm) value of 16 

seconds at this higher temperature of operation. Analogously, the two best performing composites 

observed in Figure 4–7, which were the 50 wt.% ZnO – 50 wt.% SnO2 and 30 wt.% ZnO – 70 wt.% 

SnO2 sensor devices were attributed to a t90 (100 ppm) of 12.4 seconds and 11.2 seconds and t-90 (100 

ppm) values of 17.6 seconds and 9.8 seconds, exhibiting the enhanced speed of response and 

recovery as a function of increased operating temperature.   

Figure 4–13 presents the conductive response of the system of sensors towards 100 ppm ethanol as a 

function of increasing operating temperature. The figure illustrates that 300 °C was the optimal 

operating temperature for almost all sensor devices within the system, with the 90 wt.% ZnO – 10 wt.% 

SnO2 and pure ZnO sensor devices performing optimally at a higher operating temperature of 350 °C.  

 

 

Figure 4–13. Conductive responses of SnO2-ZnO system against 100 ppm ethanol gas, as a function of 
increasing operating temperature.  
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A deconvolution of Figure 4–13 of the conductive response magnitudes as a function of increasing 

operating temperature of the individual sensor devices, against 100 ppm and all other tested 

concentrations of ethanol, has been presented in Figure 4–14. Figure 4–14 (b), (c) and (d) show that 

the 90 wt.% SnO2 – 10 wt.% ZnO, 70 wt.% SnO2 – 30 wt.% ZnO and the 50 wt.% SnO2 – 50 wt.% ZnO 

devices were all dominated by the SnO2 material, with all devices exhibiting the optimal performance 

at 300 °C, analogous to the pure SnO2 sensor device presented in Figure 4–14 (a). In contrast, the 90 

wt.% ZnO – 10 wt.% SnO2 device presented in Figure 4–14 (f), was dominated by the ZnO material, 

with the device exhibiting the optimal performance at 350 °C, analogous to the pure ZnO sensor 

device presented in Figure 4–14 (g). The 30 wt.% SnO2 – 70 wt.% ZnO sensor device presented in 

Figure 4–14 (e) however, showed optimal performance at 300 °C analogous to the pure SnO2 material 

but was also attributed to a significant contribution of the ZnO material, with the pyramidal curve 

observed in Figure 4–14 (a), (b), (c) and (d), for the SnO2 dominated materials, being slightly distorted 

for the  30 wt.% SnO2 – 70 wt.% ZnO device. Thus, the deconvolution aids to illustrate the contribution 

of the both metal oxides to the overall enhanced response properties of the composite devices 

towards ethanol and further explain the enhanced behaviour of the 30 wt.% SnO2 – 70 wt.% ZnO 

composite device observed in Figure 4–7 and Figure 4–10, in comparison to all other composites 

within the system.  
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(a) (b) 

(c) (d) 

(e) (f) 

(g) 

Figure 4–14. Conductive Responses of a) 100 wt.% SnO2, (b) 90 wt.% SnO2 – 10 wt.% ZnO, (c) 70 wt.% SnO2 - 
30 wt.% ZnO, (d) 50 wt.% SnO2 – 50 wt.% ZnO, (e) 30 wt.% SnO2- 70 wt.% ZnO, (f) 10 wt.% SnO2- 90 wt.% 
ZnO and (g) 100 wt.% ZnO sensor devices as a function of increasing operating temperature against 10, 20, 
40, 80 and 100 ppm ethanol.  
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4.2.5.2 NO2 Sensing 

 

 

 

 

 

 

 

 

 

 

Figure 4–15 illustrates the resistive response traces of the system of sensors against increasing 

concentrations of NO2 at the optimal operating temperature of 300 °C. Tabulation of the mean 

responses values of the sensor devices in the SnO2-ZnO system from the repeat tests against 

exposure towards the various NO2 concentrations at 300 °C and the associated 95% confidence 

intervals have been presented in Table 4–2.  

Table 4–2. Average resistive responses of sensor devices in SnO2-ZnO system from all repeat tests against 400 
ppb and 800 ppb NO2 concentrations at 300 °C and associated errors in the form of 95% CIs.  

 
400 ppb 800 ppb 

Device Average Response 95% CI Average Response 95% CI 

100 wt.% SnO2 1.88 ±0 7.59 ±0.09 

90 wt.% SnO2   – 10 wt.% ZnO 1.75 ±0.13 6.77 ±0.94 

70 wt.% SnO2   – 30 wt.% ZnO 2.28 ±0.08 10.26 ±0.50 

50 wt.% SnO2 – 50 wt.% ZnO 2.65 ±0.17 13.35 ±1.13 

30 wt.% SnO2 – 70 wt.% ZnO 4.36 ±0.20 33.28 ±0.04 

10 wt.% SnO2  – 90 wt.% ZnO 3.32 ±2.48 39.86 ±1.06 

 

 
Figure 4–15. Resistive response traces of SnO2-ZnO system towards 100, 200, 400 and 800 ppb NO2 gas, 
at an operating temperature of 300 °C. The inset projects the resistive responses of the array towards 200 
ppb NO2.  
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Figure 4–15 indicates that the resistive response order of the system of devices increased as a 

function of increasing ZnO concentration or as a function of decreasing concentration of SnO2, when 

exposed to 800 ppb NO2. At this highest concentration of NO2 exposure, the results show that the 

system did not exhibit hetero-junction or synergistic enhancement effects when exposed to the 

oxidising gas, in stark contrast to what was observed for ethanol. Towards 800 ppb, the pure ZnO 

sensor device exhibited the strongest resistive response (of all sensor devices) of 121.6 and the pure 

SnO2 sensor in contrast exhibited the weakest resistive response (of all sensors devices) of 10.7. A 

deconvolution of the responses of the system towards 400 ppb and 200 ppb at 300 °C, has been 

presented further in Figure 4–16 and Figure 4–17, respectively. Figure 4–15 showed that as the 

concentration of NO2 was increased from 200 ppb to 800 ppb, a large increase in the response of the 

ZnO sensor device was observed. This suggested the lack of occupation of the surface sites when 

exposed to 200 ppb of NO2, and therefore a low response magnitude. At 800 ppb however, the 

surface sites of the material were significantly occupied, causing the response magnitude to increase 

significantly. In particular a change in the response mechanism was observed by the ZnO sensor 

between 400 ppb and 800 ppb, observed through the sudden increase in the response at 800 ppb. 

This can be accounted for by an increase in the size of the electron depletion layer (Debye Length) 

due to the increase in concentration of NO2 molecules in the 800 ppb purge, which are likely to have 

abstracted a significant number of electrons upon interaction with the ZnO surface [45, 269]. If the size 

of the ZnO grains, particularly those in the region of 0.1 µm or less, are comparable to twice the size 

of the Debye Length, then the space charge region can develop within the crystallites of the grains, 

inducing grain controlled which is the most responsive [270], as opposed to grain boundary controlled 

conductivity [45, 269]. In most cases, it is most likely to develop in 1-dimensional materials of a length 

comparable to the Debye length [45], however the steep increase in response suggests some form of 

similar mechanism occurring here. In contrast the, agglomeration of the SnO2 nanoparticles into 

agglomerates of sizes which are in the µm range, some larger than 2-3 µm, suggest that the grain 

controlled conduction mechanism is difficult to achieve and therefore such a large increase in the 

response behaviour is not observed.  
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The resistive response of the system towards 400 ppb NO2 at 300 °C in Figure 4–16 is presented in 

more detail in Figure 4–16. Figure 4–16 shows that the pure ZnO sensor device exhibited the best 

performance even at this lower concentration of exposure, with a response magnitude of 26.8. The 70 

wt.% ZnO – 30 wt.% SnO2 device was observed to be the best performing composite material 

attributed to a response of 3.5, however the discriminatory behaviour between all  the other sensor 

devices within the system was poor. The response magnitudes of the 50 wt.% ZnO – 50 wt.% SnO2, 

30 wt.% ZnO – 70 wt.% SnO2, 10 wt.% ZnO – 90 wt.% SnO2 and 100 wt.% SnO2 decreased 

consecutively as a function of decreasing ZnO concentration, showing that the response at this 

concentration, were mainly dominated by increasing concentration of ZnO or decreasing concentration 

of SnO2. 

Figure 4–16. Resistive response bar graph of SnO2-ZnO system towards 400 ppb NO2 gas, at an operating 
temperature of 300 °C. 
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The response traces of the system against 100 ppb at 300 °C that was too shallow to observe in 

Figure 4–15 and has been projected in Figure 4–17.  

 

The figure shows that the response of the system of sensor devices, towards this concentration of NO2 

was negligible, however did present some interesting features. The 100 wt.% ZnO, 90 wt.% ZnO – 10 

wt.% SnO2, 70 wt.% ZnO – 30 wt.% SnO2, 50 wt.% ZnO – 50 wt.% SnO2 and 10 wt.% ZnO – 90 wt.% 

SnO2 devices were all attributed to an increase in resistive response, exhibiting n-type behaviour. 

However the 30 wt.% ZnO - 70 wt.% SnO2 and 100 wt.% SnO2 devices in contrast, exhibited a 

decrease in the resistive response (or increase in conductive response), which was unconventional for 

an n-type material. In this case, it is likely that the p-type behaviour of both devices towards NO2 was 

associated to oxygen-induced band bending as the p-type behaviour was only observed towards the 

lowest concentration of NO2 [271]. The presence of defects that cause fundamental changes to the 

electronic structure and properties of the materials, may also be responsible for the p-type behaviour 

of n-type materials [271]. Examples of defects are for example the surface oxygen species which exist 

as interstitial oxygen ions. In such a case the hole density (associated to the holes corresponding to 

the interstitial oxygen ions) would dominate the electron density at the surface of the metal oxide [271]. 

However the formation of interstitial oxygen ions would need to be induced by high-energy irradiation. 

Further, such species would also promote the p-type behaviour at higher concentrations of NO2 

Figure 4–17. Resistive (and Conductive) response traces of SnO2-ZnO system towards 100 ppb NO2 gas, at an 
operating temperature of 300 °C. 
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exposure, which was not observed here. Another contributory factor for the unconventional response 

may have been the reduced ratio of NO2 molecules:surface oxygen species may have also promoted 

an inverse behaviour of the metal oxide. Kida et al. [272] reported that the resistance change of a 

material, when exposed to NO2, is dependent on the NO2 concentration. Further, they reported that 

during NO2 sensing, O2 adsorption reactions compete with NO2 adsorption reactions to extract 

electrons from the oxide surface. If the NO2 adsorbs more strongly to the oxide surface than the O2, 

then the electrical resistance of the material is seen to increase. Thus the resistance decrease at 200 

ppb, suggests that the O2 adsorption as likely to have been more competitive than NO2 adsorption, 

due to a higher O2 partial pressure, leading to an observed decrease in the resistance of the material. 

The higher concentration of 400 ppb NO2, is likely to have increased the ratio of NO2 

molecules:surface oxygen species, switching the behaviour of the n-type materials back to normal.  

Figure 4–18 presents the resistive response of the system of sensors towards 800 ppb NO2, as a 

function of increasing operating temperature. The figure established that the pure ZnO sensor 

dominated the response at all operating temperatures and that the response magnitudes of the rest of 

the system, decreased as a function of decreasing concentration of ZnO at all operational 

temperatures. Further the figure illustrates that the response of the sensor devices decreases as a 

function of increasing operating temperature with the optimal response of the sensors at 300 °C. 

Figure 4–18. Resistive responses of SnO2-ZnO system towards 800 ppb NO2 gas as a function of increasing 
operating temperature.  
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The application of SnO2 and ZnO composites for NO2 detection has been reported in the literature. 

Park et al.  [251] had reported on a hybrid SnO2-ZnO nanofibre based highly sensitive NO2 sensor, 

which was prepared via electrospinning and pulsed laser deposition methods. Specifically the 

nanofibre contained a ZnO nanofibre core which was enveloped by a SnO2 shell layer. The sensor 

was reported to exhibit a relatively high response at working temperatures between 180 °C – 200 °C 

towards a concentration of 3.2 ppm NO2, with the highest resistive response observed of 100 at 180 

°C. Further, when the sensor was held constant at an operating temperature of 200 °C and exposed 

to increasing concentrations of NO2 from 400 ppb to 4 ppm, the resistive response of the hybrid sensor 

was observed to increase from 6 to 105. In stark contrast, the pure ZnO nanofibre counterpart was 

seen to exhibit a response of less than 1.15 against all concentrations of NO2 at the same operating 

temperature. The group had attributed the enhanced response of the hybrid sensor to two potential 

factors. The first was the incorporation of the small SnO2 crystallites which provided extra adsorption 

sites, due to the hetero-junction nature of the material and therefore facilitated the surface reactions. 

The second was the ability of charge transfer to take place easily between both metal oxides due to 

the similarity in their work-functions, which made the interface barrier very low and therefore charge 

transfer a facile process. They suggested that the facile electronic interaction between the SnO2 and 

ZnO contributed to the enhancement, as the number of individual surface reactions were proportional 

to the number of available electrons. This justification as a factor of enhancement is contradictory to 

theories presented in the literature [170, 171]. According to the group, the hetero-junction 

enhancement effects are due to the facile charge transfer between the hetero-interfaces, which 

suggests that the energy barrier for Fermi level equilibration is reduced, resulting in a decrease in the 

energy barrier for the local exchange of charge carriers across both semiconductors. However, in such 

a case, the effective energy barrier and resistance at the junction is decreased, which acts to weaken 

the overall junction effect and as such, the group have wrongly argued the hetero-junction 

enhancement effect.  

Song et al. [93] whose report was alluded to earlier in the Chapter, had reported that their nanofibre 

sensor prepared with the molar ratio of the precursor sols of Zn:Sn of 2:1, which exhibited a response 

of 19 towards 100 ppm ethanol, only showed a response of 1 towards 100 ppm NO2, demonstrating 

the poor NO2 response properties of the mixed oxide sensor. Interestingly, the nanofibres prepared in 

this literature study were composites of SnO2 and ZnO analogous to the experimental study in this 

thesis, and unlike those prepared by Park et al. [251], who had reported more core-shell type 

structures. This suggests that the packing structure of the metal oxides with respect to each other, can 

significantly influence the responsivity and selectivity towards particular analytes, and that those 

packing structures containing composites of both SnO2 and ZnO are better suited for VOC detection.  
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In another study, Xu et al. [273] reported on the NO2 gas sensing properties of SnO2 – ZnO porous 

nano-solids by a solvo-thermal hot-press (SHP) method. They reported that a porous nano-solid is an 

intermediate state between nanoparticles and dense nano-ceramics and contains interconnected 

SnO2 and ZnO nanoparticles which form a framework with numerous pores. When exposed to 35 ppm 

NO2, the composites were seen to exhibit enhanced responses compared to the pure SnO2 porous 

nanosolid counterpart. The best response of 75 was observed at 225 °C by a composite sensor 

containing SnO2 loaded with 20 wt.% ZnO, which was a 1.7-fold enhanced response with respect to a 

pure SnO2 sensor which showed a response of 45. The group however did not report the responses of 

the composite materials, with respect to a pure ZnO counterpart. In contrast to the SnO2-ZnO 

composites reported in this thesis and in the literature by Song et al. [93], the composites prepared by 

Xu et al. [273] did exhibit high responsivities towards NO2. Interestingly, when the same composite 

(SnO2 loaded with 20 wt.% ZnO) was coated with polyaniline, forming a n-p hetero-junction based 

sensor, the resistive response towards 35 ppm NO2, increased to a maximum of 375, at an operating 

temperature of 180 °C. The enhancement was thought to be associated to optimal microstructure of 

the SnO2 loaded with 20 wt.% ZnO and aniline composite as well as hetero-junction enhancement 

effects. The SnO2-ZnO-polyaniline based sensing material was also reported to exhibit selectivity 

towards NO2, with minimal response towards ethanol.  

The literature examples illustrate the variation of responses and selectivities and complexities of the 

enhancement processes achieved against NO2 (and ethanol) from a host of SnO2-ZnO based mixed 

oxide systems.  
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4.2.6 Further Gas Sensing Studies 

Further gas sensing studies of the SnO2 – ZnO system were conducted towards a range of reducing 

gases: acetone, CO and NH3 at an operating temperature of 300 °C. This was the temperature at 

which most sensors in the system performed optimally against the key reducing gas: ethanol, as seen 

in Figure 4–13. These studies were conducted to assess the response and selectivity of the system 

towards reducing vapours including ethanol, which was evaluated earlier in the Chapter.  

Focus was on testing the system against various concentrations of acetone and CO, as the system 

proved to be poor at responding towards NH3 as observed in Figure 4–19.   

4.2.6.1  NH3 Sensing 

The response results of the system against 20 ppm NH3, which was the largest concentration the 

system was exposed to, have been presented in Figure 4–19. Tabulation of the mean responses 

values of the sensor devices in the SnO2-ZnO system from the repeat tests against exposure towards 

20 ppm NH3 at 300 °C and the associated 95% confidence intervals have been presented in Table 4–

2. 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 4–19. (a) Conductive responses and (b) Resistive responses of the SnO2-ZnO system against 20 ppm 
NH3 at an operating temperature of 300 °C.   
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Table 4–3. Average responses of sensor devices in SnO2-ZnO system from all repeat tests against 20 ppm NH3 
300 °C and associated errors in the form of 95% CIs. 

 

 
20 ppm 

Device Average Response 95% CI 

100 wt.% SnO2 1.89 ±0.08 

90 wt.% SnO2   – 10 wt.% ZnO 1.1 ±0.12 

70 wt.% SnO2   – 30 wt.% ZnO 1.35 ±0.11 

50 wt.% SnO2 – 50 wt.% ZnO 1.03 ±0.02 

30 wt.% SnO2 – 70 wt.% ZnO 1.18 ±0.02 

10 wt.% SnO2  – 90 wt.% ZnO 1.29 ±0.06 

100 wt.% ZnO 1.35 ±0.08 

 

Most of the sensors in the system were attributed to responses close to the baseline response of 1, 

with only the pure SnO2 showing a response of 2. Interestingly, the SnO2, 90 wt.% SnO2 – 10 wt.% 

ZnO and 70 wt.% SnO2 – 30 wt.% ZnO sensor devices were seen to be attributed to conventional n-

type response characteristics against the analyte, however all other n-type devices, which had a 

significant contribution of ZnO, were attributed to unconventional p-type response behaviour. Such 

resistive response of n-type materials against NH3, was observed in Chapter 3 with the WO3-ZnO 

composite system and has been reported in the literature due to the NH3 under-going oxidation 

reactions on the surface of metal oxides [114, 115]. The reaction process can follow one of many 

routes, allowing several possible competing processes to all take place at the same time. These 

reactions of NH3 molecules upon the surface of a semiconducting metal oxide, have been alluded to in 

Chapter 1, section 1.10.3.  
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4.2.6.2 Acetone Sensing 

 

Figure 4–20 presents the conductive responses of the system of sensor devices against increasing 

concentrations of acetone gas at an operating temperature of 300 °C. Tabulation of the mean 

responses values of the sensor devices in the SnO2-ZnO system from the repeat tests against 

exposure towards various acetone concentrations at 300 °C and the associated 95% confidence 

intervals have been presented in Table 4–4. The graph shows that the sensors were responsive to a 

concentration as low as 1 ppm acetone. As the concentration of acetone exposure was increased, the 

graphs show that the response of the system randomises. This randomisation is in terms of response 

order of the devices, with respect to each other. The 70 wt.% ZnO - 30 wt.% SnO2 sensor was the best 

performing composite sensor device of the system, with the best response of 32.9 towards 10 ppm of 

the analyte. This was a 5.5-fold enhanced response with respect to the pure SnO2 counterpart (which 

exhibited a response of 6.4) and a 3.3-fold enhanced response compared the pure ZnO counterpart 

(which exhibited a response of 9.8) at the same analyte concentration of 10 ppm. The particularly 

enhanced response of this composite, against the poor response of both the individual metal oxides is 

suggestive of synergistic and hetero-junction effects playing a role to enhance the response 

characteristics. Comparison of Figure 4–20 with respect to an exposure of 10 ppm of ethanol at the 

same operating temperature, observed in Figure 4–7, shows the system of SnO2-ZnO sensor devices 

Figure 4–20. Conductive responses of SnO2-ZnO system towards 1, 2, 4, 6, 8 and 10 ppm acetone gas, 
at an operating temperature of 300 °C.  
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were more selective towards 10 ppm acetone. Comparison of the response values and 95% CIs of the 

devices towards 10 ppm ethanol at 300 °C as seen in Table 4–1 and towards 10 ppm acetone at 300 

°C as seen in Table 4–4, show that the response and errors do not overlap, and as such the selectivity 

is demonstrated.  

Table 4–4. Average conductive responses of sensor devices in SnO2-ZnO system from all repeat tests against 1, 
2, 4, 6, 8 and 10 ppm acetone at 300 °C and associated errors in the form of 95% CIs.  

 
1 ppm 2 ppm 4 ppm 6 ppm 8 ppm 10 ppm 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% CI 

100 wt.% SnO2 1.34 ±0.08 1.29 ±0.50 2.30 ±0.63 3.22 ±0.72 4.15 ±0.86 5.03 ±0.94 

90 wt.% SnO2   – 10 wt.% ZnO 1.38 ±0.33 1.96 ±1.02 4.79 ±1.97 8.04 ±2.80 11.32 ±3.91 14.19 ±5.17 

70 wt.% SnO2   – 30 wt.% ZnO 1.29 ±0.31 1.47 ±0.71 3.14 ±1.23 5.08 ±1.70 6.77 ±2.07 7.81 ±2.77 

50 wt.% SnO2 – 50 wt.% ZnO 1.21 ±0.22 1.02 ±0.50 2.35 ±0.65 3.95 ±0.88 5.36 ±1.19 6.02 ±1.56 

30 wt.% SnO2 – 70 wt.% ZnO 1.52 ±0.22 2.35 ±0.98 6.20 ±2.09 11.36 ±3.56 16.59 ±5.57 21.63 ±9.37 

10 wt.% SnO2  – 90 wt.% ZnO 1.62 ±0.26 2.90 ±1.27 5.77 ±2.13 8.07 ±2.64 10.34 ±3.27 13.23 ±5.10 

100 wt.% ZnO 1.41 ±0.16 1.76 ±0.98 3.23 ±1.62 4.28 ±1.85 5.21 ±2.23 6.49 ±2.85 

 

The highest response observed against 10 ppm ethanol was 2.1 by the 10 wt.% ZnO - 90 wt.% SnO2 

sensor device. Thus of the two VOCs, the system can be established as being selective towards 

acetone. In particular, the conductive response of the 70 wt.% ZnO - 30 wt.% SnO2 composite is seen 

to increase exponentially as a function of increasing acetone concentration, which suggests that the 

surface of the composite remains unsaturated upon each exposure concentration introduced. In 

contrast, the conductive response magnitudes of the pure metal oxides, in particular the SnO2 

material, are seen to increase gradually and slowly as a function of increasing acetone concentration, 

which indicates the saturation of the surfaces as a function of the increased concentration. A similar 

behaviour of the devices was observed as a function of increasing ethanol concentration, and can be 

accounted for by the increased number of reaction sites in the composite materials, due to the 

presence of the hetero-contacts in the composite materials.  

In a study by Kim et al. [248] who had reported on the selective detection of ethanol using SnO2–ZnO 

thin film gas sensors prepared by combinatorial solution deposition, the group had reported that 

special attention was paid towards the discrimination of their sensors towards ethanol and acetone, 

due to the similar chemical natures of both gases. The nature of the reported sensor fabrication 

involved repetitive combinatorial drop coating of sols of both metal oxides followed by subsequent 

drying a number of times, and then finally heat-treatment of the sensor device at 600 °C, to form the 

SnO2-ZnO thin film sensor. A film that contained equal volume (870 µl) of each of the SnO2 and ZnO 

sol i.e. a 50 % - 50 % sensor, was seen to exhibit a response of 4.69 towards 200 ppm ethanol and 

2.30 towards 200 ppm acetone, at an operating temperature of 300 °C and hence there composite 
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exhibited selectivity towards ethanol (exhibiting a response that was double that of acetone). In 

general, they had found that other composites they had formed; 75 % - 25 % SnO2-ZnO and 25 % - 75 

% SnO2-ZnO, also exhibited selectivity towards ethanol, exhibiting response magnitudes which were 

twice that of acetone. This selectivity remained at operating temperatures of 250 °C and 300 °C, but 

began to fail at 400 °C where the response magnitude towards both analytes was indistinguishable. 

Comparatively, the SnO2-ZnO composites investigated in this thesis, are better than those reported by 

Kim et al. in terms of response performance, with the ability to exhibit larger responses towards 

concentrations of acetone which are 1/20 or less than those reported by Kim et al.  and concentrations 

of ethanol which are ½ of or less  than those reported by Kim et al.  

Kim et al. [248] reported that the gas sensing behaviour of MOS sensors in other works published in 

the literature, had usually achieved similar responses between ethanol and acetone, regardless of the 

metal oxide used but that discrimination between both analytes was necessary for applications 

requiring precise and reliable screening of intoxicated drivers and patients suffering from diabetes 

[248]. In particular the SnO2-ZnO composites investigated experimentally for this thesis, are 

particularly useful for the second application as the breath of a diabetic patient can contain acetone 

vapour [248, 274], with the concentrations of the analyte being as high as 300 ppm for those suffering 

from a diabetic coma [248, 275]. Thus the low detection limit of the sensor devices demonstrated here, 

are potentially useful for such applications.  

4.2.6.3 CO Sensing  

 

 

 

 

 

 

 

 

Figure 4–21. Conductive responses of SnO2-ZnO system towards 100, 200, 400, 600, 800 and 1000 ppm CO 
gas, at an operating temperature of 300 °C.  

 



Chapter 4: SnO2-ZnO based n-n hetero-junction system 

179 

 

 

Figure 4–21 presents the conductive responses of the system of SnO2–ZnO sensor devices against 

increasing concentrations of CO at an operating temperature of 300 °C. Tabulation of the mean 

responses values of the sensor devices in the SnO2-ZnO system from the repeat tests against 

exposure towards the various CO concentrations at 300 °C and the associated 95% confidence 

intervals have been presented in Table 4–5. 

Table 4–5. Average conductive responses of sensor devices in SnO2-ZnO system from all repeat tests against 
100, 200, 400, 600, 800 and 1000 ppm CO at 300 °C and associated errors in the form of 95% CIs.  

 
100 ppm 200 ppm 400 ppm 600 ppm 800 ppm 1000 ppm 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

100 wt.% SnO2 1.67 ±0.07 2.86 ±0.05 4.02 ±0.16 4.82 ±0.16 5.32 ±0.28 5.58 ±0.17 

90 wt.% SnO2   
– 10 wt.% ZnO 

1.09 ±0.05 1.48 ±0.20 1.94 ±0.57 2.31 ±0.80 2.55 ±1.01 2.62 ±1.07 

70 wt.% SnO2   
– 30 wt.% ZnO 

0.97 ±0.07 1.30 ±0.16 1.69 ±0.48 1.96 ±0.72 2.12 ±0.88 2.09 ±0.92 

50 wt.% SnO2 
– 50 wt.% ZnO 

1.17 ±0.09 1.61 ±0.34 2.02 ±0.58 2.23 ±0.71 2.31 ±0.75 2.20 ±0.82 

30 wt.% SnO2 
– 70 wt.% ZnO 

1.01 ±0.02 1.08 ±0.01 1.20 ±0.06 1.25 ±0.09 1.26 ±0.05 1.15 ±0.03 

10 wt.% SnO2  
– 90 wt.% ZnO 

1.09 ±0.00 1.22 ±0.01 1.38 ±0.08 0.99 ±1.17 1.60 ±0.18 1.68 ±0.05 

100 wt.% ZnO 1.05 ±0.01 1.18 ±0.03 1.35 ±0.04 1.48 ±0.10 1.51 ±0.22 1.57 ±0.06 

 

The graph illustrates that the pure SnO2 sensor was associated to the best response behaviour of all 

sensor devices with a maximum response of 5.7 observed against 1000 ppm CO. The pure ZnO 

sensor in contrast was associated to a response of 1.6 towards the same concentration of CO. In 

general the response graph shows that the response of the sensors increased as a function of 

increasing concentration of SnO2 and decreasing concentration of ZnO, which is analogous to the 

behaviour observed against NO2, however for the oxidising gas the trend was observed to be an 

increase in resistive response as a function of increasing concentration of ZnO and decreasing 

concentration of SnO2. Thus the response trend observed against CO was observed to be dominated 

by the presence of SnO2.  

With respect to ethanol and acetone responsivities, Figure 4–21 confirms that the responses towards 

CO were poor and that selectivity of the system is towards acetone. Further a difference in the variable  

contributing to the enhanced responses  was visible between all three reducing analytes, with greater 

synergistic catalysis and hetero-junction enhancement effects contributing to the extensive response 
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of the composite materials towards both ethanol and acetone, and in contrast dominance of the SnO2 

metal oxide concentration, contributing towards the responsivities observed against CO.   

Some studies in the literature have been reported on the SnO2-ZnO sensing properties of CO. One 

such study was by Haeng Yu et al. [92] mentioned earlier. In their study, they had formed pellets 

containing mixtures of ZnO and SnO2, with each pellet containing different mol % concentrations of 

ZnO and SnO2.  Upon exposure to 200 ppm of the analyte, the composite materials were attributed to 

enhanced responsivities with respect to the pure ZnO and SnO2 counterparts. In particular, the 

enhancement effect of those composites which contained a significant contribution of both SnO2 and 

ZnO metal oxides, was reported to be associated to the heterogeneous interfaces that existed 

between the ZnO and SnO2 phases. The materials that were associated to increasing ZnO 

concentration into the SnO2 matrix (specifically 20 mol % – 60 mol % ZnO), were reported to be 

associated to a significant number of SnO2 / ZnO grain boundaries, which were reported to contribute 

to the enhancement in gas response properties. The responsivities of the ZnO dominated composites 

were also seen to increase with the addition of SnO2 and this was attributed to the promotion of a 

greater porosity, through the reduction in the ZnO grain size, through the addition of SnO2. Composites 

rich in SnO2 were seen to exhibit some of the highest responses with respect to other composites in 

the system, which is analogous to what was observed in this thesis, and this was promoted by the ZnO 

dissolution into the SnO2 matrix.  

In another study by Yue et al. [276] ZnO-SnO2 composite nanofibres were fabricated by an 

electrospinning method and tested against CO. The group has observed that all composites which 

varied by wt.% loading of ZnO into the SnO2 (0 wt.% , 0.5 wt.%, 1.0 wt.% and 1.5 wt.%), when tested 

against 100 ppm CO, exhibited enhanced gas sensing properties in comparison to the pure SnO2 

counterpart, which exhibited a response of 1 (baseline response). In particular, the 1 wt.% ZnO-SnO2 

composite was seen to exhibit the highest response of 16 at an operating temperature of 360 °C, 

which was a 16-fold enhancement with respect to the pure SnO2 counterpart. Interestingly, the group 

had tested the composite materials against a range of other gases, which included ethanol and 

acetone, at a concentration of 100 ppm, at an operating temperature of 360 °C. The composites 

exhibited very low responsivities against both VOCs, with prominent selectivity towards CO, which was 

a stark contrast to the observations made with the SnO2-ZnO composite system in this thesis. The 

enhanced responsivities of the composite materials against CO were reported by Yue et al. to be 

promoted by an increased number of surface sites in the hybrid structure as well as the presence of 

ZnO-SnO2 hetero-junctions.  

These literature studies exemplify the range of fabrication methods of hybrid metal oxide sensor 

materials based on ZnO and SnO2 and also justify the complexity of deducing the enhancement 

effects upon their application for the detection of CO.  
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4.3 Summary and Conclusions  

Table 4–6 summarises the responsivities of the SnO2-ZnO sensor system against ethanol, NO2, 

acetone and CO at 300°C. Where device responses were below 1.5, associated cells have been block 

filled.  

Table 4–6. Response magnitudes of sensor devices within SnO2-ZnO composite system against various 
concentrations of ethanol, NO2, acetone, and CO gas at 300 °C (the associated optimal operating temperature). 
Where device responses were observed to be below 1.5, associated cells have been block filled.   

 

 

 

 

 

Results and analysis from this study showed that the system of SnO2 – ZnO composite sensors were 

most effective for the detection of both ethanol and acetone. In particular, the composite materials 

were seen to exhibit significantly better response behaviours than the pure counterparts towards both 

analytes.  

 100  Z 90 Z–10 S 70 Z–30 S 50 Z–50 S 30 Z–70 S 10 Z–90 S 100  S 

Ethanol (300 °C)        

10 ppm 1.8 1.9 2.1 1.5 2.0 2.1 1.8 

20 ppm 2.7 5.1 9.1 5.1 7.5 8.3 4.2 

40 ppm 4.3 9.7 26.5 21.7 23.9 27.5 9.9 

80 ppm 7.2 16.3 60.9 76.0 74.8 66.6 20.5 

100 ppm 8.9 19.6 80.5 109.0 103.5 85.1 24.4 

NO2 (300 °C)        

200 ppb 6.0   0.44    

400 ppb 26.8 1.2 3.5 1.6 1.3 1.0 1.0 

800 ppb 120.8 39.5 32.5 12.6 10.2 6.5 6.6 

Acetone (300 °C)        

1 ppm 1.5 1.8 1.8 1.5 1.8 1.9 1.5 

2 ppm 3.1 4.5 3.8 1.8 2.5 3.5 2.1 

4 ppm 5.4 8.3 9.2 3.3 5.0 7.8 3.3 

6 ppm 6.6 11.1 16.0 5.2 7.6 12.2 4.3 

8 ppm 8.0 14.0 23.6 7.1 9.6 17.0 5.5 

10 ppm 9.8 19.2 33.0 8.3 11.8 21.7 6.4 

CO (300 °C)        

100 ppm 1.0 1.1 1.0 1.2  1.1 1.6 

200 ppm 1.2 1.2 1.1 1.8 1.4 1.6 2.9 

400 ppm 1.4 1.4 1.2 2.3 1.9 2.2 4.1 

600 ppm 1.5 1.6 1.3 2.6 2.3 2.7 4.9 

800 ppm 1.6 1.7 1.3 2.7 2.6 3.1 5.5 

1000 ppm 1.6 1.7 1.1 2.6 2.6 3.2 5.7 

Key: 

100Z – 100 wt.% ZnO     90Z – 10S – 90 wt.% ZnO – 10 wt.% SnO2  

70Z – 30S – 70 wt.% ZnO – 30 wt.% SnO2   50Z – 50S – 50 wt.% ZnO – 50 wt.% SnO2  

30Z – 70S – 30 wt.% ZnO – 70 wt.% SnO2   10Z – 90S – 10 wt.% ZnO – 90 wt.% SnO2 

100S – 100 wt.% SnO2 
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The best performing composite towards ethanol was seen to be the 50 wt.% ZnO-50 wt.% SnO2  

sensor device at 300 °C with a response of 109 towards 100 ppm of the analyte. The 70 wt.% ZnO-30 

wt.% SnO2 sensor device was the best candidate for acetone sensing, with the largest observed 

response of 33 towards 10 ppm of the analyte at 300 °C.  

Comparison of the responsivities of the SnO2–ZnO system towards 10 ppm acetone and 10 ppm 

ethanol indicated that if the system were put in a mixed atmosphere of 10 ppm of both analytes, it 

could potentially discriminate between ethanol and acetone, and exhibit selectivity towards acetone. 

These results thus showed that a simple change in the concentration of the individual metal oxides 

within the composites, could tune the responsivity and selectivity of the devices towards a particular 

analyte, specifically a VOC based analyte. 

In contrast to the extensive responsivities of the composite materials towards both VOCs, the 

combination of both metal oxides did not prove successful in the detection of NO2 or CO, with the 

responsivities increasing in order of increasing ZnO concentration for the former analyte, and 

increasing in order of increasing SnO2 concentration for the latter analyte. This behaviour may be 

accounted by the better responsivity of SnO2 towards CO, but poor responsivity towards NO2 and vice 

versa for ZnO. Thus the response towards both NO2 and CO were seen to be dominated by the 

concentration composition of each metal oxide.  

The enhanced responsivities of the composite materials towards both the VOCs, with respect to the 

pure counterparts was difficult to pin point. However, the synergy of both metal oxides as oxidation 

combustion catalysts for both VOCs is likely to be the prime reason for their effective performance. In 

particular this was reasoned because the combination of both metal oxides showed no enhancements 

effects upon exposure to NO2 and CO, but only towards ethanol and acetone.  The influence of the 

hetero-junction enhancement effects that existed due to the chemical as well particle size 

inhomogeneity of both metal oxide materials was thought to be a supporting response enhancement 

factor. Evidence of an electronic interaction between the SnO2 – ZnO composites was not evident from 

XPS, however, the steep increase in response amplitudes of the composite sensors, particularly 

towards ethanol (at the optimal operating temperature), with respect to the pure counterparts, 

suggested electronic effects may have played a contributory role, to enhance the response by such 

significant amplitudes. 

