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Abstract

Objectives: To test for structural and functional contribution of mitochondrial

dysfunction to neurodegeneration in multiple sclerosis (MS). A visual pathway

model void of MS lesions was chosen in order to exclude neurodegeneration

secondary to lesion related axonotmesis. Methods: A single-centre cohort study

(230 MS patients, 63 controls). Spectral domain optical coherence tomography

of the retina, 3T magnetic resonance imaging of the brain, spectrophotometric

assessment of serum lactate levels. Postmortem immunohistochemistry. Results:

The visual pathway was void of MS lesions in 31 patients and 31 age-matched

controls. Serum lactate was higher in MS compared to controls (P = 0.029).

High serum lactate was structurally related to atrophy of the retinal nerve fiber

layer at the optic disc (P = 0.041), macula (P = 0.025), and the macular gan-

glion cell complex (P = 0.041). High serum lactate was functionally related to

poor color vision (P < 0.01), Expanded Disability Status Scale score (R = 0.37,
P = 0.041), Guy’s Neurological disability score (R = 0.38, P = 0.037), MS
walking scale (R = 0.50, P = 0.009), upper limb motor function (R = 0.53,
P = 0.002). Immunohistochemistry demonstrated increased astrocytic expression
of a key lactate generating enzyme in MS lesions as well as profound vascular
expression of monocarboxylate transporter-1, which is involved in lactate trans-
port. Interpretation: This study provides structural, functional, and transla-

tional evidence for visual pathway neurodegeneration in MS related to

mitochondrial dysfunction.

Introduction

Understanding mechanisms driving progression of

neurodegeneration in multiple sclerosis (MS) is relevant

for developing focused neuroprotective treatment strate-

gies.1 The most straightforward anatomical model is that

axonal transsection within active MS lesions causes distal

axonal loss by Wallerian degeneration.2 Once the axon is
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lost and the neuron does not remain functionally con-

nected, neuronal death follows a mechanism called dying

back neuropathy. A more complex anatomical model is

required to explain how axonal degeneration passes from

a diseased to a healthy neuron. This is now understood

to be a consequence of retrograde3,4 and anterograde

trans-synaptic axonal degeneration.5 Truly, directionality

of the process depends on localization of primary damage

and will in most cases be bidirectional.6 A physiological

barrier to bidirectional trans-synaptic axonal degeneration

is formed by anatomical structures capable of neuronal

plasticity.6,7 An important conclusion from these studies

is that the substantial amount of retinal ganglion cell loss

and axonal degeneration following episodes of MS associ-

ated optic neuritis (MSON) masks the more subtle degree

of neurodegeneration attributable to more globally acting

mechanisms.8,9

An important shortcoming of all optical coherence

tomography (OCT) studies in the literature to date is that

none excluded retinal layer atrophy to be a potential con-

founder of MS lesions in the optic pathways.4,10 It may be

possible that bidirectional trans-synaptic axonal degenera-

tion does not explain all of the retinal layer atrophy seen

in MS. More global mechanism are also present.11 There-

fore, to test these hypotheses using structural retinal imag-

ing, one will need to be rigorous about excluding atrophy

data from eyes with MSON and/or lesions within the pos-

terior visual pathways.

But which are the molecular pathways that might lead

to neurodegeneration on a more global level? Current

understanding is that these consist of a cascade of events

eventually leading to neuroaxonal degeneration as sum-

marized in Figure 1. A common feature here is that a

mitochondrial dysfunction is part of every single phase of

this cascade of neurodegeneration.11–13 As a result of

mitochondrial dysfunction the cellular need for ATP is

partly covered by conversion of pyruvate to lactate. This

change from an aerobic to a nonaerobic metabolism leads

to an increase of lactate levels.14 Recent translational data

directly relates neuronal loss to a dysfunctional aerobic

energy metabolism.15 An elegant quantitative method

which permits to reach the cellular level in humans in

vivo is spectral domain OCT.16

In order to prospectively test the hypothesis that

patients with MS and mitochondrial failure suffer from

more extensive neurodegeneration compared to patients

Figure 1. Prevailing hypotheses on molecular mechanisms leading to a cascade of events leading to more global neurodegeneration in the brain

of patients with multiple sclerosis (MS) as could be expected from bidirectional trans-synaptic axonal degeneration alone. The red ellipse shows

which of these mechanisms have in common, biochemically, that the anaerobic or impaired energy metabolism may cause an increase of systemic

blood lactate levels, a body fluid biomarker. The red box highlights the visual pathway model used in this study using multimodal, structural

imaging biomarkers.
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with MS and no mitochondrial failure we took a

combined body fluid biomarker and imaging biomarker

approach. Because body fluid biomarker data can only

ever provide indirect correlative evidence, postmortem

immunohistochemical analyses were also performed. We

hypothesized that patients with MS who had higher

serum lactate levels compared to healthy controls will suf-

fer from more extensive atrophy and loss of function.

