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André Rosa,1,2 Evi Vlassaks,1 Franck Pichaud,1 and Buzz Baum1,*
1MRC Laboratory of Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
2Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, 4200-465 Porto, Portugal

*Correspondence: b.baum@ucl.ac.uk
http://dx.doi.org/10.1016/j.devcel.2015.01.012

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
SUMMARY

Entry into mitosis is accompanied by profound
changes in cortical actomyosin organization. Here,
we delineate a pathway downstream of the RhoGEF
Pbl/Ect2 that directs this process in a model epithe-
lium. Our data suggest that the release of Pbl/Ect2
from the nucleus at mitotic entry drives Rho-depen-
dent activation of Myosin-II and, in parallel, induces
a switch from Arp2/3 to Diaphanous-mediated cor-
tical actin nucleation that depends on Cdc42,
aPKC, and Par6. At the same time, the mitotic reloc-
alization of these apical protein complexes to more
lateral cell surfaces enables Cdc42/aPKC/Par6 to
take on a mitosis-specific function—aiding the as-
sembly of a relatively isotropic metaphase cortex.
Together, these data reveal how the repolarization
and remodeling of the actomyosin cortex are coordi-
nated upon entry intomitosis to provide cells with the
isotropic and rigid form they need to undergo faithful
chromosome segregation and division in a crowded
tissue environment.

INTRODUCTION

As animal cells enter mitosis they undergo profound changes in

cell shape that are driven by the dynamic remodeling of the acto-

myosin cortex (Kunda and Baum, 2009). The mitotic cortex has

been shown to perform a number of important functions. It helps

to ensure timely centrosome separation (Rosenblatt et al., 2004),

provides cells with a rigid protective shell in which to assemble a

mitotic spindle (Carreno et al., 2008; Kunda et al., 2008; Lancas-

ter et al., 2013), guides spindle orientation (Fink et al., 2011; Lux-

enburg et al., 2011; Théry et al., 2005), and helps to set the stage

for cytokinesis (Kunda et al., 2012; Matthews et al., 2012; Sed-

zinski et al., 2011). The forces generated during mitotic rounding

are considerable and sufficient to drive tissue buckling (Kondo

and Hayashi, 2013).

While the nucleators required for mitotic actin filament assem-

bly remain unclear (Bovellan et al., 2014), a number of regulators

have been identified that contribute to remodeling of the actomy-
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osin cortex at mitotic entry. In cell culture, these include activa-

tion of Ect2/Pbl, which acts via RhoA and Myosin-II (Cramer and

Mitchison, 1997; Maddox and Burridge, 2003; Matthews et al.,

2012) to initiate mitotic rounding, and ERM proteins, which

crosslink F-actin to the overlying plasma membrane. Together,

these molecular changes generate a relatively isotropic and stiff

actin-based cortex (Carreno et al., 2008; Kunda et al., 2008) that,

in combination with osmotic pressure (Stewart et al., 2011) and

the disassembly of stress fibers and focal contacts (Dao et al.,

2009), give mitotic cells their characteristic rigid and rounded

form.

Cells dividing in an epithelium face additional challenges.

Cell-cell junctions must be maintained to avoid division compro-

mising the integrity of the tissue. Moreover, cells must generate

rounding forces large enough to deform surrounding cells in or-

der to make room for the developing spindle (Lancaster et al.,

2013; Luxenburg et al., 2011; Nakajima et al., 2013). Accordingly,

an epithelial cell undergoing symmetrical division rounds up to

the apical surface as it enters mitosis (Reinsch and Karsenti,

1994). This enables the cell to maintain its apically positioned ad-

herens junctions (AJs) (Founounou et al., 2013; Guillot and Le-

cuit, 2013; Herszterg et al., 2013; Reinsch and Karsenti, 1994),

to assemble a relatively isotropic actin-based cortex, and to align

its spindle along the plane of the epithelium (Lu et al., 2001; Lux-

enburg et al., 2011; Nakajima et al., 2013), before dividing in two.

Here, to characterize the changes in the polarized organization

of the actin cytoskeleton that accompany mitotic entry in the

context of an epithelium, we studied symmetrical epithelial cell

divisions within the fly notum. We find that the assembly of a

mechanically stable metaphase cortex depends on the broad

specificity RhoGEF Pbl/Ect2, which induces a lateral shift in

the distribution of the polarity regulators Cdc42, aPKC, and

Par6, leading to the assembly of a relatively isotropic Diapha-

nous-dependent actomyosin cytoskeleton, as required for mito-

sis and cell division in a crowded tissue environment.

RESULTS

The Actomyosin Cortex Is Remodeled as Epithelial Cells
Enter Mitosis and Round Up
To better understand the coupling between changes in cell

morphology and actin remodeling when epithelial cells enter

mitosis, we followed cell divisions within the developing fly notum

using confocal time-lapse microscopy (Bosveld et al., 2012;
ors
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Figure 1. Actin and Myosin Accumulate at the Cell Cortex as Cells Enter Mitosis

(A) Time-lapse of a dividing cell in cross-section (xz) expressing Lifeact::GFP and Tub::RFP. Time T = 0 s onset prophase; T = 500 s anaphase/telophase.