Error analysis of the mean response values throughout the study showed that in general, responses 

between the repeat tests were repeatable. This was particularly apparent at exposures towards low 

concentrations of all analytes and with materials which were either pure or biased by the wt.% of either 

of the metal oxides. Further, lower error magnitudes were observed towards NO2, CO and NH3 in 

comparison to the higher concentrations of ethanol and acetone, towards which the devices were 
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attributed to significant error. In particular, exposure towards 100 ppm ethanol resulted in for example, 

the 90 wt.% SnO2   – 10 wt.% ZnO, the 70 wt.% SnO2   – 30 wt.% ZnO and the 30 wt.% SnO2 –70 

wt.% ZnO sensor devices being attributed to an error of ±14.7, ±10.9 and ±9.4, respectively. These 

devices were three of the best performing devices towards the analyte. In a similar way, all three 

devices were attributed to errors of ±5.2, ±2.8 and ±9.4 respectively towards 10 ppm acetone, of 

which the last device had the largest response. The trends of the error values showed that the two 

analytes towards which the group of sensors were most responsive towards i.e. ethanol and acetone 

were associated to the largest errors. This suggested the possibility of several surface by-products 

forming or additional reactions occurring on the surface of the metal oxide device, promoting 

interference of the response magnitudes. The behaviour also suggested potential instability of these 

composite devices. In contrast, towards the lower concentrations of ethanol and acetone and towards 

all exposed concentrations of NO2, CO and NH3, the devices showed lower responsivities and also 

lower error magnitudes, suggesting that the formation of interfering by-products or additional reactions 

occurring on the surface was lowered, due to the lowered concentrations of exposure or due to lack of 

reactivity. The error values suggest that comparative responsivity and selectivity between the best 

performing composite materials was difficult to conclude, due to the overlap of error ranges - this was 

particularly apparent towards larger concentrations of ethanol exposure at 80 and 100 ppm and larger 

concentration of acetone exposure at 8 ppm and 10 ppm. However, the enhanced response of these 

composites with respect to the pure counterparts was evident, as well as the selectivity of the 

individual gas sensor device towards a particular analyte e.g.  selectivity towards acetone when put in 

mixed atmosphere of acetone and ethanol. A more detailed discussion of error sources has been 

presented in Chapter 7, section 7.1.2. 
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Chapter 5 : CTO-ZnO based p-n hetero-junction system  

In the previous two Chapters, investigations of the materials and gas sensing properties of two n-n 

hetero-junction composite systems were presented. This Chapter continues on the theme of hetero-

junction systems for metal oxide semiconductor (MOS) based gas sensing, however presents a study 

of the materials and gas sensing properties of a p-n hetero-junction composite system based on CTO, 

with specific stoichiometry Cr1.95Ti0.05O3, and ZnO i.e. CTO-ZnO composites. 

5.1 Introduction 

The development of chemiresistor sensors based on p-type semiconducting metal oxides such as NiO 

[277], CuO [278, 279], Cr2O3 [210, 280], CTO [47, 48] and Co3O4 [169, 281], has been relatively low 

key and is still at a nascent stage [46]. In contrast, the development of chemiresistor sensors based on 

n-type semiconducting oxides such as SnO2, WO3, ZnO and In2O3, have been at the forefront of MOS 

sensor technology, with novel strategies being developed to better their performance, and research 

and development being conducted for their use in new applications [46].  

This distinction between the popularity of both p- and n- type semiconducting metal oxides comes 

down fundamentally to their response characteristics, where the former is associated to significantly 

poor response magnitudes than the latter [46, 278, 282, 283]. Pokhrel et al. [282] and Hubner et al. 

[278] had justified this phenomenon based on Cr2O3 and CuO conduction models respectively, which 

they reported could be valid for all p-type semiconducting metal oxide materials used as gas sensing 

materials [278, 282, 283].   

They have reported that the lower response signals of p-type MOS gas sensors, are accounted by the 

fact that the resistance of the electron depletion layer (EDL) does not dominate the overall resistance 

of the p-type semiconductor, as it does with n-type semiconducting oxides [278, 282, 283]. Instead for 

p-type semiconductors, as described in Chapter 1, conduction through the hole accumulation layer 

(HAL) dominates the overall sensing layer resistance [46, 278]. When an oxidation reaction occurs 

between a reducing gas e.g. CO and the surface adsorbed oxygen anionic species on the surface of a 

p-type semiconductor, the release of electrons from the oxidation reaction back into the material, will 

indeed decrease the concentration of holes in the hole accumulation layer (HAL) and cause an 

increase in the resistance of the material [46]. However, this decrease in the concentration of holes 

occurs through electron-hole recombination reactions, in which the negative charges of the electrons 

cancel out the positive charges of the holes, leaving the resultant charge to be null [46, 278], which 

ultimately leads to insignificant change in the chemiresistivity of the p-type semiconductor (upon 

exposure to CO).  Equation 5–1 and Equation 5–2 illustrate the electron-hole recombination reaction 
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that occurs on the surface of a p-type material when exposed to CO [278], where O2
air represents 

oxygen from the atmosphere, S an adsorption site on the surface of the metal oxide, O- an anionic 

adsorbed oxygen species and h+, a hole in the HAL, generated through electron transfer to the 

surface-acceptor sites to stabilise adsorption of the oxygen ions [278, 284].   

 

Equation 5–1  hOSO ad
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The extent of the contribution of the HAL towards the overall resistance change is dependent on its 

thickness relative to the size of the p-type particles. If the particle sizes are twice the size of the HAL, 

suggesting significant bulk contribution and minimised surface (i.e. HAL) contribution to the overall 

resistance change, then the chemiresistive change in the p-type material would be minimised further. 

This exemplifies how the microstructure of a p-type material can influence its overall responsivity.  

Although conductivity through the HAL, poses a significant disadvantage to the overall responsivity of 

p-type materials toward the target analytes, one of the key advantages of this route of conduction, is 

the inherent resistance of the material, to humidity. When water interacts with a metal oxide surface, it 

is thought to split into OH- and H+ ions [12]. The OH- ions are thought to introduce electrons to the 

surface of the metal oxide [12]. In the case of p-type materials, these electrons would be introduced 

into the HAL decreasing the concentration of holes through electron-hole recombination reactions, 

leaving the resultant charge to be null [46, 278], ultimately leading to insignificant change in the 

chemiresistivity of the p-type semiconductor (towards humidity). Further, the H+ ions are also thought 

to react with surface oxygen anions, resulting in the same effect as the OH- ions on the p-type 

semiconducting device. In contrast, when in contact with an n-type material, the release of electrons in 

the EDL, will act to increase its conductivity [12, 285], making such materials very responsive to 

humidity and therefore unsuitable for applications where humidity is present. This exemplifies the 

importance of p-type semiconducting oxides for practical applications.  

To find a solution to the low responsivity signals of p-type semiconducting oxides, a number of 

strategies are being developed to enhance their gas response properties, to be able to use them for 

practical applications. These strategies include tuning of the morphology of the nanostructures [46, 73] 

to enhance the surface contribution to overall conductivity of the p-type material, electronic 

sensitization of the p-type semiconducting oxides through doping [46, 286] or loading noble metals or 

metal oxides to chemically sensitize the p-type metal oxides [46, 72, 287].  
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Of the three key strategies, the approach taken in this thesis is the third one of chemical sensitisation 

of a p-type metal oxide by loading a second n-type metal oxide, through a composite approach, which 

extends the theme of hetero-junction based composite systems to a p-n combination of 

semiconducting metal oxides.  

The study of p-n hetero-junction systems for gas sensing is one of emerging interest, enabling the 

possibility of increasing both the response and selectivity of the overall composite material [46]. A 

number of studies have been reported on such sensing systems such as CuO - ZnO [89, 288, 289], 

Cr2O3 – ZnO [290, 291], Cr2O3 – WO3 [210] and Cr2O3 – Fe2O3 [292] among other p - n metal oxide 

combinations. The gas sensing enhancement of such systems has been attributed to a number of 

reasons, some which are specific to the combination of metal oxides used, and some more general 

associated to hetero-junction enhancement effects which were described in Chapter 1. 

One example of such a system was recently published by Barrecca et al. [72] who had reported that a 

CuO - TiO2 nanocomposite represents one of the most appealing p - n systems due to the synergistic 

combination of attractive properties of both metal oxides; the low band gap of p-type CuO and high 

reactivity of n-type TiO2. Further the group reported that the hetero-junction existing between both 

materials is expected to produce an enhanced charge carrier life time, which would be an advantage 

to both the catalysis and sensing performance of the system. The group had specifically reported on 

CuO - TiO2 nanocomposite and CuO –TiO2 nanocomposite functionalised with Au nanoparticles 

systems, prepared by a combined route of CVD and RF sputtering. They had found their systems to 

be responsive to ethanol, hydrogen and ozone, with the former system showing a response of 50 at 

200 ºC towards 300 ppb O3 and a response of 1 at 200 ºC towards 100 ppm ethanol; and the latter 

system showing a response of 500 towards the same concentration of O3 at 100 ºC and a response of 

about 3 towards 100 ppm ethanol at 200 ºC. Results suggested their systems were selective and 

responsive towards oxidising environments.  

A more recent report on a p - n hetero-junction gas sensing system was published by Sun et al. [210] 

who had investigated several composites of p-type Cr2O3 and n-type WO3 as a hetero-junction 

architecture where both metal oxides were placed adjacent to each other (like a p - n diode type 

junction). In their composite system, they varied the ratio of WO3:Cr2O3 in weight % ratios of 1:1, 3:1, 

9:1 and 11:1 wt.%. They evaluated the response properties of these composites against various 

concentrations of NO and CO diluted with 20% O2 and 80% N2. The 9:1 WO3:Cr2O3 composite as an 

example, exhibited an increase in resistance towards a concentration of 20 ppm of NO, however 

exhibited almost no change in resistance (due to cancellation of conductivities of both metal oxides) 

towards the same concentration of CO. This suggested that putting them in a mixed atmosphere of NO 

and CO, would allow the sensors to be able to selectively discriminate towards NO. Evaluation of the 

sensing properties of the adjacent composite architectures of WO3 and Cr2O3 was conducted by 
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exposing the hetero-junction sensors towards a mixed atmosphere of ppb levels of NO mixed with 

varying ppm levels of CO. In a mixed atmosphere of 63 ppb NO with varying ppm levels of CO (3 - 20 

ppm), the hetero-junction sensor was able to demonstrate responsivity and selectivity towards the 63 

ppb of NO, whilst discriminating against the ppm levels of CO. The group had reported that the 

sensors exploited the different majority carriers (electrons and holes) of both metal oxides to develop 

responsivity and selectivity towards ppb levels of NO, which is usually at levels of less than 10 ppb in 

healthy humans, whilst discriminating against CO at ppm levels, which is a known toxic gas. 

CO gas sensitivity was also reported by Yoon et al. [89], who had studied the application of a CuO - 

ZnO composite system for the detection of this analyte. They had found that a CuO - ZnO composite, 

which contained 10 mol% CuO doped with 1 at.% Al added to ZnO powder, displayed a resistive 

response of 12.2 at 180 ºC, towards 200 ppm CO at 23% relative humidity. This was one of the largest 

responses the group observed from the range of CuO - ZnO composite sensors fabricated. The 

enhancement was associated to a number of factors. The first was the decreased density of the 

material due to the doping of Al, suggesting greater surface site accessibility of the analyte molecules 

with the matrix of sensing material. Al doping also increased the resistance of the CuO, which acted to 

increase the responsivity of the sample. Further, the large concentration of CuO was influential on 

reducing the optimal operating temperature of the sensor, which exemplified the ability to engineer an 

optimal concentration of the metal oxide within the composite, to tune its sensor performance. Finally, 

the sensitivity of the p-n grain boundary upon exposure to gas was also thought to contribute to the 

enhanced response performance, where the hetero-interfacial regions between the CuO - ZnO 

contacts dominated the resistive behaviour of the gas sensing material, compared with the homo-

interfacial regions between the CuO - CuO contacts and the ZnO – ZnO contacts. 

Reports in the literature show that the enhancement effects in p - n hetero-junction sensor devices are 

as complex as the n - n hetero-junction systems discussed in the previous two Chapters, and it is 

difficult to pin-point any one particular factor as solely influential on the enhanced responsivities 

observed.  

In this investigation, an in-depth materials and gas sensing characterisation study on a p – n hetero-

junction system based on CTO and ZnO composites has been presented. Based on literature 

searches, this is the first study done on this specific combination of metal oxides.  
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5.2 Results and Analysis  

5.2.1 Verification of success of CTO synthesis 

5.2.1.1 Scanning Electron Microscopy (SEM)  

 

 

 

 

 

 

 

 

 

 

 

SEM imaging of the syntheised CTO (Cr1.95Ti0.05O3) powder (screen printed and fired at 600 ºC) seen 

in Figure 5–1, showed the associated particles demonstrated small spherical and oval behaviour with 

sizes of about 100 nm – 200 nm.  In comparison to the CTO powder fabricated in this study, Chabanis 

et al. [116] who had synthesised a range of Cr2-xTixO3 powders (x = 0.05, 0.1, 0.2 and 0.4) via a sol-

emulsion-gel route, had reported a range of sizes of their powders. The size of their sol spheres, was 

dependent on the rate of stirring, which was required in their synthesis process to mix appropriate 

proportions of chromia and titania sols together, to form their range of CTO sols. They had reported 

that the more intense the stirring speed, the smaller the size of the final CTO particles. A stirring speed 

of 2000 rotations per minute (rpm) led to a particle size of 10 µm, whereas a stirring speed as high as 

20500 rpm, led to the formation of 0.7 µm. Peter et al. [120] who had prepared CTO via a ceramic 

synthesis method, analogous to that used in this thesis, had formed undispersed particles with sizes < 

1 µm. A more detailed investigation of particle size distribution using laser scattering showed that the 

average particle size was 260 nm, with 95% of particles < 500 nm.  This evidence suggests that ball-

milling is a harsh powder processing technique and can lead to the formation of significantly smaller 

 x 50,000 100 nm 
Figure 5–1. Synthesised CTO powder screen-printed onto gas sensor substrate and fired 
at 600 ºC, prior to imaging. The CTO powder was fabricated by a solid-state ceramic 
‘shake and bake’ method 
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particle sizes. Peter et al. also reported that the nm particle sizes they achieved, confirmed adequate 

size reduction by the milling process [120].  

5.2.1.2 X-Ray Diffraction (XRD) 

The XRD pattern of the as-made CTO (Cr2-xTiXO3) powder, with a target composition of Cr1.95Ti0.05O3 

(where x = 0.05) presented in Figure 5–2, indicated that the compound adopted a single phase 

corundum crystal structure analogous to eskolaite, Cr2O3, i.e. CTO is iso-structural with Cr2O3 (JCPDS 

No. 38-1479) [293]. This was evident as the XRD peaks of CTO matched the reference pattern of 

eskolaite, also presented in Figure 5–2. The reference pattern was retrieved from the ICSD database 

via the National Chemical Database Service [264], which stored the eskolaite XRD data from a study 

by Hill et al. [294], and the miller indices were indexed with reference to various studies in the literature 

[116, 295].  

 

Chabanis et al. [116] reported the formation of Cr1.95Ti0.05O3 by a sol-emulsion-gel route and observed 

this compound to be iso-structural with eskolaite, concurring with observations seen in Figure 5–2.  

Jayaraman et al. [48] prepared various samples of Cr2-xTiXO3, where x was varied from 0.1 - 0.4, by a 

solid-state chemical reaction pathway, analogous to this thesis. The group observed all CTO 

compounds to be iso-structural with Cr2O3, however a gradual emergence of CrTiO3 as a minor phase 

Figure 5–2. XRD patterns of as-synthesised Cr1.95Ti0.05O3 and eskolaite from the ICSD reference database [264, 
294]. The CTO powder was fabricated by a solid-state ceramic ‘shake and bake’ method.  
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was also reported, particularly at a higher stoichiometry of Ti species (Ti = 0.4) [116]. The iso-

structural nature of CTO (where x= 0.1 - 0.5) with Cr2O3 has also been observed in other relevant 

literature focussing on the preparation of CTO compounds via a solid-state chemical reaction pathway 

[47, 120]. The Ti stoichiometry limit in these and other studies to maintain a single phase has been 

observed to be at Ti ≤ 0.2 - 0.3 [47, 116, 296], whilst others have reported it to be as high as Ti ≤ 0.4 

[47, 122]. 

Observation of the single phase of the synthesised CTO, justified the formation of a solid solution of 

TiO2 in the Cr2O3 matrix [116]. Further evidence of the successful synthesis of CTO as a solid solution, 

is the absence of the TiO2 peaks in the CTO XRD pattern as seen in Figure 5–3, suggesting that the Ti 

atoms migrated to the Cr2O3 lattice sites [120]. The TiO2 used in the synthesis of CTO was 

predominantly rutile phase, which was confirmed by direct match of the TiO2 XRD pattern with 

reference pattern of the rutile phase, obtained from a literature resource within the ICSD [264, 297], 

also plotted in Figure 5–3. The miller indices of the TiO2 rutile phase have been indexed with reference 

to a study by Yan et al. [298]. The asterixed (*) single peak in the TiO2 pattern at 25.4 º, in Figure 5–3, 

indicates the presence of a small amount of the anatase phase of TiO2 [244], corresponding to the 101 

lattice plane of anatase. The presence of this peak suggested the use of impure TiO2, for the synthesis 

of CTO. The most crucial step in the synthesis of CTO, is the substitution of the Cr vacancies by Ti, 

with XRD being reported as the most common technique used to verify the success of it [117, 120], as 

shown in Figure 5–3.  

Figure 5–3. XRD patterns of as-synthesised Cr1.95Ti0.05O3, TiO2 (predominantly rutile phase) used in the 
synthesis of CTO and TiO2 (pure rutile phase) from the ICSD reference database [264, 297]. The asterixed (*) 
peak in the TiO2 pattern indicates the 101 lattice place of the anatase phase. The CTO powder was fabricated 
by a solid-state ceramic ‘shake and bake’ method.  
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5.2.1.3 X-Ray Photoelectron Spectroscopy (XPS) 

XPS spectra of the Cr 2p, Ti 2p and 1 Os core levels of the as-synthesised CTO have been presented 

in Figure 5–4 (a), (b) and (c). The positions of Cr 2p 3/2 and Ti 2p 3/2 components at around 577 eV and 

458 eV are attributed to Cr3+ and Ti4+, respectively [122]. Comparison of the positions of the Cr 2p 3/2 

and Ti 2p 3/2 components, are in good agreement with literature values for the same composition, 

Cr1.95Ti0.05O3, reported by Chabanis et al. [116]. Other doctoral and literature studies, which report XPS 

measurements for Cr2-xTixO3 where x = 0.1 - 0.3, have also reported the positions of both components 

in similar regions to those obtained experimentally [118, 122, 123, 127, 299] and the values also 

concur with literature values obtained from XPS reference database [201]. Doublets of the 2p 

components associated to the Cr and Ti species due to spin-orbit splitting effects were observed, with 

the splitting between the peaks observed to be 9.5 and 5.7 eV, respectively. These splitting values are 

in close agreement with previous studies [123, 299]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5–4. (a) XPS spectrum of (a) Cr 2p core level, (b) Ti 2p core level and (c) O 1s core level in as-
synthesised Cr1.95Ti0.05O3. The CTO powder was fabricated by a solid-state ceramic ‘shake and bake’ 
method.  

 

(a) (b) 

(c) 
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The atomic % of Cr : Ti in the solid solution was calculated by evaluating the integrated area under the 

individual XPS curves of each species, using Casa XPS software. The Cr : Ti at.% ratio calculated 

from XPS analysis was 97.8:2.2 at.% which was close to the target at.% ratio of Cr1.95Ti0.05O3 of 

97.5:2.5 at.%. The experimental ratio suggested that surface segregation of the Ti4+ cations was not 

apparent and that the Ti4+ species were more likely to be dispersed throughout the bulk and the 

surface of the material. 

Surface segregation/enrichment of Ti4+ species in CTO has been observed in multiple studies [47, 

116-118, 122] and has been accounted for by a segregation driving force due to electrostatic charge 

effects [47, 118]. Niemeyer [125] reported that the surface segregation of the Ti4+ ions relieved the 

strain caused by defects in the CTO material prepared by the solid-state route.  

Afonja [299] reported, material characterisation of two samples of Cr2-xTiXO3 where (x = 0.2), one 

prepared by a sol-gel method and the other by conventional solid-state ceramic synthesis;  it was 

found that the former had more apparent surface segregation than the latter. Chabanis et al. [116] 

reported that the sol-gel route, accounted for a better mixing of the Cr2O3 and TiO2 phases, particularly 

on the nanometre scale, resulting in a better Ti4+ species distribution than the solid-state route. These 

studies therefore suggest that the solid-state synthesis route to Cr1.95Ti0.05O3, may have affected the 

titanium distribution in the sample, which subsequently influenced the overall segregation of the 

species. The conventional solid-state method as a route to CTO has been criticised [116, 123] for the 

poor chemical homogeneity in the resulting product. Further, it has also been criticised as the milling 

process has the potential to introduce chemical impurities into the sample. Such impurities if present, 

may have also acted to influence the atomic % of Ti. Due to these disadvantages, the sol-gel method 

has been commended as a better route to the formation of CTO compounds, with a better degree of 

purity of sample [116, 300]. However the solid-state ceramic synthesis route was used in this thesis as 

an application of a commercially viable process for the production of composite sensors.  
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5.2.1.4 Raman Spectroscopy 

 

Raman spectroscopy of the precursor metal oxides TiO2 and Cr2O3 powders were compared to the 

synthesised Cr1.95Ti0.05O3 – in the form a screen-printed sensor, which was heat-treated and prepared 

for use in gas sensing (i.e. the Raman spectrum of the material was taken prior to gas sensing 

experiments). The peak positions of TiO2 (predominantly rutile phase, with presence of the anatase 

phase indicated by the peak marked with by an * [301]) and Cr2O3, were in accordance with the 

observed values and positions in the literature [302-305]. Detailed analysis of the Raman peak 

positions of the Cr2O3 commercial powder (precursor to CTO) and the synthesised CTO compound 

has been presented in section 5.2.2.3. TiO2 is a strong Raman scatterer and hence even the smallest 

amount of TiO2 which may have not been in solid-solution form, would have been a strong enough 

scatter, with its peaks clearly visible in the CTO Raman spectrum [120]. Raman spectroscopy 

therefore corroborated with the XRD characterisation and justified the successful synthesis of 

Cr1.95Ti0.05O3. The use of Raman spectroscopy as an analytical technique for the evaluation of the 

successful synthesis of CTO, has also been reported by Peter et al. [120] and Du et al.[123].  

 

Figure 5–5. Raman spectrum of screen-printed 100 wt.% CTO sensor and commercial Cr2O3 and TiO2 powders 
used in the synthesis of CTO using a 514.5 nm green argon-ion laser. The asterixed (*) peak indicates the 
presence of the anatase phase of TiO2 in the commercial titania powder. The CTO powder was fabricated by a 
solid-state ceramic ‘shake and bake’ method.  
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5.2.2 Pre-Gas Sensing Material characterisation  

5.2.2.1 Scanning Electron Microscopy (SEM) 

SEM characterisation of all seven sensors in the CTO-ZnO composite system was carried out to 

investigate the microstructure of each material. The SEM images of all sensor materials in the CTO-

ZnO system presented in Figure 5–6.  
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Figure 5–6. SEM images of a) 100 wt.% ZnO x 10,000 magnification, b) 100 wt.% ZnO x 20,000 magnification, 
c) 90 wt.%  ZnO - 10 wt.%  CTO x 10,000 magnification, d)  90 wt.% ZnO - 10 wt.% CTO x 20,000 
magnification, e) 70 wt.% ZnO – 30 wt.% CTO x 10,000 magnification, f) 70 wt.% ZnO – 30 wt.% CTO x 20,000 
magnification, g) 50 wt.% ZnO – 50 wt.% CTO x 10,000 magnification, h) 50 wt.% ZnO – 50 wt.% CTO x 20,000 
magnification, i) 30 wt.% ZnO – 70 wt.% CTO x 10,000 magnification, j) 30 wt.% ZnO – 70 wt.% CTO x 20,000 
magnification, k) 10 wt.% ZnO – 90 wt.% CTO x 10,000 magnification, l) 10 wt.% ZnO – 90 wt.% CTO x 20,000 
magnification, m) 100 wt.% CTO x 10,000 magnification and n) 100 wt.% CTO x 20,000 magnification. All 
materials were screen-printed and heat-treated at 600 ºC before imaging. 
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SEM of the system of sensor devices showed a gradual evolution in the morphology as a function of 

changing concentrations of ZnO and CTO components. Figure 5–6 (a) & (b) show that the pure ZnO 

particles exhibited 3-dimensional cuboid shapes with rounded edges, with broad particle size 

distribution ranging from 0.1 µm to 1 µm, as observed in Chapter 3 and Chapter 4. 

 In contrast, Figure 5–6 (m) & (n) show that the CTO particles exhibited agglomerated spherical like 

behaviour with sizes of about 100 nm. The smaller particle size of the CTO was likely a result of the 

harsh frictional grinding of the ball-milling process and is suggestive of the CTO possessing a large 

surface to bulk ratio, advantageous for gas sensing applications, which is inherently a surface process.  

A significant difference in the particle sizes of both the metal oxides, which was also observed in 

Chapter 4, indicated that hetero-junctions were not only introduced by the presence of particles of 

differing chemical natures, but were also present due to the stark contrast in particle sizes, in this case 

between the CTO and ZnO. In the case of the CTO – ZnO composite system examined here, multiple 

in-homogeneities existed, in particular the dimensional, chemical and electronic nature to potentially 

exert hetero-junction enhancement effects which may have contributed to playing an influential role 

towards the overall gas-sensing properties of the materials.  

Images of the sensor microstructures in Figure 5–6 showed that the metal oxide particles were 

generally loosely held within the sensor matrices, which is a key advantage of utilising thick-film 

technology for MOS sensing, as discussed in Chapter 1. The loosely held grains indicated provision 

for the gaseous molecules interact with the body of the sensor matrices as well as their surfaces. 

Thus, diffusion pathways existed, for the gaseous molecules to percolate into and out of the sensor 

body as well as internally within the body of the sensor matrix and as such, increased the surface site 

accessibility of the analyte molecules. Comparatively, the CTO particles were attributed to greater 

agglomeration than the ZnO particles, which can be observed by comparison of Figure 5–6 (b) and (n). 

This indicated reduced surface site accessibility of the analyte molecules within the body of the CTO 

sensor matrix in comparison to the ZnO sensor matrix.  

The SEM micrographs of the 70 wt.% ZnO – 30 wt.% CTO, 50 wt.% ZnO – 50 wt.% CTO and 30 wt.% 

ZnO – 70 wt.% CTO sensor devices observed in Figure 5–6 (e) & (f), (g) & (h) and (i) & ( j) 

respectively, gave evidence of the dispersion of the individual metal oxides interspersed, suggesting a 

hetero-contact dominated packing structure within the devices and delocalised contact potentials, 

within the bodies of the sensor matrices. In contrast, those composites which were dominated by the 

host matrix of an individual metal oxide such as the 90 wt.% ZnO – 10 wt.% CTO and the 10 wt.% ZnO  

- 90 wt.% CTO sensor devices observed in Figure 5–6 (c) & (d) and (k) and (l) respectively, showed 

the microstructure to be dominated by the dominant metal oxide and therefore were suggestive of a 
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packing structure attributed to homo-contact dominated electron percolation paths, with localised 

hetero-contacts within the body of the matrix. 

As described in Chapter 1, the extent of agglomeration and sintering in a gas sensing material, 

determines the particles’ surface and bulk contribution towards the gas sensing performance [65]. The 

visibility of the generally loosely held grains of both metal oxides in all composite sensor devices 

suggested that the surfaces of the individual grains were available for interaction with the gas 

molecules, thus aiding the surface site accessibility of the analyte molecules.  

5.2.2.2 X-Ray Diffraction (XRD)  

 

XRD patterns of the individual sensor materials based on Cr1.95Ti0.05O3 and ZnO metal oxides, within 

the CTO-ZnO composite system before exposing them to gas, have been presented in Figure 5–7. 

XRD confirmed the crystalline nature of both compounds, indicated by the sharp defined peaks 

observed for both materials. The XRD patterns of CTO, confirmed it still maintained the corundum 

crystallite structure, analogous to eskolaite (JCPDS No. 38-1479) [290, 293], after heat-treatment. The 

pattern of ZnO as discussed in Chapter 3 and Chapter 4, adopted a wurtzite hexagonal crystal 

Figure 5–7. XRD patterns prior to gas sensing experiments of all pure and composite sensors based on 
Cr1.95Ti0.05O3 and ZnO metal oxides in the CTO-ZnO composite system. All materials were screen-printed and 
heat-treated at 600 ºC, prior to XRD measurements. Alumina and Gold reflections from MOS sensor substrate 
were visible and have also been indicated. 
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structure (ICDD No. 36-1451) [77, 213, 214]. The patterns showed the variation in concentration of 

CTO and ZnO in the system through a gradual change in the intensity of the associated peaks in 

ascending or descending order. The observation of the peaks of both metal oxide crystal phases, 

indicated that all materials in the system were mechanically mixed composites. An observation of a 

gold peak in some of the patterns at 38.2º is associated to the inter-digitated gold electrodes and the 

two shallow peaks at 43.3º and 52.5º are associated to the alumina, both from the MOS sensor 

substrate.  

5.2.2.3 Raman Spectroscopy 

The Raman spectra of the individual sensor materials based on Cr1.95Ti0.05O3 and ZnO metal oxides, 

within the CTO-ZnO system before exposing them to gas, have been presented in Figure 5–8.  

Raman spectroscopy identified the individual CTO and ZnO phases within the mixed oxide materials. 

This corroborated with XRD measurements, showing that the materials containing both CTO and ZnO, 

were composite mixtures. Raman spectroscopy of the pure CTO sensor, i.e. the 100 wt.% CTO sensor 

device, matched the Raman pattern of the Cr2O3 precursor, as observed in Figure 5–5. This 

observation corroborated with the XRD data, confirming that CTO was iso-structural to Cr2O3. Careful 

Figure 5–8. Raman spectra prior to gas sensing experiments of all pure and composite sensors based on 
Cr1.95Ti0.05O3 and ZnO metal oxides in the CTO-ZnO composite system. All materials were screen-printed and 
heat-treated at 600 ºC, prior to Raman measurements. 
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observation showed that the peak positions of both the Cr2O3 precursor and CTO, were red shifted 

and significantly broader in comparison to the peak positions of the bulk Eskolaite reference pattern 

reported in the literature [120, 302, 305, 306]. The peak positions of the Raman bands of Cr2O3 

observed in the literature [302] vs. those observed experimentally in this thesis, have been presented 

in Table 5–1.  

Table 5–1. Raman peak positions of Cr2O3 (Eskolaite) observed in the literature [302] vs. Raman peak positions 
observed for the same compound experimentally. 

Source Cr2O3: Literature [302] Cr2O3: precursor used experimentally  

Raman Band: Eg Mode 4 609.7 cm-1 598 cm-1 

Raman Band: A1g  551.1 cm-1 534 cm-1 

Raman Band: Eg Mode 3 523.4 cm-1 Not observed 

Raman Band: Eg Mode 2 349.8 cm-1 338 cm-1 

Raman Band: Eg Mode 1 306.3 cm-1 303 cm-1 

 

Comparison of the positions of the Raman bands of Cr2O3 between literature [302] and experiment in 

Table 5–1, shows that only Eg Mode 1 at ca. 300 cm-1 was observed to be in similar positions between 

both sources, with a red shift of less than 5 cm-1 between the values. The other observable Raman 

bands are red shifted by more than 10 cm-1 in experiment, with respect to the literature values. In 

particular the A1g mode which is referred to as the main Raman band of Cr2O3 [302], showed the 

largest red shift of 17 cm-1. 

Such red shift behaviour or “wavenumber evolution” [302] for Cr2O3, particularly of the A1g peak, has 

been observed previously by Zuo et al. [305, 306]. The group who were investigating the Raman 

spectra of nano-structured Cr2O3, have related this phenomenon to structural disorder in the Cr2O3, in 

the form of oxygen deficiency. They report that the oxygen deficiency is dependent on the grain size of 

the material; a decrease in the grain size (up to 10 nm) causes the oxygen deficiency to increase, 

leading to the red shift (of 17 cm-1) and broadening of the A1g band. In contrast, an increase in the grain 

size via annealing, to sizes > 100 nm, causes the oxygen deficiency to decrease, resulting in a blue 

shift of the A1g band, which is more defined and sharper, and in excellent agreement with bulk 

Eskolaite peak positions in the literature. This reasoning suggests potential structural disorder or 

defects and oxygen deficiency in the Cr2O3 precursor used experimentally in this thesis , which 

promotes red shifting and broadening of the associated Raman bands, and this also accounts for the 

red shifts observed in the Raman pattern of the synthesised CTO.  

Interestingly, Figure 5–8 presents evidence that as the CTO concentration decreased and that of ZnO 

increased in the composites, the peak associated to the A1g band became sharper, more defined and 

its position blue shifted towards higher wavenumbers, approaching the peak position of bulk Eskolaite 

reported in the literature [302]. As such, the 90 wt.% ZnO – 10 wt.% CTO sensor device was 
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associated to  Eskolaite peaks in excellent agreement with literature values of bulk Eskolaite reference 

peaks, as observed in Table 5–2.  

Table 5–2. Raman peak positions of Cr2O3 (Eskolaite) observed in the literature [302] vs. Raman peak positions 
observed experimentally for the 90 wt.% ZnO – 10 wt.% CTO composite sensor device. 

Source Cr2O3: Literature 
[302] 

90 wt.% ZnO – 10 wt.% CTO sensor: 
Experiment 

Raman Band: Eg Mode 4 609.7 cm-1 608 

Raman Band: A1g  551.1 cm-1 551 

Raman Band: Eg Mode 3 523.4 cm-1 Not observed 

Raman Band: Eg Mode 2 349.8 cm-1 345 

Raman Band: Eg Mode 1 306.3 cm-1 306 

 

Using the explanation by Zuo et al., this blue shift and increased sharpness of the Raman peaks, 

particularly the A1g peak, observed as a function of changing concentrations of CTO and ZnO, could be 

accounted for change in oxygen concentration in the composites. In particular, as the concentration of 

CTO decreases and that of ZnO increases, the presence of ZnO may provide greater oxygen species 

for the amount of CTO available and this therefore causes the A1g mode to blue shift and become 

sharper and defined. Further the presence of increasing ZnO concentration and decreasing CTO 

concentration, indicates an enhanced change in the dipole moment of the A1g mode which is 

accounted for by the increased intensity of the associated peak.  

Mougin et al. [302], also reported the in situ Raman monitoring of Cr2O3 scale growth for stress 

determination.. The group had followed in situ isothermal oxidation of a chromium sheet to form a 

Cr2O3 layer, at 750 ºC under 150 mbar of O2. In their study, they had observed the wavenumbers of 

Cr2O3 band red shifted as a function of increasing oxidation temperature from 25 ºC – 750 ºC. They 

reported that this red shift was accounted for by induced oxide and thermal stresses and a variation in 

compressibility of the material between the two temperatures, with compression being greater at 

higher temperatures. In relation to the study by Zuo et al., the study by Mougin et al. suggests that the 

influence of higher temperatures is similar to that of increasing the oxygen deficiency in Cr2O3. As such 

the overall influence on the shifting and sharpening of peaks, maybe be accounted for by due to 

potential defects and associated compression effects due to the defects and disorder in the Cr2O3 

lattice, due to various physical effects of the oxygen ions.  

Peter et al. [120], who reported the synthesis of Cr2-xTiXO3, where x = 0.2  via the conventional solid-

state route, observed Raman bands for CTO to be in excellent agreement with bulk Eskolaite peak 

positions in the literature [123, 302]. This suggested that the precursor Cr2O3 material in their study 

had reduced structural defects than the Cr2O3 precursor used in this thesis.  

