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In this technical notewe compare the performance of four gradient-freeMCMC samplers (randomwalkMetropolis
sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in
terms of the number of independent samples they can produce per unit computational time. For the Bayesian inver-
sion of a single-node neuralmassmodel, both adaptive and population-based samplers aremore efficient compared
with randomwalkMetropolis sampler or slice-sampling; yet adaptive MCMC sampling is more promising in terms
of compute time. Slice-sampling yields the highest number of independent samples from the target density— albeit
at almost 1000% increase in computational time, in comparison to the most efficient algorithm (i.e., the adaptive
MCMC sampler).

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

This technical note reports comparative evaluations of common
gradient-free sampling schemes that can be used for Bayesian inference
in dynamic causal modelling. It is the first of a series of technical reports
that hopes to provide a comprehensive survey of the various sampling
schemes available — both gradient-free, and (first and second order)
gradient-based schemes. These schemes provide a gold standard
against which the performance of fixed form (e.g., variational) approx-
imate Bayesian inference can be compared. Furthermore, with advances
in computer science, the computational costs usually associated with
sampling schemes may be sufficiently reduced to allow their routine
use in applications like dynamic causal modelling.

Dynamical Causal Models (DCMs) are used routinely in neuroimag-
ing as generative models of neurophysiological signals (Friston et al.,
2003). Inference on their parameters usually proceeds using a
parameterised probability density and maximising the (variational free
energy) evidence lower bound (Friston et al., 2007). Typically a Laplace
approximation (Tierney and Kadane, 1986) is used for inference in
DCMs because it does not require algebraically involved updates, unlike
variational Bayes— and is guaranteed to converge as a result of the cen-
tral limit theorem (Wang and Titterington, 2004). But such deterministic
algorithms have their limitations. For example, they underestimate the
variability in the posterior density; they get locked in local minima and
are unable to approximate multi-modal posteriors (MacKay, 2002).
Markov Chain Monte Carlo (MCMC) schemes are stochastic sampling
k.friston@ucl.ac.uk

. This is an open access article under
algorithms (Gelfand and Smith, 1990; Geman and Geman, 1984) that
eschew these problems. The basic idea behind MCMC is to simulate a
Markov chain with the posterior density as its invariant probability
density (see Appendix for definitions). After the chain has converged,
resulting samples are an approximation of the posterior density.

MCMC methods come in two flavours — gradient-free schemes and
gradient-based schemes. Gradient-freemethods typically take the form
of a Gibbs sampler or some variant of the random walk Metropolis–
Hastings algorithm; whilst gradient-based methods use the gradient
of the joint log-likelihood function to simulate diffusion (a Langevin
algorithm) (Roberts and Tweedie, 1996) or optimise auxiliary variables
as in Hamiltonian Monte-Carlo (HMC) algorithm (Neal, 2010). Despite
the progress in numerical analysis, gradient-based methods are
expensive; however, they avoid the naïve random walk inherent in
gradient-free samplers. For both classes of samplers, there exists a
natural trade-off — between rapid (Markov) chain mixing versus com-
pute time efficiency. A computationally efficient sampler would reach
the invariant probability density quickly (rapid mixing) using least
floating-point cycles (computational efficiency). Since the inception of
stochastic sampling methods (Gelfand and Smith, 1990; Geman and
Geman, 1984) extensive measure theoretic analyses (Meyn and
Tweedie, 2009) have been conducted to gauge the mixing properties
of Markov chains but these are at worst problem dependent.

In this note, we evaluate the suitability of gradient-free MCMC
methods in terms of unit computation required for producing an
independent sample from the posterior distribution. For this, we imple-
mented three variants of the Metropolis–Hastings algorithm; along
with a slice sampling algorithm. In addition to the standard random
walk Metropolis algorithm, we implemented a sampling algorithm
that tunes the properties of the proposal distribution; whilst another
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Model parameters used for dynamic causal modelling. Parameters describing the prior
Gamma distribution. Also shown are the parameters for generating the ground truth
(Fig. 1).

