
International Journal of Infectious Diseases 32 (2015) 39–45
Review

Paradoxical reactions and immune reconstitution inflammatory
syndrome in tuberculosis

Lucy C.K. Bell a,*, Ronan Breen b, Robert F. Miller c, Mahdad Noursadeghi a, Marc Lipman d

a Division of Infection and Immunity, Cruciform Building, University College London, Gower Street, London WC1E 6BT, UK
b Department of Respiratory Medicine, Guys and St Thomas’ NHS Foundation Trust, London, UK
c Research Department of Infection and Population Health, Institute of Epidemiology and Healthcare, University College London, London, UK
d Centre for Respiratory Medicine, Royal Free London NHS Foundation Trust, University College London, London, UK

A R T I C L E I N F O

Article history:

Received 17 November 2014

Received in revised form 15 December 2014

Accepted 16 December 2014

Keywords:

Paradoxical reaction

IRIS

Tuberculosis

HIV

Mycobacteria

Immune reconstitution

S U M M A R Y

The coalescence of the HIV-1 and tuberculosis (TB) epidemics in Sub-Saharan Africa has had a significant

and negative impact on global health. The availability of effective antimicrobial treatment for both HIV-1

(in the form of highly active antiretroviral therapy (HAART)) and TB (with antimycobacterial agents) has

the potential to mitigate the associated morbidity and mortality. However, the use of both HAART and

antimycobacterial therapy is associated with the development of inflammatory paradoxical syndromes

after commencement of therapy. These include paradoxical reactions (PR) and immune reconstitution

inflammatory syndromes (IRIS), conditions that complicate mycobacterial disease in HIV seronegative

and seropositive individuals. Here, we discuss case definitions for PR and IRIS, and explore how advances

in identifying the risk factors and immunopathogenesis of these conditions informs our understanding of

their shared underlying pathogenesis. We propose that both PR and IRIS are characterized by the

triggering of exaggerated inflammation in a setting of immunocompromise and antigen loading, via the

reversal of immunosuppression by HAART and/or antimycobacterials. Further understanding of the

molecular basis of this pathogenesis may pave the way for effective immunotherapies for the treatment

of PR and IRIS.
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1. Introduction

The natural history of tuberculosis (TB) is characterized by
immunological processes and the associated inflammation, which
are necessary for the host defence against Mycobacterium

tuberculosis (MTB), yet can also result in disease via immunopa-
thology and associated tissue damage. The contribution of
inflammation to the morbidity associated with TB is not limited
to its primary presentation, but also has an impact once effective
antimicrobial treatment is commenced, in the form of the
phenomenon termed ‘paradoxical reaction’ (PR). This is defined
as the worsening of existing lesions or presentation of new lesions
during anti-TB therapy,1 and is typically associated with exagger-
ated inflammatory symptoms including fever,2 lymphadenitis,3

and pulmonary manifestations1 (illustrated in Figure 1). Post-
therapeutic clinical deterioration in TB has been noted for many
years,4 and subsequent epidemiological investigations have
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estimated the frequency of PR to lie between 2% and 23%.2,3,5–8

Similar paradoxical consequences of antimycobacterial therapy
have been described in infections with non-tuberculous myco-
bacteria (NTM) such as Mycobacterium ulcerans,9 suggesting that
this phenomenon is not specific to MTB infection.

The single strongest risk factor for the development of active TB
is HIV co-infection.10 This includes patients with preserved blood
CD4+ T cell counts11 and those treated effectively with highly
active antiretroviral therapy (HAART).12 HIV infection is also
associated with a syndrome in which paradoxical inflammatory
consequences occur during therapy: the immune reconstitution
inflammatory syndrome (IRIS). Here, the commencement of
HAART leads to an exacerbation of an existing opportunistic
disease, or unmasking of a previously subclinical infection.13 IRIS is
most frequently observed in mycobacterial infections,13,14 and
several forms have been described in HIV/TB co-infected individ-
uals. The commonest of these is paradoxical TB-IRIS, in which
inflammatory exacerbations of TB symptoms occur after com-
mencement of HAART in HIV-seropositive patients being treated
for active TB,15 the frequency of which was estimated to be 15.7% in
a meta-analysis of 3459 individuals.13 A second form, unmasking
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Figure 1. Chest X-rays (CXR) demonstrating radiographic features of a paradoxical reaction in an HIV-negative male with pericardial and miliary drug-sensitive tuberculosis