 



Chapter 5: CTO-ZnO based p-n hetero-junction system 

201 

 

5.2.3 Post Gas Sensing Material characterisation 

5.2.3.1 Observed Colour Change in Gas Sensor Materials  

Figure 5–9 illustrates the colour change of the gas sensor materials that was observed post-gas 

sensing (i.e. after completion of gas sensing characterisation of all sensor devices and subsequent 

removal of the devices from the gas sensing rig), in comparison to the original colour of the sensor 

materials pre-gas sensing. The colour change was apparent specifically in the composite materials 

and therefore indicated that some form of chemical reaction had occurred between both the 

component oxides. Post-gas sensing analysis was conducted on the sensor devices, to investigate the 

observed change, the results of which have been presented in the following sections. 

Figure 5–9. Pre- and post-gas sensing coupled images of each sensor device based on Cr1.95Ti0.05O3 and ZnO 
metal oxides: a) 100 wt.% CTO, b) 90 wt.% CTO - 10 wt.% ZnO, c) 70 wt.% CTO – 30 wt.% ZnO, d) 50 wt.% 
CTO – 50 wt.% ZnO, e) 30 wt.% CTO – 70 wt.% ZnO, f) 10 wt.% CTO – 90 wt.% ZnO and g) 100 wt.% ZnO, 
within the CTO-ZnO composite system. 
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5.2.3.2 Scanning Electron Microscopy (SEM) 

SEM images of all sensor materials in the CTO-ZnO composite system, post -gas sensing, have been 

presented in Figure 5–10. The objective was to investigate any apparent change in microstructure, as 

a result of the chemical change observed.   
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Figure 5–10. Post-gas sensing SEM images of a) 100 wt.% ZnO, b) 90 wt.% ZnO - 10wt.% CTO, c) 70 
wt.% ZnO – 30 wt.% CTO, d) 50 wt.% ZnO - 50wt.% CTO, e) 10 wt.% ZnO – 90 wt.% CTO and f) 100 
wt.% CTO sensor materials all x 20,000 magnification.  
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SEM imaging post-gas sensing, showed no appreciable difference in the microstructure of the 100 

wt.% ZnO (Figure 5–10 (a)), 90 wt.% ZnO  - 10 wt.% CTO (Figure 5–10 (b)), 100 wt.% CTO (Figure 5–

10 (f)) and 90 wt.% CTO – 10 wt.% ZnO (Figure 5–10 (e)) sensor devices, in comparison to the pre-

gas sensing counterparts presented in Figure 5–6.  

The morphological characteristics of the individual metal oxides in terms of particle size, shape and 

loosely held grains was still maintained. The 70 wt.% ZnO – 30 wt.% CTO and 50 wt.% ZnO – 50 wt.% 

CTO composite sensor devices in Figure 5–10 (c) and (d) respectively, showed greater agglomeration 

of the metal oxides, however the images suggested these to be representative of the composite 

materials rather than of any form of chemical reaction, as the individual CTO and ZnO particles were 

still visible within the matrices of the gas sensing materials. As mentioned previously in Chapter 3, one 

of the drawbacks of the manual mechanical mixing as a route to formation of the composite materials, 

is the possibility of an in-homogenous microstructure within the sensor matrix. Sun et al. [210] also 

mentioned that the irreproducibility with mixing powders for composite formation, arises from the size 

and density differences of the particles and the different settling dynamics once the ink has been 

deposited onto the alumina substrate. This justifies that the overall difference in microstructure is 

statistically likely to be a result of the inhomogeneity associated to the preparation process of the 

composite materials, with limited evidence to suggest that it has occurred due to the observed 

chemical change.  

In conclusion, SEM imaging did not show any apparent change in the microstructure of the materials 

as a result of the chemical change that was observed.  
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5.2.3.3 X-Ray Diffraction (XRD)  

 

The XRD patterns of the individual sensor devices within the CTO-ZnO composite system, after gas 

sensing experiments, have been presented in Figure 5–11. Analysis of the patterns showed that the 

crystalline nature of the materials was maintained, evident through the sharp defined peaks of the 

individual metal oxides. Further, peaks associated to both metal oxide phases were all present, 

indicating that the composite nature of the materials was also maintained. However, three additional 

peaks; at 30.3 °, 35.9 ° and 54.1 º were observed in the composite materials (not pure metal oxides), 

which were not present prior to gas sensing. This indicated the formation of a new tertiary phase, 

specifically spinel zinc chromite, ZnCr2O4, in the composite mixtures, which suggested a solid-state 

reaction between Cr2O3 and ZnO had occurred. The XRD peak positions of the tertiary phase 

observed experimentally, were in direct correlation to reports in the literature and were indexed to the 

cubic phase of ZnCr2O4, (ICDD No. 01-087-0028) [264, 307, 308]. Some of the reflections observed 

experimentally were the most intense reflections of the compound as observed in the reference pattern 

presented in Figure 5–12 obtained from the ICSD database [264, 308]. The reflection indexed 511 at 

57.5 ° in ZnCr2O4 as seen in Figure 5–12, was not evident in the composites. The likely reasoning 

behind this was because the Al2O3 116 reflection from the alumina substrate, was located in the same 

Figure 5–11. XRD patterns taken after gas sensing experiments of all pure and composite sensors based on 
Cr1.95Ti0.05O3 and ZnO metal oxides in the CTO-ZnO composite system. 
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position of 57.5 ° and had greater intensity, and as a result swamped observation of the high angle 

ZnCr2O4 reflection.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5–12. XRD patterns of zinc chromite, ZnCr2O4, from the ICSD reference 
database [264, 308].  



Chapter 5: CTO-ZnO based p-n hetero-junction system 

206 

 

5.2.3.4 Raman Spectroscopy      

 

Raman spectroscopy identified the individual modes of both component oxides within the CTO-ZnO 

composite system as observed in Figure 5–13 suggesting that the composite nature of the materials 

was still maintained. However, extra modes within the composites were seen after gas sensing 

experiments. The bands were confirmed to be associated to the tertiary phase ZnCr2O4, as per 

comparison of the observed experimental bands with the literature and were associated to the spinel 

having a cubic crystal structure [307, 309].  

The formation of ZnCr2O4 has been reported by Wang et al. [309] by high-temperature solid-state 

reaction of stoichiometric amounts of ZnO and Cr2O3. The group had not reported the temperature of 

the reaction at which they formed the spinel as their study was more focussed on an in-situ Raman 

study on the transformation of the phase upon application of high pressure. Vargas-Hernandez et al. 

[310] reported that the optimal formation of the spinel phase is obtained by conducting the solid-state 

reaction between stoichiometric amounts of both component oxides for 24 hours at 750 °C. Marinkovic 

Figure 5–13. Raman spectra taken after gas sensing experiments of all pure and composite sensors based on 
Cr1.95Ti0.05O3 and ZnO metal oxides in the CTO-ZnO composite system. 



Chapter 5: CTO-ZnO based p-n hetero-junction system 

207 

 

Stanojevic et al. [311] in contrast reported making the spinel phase by dry grinding together equimolar 

amounts of both component oxides in a vibro-mill, prior to firing the mixture at 900 °C for 4 hours. 

These synthesis approaches suggest that a similar solid-state reaction must have taken place 

between both metal oxides in the composite sensor devices. However, heat-treatment at 600 ºC prior 

to gas sensing analysis, did not promote the solid-state reaction between ZnO and Cr2O3. Had it done 

so, the ZnCr2O4 phase would have been evident in the pre-gas sensing XRD and Raman data. This is 

perhaps not surprising as 600 ºC is relatively lower than those temperatures reported by Vargas-

Hernandez et al. and Marinkovic Stanojevic et al. This suggests that exposures to temperatures in the 

range of 200 ºC - 500 ºC, over the period when the gas sensing experiments were conducted, may 

have promoted the formation of the spinel i.e. the formation of remnant spinel phase is a result of slow 

solid-state reaction, which seems to have occurred during exposure to 200 ºC - 500 ºC during gas 

sensing experiments. Given that the ratios of both metal oxides varied between the composites, then a 

varying stoichiometry of the spinel phase is likely to have formed in each composite sensor device. 
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5.2.3.5 X-Ray Photoelectron Spectroscopy (XPS) 

XPS analysis was conducted before and after gas sensing analysis to understand any surface 

changes that may have occurred prior to and post gas exposure. Of all the species present, the 

spectroscopic technique was seen to show a change in the oxygen environment of the samples as 

presented in Figure 5–14.          

           

Spectra of the O 1s core level presented in Figure 5–14 showed a prominent shoulder at a higher 

binding energy in the O 1s peak in the post-gas sensing samples, which was only weakly present in 

some of the materials prior to gas sensing. This shoulder peak is attributed to the presence of hydroxyl 

species (OH-) on the surface of the metal oxides [312, 313], which can be accounted for by the 

exposure of the sensor devices to a variety of gases, in particular the VOCs as such ethanol. The 

combustion of ethanol on the surface of a semiconducting metal oxide leads to the formation of H2O 

as a by-product [69, 314]. H2O has been reported to split into the OH- and H+ species [12] upon the 

metal oxide surface, promoting hydroxylation to occur through two potential routes; the first being the 

direct adsorption of OH- species on the surface sites and the second being the reaction of the acidic 

proton species H+ with surface adsorbed O- species and subsequent adsorption [315, 316].  

Figure 5–14. XPS spectrum of O 1s core level in the pre- and post-gas sensing sensor devices within CTO-ZnO 
composite system. 
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In conclusion, XRD and Raman characterisation techniques gave evidence of the formation of the 

ZnCr2O4 (zinc chromite) spinel phase, through the phase characterisation of the composites 

suggesting that the colour change that was observed in the sensor devices after gas exposure, was 

due to a solid-state reaction that occurred between both the Cr2O3 and ZnO phases within the bulk of 

the sensor matrix. XPS showed evidence of significant hydroxylation of the material surfaces after gas 

exposure, indicated by the presence of the shoulder in the O1s core level spectra of the individual 

sensor devices.  

Calculation of the relative binding energies of the Cr and Zn species from XPS data, prior to gas 

sensing analysis, did not show any correlative pattern as a function of changing phase fraction of CTO 

and ZnO within the composite materials, as was observed between the W and Zn species in the WO3–

ZnO hetero-junction system reported in Chapter 3. Thus, no visible evidence of an electronic 

interaction between the Cr and Zn species could be reported.   

5.2.3.6 Gas Sensing Properties of ZnCr2O4 (Zinc Chromite) 

Studies on the gas sensing properties of the tertiary compound ZnCr2O4 are not prominent in the 

literature, however some reports have been observed for both chemical vapour and humidity sensing 

applications [317-319].  

Niu et al. [317] reported on the gas sensing properties of various perovskite compounds based on 

ZnM2O4, where M  = Fe, Co, Cr against Cl2 and NO2 (both oxidising gases) and C2H5OH, H2S and 

acetone (reducing gases). The perovskite compounds were reported to be made by a novel micro-

emulsion method which resulted in the production of ultrafine powders with spherical particles 

attributed to a uniform grain size distribution; with the ZnCr2O4 particles observed to have a mean size 

of 55 nm. The optimal operating temperature of the spinel oxide was found to be 305 ºC; which was 

determined against its responsivity towards Cl2. The perovskite was found to exhibit p-type 

conductivity with its resistance decreasing in the presence of the oxidising gases and increasing in the 

presence of the reducing gases. The group presented the responsivity results (where responsivity was 

calculated as a ratio of the resistances, subject to the nature of the gas i.e. oxidising or reducing) of 

the material against the variety of gases. They referenced a responsivity magnitude of 1 to be 

equivalent to nearly no gas sensing response. The group had reported that the responsivity of spinel 

towards 50 ppm of all gases was observed to be around 1 at 305 ºC, except towards ethanol where its 

response was seen to be 2. Thus the study showed that the performance of ZnCr2O4 was poor.  

In another study by Honeybourne et al. [318], the NO2 and volatile sulphide sensing properties of 

copper, zinc and nickel chromite were reported, which were prepared via a metal nitrate 

decomposition process. When exposed to 20 ppm NO2, the ZnCr2O4 showed a responsivity (which 
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was a ratio of the change in the current of the material, as a function of the applied potential difference, 

as function of gas concentration) of 291.36 to the gas at 220 °C. 

Both studies here present response results of the ZnCr2O4 phase towards very high concentrations of 

analytes, particularly with NO2, the toxic limit value (TLV) of which is only 3 ppm [38, 172]. However, 

for the purposes of comparison, the former study by Nui et al. is more appropriate due to the nature of 

the response calculation, which is very similar to that implemented in this thesis. In their study, the 

group observed very low responses of the spinel compound towards 50 ppm of NO2, ethanol and 

acetone. Comparatively in this study, the NO2 concentrations being analysed are at ppb levels and 

that of acetone is a maximum of 10 ppm, indicating that is very unlikely that the spinel could be 

attributed to any form of response. The ethanol concentration reported by the group is relatively similar 

to that used in this study (10 ppm – 100 ppm), but again the literature study shows very little response 

behaviour towards the analyte, which may suggest poor response characteristics of the spinel present 

in the CTO-ZnO composite materials.  

As the inference of when the spinel formed during the gas sensing experiments remains unknown, it is 

extremely difficult to determine the actual influence of the phase on the response properties of the 

composite materials. As mentioned earlier, the colour change of the sensor devices was only observed 

after removing the sensors from the gas sensing rig, once all gas sensing characterisation studies had 

been conducted.  
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5.2.4 Gas Sensing 

5.2.4.1 Ethanol Sensing  

 

Figure 5–15 shows that the conductive responses of the three sensor devices constituting the greatest 

concentration of ZnO: 100 wt.% ZnO, 90 wt.% ZnO – 10 wt.% CTO and 70 wt.% ZnO – 30 wt.% CTO, 

increased as a function of operating temperature; with the 100 wt.% ZnO sensor device exhibiting the 

highest response of 55.6 towards 40 ppm ethanol at 400 ºC. The responses of the two composite 

materials: 90 wt.% ZnO – 10 wt.% CTO and 70 wt.% ZnO – 30 wt.% CTO, under the same operating 

conditions, were not as profound as the pure ZnO counterpart. The chemiresistive behaviour (in the 

form of an increase in conductive behaviour) of the two composite materials, concurred with a report 

by Kim et al. [46]. The group reported that the conduction along composites, specifically 

nanocomposites, between p- and n-type oxide semiconductors, depends on the concentration, size 

and dispersion of the two phases. A limited number of p-type oxide particles dispersed discretely 

throughout the matrix of the host n-type semiconductor particles, influences the chemiresistivity of the 

device to be dominated by the n-type semiconductor particles located at the n-n and p-n interfaces. 

This reasoning explains the observed chemiresistive behaviour of both the 90 wt.% ZnO – 10 wt.% 

CTO and 70 wt.% ZnO – 30 wt.% CTO composites, whose conductivity is dominated by the ZnO 

Figure 5–15. Conductive response of 100 wt.% ZnO, 90 wt.% ZnO – 10 wt.% CTO and 70 wt.% ZnO – 30 wt.% 
CTO sensor devices against 10, 20 and 40 ppm ethanol at 200, 250, 300, 350 and 400 °C. 
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particles. Previous reports on a ZnO-CuO composite system [89, 161, 288, 289, 320, 321] have also 

reported an observed transition from an n-type conduction regime for ZnO-rich compositions, to a p-

type conduction regime for CuO–rich compositions. Such transitions have been accounted for by a 

switch from n-type grain connectivity to p-type grain connectivity.  

Further observation of Figure 5–15 shows that the responses of both the 70 wt.% ZnO – 30 wt.% CTO 

and the 90 wt.% ZnO – 10 wt.% CTO devices are outperformed by the pure ZnO device, at operating 

temperatures in the range of 350 ºC – 400 ºC. At these higher temperatures, the response order of the 

three devices is dependent on the composition of ZnO and CTO, where greater ZnO, leads to a better 

response magnitude.  

At lower operating temperatures of 200 ºC – 300 ºC however, the 90 wt.% ZnO – 10 wt.% CTO 

composite device outperformed the 100 wt.% ZnO and 70 wt.% ZnO – 30 wt.% CTO devices, 

exhibiting the best response of 7.6 against 40 ppm ethanol at 250 ºC, which was a 2.6-fold enhanced 

response compared to the pure ZnO counterpart, under the same operating conditions. Interestingly, 

the 70 wt.% ZnO-30 wt.% CTO sensor device exhibited baseline response (R0/R = 1) towards all 

concentrations of ethanol, at all operating temperatures.   

The enhanced response of the 90 wt.% ZnO – 10 wt. CTO composite sensor within the lower 

operating temperature range and that of the 100 wt.% ZnO sensor device within the higher operating 

temperature range, indicated the synergistic effect of both metal oxides as a function of operating 

temperature. This was apparent as ZnO is associated to poor response performance towards ethanol 

at lower operating temperatures (and effective response performance at high operating temperatures), 

and conversely CTO to enhanced response performance towards ethanol at low operating 

temperatures (and poor response performance at high operating temperatures); both trends of which 

will be discussed further in this section.  
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Figure 5–16 shows an increase in resistive response of the 50 wt.% ZnO – 50 wt.% CTO, 30 wt.% 

ZnO – 70 wt.% CTO, 10 wt.% ZnO – 90 wt.% CTO and 100 wt.% CTO sensor devices when exposed 

to 10, 20 and 40 ppm of ethanol, at operating temperatures in the range of 200 °C – 500 °C.  

This suggests that the conductivity of these devices was dominated by the p-type CTO particles. 

Again, this observation concurs with Kim et al. [46], who  reported that as the concentration of p-type 

particles dispersed throughout n-type particles is increased, the percolative conduction path occurs 

along the p-type particles.  

The same figure shows that all four sensors were associated to large magnitudes of resistive response 

towards ethanol, at the lower operating temperatures of 200 ºC – 300 ºC. However, at higher operating 

temperatures of 350 ºC – 400 ºC, all four devices performed poorly. This is a stark contrast to the 

response behaviour observed as function of temperature of the three n-type dominated sensors in 

Figure 5–15, which exhibited large conductive responses towards ethanol at 350 ºC – 400 ºC and 

significantly poorer responses in the temperature range of 200 ºC – 300 ºC. Figure 5–15 and Figure 5–

Figure 5–16. Resistive response of 50 wt.% ZnO – 50 wt.% CTO, 30 wt.% ZnO – 70 wt.% CTO, 10 wt.% ZnO 
– 90 wt.% CTO and 100 wt.% CTO sensor devices against 10, 20 and 40 ppm ethanol at 200, 250, 300, 350 
and 400 °C.  
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16 are therefore symmetrical to each other, presenting opposite response magnitude behaviours as a 

function of temperature modulation.  

The observation of the enhanced response characteristics of ZnO towards ethanol, as a function of 

increasing operating temperature has been reported in the literature [69] and is accounted for by a 

greater conversion ratio of ethanol to acetaldehyde. The reaction of ethanol molecules on the surface 

of an n-type semiconductor such as ZnO [69], is characterised by the ethanol undergoing 

dehydrogenation, which yields acetal as the intermediate product, as opposed to a dehydration 

reaction in which ethene is the intermediate. The conversion of ethanol to acetal increases as a 

function of temperature, which ZnO is particularly responsive to.  

The application of CTO as a sensor material for ethanol has been reported in many studies [126, 138], 

but reports of its performance against the analyte as a function of operating temperature, have not 

been found. However, the response behaviour of the metal oxide towards NH3, as a function of 

temperature, was reported by Schmitt et al. [129]. They had reported the responses of an ink-jet 

printed CTO sensor towards increasing concentrations of NH3 (10 ppm – 50 ppm) as a function of 

different operating temperatures in the range of 330 ºC – 570 ºC. In their study, it was found that the 

CTO sensor had the best response at the lower operating temperature of 330 ºC and the worst 

response at 570 ºC, which corroborates with the response behaviour observed in this study against 

ethanol. Both NH3 and ethanol are combustible reducing gases and this indicates that their interaction 

chemistry is likely to be fundamentally similar with the CTO surface. 

In a study by Suryawanshi et al. [292] the group had studied the gas response of Fe2O3-activated 

Cr2O3 thick-film sensors towards 10 ppm of NH3 and ethanol (individually), as a function of increasing 

operating temperature in the range of 200 °C – 500 ºC. They had found that the response patterns of 

the modified Cr2O3 device towards both gases was very similar, with the optimal performance of the 

material observed to be at 250 ºC and 300 ºC, respectively. They had reported that the evenly 

distributed Fe2O3 defects upon the surface of the Cr2O3, would have made it possible to adsorb the 

oxygen ions at lower temperatures compared to pure Cr2O3. The adsorbed oxygen species are stable 

at these lower temperatures, possessing enough stability for the analyte molecules to interact with 

them before desorption, and in this way, the surface reactions progress. At higher temperatures 

however, the adsorption of the oxygen ions is likely to be very unstable with the thermodynamics 

promoting desorption of the species at a much faster rate, which lowers the chances of surface 

oxidation reactions of the target analytes, ultimately reducing the response performance of the sensor 

material. Analogously, the Ti ions with the matrix of the Cr2O3 in the CTO material, may have also 

promoted enhanced oxygen adsorption on the surface at lower operating temperatures, which may 

rationalise the better gas sensing behaviour of CTO towards ethanol at low temperatures. Another 
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possible rationalisation, as observed with ZnO, could be that the CTO is more responsive to the 

intermediate products yielding from the surface oxidation reactions of ethanol, at lower operating 

temperatures.  

Figure 5–16 shows that the 10 wt.% ZnO – 90 wt.% CTO composite sensor device was the best 

performing composite within the system, displaying a resistive response of 10.4 towards 40 ppm 

ethanol at 250 ºC, which is a 1.1-fold enhanced response with respect to the pure CTO counterpart 

under the same operating conditions. The same composite performed particularly well at 300 ºC, with 

a response of 9.9 toward 40 ppm ethanol at 300 ºC, which is a 3.4-fold enhanced response compared 

to the pure CTO counterpart.  

The SEM micrograph of the 10 wt.% ZnO – 90 wt.% CTO composite sensor device observed in Figure 

5–6 (k) and (l), showed evidence of the intimate mixing and dispersion of the ZnO particles within the 

CTO matrix, with the CTO particles coating the larger micron-sized ZnO particles. The visualisation of 

the packing structure associated to this composite, suggests the presence of mainly p-p homo- and 

some p-n hetero-junctions, but a rare number of n-n homo-junctions as observed in Figure 5–17.  

 

 

 

 

 

 

 

In accordance with Yamazoe et al. [170, 171] such a packing structure is a derivative of the stone-in-

sand packing structure. Such packing between the grains is described to be no better, in terms of 

contact potential formation and its subsequent enhancement to the transduction function, than a 

random packing structure or packing structure dominated by homo-contacts. The ratio of the 

composition of ZnO : CTO in the composite, suggests that this composite is dominated by p-p homo-

contacts that exist between the CTO grains, and therefore the enhanced response of this particular 

sensor device is surprising. However, the significant response may suggest that the localized p-n 

Figure 5–17. Schematic of packing structure of metal oxide grains in 10 wt.% ZnO - 90 wt.% CTO sensor 
device. In the diagram the green circles represent the smaller CTO particles and the larger purple circles, 
the larger ZnO particles. Although the diagram presents the grains to be perfectly spherical for simplicity, 
this perfect spherical nature is not assumed.  
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hetero-contacts between the CTO and ZnO grains within the composite matrix, are attributed to the 

formation of contact potentials between the hetero-junctions [170, 171], which may have greater 

influence over the conductivity of sensor device than the weaker p-type conductivity via the p-p 

percolation paths, and as such may act to enhance the transduction function of the device. Further, 

SEM micrographs of the sensor device seen in Figure 5–6 (k) and (l),  showed the presence of loosely 

held grains within the sensor matrix, suggesting that the body, as well as the surface of material are 

accessible to the gas molecules. These factors may act synergistically to enhance the response 

behaviour of the device [70, 238]. 

In comparison to the response results of the CTO-ZnO system obtained against ethanol, Woo et al. 

[290] reported on the responsivity of ZnO–Cr2O3 hetero-nanostructures against a range of reducing 

gases, of which one was ethanol. From the range of hetero-structure architectures they had fabricated, 

the group had found that those based on the decoration of discrete p-type Cr2O3 nanoparticles on an 

n-type ZnO nanowire network, exhibited the best conductive response of 7 towards 5 ppm of ethanol 

at an operating temperature of 400 ºC. This response was a 2.2-fold enhanced response in 

comparison to pure ZnO nanowires. The second type of hetero-structure architectures they fabricated 

were ZnO (core) - Cr2O3 (shell) nanocables, which exhibited a resistive response of just over 1 

towards 5 ppm ethanol at 400 ºC. The CTO –ZnO composites (displaying p-type behaviour) fabricated 

in this thesis, are comparable to Woo et al.’s nanocable based hetero-structures. Comparatively, the 

10 wt.% ZnO – 90 wt.% CTO device (the best performing composite) was attributed to a resistive 

response of 1.2 towards 10 ppm ethanol at 200 ºC and exhibited a response of just above 1 at 400 ºC. 

However the same device was attributed to a response as high as 4.8 towards 10 ppm ethanol at 250 

ºC, suggesting that its response towards 5 ppm of the analyte at 250 ºC, is likely to be higher than that 

achieved by the nanocables towards the same concentration of ethanol at 400 ºC. 

Comparison of Woo et al.’s Cr2O3 nanoparticle decorated ZnO nanowires (displaying n-type 

behaviour) to the CTO-ZnO composites which displayed n-type behaviour, show that the hetero-

structures from the literature study are better performers. The 90 wt.% ZnO – 10 wt.% CTO device (the 

best n-type dominated composite), displayed a response of 3.5 at 400 ºC towards 10 ppm ethanol. In 

contrast, Woo et al. were able to achieve a response of 7 to ½ the concentration of the analyte (5 ppm) 

at the same operating temperature. The group [290] had related the enhanced responsivity of the 

Cr2O3 nanoparticle decorated ZnO nanowire architecture, to be associated to a multiple number of 

factors. The first was a low agglomerated porous network structure of the nanowire based 

architectures, which allowed diffusion of the analyte to the entire sensing surface. The second was 

effectively the packing structure in the form of a uniform loading of the p-type Cr2O3 catalysts on the 

surface of the n-type nanowires, which allowed for the enlargement of the conduction path, which 

acted to enhance the transduction function. Thus, they had reported that this uniform deposition of a 
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discrete configuration of p-type semiconductor nanostructures on the surface of the n-type 

semiconductor nanowires, was a powerful tool to achieve enhanced sensor performance.  

In comparison to the 10 wt.% ZnO – 90 wt.% CTO device, the SEM micrograph of the 30 wt.% ZnO – 

70 wt.% CTO composite observed in Figure 5–6 (i) and (j), which also displayed a p-type response 

behaviour, was seen to consist of a greater concentration and agglomeration of ZnO particles, 

accounted for by the increased ratio of ZnO : CTO particles. The increased concentration of the ZnO 

particles in this material, also suggests that they are likely to have been more delocalised within the 

sensor matrix in comparison to the 10 wt.% ZnO – 90 wt.% CTO device, where the ZnO particles are 

likely to be more localised. A schematic of this device is shown in Figure 5–18.  

 

 

 

 

 

 

 

 

With a greater number of ZnO particles dispersed within a host matrix of CTO particles, the 30 wt.% 

ZnO – 70 wt.% CTO sensor is likely to be associated to a mixture of p-p and n-n homo- and p-n 

hetero-junctions. The increased n-n junction concentration induced by ZnO–ZnO grain contacts, may 

have acted to negate the enhancement effects of the p-n hetero-contacts and as such, reduce the 

transduction function of the sensor device, accounting for its poor performance in comparison to the 10 

wt.% ZnO – 90 wt.% CTO composite. Yamazoe et al. [170, 171] suggested that only by competitively 

increasing the hetero-contact frequency with respect to the homo-contact frequency, would one really 

observe the hetero-junction enhancement effects, and such an increase can be achieved by optimising 

the packing structure. In the case of the 30 wt.% ZnO – 70 wt.% CTO sensor, the hetero-contacts 

potentially competed with the homo-contacts, which suggest difficulty in observing significant hetero-

junction enhancement effects. 

Figure 5–18. Schematic of packing structure of metal oxide grains in 30 wt.% ZnO - 70 wt.% CTO sensor device. 
In the diagram the green circles represent the smaller CTO particles and the larger purple circles, the larger ZnO 
particles. Although the diagram presents the grains to be perfectly spherical for simplicity, this perfect spherical 
nature is not assumed. 
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Of particular interest, were the response behaviours of both the 70 wt.% ZnO – 30 wt.% CTO device in 

Figure 5–15 and the 50 wt.% ZnO – 50 wt.% CTO device in Figure 5–16, which both exhibited 

response magnitudes of less than 2.5 towards all concentrations of ethanol, across all temperature 

ranges. Their almost negligible response magnitudes suggested that although their response 

behaviour was dominated by the n-type oxide in the case of the 70 wt.% ZnO – 30 wt.% CTO device,  

and by the p-type oxide in the case of the 50 wt.% ZnO – 50 wt.% CTO device, there was an overall 

cancellation effect [210]. This cancellation effect indicated significant contributions of both the p- and 

n- type oxides in each composite, negating the overall response signals.  

Further the SEM micrographs of both the 70 wt.% ZnO – 30 wt.% CTO device and the 50 wt.% ZnO – 

50 wt.% CTO device, observed in Figure 5–6 (e) & (f) and (g) & (h), respectively, show evidence of 

agglomeration of the ZnO and CTO particles into clusters rather than a more heterogeneous 

distribution of the particles amongst each other. Thus, the packing structure [170, 171] within both 

composites suggested minimal p-n junction formation and the greater statistical formation of n-n and p-

p junctions, which are likely to promote cancellation effects due to a cancellation of n-type percolation 

paths and the p-type percolation paths. This behaviour was particularly evident in the 50 wt.% ZnO – 

50 wt.% CTO sensor device, which showed all resistive responses to be close to baseline response 

(R/R0 = 1).  

Such cancellation behaviour has been reported by Savage et al. [161] on a semiconducting n-p 

titanium oxide system. In their investigation, certain mixtures of n-type anatase and p-type rutile 

resulted in minimal resistance change towards CO and CH4. They had reported that based on a 

polychromatic percolation model, the two parallel conduction pathways based on n-n and p-p paths, 

with the particular ratios of mixtures they had investigated, cancelled each other out. In a similar study 

by Sun et al. [210], who reported on the gas sensing properties of WO3 and Cr2O3 composites, they 

had found that a particular ratio of a WO3 : Cr2O3 mixture (9:1 w/w) was attributed to a response 

transient with minimal resistance change towards 20 ppm CO. This feature they explained was due to 

a cancellation effect due to the interference of p- and n-type percolation paths. In their case, the 

cancellation trace (an effect that occurs due to cancellation of conduction that occur along the n-type 

percolation paths with that which occurs along the p-type percolation paths) was more explicit, in 

comparison to the result presented in this thesis, with half the resistance curve split into an observed 

increase in resistance and half into an observed decrease in resistance.  
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In another study by Bekermann et al.[169] the gas sensing properties of Co3O4 - ZnO nano-composites 

towards a range of analytes, which included ethanol, were reported. In their study they had varied the 

over-dispersion time via PECVD (Plasma-Enhanced Chemical Vapour Deposition) of Co3O4 on ZnO. 

They had found that greater thickness of Co3O4 on ZnO, resulted in the lowering of the response 

magnitude of the composite material towards the target analytes, in comparison to a composite 

consisting of a thinner layer of Co3O4 on ZnO. They had explained the poor performance of the 

composite containing the thicker layer of Co3O4 to be influenced by an electrical cancellation effect of 

the p- and n-type materials [169, 210].  

 

 

 

 

The response traces for the CTO – ZnO sensor system against ethanol are presented in Figure 5–19 

at operating temperatures of 350 ºC (Figures (a) and (b)) and 250 ºC (Figures (c) and (d)). Tabulation 

of the mean responses values of the sensor devices in the CTO-ZnO system from the repeat tests 

against exposure towards the various ethanol concentrations at 350 °C and 250 °C and the 

associated 95% confidence intervals have been presented in Table 5–3 and Table 5–4, respectively. 

Figure 5–19. (a) Conductive response traces of 100 wt.% ZnO, 90 wt.% ZnO – 10 wt.% CTO and 70 wt.% ZnO – 
30 wt.% CTO sensor devices at 350 ºC, (b) Resistive response traces of 50 wt.% ZnO – 50 wt.% CTO, 30 wt.% 
ZnO – 70 wt.% CTO, 10 wt.% ZnO – 90 wt.% CTO and 100 wt.% CTO sensor device at 350 ºC, (c) Conductive 
response traces of 100 wt.% ZnO, 90 wt.% ZnO – 10 wt.% CTO and 70 wt.% ZnO – 30 wt.% CTO sensor 
devices at 250 ºC and (d) Resistive response traces of 50 wt.% ZnO – 50 wt.% CTO, 30 wt.% ZnO – 70 wt.% 
CTO, 10 wt.% ZnO – 90 wt.% CTO and 100 wt.% CTO sensor at 250 ºC, all against increasing concentrations of 
ethanol.  
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Table 5–3. Average responses of sensor devices in CTO-ZnO system from all repeat tests against various 
ethanol concentrations at 350 °C and associated errors in the form of 95% CIs.  

 
10 ppm 

 
20 ppm 

 
40 ppm 

 

Device 
Average 

Response 
95% CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

100 wt.% CTO 1.04 ±0.03 1.08 ±0.04 1.15 ±0.05 

90 wt.% CTO – 10 wt.% ZnO 1.14 ±0.06 1.32 ±0.10 1.69 ±0.21 

70 wt.% CTO – 30 wt.% ZnO 1.11 ±0.01 1.20 ±0.01 1.30 ±0.02 

50 wt.% CTO – 50 wt.% ZnO 1.08 ±0.01 1.12 ±0.01 1.16 ±0.00 

30 wt.% CTO – 70 wt.% ZnO 1.63 ±0.05 2.00 ±0.10 2.29 ±0.14 

10 wt.% CTO – 90 wt.% ZnO 4.31 ±0.21 7.02 ±0.71 9.95 ±1.24 

100 wt.% ZnO 6.69 ±0.37 22.41 ±2.41 Electronic capping out 

 

Table 5–4. Average responses of sensor devices in CTO-ZnO system from all repeat tests against various 
ethanol concentrations at 250 °C and associated errors in the form of 95% CIs.  

 
10 ppm 20 ppm 40 ppm 

Device 
Average 

Response 
95% CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

100 wt.% CTO 3.10 ±0.54 7.24 ±0.33 10.10 ±0.40 

90 wt.% CTO – 10 wt.% ZnO 4.69 ±0.23 7.63 ±0.93 10.10 ±1.03 

70 wt.% CTO – 30 wt.% ZnO 1.89 ±0.07 3.34 ±0.08 4.68 ±0.06 

50 wt.% CTO – 50 wt.% ZnO 1.12 ±0 1.21 ±0 1.29 ±0 

30 wt.% CTO – 70 wt.% ZnO 1.56 ±0 2.02 ±0.05 2.45 ±0.07 

10 wt.% CTO – 90 wt.% ZnO 2.84 ±0.12 5.18 ±0.49 7.61 ±0.67 

100 wt.% ZnO 2.01 ±0.21 2.29 ±0.24 3.69 ±0.56 

 

A change in the operational temperature of the system, showed a clear distinction in the response 

trace characteristics of the sensor devices. The faster responses at 350 ºC (Figures (a) and (b)) were 

observed by the steep increases in magnitude of the responses, upon switching on ethanol gas. In 

contrast, the response traces at 250 ºC (images (c) and (d)) were seen to increase in magnitude more 

gradually, upon introduction of ethanol.  

The recoveries of the traces back to baseline response were also indicative of the temperature 

dependent kinetics; at 250 ºC for example, upon switching off the individual ethanol pulses, the return 

of the response signals were seen to be very gradual (shallow gradient), and in some cases, 

particularly with the ZnO dominant sensors, the signals did not have enough time to settle completely 

(baseline drift), before a new concentration pulse of ethanol was introduced. This shows that the lower 

temperature of operation did not provide sufficient thermal energy to promote rapid desorption of the 

ethanol molecules from the surface of the metal oxide materials. Further it suggests that at 250 ºC, the 
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time given for the sensor to recover was not enough. The incomplete recovery of some of these 

sensing materials, particularly those dominated by ZnO, suggests that the sensor surfaces were pre-

conditioned with ethanol molecules, prior to exposure to a new concentration pulse of the analyte. This 

pre-conditioning effectively artificially increased the response magnitudes of some of the devices with 

increasing concentrations of ethanol, suggesting an over-estimation of their response values. 