Parameter Shape (k1) Scale (k2) True parameters

g1 18.16 0.03 0.42
g2 29.9 0.02 0.76
g3 29.14 0.005 0.15
g4 30.77 0.007 0.16
δ 22.87 0.51 12.13
τi 34.67 0.23 7.77
hi 20.44 0.96 27.88
τe 33.02 0.16 5.77
he 24.17 0.07 1.63
u 23.62 0.13 3.94
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schememakes non-localmoves acrossmultipleMarkov chains at differ-
ent temperatures — facilitating cross-over between chains. In what
follows, the parameters of a (single-node) neural mass model (NMM)
were estimated using these inference schemes and their computational
efficiency benchmarked. We found that adaptive Monte Carlo methods
based on stochastic approximations were the most efficient, followed
by MCMC methods based on tempered chains. Discounting computa-
tion efficiency, the slice-sampler emerged as a clear winner — if perfor-
mancewas restricted to the number of independent samples they could
produce.

Methods

In this section, we briefly review the generative (dynamic causal)
model used to simulate data that was subject to subsequent inference.
These models are used to fit observed electrophysiological data and
contain between 10 and 100 parameters. We then review the schemes
(random walk Metropolis Hastings sampling, slice sampling, adaptive
MCMC sampling and population MCMC sampling) that are subject to a
comparative evaluation in the Results section.

Custom code was written in Matlab 2014a (The MathWorks Inc.,
USA) to simulate the Markov chains. For population MCMC sampling
Parallel Computing Toolbox (The MathWorks Inc., USA) was used. Un-
less stated otherwise, out of the 2000 samples that were collected, the
initial 600 samples were discarded as burn-in (see Appendix for defini-
tions). In adaptiveMCMC, out of the 600 burn-in samples, the initial 300
samples were used for proposal adaptation. All computations were per-
formed on a 2011 Macbook Pro laptop.

Neural mass models

To test the inference schemes under known parameters, we used a
single node neural mass model (NMM) based on David et al. (2006)
to create synthetic data (Fig. 1). This model comprises ten parameters
({δ, g, h, τ, u}⊆ θwith δ (intrinsic delay), {g1 … 4} (connection strengths),
he/i (maximumamplitude of post-synaptic potential), τe/i (rate-constant
of the membrane) and u (input to the neural population); for detailed
description refer to David et al. (2006)) and nine ordinary differential
equations (ODEs) that are a first-order approximation of delay-
differential equations (DDEs) representing three distinct neural popula-
tions; namely, inhibitory interneurons (x7), spiny-stellate (x1) and py-
ramidal neurons (x9),
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These differential equations simulated for T time-points provide
the predicted response (for some known experimental input) which,
assuming additive Gaussian noise with covariance Σ, provide a likeli-
hood model of observed data (y) with corresponding log joint density,

J ¼ −1
2
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2
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Priors on all parameters (Table 1) conform to a Gamma distribution
with shape k1 and scale k2, where – by construction – approximately
46–50% of the parameters sampled from this prior result in unstable
dynamics, marked by positive real eigenvalues of the Jacobian matrix.
This ensured that the inference scheme can recover from dynamical
instability. The shape and scale of the Gamma distribution were
determined numerically by integrating 200,000 NMMs and performing
stability analysis. The shape and scale parameters of the Gamma prior
distribution were then chosen, such that 46–50% of the sampled param-
eters produced unstable dynamics. The fixed-point equations were
solved using a Trust-RegionDoglegmethod (Nocedal andWright, 2006).

Contrary to David et al. (2006) where experimental input was
modelled as a combination of a Gamma density function and a discrete
cosine set, we used a simpler Heaviside step function to perturb the
spiny-stellate cells. Differential equations were integrated using CVODES
(Hindmarsh and Serban, 2002) using implicit backward-differentiation
formulas (BDFs). The resulting non-linear equations were solved using
Newton's method. Initial simulations established that direct solvers
based on dense matrices were computationally more efficient than the
three preconditioned Krylov (iterative) solvers (GMRES, Bi-CGStab, and
TFQMR) (Golub and Van Loan, 2012). We anticipate that for larger
dynamical systems (e.g., a 20-node NMM) iterative solvers may be
more efficient. The absolute and relative tolerances of the integrators
were both fixed at 10−3.