(TB). (a) CXR at presentation showing an enlarged heart and lung nodules; the patient commenced antimycobacterial therapy and corticosteroids. (b) CXR at 2 weeks after the

commencement of treatment (when the patient was feeling better) revealing radiographic improvement. (c) CXR at week 5 (patient reported a slight increase in

breathlessness) showing deterioration with cardiac enlargement and worsening left pleural effusion; anti-TB therapy was continued and the corticosteroid dose was

increased. (d) CXR at week 10; the patient was feeling better and the chest radiograph shows considerable improvement.
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TB-IRIS, is when a new presentation of active TB arises after
commencing HAART. It has been so named as it is ostensibly due to
HAART-mediated reconstitution of the immune response causing
inflammation and thus revealing/‘unmasking’ disease.16 The
occurrence of unmasking TB-IRIS is thought to be lower than
paradoxical TB-IRIS,15 with estimates varying between 1.4% and
23%.14,17–19 It is also suggested that HIV-seropositive individuals
with active TB may have an increased incidence of PR when
commencing antimycobacterial therapy, compared to HIV-sero-
negative individuals.6,17

The clinical features of TB-IRIS are similar to those of PR,
commonly including fever, while other manifestations reflect the
baseline form of TB disease, such as lymph node swelling and
deterioration of respiratory symptoms.15 Like PR, a cardinal feature
is exacerbated inflammation – which is also implicated more widely
in IRIS caused by a range of pathogens in HIV-seropositive
individuals.13 These include NTM such as Mycobacterium avium

complex (MAC) organisms.15,20 Inflammatory symptoms including
lymphadenopathy and fever are also common in NTM-related IRIS.21

Both PR and mycobacterial IRIS are associated with morbidity
and mortality, though this is dependent on factors such as the
primary disease site. For example, patients with neurological
lesions may have higher rates of mortality and suffer residual
neurological deficits,22 while lymph node disease generally causes
much less significant sequelae and episodes often self-limit.3 The
mortality of paradoxical TB-IRIS has been estimated as 3.2% within
a recent meta-analysis,13 and considerable rates of hospitalization
and intervention in TB-IRIS patients have been observed.23,24

Similar results were reported in a large randomized controlled trial
(RCT) with the aim of optimizing the timing of HAART
initiation.25,26 Understanding the pathogenesis of PR and IRIS
may improve clinical outcomes for these patients through
promoting avoidance of PR/IRIS and identifying potential for
immunotherapies, and may also contribute to a wider under-
standing of inflammatory pathologies in TB and mycobacterial
diseases. In this review, we discuss the definitions of PR and TB-
IRIS, and explore risk factors and immunopathogenesis in these
inflammatory mycobacterial syndromes. We propose a core,
underlying hypothesis for their occurrence, and discuss the
potential for immunotherapeutic treatment.

2. Defining paradoxical reactions and immune reconstitution
inflammatory syndrome

Although a formal consensus case definition for PR has not been
established, the worsening of clinical or radiological findings
following the initiation of appropriate antimycobacterial therapy
is broadly accepted as the cardinal description of this condition.27

Case definitions for paradoxical and unmasking TB-IRIS are still
debated,15,28 but consensus definitions for use in clinical and
research settings have now been validated in prospective
studies.18,28,29