Methods

Patients

This single centre cohort study was approved by the ethics

committee of the VU University Medical Centre (protocol

number 2010/336) and the scientific research committee

(protocol number CWO/10-25D). Written, informed con-

sent was obtained from all patients. All donors or their

next of kin provided written informed consent for brain

autopsy, use of material, and clinical information for

research purposes. Inclusion criteria were age above

18 years and a diagnosis of clinically definite MS accord-

ing to the original McDonald criteria.17 Exclusion criteria

were pregnancy, a relapse, or a course of steroids in the

last 4 weeks, a diagnosis of HIV or other immunodefi-

ciency, substance abuse in the past 5 years or MRI find-

ings that could interfere with evaluation. For healthy

controls additional exclusion criteria were any other neu-

rological or psychiatric disease or a first or second degree

relative with a diagnosis of MS. Episodes of MSON were

identified through patient history and confirmed clinically

using a standard care protocol.18 The disease course was

classified into relapsing remitting (RR), secondary progres-

sive (SP) and primary progressive (PP).19

Clinical scales

Physical disability was recorded on the Expanded Disability

Status Scale score (EDSS), Guy’s Neurological Disability

Scale (GNDS), the Multiple Sclerosis Walking Scale

(MSWS-12) and the 9–hole PEG test (9HPT) measuring

upper limb motor function. For all scales a higher score

indicates more disability. Snellen visual acuities (VA) were

recorded and converted to decimal notation as recom-

mended.18 Color vision was tested using the Lanthony

desaturated F15–hue test (D-F15d) with a daylight illumina-

tor (6280°K) followed by validated, quantitative analyses.20

Blood test

Blood samples were taken by antecubital venopuncture

using a standard tourniquet procedure at time of the MRI.

Samples were immediately spun down. Samples were then

alliquoted, coded, and stored in polypropylene tubes at

�80°C within 2 h of sampling. Serum samples were avail-

able from 192 of the 263 we have reported on before.7,21

Serum lactate levels were measured spectrophotometrically

(Agilent 89090A; Agilent Technologies, Santa Clara, CA).22

The analyst was blinded to all other subject information.

OCT and segmentation

Retinal OCT was performed as previously described.7,21

In brief all images were obtained with a SD-OCT (Heidel-

berg Spectralis, software version 1.1.6.3, Heidelberg Enge-

neering, Heidelberg, Germany) with the eye tracking

function (EBF) enabled for best accuracy.23 Data were

collected from a peripapillary ring scan (12°) and a macu-

lar volume scan (20 9 20°).
All scans underwent a rigorous quality control (QC)

check.24 From a total of 768 scans, 70 scans (9.1%) were

excluded because they failed the validated OSCAR-IB QC

criteria.24 Automated segmentation was performed with

the manufacturers software (HEYEX version 1.7.1.0, View-

ing Module version 5.7.0.10, Heidelberg Engeneering, Hei-

delberg, Germany). The peripapillary retinal nerve fiber

layer (pRNFL), macular RNFL (mRNFL), and macular

ganglion cell complex (mGCC) were taken for analysis.

MRI acquisition

Structural magnetic resonance imaging (MRI) was per-

formed on a 3T whole body system (GE Signa HDxt, Mil-

waukee, WI). The detailed acquisition parameters have

been described previously as well as an example of the 3T

MRI.7,21 In brief, normalized gray and white matter vol-

umes and lesion volumes were quantified automatically

using k nearest neighbor classification with tissue type

priors (KNN-TTP), and SIENAX (part of the FMRIB

Software Library [FSL] 5.0.4, http://www.fmrib.ox.ac.uk/

fsl). Lesion filling was applied to minimize the effect of

lesions on atrophy measurements.