(B) Similar view of a metaphase cell expressing Lifeact::GFP and Tub::RFP. Yellow dashed lines mark apical and intermediate sections.

(C) Apical and intermediate sections (xy) in plane of Sqh::GFP expressing epithelium.

(D) Apical and intermediate views (xy) of a Lifeact::GFP expressing notum. Yellow asterisks mark dividing cells.

(E and F) Time-lapse of (E) a mitotic cell expressing Sqh::GFP in cross-section and (F) a mitotic cell expressing UAS-Lifeact::GFP. Yellow arrow: cleavage furrow.

Scale bars, 5 mm.
Marinari et al., 2012). Lifeact::GFP and RFP::Tubulin were ex-

pressed under the control of the pannier (pnr) driver to visualize

cortical remodeling, nuclear envelope permeabilization, and spin-

dle assembly. In parallel, a Squash::GFP gene-trap line was used

to label Myosin-II. Using these markers, epithelial cells were seen

rounding in prophase. As they rounded, cells accumulated cor-

tical F-actin and Myosin-II (Figures 1A, 1C, and 1D) and lost the

apical mesh of medial F-actin and Myosin-II (Figures 1C–1F:

comparemitotic cell markedwith yellow asteriskwith neighboring

interphase cells). By metaphase, cells had established a stable

actomyosin-rich lateral cortex and had adopted a near-spherical

shape (Figures 1A–1F, metaphase panels). Then, at mitotic exit,

actomyosin was first seen accumulating at the basal cortex. As

previously reported (Founounou et al., 2013; Guillot and Lecuit,

2013; Herszterg et al., 2013; Reinsch and Karsenti, 1994), this

contractile actomyosin ring moved apically to divide cells into

two (Figures 1A and 1C–1F, anaphase/telophase panels). Finally,
Devel
in the period between the completion of division and the relaxa-

tion of cells back into the epithelium, levels of F-actin remained

high around the cortex, despite the relocalization of Myosin-II to

the cleavage furrow (Figures 1A, 1D, and 1F, anaphase/telophase

panels). This series of events is broadly similar to that previously

described for many other systems (Cramer and Mitchison,

1997; Reinsch and Karsenti, 1994; Zang et al., 1997), reinforcing

the notion that it is a highly conserved process that is likely to

be governed by conserved actin regulators.

Next, to identify the molecular mechanisms involved we

focused our attention on the two best understood actin nuclea-

tors: the Arp2/3 complex and Dia (Castrillon and Wasserman,

1994).

Dia Is Required for Assembly of the Mitotic Actin Cortex
To test the mitotic functions of the Arp2/3 complex and Dia, we

used RNAi to silence the expression of arp3 and dia. The
opmental Cell 32, 604–616, March 9, 2015 ª2015 The Authors 605



Figure 2. Diaphanous Is Required for the Formation of the Mitotic Actin Cortex

(A–C) Apical and intermediate views (xy) of Lifeact::GFP in control (A), Dia RNAi (B), and Arp3 RNAi epithelia (C). Yellow asterisks mark mitotic cells. Scale bars,

5 mm.

(D) Comparison of cortical/cytoplasmic filamentous actin at several time points before anaphase for control, Arp3, and Dia RNAi conditions. (Mean ± SD, nR 30

cells from at least 3 different pupae.)

See also Figure S1.
assembly of the mitotic F-actin cortex, visualized by the pres-

ence of UAS-Lifeact::GFP (Riedl et al., 2008), was unaffected

by the expression of Arp3 double-stranded RNA (dsRNA) (Fig-

ure 2C). Thus, as Arp3 RNAi cells progressed through mitosis,

they were nearly indistinguishable from control cells (compare

Figure 2A with Figure 2C) and in every case successfully com-

pleted cytokinesis (Figure S1A). Because cells exhibited two pre-

viously described loss-of-function phenotypes, it is unlikely that

this was due to a failure in the RNAi-mediated Arp3 knockdown:

(1) Arp3 silencing prevented the accumulation of F-actin at the

new cell interface following division (Herszterg et al., 2013) (Fig-

ure S1A) and (2) caused defects in basal protrusions in inter-

phase (Georgiou and Baum, 2010). Moreover, silencing of either

of the two key cortical Arp2/3 activators, SCAR or Wasp, had no

effect on assembly of themitotic F-actin cortex (Figures S1D and

S1E). By contrast, Dia silencing had a profound effect on the

integrity of the mitotic cell cortex and on mitotic cell shape (Fig-

ure 2B). It induced a nearly complete loss of cortical F-actin in

metaphase cells, which was followed by a failure in cytokinesis,

confirming the well-established role for Dia in the formation and

contraction of the actomyosin ring (Castrillon and Wasserman,
606 Developmental Cell 32, 604–616, March 9, 2015 ª2015 The Auth
1994; Grosshans et al., 2005). As a quantitative measure of the

dynamic mitotic cortex assembly in each case, we measured

the ratio of mean values of cortical/cytoplasmic UAS-Lifeact::

GFP (see Experimental Procedures) in a central confocal plane

within control, Arp3, and Dia RNAi cells. Both control and Arp3

RNAi cells exhibited a steady 1.7-fold increase in the accumula-

tion of F-actin at the cell cortex followingmitotic entry. In nota ex-

pressing Dia dsRNA, however, cortical F-actin levels remained

close to those seen in interphase (Figure 2D). These data were

confirmed when the analysis was replicated in asymmetrically

dividing sensory organ precursor cells (SOP) (Figures S1B and

S1C), which can be studied without the confounding effects of

cortical GFP signals from neighboring interphase cells. Together,

these data identify Dia as the primary actin nucleator driving the

assembly of the mitotic cortex during both symmetric and asym-

metric divisions.