The consensus definition for paradoxical TB-IRIS is summarized
by a confirmed diagnosis of TB with a positive initial response to
antimycobacterial therapy, onset of defined inflammatory clinical
manifestations within 3 months of subsequently commencing
HAART, with exclusion of plausible alternative explanations for
this clinical deterioriation.28 Wider pan-pathogen IRIS case
definitions have similarly used temporal criteria in relation to
HAART initiation and identification of inflammatory manifesta-
tions.30 Developing a consensus case definition for unmasking
TB-IRIS has posed more of a challenge, largely due to the range of
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alternative explanations for a new diagnosis of TB after HAART
initiation, such as residual immunodeficiency predisposing to new
primary infection, a previously missed diagnosis of prevalent TB,
reactivation of latent TB infection, or progression of existing
subclinical disease.16 The latter two scenarios fulfil a definition of
‘unmasking’ disease, but also represent the natural history of TB (in
that that they may have occurred without HAART being given);
both may contribute to the high incidence rates of active TB
observed during the first 3 months of HAART.31 The consensus case
definition currently in use emphasizes that the diagnosis of
unmasking TB-IRIS is predicated on heightened clinical inflamma-
tory manifestations in a primary presentation of TB occurring
within 3 months of commencing HAART.16,28 This recognizes that
there may be a wider incidence of ‘ART-associated TB’, and a
prospective study using this definition has suggested that the
incidence rate of true unmasking TB-IRIS as part of this group may
be lower than previously reported, at 1.6 per 100 person-years.29

The shared features of the case definitions for PR and the forms
of TB-IRIS are the initiation of effective therapy, with subsequent
development of heightened inflammatory clinical manifestations.
The importance of inflammation in these syndromes is further
emphasized by the observation that patients already experiencing
unmasking IRIS have increased rates of PR after antimycobacterial
therapy,17 inferring a critical underlying proinflammatory pheno-
type in these syndromes. The triggering of inflammatory reactions
by a therapeutic intervention can be postulated, therefore, as the
shared underlying disease definition for PR and TB-IRIS. Conse-
quently, investigating risk factors and the inflammatory processes
involved in these conditions may inform understanding of a
common pathogenesis.

3. Responses to treatment, risk factors, and pathogenesis

Antimycobacterial therapy and HAART have an impact on two
major factors that may subsequently be implicated in the
pathogenesis of PR/IRIS: mycobacterial bacillary/antigen loads
and immune system function. Previous consideration of the
underlying pathogenesis of both PR and TB-IRIS has highlighted
their interaction as the potential critical determinant of disease.15,22

The role of mycobacterial bacillary/antigen loads in determining
pathogenesis is suggested by several observations. An increased risk
of both PR and IRIS has been identified in patients with disseminated
or extrapulmonary disease, who are considered to have higher
bacillary/antigen loads, although this may not necessarily be the
case in patients with apparently isolated peripheral lymph node
disease.1,8,17,18,32 The risk of paradoxical IRIS has been demonstrated
to be highest when HAART is initiated early during antimycobacter-
ial therapy, at a point when mycobacterial loads are still near-
maximal. This risk has been confirmed in large RCTs seeking to
optimize the timing of HAART initiation.25,26,33 Additionally, higher
bacillary/antigen loads have been measured directly in patients who
go on to develop PR/IRIS compared to those who do not. In the lung,
baseline sputum smear positivity was independently associated
with paradoxical TB-IRIS in one study,34 and a trend towards a
similar association has been observed in patients with PR.3 MTB
culture-positive cerebrospinal fluid at the time of diagnosis of TB
meningitis (TBM) is a more common finding in patients with
subsequent paradoxical TBM-IRIS.35 Also, patients with paradoxical
TB-IRIS have higher pre-treatment levels of the MTB antigen
lipoarabinomannan in their urine.36

These findings suggest that higher bacillary/antigen levels are a
risk factor for, or at least strongly associated with, PR and IRIS, and
thus may have utility in predicting patients at greatest risk of the
syndromes. However, its contribution to pathogenesis is less clear.
It has been suggested that rapid killing of bacilli with antibiotics
may lead to the release of large amounts of microbial components,
which stimulate an exuberant inflammatory response,4 and that
higher baseline numbers of bacilli may potentiate this process and
so contribute to PR/IRIS. It has also been postulated that this is
essentially a hypersensitivity reaction to persistent mycobacterial
antigen.3 However, high baseline bacillary/antigen levels may also
be a marker of severe immunodeficiency, which as discussed later
is a separate risk factor for PR and IRIS; thus, whether these high
antigenic loads directly contribute to pathogenesis is difficult to
conclude. It is also possible that variability in antigen persistence
between anatomical locations may contribute to the differential
risk of PR/IRIS in different primary disease sites, e.g. the strong
association with lymph node disease3,15 may arise because this is a
site where persistent mycobacterial antigen might be anticipated,
as has been shown for other pathogens.37