Immunohistochemistry

White matter brain samples were obtained from seven

MS patients (average age: 61, 57% male, 57% secondary

progressive multiple sclerosis SPMS, average disease dura-

tion of 37 years) in collaboration with the Netherlands

Brain Bank, Amsterdam, The Netherlands (coordinator

Dr. Huitinga). Cryosections were used for detection of

monocarboxylate transporter 1 (MCT1) (dilution 1:1000,

kindly provided by Dr. Fishbein and Dr. Merezhins-

kaya).25 Paraffin sections were used for detection of lac-

tate dehydrogenase A (LDHA) (dilution 1:3000; Novus

biologicals, Littleton, CO).26
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Data analysis

All statistical analyses were performed in SAS (version 9.3

SAS Institute Inc., Carry, USA). For statistical analyses the

averaged OCT and D-F15d data of both eyes were used

from each patient. In cases with unilateral MSON, only

data from the nonaffected eye were used. Patients with a

lesion volume of their OR exceeding the highest value

observed in our control cohort were excluded. Controls

were age matched to patients. The cutoff level for high

serum lactate concentrations (2 mmol/L) was taken from

a large reference population of 625 healthy control sub-

jects.14 Normality was tested graphically and using Shap-

iro–Wilk statistics. Because averaged data were used for

both eye we did not perform generalized estimating equa-

tion (GEE) which corrects for intereye dependencies,

instead data with normal distribution were compared

using the t test. Correlation analyses were performed using

Pearson’s R for normally distributed and Spearman’s R for

non-Gaussian data. The Bonferroni method was used to

correct for multiple correlations. Power calculations were

performed using proc power in SAS with alpha set to 0.05.

Results

Study cohort void of MS lesions in visual
pathways

We identified 31 patients with MS who did have no clini-

cal or radiological evidence for either MSON or lesions

within their optic radiations. This corresponds to 31/230

(13.5%) of our original cohort.7 The demographic data of

the patients are summarized in Table 1. The groups were

matched for age, but there were more female patients

compared to healthy control subjects (P < 0.01).

The serum lactate levels were significantly higher in

patients with MS compared to control subjects (Table 1,

P = 0.029). Importantly, serum lactate levels were not

correlated with either age (P = 0.23), age at onset

(P = 0.42), or disease duration (P = 0.37).

Dominant dyschromatopsia in MS

Color vision was impaired in 20/24 (83.3%) and typical

for an acquired loss of color vision.20 High contrast VA

averaged at 0.9 with a mode of 1.0 (Table 2). Fourteen

patients had a VA >1.0 and only 3/31 (9.7%) had a VA

<0.8. Color vision was significantly more frequently

impaired compared to high contrast VA (v2 P = 0.01).

Structural relationships

In patients with high serum lactate levels there was signifi-

cantly more retinal layer atrophy of the pRNFL (P = 0.041,

Fig. 2A), mRNFL (P = 0.025, Fig. 2B), and mGCC

(P = 0.041, Fig. 2C) compared to those with normal serum

lactate levels.

There was a trend for more severe cortical thinning in

patients with high compared to normal serum lactate lev-

els, but significance was narrowly missed (P = 0.061).

Functional relationships

Patients with high serum lactate levels had significantly

more severe impairment of their color vision (confusion

Table 1. Subject characteristics.

Controls MS patients

Subjects 31 31

Gender (m:f) 15:16 5:261

Age (years) 53.2 (5.6) 55.1 (10.5)2

Age at onset n/a 37.6 (8.4)

Disease duration n/a 17.5 (6.3)

EDSS n/a 3.7 (1.7)

Disease course n/a 20 RR, 6 PP, 5 SP

No MSON 31/31 (100%) 21/31 (68%)3

MSON OD 0/31 (0%) 7/31 (23%)4

MSON OS 0/31 (0%) 3/31 (10%)5

Eyes included 62 526

Serum lactate 2.39 (0.82) 2.81 (0.89)7

The mean (SD), n (%) are shown. The disease course is indicated as

RR, relapsing remitting; SP, secondary progressive; PP, primary pro-

gressive. MS, multiple sclerosis; EDSS, Expanded Disability Status Scale

score; MSON, MS associated optic neuritis.
1Significantly more female subjects with MS compared to controls

(chi-square test, P = 0.007).
2Statistically no significant difference.
3OCT data from both eyes were averaged.
4Only OCT data OS (the nonaffected eye).
5Only OCT data OD (the nonaffected eye).
6OCT data from the 10 eyes with MSON were excluded.
7P = 0.0294.

Table 2. Visual function in MS patients for the pooled cohort and

dichotomized according to serum lactate levels.