Pbl Acts Upstream of Rho1 and Dia in the Assembly
of a Mitotic Actin Cortex
In animal cells, the actomyosin ring is assembled in response to

the local accumulation (Fededa andGerlich, 2012) and activation
ors



Figure 3. Pebble Is Required for the Correct

Cortical Localization of Dia and Formation

of an Actin Cortex

(A) Intermediate section (xy) of Pbl::GFP express-

ing notum. Yellow asterisk marks a dividing cell.

(B) Cross-section (xz) of Pbl::GFP expressing

dividing cell (yellow asterisk).

(C) Intermediate section in plane of epithelium (xy)

of Lifeact::GFP labeled mitotic cells in control and

Pebble RNAi tissue.

(D and E) Similar view of metaphase cells in control

(pnr-Gal4), Pbl RNAi, or Dia RNAi epithelia, and

in tissue expressing Rho1.N19 (DN), stained for

F-actin (red), DNA (white), and a-tubulin (blue),

together with (D) phospho-Myosin-II (Inset, white)

or (E) Diaphanous (Inset, white).

Scale bars, 5 mm. See also Figure S2.
(Petronczki et al., 2007) of the guanine nucleotide exchange

factor, Pbl/Ect2, at the spindle midzone. This leads to the local

activation of Rho1 GTPase and its downstream effectors Dia

(O’Keefe et al., 2001; Prokopenko et al., 1999), together with

Rok and Myosin-II. More recently, Ect2 (the human ortholog of

Pbl), RhoA, and Myosin-II were shown to have an additional

function in mitotic rounding and the assembly of a stiff meta-

phase actin cortex (Maddox and Burridge, 2003; Matthews

et al., 2012). Thus, in human cells, a similar pathway appears
Developmental Cell 32, 604–6
to drive assembly of the actomyosin

cortex upon mitotic entry and the actin-

based cytokinesis ring at mitotic exit.

Accordingly, Pbl and Rho1 appeared

to be good candidates as regulators of

mitotic cortical assembly in Drosophila

epithelial cells.

To test this idea, we began by looking

at the dynamic localization of a GFP-

tagged version of Pbl (van Impel et al.,

2009) (expressed within the pnr domain)

during passage through mitosis. This

fusion construct is known to rescue pbl

cytokinetic defects (Zavortink et al.,

2005). In interphase cells, the bulk of Pbl

was localized to the nucleus. In addition,

a small pool of the fusion protein was

found at the AJs (Figure S2A). Upon entry

intomitosis, bulk Pblmoved into the cyto-

plasm (Figures 3A and 3B), with a propor-

tion accumulating around the lateral

cortex. Finally, at mitotic exit, Pbl-GFP

became recruited to the spindle midzone

as previously described (Somers and

Saint, 2003; Zavortink et al., 2005). This

dynamic pattern of Pbl relocalization dur-

ing mitotic progression in a developing

epithelium is similar to that described for

human cells (Matthews et al., 2012).

When dsRNA was used to deplete Pbl

within the pnr domain, we observed a

reduction in the density of F-actin at inter-
phase cell-cell junctions, and a loss of the actin-rich metaphase

cortex and the cytokinesis ring in both live (Figures 3C and S2B)

and fixed (Figures 3D, 3E, S2D, and S2E) preparations. Since this

phenotype was similar to that seen following Dia RNAi, it sug-

gested a role for Pbl/Ect2 in controlling the local activation of

Dia. To test this hypothesis we made use of a Dia antibody,

whose specificity was confirmed using RNAi (Figures 3E, 4E,

and S2E). In interphase, Dia was found at apical cell-cell junc-

tions (Figure S2C), as previously described (Homem and Peifer,
16, March 9, 2015 ª2015 The Authors 607
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2008), but was largely absent from the basolateral cortex (Fig-

ure S2E). Then, upon entry into mitosis, Dia accumulated at

lateral membranes (Figure 3E) before moving to the spindle mid-

zone, where it is required for nucleation of the cytokinesis ring.

By contrast, in Pbl RNAi flies, Dia was lost from the metaphase

cell cortex and reduced at interphase AJs (Figures 3E, 4E, and

S2E). In addition, there was a marked reduction in the levels of

phosphorylated Myosin-II (pMyo) in the metaphase cortex of

flies expressing Pbl dsRNA (Figures 3D, 4G, and S2D). These

data identify Pbl as a master regulator of cortical assembly in

fly cells, as was previously shown for Ect2 in human cells (Mat-

thews et al., 2012).