The source-code will be released as a general purpose ‘Monte-Carlo
inference’ toolbox for SPM (http://www.fil.ion.ucl.ac.uk/spm/).

Algorithm A — slice sampler

Slice-sampling is a type of MCMC based on the fact that sampling a
random variable can be attained by sampling uniformly under its proba-
bility density function and rejecting those that are outside (Neal, 2003).
First of all we initialise our parameters to θ0 so that the target density
π(θ0) N 0. Given this previous sample θi we sample a position ni + 1 uni-
formly on [0, π(θi)]. Conceptually, the next step comprises of drawing a
horizontal line across the curve at this position. This hypothetical line is
nothing but a ‘slice’ of our target distribution. Consequently, we sample
θi + 1 along the slice so that π(θi + 1) ≥ ni + 1.

Numerically, to operationalise the inequality, a bracket is first
constructed as θmin ≤ θi + 1 ≤ θmax and tested to see whether each
end point lies within the slice. If it does, the endpoint is extended
in that direction until it is outside the slice. This process is called

http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 1. A single nodeNeuralMassModel (NMM). (A) The forwardmodel consists of 3 neural population— pyramidal (x9), inhibitory interneuron (x7) and spiny-stellate cells (x1) connect-
ed by linearised delay links (g1, g2, g3 and g4) with u as a Heaviside input. (B) The pyramidal cell voltage comprises the only observable of the model.
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“stepping out”. A candidate value eθ is then selected uniformly from
the region — and is accepted as the next sample if it lies within the

slice i.e., θiþ1 ¼ eθ. If not, the slice shrinks, such that eθ forms one end
of the slice containing θi. The process is repeated until a sample is ac-
cepted. For multivariate distributions, we introduce an auxiliary po-
sition (n) for each dimension.

Unlike a Gibbs sampler, sampling using slices of the distribution
does not require specification of the full conditionals. Similarly in
contrast to a Metropolis–Hastings sampling algorithm, a slice-
sampler does not require specification of a proposal distribution.

Algorithm B — random walk metropolis sampler

The random walk Metropolis (RWM) is the most common MCMC al-
gorithm for Bayesian inference. Given a current value θiof a d-dimensional
Markov chain, the next value is chosen according to a proposal distribu-

tion eθ � π eθ θij
� �

. We choose this to be a multi-variate Gaussian. The

sample is then accepted with probability,

α ¼ 1∧
π y eθ���� �

π eθ� �� π θ eθ���� �
π y θjð Þπ θð Þ � π eθ θj

� � : ð3Þ

∧ denotes minimum between the left and the right arguments. If z ≤ α

where z ~U(0, 1)we setθiþ1 ¼ eθ. Otherwise,we set θi+ 1= θi. The above
formula embodies the notion that any proposal that takes the chain
closer to a local mode is always accepted, whilst any other proposal is
accepted with the probability equal to the relative densities of the pos-
terior at the proposed and the current values.

Algorithm C — adaptive MCMC sampler

The random walk Metropolis (RWM) scheme generally has a slow
convergence to the target density because of the inherent random
walks (Chumbley et al., 2007). Using the history of samples that are
generated from a Markov chain, the adaptive MCMC algorithm
(Andrieu and Thoms, 2008; Haario et al., 2001) adapts the expectation
and covariance matrix of the proposal distribution using stochastic
approximations (Kushner and Yin, 2003). Stochastic approximation is
an iterative algorithm that finds extrema (roots) of cost–functions
using noisy samples. In adaptive MCMC this cost–function is based on
the empirical mean (μ) and covariance (Σ) of the target density as
well as the pre-determined acceptance rate (to update the scalar scale
parameter λ).
Specifically, a Robbins–Monro algorithm is used (Robbins andMonro,
1951); wherein given current parameters (θ0), mean (μ0) and covariance
(Σ0) of the proposal distribution we first sample θiþ1 � N μ i;λiΣið Þ
where λ0 is initialised to 1. Similarly, Σ0 was initialised to an identity
matrix. Secondly, using the Metropolis–Hastings criteria (Eq. (3)) we set
μ i + 1= θi + 1. If not, we reject the sample and set μ i + 1= μ i. The current
and target acceptanceprobabilities areαi→ i+1 andα target, respectively. It
may be easy to understand such a scheme as a stochastic realisation of a
deterministic prediction-error learning rule, guided by the Metropolis–
Hastings acceptance ratio.