At 350 ºC, the recovery of the response of the CTO dominant devices was steep, sharp and reversible 

[169], with the CTO dominant composites such as the 90 wt.% CTO – 10 wt.% ZnO sensor device 

associated to a t-90 (40 ppm) of 47 seconds and the 70 wt.% CTO – 30 wt.% ZnO associated to a t-90 

(40 ppm) of 51 seconds and the CTO device itself associated to a t-90 (40 ppm) of 16 seconds. The 

signals of these CTO dominant devices were observed to reach baseline response in time before the 

next pulse of ethanol exposure. However at the same operating temperature, the 100 wt.% ZnO 

device was associated to a t-90 (40 ppm) of 640 seconds and the 90 wt.% ZnO – 10 wt.% CTO device 

to a t-90 (40 ppm) of 288 seconds (seen in Figure 5–19 (a)), indicating that the return of the signals to 

baseline of these ZnO dominated devices, was slower. At 250 ºC, the ZnO dominant composites in 

Figure 5–19 (c) were observed to be associated to greater baseline drift than the CTO dominant 

composites devices in Figure 5–19 (d). CTO possesses greater resistance to humidity effects and 

therefore is attributed to more stable response characteristics under slight variations of humidity [47, 

120].  

In general, comparison of the speed of the kinetics of response and recovery between the different 

operating temperatures was deduced through comparison of the t90 and t-90 values of the sensor 

devices. For example, the t90 (20 ppm) of the 100 wt.% ZnO sensor device at 350 °C was 177 seconds 

and at 250 °C was 363 seconds. Similarly the recovery time t-90 (20 ppm) of the same device at 350 

°C was 504 seconds and at 250 °C was 543 seconds. The t90 (20 ppm) of the 90 wt.% ZnO – 10 wt.% 

CTO device was 35 seconds at 350 °C and 214 seconds at 250 °C. The same device showed a 

recovery t-90 (20 ppm) of 255 seconds at 350 °C and 745 seconds at 250 °C.  

The 90 wt.% CTO – 10 wt.% ZnO sensor device was associated to a t90 (40 ppm) of 78 at 350 °C and 

235 at 250 °C. The same device exhibited a t-90 (40 ppm) of 47 seconds at 350 °C and a t-90 (40 ppm) 

of 980 at 250 °C.  The 100 wt.% CTO sensor device was associated to a t90 (40 ppm) of 24 at 350 °C 

and 180 at 250 °C, with t-90 (40 ppm) values of 16 and 561 at 350 °C and 250 °C, respectively. These 

comparisons give evidence of the reduced surface kinetics of the surface reactions, as a function of 

decreasing operating temperature.  

Figure 5–19 illustrates the contrast in the shapes of the response traces of the ZnO heavy composites 

between Figure 5–19 (a) and (c), with respect to 350 and 250 ºC, respectively. At 250 ºC, the 100 

wt.% ZnO sensor for example, is seen to be associated to an obvious shark fin [33] shape associated 
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to an unsaturated surface and slow response behaviour. In contrast at 350 ºC, the shape of the ZnO 

response curve, as well the two other composite materials, is associated to a cross between shark-fin 

and box type [106] behaviour, and thus greater saturation of the sensor surfaces and faster response 

behaviour. The geometry of the response traces at the lower temperature, can be accounted for by 

reduced thermal energy which results in slower reaction kinetics of the ethanol molecules with the 

adsorbed oxygen ions on surface of the metal oxide, i.e. a smaller yield of surface reactions per unit 

time, hence a slower response is observed. At higher temperatures, more energy in the system implies 

faster kinetics, resulting in a greater yield of surface reactions per unit time. The near steady-state 

behaviour of the sensor devices at 350 ºC, evident from the flattening of the response traces, also 

indicated kinetically balanced surface adsorption and desorption reactions, suggesting the rate of the 

reaction of the ethanol molecules with the surface adsorbed oxygen species was as fast as the 

subsequent formation and instantaneous desorption of the reaction products – an influence of the 

thermodynamics of the operating temperature.  

5.2.4.2 NO2 Sensing 

Figure 5–20 presents the resistive responses of the 100 wt.% ZnO, 90 wt.% ZnO – 10 wt.% CTO and 

70 wt.% ZnO – 30 wt.% CTO sensor devices against varying concentrations of NO2 as a function of 

increasing operating temperature. The increase in the resistive response of the two composite sensor 

Figure 5–20. Resistive response of 100 wt.% ZnO, 90 wt.% ZnO – 10 wt.% CTO and 70 wt.% ZnO – 30 wt.% 
CTO sensor devices against 100, 200 and 400 ppb NO2 at 300, 350 and 400 °C.   
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devices: 90 wt.% ZnO – 10 wt.% CTO and 70 wt.% ZnO – 30 wt.% CTO, concurs with observations 

presented earlier towards ethanol, but in contrast here the conductivity of the both composites was 

dominated by the n-type ZnO particles.  

The figure further shows that the 100 wt.% ZnO sensor device dominated the response, exhibiting a 

maximum resistive response of 21 towards 400 ppb NO2 at 300 ºC, with its responsivity decreasing as 

a function of increasing operating temperature. The two composite materials in contrast, showed 

significantly lower responses across the range of operational temperatures, with respect to the 100 

wt.% ZnO sensor device, with their responses decreasing as a function of decreasing concentration of 

ZnO and increasing operating temperature.  

Interestingly the three sensor devices in Figure 5–20 exhibited opposite response characteristics 

towards NO2, as a function of operating temperature, in comparison to that observed against ethanol in 

Figure 5–15. Against the reducing gas, the conductive response of the sensors increased as a function 

of increasing operating temperature, whereas against the oxidising gas, a decrease in resistive 

response was observed as a function of increasing operating temperature. Thus, the results show that 

the selectivity of these three devices of the system, towards the reducing or oxidising gas can be 

controlled as a function of temperature modulation, which from a point-of-view of practical applications, 

is very useful in a mixed-gas atmosphere. Bekermann et al. [169] had reported a similar observation in 

their study on the gas sensing properties of Co3O4 - ZnO nano-composites. They had reported greater 

selectivity of their composites towards 100 ppm ethanol and 500 ppm acetone at higher operating 

temperatures (400 °C) and better selectivity towards 5 ppm NO2 at lower operating temperatures (200 

°C). Such characteristics they reported, are of interest in view of technological exploitation of their 

sensors in mixed gas atmospheres, which are usually present in real world conditions. 
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Figure 5–21 presents the conductive response characteristics of the 50 wt.% ZnO – 50 wt.% CTO, 30 

wt.% ZnO – 70 wt.% CTO, 10 wt.% ZnO – 90 wt.% CTO and 100 wt.% CTO sensor devices as a 

function of increasing operating temperature. Of the four devices, the 10 wt.% ZnO – 90 wt.% CTO 

composite sensor exhibited minimal enhancement in response characteristics, with a response of 1.3 

observed towards 400 ppb of NO2 at 300 ºC. The responses observed by the four sensors here 

dominated by p-type behaviour were very poor and as such can practically be negated, particularly in 

comparison to the three devices dominated by n-type behaviour presented in Figure 5–20. However, 

the enhanced response of the 10 wt.% ZnO – 90 wt.% CTO composite demonstrated the 

enhancement effect of the hetero-junction nature of the materials.  

Comparison of Figure 5–16 and Figure 5–21 showed that the four sensors dominated by p-type 

conduction displayed a decrease in response as a function of increasing operating temperature 

against both ethanol and NO2. The four sensors were seen to exhibit selectivity towards ethanol at 300 

°C and 350 °C, with significantly poorer responses observed towards NO2 at the same operating 

temperatures. No selectivity however was observed at 400 °C. Therefore, in a mixed atmosphere of 

both analytes, these four sensors would selectively detect ppm levels of ethanol at the lower operating 

temperature range.  

Figure 5–21. Conductive  response of 50 wt.% ZnO – 50 wt.% CTO, 30 wt.% ZnO – 70 wt.% CTO, 10 wt.% ZnO 
– 90 wt.% CTO and 100 wt.% CTO sensor devices against 100, 200 and 400 ppb NO2 at 300, 350 and 400 °C.  



Chapter 5: CTO-ZnO based p-n hetero-junction system 

225 

 

In general, the response properties of the CTO-ZnO system, showed that they are better suited for the 

detection of ethanol compared to NO2. The 100-fold concentration difference between both analytes 

may have been a key factor which significantly contributed to the variation in response magnitudes 

observed. Response characteristics of the CTO-ZnO composite system against both ethanol and NO2, 

showed that the sensors dominated by n-type percolation paths were associated to significantly better 

gas sensing responses in comparison to those sensors whose conductivity was dominated by the p-

type percolation paths. Hubner et al. [46, 278] reported that the response of a p-type MOS gas sensor 

to a given gas is equivalent to the square root of that of an n-type MOS gas sensor, towards the same 

gas, if the morphological configuration of both sensor materials are identical. The reasoning behind 

this is due to difference in the layers i.e. EDL vs. HAL, which dominate the resistance/conduction of 

the individual metal oxides, details of which were alluded to earlier in the introduction of this Chapter. 

Although the morphological configurations of the CTO and ZnO metal oxides were not observed to be 

the same in this thesis, the poor performance of the p-type semiconducting oxide with respect to the n-

type semiconducting oxide is consistent with the experimental results observed and is independent of 

the morphology.  

In comparison to the 10 wt.% ZnO – 90 wt.% CTO composite, which showed a 1.2-fold enhanced 

conductive response compared to the pure CTO counterpart, against 400 ppb NO2 at 300 °C as seen 

in Figure 5–21, Bekermann et al.[169] achieved a maximum resistive response of 1.1 from their Co3O4 

– ZnO nano-composite system, when exposed to 5 ppm NO2 at an operating temperature of 200 ºC. 

This highest response against NO2 was achieved with minimum p-type Co3O4 loading in their nano-

composite, and as the loading of the Co3O4 increased, they observed a decrease in resistive response 

magnitude. They had attributed this decrease to two factors; the first being the increased Co3O4 

particle size and the second being the reduced system porosity as a function of increased Co3O4 

loadings. In significant contrast, the CTO-ZnO composite study here showed that the general trend of 

the composites exhibiting p-type conductive behaviour, was an increase in conductive response 

towards NO2 as a function of increasing CTO composition.   

Similarly, in a study of a p-n junction system based on a Carbon Nanotube (CNT) - WO3 nano-

composite grown by thermal CVD, Hashishin et al. [322] had reported on the gas sensing properties of 

NO2. They found that a 0.1 wt.% WO3 – CNT composite exhibited a conductive behaviour towards the 

oxidising gas, suggesting that the conductivity of the material occurred through the apparent p-type 

CNT. The composite was associated with a response of 3.8 towards 5 ppm NO2 at an operating 

temperature of 200 ºC [322], which was a 3.6-fold enhanced response in comparison to the pure CNT 

sensor. They had accounted for the enhanced response of the material through the formation of p-n 

junctions within that particular composite, which generated a large depletion layer within the CNT, 

resultantly inducing a large resistance of the material. The highly depleted surface state of the CNT 
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increased the amount of NO2 adsorption on the surface of the CNT, resulting in a higher response 

towards the oxidising analyte. With an increased loading of WO3, for example higher than 1 wt.% WO3, 

the conductivity was seen to be dominated by the connections between the WO3 grains and 

resultantly, the number of the p-n hetero-junctions decreased and n-n homo-junctions increased. A 7 

wt.% WO3 – CNT composite displayed a conductive response of only 1, however given that WO3 is an 

n-type semiconductor, presentation of this material’s resistive response magnitude would have been a 

better representation of the gas sensing performance of the material. This reasoning suggests that 

despite the 10 wt.% ZnO – 90 wt.% CTO composite being dominated by the CTO homo-contacts i.e. 

p-p homo-junctions, the localised p-n hetero-junctions between the CTO and ZnO grains within the 

matrix of the sensor material, are likely to be associated to enhanced resistances due to the formation 

of contact potentials, enhancing the responsivity of the overall material to the surrounding NO2 

atmosphere. It is also suggests that from the group of p-typed dominated devices, this particular ratio 

of ZnO : CTO is the optimal combination of both metal oxides, to obtain enhanced responsivities.  

Figure 5–22 presents the response traces of the composite system towards increasing NO2 

concentrations at an operating temperature of 300 ºC, which was the optimal performance 

temperature of all devices in the CTO-ZnO system, against the analyte. Tabulation of the mean 

responses values of the sensor devices in the CTO-ZnO system from the repeat tests against 

exposure towards the various NO2 concentrations at 300 °C and the associated 95% confidence 

intervals have been presented in Table 5–5. 

Figure 5–22. (a) Resistive response traces of 100 wt.% ZnO, 90 wt.% ZnO – 10 wt.% CTO and 70 wt.% ZnO – 
30 wt.% CTO sensor devices and (b) Conductive response traces of 50 wt.% ZnO – 50 wt.% CTO, 30 wt.% 
ZnO – 70 wt.% CTO, 10 wt.% ZnO – 90 wt.% CTO and 100 wt.% CTO sensor devices towards 100, 200 and 
400 ppb NO2, at 300 ºC.  

100 ppb 

200 ppb 

400 ppb 

100 ppb 

400 ppb 

200 ppb 

(a) (b) 
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Table 5–5. Average responses of sensor devices in CTO-ZnO system from all repeat tests against various NO2 

concentrations at 300 °C and associated errors in the form of 95% CIs.  

 
100 ppb 200 ppb 400 ppb 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

100 wt.% CTO 1.03 ±0 1.07 ±0.01 1.13 ±0.01 
90 wt.% CTO – 10 wt.% ZnO 1.03 ±0.01 1.13 ±0.02 1.33 ±0.03 
70 wt.% CTO – 30 wt.% ZnO 1.02 ±0 1.07 ±0.01 1.16 ±0.02 

50 wt.% CTO – 50 wt.% ZnO 1.01 ±0 1.04 ±0.01 1.07 ±0 

30 wt.% CTO – 70 wt.% ZnO 1.08 ±0.02 1.27 ±0.01 1.19 ±0.48 

10 wt.% CTO – 90 wt.% ZnO 1.83 ±0.16 3.78 ±0.03 6.09 ±0.27 
100 wt.% ZnO 4.07 ±0.47 10.65 ±0.83 19.76 ±2.40 

 

 The shark fin behaviour of all devices within the system, illustrates their slow response towards 

increasing concentrations of the analyte, which may be accounted for by the low operating 

temperature, relative to higher temperatures of 400 °C - 500 ºC. This lower operating temperature 

encourages slower kinetics of the surface reactions, which in turn slows down the resulting resistance 

change of the materials. Such slow kinetic behaviour is also illustrated through the gradual increasing 

gradient of the response curves, when NO2 is switched on and their slow recovery to baseline 

response when the gas is switched off. The shark-fin behaviour also suggested the lack of saturation 

of the metal oxide surface sites, which may be accounted for by the lower concentration of NO2 

exposure for the available number of surface sites in the gas sensitive materials. In contrast, the 

response traces in Figure 5–19 exhibited significantly more saturated responses towards ethanol, 

particularly at 350 °C. This may be accounted for by the higher temperature of operation which would 

have likely promoted increased kinetics of surface adsorption and desorption reactions and 

subsequently increased the corresponding yield of resistance change per unit time. Further the higher 

concentration of exposure of ethanol would have also promoted greater saturation of surface sites.  

In comparison to the response magnitudes of the 100 wt.% ZnO and 90 wt.% ZnO – 10 wt.% CTO 

devices, Figure 5–20 shows that the 70 wt.% ZnO – 30 wt.% CTO device exhibited minimal increase in 

response amplitude, towards all concentrations of NO2 across the range of temperatures it was 

operated at, with the device seen to exhibit resistive responses between baseline response (R/R0 =1) 

and 2.5. Poor behaviour of this device was also observed towards ethanol as seen in Figure 5–15 and 

suggested effects of cancellation [210] between the n-type and p-type dominated percolation paths, 

which may have contributed to the low response magnitudes. Domination of cancellation behaviour in 

the 50 wt.% ZnO – 50 wt.% CTO sensor device was particularly apparent from Figure 5–21, as it 

exhibited resistive responses, equivalent to or just above baseline response (R/R0 =1), towards all 

concentrations of NO2, at all operating temperatures.  
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In this study, cancellation effects were observed to be apparent against both ethanol and NO2. 

However if the effect had been more dominant towards one analyte than the other, then selectivity due 

to cancellation could potentially be exploited in a mixed ethanol and NO2 atmosphere. Such a 

selectivity by cancellation phenomenon was observed by Sun et al. [210] who had reported that within 

their system of WO3 and Cr2O3 composites, the composite which had a 9 : 1 w/w WO3 : Cr2O3 ratio, 

showed cancellation behaviour for 20 ppm CO, however towards 2, 5 and 10 ppm NO, the composite 

exhibited a marked change in resistance. This example demonstrates that in a mixed atmosphere of 

20 ppm CO and 2, 5 or 10 ppm NO, their 9:1 w/w WO3:Cr2O3 composite could potentially be exploited 

to selectively detect NO.  

5.2.5 Further Gas Sensing Studies 

Further gas sensing studies of the CTO – ZnO composite system were conducted towards a range of 

reducing gases including: acetone, CO, NH3 and toluene (and ethanol which was evaluated earlier in 

the Chapter), at operating temperatures of 300 °C and/or 350 °C. Both these temperatures were 

associated to the system of sensors exhibiting stable baseline response behaviour against ethanol and 

were temperatures at which contributory behaviour of both metal oxides was observed. In terms of 

optimal response temperatures for devices exhibiting p-type behaviour, this was 250 °C, however at 

this temperature the devices dominated by n-type behaviour, showed poor responsivities toward 

ethanol, and further, their baseline stability was very poor. The optimal response temperature for the 

devices exhibiting n-type behaviour was 400 °C, however at this temperature the devices attributed to 

p-type behaviour, showed poor responsivities toward ethanol. Thus temperatures of 300 °C and 350 

°C were temperatures at which both types of devices showed contributory behaviour of both metal 

oxides and so were chosen to conduct further gas sensing studies against the range of reducing 

gases.  

Focus was on testing the system against various concentrations of acetone and toluene, as the 

system proved to be poor at responding towards significant concentrations of CO and NH3, with 

response magnitudes seen to be ranging between baseline response (1) and 2, as observed in Figure 

5–23 and Figure 5–24, respectively. Tabulation of the mean responses values of the sensor devices in 

the CTO-ZnO system from the repeat tests against exposure towards the various CO concentrations 

at 350 °C and the associated 95% confidence intervals have been presented in  

Table 5–6. 
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5.2.5.1 CO Sensing  

 

 

 

 

 

 

Table 5–6. Average responses of sensor devices in CTO-ZnO system from all repeat tests against various CO 
concentrations at 350 °C and associated errors in the form of 95% CIs.  

 
200 ppm 400 ppm 600 ppm 800 ppm 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% CI 

100 wt.% CTO 1.02 ±0.02 1.05 ±0.01 1.09 ±0.01 1.14 ±0.02 

90 wt.% CTO – 10 wt.% ZnO 1.03 ±0 1.12 ±0.01 1.26 ±0.02 1.47 ±0.04 

70 wt.% CTO – 30 wt.% ZnO 1.01 ±0 1.04 ±0 1.09 ±0.01 1.19 ±0.03 

50 wt.% CTO – 50 wt.% ZnO 1.00 ±0 1.01 ±0.01 1.02 ±0.01 1.04 ±0.01 

30 wt.% CTO – 70 wt.% ZnO 1.02 ±0.01 1.08 ±0.03 1.16 ±0.04 1.26 ±0.08 

10 wt.% CTO – 90 wt.% ZnO 1.07 ±0.03 1.21 ±0.05 1.38 ±0.09 1.68 ±0.20 

100 wt.% ZnO 1.02 ±0.02 1.17 ±0.03 1.39 ±0.07 1.69 ±0.14 

 

Figure 5–23 presents the response results of the system of sensors against increasing concentrations 

of CO. The devices dominated by n-type behaviour displayed typical n-type response as seen in 

Figure 5–23 (a), and those dominated by p-type behaviour displayed typical p-type response as seen 

in Figure 5–23 (b).  The responses were seen to be poor with the best performing n-type device being 

the 90 wt.% ZnO – 10 wt.% CTO device, which showed a resistive response of 1.9 towards 800 ppm 

of CO. The best performing sensor device which exhibited p-type behaviour was the 10 wt.% ZnO – 90 

wt.% CTO which showed a conductive response of 1.5 towards 800 ppm CO.  

Figure 5–23. (a) Resistive response of 100 wt.% ZnO, 90 wt.% ZnO – 10 wt.% CTO, 70 wt.% ZnO – 30 wt.% 
CTO and (b) Conductive response of 50 wt.% ZnO – 50 wt.% CTO, 30 wt.% ZnO – 70 wt.% CTO, 10 wt.% ZnO 
– 90 wt.% CTO and 100 wt.% CTO sensor devices against 200, 400, 600 and 800 ppm CO at an operating 
temperature of 350 °C. 

(a) (b) 
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5.2.5.2 NH3 Sensing 

 

Figure 5–24 presents the resistive responses of all devices within the CTO-ZnO system against 

increasing concentrations of NH3. Tabulation of the mean responses values of the sensor devices in 

the CTO-ZnO system from the repeat tests against exposure towards the various NH3 concentrations 

at 350 °C and the associated 95% confidence intervals have been presented in Table 5–7.  

Most device were seen to exhibit responses close to the baseline response (R/R0 = 1). The best 

performing sensor device was the 10 wt.% ZnO – 90 wt.% CTO sensor device which exhibited a 

resistive response of 1.4 towards 20 ppm NH3. Interestingly all sensor devices exhibited an increase in 

resistive response against the analyte; suggesting that the devices dominated by n-type conductivity 

exhibited an inverted p-type behaviour towards the reducing analyte. Such resistive response 

behaviour of n-type materials against NH3, was observed in Chapter 3 and Chapter 4 which focused 

on WO3 - ZnO and SnO2 – ZnO composite systems, respectively. Such behaviour can be accounted 

for by the oxidation reaction of NH3 on the surface of n-type metal oxides [114, 115], the reaction of 

which has been alluded to in Chapter 1, section 1.10.3.  

 

 

Figure 5–24. Resistive response of 100 wt.% ZnO, 90 wt.% ZnO – 10 wt.% CTO, 70 wt.% ZnO – 30 wt.% 
CTO, 50 wt.% ZnO – 50 wt.% CTO, 30 wt.% ZnO – 70 wt.% CTO, 10 wt.% ZnO – 90 wt.% CTO and 100 
wt.% CTO sensor devices against 5, 10 and 20 ppm NH3 at an operating temperature of 350 °C. 
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Table 5–7. Average resistive responses of sensor devices in CTO-ZnO system from all repeat tests against 
various NH3 concentrations at 350 °C and associated errors in the form of 95% CIs.  

 
5 ppm 10 ppm 20 ppm 

Device 
Average 

Response 
95% CI 

Average 
Response 

95% CI 
Average 

Response 
95% 
CI 

100 wt.% CTO 1.05 ±0.01 1.20 ±0.03 1.35 ±0.03 

90 wt.% CTO – 10 wt.% ZnO 1.09 ±0.01 1.26 ±0.03 1.43 ±0.06 

70 wt.% CTO – 30 wt.% ZnO 1.02 ±0.01 1.07 ±0 1.13 ±0.01 

50 wt.% CTO – 50 wt.% ZnO 1.00 ±0 1.01 ±0.00 1.01 ±0 

30 wt.% CTO – 70 wt.% ZnO 1.02 ±0.01 1.04 ±0.02 1.10 ±0.04 

10 wt.% CTO – 90 wt.% ZnO 1.03 ±0.04 1.12 ±0.03 1.24 ±0.03 

100 wt.% ZnO 1.03 ±0.01 1.11 ±0.02 1.26 ±0.03 

 

5.2.5.3 Acetone Sensing 

Figure 5–25, presents the response magnitudes of the CTO - ZnO system against increasing 

concentrations of acetone at 300 °C and 350 °C. Tabulation of the mean responses values of the 

sensor devices in the CTO-ZnO system from the repeat tests against exposure towards the various 

acetone concentrations at 300 °C and 350 °C and the associated 95% confidence intervals have been 

presented in Table 5–8 and Table 5–9, respectively.  

 

 

Figure 5–25. (a) Conductive response of 100 wt.% ZnO, 90 wt.% ZnO – 10 wt.% CTO and 70 wt.% ZnO – 30 wt.% 
CTO sensor devices and (b) Resistive response of 50 wt.% ZnO – 50 wt.% CTO, 30 wt.% ZnO – 70 wt.% CTO, 10 
wt.% ZnO – 90 wt.% CTO and 100 wt.% CTO sensor devices against 2, 4, and 8 ppm of acetone at 300 and 350 
°C. 

(a) (b) 



Chapter 5: CTO-ZnO based p-n hetero-junction system 

232 

 

Table 5–8. Average responses of sensor devices in CTO-ZnO system from all repeat tests against various 
acetone concentrations at 300 °C and associated errors in the form of 95% CIs.  

 
2 ppm 4 ppm 8 ppm 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

100 wt.% CTO 1.15 ±0.11 1.34 ±0.16 1.49 ±0.03 

90 wt.% CTO – 10 wt.% ZnO 1.68 ±0.62 2.44 ±1.22 2.31 ±0.09 

70 wt.% CTO – 30 wt.% ZnO 1.14 ±0.10 1.28 ±0.13 1.37 ±0.01 

50 wt.% CTO – 50 wt.% ZnO 1.05 ±0.05 1.08 ±0.06 1.08 ±0.01 

30 wt.% CTO – 70 wt.% ZnO 1.25 ±0.29 1.41 ±0.51 1.24 ±0.05 

10 wt.% CTO – 90 wt.% ZnO 1.49 ±0.75 1.80 ±1.18 1.33 ±0.05 

100 wt.% ZnO 1.52 ±0.76 2.08 ±1.64 1.45 ±0.05 

 

Table 5–9. Average responses of sensor devices in CTO-ZnO system from all repeat tests against various 
acetone concentrations at 350 °C and associated errors in the form of 95% CIs.  

 
2 ppm 4 ppm 8 ppm 

Device 
Average 

Response 
95% CI 

Average 
Response 

95% CI 
Average 

Response 
95% 
CI 

100 wt.% CTO 1.11 ±0.01 1.16 ±0.02 1.23 ±0.01 

90 wt.% CTO – 10 wt.% ZnO 1.33 ±0.02 1.59 ±0.02 1.95 ±0.02 

70 wt.% CTO – 30 wt.% ZnO 1.16 ±0.01 1.23 ±0.01 1.29 ±0.02 

50 wt.% CTO – 50 wt.% ZnO 1.09 ±0.01 1.13 ±0.01 1.17 ±0.01 

30 wt.% CTO – 70 wt.% ZnO 2.09 ±0.09 2.77 ±0.21 3.60 ±0.34 

10 wt.% CTO – 90 wt.% ZnO 4.24 ±0.12 6.36 ±0.28 9.28 ±0.56 

100 wt.% ZnO 3.85 ±0.04 6.60 ±0.10 9.93 ±2.98 

 

Part (a) presents the results of the devices dominated by n-type percolation paths and shows that 

these devices exhibited substantial activity at 350 °C, with the highest response observed to be 11.2 

against 8 ppm of acetone by the 100 wt.% ZnO device. The two composites exhibited measureable 

responses, with the 90 wt.% ZnO – 10 wt.% CTO sensor device being the better mixed oxide device of 

the two, displaying a maximum response of 7.6 towards 8 ppm of the analyte at 350 °C. Both 

composites however, did not perform as well as the pure ZnO counterpart, with the response 

performance decreasing as a function of decreasing ZnO concentration and increasing CTO 

concentration. This trend suggested that the response order of the three devices, as observed with 

ethanol and NO2, was dependent on the synergism of both metal oxides and in particular, ratio of the 

ZnO : CTO components, with the presence of ZnO enhancing the response characteristics or 

alternatively its absence and/or the addition of CTO diminishing the response. Thus, a complimentary 

effect of the presence of n-type and p-type based metal oxides, than a hetero-junction effect, was 
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evident from the behaviour of these three sensor devices. In contrast at 300 °C, the responses of the 

three sensors were negligible.   

Figure 5–25 part (b) illustrates that the sensors dominated by p-type conductivity exhibited significantly 

lower responses than those in (a) with the highest response of 2.3 exhibited by the 10 wt.% ZnO – 90 

wt.% CTO composite toward 8 ppm acetone at 300 °C. The response magnitudes of the p-type 

dominated materials were seen to decrease as a function of increasing operating temperature 

however the results generally showed that the presence of ZnO in conjunction with CTO had a positive 

sensitisation effect on the response characteristics in comparison to the unmodified CTO counterpart. 

The behaviour, particularly of the 10 wt.% ZnO – 90 wt.% CTO composite exemplified an hetero-

junction effect or the effective sensitisation behaviour of the n-type metal oxide towards the p-type 

metal oxide.  

In general, the overall behaviour of the CTO - ZnO system towards acetone between 300 °C – 350 °C, 

was very similar to that exhibited against ethanol and NO2 as seen in Figure 5–15 - Figure 5–16 and 

Figure 5–20 - Figure 5–21 respectively, in terms of performance correlation with firstly the operating 

temperature and secondly, the compositional variations. Most devices within the system were 

generally seen to exhibit selectivity towards ethanol, when comparing the responses between both 

ethanol and acetone between 300 °C - 350 °C. However, the 70 wt.% CTO – 30 wt.% ZnO sensor 

device was an exception which was seen to exhibit selectivity towards acetone  at 350 ° C. 

A number of papers have reported the acetone gas sensing properties of ZnO, in which the metal 

oxide is seen to possess a variety of different morphologies. A very small fraction of these studies 

have been cited here [323-325]. In one study, Zeng et al. [323] reported on the growth and selective 

acetone detection of ZnO nanorod systems, which exhibited an increase in response as a function of 

operating temperature between 200 °C – 300 °C towards 100 ppm acetone; with an optimal response 

of 30.4 observed at 300 °C, after which the response of the sensor decreased. 

In another study, Pugh et al. [325] had reported on the gas sensing properties of zeolite modified ZnO. 

The metal oxide used in their study was identical to the ZnO used in this study, and it was found that 

the responsivity of the pure ZnO sensor increased as a function of operating temperature between 350 

°C – 500 °C, with the highest response in the range of 17.5 – 18 towards 8 ppm of the analyte, at 500 

°C. The differences in the optimal operating temperatures of the ZnO material between the literature 

report and the study in this thesis, can be accounted for by differing device architectures, operating 

rigs, etc., however both studies show that the acetone sensing performance of ZnO, increases as a 

function of operating temperature.  
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The acetone gas sensing properties of CTO are limited in the literature however in one study by 

Pokhrel et al. [127], it was reported that various Cr2-xTixO3 powders (where x was varied between 0.1 - 

0.5 in increments of 0.1), were prepared by a combustion technique followed by heat-treatment at 

1000 °C for 12 hours. When the materials were tested against 1 ppm – 5 ppm acetone at an operating 

temperature of 400 °C, the relative response of the materials against the analyte was seen to increase 

as the value of x decreased, i.e. when x = 0.1 the best responsivity of 14 was achieved towards 5 ppm 

of the analyte. Instead, when x was increased to 0.5, the relative response towards 5 ppm was seen to 

be 7.3.  

In another study, this time based on pure Cr2O3, Liu et al. [280] had reported on the acetone gas 

sensing properties of highly ordered mesoporous Cr2O3 samples, fabricated using a vacuum assisted 

impregnation route. Two samples of Cr2O3 were fabricated; the first using 2D hexagonal templates, 

which promoted the formation of Cr2O3 with a highly ordered hexagonal mesoporous structure, and the 

second sample was prepared using a 3D cubic template, which promoted the formation of Cr2O3, with 

a highly ordered 3D cubic mesoporous structure. Both samples were attributed to high specific surface 

areas and narrow pore size distributions, which enhanced the sensing properties of the materials. Both 

samples (hexagonal and 3D cubic) demonstrated responses of 11 and 14, respectively, towards 1000 

ppm acetone. These responses were significantly enhanced compared to a bulk Cr2O3 counterpart, 

attributed to a response of 4 towards 1000 ppm acetone. Unfortunately the group did not report the 

operating temperature over which the gas sensing studies were conducted, however the stable 

baselines observed in the response traces of the sensors, suggested a high temperature of operation. 

In this CTO - ZnO study, the CTO consists of a matrix of Cr2O3 doped with Ti ions and therefore a 

majority of the material can be associated to the responsivity of Cr2O3. Therefore the poor responses 

achieved in this thesis by the CTO dominated materials, towards acetone, can be justified with respect 

to the poor response results of the bulk Cr2O3 towards 1000 ppm acetone reported by Liu et al. The 

group’s study showed that in order for the Cr2O3 to exhibit superior acetone sensing properties, it 

would need to be fabricated around e.g. mesoporous or nanostructured frameworks.  

Studies on the acetone sensing properties of a p-n hetero-junction system based on a combination of 

CTO and ZnO are rare in the literature. However, studies based on other p-n combinations have been 

reported; one example which loosely relates to the study reported in this thesis, was reported by Gao 

et al. [187] who had investigated the selective acetone sensing properties of WO3-Cr2O3 thin films, 

prepared by a sol-gel method. Specifically, the group had prepared a range of Cr2O3 doped WO3 sols, 

where the concentration of the Cr2O3 ranged from 0.5 mol%, 1.0 mol%, 5.0 mol% and 10 mol%. The 

sols were coated around Al2O3 ceramic tubes via a dip-coating process, sintered at 500 °C, quenched 

to maintain the WO3 specific phases and subsequently examined for their acetone sensing properties. 

Their results showed that the 5 mol% Cr2O3 doped WO3 film, was attributed to the highest responsivity 
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of 8.91 towards 20 ppm acetone at 320 °C and also was selective towards acetone gas, amongst a 

range of other gases which included ethanol, ammonia, methanol, n-butanol and CO2, at the same 

temperature. The best performance of this particular device was attributed to its optimal characteristics 

influenced by composition, microstructure, sintering temperature and quenching. Experimental results 

from this thesis, are comparable to the results achieved by Gao et al., for example the 90 wt.% ZnO – 

10 wt.% CTO sensor device exhibited a response of 7.6 toward 8 ppm acetone at 350 °C, however at 

20 ppm, it would be expected that the composite would exhibit a higher response (at 350 °C) than the 

literature study. Interestingly, both hetero-junction materials from the literature study by Gao et al. and 

the experimental study in this thesis, are attributed to packing-structures consisting of a host matrix of 

one metal oxide with a small addition/dispersion of a second metal oxide, analogous to Yamazoe et 

al’s stone-in-sand packing structure [170, 171], mentioned earlier. Such packing structures are seen to 

be effective for acetone detection, as well as for ethanol detection, as observed from result presented 

earlier in this Chapter. 

5.2.5.4 Toluene Sensing  

Figure 5–26 presents the resistive response magnitudes of the four devices within the system that were 

dominated by p-type conductivity, towards increasing concentrations of toluene at 300 °C and 350 °C. 

Tabulation of the mean responses values of the sensor devices in the CTO-ZnO system from the repeat tests 

against exposure towards the various ethanol concentrations at 350 °C and 250 °C and the associated 95% 

confidence intervals have been presented in Table 5–10 and  

Table 5–11, respectively.  

 

 

 

 

 

 

 

 

Figure 5–26. Resistive response of 50 wt.% ZnO – 50 wt.% CTO, 30 wt.% ZnO – 70 wt.% CTO, 10 wt.% -90 
wt.% CTO and 100 wt.% CTO sensor devices against 10, 20 and 40 ppm toluene at 300 and 350 °C. 
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Table 5–10. Average resistive responses of sensor devices in CTO-ZnO system from all repeat tests against 

various toluene concentrations at 300 °C and associated errors in the form of 95% CIs.  

 
10 ppm 20 ppm 40 ppm 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

100 wt.% CTO 2.67 ±0.69 4.75 ±0.62 5.76 ±0.36 

90 wt.% CTO – 10 wt.% ZnO 1.64 ±0.12 1.80 ±0.12 1.89 ±0.09 

70 wt.% CTO – 30 wt.% ZnO 1.74 ±0.15 2.02 ±0.10 2.16 ±0.06 

50 wt.% CTO – 50 wt.% ZnO 1.01 ±0 1.01 ±0 1.02 ±0 

 

Table 5–11. Average resistive responses of sensor devices in CTO-ZnO system from all repeat tests against 
various toluene concentrations at 350 °C and associated errors in the form of 95% CIs.  