To follow the pathway downstream of the RhoGEF Pbl, we

used a dominant-negative Rho1 protein to test the effects of

Rho1 inhibition in this tissue (since expression of Rho1 RNAi

proved to be highly toxic). Rho1DN was sufficient to induce loss

of cortical pMyosin-II (Figures 3D, 4G, and S2D). Further, as

expected (O’Keefe et al., 2001; Prokopenko et al., 2000), cells ex-

pressing this dominant-negative Rho1 transgene failed to com-

plete cytokinesis, as evidenced by the presence of metaphase

cells with largermitotic spindles and increasedDNA content (Fig-

ures S2D and S2E). Given these phenotypes, the comparatively

modest reduction in cortical levels of Dia and F-actin observed

in Rho1DNcellswas surprising (Figures 3E, 4E, and 4F). This sug-

gested the possibility that there might be downstream effectors

of Pbl other than Rho1 that are substrates of its broad guanine

exchange factor (GEF) activity (van Impel et al., 2009).

Cdc42/aPKC/Par6 Control Cortical Dia Localization
in Mitosis
In biochemical assays, Pbl/Ect2 has been shown to catalyze

GDP-GTP exchange on RhoA, Rac, and Cdc42 (Tatsumoto

et al., 1999). While Rac is not known to have an important mitotic

function, in human cells levels of GTP-Cdc42 have been re-

ported to peak in metaphase in a Pbl/Ect2-dependent manner

(Oceguera-Yanez et al., 2005). Moreover, a wide range of mitotic

defects have been attributed to loss of Cdc42 (Narumiya and Ya-

suda, 2006). This led us to test whether Cdc42 might contribute

to mitotic cortex assembly downstream of Pbl.

To do so, we first used UAS-Lifeact::GFP to image the mitotic

cortex in epithelial tissue expressing Cdc42 dsRNA. Although
Figure 4. Cdc42 and aPKC Are Required for Cortical Accumulation of

(A) Intermediate section in plane of epithelium (xy) of metaphase cells in control

blebs).

(B and C) Metaphase cells from control flies expressing pnr-Gal4 and Cdc42 RNAi

white), or (C) Dia (Inset, white). Scale bars, 5 mm.

(D) Control and mutant aPKCts (heterozygous aPKCts/CyO and hemizygous aPKC

and Dia (Inset, white). Scale bars, 5 mm.

(E) Box plot showing intermediate cortical/cytoplasmic Dia staining in metaphase

Rho1.N19 (DN), and in an aPKCts mutant. A nonparametrical Mann-Whitney te

Rho1.N19 expressing nota.

(F and G) Box plot showing cortical/cytoplasmic (F) F-actin (Phalloidin staining)

Cdc42 RNAi and Rho1.N19 nota. Statistically significant differences were obse

parametrical Mann-Whitney test). A one-way ANOVA test was used to confirm sig

plot graphs (n R 30 cells from at least 3 different pupae).

(H) Metaphase cells shown in plane of epithelium (xy) in control, Cdc42.V5 exp

a-tubulin (blue), and Cdc42, V5, and aPKC (white), respectively.

(I) Live metaphase cell expressing Par6::GFP shown in plane of epithelium (left,

profile. Yellow asterisk marks metaphase cell. Scale bars, 5 mm.

See also Figure S3.

Devel
Cdc42 silencing was not sufficient to abrogate assembly of a

mitotic F-actin cortex, Cdc42 RNAi cells exhibited profound de-

fects in cortical stability. In these cells, the F-actin cortex under-

went continuous blebbing (Figure 4A; Figure S3A)—something

never seen in the control. Similarly, cortical defects including

blebbing were seen in fixed preparations of Cdc42 RNAi cells

(Figures 4B and 4C) and in small null mutant cdc423 clones visu-

alized live using UAS-Tub::GFP (Figure S3B). Furthermore,

cortical Dia was found to be largely absent from the lateral cortex

of metaphase cells expressing Cdc42 dsRNA (Figures 4C and

4E), implying a role for Cdc42, like Pbl, in Dia localization, even

though changes in the levels of pMyosin-II in Cdc42 RNAi cells

(Figures 4B and 4G) were much less marked than those seen

in Rho1DN expressing tissues (Figures 3D and 4G). Thus,

Rho1 and Cdc42 appear to have complementary activities: Dia

localization depends on Cdc42, whereas Myosin-II activation

depends on Rho1.

Since Cdc42 functions together with its binding partners aPKC

and Par6 in generating cortical F-actin-based structures in inter-

phase epithelial cells of the fly notum (Georgiou and Baum, 2010;

Georgiou et al., 2008), it was important to determine whether

aPKC and Par6 also contribute to the assembly of a stable

mitotic cortex. We took advantage of a recently reported tem-

perature-sensitive allele of aPKC (aPKCts) (Guilgur et al., 2012)

to perturb the function of aPKC in intact epithelia. At restrictive

temperatures, mitotic aPKCts mutant cells (aPKCts/Df(2R)l4)

resembled Cdc42 RNAi cells in exhibiting large bleb-like defor-

mations (Figure S3C), a severely disrupted metaphase cortex

(Figure 4D), and reduced levels of cortical Dia (Figures 4D

and 4E), relative to the control (aPKCts/CyO). Further, using the

Gal80ts line to limit pnr-Gal4-mediated expression of dsRNAs

targeting aPKC and Par6 to specific pupal stages, we observed

similar defects in cortical F-actin organization to those described

in Cdc42 RNAi cells (Figure S3C). Taken together, these data

suggest that Cdc42 functions together with the polarity proteins

aPKC and Par6 to control the assembly of a stable Dia-depen-

dent mitotic actin cortex.