For the subsequent iteration, we adapt the mean (μ), the covariance
(Σ) and the global scale of the covariance matrix (λ) with an iteration
dependent step-size (γ) as follows,

γiþ1 ¼ 1
iþ 1

ð4Þ

log λiþ1
� �

¼ log λið Þ þ γiþ1 αi→iþ1−αtarget

h i
μ iþ1 ¼ μ i þ γiþ1 θiþ1−μ i

	 

Σiþ1 ¼ Σi þ γiþ1 θiþ1−μ i

� �
θiþ1−μ i

� �T−Σi

h i
:

ð5Þ

Algorithm D — population MCMC sampler

In the two precedingMCMC schemes, one simulates a singleMarkov
chain, where the posterior sample density is said to have converged if
multiple starting points yield identical invariant distributions. Slow
chain mixing results from non-convexity of the posterior density. In
order to promote chain mixing, one can run multiple chains with
varying temperatures and implement non-local proposal swaps be-
tween chains (Geyer, 1992a). These exchanges also make the algorithm
a candidate for sampling from multimodal densities (Frantz et al.,
1990). Such an algorithm is known as the population MCMC sampler
(Geyer, 1992a). It has been re-invented under various guises (Replica
Exchange (Swendsen and Wang, 1986), Metropolis-Coupled MCMC
(Geyer, 1992a), population MCMC (Laskey and Myers, 2003), Parallel
Tempering (Earl and Deem, 2005), among others) but the standard
approach is to initiate multiple Markov chains (indexed by i) totalling
N such that the inverse temperature (βi) of each chain is distributed
according to

βi ¼ 1− i
N

� �p

ð6Þ
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where p = 5 and N = 4 chains, with the posterior density specified as,

π θjyð Þ∝π yjθð Þβπ θð Þ: ð7Þ

With a β of 1, the chain represents the joint log-likelihood, whilst a β
of 0 represents a Markov chain that samples from the prior— the lower
the inverse-temperature, the smoother the posterior density. One can
visualize the multi-modal target distribution melting with an increase
in temperature. At each temperature, the resulting distribution is
explored using a single Markov chain whilst a product distribution is
considered when moving between individual chains. This enables the
sampler to take into account all of the chains, at different temperature
levels.

Operationally, each chain uses a local (to that chain) Metropolis–
Hastings acceptance criterion to either accept or reject the sample
i.e., z b (1 ∧ exp(H old − Hnew)) where z ~ U(0, 1) and H is the
unnormalised joint log-likelihood. After the kth sample is collected
from the local chain, an additional Metropolis–Hastings acceptance
criteria is imposed—whereby a pair of chains (ti and tj) is selected ran-
domly and their samples are swapped with the following acceptance
ratio,

1∧
L y θ j

���� �ti � L y θijð Þt j

L y θijð Þti � L y θ j

���� �t j ð8Þ

L is the log-likelihood of the predicted response. It is customary to use a
uniform tempering schedule; i.e., β i ¼ i

N as discussed in Jasra
et al.(2007). For linear regression models Calderhead and Girolami
(2009) showed that a power law distribution for the tempering
schedule is most optimal. They showed that using uniformly spaced
temperature schedule on the other-hand produced worse results,
even if the number of Markov chains is increased ten-fold. Therefore,
in this paper, we evaluate the sampling efficiency as that obtained by
both uniform and power-law temperature schedules.

PopulationMCMC is reminiscent of an embarrassingly parallel prob-
lem; wherein communication between multi-threaded processes is
minimised by performing proposal exchange only after k (fixed at 10)
iterations.