 
10 ppm 20 ppm 40 ppm 

Device 
Average 

Response 
95% CI 

Average 
Response 

95% CI 
Average 

Response 
95% 
CI 

100 wt.% CTO 1.44 ±0.05 2.04 ±0.10 3.57 ±0.21 

90 wt.% CTO – 10 wt.% ZnO 3.63 ±0.41 4.99 ±0.48 5.60 ±0.44 

70 wt.% CTO – 30 wt.% ZnO 1.41 ±0 1.85 ±0 2.54 ±0 

50 wt.% CTO – 50 wt.% ZnO 1.03 ±0 1.04 ±0 1.06 ±0 

 

These devices were seen to dominate the responses, in comparison to the other three devices which 

were dominated by n-type conductivity. The three sensors dominated by n-type behaviour exhibited 

responses very close to baseline response, and therefore have not been presented. This suggested 

the very poor conductive response behaviour of the n-type dominated materials towards toluene.  

Figure 5–26 shows that the 100 wt.% CTO sensor dominated the toluene response at 300 °C, with a 

maximum response of 5.5 towards 40 ppm. In contrast, the 10 wt.% ZnO – 90 wt.% CTO sensor 

exhibited the lowest response 1.6 (towards the same analyte concentration) at the same operating 

temperature. At 350 °C, a switch was observed with the 10 wt.% ZnO - 90 wt.% CTO composite 

sensor showing optimal response of 5.7 towards 40 ppm of the analyte. At this higher temperature 

however, the response of the pure CTO counterpart worsened, exhibiting a response of 3.7 under the 

same conditions, illustrating that the 10 wt.% ZnO - 90 wt.% CTO composite showed a 1.5-fold 

enhanced response compared to the pure CTO counterpart. The optimal performance of the 10 wt.% 

ZnO - 90 wt.% CTO sensor device at 350 °C, compared to 300 °C, exemplified how the operating 

temperature exerted an influential effect on tuning the responsivity of the composite. In general, no 

particular response order was observed as a function of changing ZnO or CTO concentration or as a 

function of changing operating temperature with toluene. In contrast, greater correlative trends with 

these variables, were observed with ethanol and acetone.  
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The detection of toluene via a hetero-junction system based on the combination of metal oxides 

studied in this thesis, has not been observed in the literature. Woo et al. [290] however, whose study 

was mentioned earlier, had reported on the detection of toluene by the use of Cr2O3-ZnO hetero-

nanostructures. The largest response (conductive) they had observed was of 3 towards 5 ppm 

toluene, at an operating temperature of 400 °C, by a hetero-junction system containing semi-elliptical 

Cr2O3 nanoparticles dispersed on the surface of ZnO nanowires. This response was a two-fold 

enhanced response compared to pure un-treated ZnO nanowires. The response achieved of this 

literature material is comparable to the response achieved by the 10 wt.% ZnO - 90 wt.% CTO 

composite sensor in this thesis, however that in the literature was dominated by the n-type ZnO and 

that in this thesis, by the p-type CTO. The group has also reported on the response of continuous 

Cr2O3 shell layers that were uniformly coated around ZnO nanowires, which exhibited a resistive 

response of just above 1 towards 5 ppm toluene at 400 ºC.  
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Table 5–12. Response magnitudes of CTO-ZnO composite system against various concentrations of ethanol, NO2, acetone, and toluene gas at operating temperatures of 300 and 
350 °C. The devices highlighted in orange are those which exhibited n-type conductive behaviour and those in green are those which exhibited p-type conductive behaviour. Where 
devices responses were observed to be below 1.5, associated cells have been block filled.   

 100  
Z 

90 Z – 
10 C 

70 Z– 
30 C 

50 Z – 
50 C 

30 Z – 
70 C 

10 Z– 
90 C 

100  C  100  
Z 

90 Z – 
10 C 

70 Z– 
30 C 

50 Z – 
50 C 

30 Z – 
70 C 

10 Z– 
90 C 

100  C 

Ethanol (300 °C)        Ethanol (350 °C)        

10 ppm 2.2 3.6 1.7 1.1 1.3 2.3 1.2 10 ppm 6.3 4.5 1.7 1.1 1.1 1.2 1.1 

20 ppm 2.4 6.2 2.1 1.2 1.5 6.2 1.6 20 ppm 21.0 7.5 2.1 1.1 1.2 1.4 1.1 

40 ppm 12.6 9.8 2.5 1.2 2.0 10.0 2.9 40 ppm 45.5 10.9 2.4 1.2 1.3 1.9 1.2 

NO2 (300 °C)        NO2 (350 °C)        

100 ppb 3.8 1.8 1.1 1.0 1.0 1.0 1.0 100 ppb 2.4 1.4 1.1 1.0 1.0 1.0 1.0 

200 ppb 11.1 3.8 1.3 1.0 1.1 1.1 1.1 200 ppb 6.0 3.0 1.2 1.0 1.0 1.0 1.0 

400 ppb 21.0 6.0 1.4 1.1 1.2 1.3 1.1 400 ppb 11.5 5.2 1.4 1.0 1.1 1.1 1.0 

Acetone (300 °C)        Acetone (350 °C)        

2 ppm 1.1 1.1 1.1 1.0 1.1 1.4 1.1 2 ppm 3.8 4.2 2.1 1.1 1.2 1.3 1.1 

4 ppm 1.1 1.2 1.0 1.0 1.2 1.8 1.3 4 ppm 6.4 6.1 2.6 1.1 1.2 1.6 1.1 

8 ppm 1.2 1.3 1.1 1.1 1.4 2.3 1.5 8 ppm 11.2 7.6 3.3 1.2 1.3 1.9 1.2 

Toluene (300 °C)        Toluene (350 °C)        

10 ppm    1.0 1.8 1.7 3.0 10 ppm    1.0 1.4 3.8 1.5 

20 ppm    1.0 2.1 1.7 4.9 20 ppm    1.1 1.9 5.2 2.1 

40 ppm    1.0 2.2 1.7 5.5 40 ppm    1.1 2.5 5.7 3.7 

Key:                 

100Z – 100 wt.% ZnO         90Z – 10C – 90 wt.% ZnO – 10 wt.% CTO 

70Z – 30C – 70 wt.% ZnO – 30 wt.% CTO       50Z – 50C – 50 wt.% ZnO – 50 wt.% CTO 

30Z – 70C –30 wt.% ZnO – 70 wt.% CTO       10Z - 90C – 10 wt.% ZnO – 90 wt.% CTO  

100C – 100 wt.% CTO 
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5.3 Summary and Conclusions 

Table 5–12 presents the response magnitudes of the group of CTO-ZnO composite devices against all 

the tested gases at both operating temperatures of 300 °C and 350 °C. Where device responses were 

observed to be below 1.5, associated cells have been block filled. The devices highlighted in orange 

are associated to those devices exhibiting n-type conductive behaviour and those in green are 

associated to those exhibiting p-type conductive behaviour.  

The results of this study showed that 10 wt.% ZnO – 90 wt.% CTO sensor device exemplified the best 

response behaviour when combining the two metal oxides, which suggested that it contained the 

optimal composition (as well as optimal packing structure) of both semiconducting metal oxide grains. 

This was concluded through its enhanced response behaviour with respect to the pure CTO 

counterpart and other sensor devices dominated by p-type semiconducting behaviour, for example 

against ethanol at 250 °C - 300 °C or towards NO2  at 300°C, amongst acetone and toluene as well.  

Such a device consisted of n-type ZnO particles discretely dispersed into a host matrix of p-type CTO 

particles, and as such was primarily dominated by p-type conductivity. The significant enhancement 

associated to such a device, may suggest that the conductivity and enhancement effects of the 

localized p-n hetero-contacts may have greater influence of the conductivity than the weaker p-type 

conductivity via the p-p homo-contact dominated percolation paths, and as such may act to enhance 

the transduction function of the device. These results corroborate with the Hubner et al. and Pokhrel et 

al. [278, 282], who reported that the conduction through the HAL in the p-type metal oxide significantly 

weakens its response characteristics. 

In some instances, the 90 wt.% ZnO – 10 wt.% CTO composite sensor device was also seen to show 

enhanced responsivities with respect to the pure ZnO counterpart against ethanol between 200 °C – 

300 °C, however this enhancement effect was inconsistent between analytes and was not as profound 

as the enhancement that the 10 wt.% ZnO – 90 wt.% CTO sensor device showed with respect to the 

pure CTO counterpart. Such a device consisted of a dispersion of p-type CTO particles in a matrix of 

ZnO particles, and thus was dominated by n-type conductivity. The weaker response of such devices 

with respect to the pure ZnO counterpart, suggested that the stronger n-type dominated conductivity 

via the n-n homo-contact percolation paths swamped the localised p-n hetero-junction conductivity and 

potential enhancement effects towards the responsivity, and as such hardly displayed any 

enhancement upon combination of both metal oxides.  

Interestingly, the 50 wt.% ZnO – 50 wt.% CTO sensor device exhibited responses close to 1 (base line 

response) towards all four gases at all operating temperatures, which suggested cancellation 

behaviour with this specific combination of ZnO and CTO materials. This may have been attributed to 
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percolation paths between the ZnO–ZnO n-n homo-contacts and CTO-CTO p-p homo-contacts 

cancelling each other out, and as such, the net effect was null net conductivity. The response 

behaviour of the 30 wt.% ZnO – 70 wt.% CTO sensor device was also interesting as it exhibited 

cancellation behaviour against ethanol, acetone and NO2 but exhibited quantifiable responses against 

toluene at 350 °C, indicating that  in a mixed atmosphere of all four gases, the cancellation behaviour 

of this device may be exploited to selectively detect toluene.  

XPS characterisation did not show any visible evidence of the electronic interaction between both 

metal oxides, however the packing structure and the ratio of homo : hetero contacts within the 

composite matrices, as well as the responsivities of the individual metal oxides were all thought to 

have contributed to the overall responsivity behaviour of the p-n hetero-junction composite system. 

Overall the study showed that the system is complex, with two key types of devices within the system; 

one dominated by n-type conductivity and the second by p-type conductivity. The devices that were 

dominated by n-type conductivity were seen to show particularly large conductive responsivities 

towards ethanol at higher operating temperatures of 350 °C – 400 °C, resistive responsivities towards 

NO2 at lower operating temperatures of 300 °C – 350 °C and conductive responsivities towards 

acetone at 350 °C. In contrast, selective devices dominated by p-type conductivity were associated to 

better ethanol responsivities (in comparison to the n-type devices) at lower operating temperatures of 

200 °C – 250 °C, better acetone responsivities at 300 °C and superior toluene sensing characteristics, 

the latter of which the n-type dominated sensor devices did not exhibit. The temperature of operation 

was also seen to be a contributory factor to the overall behaviour of the p- and n-type composite 

materials towards ethanol, as each metal oxide was seen to have opposite response performances as 

a function of operating temperature.  

Error analysis of the mean response values throughout the study showed that in general the 

responses between the repeat tests were repeatable and errors were minimal in value. This was a 

significantly different trend to that observed for both the previous n-n hetero-junction composite 

systems, which were associated to significantly larger magnitudes of error, particularly towards the 

gases towards which they showed largest responsivity magnitudes. The lower error magnitudes with 

this system, suggested poorer response behaviour in general, which was evident from the results 

presented, but also greater stability of the materials system. A further discussion of error sources and 

possible future outcome from the sources has been discussed in the final conclusions of the thesis in 

Chapter 7.  
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Chapter 6 : Emerging ZnO Materials for MOS Sensing 

In the last three Chapters, materials and gas sensing characterisation analyses of various hetero-

junction systems were presented, with a focus on mixed metal oxide material systems based on ZnO, 

as a route to achieving enhanced responsivities towards various analytes for Metal Oxide 

Semiconductor (MOS) based gas sensing applications. This Chapter focuses on the application of 

emerging ZnO materials, predominantly nanomaterials, for MOS sensing. Amongst the variety of 

materials investigated in this Chapter, detailed focus is on ZnO nanomaterials fabricated via 

continuous hydrothermal flow synthesis (CHFS), which is demonstrated as an emerging technique for 

the production of nanomaterials for MOS sensing technology. A study on the application of various 

ZnO ceramics made by Molten-Salt synthesis, Solid-State metathesis and Hydrothermal synthesis is 

also presented. Such materials demonstrate the potential for further research and development for 

new materials, including composite system, for MOS based gas sensing.   

6.1 Introduction 

The enhanced gas sensing characteristics of nanosized materials was demonstrated by Yamazoe in 

1991 [19, 326]. Materials with high surface:bulk ratios can yield a  large number of surface reactions 

and  therefore can dramatically improve the response characteristics of sensor devices [19, 327]. 

Materials design for sensing applications is a subject of academic and commercial interest [328], 

particularly with nanomaterials, where there lies the possibility of developing new sensors with 

interesting one-dimensional particle morphologies, e.g. nanoribbons, wires and belts [329] and sensor 

functionalities such as enhanced responsivity and selectivity. Key interests in the area of materials 

design are the fabrication technology used to fabricate the materials, the fabricated materials and their 

associated morphologies and their functional performance.  

ZnO in particular, is a very popular metal oxide when studying nanomaterials, as discussed in Chapter 

1, demonstrating the ability to adopt an system of morphological architectures [76, 79, 83, 84], which 

have ranged from nanorods, nanowires, nanotubes, nanocages, nanoflowers, nanotetrapods [76, 79, 

330], amongst a host of other structures, some of which have been reported to have whimsical names 

such as nanopropellers [76]. As such, ZnO has been reported to be the richest family of 

nanostructures among all materials [330], with a richer number of configurations than any known 

nanomaterial, including carbon nanotubes [330]. The synthesis technique, process conditions, 

precursors, pH of a system or concentration of the reactants are all thought to play influential role in 

controlling the morphology of ZnO nanoparticles [76].  
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Previous reports in the literature [142, 143] have established Continuous Hydrothermal Flow Synthesis 

(CHFS) as a promising technique for the production of nanostructured metal oxides for high 

performance MOS based gas sensing. The CHFS production method enables the production of large 

quantities of materials in hours with the ability to adjust the physical parameters of the synthesis 

conditions, such as temperature and pressure, and control particle characteristics [143, 331]. The 

method is also clean for the environment and energy efficient [143]. The route of fabrication generally 

involves a flow of supercritical water (Tc 374 °C and Pc 22.1 MPa), which reacts with aqueous room- 

temperature flows of metal salts in a confined jet mixer (CJM), precipitating and crystallising 

nanomaterials in the flow, in continuous mode [143]. The medium provided by the supercritical water 

allows the precipitation of the metal ions to occur rapidly, through a combination of hydrolysis and 

dehydration reactions, which precipitate and oxidize the metal ions rapidly to form oxide based 

nanomaterials [143].  

Recently, Shi et al.[143] reported on the fabrication of high performance ZnO nanomaterials via this 

technique in a pilot plant scale reactor. In their study, they reported the preparation of ZnO 

nanomaterials by using fixed concentrations of Zn(NO3)2.6H2O (0.2 M) and KOH (0.5 M) precursors 

and an auxiliary reagent hydrogen peroxide, H2O2 (30 wt.% in H2O). The oxidising agent was pumped 

in with Zn (NO3)2.6H2O in various volume ratios of 0, 0.05, 0.1, 0.15 and 0.25, and mixed with an 

aqueous flow feed of KOH. The mixed feed was then reacted with a flow of supercritical water. Five 

different samples of ZnO were reported and it was found that as the concentration of the H2O2 initially 

increased, the crystallite size of the particles decreased, and promoted high-surface area ZnO 

samples, with mainly nanorod like attributes. Volume ratios of H2O2 above 0.15 interestingly promoted 

an increase in crystallite size and thus decrease in surface area, with significant pointed rod type and 

prismatic growth of these samples reported to be observed by TEM. The ZnO samples were prepared 

as MOS sensor devices by drop coating slurries of the metal oxides, followed by heat-treatment for 

600 °C for 2 hours. One of the ZnO materials (constituting a ratio of 0.15 H2O2 : Zn(NO3)2.6H2O) 

exhibited a resistive response of 128 towards 10 ppm NO2 at 350 °C and a response of over 80 when 

exposed to 4 ppm NO2. They had reported these responses had compared favorably over other 

studies in the literature which had reported the gas sensing properties of nanoscaled ZnO materials, 

and showed CHFS as an effective technique for the fabrication of nanomaterials for MOS gas sensing 

applications. 

In another study by Elouali et al. [142], the group had reported on the fabrication of nanostructured 

In2O3 in a laboratory scale CHFS reactor. The synthesis involved a dilute feed of In (NO3)3.H2O 

precursor which was reacted with a flow of supercritical water preheated to 400 °C, which resulted in 

the rapid crystallisation and precipitation of nanosized In2O3 particles. No auxiliary reagent was 
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required in this reaction. TEM analysis showed a majority of particles to be well-defined round cubes of 

size 5 - 20 nm. Sensor devices of the material were fabricated by drop-coating a slurry of the In2O3 

nanoparticles onto MOS sensor substrates followed by heat-treatment at 600 °C for 2 hours. Drop 

coating was varied, with one sensor substrate coated with two layers and another coated with three 

layers of the In2O3 slurry. Exposure of the sensor devices to increasing concentrations of ethanol at the 

optimal operating temperature of 300 °C, showed a largest response of 14.7 towards 20 ppm of the 

analyte by the three coat sensor. When the same device was exposed to increasing concentration of 

the NH3, the highest response obtained was 1.8 against 10 ppm of the analyte at 450 °C, which was 

the optimal operating temperature of NH3 in the study. Cross-sensitivity studies of the sensor devices 

against a range of gases, which apart from NH3 (10 ppm, 450 °C) and ethanol (20 ppm, 300 °C), 

included NO2 (16 ppb, 450 °C), butane (10 ppm, 450 °C) and CO (200 ppm, 450 °C), showed 

selectivity of the device towards ethanol, with a response 4 times larger towards ethanol than all other 

analytes.  

Both these example studies, demonstrate the success of CHFS nanostructured metal oxides for MOS 

gas sensing applications. In this Chapter, new ZnO nanomaterials are prepared via the pilot plant 

scale  CHFS reactor used by Shi et al. [143] and a detailed and comprehensive gas sensing analysis 

of the resulting materials have been presented. Further the potential of ZnO ceramic materials made 

by other relatively high temperature routes, specifically molten-salt, solid-state metathesis and 

hydrothermal synthesis has also been demonstrated, for MOS gas sensing.  
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6.2 Results and Analysis: Nanomaterials based on Continuous 

Hydrothermal Flow Synthesis (CHFS) 

6.2.1 Transmission Electron Microscopy (TEM)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6–1. TEM images of as-prepared CHFS ZnO nanomaterials where (a) is of ZnO 
sample A with scale bar of 100 nm, (b) is of ZnO sample A with scale bar of 20 nm, (c) is of 
ZnO sample B with scale bar of 100 nm, (d) is of ZnO sample B with scale bar of 20 nm, (e) is 
of ZnO sample C with scale bar of 100 nm and (f) ZnO sample C with scale bar of 20 nm. 
Samples A, B and C were prepared by CHFS which involved a reaction of ambient flows of 
0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O aqueous solution and KOH aqueous solution respectively 
(each flowing at 200 mL min-1), with a supercritical water flow at 450 °C and 240 bar (flowing 
at 400 mL min-1) in a confined jet mixer.  

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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TEM images of the ZnO samples A, B and C are reported Figure 6–1 and showed a variation in their 

morphology and particle sizes as a function of the changing precursor concentration. The wide and 

narrow rod-like, spherical and hexagonal particles in sample A, observed in Figure 6–1 (a) and (b) 

were observed to be in the size range of 5 nm - 75 nm, justified by analysis of the particle size 

distribution of the sample presented in Figure 6–2. Of these, the rods predominantly spanned a range 

of 25 nm – 70 nm and the spherical and hexagonal particles predominantly exhibited a size range of 

10 nm – 25 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6–2. Particle size distribution calculated from TEM imaging of ZnO sample A prepared by 
CHFS which involved reaction of ambient flows of 0.1 M of Zn (NO3)2.6H2O aqueous solution and 
KOH aqueous solution (each flowing at 200 mL min-1) with supercritical water flow at 450 °C and 240 
bar (flowing at 400 mL min-1) in a confined jet mixer.  
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The hexagonal and spherical particles in sample B observed in Figure 6–1 (c) and (d) were observed 

to span a range of particle sizes between 20 nm – 95 nm as observed in the corresponding particle 

size distribution plot in Figure 6–3, with most particles in the range of 30 nm - 45 nm.  

 

 

 

 

 

 

 

 

 

Sample C as observed in Figure 6–1 (e) and (f) consisted of particles with mainly wide rod-like and 

spherical habits and few hexagonal habits. Particles were observed to exist in the range of 25 nm - 

150 nm as observed in the associated particle size distribution plot in Figure 6–4, with a majority of the 

particles observed to be in the range of 40 nm – 70 nm.  

 

 

 

 

 

 

 

 

  

Figure 6–3. Particle size distribution calculated from TEM imaging of ZnO sample B prepared by 
CHFS which involved reaction of ambient flows of 0.2 M of Zn (NO3)2.6H2O aqueous solution and 
KOH aqueous solution (each flowing at 200 mL min-1) with supercritical water flow at 450 °C and 
240 bar (flowing at 400 mL min-1) in a confined jet mixer.  

 

 

Figure 6–4. Particle size distribution calculated from TEM imaging of ZnO sample C prepared 
by CHFS which involved reaction of ambient flows of 0.45 M of Zn (NO3)2.6H2O aqueous 
solution and KOH aqueous solution (each flowing at 200 mL min-1) with supercritical water 
flow at 450 °C and 240 bar (flowing at 400 mL min-1) in a confined jet mixer.  
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The observed dimensions of the ZnO particles suggested that the average particle size increased with 

precursor concentration, perhaps due to influence on the surface energy for growth, suggesting an 

effective decrease in surface area. The increased particle count from sample A (Figure 6–2) to sample 

C (Figure 6–4) to analyse the particle size distribution, was also indicative of the increase in size of the 

particles from sample A to sample C, with the larger particle sizes in sample C being easy to identify. 

The extent of heterogeneity of the shapes of the ZnO particles was also observed to reduce as a 

function of increasing precursor concentration, with the shapes of the particles becoming more uniform 

with respect to each other. Both the observed trends in the size and morphological distribution as a 

function of precursor concentration were suggestive of the influence of precursor concentrations on the 

surface energy of growth of the ZnO particles. The observed hexagonal habits of the ZnO particles, 

corroborated with theory from the study by Shi et al. [143], in which it was reported that under normal 

hydrothermal conditions, in the absence of an oxidising agent such as H2O2, which promotes the 

solubility of the Zn species, the thermodynamically favoured morphology of ZnO is hexagonal [143].  

Interestingly, during the experimental synthesis, it was observed that the ZnO nanoparticle product 

yield increased with precursor concentration. Based on previous work [143], it has been reported that 

in the hydrothermal reactor, when the zinc precursor, KOH and supercritical water meet, the following 

reactions occur [143]: 

Equation 6–1                  OHZnOOHZnOHZn 2)(4 2
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2

2
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Equation 6–2         OHZnOOHZnO 22

2

2


  

 

Equation 6–1 shows that increasing the zinc and KOH precursor concentration, promotes a greater 

number of Zn2+
 ions to be formed which convert into soluble Zn (OH)4

2- species, which are the growth 

unit of ZnO. Thus, the ZnO nanomaterials are precipitated from the alkaline hydrothermal environment 

by the above reactions, with the dehydration reaction promoted by the reaction point temperature of 

335 °C. Thus the higher yield of ZnO observed as a function of increasing precursor concentration is 

justified.  

As suggested earlier in the introduction of this Chapter, previously Shi et al. [143] had reported on the 

NO2 gas sensing properties of the highly sensitive ZnO nanorod and  nanoprism based nanomaterials, 

which were made in the same reactor as the experimental study being reported in this thesis. The key 

difference between both studies however, was in the precursors used to fabricate the ZnO 

nanomaterials. In the literature study, Shi et al. had kept the concentration of the Zn(NO3)2.6H2O and 



Chapter 6: Emerging ZnO Materials for MOS sensing 

 

248 

 

KOH precursors constant and hydrogen peroxide H2O2, (as an auxiliary reagent), was pumped in with 

the Zn(NO3)2.6H2O in various volume ratios of 0, 0.05, 0.1, 0.15 and 0.25, producing 5 differing ZnO 

samples. It was found that as the concentration of the H2O2 initially increased, the crystallite size of the 

particles decreased, promoting high-surface area ZnO samples, with mainly nanorod shapes. Volume 

ratios above 0.15 of the precursors however, promoted an increase in crystallite size and thus 

decrease in surface area, and significant pointed and prismatic growth of the nanorods was observed 

by TEM. 

On a significantly smaller scale to the experimental study reported in this thesis, Ohara et al.[332] 

reported on the synthesis of fine ZnO nanorods by hydrothermal synthesis in supercritical water in a 

reactor that was reported to be only 5 cm3 in volume. In their reaction, they used an aqueous 

Zn(NO3)2.6H2O solution which had a flow rate of 2 cm3 min-1, and reacted it with supercritical water, 

which was at a temperature of 450 °C and a flow rate of 10 cm3 min-1. Inside the reactor, the 

temperature and pressure of the supercritical water were maintained at 400 °C and 30 MPa, 

respectively. The reduced size of the physical parameters in this literature study, to that reported in 

this thesis, establishes a stark contrast in the scale of reactor and resultantly the yield of product 

possible. Interestingly, TEM analysis of the resulting ZnO nanoparticles by Ohara et al. showed that 

they were associated to a mean diameter of 150 nm and a width of 600 nm, suggesting the formation 

of much larger nanoparticles than those that have been reported in this thesis. Further, their TEM 

analysis showed pure nanorod formation, unlike the variation of morphology observed experimentally.  
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6.2.2 Scanning Electron Microscopy (SEM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 x 100,000 100 nm 

(a) 

 100 nm x 40,000 

(b) 

 x 100,000 100 nm 

(c) 

 100 nm x 40,000 

(d) 

 x 100,000 100 nm 

(e) 

 100 nm x 40,000 

(f) 

Figure 6–5. SEM images of (a) and (b) ZnO A at x 100,000 and x 40,000 magnification respectively, (c) and 
(d) ZnO B at x 100,000 and x 40,000 magnification respectively and (e) and (f) ZnO C at x 100,000 and x 
40,000 magnification, respectively, after screen-printing onto gas sensor substrates and heat-treating at 600 
°C. Samples A, B and C were prepared by CHFS which involved a reaction of ambient flows of 0.1, 0.2, 0.45 
M of Zn (NO3)2.6H2O aqueous solution and KOH aqueous solution respectively (each flowing at 200 mL min-

1) with supercritical water flow at 450 °C and 240 bar (flowing at 400 mL min-1) in a confined jet mixer. 
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SEM imaging of the CHFS fabricated ZnO samples in Figure 6–5, taken after the materials were 

individually screen-printed onto MOS sensor substrates and heat-treated at 600 °C, showed a 

variation in the morphology of the three individual ZnO sensor devices. Figure 6–5 (a) and (b) showed 

evidence of smaller ZnO particles attributed to significant agglomeration in sample A, as opposed to 

the larger grains in samples B and C, which were both observed to be associated to reduced inter-

grain agglomeration, as seen in Figure 6–5 (c) & (d) and (e) & (f), respectively; particularly sample B.  

Sample A from TEM imaging was observed to be composed of the smallest particle sizes of all three 

ZnO samples. Smaller nanoparticles (which are associated to larger surface areas due to a large 

surface:bulk ratio and therefore stronger intermolecular forces, compared to larger nanoparticles) are 

likely to be associated to agglomeration and dense packing upon heat-treatment (of 600°C), within the 

sensor matrix. The agglomeration can also be accounted for by the change in the particle size 

observed in sample A pre- and post- heat treatment. The as-prepared sample A was seen to be 

composed of nanoparticles predominantly in the range of 10 nm - 25 nm analysed via TEM imaging, 

with some nanorods exhibiting larger particle sizes than 25 nm. SEM imaging however, showed the 

particle sizes to be (measured from those particles that were visible upon the surface of the 

agglomerates) in the range 50 nm – 75 nm with some as large as 100 nm. This gave evidence that 

heat-treatment had promoted growth of the nanoparticles. The nanoparticles however, were so closely 

packed together in the sensor matrix as observed in Figure 6–5 (a), that only the particles on the 

surface of the agglomerates could be observed and measured, and those in the bulk could not be 

resolved. 

In contrast, larger nanoparticles associated to lower surface:bulk ratios, implies greater thermal 

stability, and therefore less agglomeration upon heat-treatment. As such, larger nanoparticles provide 

effectively better surface site accessibility for the gaseous analyte molecules [70], through provision of 

diffusion pathways between the grain interfaces, to permeate through the body of the sensor matrix. 

SEM imaging shows reduced inter-grain agglomeration of samples B and C, however suggests growth 

of particles in both samples upon heat-treatment, with the former observed to be attributed to particle 

sizes of 50 nm - 150 nm as observed in Figure 6–5 (c) and the latter observed to be attributed to sizes 

of 110 nm - 200 nm as observed in Figure 6–5 (e).  

Despite the inter-grain agglomeration observed in sample A, the provision of diffusion pathways were 

evident through the voids present between the agglomerates (i.e. inter-agglomerate diffusion) as 

observed in Figure 6–5 (b). Sample B and C in contrast, showed evidence of providing inter-grain and 

inter-agglomerate diffusion pathways for the gaseous analyte molecules.  
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6.2.3 Powder X-Ray Diffraction (PXRD)   

 

PXRD data of the ZnO samples were in agreement with literature reports, which showed that the 

samples adopted a hexagonal wurtzite crystal structure [333], (JCPDS No. 36-1451) [143, 334]. The 

most intense reflections of the metal oxide have been labelled in Figure 6–6. The increasing peak 

intensity of the reflections in the range of 30-40 ° 2θ from sample A to sample C gave evidence of the 

increase in the apparent crystallinity of the ZnO materials. The greatest preferential intensity of the 

(101) reflection, suggested growth of the ZnO crystal structure in that plane.  

 

 

 

 

Figure 6–6. PXRD patterns of as-prepared CHFS ZnO samples ZnO A, ZnO B and ZnO C. Samples A, B and C 
were prepared by CHFS which involved a reaction of ambient flows of 0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O 
aqueous solution and KOH aqueous solution respectively (each flowing at 200 mL min-1), with a supercritical 
water flow at 450 °C and 240 bar (flowing at 400 mL min-1) in a confined jet mixer.  
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6.2.4 Raman Spectroscopy         

 

 

Raman spectroscopy of all three ZnO samples in Figure 6–7 suggested vibrations corresponding to 

wurtzite crystal structure [335, 336]. The vibration at around 439 cm-1 has been reported as a 

particularly characteristic feature of the wurtzite lattice and corresponds to the non-polar phonon E2 

high mode, associated to the O atom vibrations in the structure [335, 336]. The vibration observed at 

332 cm-1 is a second order forbidden mode corresponding to a E2-E1 phonon mode [336]. The broad 

peak at 583 cm-1 is a combination of two modes, which explains its broadness, and corresponds to the 

A1 (LO) and E1 (LO) vibrational modes. The presence of the E1 (LO) mode is disallowed, however, one 

reason for its presence has been associated to oxygen deficiencies in the ZnO materials [335, 336]. 

Finally, the peak at 384 cm-1, corresponds to the A1 (TO) mode, which is present in this case most 

likely due to induced disorder through structural influences [336]. The same Raman pattern was 

observed in a similar study by Shi et al. [143].  

Figure 6–7. Raman spectra of as-prepared CHFS ZnO samples ZnO A, ZnO B and ZnO C. Samples A, B and 
C were prepared by CHFS which involved a reaction of ambient flows of 0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O 
aqueous solution and KOH aqueous solution respectively (each flowing at 200 mL min-1), with a supercritical 
water flow at 450 °C and 240 bar (flowing at 400 mL min-1) in a confined jet mixer.  
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6.2.5 Brunauer-Emmet-Teller (BET) Surface Area measurements and 

Crystallite size  

 

BET results presented in Figure 6–8, revealed that the specific surface area of the ZnO samples 

decreased from sample A to C, i.e. as a function of precursor concentration. This trend corroborated 

with the TEM analysis in Figure 6–1, which established that the higher concentrations of both Zn 

(NO3)2.6H2O and KOH precursors, resulted in increasing particle size, suggesting a decrease in the 

specific surface area of the particles. This observed trend of the surface area reiterated the influence 

of precursor concentration on the surface energy of the particle growth and suggested that increasing 

concentration of precursor promoted greater surface energy to the particles, resulting in larger particle 

sizes. 

The Scherrer equation (Equation 6–3) was used in conjunction with the PXRD data presented in 

Figure 6–6, to understand the general trend in crystallite size variation, by calculating the approximate 

crystallite sizes of the three different ZnO samples. These have been plotted against the associated 

BET surface areas in Figure 6–8.  

Figure 6–8. BET surface area vs. approximated Crystallite Size (Scherrer equation) of as-prepared CHFS samples 
ZnO A, ZnO B and ZnO C. Samples A, B and C were prepared by CHFS which involved a reaction of ambient flows 
of 0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O aqueous solution and KOH aqueous solution respectively (each flowing at 200 
mL min-1), with a supercritical water flow at 450 °C and 240 bar (flowing at 400 mL min-1) in a confined jet mixer.  
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Equation 6–3        




cos

k
D    

In the calculation, K, the shape factor was assumed to be 0.90 [337], λ, the X-ray wavelength was 

1.5418 Å, β was the full width half-maximum of the diffraction line and θ was the Bragg angle.  

Figure 6–8 showed an inverse relationship between the crystallite size and the surface area, with the 

crystallite size seen to increase from sample A to sample C, as the surface area concurrently 

decreased. The crystallite size trend was in good agreement with the observed trend of particle sizes 

observed via TEM, as a function of precursor concentration.  

6.2.6 Gas Sensing  

6.2.6.1 Ethanol Sensing 

 

Figure 6–9 presents the conductive response traces of all three ZnO sensors at an operating 

temperature of 350 °C, against increasing concentrations of ethanol. Tabulation of the mean 

responses values of the sensor devices in the CHFS ZnO system from the repeat tests against 

Figure 6–9. Conductive response traces of CHFS ZnO samples: ZnO A, ZnO B and ZnO C at 350 °C against 5, 
10, 20, 40 and 80 ppm of ethanol. Samples A, B and C were prepared by CHFS which involved a reaction of 
ambient flows of 0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O aqueous solution and KOH aqueous solution respectively 
(each flowing at 200 mL min-1), with a supercritical water flow at 450 °C and 240 bar (flowing at 400 mL min-1) in 
a confined jet mixer.  
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exposure towards the various ethanol concentrations at 350 °C and the associated 95% confidence 

intervals have been presented in Table 6–1.  

Table 6–1. Average conductive responses of sensor devices in CHFS ZnO system from all repeat tests against 
various ethanol concentrations at 350 °C and associated errors in the form of 95% CIs.  

 
10 ppm 20 ppm 40 ppm 80 ppm 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% CI 

ZnO sample A 3.93 ±0.34 11.78 ±0.51 23.36 ±0.51 45.7 ±0.69 

ZnO sample B 3.53 ±0.25 13.91 ±0.24 34.25 ±0.30 Electronic capping out 

ZnO sample C 3.63 ±0.62 11.48 ±1.30 23.27 ±1.69 45.2 ±0.20 

 

350°C was the operating temperature at which all three sensor devices exhibited substantial   

conductive response towards ethanol (as observed further in Figure 6–13). In particular both sample A 

and sample C were observed to exhibit better responses at this operating temperature towards 

ethanol, in comparison to all remaining temperatures in the range of 300 °C – 500 °C. 

Comparison of the response magnitudes of all three sensor devices at this temperature, showed that 

ZnO sample B outperformed ZnO samples A and C, with a response of 79.7 towards 80 ppm of 

ethanol, which was a 1.8-fold enhanced response with respect to samples A and C, which both 

interestingly exhibited the same response of 45 towards 80 ppm of the analyte.  

In comparison to these response results, Wang et al. [235] reported on the ethanol gas sensing 

properties of ZnO nanorods, fabricated by a low temperature hydrothermal synthesis route, which 

performed optimally at 320 °C, with a response value of 22 towards 50 ppm and 26 towards 100 ppm. 

Rai et al. [338] also reported on the ethanol gas sensing properties of ZnO nanorods prepared via a 

microwave assisted hydrothermal method which had exhibited a response of 6.83 at an operating 

temperature of 400 °C towards 250 ppm. Wan et al. [339] reported on the gas sensing properties of 

ZnO nanowires, which were fabricated via a thermal evaporation method and deposited onto MEMS 

substrates. The group reported their ZnO materials to have a response of 32 against 100 ppm ethanol 

at 300 °C.  