MS patients

Pooled

With normal

lactate

With high

lactate

Visual acuity 0.90 (0.10) 0.94 (0.08) 0.91 (0.12)

Confusion index 1.45 (0.42) 1.20 (0.19) 1.54 (0.45)1

Selectivity index 1.83 (0.46) 1.61 (0.19) 1.90 (0.50)

Confusion angle 51.54 (43.82) 63.49 (5.29) 47.55 (50.22)

Data are shown for high contrast visual acuity and color vision as

mean (SD) or number (%). MS, multiple sclerosis.
1Significantly more errors in MS patients with high serum lactate

compared to MS patients with normal serum lactate (P = 0.0096).
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index) compared to those with normal serum lactate

levels (Table 2, Fig. 3, P < 0.01).

Serum lactate levels were significantly correlated with

clinical scales (Fig. 4). The correlation was strongest for

the 9HPT (Pearson R = 0.53, P = 0.002), followed by the

MSWS (Pearson R = 0.50, P = 0.009), EDSS (Spearman’s

R = 0.37, P = 0.041), and GNDS (Pearson R = 0.38,

P = 0.037). Statistical significance remained for the 9HPT

and MSWS after correcting for multiple (n = 4) correla-

tions with a corresponding Bonferroni corrected P-value

of (0.0125 = 0.05/4).

Impaired lactate production and transport
in MS lesions

Chronic active MS lesions were characterized by demye-

lination (Fig. 5A) and a rim of activated microglia and

macrophages (Fig. 5B). Immunohistochemical analysis

indicated that the lactate-generating enzyme LDHA was

predominantly expressed by astrocytes throughout the

normal appearing white matter (Fig. 5C). The expression

of LDHA was markedly increased in MS lesions compared

to normal appearing white matter. Interestingly, LDHA

expression localized predominantly to large reactive astro-

cytes (Fig. 5D). Next, the lactate transporter MCT1 was

highly expressed on blood-vessels and astrocyte processes

throughout the normal appearing white matter (Fig. 5E)

and lesions (Fig. 5F).25

Discussion

This study proposed an in vivo model suitable to test

systemic hypotheses on primary neurodegeneration in

MS. The combination of clinical and MRI data permits to

Figure 2. (A) There was more atrophy of the peripapillary RNFL

(pRNFL) in patients with MS who have high serum lactate levels if

compared to those with normal serum lactate levels. The inset shows

representative images from two patients with MS included. The

location of the peripapillary ring scan OD (commonly used

abbreviation for latin oculus dexter, meaning right eye) is illustrated

by the green circle in the confocal scanning laser ophthalmoscopic

image. The segmented pRNFL is shown as the bright area between

the red and green lines in the OCT image. The averaged pRNFL was

102 lm on the left (serum lactate 1.92 mmol/L) and 72 lm on the

right (serum lactate 2.94 mmol/L). (B) There was more atrophy of the

macular RNFL (mRNFL) in patients with MS who have high serum

lactate levels if compared to those with normal serum lactate levels.

The inset shows representative images from two patients with MS

included. The area of the macular volume scan OD is illustrated by

the green box in the confocal scanning laser ophthalmoscopic image.

The green vertical arrow indicates the location of the OCT scan. The

segmented mRNFL is shown as the bright area between the red and

green lines in the OCT image. The averaged mRNFL was 32.25 lm on

the left (serum lactate 1.86 mmol/L) and 23.5 lm on the right (serum

lactate 3.61 mmol/L). (C) There was more atrophy of the macular

GCC (mGCC) in patients with MS who have high serum lactate levels

if compared to those with normal serum lactate levels. The inset

shows the same OCT scan OD as in (B) with the segmented mGCC

between the green and blue lines. The averaged mGCC was

105.75 lm on the left and 71.25 lm on the right. The mean and

standard deviation are shown. RNFL, retinal nerve fiber layer; MS,

multiple sclerosis; GCC, ganglion cell complex.