Recent studies have implicated an important role for epithelial

polarity factors, including Cdc42, Par6, and aPKC (Durgan et al.,

2011; Guilgur et al., 2012; Hao et al., 2010; Jaffe et al., 2008), in

spindle orientation during symmetric cell divisions (Bergstralh
Dia

and Cdc42 RNAi epithelia expressing Lifeact::GFP (yellow arrow indicates cell

stained for (B) F-actin (red), DNA (white), a-tubulin (blue), and pMyosin-II (Inset,

ts/Df(2R)l4, respectively) stained for F-actin (red), DNA (white), a-tubulin (blue),

cells from control tissue, and tissue expressing dsRNAs for Dia, Pbl, or Cdc42,

st was used to confirm significance (**p < 0.05) between Cdc42 RNAi and

and (G) phospho-Myosin-II ratios for metaphase cells from control, Dia, Pbl,

rved (***p < 0.001) between Cdc42 RNAi and RhoDN expressing nota (non-

nificance of difference (***p < 0.001) between control and treated nota in all box

ressing and aPKCts/CyO mutant tissue stained for F-actin (red), DNA (white),

xy) and in cross-section (right, xz). White double arrow marks the Par6::GFP

opmental Cell 32, 604–616, March 9, 2015 ª2015 The Authors 609



Figure 5. Pbl Interacts with Par6 and Cdc42

Complexes were immunoprecipitated (IP) from S2 lysates transfected with control (salmon sperm DNA), HA::Pbl, or HA::Pbl and Par6::FLAG constructs using an

anti-HA or anti-Flag antibody.

(A–C) Western blot analyses were conducted with anti-Flag (A), anti-aPKC (B), or anti-HA (C) antibodies.

(legend continued on next page)
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et al., 2013; Durgan et al., 2011; Guilgur et al., 2012; Hao et al.,

2010; Jaffe et al., 2008; Nakajima et al., 2013). However, while

modest spindle orientation defects have been reported in

Drosophilawing discs lacking aPKC (Guilgur et al., 2012), spindle

orientation in the follicular epithelium appears to rely on the

lateral factor Discs-large instead of aPKC (Bergstralh et al.,

2013). This led us to analyze spindle orientation in Cdc42 and

Dia RNAi conditions and in aPKCts mutant nota. In each case,

centrosome separation appeared unaffected, and cells divided

in the plane of the epithelium. The only defects we observed

were minor changes in spindle movements in Dia RNAi cells

(data not shown). Together, these data suggest that, in cells of

the notum, Cdc42/aPKC/Par6 aid the assembly of the actomy-

osin cortex, rather than formation or orientation of the mitotic

spindle.

Mitotic Entry Is Accompanied by a Shift in
Cdc42/aPKC/Par6 Localization
In interphase Drosophila epithelial cells, Cdc42/aPKC/Par6 pro-

teins are confined to a well-defined apical domain, where they

perform important roles in the regulation of junctional organiza-

tion and cell polarity (St Johnston and Ahringer, 2010). How

then can Cdc42, aPKC, and Par6 contribute to the mitotic redis-

tribution of Dia and to the formation of a relatively uniform,

rounded metaphase cortex? To address this question, we

used antibodies and GFP-fusion proteins to determine the local-

ization of these polarity proteins in mitotic cells in fixed tissues.

This revealed an apical, junctional pool of Cdc42 and aPKC in

interphase cells (Figures S4A and S4C), as previously described

(Harris and Tepass, 2008). However, at mitotic entry, both Cdc42

and aPKC extended their domain of localization along the lateral

cortex (Figure 4H). The specificity of this staining was confirmed

using Cdc42 RNAi (Figures S4A and S4B) and by comparing

aPKCts/CyO and aPKCts (aPKCts/Df(2R)l4) cells at the restrictive

temperature (Figures S4C and S4D [Guilgur et al., 2012]). Since

we were unable to observe robust staining for Par6 using avail-

able antibodies, we imaged expression of a functional Par6-GFP

fusion protein instead (Wirtz-Peitz et al., 2008). As expected, this

revealed a basal shift in the localization of Par6-GFP along the

lateral cortex in cells entering mitosis (Figure 4I), a process that

was reversed at mitotic exit (Figure S4E). This shift in the locali-

zation of the polarity proteins Cdc42, aPKC, and Par6 during

mitotic entry could therefore contribute to the generation of a

stable rounded cortex.

Ect2/Pbl Can Act through Cdc42 and Dia to Redirect
Cortical Actin Assembly
Ect2 can activate PKCz and Cdc42 via direct binding to the Par6/

Par3/PKCz complex to regulate the establishment of epithelial

cell polarity (Liu et al., 2004, 2006). Because of this, wewondered

whether Pbl might associate with the homologous polarity pro-

teins in fly cells. To look for a biochemical interaction, we carried
(D) Equal amounts of S2 cell lysates transfectedwithMyc::Pbl were subjected to p

immunoblotting with anti-Myc antibody. GST staining is shown at the bottom to

(E) Intermediate top view of fly nota expressing Pbl-GFP in subsets of cells at th

(F) Pbl-GFP (green), Par6, Dia, and Phalloidin (red) staining of three fly nota. Yellow

pnr domain frontier.