Figure 6–9 showed that sample B was associated to a significant increase in conductive response 

amplitude between an exposure of 40 ppm and 80 ppm of ethanol. In contrast, both ZnO samples A 

and C, showed a lower increase in response amplitude between both concentrations i.e. both samples 

saturated quicker than sample B. This behaviour has been more clearly presented in Figure 6–10.  
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Figure 6–10 illustrates the reduced gradient of conductive response profiles of both ZnO A and ZnO C, 

in comparison to ZnO B, as a function of increasing ethanol concentration. The reduced gradients 

indicate that both samples A and C do and will saturate a lot earlier than sample B as a function of the 

increasing concentrations of ethanol. This behaviour was suggestive of the limited number of surface 

sites in samples A and C, which implied a restricted number of adsorbed oxygen anions on the metal 

oxide surfaces, limiting the overall yield of ethanol reactions that could occur. As such, an increase in 

the concentration of ethanol from 40 ppm to 80 ppm, resulted in only small increases in the conductive 

response amplitudes for both the samples, as only a limited number of ethanol molecules could be 

accommodated on the metal oxide surfaces at 80 ppm, with respect to 40 ppm.  

In contrast, the significant increase in conductive response of sample B between 40 ppm and 80 ppm 

was indicative of an increase in the yield of ethanol surface reactions occurring at 80 ppm relative to 

40 ppm. This behaviour suggested a larger number of surface sites in sample B, resulting in an 

increased concentration of adsorbed anionic oxygen species. This would lead to a higher yield of 

Figure 6–10. Conductive response of CHFS ZnO samples: ZnO A, ZnO B and ZnO C at 350 °C against 10, 20, 
40 and 80 ppm of ethanol. Samples A, B and C were prepared by CHFS which involved a reaction of ambient 
flows of 0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O aqueous solution and KOH aqueous solution respectively (each 
flowing at 200 mL min-1), with a supercritical water flow at 450 °C and 240 bar (flowing at 400 mL min-1) in a 
confined jet mixer.  
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ethanol species (associated to 80 ppm ethanol) being accommodated on the surface of the sample B, 

resulting in a significant increase in conductive response amplitude with respect to 40 ppm.  

This difference in response behaviour between the three ZnO samples may be accounted for by the 

lower agglomerated network between the individual ZnO grains associated to sample B, as observed 

in Figure 6–5 (d). Such a microstructure can provide inter-grain (and inter-agglomerate) diffusion 

pathways [70] for the gaseous analyte molecules to permeate through, increasing the overall surface 

site interaction. In contrast, sample A was seen to be associated to significant agglomeration between 

the ZnO grains as observed in Figure 6–5 (a), accounted for by the impact of heat-treatment on the 

smaller nanoparticle sizes. This agglomeration is suggestive of reduced surface site accessibility for 

the ethanol analyte molecules and as such could have influenced its poorer response with respect to 

ZnO sample B. Korotchenkov [70] reported that agglomeration can result in “capsulated zones” 

forming within the matrix of the sensor, which are areas through which gas molecules cannot travel. As 

such, agglomeration proves detrimental for gas responsivity, which is what was observed with sample 

A. The larger particle sizes of ZnO sample C, as observed via TEM imaging Figure 6–1 (e) and (f), 

may justify its poor response performance with respect to sample B, with larger particle size 

associated to lower surface : bulk ratios, which indicates a reduced number of surface sites for the 

ethanol molecules to interact with.  

Careful observation of Figure 6–9 shows that in terms of kinetics of response, ZnO sample C was 

attributed to significant saturation of its surface sites accounted by the flattened box shape of its 

response curves against all concentrations of ethanol, indicating that this sensor device was 

associated to a fast response with a t90 (80 ppm) calculated to be 46 seconds. The response curves of 

ZnO sample A were seen replicate those of ZnO sample C; with all exhibiting saturation of the surface 

sites and indicating a similar response speed to that of sample C, with the t90 (80 ppm) calculated to be 

47 seconds. In contrast to both samples A and C, the response curves of ZnO sample B were 

attributed to greater curvature, indicating that the surface sites of the sample were not fully saturated. 

This suggested the availability of further surface sites that could be occupied and the sample was 

calculated to have a t90 (80 ppm) of 98 seconds, indicating a slower response speed of the sample, 

with respect to samples A and C. The study showed that the kinetics was compromised for the 

enhanced responsivity associated to ZnO sample B.  

Figure 6–9 further indicated that the kinetics of recovery to baseline was the fastest for ZnO sample A 

with a t-90 (80 ppm) calculated to be 282 seconds. The fast recovery of this sample was observed by its 

very steep return to baseline after exposure to 80 ppm (and lower concentrations) of ethanol. ZnO 

sample C was the second fastest sample to recover with a t-90 (80 ppm) calculated to be 464 seconds. 
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The slower recovery of this sample was identified through its more gradual return to baseline after 

exposure of the different concentrations of ethanol relative to sample A. Of all three samples, it was 

evident from Figure 6–9, that sample B was associated to the slowest recovery with the approach of 

the response to baseline value observed to be very gradual. The calculated t-90 (80 ppm) value of 692 

seconds of sample B suggested slow recovery, in comparison to both other ZnO samples.  

The slow recovery of sample B, in comparison to samples A and C, may have been associated to the 

stronger adsorption or bonding of the products from the decomposition of ethanol, such as acetal to 

the surface of the metal oxide particles of the sample, in comparison to the propensity of the 

adsorption and bonding that the other two samples had for the decomposition products [340, 341]. The 

lower inter-grain agglomeration may also account for the slower recovery; with a greater number of 

surface sites to be recovered per unit time, accounting for slower kinetics of recovery. For example, 

when Kanan et al. [341] reported measuring the resistance measurements on a sample of porous WO3 

and non-porous WO3 against exposure to various alcohols and dimethyl methylphophonate (DMMP), 

the group had reported observing a steep change in the increase in the resistance of the non-porous 

oxide relative to the porous oxide, which potentially suggested slower diffusion in the porous oxide, 

accounted for by the larger number of surface sites it provided for gas interaction.  

The conductive response convergence of samples A and C is an interesting feature of both Figure 6–9 

and Figure 6–10 and suggests that both ZnO samples may have been associated to an equivalent 

occupation of electrons in the conduction bands of the semiconducting oxides, resulting in a similar 

yield of ethanol surface reactions at 350 °C. Furthermore, the similar response behaviour between 

both samples suggests that the smaller particle sizes of sample A which were observed to promote 

significant inter-grain agglomeration, may have balanced out the larger particle sizes of sample C. 

Both factors contributing to lower surface:bulk ratios. As such, both factors contributed similarly to 

limiting the surface site accessibility of the ethanol molecules with the metal oxide matrices.  
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6.2.6.2 NO2 Sensing  

 

Figure 6–11 presents the response curves of the CHFS based ZnO nanomaterials against increasing 

concentrations of NO2 at 250 °C. Tabulation of the mean responses values of the sensor devices in 

the CHFS ZnO system from the repeat tests against exposure towards the various NO2 concentrations 

at 250 °C and the associated 95% confidence intervals have been presented in Table 6–2.  

Table 6–2. Average resistive responses of sensor devices in CHFS system from all repeat tests against various 
NO2 concentrations at 250 °C and associated errors in the form of 95% CIs. 

 
100 ppb 200 ppb 400 ppb 800 ppb 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

ZnO sample A 4.86 ±0.72 18.29 ±2.93 31.66 ±0.39 64.04 ±1.36 

ZnO sample B 6.38 ±1.44 38.92 ±4.34 80.71 ±9.98 159.33 ±21.53 

ZnO sample C 3.54 ±0.52 12.66 ±3.58 19.45 ±2.06 36.00 ±5.90 

 

Figure 6–11. Resistive response traces of CHFS ZnO samples: ZnO A, ZnO B and ZnO C at 250 °C against 
100, 200, 400 and 800 ppb of NO2. Samples A, B and C were prepared by CHFS which involved a reaction of 
ambient flows of 0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O aqueous solution and KOH aqueous solution respectively 
(each flowing at 200 mL min-1), with a supercritical water flow at 450 °C and 240 bar (flowing at 400 mL min-1) in 
a confined jet mixer.  
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250 °C was the was the operating temperature at which all three sensor devices exhibited substantial   

resistive response towards NO2 (presented further in Figure 6–14); in particular both sample A and 

sample C were observed to exhibit better responses at this operating temperature to NO2, in 

comparison to all remaining temperatures in the range of 300 °C – 500 °C.  

Figure 6–11 shows that ZnO sample B gave a larger response towards all concentrations of NO2 

exposure (in comparison to both samples A and C), with the maximum response of this sensor device 

attributed to 141 against 800 ppb of the analyte. This was a 2.1 fold enhanced response in comparison 

to sample A (which exhibited a response of 65.7) and 4.3 fold enhanced response with respect to 

sample C (which exhibited a response of 33), under the same operating conditions.  

In the study by Shi et al. [143], the optimal temperature of operation of ZnO nanomaterials fabricated 

in the CHFS pilot plant was 350 °C against NO2, with the highest response of 128 achieved against 10 

ppm of the analyte. Liu et al. [51] reported observing ZnO nanorods, with a diameter of ~33 nm, 

prepared by a hydrothermal method, exhibiting a response of 199 towards 5 ppm NO2 in N2 carrier gas 

at 250 °C. Ozturk et al. [342] reported on ZnO nanorods of size 60 nm, also fabricated by a 

hydrothermal method, exhibiting a response of 2.1 toward 1000 ppb NO2 at 200 °C. These literature 

studies suggest that the ZnO nanomaterials reported in this thesis are successful for the detection of 

NO2.  

Analogous to the observation with ethanol, ZnO sample B was seen to exhibit a substantial increase in 

resistive response amplitude as a function of increasing concentration of NO2, particularly between 

400 ppb and 800 ppb. In contrast, ZnO samples A and C were seen to be attributed to shallower 

increases in resistive response as a function of increasing NO2 concentration. This behaviour is 

presented more clearly in Figure 6–12.  
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The rapid increase in the resistive response of ZnO sample B was indicative of a substantial increase 

in yield of NO2 surface reactions as a function of increasing NO2 exposure concentration, which 

promoted a substantial abstraction of charge carriers (as a result of the NO2 interaction with the 

surface of n-type semiconducting oxides) from the electron depletion layer, resulting in such a 

significant change in the conductivity of the material.  A further indication of this response behaviour 

was the inherent change in the size of the electron depletion layer (Debye Length). If the sample did 

contain ZnO grains which were comparable to twice the size of the Debye Length, then the space 

charge region will have developed within the crystallites of the grains, inducing grain controlled 

conductivity, which is more responsive than grain boundary controlled conductivity [63, 68, 269], as 

discussed in Chapter 1. This may explain the larger and faster increase in conductivity of sample B 

compared to samples A and C. Furthermore, the possibility of a larger yield of NO2 surface reactions 

on the surface of sample B is indicative of a highly populated conduction band or the availability of a 

larger number of surface sites in this material to promote an enhanced number of NO2 surface 

reactions. The larger number of surface sites can be accounted for by the nano-sized particles as well 

as the lower inter-grain agglomeration observed between the grains via SEM imaging in Figure 6–5 (c) 

and (d) of the ZnO sample B sensor device. 

Figure 6–12. Resistive response of CHFS ZnO samples: ZnO A, ZnO B and ZnO C against increasing 
concentrations of NO2 at 250 °C. Samples A, B and C were prepared by CHFS which involved a reaction of 
ambient flows of 0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O aqueous solution and KOH aqueous solution respectively 
(each flowing at 200 mL min-1), with a supercritical water flow at 450 °C and 240 bar (flowing at 400 mL min-1) in 
a confined jet mixer.  

 

 



Chapter 6: Emerging ZnO Materials for MOS sensing 

 

262 

 

In terms of the kinetics of response and recovery against NO2, Figure 6–11 illustrated that ZnO sample 

C responded the slowest in comparison to both ZnO samples A and B, observed by its shark-fin 

response curve, which responded gradually upon exposure to the analyte. Calculation of t90 (800 ppb) 

value of the device was 293 seconds which was slower than sample A, which had a calculated t90 (800 

ppb) value of 133 seconds and sample B which had a t90 (800 ppb) of 155 seconds. The kinetics of the 

recoveries of the samples were also seen to be attributed to a similar trend with sample C associated 

to the slowest recovery with a t-90 (800 ppb) value calculated to be 894 seconds, whilst for the sample 

A the t-90 (800 ppb) value was 645 seconds and that for sample B was 877 seconds. The long 

response and recovery times here are likely to have been influenced by the low temperatures of 

operation of 250 °C, in comparison to those observe for ethanol at 350 °C. An increase in the thermal 

energy in the system, through an increase in operating temperature is statistically likely to promote a 

larger concentration of electrons to the conduction band of ZnO, promoting faster response and 

recovery of the ZnO sensor materials towards NO2.  

Zhang et al. [343] had reported on the characterization and gas sensing properties of ZnO hollow 

spheres of sizes 200 nm – 360 nm, with shells of thickness 25 nm, which were prepared using carbon 

microsphere templates. The group had reported that their materials had shown an optimal response at 

240 °C towards 10 ppm, 50 ppm and 100 ppm NO2, with associated response of 140.6, 172.8 and 

286.8, respectively. The respective response times towards each concentration were reported to be 

31, 19 and 9 seconds respectively. In comparison to the literature study, the responsivities of the 

CHFS based ZnO materials presented in this thesis are better, given the ppb concentration range of 

NO2 tested here, with ZnO sample B seen to exhibit a response of 141 toward 800 ppb NO2 at 250 °C. 

The response times however, obtained by Zhang et al., were significantly better than those reported in 

this thesis, however, this could be accounted for the higher concentrations (in the ppm range) of NO2 

that Zhang et al. used which are likely to saturate the surface sites faster than  ppb concentrations in 

the same time.   

One of the key trends observed in terms of response and recovery times in this Chapter and also in 

the previous experimental Chapters for all sensor devices fabricated, is the slower recovery times 

relative to the response times. Choi et al. [344] have reported in their study, based on other works in 

the literature, that the response times of sensor devices based on the n-type semiconducting oxides 

are usually associated to shorter response times in comparison to recovery times, when the devices 

are exposed to reducing gases, independent of the n-type material used. They report that this trend 

indicates that the diffusion of the analyte gas to the surface and the body of the sensor matrix and its 

subsequent oxidation with the surface adsorbed anionic oxygen species such as O- or O2-, is generally 

shorter than a series of recovery reactions that take place. The recovery times of MOS sensors [344, 
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345] are said to be made up of a series of sequential steps which include the counter-diffusion of the 

oxidized product gases, the diffusion of oxygen species towards the metal oxide surface, and the 

adsorption, dissociation and ionization processes of the oxygen species; all of which are thought to 

slow down the overall recovery of the metal oxide. In the studies reported in this thesis, the slower 

recovery times relative to fast response times, are not limited to reducing gases, but are also seen for 

the oxidising gas, NO2.   

6.2.7 Key influential factors effecting responsivity order of ZnO samples 

A, B and C. 

A key observation from Figure 6–9 - Figure 6–12 is the uncorrelated behaviours between the response 

magnitudes/orders of ZnO samples A and B, and their associated particle sizes. Smaller grain sizes 

were reported by Yamazoe to induce an increase in gas sensing responsivity [19, 326]. Given that 

sample A was associated to the smallest particle sizes of all three ZnO samples (and therefore a 

larger surface to bulk contribution) it was expected that it would exhibit the largest response [70]; 

instead, sample B has been observed to exhibit the best response magnitudes. Particle sizes 

however, are not the only physical contributions to the overall microstructure of the material, and 

therefore are not deterministic of the final response behaviours. There are various key physical factors 

that potentially played an influential role over the microstructure of both samples [70], contributing to 

the responsivity behaviours observed. These factors are briefly discussed in the following sections.  

6.2.7.1 Effect of particle size and morphology 

Sample A is composed of the smallest nanoparticles of all three ZnO samples and smaller 

nanoparticles (which are attributed to larger surface to bulk contributions and therefore stronger 

intermolecular forces, compared to larger nanoparticles), have greater propensity to be tightly 

agglomerated and densely packed within the sensor matrix. SEM imaging showed evidence of visible 

agglomeration of the grains in sample A in Figure 6–5 (a) and (b). In comparison, reduced inter-grain 

agglomeration was visible in samples B and C containing larger nanoparticles as observed in Figure 

6–5 (c) & (d) and (e) & (f) respectively, particularly in sample B. Reduced agglomeration, implies 

greater surface site accessibility, promoting better access for the analyte molecules to the active 

surface sites [70], allowing the target gas to permeate and diffuse through the volume of the sensor 

matrix. Thus the dimensions of the particles play a key role in determining the packing structure [170] 

of the particles as well as the surface site accessibility within the gas sensing material.  

It has also been reported that the external planes of nanocrystals participate in the interaction between 

the solid and gas, and therefore, play an important role in the determination of the gas sensing 

properties [70]. Additionally, the shape of the nanocrystal has been reported to determine the 



Chapter 6: Emerging ZnO Materials for MOS sensing 

 

264 

 

crystallographic planes, the inter-grain contacts and permeability of gas, among other physical factors 

[70]. This suggests that the morphology of the crystallites influences the observed gas sensing 

behaviour and that the greater concentration of hexagonal particles with multiple facets in sample B 

potentially provided a larger number of surfaces for surface reactions, in comparison to crystal 

morphologies which possess limited facets, such as spheres and rods, which dominated samples A 

and C. In this way, both particle size and morphologies may have been key influencing factors for the 

enhanced response behaviour of sample B in comparison to both A and C.  

6.2.7.2 Effect of heat-treatment 

Heat-treatment is another factor which can influence the surface area of the materials through 

promoting agglomeration, sintering and neck formation effects between the individual particles [63]. 

Further, it is well-established that heat-treatment can effect an increase in the size of particles [65, 

346]. Comparison of the TEM images in Figure 6–1 and the post-heat treated particles via SEM in 

Figure 6–5 did show evidence of the growth of the nanoparticles after heat-treatment.  

The formation of necks at the grain boundary, due to sintering [63], has been reported to take place at 

extremely high temperatures of annealing which lie in the range of 700 – 800 °C and greater [65, 70]. 

However  600 °C, (which was the heat-treatment temperature used in this study), is considered a 

substantially high temperature for nanomaterials and has been reported to promote agglomeration and 

potential sintering of ZnO nanoparticles [346]. SEM images of ZnO samples A, B and C seen in Figure 

6–5 (a), (c) and (e), respectively, did show evidence of particle agglomeration between the particles 

post heat-treatment at 600 °C. Further, operation of the sensor devices at 400 °C - 500 °C during gas 

sensing experiments, may have also promoted microstructural changes to the nanomaterials. Singh et 

al. [233] reported on thermal sintering effects on ZnO nanomaterials, with temperatures as low at 600 

°C, having an effect on the growth of the particles. For example, 6 nm particles at 400 °C, were 

reported to grow as large as 30 nm at 600 °C to as large as 65 nm at 800 °C, with agglomeration also 

observed as a function of temperature. Agglomeration can pose various problems for gas sensing 

applications, the first of which is lowering responsivity due to loss of grain boundary and neck 

contributions to the surface contribution [65], which results in lowering the surface site accessibility and 

the provision of diffusion pathways for the gaseous molecules to travel through. The second 

disadvantage of agglomeration is potentially slowing the speed of response as the diffusion through 

agglomerated particles can be more difficult and can take longer [346]. 

Here, agglomeration was seen to be more prominent with the smaller nanomaterial particles in sample 

A, in comparison to the larger nanomaterial particles in samples B and C. Such closures between the 

grains or these “capsulated zones” [70] can contribute to lowering the inter-grain diffusion of the gas 
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molecules throughout the volume of the sensing matrix [70], thus, decreasing the overall response of 

the material. Heat treatment conditions are likely to affect the microstructure of smaller nanoparticles 

more dramatically due to weaker intermolecular forces existing between the grains in contrast to larger 

nanoparticles. 

6.2.7.3  Effect of neck formation 

The profound effects of heat-treatment on the grain boundaries of nanoparticles, which can promote 

neck formation effects between the grain interfaces, can result in the grain boundary contributions 

dominating the overall gas sensing performance of a material. If the extent of sintering between the 

particles is too profound, it can result in the inner region of the neck behaving like the bulk of the 

material, making only the surface of the particles sensitive, thus contributing to a lower responsivity 

[65]. In such a case, the sintering is so profound that it results in the loss of the grain boundary and 

neck contributions and this is possible with grains, particularly in the nm range, exposed to high 

temperatures. If however the particles can overcome the thermal energy barrier, then less sintering 

between the grain boundaries is likely which implies the grain boundaries and the neck region can 

contribute to the overall surface, making the material significantly more responsive [65]. In the case of 

this study the dimensions and the intermolecular forces of the nanoparticles, contribute to their 

instability under the applied heat-treatment conditions, which indicates significant domination of grain 

boundary contributions to the overall responsivity. 

In a study by Jun et al. [346], commercial ZnO nanoparticles with an average crystallite size of ca. 120 

nm, with an system of different shapes exhibited a response value of 150 toward 400 ppb NO2 at 200 

°C. In their study, heat-treatment was conducted at 400 °C for 12 hours, which was reported as the 

optimal heat-treatment temperature (as it maintained the porous network of grains and prevented 

substantial agglomeration of the nanoparticles). Neck formation effects as well as an increase in 

particle size (originally 70 nm) were also observed in the report however, their sensors displayed 

excellent responses. In comparison, Figure 6–11 and Figure 6–12 showed that ZnO sample B (which 

was heat-treated at 600 °C for 1 hour) was attributed to a response of 71 towards 400 ppb NO2 at 250 

°C. Comparison to Jun et al’s report suggests that the thermal treatment regime is something to be 

further experimented with, to evaluate the ideal heat-treatment regime to obtain the optimal 

microstructural development of the CHFS based ZnO nanomaterials.  

Overall, various physical factors potentially play complex roles towards manipulating the 

microstructure of the nanomaterials and can help to explain the behaviour of the ZnO samples; in 

particular for ZnO samples A and B. In the case of ZnO sample C, physical attributes such as largest 
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particle size, greater agglomeration (in comparison to ZnO sample B) and lack of multi-facetted 

crystallites, may have contributed to its weaker responsivity. 

Figure 6–13 and Figure 6–14 present the temperature profile of the CHFS sensor devices between 

250 °C and 500 °C, when exposed to 80 ppm of ethanol and 800 ppb of NO2, respectively. The 

graphs show that the specific optimal operating temperatures for each device were different. For 

ethanol, sample A exhibited optimal performance at 300 °C with a response of 47, sample B at 400 °C 

with a response of 84 and sample C at 350 °C (also observed in Figure 6–9) was attributed to 

response of 45. All sensor devices were seen to exhibit substantial performance at an operating 

temperature of 350 °C, as mentioned earlier in the Chapter. With NO2, samples A and C were not 

seen to be attributed to any specific optimal performance temperature, however were seen to exhibit 

the best performance at 250 °C, with sample A exhibiting a response of 63 and sample C a response 

of 33. Sample B in contrast was associated to a specific optimal operating temperature of 300 °C, with 

an associated response of 166, at this temperature.  
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Figure 6–13. Conductive response of CHFS ZnO samples: ZnO A, ZnO B and ZnO C as a function of increasing 
operating temperature against 80 ppm of ethanol. Samples A, B and C were prepared by CHFS which involved a 
reaction of ambient flows of 0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O aqueous solution and KOH aqueous solution 
respectively (each flowing at 200 mL min-1), with a supercritical water flow at 450 °C and 240 bar (flowing at 400 
mL min-1) in a confined jet mixer.  

 

Figure 6–14. Resistive response of CHFS ZnO samples: ZnO A, ZnO B and ZnO C as a function of increasing 
operating temperature against 800 ppb of NO2. Samples A, B and C were prepared by CHFS which involved a 
reaction of ambient flows of 0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O aqueous solution and KOH aqueous solution 
respectively (each flowing at 200 mL min-1), with a supercritical water flow at 450 °C and 240 bar (flowing at 400 
mL min-1) in a confined jet mixer.  
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The variation in the optimal performance as a function of temperature modulation for the three ZnO 

samples against both ethanol and NO2 was indicative of the influence of temperature effects to obtain 

the optimal responsivity. In particular, the optimal response of ZnO sample B towards ethanol at 400 

°C and NO2 at 300°C, was a particular feature when comparing both Figure 6–13 and Figure 6–14and 

such behaviour has been reported previously in the literature. For example, Zhang et al. [343], had 

reported that their ZnO hollow spheres, were attributed to optimal responsivity against oxidising NO2 at 

240 °C, but an optimal performance against reducing NH3 at 220 °C. Such behaviour can be 

accounted for by the characteristic temperature-conductance profiles [20, 137, 208] not only for the 

target gas, but also for the gas sensitive metal oxides. Such profiles have been explained to be 

associated to a volcano - plot type or bell shape behaviour [347], where the response is greatest at the 

central temperature of the temperature range, but lowest at both its highest and lowest extremes, 

which is what was observed experimentally in Figure 6–14 and Figure 6–14. As discussed in Chapter 

3, the shape of these profiles is reported to be influenced by a number of complex factors, which 

include the differing stabilities of the surface oxygen species adsorbed on the surface of the different 

materials and also the different optimum oxidising temperatures of the target analytes [343]. Further 

chemical and physical factors, such as the rates of adsorption and desorption of oxygen and the target 

analytes, or of oxidation products, the rate of surface decomposition of target analytes, the charge-

carrier concentration (in the conduction band as well as the electron depletion layer) and the Debye 

length in the semiconductor also contribute to the response of the sensor and thus its conductance-

temperature profile [137, 239]. In this case with nanomaterials, where grain-boundary conditions play a 

very prominent role, it is also possible that thermal influences on the microstructural behaviour of the 

materials are likely to have also influenced the shape of the conductance-temperature profiles against 

both ethanol and NO2.  

 

 

 

 

 

 

 

 



Chapter 6: Emerging ZnO Materials for MOS sensing 

 

269 

 

6.2.8 Further Gas Sensing Studies 

Further gas sensing studies of the CHFS ZnO sensor devices was conducted against a range of 

reducing gases to include acetone, NH3 and CO (and ethanol which has already been discussed), to 

evaluate their selectivity if put in a mixed atmosphere of reducing gases. Studies were conducted at 

the specific optimal operating temperatures (i.e. operating temperature specific to each sensor device) 

determined from their responsivities towards ethanol in Figure 6–13. These temperatures were: ZnO A 

– 300 °C, ZnO B – 400 °C and ZnO C – 350 °C.  

 

Figure 6–15 presents the responses of the three devices against the highest concentration of each 

reducing gas tested at the specific optimal operating temperatures. The figure establishes that the 

system of three sensor devices showed minimal response towards CO and NH3 with all devices 

exhibiting baseline response (R/R0 or R0/R = 1) towards both gases, despite the concentrations of both 

analytes being higher in comparison to acetone. Against 8 ppm acetone, the devices exhibited 

quantifiable responses, with ZnO sample B exhibiting the highest response of 15.1 at 400 °C. Both 

ZnO samples A and C were seen to exhibit the same response of 6.1 towards 8 ppm acetone at 300 

Figure 6–15. Conductive responses of CHFS ZnO samples: ZnO A sensor at 300 °C, ZnO B at 400 °C and 
ZnO C 350 °C against 8 ppm acetone and 600 ppm CO. The inset presents the resistive response of the sensor 
devices at the same operating temperatures against 20 ppm NH3. Samples A, B and C were prepared by CHFS 
which involved a reaction of ambient flows of 0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O aqueous solution and KOH 
aqueous solution respectively (each flowing at 200 mL min-1), with a supercritical water flow at 450 °C and 240 
bar (flowing at 400 mL min-1) in a confined jet mixer.  
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°C and 350 °C, respectively. It was interesting to observe the same responsivities of both ZnO sample 

A and C at the differing operating temperatures towards acetone, as well as the same responsivities 

towards ethanol at 350 °C observed earlier in Figure 6–9 and Figure 6–10.  

Table 6–3  tabulates the responsivities of the individual ZnO materials towards 10 ppm ethanol and 8 

ppm acetone at the associated specific optimal operating temperatures.  

Table 6–3. Comparison of conductive responses of ZnO A, ZnO B and ZnO C sensor devices at 300 °C, 400 °C 
and 350 °C respectively, against 8 ppm acetone and 10 ppm ethanol. Samples A, B and C were prepared by 
CHFS which involved a reaction of ambient flows of 0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O aqueous solution and 
KOH aqueous solution respectively (each flowing at 200 mL min-1), with a supercritical water flow at 450 °C and 
240 bar (flowing at 400 mL min-1) in a confined jet mixer.   

Sensor device @ specific 
optimal operating 

temperature 

Conductive Response (R0/R) 
against 

8 ppm acetone 

Conductive Response (R0/R)  
against 

10 ppm ethanol 

ZnO A @ 300 °C 6.1 3.6 

ZnO B @ 400 °C 15.2 5.0 

ZnO C @ 350 °C 6.1 3.3 

 

Comparison of the conductive responses of the three sensors against 8 ppm acetone and 10 ppm 

ethanol, showed that all three sensors were attributed to higher responsivities against 8 ppm acetone, 

suggesting that in a mixed atmosphere of 10 ppm ethanol and 10 ppm acetone, the sensor devices 

are likely to be selective towards 10 ppm acetone.   

A more detailed presentation of the response results against increasing concentrations of acetone has 

been presented in Figure 6–16 showing a detection limit of 1 ppm acetone for ZnO B and 2 ppm for 

both ZnO A and C. Tabulation of the mean responses values of the sensor devices in the CHFS ZnO 

system from the repeat tests against exposure towards the various acetone concentrations and the 

associated 95% confidence intervals have been presented in Table 6–4.  
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Table 6–4. Average conductive responses of sensor devices in CHFS system from all repeat tests against 
various acetone concentrations at corresponding operating temperatures, and associated errors in the form of 
95% CIs. 

 
1 ppm 2 ppm 4 ppm 6 ppm 8 ppm 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

ZnO sample A 
@ 300 °C 

1.36 ±0.07 2.31 ±0.14 3.73 ±0.31 4.97 ±0.41 6.10 ±0.47 

ZnO sample B 
@ 400 °C 

1.92 ±0.10 4.46 ±0.26 7.99 ±0.70 11.38 ±1.19 14.58 ±1.74 

ZnO sample C 
@ 350 °C 

1.33 ±0.07 2.28 ±0.22 3.58 ±0.44 4.75 ±0.65 5.81 ±0.84 

 

The selective acetone detection by ZnO nanorod systems was recently reported by Zeng et al. [323]. 

In the study, the group reported the growth of ZnO nanorods system thin films via aqueous solution 

methods. Upon exposure to 100 ppm acetone at an operating temperature of 300 °C, the thin film 

sensor was found to exhibit a response of 30.4, which was significantly higher than a range of other 

test gases which included 100 ppm ethanol, to which the sensor only exhibited a response of 12, 

suggesting the sensor exhibited a 2.5-fold selective response towards acetone. When their sensor was 

exposed to 10 ppm of acetone, they had observed a response of 4, showing that comparatively the 

CHFS samples, particularly sample B, performed better however at 300 °C or higher operating 

Figure 6–16. Conductive response of CHFS ZnO sensor devices: ZnO A at 300 °C, ZnO B at 400 °C and ZnO C 
at 350 °C as a function of increasing concentrations of acetone. Samples A, B and C were prepared by CHFS 
which involved a reaction of ambient flows of 0.1, 0.2, 0.45 M of Zn (NO3)2.6H2O aqueous solution and KOH 
aqueous solution respectively (each flowing at 200 mL min-1), with a supercritical water flow at 450 °C and 240 
bar (flowing at 400 mL min-1) in a confined jet mixer.   
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temperatures. Direct comparison however between the two studies is difficult as the group reported 

the sensing properties of a thin film, which is attributed to significantly different microstructural 

properties than a screen-printed film. The group had further reported, based on various other studies 

in the literature that cross-sensitivity between acetone and ethanol was difficult to avoid but that they 

had observed selectivity towards acetone with their nanorod system sensor. In a similar way, the 

CHFS ZnO materials investigated in this Chapter, do potentially show selectivity towards acetone (with 

respect to ethanol) at low ppm concentrations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6: Emerging ZnO Materials for MOS sensing 

 

273 

 

6.3 Results and Analysis: ZnO ceramics synthesised via Molten-

Salt synthesis, Solid-State metathesis and Hydrothermal 

synthesis 

6.3.1 Scanning Electron Microscopy (SEM)  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 µm x 10,000 

(a) 

  1 µm x 20,000 

(b) 

 1 µm x 10,000 

(c) 

 1 µm x 20,000 

(d) 

 1 µm x 10,000 

(e) 

 1 µm x 20,000 

(f) 

Figure 6–17. SEM images of (a) & (b) MS ZnO at x 10,000 & x 20,000 magnification respectively, (c) & (d) 
SS ZnO at x 10,000 & x 20,000 magnification respectively and (e) & (f) Zn ZnO at x 10,000 & x 20,000 
magnification, respectively, after screen-printing onto gas sensor substrates and heat-treating at 600 °C. 
The ZnO ceramics were prepared by three different synthesis methods: Molten-Salt synthesis (MS-ZnO), 
Solid-State metathesis (SS-ZnO) and Hydrothermal synthesis (Zn-ZnO). 
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SEM imaging of the ceramic samples, showed that the first sample MS ZnO observed in Figure 6–17 

(a) and (b), was attributed to micron sized hexagonal pyramidal habits with the height of the pyramids 

observed to be in the range of 1 – 1.5 µm. In contrast the other two ZnO samples SS ZnO and Zn ZnO 

were attributed to significantly smaller particles sizes, in the nano range. The former (SS ZnO), 

observed in Figure 6–17 (c) and (d) was seen to be attributed to particle sizes of 100 nm to as large as 

750 nm with the particles exhibiting spherical habits. The latter sample (Zn ZnO) observed in Figure 6–

17 (e) and (f) was associated to spherical habits but with particles sizes being significantly smaller of 

sizes in the range of 100 nm - 250 nm.  

The imaging technique gave evidence that the Zn ZnO particles were seen to be more agglomerated, 

in comparison to the SS ZnO particles which exhibited greater spacing between the grains. This 

phenomenon as suggested earlier in the Chapter is likely attributed to the smaller sized Zn ZnO 

nanoparticles which are attributed to a lower thermal stability due to an increase in surface to bulk ratio 

as a function of decreasing particle size. As such, heat-treatment can lead to greater agglomeration 

and an overall decrease in the provision of diffusion channels in the material, for the gas molecules to 

permeate through. In contrast, the larger sized SS ZnO nanoparticles are likely to have stronger 

resilience to heat due to a greater bulk contribution, suggestive of why the SS ZnO nanoparticles are 

not seen to readily agglomerate together. Lower agglomeration of large sized nanoparticles suggests 

the presence of a larger number of inter-grain diffusion pathways, which can allow the gas molecules 

to travel into the body of the sensor matrix and interact with a larger number of surface sites, thus the 

material provides greater surface site accessibility. Larger agglomeration and potential sintering of the 

particles can promote the inner region of the neck to behave like the bulk of the material, and as such, 

only the outer regions of the neck will be gas sensitive [65]. For particles which are less agglomerated, 

a greater proportion of the neck can be considered gas sensitive and as such are better for gas 

sensing applications. Agglomeration is a key issue with nanomaterials particularly with smaller 

nanoparticles that  are attributed to larger surface to bulk contributions, which are more likely to be 

compromised under high temperature heat-treatment regimes, which are a key requirement to stabilise 

the sensor baseline prior to gas sensing experiments [65]. The grain boundary contributions therefore 

are seen to play an influential role in the microstructures of both the SS and Zn ZnO nanomaterials, as 

was observed for the CHFS nanomaterials earlier in the Chapter.   
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6.3.2 PXRD (Powder X-Ray Diffraction) 

 

XRD data of the ZnO samples were in agreement with literature reports, which showed that the 

samples adopted a hexagonal wurtzite crystal structure [333], (JCPDS No. 36-1451) [143, 334]. The 

most intense reflections have been labelled in Figure 6–18. The increasing peak intensity of the 

reflections in the range of 30-40 ° 2θ from the Zn-ZnO to the MS-ZnO sample gave evidence for the 

increase in the apparent crystallinity of ZnO. The greatest preferential intensity of the (101) reflection, 

suggests the growth of the ZnO crystal structure in that plane. The peak broadening of the Zn-ZnO 

sample suggested that this sample was attributed to the smallest crystallite size of all three samples.   