144 ª 2014 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

Mitochondrial Failure A. Petzold et al.



describe a subgroup of patients with MS in which there is

no MRI evidence for MS lesions within the visual path-

ways. These patients should therefore not suffer from

inner retinal layer atrophy secondary to bidirectional

trans-synaptic axonal degeneration caused by MS lesions

of the visual pathways.6,7 Consequently, using retinal

OCT as a highly accurate quantitative readout10,23,27 for

this in vivo model permits to specifically test for other

mechanisms thought responsible for neurodegeneration in

MS.11

The main finding using this novel visual pathway

model was to provide indirect biomarker evidence that

mitochondrial dysfunction was related to neurodegenera-

tion, both structurally and functionally. The biomarker

chosen was lactate because it reflects on mitochondrial

dysfunction which is considered a key feature of neurode-

generation in MS (Fig. 1). Consistent with previous data,

serum lactate levels in this study were significantly higher

in patients with MS compared to healthy controls.14,28

Because of the high lipid content of the brain it is inter-

esting noting recent adipous tissue microdialysis data in

MS.29 Extracellular fluid lactate levels in MS where higher

at baseline and significantly increased with exercise if

compared to control levels.29 Such changes were not

observed for muscle tissue.29

Structurally, the extent of atrophy in MS patients with

high serum lactate levels exceeded what can be seen by

physiological variation alone.30,31 However, the need for

OCT QC using validated criteria cannot be overempha-

sized because the observed group differences fall in the

range of known measurement artefacts.24

Functionally, the significant loss of color vision was

associated with higher serum lactate levels. Consistent

with this finding elevated serum lactate levels were also

related to more extensive loss of function on global scales

(EDSS, GNDS), upper limb function (9HPT), and lower

limb function (MSWS). The scales used have complemen-

tary strength lending more weight to the overall correla-

tive evidence.

A strength of this study was the long disease duration

which might have facilitated demonstrating the structural

and functional relationships with serum lactate in MS.

This advantage was counter balanced by the smaller num-

ber of patients, corresponding to only 15.5% of our origi-

nal cohort.7,21 This seems inevitable given the high

prevalence of optic pathway involvement in MS.18 This

may also turn out to be the practical challenge of the pro-

posed model for clinical patient recruitment. Power calcu-

lations on the present data illustrate the actual power of

the present study and how many patients would be

needed for each of the three OCT readouts used

(Table 3). An interesting observation from these power

calculations is that test of function (color vision) per-

forms better than test of structure (OCT). This is interest-

ing because color vision relies on cones which have a

higher metabolic demand compared to rods.32 In addi-

tion, foveal cone signaling has to pass through an ana-

tomical vulnerable structure, the foveal fibers, also known

as the papillomacular bundle.33 Finally, acquired loss of

color vision can now be assessed with high accuracy,

using state-of-the art, age adjusted, computerized color

vision tests.34,35 Such methods will be required for future

longitudinal studies relating quantitative data on color

vision to structural imaging data on integrity of the retina

and visual pathways, genetic and body fluid biomarker

data.

It has long been recognized that the axons constituting

the papillomacular bundle are particularly vulnerable.36

This might in part be related to their small diameter.

Electron-microscopic studies in primates show a diameter

of around 0.4 lm for the papillomacular bundle with a

complete lack of the larger 2.5 lm fibers seen elsewhere

in the retina.37 Naturally, there are less mitochondria in

thinner fibers compared to thicker fibers limiting energy

resources by unchanged energy requirements to maintain

axonal conduction.38 The size-dependent differences in

axonal susceptibility to degeneration have since been cor-

roborated in a human postmortem study using histo-

chemistry.39 This study demonstrated predominant loss of

the parvocellular layer of the lateral geniculate nucleus

Figure 3. Color vision was more impaired in patients with multiple

sclerosis (MS) who have high serum lactate levels if compared to

those with normal serum lactate levels. A color confusion index of

1.00 indicates a perfect test result from a patient with normal lactate

levels (0.96 mmol/L) and illustrated as inset to the left box. The result

from a patient with impaired color vision (confusion index 2.50) and

high lactate levels (3.44 mmol/L) is shown as inset to the right box.

The blue colored reference cap is indicated as “R”. Dashed lines

indicate directions of confusion typically found for protanomals,

deuteranomals, and tritanomals. The pattern of confusion (closed

lines on the right) are characteristic for an acquired color deficit. The

mean and standard deviation are shown.
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which represents the smaller sized retinal axons.39

Importantly, neurons of the parvocellular pathway are

particularly involved in color vision. In this context, our

findings indirectly support the clinical observation of a

progressive optic neuropathy in a very small proportion

of patients with MS from the pregenetic and pre-MRI

area.40,41 Already Parinaud reported slowly progressive

dyschromatopsia in MS.41 Later, Ashworth reported

nine cases with insidious and progressive visual failure

out of a series of 15 patients with presumed chronic

retrobulbar and chiasmal neuritis. Dyschromatopsia was

not systematically investigated but scotoma to red targets

reported in two cases (#7 & #9).40

Extending from the visual system to a more global

assessment of the brain, this study narrowly failed to

demonstrate a statistical relationship between serum lac-

tate levels and gray matter atrophy (P = 0.06). A limita-

tion here is the sample size as further illustrated by the

power calculations (Table 3). A possible explanation

might be that the spatial resolution of MRI is lower com-

Figure 4. Serum lactate levels correlated with the (A) EDSS (R = 0.37, P = 0.041), (B) GNDS (R = 0.38, P = 0.037), (C) MSWS (R = 0.50,