This concludes our brief description of the gradient-free sampling
schemes considered in this paper.

Results

We used a single node neural mass model (NMM, Fig. 1) to charac-
terise the computational performance of four differentMCMC sampling
algorithms, for parameter inference. Inferencewasperformed under the
assumption that the (neuronal) system is partially observable i.e., only
the pyramidal cell voltage (x9 in Eq. (1)) was available.

The efficiency of a MCMC sampler is defined as the ratio of the
computation time and the number of effective samples produced
in that time. The effective sample size (ESS) for each parameter is calcu-

lated using ESS ¼ R 1þ 2∑
q
γ qð Þ

� �−1

, where R is the number of poste-

rior samples post-burn-in and∑
q
γ qð Þ is the sum of Q monotonic auto-

correlations. This auto-correlation is estimated using the initial
monotone sequence estimator (Theorem 3.1 in Geyer (1992b)). The
minimumESS reports the number of samples that is effectively uncorre-
lated over all parameters. Similarly, the time normalised (wall-time/
minimum ESS) ESS tells us howmuch time we spend sampling a single
uncorrelated sample, providing us with a measure of the worst-case
behaviour (Cormen et al., 2001) of the sampling algorithm. In short,
an efficient sampler would produce a large ESS at the shortest possible
time.
We used a normal symmetric random walk Metropolis (RWM)
scheme — as used in previous work on sampling schemes for DCM by
Chumbley et al. (2007). The l2 error-norm was among the highest
over all schemes considered (10.8) (Fig. 2A, E). The RWM algorithm re-
sulted in the lowest ESS (Table 2). This is because chain mixing is con-
founded by the inherent random walk displayed by this class of
algorithm. The slice-sampler on the other hand had the highest ESS, al-
beit at increased computational cost (Fig. 2B, F). Also, it had the lowest l2
error (Table 2).

In terms of computational time, adaptive Metropolis (Fig. 2C,
G) with stochastic approximations of the mean, covariance and the
scale of the proposal distribution emerged as the clear winner
(Table 2). It had lower ESS in comparison to slice-sampling but took
90% less time to produce a single independent sample. The increased
ESS reflects the fact that – unlike the RWM – the proposal distribution
has been adapted to guarantee a prescribed acceptance rate of 23%.

So far we have only considered a single Markov chain. Multiple
chains running at a variety of temperatures can be used to not only
facilitate rapid chain mixing but also to sample from multi-modal
posterior densities (Fig. 2D, H). At about 150% increase in compute
time (with respect to adaptive MCMC), the population Metropolis
method (with 4 chains running at 4 different temperatures with
proposal swaps every 10 iterations) has the highest ESS after slice-
sampling, but with a 6-fold decrease in compute time per independent
sample. This is dependent upon the temperature spacing of the parallel
chains; where uniform spacing of inverse temperature performs poorly
(Table 2).

Adaptive Metropolis and population based Markov chains appear to
be equally efficient; although the latter requires expert intervention in
choosing the number of chains, the form of inverse temperature ladder
and the selection of proposal exchange partners. Adaptive Metropolis
on the other hand did not have any parameters that require tuning.
In summary, for inversion of these sorts of DCMs, our (gradient-free)
sampler of choice is the single chain adaptive MCMC algorithm.

Discussion

In this note, we compared four gradient-free MCMC methods —

random-walk Metropolis sampler, slice-sampler, adaptive MCMC
sampler and population-basedMCMC sampler in terms of their effective
sample size (ESS). Both adaptive and population MCMC take between
0.4 and 0.6min (on a 2011Macbook Pro laptop) to generate a single un-
correlated sample. Adaptive MCMC does this by matching the proposal
density to the required target density, whilst proposal-exchanges
enable neighbouring chains to mix more quickly in population MCMC
sampling. This is particularly useful for DCMs, where such population
of Markov chains enable the inference algorithm to ameliorate issues
like local minima and multi-modal posterior densities that are charac-
teristic of many variational algorithms. The population MCMC that we
have used is similar to a genetic algorithm (GA), where the samples
from different chains interact tomimic natural selection. The key differ-
ence is that GAs find a single optimum point, whilst population MCMC
furnishes a probability density. The temperature ladder can be seen as
a cross-over processwhere fitter samplesmove to a lower temperature.