See also Figure S4.

Devel
out co-immunoprecipitation assays using fly S2 cell extracts

transfected with Par-6 fused with Flag epitope (Par6::Flag) and

Pbl fused with HA epitope (Pbl::HA). In this assay, Pbl::HA and

Par6::FLAG associated with one another in experiments carried

out in either direction (Figures 5A and 5C). The interaction was

confirmed by pulling down Myc::Pbl transfected cells with

Par6::GST (glutathione S-transferase) beads (data not shown).

Endogenous aPKC protein only came down in cells express-

ing both Pbl::HA l and Par6::Flag (Figure 5B). However,

Cdc42WT::GST was found associated with Pbl in pull-downs

(Figure 5D), as was Cdc42.N17::GST, as expected for a sub-

strate of a GEF.

These data support the idea of there being a physical associ-

ation of Pbl with Par6/aPKC/Cdc42 complex at the onset of

mitosis. If the activation and relocalization of Pbl to the cyto-

plasm of mitotic cells were sufficient to repolarize the cell and

to induce the lateral recruitment of active Dia, it might be

possible to mimic the formation of the mitotic cortex through

the simple overexpression of Pbl. To test whether this is the

case, we used Gal80ts in combination with pnr-Gal4 to ectopi-

cally express Pbl::GFP in isolated clusters of cells in the fly

notum. Remarkably, this drove the lateral displacement of

aPKC in interphase (Figure 5E) in a manner that was comparable

to that seen in mitosis (compare cells in Pnr domain with mitotic

cell marked with yellow asterisk). Moreover, like their mitotic

counterparts, these Pbl::GFP positive cells exhibited an increase

of cortical Dia, Par6, and F-actin (Figure 5F).

Similarly, if assembly of the F-actin cortex downstream of Pbl

depends on Cdc42 and Dia, the activation of either protein

should also promote the assembly of a mitotic-like cortex. Since

the expression of constitutively active forms of Cdc42 and Dia

(Cdc42.V12 and DiaCA) proved to be highly toxic, to carry out

this test we used Tub-Gal80ts Neu-GMA to limit expression to

precise periods of SOP development. Strikingly, the expression

of either Cdc42.V12 or DiaCA was sufficient to drive the assembly

of a rounded, F-actin-rich cortex in interphase cells (Figure 6A) in

the absence of significant amounts of cytoplasmic Pbl/Ect2.

Furthermore, when these SOP cells were followed through their

first round of cell division, they exhibited profound cell shape in-

stabilities and blebbing (Figure 6B). While the phenotypes were

similar in the two cases, the effects of DiaCA were reproducibly

stronger, leading to a thicker actin cortex, blebbing, and defects

in spindle orientation (Figure S5B). In certain instances these de-

fects were so extreme as to cause blebs to be pinched off and

lost (Figure S5D). Interestingly, the expression of constitutively

active forms of Cdc42 and Dia was also sufficient to induce the

formation of an actin rich cortex at the apical surface of cells (Fig-

ures S5A and S5C). Since actomyosin was cleared from the

apical region of control mitotic cells, these data imply that local

Pbl activation provides the positional information required to po-

sition active Cdc42 and Dia, which then drive local cortical

assembly.
ull-down assayswith GST::Cdc42WT orGST::Cdc42.N17. Pbl was detected by

visualize recombinant Cdc42 proteins.

e limits of the pnr domain stained for GFP (green) and aPKC (red).

asterisk marks mitotic cells in the pnr domain. Yellow dashed square: inset of
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Figure 6. Cdc42.V12 or DiaCA Expression Is Sufficient to Induce Cell Rounding in Interphase

(A) Intermediate level view in plane of epithelium of control, Cdc42.V12, and DiaCA expressing SOP cells marked with GMA::GFP to label F-actin in interphase.

(B) Similar views of control, Cdc42.V12, and DiaCA expressing SOP cells marked with GMA::GFP in metaphase. Scale bars, 5 mm.

(C) Kymograph of cell shown in (B). Yellow dashed rectangle marks the region used for the generation of kymograph. Scale bars, 1 min.

See also Figure S5.
DISCUSSION

Studies in cell culture systems have shown that the release of

Ect2/Pbl from the nucleus at mitotic entry (Matthews et al.,

2012) activates Rho (Maddox and Burridge, 2003) to drive

F-actin (Cramer and Mitchison, 1997) and Myosin-II dependent

mitotic rounding. Here, we show that cytoplasmic Pbl/Ect2 plays

a similar role in the assembly of a metaphase actomyosin cortex

in epithelial cells in the developing fly. In human cells, this change

in cell shape appears to be triggered by rising levels of nuclear

Cdk1/CyclinB, which leads to the export of activated Ect2/Pbl

(Matthews et al., 2012). Although threonine T341, a key site of

Cdk1/CyclinB-mediated Ect2 phosphorylation, is not conserved

in Pbl (Hara et al., 2006), the C-terminal is highly conserved and

includes T814, another conserved site of Cdk1/CyclinB-medi-
612 Developmental Cell 32, 604–616, March 9, 2015 ª2015 The Auth
ated phosphorylation (Niiya et al., 2006; Su et al., 2011). Thus,

these data suggest the possibility that Pbl/Ect2 is regulated in

a similar fashion across animal species, enabling it to perform

a conserved function in driving changes in mitotic cell shape.