P = 0.009) and (D) 9–hole PEG test (R = 0.53, P = 0.002). EDSS, Expanded Disability Status Scale score; GNDS, Guy’s Neurological Disability Scale;

MSWS-12, Multiple Sclerosis Walking Scale.
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Figure 5. Chronic active MS lesions are characterized by loss of proteolipid protein (PLP, A) and a rim of activated MHCII positive microglia and

macrophages (B). LDHA staining intensity is increased in MS lesions (D) compared to normal appearing white matter (C). MCT1 is highly

expressed on blood-vessels in both normal appearing white matter (E) and lesions (F). MS, multiple sclerosis; LDHA, lactate dehydrogenase A;

MCT, monocarboxylate transporter 1.
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pared to OCT and that imaging of the cortical gray mat-

ter remains technically difficult.42 For both reasons MRI

data may be more noisy compared to OCT data in this

particular context.

Next, we studied the cellular distribution of the lactate

generating enzyme LDHA and monocarboxylate trans-

porter-1 (MCT-1), which is the main lactate transporter

in well-characterized MS brain tissue samples. The data

suggest that enhanced levels of the lactate-producing

enzyme LDHA in combination with marked endothelial

lactate transporters in MS lesions might contribute to

increased lactate levels. Future studies aimed to investigate

the link of the present biomarker data with pathological

studies of the eye and anterior visual pathways will need

to consider cell type specific metabolic pathways as well

as relevant transporters.25 Such future studies should also

consider adipous tissue as a likely source for systemic lac-

tate levels based on microdialysis data.29

There are other limitations of this study which need to

be discussed. Anatomically there is large variability of the

retinal axonal projections through the optic radiations

with relevant right left asymmetry.43 Despite state of the

art MRI tractrography currently used in the field,4 not all

retino-cortical projections will be captured. MR spectros-

copy and quantitative MRI metrics will be required to

investigate more diffuse pathology.44,45 Next, it is not clear

if all radiological white matter lesions are relevant. Radio-

logical signal changes of the white matter increase with age

and were clearly seen in the present healthy control group.

The chosen pragmatic approach to use a quantitative cut-

off for the white matter lesion volume based on the control

group might need qualitative refinements. Our 3T MRI

protocol is very sensitive for detection of MS lesions, how-

ever, ultrahighfield MR might be even better suited to sep-

arate MS plaques from other white matter signal

changes.4,44,46 Certainly, much more data will be required

on visual function, including testing for low contrast sensi-

tivity, dyschromatopsia and electrophysiology.34,35,47,48

The full spectrum of psychophysiological testing has not

yet been exploited, possibly dynamic visual tests are a step

in this direction, suitable for quantitative, longitudinal

readouts.49 Finally lactate can be elevated for a number of

reasons we have discussed in detail.14 In the current cohort

there was no clinical evidence to suggest an inclusion bias

to the high lactate group due to systemic infection, muscle

atrophy, or deconditioning.

A limitation of the study design was that we were

unable to say whether the here observed subtle impair-

ment of mitochondrial function might already play a role

in patients with clinically isolated syndromes. The litera-

ture suggests that if lesions to the visual pathways are

excluded, no pRNFL atrophy was observed in clinical iso-

lated syndromes.50,51 There is rather conflicting data on

macular volume on a group level and confirmation of

these data in a longitudinal study, excluding lesions in

the visual pathways, is awaited.50,52,52,53

In conclusion, this study describes a visual pathway

model suitable to test systemic and genetic hypotheses on

pathways of neurodegeneration in MS.11 The biomarker

data suggests that there are structural and functional rela-

tionship of mitochondrial dysfunction and primary neu-

rodegeneration in long-standing MS. There is a need for

neuroproctive studies aimed to improve mitochondrial

function, but results have been conflicting so far.1 The

sample size calculations on the here described visual path-

way model, void of MS lesions, suggest that future studies

to clarify these burning issues are feasible.
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