 

 

 

 

Figure 6–18. PXRD patterns of Zn ZnO, SS ZnO and MS ZnO samples. The ZnO ceramics were prepared by 
three different synthesis methods: Molten-Salt synthesis (MS-ZnO), Solid-State metathesis (SS-ZnO) and 
Hydrothermal synthesis (Zn-ZnO). 
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6.3.3 Gas Sensing  

6.3.3.1 Ethanol Sensing 

 

Figure 6–19 presents the conductive response traces of all three sensor devices against increasing 

concentrations of ethanol at 400 °C, which was the operating temperature at which all three sensor 

devices exhibited substantial conductive response towards ethanol. The traces have been presented 

at this temperature as it gave the best signal to noise ratio for the MS ZnO sensor device, and was still 

a temperature at which both the SS and Zn ZnO sensor devices performed well at (observed further in 

Figure 6–25). Tabulation of the mean responses values of the MS, SS and Zn ZnO sensor devices 

from the repeat tests against exposure towards the various ethanol concentrations at 400 °C and the 

associated 95% confidence intervals have been presented in Table 6–5. 

 

 

Figure 6–19. Conductive response traces of MS ZnO, SS ZnO and Zn ZnO sensor devices against increasing 
concentrations of ethanol at an operating temperature of 400 °C. The ZnO ceramics were prepared by three 
different synthesis methods: Molten-Salt synthesis (MS-ZnO), Solid-State metathesis (SS-ZnO) and 
Hydrothermal synthesis (Zn-ZnO). 
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Table 6–5. Average conductive responses of sensor devices in Molten-Salt synthesis ZnO (MS-ZnO), Solid-State 
metathesis ZnO (SS-ZnO) and Hydrothermal synthesis ZnO (Zn-ZnO) system from all repeat tests against 
various ethanol concentrations at 400 °C and associated errors in the form of 95% CIs.  

 
10 ppm 20 ppm 40 ppm 80 ppm 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

MS ZnO 3.60 ±0.32 8.05 ±0.61 12.90 ±1.25 20.61 ±2.34 

SS ZnO 3.25 ±0.29 9.56 ±0.53 18.45 ±0.85 Electronic capping out 

Zn ZnO 2.83 ±0.18 7.56 ±0.45 14.37 ±1.28 28.70 ±3.32 

 

The responses showed that the SS ZnO sensor device exhibited the best response characteristics of 

all three devices, with a maximum response of 34.2 towards 80 ppm of the analyte. The Zn ZnO 

sample was observed to exhibit a response of 31.2 towards 80 ppm of the analyte and the MS ZnO 

sensor device was seen to exhibit the weakest performance with a maximum response of 22.8 

towards 80 ppm. Thus the SS ZnO device exhibited a response which was 1.1-fold enhanced with 

respect to the Zn ZnO device and 1.4-fold greater than the MS ZnO device. Comparison of the traces 

showed that the MS ZnO device was attributed to faster saturation than the SS and Zn ZnO devices 

accounted by its slower increase in response amplitude as a function of increasing concentration of 

ethanol. This trend is clearly presented in Figure 6–20, which shows the larger gradient of response 

increase of both the SS and Zn ZnO devices, and in contrast the smaller gradient of response increase 

of the MS ZnO device. This behaviour can be accounted for by the substantial difference in particle 

sizes between the MS-ZnO sample, which SEM showed was associated to be in the µm range, and 

both the SS and Zn samples, which were associated particle sizes in the nm range. The size 

contribution of the particle has a direct influence on the surface to bulk contribution, with smaller nm 

particles attributed to a larger contribution of surface:bulk ratios, which act to increase the yield of 

surface reactions between the analyte and the metal oxide surface, due larger surface site 

accessibility. Comparison of both the nanomaterial samples SS and Zn ZnO from Figure 6–19 and 

Figure 6–20, showed that the former was attributed to better responsivity, which can be accounted for 

the prominent inter-grain spacing [70] observed in the sample in Figure 6–17 (d), which provides 

greater pathways for interaction for the gaseous molecules. In comparison, the Zn ZnO sample was 

observed to have particles agglomerated together, potentially reducing the overall surface site 

accessibility of the gaseous molecules, resulting in a weaker response than the SS ZnO device. 

However the inter-agglomerate diffusion pathways [70] of the  Zn ZnO sample contribute to provision 

of diffusion pathways for the gaseous molecules to permeate through, contributing to its observed 

responsivity.   
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Comparison of the kinetics of response from the observed response traces of each ZnO sample in 

Figure 6–19, showed that the shape of the response trace of the MS ZnO sample was observed to 

vary as a function of increasing concentration of ethanol. At lower concentrations e.g. 20 ppm, the 

sample surface was seen to saturate, observed through its box shaped behaviour in comparison to 

both SS and Zn ZnO samples, which were attributed to unsaturated shark-fin behaviour at the same 

concentration. Thus the speed of response at 20 ppm of MS was faster with a t90 (20 ppm) calculated 

to be 47 seconds. In comparison the SS ZnO sample was observed to be the slowest device with the 

most gradual slope upon exposure to 20 ppm ethanol, and was calculated to have a  t90 (20 ppm) of 

153 seconds. The Zn ZnO sample was observed to have a relatively slow response at 20 ppm too, but 

not as slow as the SS sample, with a t90 (20 ppm) of 140 seconds.  

At the higher concentration of 80 ppm of ethanol exposure, the kinetics of the MS ZnO device were 

seen to significantly change, as can be observed by the increasing slope of the associated response 

trace in Figure 6–19. The increasing slope suggested that the surface of the MS ZnO material was not 

saturated at 80 ppm subsequently suggesting that the response speed of the device significantly 

reduced with respect to its calculated speed at 20 ppm. Indeed the t90 (80 ppm) of the device was 

Figure 6–20. Conductive response of MS ZnO, SS ZnO and Zn ZnO sensor devices as a function of increasing 
ethanol concentration at an operating temperature of 400 °C. The ZnO ceramics were prepared by three 
different synthesis methods: Molten-Salt synthesis (MS-ZnO), Solid-State metathesis (SS-ZnO) and 
Hydrothermal synthesis (Zn-ZnO). 
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calculated to be 237 seconds, which was 5-fold slower response speed than that calculated at 20 ppm. 

Given the larger concentration of ethanol molecules in an 80 ppm exposure, a reduction in response 

kinetics at this higher concentration of ethanol exposure, relative to a lower concentration of ethanol 

exposure, is physically impossible as the yield in surface reactions per unit time is proportional to gas 

concentration, which results in an increase in the response speed of the device. This behaviour of the 

MS ZnO device was unusual, as the response trace of the MS device clearly showed surface 

saturation at lower concentrations of 10 ppm and 20 ppm exposure. The unusual behaviour may be 

explained by the influence of the electronic digitisation on the MS ZnO response signal, evident from 

Figure 6–19 and the associated response traces of this device observed in further figures i.e. Figure 

6–21, Figure 6–22 and Figure 6–23. Noise was clearly evident in the signal of the MS ZnO device 

which looks likely to have interfered with the true nature of the response trace. This electronic 

digitisation may have been caused by the sporadic grain boundaries that existed between the 

hexagonal pyramidal grains of the material, which interrupted the smooth percolation pathways of the 

charge carriers. In contrast, the particles of both the SS and Zn devices were seen to be attributed to 

continuous grain boundaries between the spherical grains in the materials, providing smooth 

percolation pathways for the charge carriers to travel through the semiconducting metal oxides. Both 

the SS and Zn ZnO sensor devices were calculated to have significantly faster responses as a function 

of increasing concentration with t90 (80 ppm) values calculated to be 80 and 62 seconds respectively. 

The recoveries of both these devices at 80 ppm, t-90 (80 ppm), were calculated to be 186 and 94 

seconds respectively and 20 ppm, the t-90 (20 ppm) values were 92 and 69, respectively. The erratic 

response of the MS device, invalidated and added unquantifiable error to the associated response and 

recovery values. The slower unsaturated response times of the SS ZnO device relative to the Zn ZnO 

device was suggestive of the larger number of surface sites that the SS ZnO device is associated to. 

This was accounted for earlier by the contribution of the inter-grain spacing observed via SEM imaging 

but also the small ZnO grain sizes of this material.  

Figure 6–21 presents the conductive response traces of the three sensor devices against increasing 

concentrations of ethanol at a lower operating temperature of 300 °C. The response traces of the 

devices were seen to be significantly different to those observed at the higher temperature of 400 °C, 

accounting for the differences in thermal energy supplied to the sensor devices in the form of 

temperature.  
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It was interesting to observe a switch in the response orders of both the SS and Zn ZnO devices, with 

the latter performing better at the lower operating temperature of 300 °C as observed in Figure 6–21 

and the former at 400 °C as observed in Figure 6–19 and Figure 6–20.  

This switch suggests that chemical and physical factors, such as the rates of adsorption and 

desorption of oxygen species and the target analytes, or of oxidation products, the rate of surface 

decomposition of target analytes, the charge-carrier concentration (in the conduction band as well as 

the electron depletion layer) and the Debye length in the semiconductor contribute to the individual 

response of the sensor material and its characteristic conductance-temperature profile [137, 239].  

Figure 6–21 shows that the response trace of the MS device as observed earlier in Figure 6–19, was 

associated to erratic behaviour and electrical noise. The discontinuity in the increase of the response 

amplitude of the sensor device between 20 ppm - 80 ppm showed that the sensor did not respond to 

increasing concentrations of ethanol exposure. In contrast, both the SS and Zn ZnO sensor devices 

were seen to exhibit an increase in conductive response as a function of increasing concentration; 

however, both devices were associated to significant baseline drift, suggesting the thermal energy in 

the system at 300 °C was not sufficient for the complete desorption of the analyte molecules, to fully 

recover the metal oxide surface and that water from the surface oxidation reactions of ethanol, may 

Figure 6–21. Conductive response traces of MS ZnO, SS ZnO and Zn ZnO sensor devices against increasing 
concentrations of ethanol at an operating temperature of 300 °C. The ZnO ceramics were prepared by three 
different synthesis methods: Molten-Salt synthesis (MS-ZnO), Solid-State metathesis (SS-ZnO) and Hydrothermal 
synthesis (Zn-ZnO). 
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have also contributed to the drift. The unsaturated response traces of both devices indicated the slow 

response of the devices towards ethanol at 300 °C, in comparison to the faster responses observed at 

400 °C in Figure 6–19. This was justified by the slower t90 (20 ppm) values of 323 seconds (SS ZnO) 

and 320 seconds (Zn ZnO) and t-90 (20 ppm) values of 624 seconds (SS ZnO) and 563 seconds (Zn 

ZnO), in comparison to those observed at 400 °C. Comparison of the response and recovery speeds 

at the higher concentration regions was difficult, as the baseline drift artificially shortened the t90 and t-

90 values at 300 °C due to incomplete recovery of the surface of the material.  

6.3.3.2 NO2 Sensing 

 

Figure 6–22 presents the resistive response traces of the MS, SS and Zn ZnO sensor devices at an 

operating temperature of 300 °C against increasing concentrations of NO2. Although the optimal 

operating temperature of the SS and Zn ZnO devices was observed to be 250 °C presented further in 

Figure 6–24, the MS device had a very low signal:noise ratio at this lower temperature. Therefore the 

responses have been presented at 300 °C, at which the MS ZnO device was attributed to a high 

signal:noise ratio and was still a temperature at which both the SS and ZnO devices performed well at.  

Figure 6–22. Resistive response traces of MS, SS ZnO and Zn ZnO sensor devices against increasing 
concentrations of NO2 at an operating temperature of 300 °C. The ZnO ceramics were prepared by three 
different synthesis methods: Molten-Salt synthesis (MS-ZnO), Solid-State metathesis (SS-ZnO) and 
Hydrothermal synthesis (Zn-ZnO). 
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The figure shows that the MS sensor device was associated to negligible response towards NO2 at 

300 °C with a very poor signal:noise ratio, however a change in the responsivity of the material as a 

function of increasing NO2 concentration could be observed. The SS ZnO was also seen to be affected 

by noise during NO2 exposure at this temperature, however the maximum response of the device was 

calculated to be 25.5 towards 800 ppb of NO2. The Zn ZnO sensor device in contrast showed a clear 

resistive response towards the analyte with a maximum response of 24.5 attributed to 800 ppb of NO2. 

The traces illustrated that the response of both the SS and Zn devices were slow, accounted for by 

their gradual increase in resistive response upon exposure to NO2 and the shark-fin nature of the 

response curves. This indicated that both materials had many available surface sites for the given 

concentration of the NO2 they were exposed to and that neither of the surfaces were saturated. 

Further, the slow behaviour indicated that the operating temperature did not provide enough thermal 

energy to the system for yielding faster combustion reactions to promote surface site saturation. 

The slow behaviour of both materials was accounted for by kinetic analysis which showed the t90 (200 

ppb) values to be 429 seconds (SS ZnO) and 435 seconds (Zn ZnO) and the t-90 (200 ppb) values to 

be 957 seconds (SS ZnO) and 980 seconds (Zn ZnO). The kinetic analysis had to be conducted at the 

lower concentration of NO2 exposure, as the SS device was attributed to significant noise at both 400 

and 800 ppb.   

Figure 6–23. Resistive response traces of MS, SS and Zn ZnO sensor devices against increasing concentrations 
of NO2 at an operating temperature of 350 °C. The ZnO ceramics were prepared by three different synthesis 
methods: Molten-Salt synthesis (MS-ZnO), Solid-State metathesis (SS-ZnO) and Hydrothermal synthesis (Zn-
ZnO). 
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Figure 6–23 presents the resistive response traces of the MS, SS and Zn ZnO sensor devices at an 

operating temperature of 350 °C. Tabulation of the mean responses values of the MS, SS and Zn ZnO 

sensor devices from the repeat tests against exposure towards the various NO2 concentrations at 350 

°C and the associated 95% confidence intervals have been presented in Table 6–6.  

Table 6–6. Average resistive responses of sensor devices in Molten-Salt synthesis ZnO (MS-ZnO), Solid-State 
metathesis ZnO (SS-ZnO) and Hydrothermal synthesis ZnO (Zn-ZnO) system from all repeat tests against 
various NO2 concentrations at 350 °C and associated errors in the form of 95% CIs.  

 
100 ppb 200 ppb 400 ppb 800 ppb 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

SS ZnO 1.15 ±0.10 2.92 ±0.25 6.14 ±0.59 17.77 ±2.32 

Zn ZnO 1.09 ±0.05 2.32 ±0.09 4.76 ±0.21 14.28 ±0.99 

 

Comparison of Figure 6–22 and Figure 6–23 shows that an increase in the operating temperature by 

50 °C speeded up the response and recovery kinetics, however compromised the responsivity. As 

observed in previous data, the MS device was attributed to significant digitisation, however both the 

SS and Zn ZnO sensor devices were seen to be attributed to clean response signal with each device 

associated to the highest observed response of 16 and 13 respectively, towards 800 ppb of NO2. The 

faster kinetics was evident from the lower  t90 (200 ppb) values which were observed to be 298 

seconds (SS ZnO) and 251 seconds (Zn ZnO) and the lower t-90 (200 ppb) values which were 775 

seconds (SS ZnO) and 602 seconds (Zn ZnO), relative to the same observed calculations at 300 °C. 

Figure 6–23 showed evidence of greater saturation of the surface sites of both the SS and Zn ZnO 

sensor devices at 350 °C, relative to 300 °C, observed through the greater curvature of the response 

traces at the higher operating temperature. In particular, the saturation was evident in the Zn ZnO 

device and was clearly thermally induced, with the higher thermal energy in the system promoting a 

greater number of surface reactions between the NO2 molecules and the electrons in the conduction 

band of the metal oxide. As such, a larger number of electrons were abstracted from the conduction 

band, which limited the number of charge carriers which promoted the combustion reactions.  
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Figure 6–24. Resistive responses of SS ZnO and Zn ZnO sensor devices as a function of increasing operating 
temperature against 800 ppb of NO2. The ZnO ceramics were prepared by two different synthesis methods: 
Solid-State metathesis (SS-ZnO) and Hydrothermal synthesis (Zn-ZnO). 

 

Figure 6–25. Conductive responses of SS ZnO and Zn ZnO sensor devices as a function of increasing operating 
temperature against 80 ppm of ethanol. The ZnO ceramics were prepared by two different synthesis methods: 
Solid-State metathesis (SS-ZnO) and Hydrothermal synthesis (Zn-ZnO). 
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Figure 6–24 and Figure 6–24 present the temperature profiles of the SS and Zn ZnO devices against 

both ethanol and NO2, respectively. Both figures do not present the data for the MS ZnO sensor 

device due to the electronic digitised noise that distorted the response signals (discussed and 

observed earlier in Figure 6–19, Figure 6–21, Figure 6–22 and Figure 6–23), which add unquantifiable 

error to the final responsivities.  

Figure 6–25 shows that the SS and Zn devices were associated to a specific optimal operating 

temperature of 350 °C, with conductive responses of 35.8 and 37.7 against 80 ppm of ethanol, 

respectively. Figure 6–24 shows that the specific optimal operating temperature of the SS ZnO device 

was 300 °C with a resistive response of 25.5 against 800 ppb NO2, and that of the Zn ZnO device was 

250 °C with a resistive response of 31.3.  

As with the CHFS ZnO sensor devices discussed earlier in the Chapter, a variation in the optimal 

performance as a function of temperature modulation for the three ZnO samples against both ethanol 

and NO2 was indicative of the influence of temperature effects to obtain the optimal responsivity. In 

particular, the optimal response of Zn ZnO sample towards ethanol at 350 °C and oxidising NO2 at 

250°C was a particular feature when comparing both graphs. Such temperature-conductance profiles 

[20, 137, 208] which are associated to a volcano - plot type or bell shape behaviour [347] as observed 

in Figure 6–24 and Figure 6–24 have been reported to be influenced by a number of complex factors, 

some of which have been alluded to earlier in the Chapter with respect to Figure 6–13 and Figure 6–

14. 
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6.3.4 Further Gas Sensing Studies 

Further gas sensing studies were conducted on the system of ZnO ceramic sensor devices against a 

range of reducing gases, which included acetone, NH3 and CO (apart from ethanol evaluated above) 

at the specific optimal operating temperatures (i.e. operating temperature specific to each device) 

determined from their responsivities towards ethanol in Figure 6–25. This temperature was 350 °C for 

both SS and Zn ZnO sensor devices. This study was conducted in order to understand the selectivity 

of the devices if put in a mixed atmosphere of reducing gases.  

 

Figure 6–26 presents the responses of the SS and Zn ZnO sensor devices against the highest 

concentration of each reducing gas tested, at the specific optimal operating temperature of each 

device, which was 350 °C for both.  

The figure establishes that both the SS and Zn ZnO devices exhibited minimal response towards both 

600 ppm CO and 20 ppm NH3 with baseline response (R/R0 or R0/R = 1), as observed with the CHFS 

Figure 6–26. Conductive responses of SS and Zn ZnO sensor devices at 350 °C against 8 ppm Acetone and 
600 ppm CO. The inset presents the resistive responses of both sensor devices at 350 °C against 20 ppm NH3. 
The ZnO ceramics were prepared by two different synthesis methods: Solid-State metathesis (SS-ZnO) and 
Hydrothermal synthesis (Zn-ZnO). 
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ZnO samples earlier. Instead against 8 ppm acetone, both devices exhibited quantifiable responses, 

with SS ZnO sample exhibiting the highest response of 7.8 at 350 °C and the Zn ZnO sample 

attributed to a response of 7.1 at the same operating temperature.   

Table 6–7 presents the responsivities of the individual ZnO materials towards 8 ppm acetone and 10 

ppm ethanol at the associated optimal operating temperatures.  

Table 6–7. Comparison of conductive responses of SS ZnO and Zn ZnO sensor devices at 350 °C against 8 
ppm acetone and 10 ppm ethanol. The ZnO ceramics were prepared by two different synthesis methods: Solid-
State metathesis (SS-ZnO) and Hydrothermal synthesis (Zn-ZnO). 

Sensor device @ specific 
optimal operating 

temperature 

Conductive Response (R0/R) 
against 

8 ppm acetone 

Conductive Response (R0/R)  
against 

10 ppm ethanol 

SS ZnO @ 350 °C 7.8 3.4 

Zn ZnO @ 350 °C 7.1 2.9 

 

Comparison of the conductive responses of both sensors against 8 ppm acetone and 10 ppm ethanol, 

showed that both devices were attributed to higher responsivities against 8 ppm acetone. The 

responsivities also indicate that in a mixed atmosphere of 10 ppm ethanol and 10 ppm acetone, the 

sensor devices are likely to be selective towards 10 ppm acetone.  

A more detailed presentation of the response results against increasing concentrations of acetone has 

been presented in Figure 6–27, showing a detection limit of 2 ppm acetone for both devices. Like the 

CHFS ZnO materials, both the SS and Zn ZnO materials are seen to be attributed to selectivity 

towards acetone (with respect to ethanol) at low ppm concentrations. Tabulation of the mean 

responses values of the MS, SS and Zn ZnO sensor devices from repeat tests against exposure 

towards the various acetone concentrations at 350 °C and the associated 95% confidence intervals 

have been presented in Table 6–8 .  
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Table 6–8. Average conductive responses of sensor devices in Molten-Salt synthesis ZnO (MS-ZnO), Solid-State 
metathesis ZnO (SS-ZnO) and Hydrothermal synthesis ZnO (Zn-ZnO) system from all repeat tests against 
various acetone concentrations at 350 °C and associated errors in the form of 95% CIs. 

 
1 ppm 2 ppm 4 ppm 6 ppm 8 ppm 

Device 
Average 

Response 
95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

Average 
Response 

95% 
CI 

SS ZnO 1.39 ±0.07 2.59 ±0.28 4.33 ±0.67 6.00 ±1.07 7.77 ±1.55 

Zn ZnO 1.32 ±0.11 2.38 ±0.40 3.87 ±0.82 5.26 ±1.22 6.62 ±1.59 

 

 

 

 

 

Figure 6–27. Conductive responses of ZnO sensor devices: SS ZnO and Zn ZnO as a function of increasing 
concentrations of acetone at the specific optimal operating temperatures, which was 350 °C for both devices. 
The ZnO ceramics were prepared by two different synthesis methods: Solid-State metathesis (SS-ZnO) and 
Hydrothermal synthesis (Zn-ZnO). 
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Summary and Conclusions  

Two systems of ZnO nanomaterial sensor devices, the first fabricated from CHFS (continuous 

hydrothermal flow synthesis) derived powder, which demonstrated a variety of sizes and shapes of 

ZnO nanoparticles using a pre-commercial CHFS pilot plant, and the second fabricated from ZnO 

powders derived from various relatively higher temperature synthesis routes, specifically molten-salt, 

solid-state and hydrothermal methods, were investigated.  

Within the system of CHFS ZnO devices, the best performing sample (CHFS ZnO sample B) was 

attributed to observed responses of 84 towards 80 ppm ethanol at 400 °C, 15.2 towards 8 ppm 

acetone at 400 °C and 166 towards 800 ppb NO2 at 300 °C.  

Within the system of ZnO devices made by a range of high temperature routes, the best performing 

sample towards ethanol and NO2 was the Zn ZnO sensor device which was attributed to a response of 

37.7 against 80 ppm ethanol at 350 °C and 31.3 towards 800 ppb NO2 at 250 °C. Towards the lower 

concentrations of acetone however, the SS ZnO device dominated the response, with the best 

observed response of 7.8 towards 8 ppm of the analyte.  

Analysis of all gas sensing results indicated that in a mixed atmosphere of 10 ppm of acetone and 

ethanol, both sensors (and in fact all other remaining ZnO sensors in both systems) are potentially 

attributed to selectivity towards acetone.  

Within both systems, it was found that the particle size, morphology and grain boundary conditions at 

the grain interfaces had significant effect on the overall responsivity and kinetic properties of the 

materials. In particular, factors like inter-grain agglomeration through heat-treatment and resulting 

surface-site accessibility, sintering effects, electron path percolation and crystal faceting were 

observed to be some of the key variables in assimilating sensor behaviour.   
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Chapter 7 : Final Conclusions and Future Work  

This thesis has presented investigations of various hetero-junction systems and ZnO based 

nanomaterial systems for metal oxide semiconductor (MOS) based gas sensing applications.  

The underlying aims of the investigations of the hetero-junction systems were: 

 To understand if composite materials and random packing structures were attributed to 

enhanced gas responsivities with respect to pure metal oxide counter parts 

 To interpret possible causes for any enhancement effects observed or not observed 

 To interpret the existence of electronic interactions or synergistic effects within the composite 

metal  oxide systems 

 To understand if selectivity could be achieved with hetero-junction devices 

 To understand effects of microstructure, metal oxide composition, junction effects, packing 

structure, temperature and analyte concentration on the response properties 

The underlying aims of the nanomaterial systems were: 

 To identify influential microstructural factors on the response behaviours of nanomaterials 

 To assess the potential of emerging fabrication technologies as a route to synthesis of ZnO 

nanomaterials for MOS gas sensing 

 

7.1 Final Conclusions 

In order to address the aims of the hetero-junction study, various systems of sensor devices based on 

various n-n (WO3-ZnO and SnO2-ZnO) and p-n (CTO-ZnO) composite metal oxide combinations were 

fabricated. Within each composite system, a simple route to the fabrication of a group of hetero-

junction sensor devices was demonstrated by forming various inks though a simple mechanical mixing 

technique. Each ink contained a specific ratio of both component metal oxides, and was screen-printed 

onto individual MOS sensor substrate strips, which after further processing, ultimately led to the 

formation of a system of the five composite sensors and two pure unmodified reference counterparts.  

In order to address the aims of the ZnO based nanomaterials study, three ZnO nanomaterial samples 

were fabricated by CHFS, and three other ZnO samples fabricated by molten salt, solid-state 

metathesis and hydrothermal synthesis. Like the hetero-junction systems, sensors of the ZnO 

materials were fabricated by primarily forming various inks of each material. Each ink was screen-
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printed onto individual MOS sensor substrate strips, which after further processing, ultimately led to 

the formation of a system of the 6 ZnO sensor devices (two systems with three devices each). 

XRD and Raman characterisation techniques were implemented to ensure the composite nature of the 

hetero-junction systems. The techniques also gave evidence of the presence of tertiary phases in the 

WO3-ZnO n-n hetero-junction system in the form of zinc tungstate (ZnWO4) and in the CTO-ZnO p-n 

hetero-junction system in the form of zinc chromite (ZnCr2O4). The formation of ZnWO4 inevitably 

formed due to the nature of heat-treatment of the WO3-ZnO sensor devices. This tertiary phase 

however, was present as a minority phase and was evaluated to have no response properties towards 

the key target analytes: NO2 and ethanol at the associated optimal operating temperatures of 300 °C 

and 350 °C, and therefore any enhanced response behaviour of the composites was evaluated to 

occur as a result of the combination of the individual metal oxides.  

The formation of ZnCr2O4, was found to be present in the CTO-ZnO composite materials after the 

sensor devices were removed from the gas sensing test rig, at the end of gas sensing characterisation 

tests, however it was unclear at what particular stage of the gas sensing characterisation tests, the 

tertiary phase had actually formed. Experimental results showed that it was inconclusive as to whether 

the formation of this tertiary phase had any positive or negative impact on the overall responsivity of 

the composite material. 

7.1.1 Cross Comparisons 

Gas sensing experiments of each sensor system, demonstrated the enhanced response behaviour of 

the composite materials with respect to the pure counterparts. For example in the case of NO2 

sensing, the WO3-ZnO sensor system proved the most effective hetero-junction system, with devices 

like the 30 wt.% WO3 – 70 wt.% ZnO and the 10 wt.% WO3 – 90 wt.% ZnO composites exhibiting 

enhanced response magnitudes of 140 and 147, respectively, towards 800 ppb NO2  at 300 °C in 

comparison to both the WO3 and ZnO counterparts, which both displayed responses of 42.7 and 23.4, 

respectively, under the same operating conditions.  

Cross comparison of the response behaviour of the WO3-ZnO hetero-junction system, with the other 

two hetero-junction systems studied, established it to be most effective for NO2 sensing. In the case of 

the SnO2-ZnO and CTO-ZnO systems, the composites demonstrated poor responsivity towards NO2 

with respect to the pure ZnO sensor devices. In the case of the former system, the response increased 

as a function of increasing ZnO concentration in the sensors and decreasing SnO2 concentration. In 

the case of the CTO-ZnO system, the n-type ZnO dominated devices showed increased responsivity 

as a function of increasing ZnO concentration and decreasing CTO concentration, and the p-type CTO 

dominated devices all showed responses close to baseline response. Thus, in both systems both the 

pure ZnO sensor devices displayed the largest responses towards NO2. 
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In the case of the ZnO based nanomaterials, CHFS ZnO sample B, was seen to be attributed to 

comparable NO2 response to the 10 wt.% WO3 – 90 wt.% ZnO composite, with a response of 141.5 

towards an exposure of 800 ppb but at a lower operating temperature of 250 °C. Thus the CHFS 

material was seen to exhibit a comparably response to NO2 at the lowest operating temperature; 

demonstrating a combination of significant responsivity and lowered power consumption. The SS- and 

Zn- ZnO devices were seen to perform poorly against NO2 with respect to the CHFS based sensor 

devices (response range from 18 – 71 towards 400 ppb NO2) at 250 °C with responses of 13.0 and 

9.6, respectively, towards 400 ppb of NO2 at an operating temperature of 300 °C, but were associated 

to responses comparable to devices within the WO3-ZnO composite system such as the pure WO3 and  

ZnO devices towards 400 ppb NO2 at 300 °C, as observed Chapter 3.  

In the case of ethanol sensing, both the WO3-ZnO and SnO2-ZnO n-n hetero-junction systems 

contained composite materials which exhibited enhanced responsivities towards the analyte, in 

comparison to the respective pure counterpart materials. In the former system, the 30 wt.% WO3 – 70 

wt.% ZnO and the 50 wt.% WO3 – 50 wt.% ZnO  sensor devices both exhibited a 1.6-fold and 6.6-fold 

enhanced response with respect to the pure WO3 and ZnO sensor devices, respectively, towards 100 

ppm ethanol at operating temperatures of 350 °C. In the second system, the 50 wt.% ZnO - 50 wt.% 

SnO2 composite was seen to be attributed to a 4.5-fold and 12.3-fold enhanced response with respect 

to the pure SnO2 and pure ZnO counterparts, respectively, towards 100 ppm of ethanol at 300 °C. 

Further, the 30 wt.% ZnO – 70 wt.% SnO2 sensor device was also seen to exhibit a 4.2-fold and 11.6-

fold enhanced response with respect to the pure SnO2 and pure ZnO counterparts, respectively, again 

towards 100 ppm of ethanol at 300 °C.  

In comparison, CHFS ZnO sample B, was associated to a response of 79.9 towards 80 ppm ethanol at 

an operating temperature of 350 °C. This response was comparable to the response magnitudes of 

the 50 wt.% ZnO – 50 wt.% SnO2  and 30 wt.% ZnO – 70 wt.% SnO2 composite sensors towards the 

same concentration of ethanol, but at a lower operating temperature of 300 °C; an example being the 

50 wt.% ZnO - 50 wt.% SnO2 sensor device, which exhibited the highest response of 76 at 300 °C 

towards 80 ppm ethanol. In a similar way, the responsivity of the Zn ZnO material fabricated by 

hydrothermal synthesis, was observed to exhibit comparable responsivity magnitudes (10.3) towards 

40 ppm of ethanol at 300 °C to the n-type dominated 10 wt.% CTO – 90 wt.% ZnO composite, which 

exhibited a response of 9.8 towards 40 ppm of ethanol at 300 °C. Thus, the study showed that under 

certain experimental conditions the nanomaterials were able to perform as well as the composite 

materials. In the case of the CTO-ZnO composite system, the 10 wt.% ZnO – 90 wt.% CTO material 

was the best performing composite, dominated by p-type conductivity, showing a response of 10.0 

towards 40 ppm ethanol at an operating temperature of 300 °C, with respect to the pure CTO 

counterpart which showed a response of 2.9 under the same conditions.  
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Composite materials such as the 30 wt.% WO3 – 70 wt.% ZnO composite which demonstrated 

enhanced responses towards both NO2 and ethanol with respect to its pure WO3 and ZNO  

counterparts or the 50 wt.% ZnO – 50 wt.% SnO2  and 30 wt.% ZnO – 70 wt.% SnO2 composites, 

which demonstrated enhanced responses towards ethanol with respect to their pure ZnO and SnO2 

counter parts, were thought to be associated to delocalised contact potentials (i.e. contact potentials 

which are dispersed among the sensor matrix), which acted to enhance their response magnitudes, 

with respect to the pure materials. In this way, the investigation showed that composite materials and 

random packing structures of the grains, within the matrix of the sensor device, was an effective way 

of increasing the responsivity behaviour.  

Composite materials such as the 10 wt.% ZnO – 90 wt.% CTO composite which displayed an 

enhanced response towards ethanol at 250 °C - 300 °C or towards NO2 at 300°C, amongst acetone 

and toluene as well, with respect to the pure CTO material and other sensor devices dominated by p-

type semiconducting behaviour, contained n-type ZnO particles dispersed discretely throughout the 

matrix of the host p-type CTO semiconductor particles. Such packing structures which contained a 

discrete dispersion of one metal oxide in the host matrix of the second host metal oxide, were thought 

to be associated to enhanced resistances at the n-n or p-n interfacial hetero-junction which dominated 

the conductivity of the material, as opposed to the n-n or p-p homo-junction which existed between the 

homo-contacts. In short, the ratio of homo : hetero contacts played an influential role in the 

responsivity towards different analytes. The 10 wt.% ZnO – 90 wt.% CTO device was the best 

performing composite sensor in the whole of the system, and it was thought that the p-n hetero-

junctions that existed between the CTO and ZnO grains dominated the device resistance over the 

weaker p-p homo-contact dominated percolation paths; accounted by the weaker response of p-type 

semiconducting oxides, and as such displayed significant enhancement with respect to the pure CTO 

counterpart. Thus the enhanced response of the composites with the p-n hetero-junction system were 

thought to be dominated by the synergy of both metal oxides when combined together, with electronic 

effects at the p-n hetero-junction thought to contribute further. 

Such packing structures which contained localised contact potentials within the sensor matrix, were 

also seen to be effective sensing candidates in the n-n mixed metal oxides systems; an example being 

the 10 wt.% WO3 – 90 wt.% ZnO sensor device mentioned earlier, which contained particles of WO3 

dispersed discretely throughout the matrix of ZnO grains, exhibiting a 7-fold and 3.5-fold enhanced 

response with respect to the pure ZnO and WO3 counterparts, respectively, towards 800 ppb NO2 at 

an operating temperature of 300 °C.  

The investigations showed that highly random packing structures as well as those which contained a 

discrete dispersion of grains of one metal oxide in the host matrix of grains of the second metal oxide 

grains, were both effective candidates for sensing.  
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The hetero-junction studies reported in this thesis have contributed uniquely to the gas sensing field, 

by reporting on gas sensing properties of various combinations of metal oxides in which very limited 

studies have to date been reported in the literature. This is particularly apparent with both the WO3-

ZnO and CTO-ZnO metal oxide combinations, the second of which has never been studied.  

In the case of the WO3-ZnO system, comparison of the results with those reported by An et al. and 

Siriwong et al., mentioned earlier in the introduction of Chapter 3, showed the ability of the composites 

to detect significantly lower concentrations of NO2 as well as demonstrating their potential towards 

acetone and ethanol detection, which both literature studies have not demonstrated. In the case of the 

SnO2-ZnO, much research around this combination of metal oxides has already been well-established 

in the literature, however the study reported in this thesis is unique in its route to the preparation of the 

composite materials and also in the actual ratios of each metal oxide studied which is also true for both 

the WO3-ZnO and CTO-ZnO composite systems. The simple change in the ratio of metal oxides in the 

composite systems, has also allowed the study of the effect of a variety of packing structures on 

responsivity and selectivity properties. The simple mechanical mixing route to the fabrication of the 

composite materials, has been demonstrated as an easy and a potentially commercial route for the 

fabrication of hetero-junction sensors.  

Studies of CHFS based materials for gas sensing have been reported a couple of times in literature for 

example by Elouali et al. and Shi et al. however the study conducted in this thesis has demonstrated 

for the first time, the ability to fabricate and successfully test screen-printed CHFS based sensors, 

which have conventionally always been deposited by drop coating. Further, the study here reports a 

more in-depth gas sensing analysis, over a wider range of gases and concentrations, which previous 

studies have not reported. The study has further enhanced the commercial viability of the CHFS 

process for gas sensing applications, by demonstrating the ability to screen-print nanomaterials, which 

already have the commercial edge as the synthesis process allow the manufacture of such materials 

in large amounts, useful for mass production of sensor devices. 