Poor-mixing results when the Markov chain is confined to isolated
modes or mix poorly along samples with strong correlations. Indeed
using multiple chains allows for a mode hopping characteristic for the
underlying Markov chain. This is especially useful when sampling
from multimodal posteriors. This is because non-local moves are made
that result in crossing the barrier imposed by a local potential well.
In addition to the population estimator that we have evaluated, amulti-
tude of mode-hopping MCMC samplers exist for tortuous posterior
densities. This ranges from Jump-walking (J-Walking) estimator
(Frantz et al., 1990) with a potential problem of not satisfying detailed
balance to Smart-darting (S-darting) where detailed balance of popula-
tion walkers is maintained (Andricioaei et al., 2001).
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In neuroimaging, the practitioner is not only interested in estimating
the distribution of parameters that explain the EEG, MEG or fMRI signal
but also build a variety of models to test competing hypothesis about
the same observed data. Population MCMC – in the form of power
posteriors – not only helps in parameter inference but also facilitates es-
timation of the partition function ormodel evidence. Via thermodynamic
integration (Friel and Pettitt, 2008; Lartillot and Philippe, 2006) the
model evidence can be obtained by running multiple Markov chains in
parallel and numerically integrating samples over a variety of tempera-
tures (using quadratures) to compute the model evidence (Eqn. 15 in
Calderhead and Girolami (2009)). This becomes important when one
has to choose between models using model comparison (Claeskens
and Lid Hjort, 2008). Standard MCMC technology that relies on
unnormalised probability densities infers the model evidence from
samples generated by independent chains. Unlike thermodynamic inte-
gration, such estimates of themodel evidence are highly variable— even
in the high sample-size limit (Calderhead andGirolami, 2009; Jasra et al.,
2007), rendering Bayesian model comparison useless. In population
MCMC, since multiple chains take about the same amount of time as
single chains due to the inherent parallelism of the scheme, one can
evaluate model evidence without additional cost.

Unlike Lartillot and Philippe (2006) who suggest a uniform schedule
for the temperature ladder, we verified that using a temperature ladder
with power-law characteristics was beneficial (in terms of ESS) as
pointed out by Calderhead and Girolami (2009). Such a schedule is
not only beneficial from the point of the ESS but also in reducing the
Table 2
Effective sample size (ESS) obtained from various samplers.Wall-time and average ESS for
10 parameters. Worst-case time normalised ESS is computed using the minimum ESS for
each method.

Sampler Time
(minutes)

Mean ESS
(samples)

Time/min ESS
(minutes/smpl)

l2 error

Slice sampler 11.8 7.23 3.68 3.8
Metropolis–Hastings 1.22 1 1.22 10.8
Adaptive Metropolis 1.06 4.07 0.38 4.2
Population Metropolis
(power)

2.67 4.47 0.59 7.4

Population Metropolis
(uniform)

2.61 1 2.61 8.6
variance of the model evidence (Calderhead and Girolami, 2009). This
is because geometric schedules – that model power-law densities –

are the extremal solutions of the Monte Carlo variance (Gelman and
Meng, 1998).

Our inference algorithm based on adaptive MCMC sampler
adapted the proposal distribution only during the burn-in iterations.
This was done to avoid using past information infinitely often, pre-
serving the Markov property of the transition kernel. An alternate
methodology adopted by Gelfand and Sahu (1994) is to run several
chains in parallel and use sampling-importance-resampling (SIR)
(Rubin, 1998) to form kernels that have higher ESS whilst suppress-
ing those chains that do not, using the approximation to themarginal
distribution of the chain as a proposal distribution. It is vital to keep
in mind that continued adaptation can disturb the invariant distribu-
tion of the chain. Although computationally inefficient, adaptation
using delayed rejection (Tierney and Mira, 1999) or regeneration
(Gilks et al., 1998) can be helpful.