The current study identifies Dia as the critical regulator of actin

nucleation downstream of Pbl/Ect2 required for assembly of the

mitotic cortex. Moreover, using live imaging we have been able

to observe a rapid shift in cortical organization at mitotic entry

that depends on Dia, but not Arp3. While studies in human cells

have yet to identify the actin substrate uponwhichMyosin-II acts

to drive mitotic rounding, Dia homologs likely play a key role (Bo-

vellan et al., 2014). Given thewell-established role for Dia in cyto-

kinesis (O’Keefe et al., 2001; Prokopenko et al., 1999), its identi-

fication as the critical actin nucleator required for the generation

of the metaphase cortex strengthens the idea that it is similar in
ors



composition to the circular contractile actomyosin ring used to

drive cell division (Matthews et al., 2012). Importantly, however,

our work identifies a key difference between the pathways

involved in these two processes: while Rho1 is absolutely

required for the localization of Dia and Myosin-II and the assem-

bly of the actomyosin ring at cytokinesis, the metaphase cortex

relies on the collaboration of Rho and Cdc42. In metaphase,

Cdc42, Par6, and aPKC play the dominant role in the control of

Dia localization, while Rho appears more important for the acti-

vation of Myosin-II. (Note that we observed little evidence of

Cdc42 or aPKC accumulating within the cytokinetic ring.) Since

Pbl/Ect2 is required for both actin nucleation and Myosin-II

activation during metaphase, it is likely that this requires the

downstream activation of both Rho and the Cdc42/aPKC/Par6

complex.

While a role for Cdc42 in the localization of Dia during mitotic

rounding might seem surprising, previous studies have sug-

gested roles for the mitotic activation of Cdc42 (Hutterer et al.,

2004) in mitotic actin assembly (Zhu et al., 2011). Moreover, in

yeast, the localization and activation of formins is dependent

both on the Rho GTPase Cdc42 and the protein kinase C

Pkc1p (Dong et al., 2003). These data suggest a conserved

role for aPKC, Rho, and Cdc42 in the control of actin nucleators

during mitosis. Interestingly, while a large number of studies

have implicated Cdc42 in spindle orientation (Gotta et al.,

2001; Jaffe et al., 2008; Mitsushima et al., 2009), in line with a

recent study in the fly egg chamber (Bergstralh et al., 2013),

we find no evidence for a role of Cdc42, aPKC, or Par6 in the

regulation of spindle alignment in the fly notum. However, since

spindle defects can arise from defects in mitotic cell shape (Lan-

caster et al., 2013), these previously observed phenotypes may

be an indirect consequence of the role of polarity proteins in the

assembly of a rigid actomyosin cortex.

If Pbl/Ect2 functions to coordinate the activities of Rho and

Cdc42, how might the switch in Pbl/Ect2 activity from meta-

phase (Cdc42 and Rho) to anaphase (Rho) be accomplished?

One possibility is that this results from changes in the status of

Pbl/Ect2 phosphorylation sites that accompany mitotic progres-

sion and change the specificity of the Pbl/Ect2 GEF activity to-

ward different substrates, e.g., like the switch in Pbl activity

from Rho to Rac-dependent cell motility during mesoderm

migration in flies (van Impel et al., 2009). In addition, levels of

active Rho family GTPases during mitotic progression will be

affected by the activity and location of counteracting RhoGAPs

(Oceguera-Yanez et al., 2005), many of which are known to

display different activities toward different Rho family GTPases

(Touré et al., 1998). Finally, this switch in behavior could rely

on the function stage or location specific accessory proteins,

such as BAR domain proteins (Ren et al., 2006).

Although the pathway leading from Pbl/Ect2 to Rho and

Myosin-II was first discovered in human cells in culture (Cramer

and Mitchison, 1997; Maddox and Burridge, 2003; Matthews

et al., 2012), rounding under these conditions does not require

an intact F-actin cytoskeleton (Lancaster et al., 2013). In an

epithelium, by contrast, significant actomyosin-based forces

are required to drive rounding, since the dividing cells have to

make space within the tissue in which to build a mitotic spindle

(Lancaster et al., 2013; Luxenburg et al., 2011; Nakajima et al.,

2013). In the fly notum, it is clear that the establishment of a rela-
Devel
tively uniform contractile actomyosin cortex downstream of Pbl/

Ect2 plays a critical role in ensuring that cells assume a rigid,

spherical state. Thus, cells lacking an F-actin cortex, as the result

of Pbl or Dia RNAi, have a variable shape that often departs

markedly from the robust, spherical form of control cells. Con-

versely, cells expressing activated forms of either Dia or Cdc42

exhibit uncontrolled cortical blebbing, showing the importance

of fine-tuning cortical forces.