Cross comparison of the nanomaterial based ZnO sensors made by CHFS and those made by other 

high temperature routes, showed the former group of ZnO materials exhibited larger responsivities to 

the target analytes, for example the best CHFS response (associated to ZnO sample B) recorded 

against 80 ppm of ethanol was 79.7 at 350 °C and against 800 ppb NO2 was 141 at 250 °C. In 

contrast, the best response of the ZnO ceramics made via the high temperature routes (specifically 

solid state metathesis) was 34.2 against 80 ppm ethanol at 400 °C and 25.5 towards 800 ppb of NO2 

at 300 °C. Response results against acetone showed that the best performing ZnO nanomaterial 

made via CHFS (ZnO sample B) was associated to a response of 15.2 towards 8 ppm of acetone at 

400 °C, whereas the sensor made via solid state metathesis, displayed a response of 7.8 towards 8 

ppm at a lower operating temperature of 350 °C. Thus in general the CHFS sensors were associated 
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to larger responsivities at lower operating temperatures, making them the more attractive from a 

commercial perspective.  

Microstructural influences of the materials, on the responsivity performance was deduced through 

imaging of the sensor devices through SEM. The technique showed evidence of loosely packed nature 

of the grains in most composite devices, attributed to thick-film deposition technology, which gave 

evidence of diffusion and percolation pathways, for the gaseous molecules to travel into and out of the 

body of the sensor matrices. Such microstructures were thought to contribute to the enhanced 

responsivity of the composite materials as they enabled an increased surface site accessibility of the 

analyte molecules, increasing the overall yield of surface reactions.  

Further, particle size difference observed through this imaging technique showed the stark difference 

between some combination of metal oxides, such as for example in the SnO2-ZnO system in which a 

mixture of SnO2 agglomerated grains and the individual ZnO grains were observed or in the CTO-ZnO 

system in which nanosized CTO particles and micron sized ZnO particles were observed. Such stark 

differences in particle sizes were also though to contribute to the hetero-junction effects attributed to 

these systems, apart from the hetero-junction effects induced by the chemical in-homogeneity of the 

materials. 

The assessment of microstructural factors influential on the response performance of ZnO 

nanomaterials showed that the smallest particle size of a material was not the determining factor of the 

highest responsivity. Factors such as heat-treatment regime which subsequently affected the inter-

grain agglomeration and sintering effects, as well as the electron path percolation and morphological 

crystal faceting were all identified as influential to the overall responsivity and kinetic properties of the 

materials, as these factors contributed to surface site accessibility of the gaseous analytes as well as 

the charge carrier conductivity. The study showed that balance between these properties was 

required, where a small particle size, with limited agglomeration and sintering as a result of heat-

treatment and larger morphological faceting of the metal oxide grains, made up for a microstructure 

that promoted the best responsivity. Thus, grain-boundary contributions at the grain interfaces were 

significant for nanomaterials, accounted for by their large surface : bulk ratios and as such, 

microstructure played an influential role on their overall response properties.  

The nanomaterials study demonstrated both CHFS and the other synthesis methods to be successful 

as a route to ceramics for metal oxide semiconductor gas sensing applications, with a variety of 

morphologies (nano-rods, nano-hexagons, nano-spheres and larger hexagonal pyramids) and particle 

sizes fabricated. From a commercial and synthetic perspective, cross comparison of the routes of 

fabrication of the nanomaterials from CHFS vs. those made from high temperature routes, suggested 

that the former route was more attractive fabrication route offering the capability to produce large 
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quantities of ZnO nanomaterials in minutes and the versatility to alter the morphological characteristics 

of the ZnO particles by a simple change in the precursor concentrations, within the same system. 

Previous literature studies have also established this synthesis route to producing effective 

nanomaterials for gas sensing applications. In contrast, the molten salt synthesis route, solid-state 

metathesis route and the hydrothermal synthesis route were seen to offer limited variation in the 

morphological characteristics of the ZnO particles within the associated samples and were also 

associated to limited yield of the formed product, assimilated from the samples received from Dr. 

Poduska.  

XPS analysis was conducted on the individual sensor devices within each hetero-junction system, to 

verify any electronic interactions between the individual metal oxide components. The analysis 

technique showed a very strong correlation between the relative binding energies as a function of 

increasing WO3 phase fraction, and as such indicated an electronic interaction between both the WO3 

and ZnO components, which was thought to contribute to the enhanced gas sensing properties 

associated to the WO3-ZnO composite system. In contrast a weaker correlation was seen between the 

relative binding energies as a function of increasing SnO2 phase fraction suggesting a very weak 

electronic interaction, between the individual metal oxide components with the SnO2-ZnO hetero-

junction system. No correlation was seen in the CTO-ZnO system and as such, no evidence of an 

electronic interaction could be deduced between the p-and n- type materials.  

The XPS analysis of the composite materials was a further advancement and novelty of the studies 

reported in this thesis, with no such analysis observed in literature before. The observation of 

electronic interactions between the individual metal oxide components, particularly in the WO3-ZnO 

composite system, was evidenced and suggested the existence of hetero-junction electronic effects 

between both metal oxides which were thought to act to enhance responsivity properties. The simple 

preparation route of a variety of composite sensors within a particular hetero-junction system, 

contributed to the ease and structure with which this XPS analysis could be conducted and interpreted.  

Temperature was variable that was seen to counteract the hetero-junction effects in the composite 

systems. In particular with both n-n hetero-junction systems, the degradation of the electronic 

enhancement was evident at higher operating temperatures and was thought to be due to 

energetically easier charge transfer within the semiconductors, which effectively decreased the 

effective energy barrier, and thus resistance, at the junction; weakening the overall junction effect. 

Thus higher temperatures could not promote junction effects to play effective roles in enhancing gas 

sensing response.  

Apart from the electronic interactions, the synergy of the individual metal oxides upon their 

combination was deduced as a major contributory factor to the enhanced response properties of all 
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three composite systems. In the case of the WO3-ZnO composite system, the superior sensing 

properties of WO3 towards NO2 and ZnO towards ethanol, contributed to the group of devices 

performing well against both NO2 and ethanol, which was not observed with the other hetero-junction 

systems investigated. 

In the case of the SnO2-ZnO composite system, the synergy of both metal oxides as oxidation 

catalysts for VOCs was potentially evident from the enhanced responsivities that the combination of 

both metal oxides exhibited towards ethanol and acetone. In contrast, towards increasing 

concentrations of NO2 and CO, all devices were seen to increase as a function of increasing 

concentration of ZnO and increasing concentrations of SnO2, respectively. As such the synergy of both 

materials was evident from the response properties. 

 In the case of the CTO-ZnO system, conductivity was 2-fold; a weaker response of the p-type 

semiconducting oxide due to conductivity via the hole accumulation layer (HAL) and the stronger 

response of the n-type semiconducting oxide due to conductivity via the electron depletion layer  (EDL) 

balanced each other out and as such, played a synergistic role in the observed response behaviour. 

The 10 wt.% ZnO – 90 wt.% CTO composite sensor device was a good example of such a device,  

which contained n-type ZnO particles dispersed discretely throughout the matrix of the host p-type 

CTO semiconductor particles. In such a device, the p-n hetero-junctions were thought to dominate the 

resistance of the device in comparison to the weaker p-p homo-contact percolation paths that 

dominate the sensor matrix, and as such the device was thought to exhibit enhanced response 

behaviour. In contrast, 90 wt.% ZnO – 10 wt.% CTO composite sensor device which contained p-type 

CTO particles dispersed discretely throughout the matrix of the host n-type ZnO semiconductor 

particles, showed minimal enhancement and this was thought to be due to the n-n percolation paths 

which dominated the sensor matrix, which had significant influence over the resistance of the device 

over the potentially weaker p-n hetero-contacts.  

A further synergistic effect seen in this CTO-ZnO system, was the evidence of the resistance of those 

materials integrated with the p-type CTO material, towards effects of humidity generated by surface 

induced chemical reactions, due to the nature of the conductivity of the p-type semiconducting oxide 

dominated by the HAL. Its incorporation into the composite sensors, saw baseline stability being 

promoted for the composites towards potential humidity effects, due to by-products such as water 

formed on the surface of the metal oxides, from combustion reactions of ethanol. In particular this was 

evident at the lower end of the operating temperature at 250 °C, where those devices dominated by p-

type conductivity were seen to be attributed to a stable baseline compared to those devices dominated 

by n-type conductivity.  
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Thus, synergy was recurring theme within the investigations of the hetero-junction systems interpreted 

through the gas sensing behaviour of the materials; this was accompanied by potential electronic 

enhancement effects, which to some extent could be verified by XPS. Both factors were considered to 

be influential causes for the enhanced response behaviours observed .All hetero-junction studies also 

showed how the responsivity and selectivity of a composite sensor device could be tuned by a simple 

change in the concentration of either of the metal oxides (and therefore the packing structure of the 

grains), within the composite matrix.  

Gas testing and analysis of the hetero-junction systems, to a range of other gases; specifically 

acetone, NH3, CO and toluene (in addition to the two main target gases ethanol and NO2), showed that 

the hetero-junction devices did exhibit potential selectivity.  

In the WO3-ZnO system for example, the 10 wt.% WO3 – 90 wt.% ZnO sensor device, which contained 

particles of WO3 dispersed discretely throughout the matrix of ZnO grains, was particularly interesting 

as it showed the largest response of 148 towards 800 ppb NO2 at an operating temperature of 300 °C 

and a response of only 4 towards 100 ppm ethanol at the same operating temperature. This suggested 

that in a mixed atmosphere containing the associated concentration ranges of ethanol (ppm levels) 

and NO2 (ppb levels), the composite sensor can potentially exhibit successful selectivity towards NO2. 

In another example, comparison of the responsivities of the 30 wt.% WO3 – 70 wt.% ZnO and 50 wt.% 

WO3 – 50 wt.% ZnO sensor devices towards 10 ppm of ethanol and acetone, showed that both 

devices, particularly the 30 wt.% WO3 – 70 wt.% ZnO composite device could selectively detect 

acetone, if put in a mixed gas atmosphere of equal concentrations of ethanol and acetone.  

In the case of the SnO2-ZnO composite system, the 50 wt.% ZnO - 50 wt.% SnO2 and the 30 wt.% 

ZnO – 70 wt.% SnO2  sensor devices were seen to be attributed to conductive responses of 1.5 and 

2.0 towards 10 ppm ethanol at 300 °C but larger response of 8.3 and 11.8 respectively, towards 10 

ppm of acetone at the same operating temperature. In contrast, the 70 wt.% ZnO  - 30 wt.% SnO2 

sensor device was seen to be attributed to the largest conductive response of 33 towards 10 ppm of 

acetone but only a conductive response of 2.1 to the 10 ppm of ethanol at 300 °C. This therefore 

demonstrated that within the SnO2-ZnO sensor system, composites could selectively detect acetone 

and ethanol, depending on the composition of each metal oxide.  

In the case of the CTO-ZnO system, selectivity through cancellation (due to the cancelling out of n- 

and p- type percolation paths) was evident with the 30 wt.% ZnO – 70 wt.% CTO sensor device which 

exhibited cancellation behaviour against ethanol, acetone and NO2 but exhibited quantifiable 

responses against toluene at 350 °C, indicating that in a mixed atmosphere of all four gases, the 

cancellation behaviour of this device may be exploited to selectively detect toluene. Thus a key 

recurring theme from the investigations was how a simple change in the composition (and therefore 
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packing structure) of the metal oxides, within the composites, could tune the responsivity and 

selectivity of the sensor device towards either a reducing or oxidising analyte. The study also showed 

how a simple addition of ZnO to CTO, was able to change the selectivity of the material. For example 

at an operating temperature of 300 °C, the pure CTO sensor device was seen to display selectivity 

towards toluene, however at the same operating temperature, the 10 wt.% ZnO – 90 wt.% CTO sensor 

device showed selectivity towards ethanol. Thus some examples existed in the study which showed 

how a simple change in the concentration of either metal oxide could tune the responsivity and 

selectivity of a sensor device towards a particular analyte.  

Both the composite and the nanomaterial systems demonstrated, that if put in a mixed atmosphere of 

ethanol and acetone, both groups of sensor devices are potentially likely to selectively detect acetone. 

Due to their compositional nature, the opportunity to tune the selectivity was clearly more flexible in the 

composite devices than in the nanomaterial devices, through the variation of the concentration 

contribution of the individual metal oxide components.  

7.1.2 Sources of Error 

In terms of error analysis that has been briefly alluded to, throughout each Chapter, the concentration 

of the analyte and the composition of the sensor devices, were 2 of the physical factors observed to 

contribute significantly to the errors on the response magnitudes. In terms of concentration, the error 

magnitude increased with an increasing gas concentration. In particular, if a sensor was very 

responsive to a particular analyte e.g. the WO3-ZnO based devices particularly responsive to NO2 / 

ethanol or the SnO2-ZnO devices particularly responsive to ethanol / acetone, then such a device was 

associated to significant error. One reason for this may have been the formation of more by-products 

at the higher concentrations of gas exposure. This may have caused cross-sensitivity issues 

contributing to the significant magnitudes of errors on the devices at the higher analyte concentrations. 

Further, exposure to the higher concentrations may have also lead to progressive contamination 

issues on the metal oxide surface, which was not as probable with exposures to the low gas 

concentrations. Such larger errors were not limited to the composite devices, but were also apparent 

with the ZnO nanomaterials, such as that observed with the CHFS sample B upon exposure to 800 

ppb NO2. More specifically for the composite materials, larger errors were also prevalent with those 

composites which had a significant contribution of both metal oxides, in comparison to those 

composites which had a biased contribution of one metal oxide or the single metal oxide devices. This 

was particularly apparent with the WO3-ZnO composites and the SnO2-ZnO composites. This trend 

suggested that the composite sensors in general were associated to instability, which may be a result 

of the fabrication process or the presence of two very responsive and active metal oxides in each of 

the hetero-junction devices. The combination of two metal oxides with very potent response properties 

are likely to contribute to greater error, as a multiple number of reactions and catalytic effects are likely 



Chapter 7: Final Conclusions and Future Work 

300 

 

to occur on the metal oxide surface. Due to the significant errors on the composites, comparative 

responsivity and selectivity performance between the composites was difficult to conclude, as the 

mean response values and associated errors overlapped with each other between devices. This was 

particularly apparent with the SnO2-ZnO composite materials, where significant overlap in response 

magnitude and associated errors towards ethanol and acetone.  

In terms of the ZnO based nanomaterials, all devices were associated to significantly low magnitudes 

of error except for CHFS sample B. This sample was the most responsive and as such the magnitude 

of error increased with the large response of the device. Possible factors may have been the active 

nature of the material and the instability of microstructure during gas runs, as a function of 

temperature.  

In general, the error analysis shows that changes in the error values were not seen to be random, 

when evaluated as a function of analyte concentration or composition of the device. However 

randomness was observed between the repeat tests, with response magnitude following no specific 

order with repeat tests.  

Other sources of errors on the response magnitudes, may have been potential temperature 

fluctuations of the sensor devices, whilst in operation. Given that the nature of heating is dependent on 

the resistance of the platinum heater track, fluctuations in temperature are very likely to have occurred 

with the deviation in the platinum resistance being promoted by atmospheric temperature changes, 

minor fluctuations in gas flow on the sensor devices and instability of the electronics that controlled the 

temperature. More technically, an inherent error associated to the MFC, which would have 

subsequently affected flow rate, would also contribute to fluctuations in the response with all MFCs 

being associated to a minimum error of 2 %. The electronic measurement circuits and digital multi-

meter for direct resistance measurements in the gas sensing rig, are also contributory source of errors.  

7.1.3 Application Possibilities 

From the investigations conducted, the gas sensing studies of the various hetero-junction systems 

demonstrated the materials (depending on the combination of metal oxides used) to be applicable for 

a variety of applications.  

The first of the applications was for NO2 sensing, which is an important analyte to detect from exhausts 

released from cars, power plants or combustion engines. In 2000, the world health organisation 

(WHO) [348] had reported, through information from various sources, that the maximum 24-hour 

average outdoor NO2 concentration was measured to be 0.21 ppm (210 ppb) and the maximum 30 

minute or 1 hour average was measured to be 0.5 ppm (500 ppb). Further, they had reported that the 

annual mean concentration of NO2 in urban areas throughout the world was in the range of 0.01 ppm – 
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0.05 ppm (10 ppb - 50 ppb). The hourly average NO2 concentrations near very busy roads exceeded 

0.5 ppm (500 ppb). In the UK itself, the maximum hourly concentrations of NO2, during peak times on 

roads, were reported to in the range of 0.25 ppm – 0.40 ppm (250 ppb - 400 ppb).  

Another source, which gave an overview on an urban area survey in the UK, reported  that the annual 

mean concentrations of NO2 were detected to be in the range of 10 - 45 ppb in the UK, with fossil fuel 

combustion from power stations and combustion due to transportation contributing to a total of 65% of 

the anthropogenic source of NO2 production [349]. NO2 levels due to transportation varied significantly 

throughout the day, but during time of rush hour traffic the values peaked, with maximum daily means 

being as high as 200 ppb and had reported that the maximum one hourly mean to be as high as 600 

ppb [349]. Both sources suggest that during peak times on roads, globally and nationally the NO2 

concentrations significantly increase with respect to the background, and illustrate the contribution of 

the analyte emissions from the car exhausts. The concentration ranges reported thus illustrate the 

potential to use the composite sensors devices, studied in this thesis, which are able to detect ppb 

ranges of NO2, for practical NO2 detection applications.  

A second potential application of the sensor devices would be for ethanol detection for use in food and 

drink quality control processes such as food packing safety or in breathalysers for the detection of 

alcohol content in the breath of drunk drivers. In the case of the second application, the concentration 

ranges of ethanol in the blood ae determined from its concentration in the breath, which can be related 

to the extent of intoxication [175]; for example symptoms of haziness suggest concentrations in the 

range of 130 – 260 ppm in the breath, slight drunkenness suggests concentrations in the range of 260 

– 390 ppm in the breath and drunkenness is associated to concentrations of 390-650 ppm in the 

breath [175]. These ppm levels demonstrate the potential to use of the composite sensors, which have 

ppm ethanol detection capability, for practical breathalyser applications.  

A third application of the sensor devices is for the detection of acetone as a key biomarker for diabetic 

patients, with individuals suffering from this disease found with levels of over 1.8 ppm of acetone [23] 

in their breath. As such the composite sensor devices demonstrated potential in medical sensing 

applications. 

A final potential application of the composite sensor devices is for toluene detection in the 

environment. As a guideline, from a range of organic gases, toluene was measured to have the mean 

highest concentration of 17 ppb in Turin in Italy, with a similar magnitude of concentration measured at 

sites in the USA, UK and Australia, as per a report cited by the WHO [350]. Correa et al. [351] had 

reported that whilst filling up gasoline in 11 different gasoline stations in Rio de Janeiro, Brazil, resulted 

in the emission of 10 ppb of toluene in the ambient air between 2008 and 2009. The environmental 

protection agency (EPA) [352] has referred to a report by the US Dept. of Health and Human Services 
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from 2000, in which it had reported that the highest toluene concentrations are measured indoors 

through the use of common household products such as paints, varnishes, synthetic fragrances and 

via cigarette smoke, with a measured average concentration of 8 ppm. The same department had also 

reported urban and rural concentrations of toluene to be 3 ppm and 320 ppb, respectively with 

emission sources ranging from cars and during production, use and disposal of industrial and 

consumer products that contain toluene. The thesis has presented response results of some of the 

CTO based composites exhibiting responses towards 100 ppm toluene; which suggests the potential 

for the sensors to detect low concentrations of the analyte, particularly in indoor and urban 

environments in the US.  

7.1.4 Drawbacks  

Despite the advantages towards the responsivity, potential selectivity and wide applicability of the 

composite materials for gas sensing applications, a number of drawbacks of the systems were 

apparent. Some of these have already been integrated into the source of errors above in section 7.1.2. 

Further to these form a commercial perspective, one of the key disadvantages was the slow response 

and recovery kinetics.  

Poor kinetics was particularly apparent with the composite materials in the n-n hetero-junction systems 

and was seen to be promoted by the increased number of surface sites in hetero-junction materials. 

The increased number of surface sites available for the given concentration of gas exposure lead to 

the slow and gradual saturation of the surface. This parameter also lead to the slower gradual 

recovery of the surface sites upon switching off the gas exposure, with time needed for the surface 

sites to fully recover from the large number of adsorbed gas molecules. The t90 and t-90 values obtained 

in the 100s of seconds showed that the kinetics of response and recovery were compromised for the 

response performance, which to some extent made the sensors impractical in environments where 

fast responses and recoveries are required. In this way, the investigation illustrated a potential 

disadvantage for the application of a hetero-junction MOS gas sensing system. A suggested earlier in 

the introduction, typical response times for sensor devices in commercial application are required to be 

in the 10s of seconds for critical warnings. Solutions to lower the response times from 100s of seconds 

achieved in this investigation, to 10s of seconds, may include the inclusion of catalytic dopants or 

zeolite layers in/on the existing sensor materials , as a kinetic solution, a proposal of which has been 

mentioned in the future work. 

The summary of final conclusions shows how the aims of the project were fulfilled through various 

examples seen in the experimental investigations. Potential suggestions that can further develop the 

research work presented in this thesis have been suggested in the following section.  
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7.2 Future Work  

Development of the research work in this thesis can be extended in many directions, given the diverse 

nature of the investigation. An assessment of the conducted research work presented in this thesis, 

has highlighted some key future investigations that have been proposed below.  

A first future proposal is the design of the hetero-junction systems around alternate structural 

architectures / packing structures of both the metal oxides in question, which can promote potentially 

better electronic hetero-junction enhancement effects and greater stability of the devices. Examples 

include core-shell architectures as well as layered architectures. In the core-shell, it would be 

interesting to explore the individual gas sensing performances of packing structures where each metal 

oxide is either a core or a shell (e.g. WO3-ZnO core-shell and ZnO-WO3 core-shell or CTO-ZnO core-

shell and ZnO-CTO core-shell), and compare and contrast them. In the layered, packing structures in 

which the stacking order of the metal oxides is varied (e.g. ZnO on SnO2 or SnO2 on ZnO), are 

important to consider. With layered architectures, the direction of gas flow is an important variable 

towards responsivity behaviour. The flow can be directed towards the hetero-interface side-on with the 

gas permeating through both metal oxides at once. Alternatively gas flow can be directed face-on 

allowing the gas to permeate from metal oxide layer on top down to the metal oxide layer below it.  

This opens up a study on the deposition techniques that can be used to deposit layers of metal oxides 

in stack form, on the gas sensor substrates, and how each technique can change the orientation of the 

metal oxide layered architectures on the gas sensor substrates. Given that both the layered and core-

shell architectures can be built with an system of deposition techniques such as chemical vapour 

deposition (CVD) or atomic layer deposition (ALD) (both thin-film techniques), or an amalgamation of 

both thick-film and thin-film techniques, then microstructural variations are also likely to play an 

influential role on the overall response properties. Thus, investigation based on changing the 

architecture of the hetero-junction system, open up a whole new avenue of studies that can be 

explored.  

Another interesting study in the future, would be visualise the homo– and hetero- contacts in the  

hetero-junction composite devices by using computer tomography or back-scattered scanning electron 

microscopy (SEM) imaging techniques, the latter of which should be able to visualise the different 

metal oxides within the matrix of the metal oxide composite by elemental mass difference. Such 

techniques will aid the qualitative and quantitative interpretation of the homo- and hetero- contacts and 

shed light for deeper interpretation of their influencing roles towards the gas sensing properties.  

Further developments to the composite hetero-junction study, from a more theoretical perspective, can 

be investigation of the formation of the tertiary phases as a function of processing temperature. In 
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particular, low temperatures are of key interest as the formation of a tertiary phase could be avoided 

but at the same time the organic vehicle burned off to form a composite sensor with robust adherence 

of the substrate, if left long enough. These sensor devices can then be investigated to understand their 

response properties and compared to the current devices, which contain the presence of the tertiary 

phases. This evaluation will better contribute to the understanding of the role of the tertiary phase on 

the response properties. Further investigations on the hetero-junction composite systems can be 

conducted on the catalytic modification through doping of noble metal such as gold or integration of 

zeolites layers, to improve the associated response and recovery kinetics for practical applications.   

A further interesting study would be to see how the responsivity of the hetero-junction composite 

devices varies as a function of changing the p-type metal oxide, while keeping ZnO as the n-type 

metal oxide and then varying the n-type metal oxide, while keeping the p-type metal oxide constant to 

for example CTO. Particular to the utilisation of CTO, changing the stoichiometry of the Cr:Ti ratio  

within the CTO, and understanding the effect of this change to the responsivity to the CTO-ZnO p-n 

hetero-junction composite system, is also another study of interest.  

In terms of gas sensing studies, one of the key potential investigations that has recurred throughout 

the investigation of the hetero-junction systems is the evaluation of the system of these devices in 

mixed gas atmospheres of for example ethanol and NO2, or ethanol and acetone, as well as other gas 

combinations. In particular it would be interesting to investigate the selectivity of each hetero-junction 

system towards a particular alcohol. Given the nature of the similar chemistry of alcohols on metal 

oxide surfaces, potential selectivity towards a specific alcohol would be of particular interest, and 

opens up a study of shape selectivity of hetero-junction systems. Shape-selectivity can also be 

achieved by the integration of zeolite layers on the metal oxide materials, and hence the integration of 

zeolites to the composite materials and subsequent investigation of alcohol selectivity is another 

avenue that can be explored.  

Further studies can incorporate the testing of multiple sensors of the same composition, in order to 

assimilate the batch-to–batch repeatability of the response characteristics. Further, routes to the 

assimilation of the selectivity properties of the composite devices with respect to each other can be 

investigated, which due to the overlapping of error values could not be deduced in this thesis. 

Longevity testing of the individual sensor devices (or alternatively called sensor ageing)  is another 

suggestion, in order understand the performance of the sensors over a long period time – i.e. do they 

have the same response performance after for example 6 months or 1 year or does the performance 

deteriorate with time. Another investigation associated to the longevity testing is the baseline 

resistance drift over the time. Longevity tests like this will allow to gauge in to the commercial potential 

of the devices when put into practical real life situations. Gas testing in this thesis was limited to certain 

concentration ranges and operating temperatures, however future work can consider testing the 
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sensor devices over larger analyte concentration ranges and operating temperatures. This testing will 

widen the application possibilities of the sensors devices to those already highlighted. The gas testing 

carried out in this thesis was purely under dry conditions, however in reality, moisture is always 

present in the ambient air and as such; future work can also encompass testing the sensor devices 

under humid conditions.   

Of particular interest in correspondence to both the underlying themes of this thesis, i.e. the hetero-

junction systems and the nanomaterial systems, would be to combine the ZnO nanomaterials with 

other metal oxide nanomaterials to develop nanomaterial based hetero-junction systems. Such 

systems encapsulate the combined advantages of size, morphology and chemical & electronic 

sensitisation effects and contribute to the research and development of a host of new hetero-junction 

based on metal oxide sensor systems for MOS gas sensing applications.  A further interest would be 

to bring together the best performing composite and nanomaterial based sensors, and combine them 

together in an electronic nose type system, and investigate the responsivity and selectivity 

performance of the group of devices.  

Ultimately this investigation is for research and development of sensor devices for practical monitoring 

applications and as such the sensors are envisaged to be integrated into portable devices. Thus, 

testing the viability of the devices for practical applications requires evaluation of their response 

behaviour towards target analytes out in the field, in addition to the ideal laboratory environment. 
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Appendix 

Preceding repeat gas response data 

Presented here are examples of preceding repeat gas sensing tests (to the final gas sensing tests, 

data of which has been presented in the main body of the thesis and reproduced here in the appendix 

again) of the various sensor devices studied in this thesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A - 1. Repeat test of WO3-ZnO composite system when exposed to increasing 
concentrations of ethanol at an operating temperature of 350 ºC as presented in the main 
body of thesis in Figure 3–10. 

Figure A - 2. Figure 3–10 reproduced from main body of thesis. 
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Figure A - 3. Repeat test of SnO2-ZnO composite system when exposed to increasing 
concentrations of ethanol at an operating temperature of 300 ºC as presented in the main 
body of thesis in Figure 4–7.  

Figure A - 4. Figure 4–7 reproduced from main body of thesis 
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Figure A - 5. Repeat test of SnO2-ZnO composite system when exposed to increasing 
concentrations of ethanol at an operating temperature of 200 ºC as presented in the main 
body of thesis in Figure 4–10.  

 

Figure A - 6. Figure 4–10 reproduced from main body of thesis. 
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Figure A - 7. Repeat test of CTO-ZnO composite system when exposed to increasing concentrations of ethanol 
at 250 ºC in (ai) and (aii) as presented in the main body of thesis in Figure 5–19 (c) and (d). 

 

(ai) (aii) 

10 ppm 

20 ppm 
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10 ppm 

20 ppm 
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Figure A - 8. Figure 5–19 (c) and (d) reproduced from main body of thesis. 
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Figure A - 9. Repeat test of CTO-ZnO composite system when exposed to increasing concentrations of NO2 at 
300 ºC in (bi) and (bii) as presented in the main body of thesis in Figure 5–22 (a) and (b).  

 

Figure A - 10. Figure 5–22 (a) and (b) reproduced from main body of thesis. 
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Figure A - 11. Repeat test of CHFS ZnO system against increasing concentrations of NO2 
at 300 ºC as presented in the main body of thesis in Figure 6–11. 

Figure A - 12. Figure 6–11 reproduced from main body of thesis 
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Figure A - 13. Repeat test of MS ZnO, SS ZnO and Zn ZnO sensor devices against 
increasing concentrations of ethanol at an operating temperature of 300 °C. The ZnO 
ceramics were prepared by three different synthesis methods: Molten-Salt synthesis (MS-
ZnO), Solid-State metathesis (SS-ZnO) and Hydrothermal synthesis (Zn-ZnO) as 
presented in the main body of thesis in Figure 6–21.  

 

Figure A - 14. Figure 6–21 reproduced from main body of thesis. 
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Baseline resistances 

The following tables present the ranges within which the baseline resistances for each sensor device 

investigated in this thesis, at the corresponding operating temperature, lie.  

System 1: WO3 – ZnO composites 

Table A - 1. Baseline resistance ranges in ohms for all sensor devices studied within WO3-ZnO composite 
system at operating temperatures of 500, 450, 400, 350 and 300 ºC. 

Device 
500 ºC 

(ohms) 

450 ºC 

(ohms) 

400 ºC 

(ohms) 

350 ºC 

(ohms) 

300 ºC 

(ohms) 

100 wt.% WO3 1.4 – 1.7  x 10 4 1.9 – 2.1 x 10 4 2.8 – 3.4 x 10 4 0.7 – 1.4 x 10 5 0.6 – 2.4 x 10 5 

90  wt.% WO3 – 
10 wt.% ZnO 

1.5 – 5.5 x 10 6 1.7 – 5.8 x 10 6 2.5 – 7.2 x 10 6 0.5 – 4.6 x 10 7 0.1 – 3.7 x 10 7 

50  wt.% WO3 – 
50 wt.% ZnO 

2.9 – 5.2 x 10 5 5.8 – 10.5 x 10 5 1.6 – 1.9 x 10 6 0.4 – 1.8 x 10 7 0.5 – 12.0 x 10 6 

30  wt.% WO3 – 
70 wt.% ZnO 

0.4 – 1.8 x 10 5 0.6 – 2.7 x 10 5 1.0 – 4.6 x 10 5 1.1 – 1.7 x 10 6 0.4 – 4.8 x 10 6 

10  wt.% WO3 – 
90 wt.% ZnO 

1.1 – 7.5 x 10 4 1.9 – 11.6 x 10 4 0.3 – 2.2 x 10 5 2.2 – 8.5 x 10 5 0.2 – 3.5 x 10 6 

100 wt.% ZnO 2.6 – 2.9 x 10 4 5.4 – 8.1 x 10 4 8.6 – 24.8 x 10 4 7.0 – 10.1 x 10 5 0.5 – 3.8 x 10 6 
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System 2: SnO2 – ZnO composites 

Table A - 2. Baseline resistance ranges in ohms for all sensor devices studied within SnO2-ZnO composite 
system at operating temperatures of 500, 450, 400, 350 and 300 ºC. 

Device 
500 ºC 

(ohms) 

450 ºC 

(ohms) 

400 ºC 

(ohms) 

350 ºC 

(ohms) 

300 ºC 

(ohms) 

100 wt.% SnO2 1.7 - 2.7 x 105 5.0 – 7.0 x 105 1.3 – 1.6 x 106 2.2 – 2.5 x 106 3.5 – 3.8 x 106 

90  wt.% SnO2 – 
10 wt.% ZnO 

1.0 – 1.8 x 106 2.2 – 3.5 x 106 5.2 – 7.3 x 106 0.9 – 1.4 x 107 1.2 – 1.7 x 107 

70  wt.% SnO2 – 
30 wt.% ZnO 

1.3 – 2.7 x 106 2.9 – 4.9 x 106 6.6 – 9.9 x 106 1.2 – 1.6 x 107 1.5 – 2.0 x 107 

50  wt.% SnO2 – 
50 wt.% ZnO 

2.5 – 4.5 x 106 6.4 – 9.5 x 106 1.3 – 1.8 x 107 2.3 – 2.5 x 107 1.1 – 2.8 x 107 

30  wt.% SnO2 – 
70 wt.% ZnO 

3.9 – 9.6 x 105 0.8 – 1.7 x 106 1.3 – 2.5 x 106 2.5 – 5.5 x 106 2.1 – 3.0 x 106 

10  wt.% SnO2 – 
90 wt.% ZnO 

0.8 – 2.7 x 105 1.0 – 2.5 x 105 0.8 – 1.8 x 105 1.5 – 1.8 x 105 1.1 – 4.4 x 105 

100 wt.% ZnO 0.3 – 1.2 x 105 0.1 - 27 x 106 0.04 - 26 x 106 0.06 – 70 x 106 0.03 - 27 x 107 

 

System 3: CTO-ZnO composites  

Table A - 3. Baseline resistance ranges in ohms for all sensor devices studied within CTO-ZnO composite 
system at operating temperatures of 500, 450, 400 and 350 ºC. 

Device 
500 ºC 

(ohms) 

400 ºC 

(ohms) 

350 ºC 

(ohms) 

300 ºC 

(ohms) 

100 wt.% CTO 3.6 – 3.7 x 104 8.5 – 10.1 x 104 1.8 – 2.2 x 105 4.7 – 5.3 x 105 

90  wt.% CTO – 10 wt.% ZnO 2.7 – 2.9 x 104 8.4 – 11.3 x 104 1.9 – 2.6 x 105 6.1 – 9.0 x 105 

70  wt.% CTO – 30 wt.% ZnO 8.0 – 8.3 x 103 2.1 – 3.2 x 104 4.2 – 6.6 x 104 1.1 – 1.9 x 105 

50  wt.% CTO – 50 wt.% ZnO 4.4 – 5.2 x 103 0.9 – 1.0 x 104 1.7 – 1.9 x 104 4.2 - 4.4 x 104 

30  wt.% CTO – 70 wt.% ZnO 1.2 – 1.4 x 105 3.3 – 4.2 x 105 6.9 – 8.4  x 105 1.3 – 2.0 x 106 

10  wt.% CTO – 90 wt.% ZnO 1.7 – 1.8 x 106 4.2 – 6.7 x 106 8.7 – 14.1 x 106 1.4 – 3.2 x 107 

100 wt.% ZnO 9.4 – 16.0 x 105 2.2 – 10.6 x 105 0.4 – 2.7 x 106 0.6 – 5.5 x 106 
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System 4: Emerging ZnO materials  

Table A - 4. Baseline resistance ranges in ohms for all sensor devices studied within nanostructured ZnO 
material systems at operating temperatures of 500, 450, 400, 350 and 300 ºC. 

Device 500 ºC 

(ohms) 

450 ºC 

(ohms) 

400 ºC 

(ohms) 

350 ºC 

(ohms) 

300 ºC 

(ohms) 

CHFS ZnO A 0.4 – 1.3 x 106 0.4 – 1.5 x 106 0.7 – 1.5 x 106 1.5 – 1.8 x 106 2.0 – 2.6 x 106 

CHFS ZnO B 1.6 – 1.9 x 105 0.1 – 2.1 x 106 1.3 – 4.5 x 105 2.3 – 4.6 x 105 4.5 – 7.1 x 105 

CHFS ZnO C 0.6 – 3.1 x 105 0.7 – 2.1 x 105 1.7 – 1.8 x 105 3.8 – 4.9 x 105 7.2 – 11.0 x 105 

SS ZnO 0.7 – 3.4 x 106 0.7- 2.3 x 106 1.3 – 2.1 x 106 4.0 – 6.5 x 106 1.4 – 2.3 x 107 

Zn ZnO 0.5 – 4.1 x 105 0.6 – 1.5 x 105 1.3 – 2.0 x 105 2.9 – 5.8 x 105 0.8 – 1.2 x 106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 