An important issue – when using MCMC for Bayesian inference – is
determining when the chain has converged. This criterion is crucial and
therefore forms a large part of ongoing research that ascertains rapid con-
vergence. Running an ergodic sampler for an infinite amount of time will
result in convergence on the ground truth, per definition— tougher con-
vergence criteria can necessitate longer runtimes. Measure-theoretic
analysis ofmostMCMC samplers gives an estimate of the number of sam-
ples required to ensure convergence, according to a total variation dis-
tance (with a specified tolerance bound) to the true posterior density.
For empirical problems this is seldom possible. A simpler but computa-
tionally wasteful strategy involves running multiple – yet independent –
chains and ensuring that the posterior density obtained by each chain is
identical in terms of its lower moments. A more cogent diagnostics to es-
timate convergence of the Markov chain uses the normal theory approx-
imations of Gelman and Rubin (1992). This introduces a shrink factor that
tends to 1 (depending on between chain and within chain convergence)
as the Markov chain converges. For a discussion of convergence estima-
tors, see Table 1 in Cowles and Carlin (1996).

There is no one sampler that is suitable for all inference problems;
MCMC samplers that are based on geometric formulation of gradi-
ents, adaptation and tempering/annealing have over the years re-
duced concerns about local minima and sampling of multi-modal
posteriors typically faced by deterministic algorithms. An important
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future development would be in terms of combining gradient-free
MCMC estimators with their gradient-based counterparts. For
NMMs, we notice that the gradient based manifold Langevin samplers
are computationally efficient (Sengupta et al., under review); yet the
ESS is not as high as the Hamiltonian Monte Carlo (HMC) sampler.
Thus, a gradient-based algorithm can be used as a starting algorithm
followed with a population gradient-free MCMC sampler. The proposal
distribution of each chain could be individually adapted, forming an ade-
quate trade-off between computational time and the number of indepen-
dent samples.
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Appendix A. Basic MCMC terminology

Invariant distribution A probability distribution π is called invariant if
and only if πT ¼ T i.e., π is a left eigenvector forT with eigen-
value 1. T is the transition kernel (a conditional probability).

Criteria for an invariant distribution For the distribution of θt to con-
verge to its invariant or stationary distribution, the Markov
chain has to be (a) irreducible — starting from any point the
chain can reach any non-empty set with positive probability
(also known as probabilistic connectedness condition),
(b) aperiodic — returns to a state at irregular times; this
stops the chain from oscillating and (c) positive recurrent —
if the initial θ0 is sampled from π(⋅) then all subsequent
iterates will also be distributed according to π(⋅).

Ergodicity of the Markov chain A state is ergodic if it is aperiodic and
positive recurrent, which means that the state has a period
of 1 and has finite average recurrence time. If all states of a
(irreducible) Markov chain are ergodic, then the chain is
said to be ergodic. Consequently, a Markov chain will have a
unique invariant probability density (in our case the approx-
imate posterior density) if and only if the states are positive
recurrent.

Geometric ergodicity The distribution of θ is geometrically ergodic in
total variation norm if it is (a) ergodic and (b) there exists a
κ in [0, 1) and a function VN1 s.t. ∑

j
T i j tð Þ−π jð Þ
�� ��≤V ið Þκ t .

The smallest κ for which the function V exists is called the
rate of convergence.

Uniform ergodicity An ergodic Markov chain is uniformly ergodic
if there exists a finite constant V and a κ in [0,1) s.t.
∑
j

T i j tð Þ−π jð Þ
�� ��≤Vκ t :

Convergence of RWM A symmetric random walk Metropolis Hastings
(RWM) algorithm cannot be uniformly ergodic when
the state space is not bounded (see Theorem 3.1 and 3.2 in
Mengersen and Tweedie (1996)), although it can be geomet-
rically ergodic. Geometric ergodicity is equivalent to the
acceptance probability being uniformly bounded away from
zero.

Burn-in Burn-in refers to the practice of discarding initial iterations
of a Markov chain to specify initial distributions of the
form πT l . l is the number of burn-in iterations. Note that
the strong lawof large numbers and the central limit theorem
holds regardless of the starting distribution.
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