Interestingly, in many systems Cdc42 functions as a master

regulator of the polarized localization of different populations of

F-actin (Johnson, 1999). More specifically, during interphase

in epithelial cells within the developing fly, apically localized

Cdc42 has been proposed to function together with aPKC and

Par6 to control a large set of distinct F-actin-based structures.

These include apically localized Dia at cell-cell junctions (Warner

and Longmore, 2009), the activation of Wasp-dependent AJ

endocytosis (Georgiou et al., 2008), and, through interactions

with Baz, Tiam1, and Rac, the activation of basal Arp2/3-based

protrusions (Georgiou and Baum, 2010). Therefore, one of the

primary effects of the observed shift in the localization of

Cdc42/Par6/aPKC upon entry into mitosis may be the depolari-

zation of this spatially differentiated F-actin cytoskeleton. As

these proteins bleed along the lateral cell membrane, they

appear to recruit Dia, enabling the nucleation of a relatively iso-

tropic actomyosin cortex. In this way, passage into and out of

mitosis involves an unexpectedly tight coordination of cell polar-

ity and actin cytoskeletal remodeling.

EXPERIMENTAL PROCEDURES

Fly Stocks

The following stocks were used: pnr-GAL4 (Bloomington:3039), aPKCts (Guil-

gur et al., 2012), cdc423 (Fehon et al., 1997), tub-GAL80ts (Bloomington:7108),

UAS-DiaCA (Bloomington:27616), UAS-Cdc42V12 (Bloomington:6287), neu-

GMA (Edwards et al., 1997; Kunda et al., 2012), neu-GAL4 (Bellaı̈che et al.,

2001), Lifeact::GFP (Hatan et al., 2011), sqhAx3; Sqh::GFP (Monier et al.,

2010), Cdc42V5 (Fletcher et al., 2012), UAS-Tub::RFP (McGill et al., 2009),

and UAS-Pbl::GFP (Somers and Saint, 2003). Vienna Drosophila Resource

Center (VDRC) RNAi lines were used to silence the expression of the genes

aPKC, arp3, diaphanous, pebble, and par-6, and a NIG-Fly library line was

used for cdc42. For Flybase ID, see Supplemental Experimental Procedures.

Dissections and Live Imaging

For time-lapse acquisition experiments, animals expressing the appropriate

reporter were imaged through a window in the pupal case under a drop of in-

jection oil via confocal microscopy at room temperature (Georgiou and Baum,

2010). Time-lapse movies were acquired using an upright Leica SPE confocal

microscope. In vivo live imaging of pupal nota was performed at 14–16 hr after

pupariation (AP) and labeled using a variety of markers (see Supplemental

Experimental Procedures). RNAi-induced gene silencing was accomplished

by using the pnr-Gal4 driver to express Gal4-responsive hairpin dsRNAs in

transgenic flies (Mummery-Widmer et al., 2009). For fixed preparations, nota

from 14 to 16 hr AP were promptly fixed in 4% formaldehyde for 20 min at

room temperature, before being permeabilized in PBS containing 0.1% Triton

X-100. Subsequently, nota were incubated in a blocking solution composed of

5% BSA and 3% fetal bovine serum (FBS) (in PBS), preceding antibody incu-

bation (see Supplemental Experimental Procedures). Imaging was performed

using an inverted Leica SP5 confocal microscope.

Cell Culture and Immunoprecipitation

S2 cells (DGRC) were cultured in Schneider’s medium (GIBCO) supplemented

with 10% heat inactivated FBS (GIBCO) and 1% penicillin/streptomycin

(GIBCO) at 25�C. Transfection was performed using Effectene Transfection
opmental Cell 32, 604–616, March 9, 2015 ª2015 The Authors 613



Reagent (QIAGEN). A total of 1 mg of plasmid DNA was used per well. Cell ly-

sates were incubated with 5 mg of antibody (see Supplemental Experimental

Procedures) and immunoprecipitated with Protein A/G magnetic beads

(Pierce, Thermo Scientific). For western blot analysis, gels were blotted to a

polyvinylidene difluoride membrane (see Supplemental Experimental Proce-

dures). Protein signals were detected by enhanced chemiluminescence (Bio-

logical Industries).

In Vitro Binding Assay

For the glutathione S-transferase pull-down assays, 400 ml of cell lysate was

incubated with an excess of GST fusion proteins immobilized on glutathione

Sepharose beads (see Supplemental Experimental Procedures). Proteins

were resolved by SDS-PAGE and detected using the LICOR Odyssey scanner

(Li-Cor Bioscience).

Image Processing and Analysis

The images presented were processed with Fiji (Schindelin et al., 2012)

and Adobe Illustrator CS (Adobe Systems). Intensity profiles at the cortex of

cells were quantified in a single confocal z medial slice using ImageJ. A line

(of 10 pixels width) was outlined around the cortex of cells to measure gray

mean intensity (analyze > measure > mean pixel intensity). The same proce-

dure was performed for a line of equal length inside the cell (avoiding the

DNA). The cortical/cytoplasmic ratio was given by the ratio of the mean pixel

intensity on the cortex of cells divided by the mean gray intensity inside the

cell. Statistics were calculated on the basis of a minimum of 30 cells in at least

3 different pupae.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at http://dx.doi.org/

10.1016/j.devcel.2015.01.012.
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