A recent prospective study observed a correlation between
positive sputum culture (as a marker of high antigenic load) and
inflammatory monocyte activation markers, which were strongly
predictive for the development of paradoxical TB-IRIS, suggesting
that in pathogenesis, high antigen loads and inflammation may
work in concert.38 Although investigations into the relationship
between PR/IRIS and MTB strain types have not identified specific
links,39,40 host genetic associations between single nucleotide
polymorphisms in proinflammatory cytokines and the develop-
ment of IRIS have been demonstrated,41 suggesting that host
inflammatory responses may be stronger determinants of IRIS
pathogenesis than mycobacterial factors.

Other data also indicate the contribution of the host immune
system to the pathogenesis of PR and IRIS. Pre-existing immuno-
deficiency has been shown to predispose to both PR and IRIS. In
HIV-seronegative individuals, low baseline lymphocyte counts at
the time of TB diagnosis are associated with an increased risk of
developing PR,2,8 whilst in HIV-seropositive individuals, low CD4+
T cell counts have been related to subsequent IRIS in a range of
studies.13,18,23,24,34 Advanced HIV disease has also been identified
as a risk factor for IRIS, consequent on high pre-HAART HIV-1 viral
loads.34 Given that a relationship between active TB and
lymphopenia has been reported,42 and it is suggested that active
TB is associated with a degree of immunodeficiency,43 one could
hypothesize that a baseline immunodeficient phenotype in both
HIV seronegative and seropositive individuals is implicated in the
development of both PR and IRIS. A mouse model of MAC-IRIS has
been utilized to explore mechanisms underlying this, and has
suggested that it is immune reconstitution occurring in a
lymphopenic setting that is the causative factor, rather than
specific cellular functions or phenotypes generated during
immunodeficiency.44

Studies in humans also indicate that immune reconstitution is
implicated in the pathogenesis of PR/IRIS, supporting the use of
this latter term in the clinical nomenclature. The risk of PR has been
associated with the rate of peripheral blood lymphocyte recovery
after commencing antimycobacterial therapy,1,2,8 a finding that
also suggests that the active TB treatment response involves an
immune reconstitution process. In HIV-seropositive patients, the
rate of CD4+ T cell count recovery post-HAART has been associated
with both paradoxical32 and unmasking IRIS.19 Although this has
not been corroborated in some studies,5,17 it has been speculated
that HAART may also trigger local immune reconstitution via
increased numbers of infiltrating MTB-specific CD4+ T cells at the
site of infection, which may not be reflected in peripheral blood.17

The processes of immune reconstitution that occur after HAART
are well-described and their relevance to the development of IRIS
has previously been considered.15,45 During the 3 months follow-
ing HAART initiation, at which time IRIS risk is highest,25,26,33 the
principal population of CD4+ T cells contributing to rising
peripheral counts are activated CD45RO+ memory cells.46 These
redistribute from sites of sequestration,47 lending support to the
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hypothesis that MTB-specific T cells may infiltrate infection sites,
with the potential to exacerbate inflammatory processes.15

Whether CD4+ T cells themselves are the main agent of pathogenic
immune reconstitution has been questioned, as some patients
experience IRIS before any evident rise in circulating CD4+
count,15,19,29 although local reconstitution might still be occurring
in such a context.17 Other immune-reconstituting processes have
been described in the 3 months post-HAART, such as increases in
blood B and natural killer (NK) cell counts and recovery of CD4+ T
cell functional deficits.45 It is interesting to speculate on the role of
these processes in IRIS. However, other observations support the
hypothesis that reconstitution of T helper 1 (Th1) CD4+ T cell-
driven cell-mediated immune (CMI) responses is central to PR/IRIS.
Both are associated with the conversion of tuberculin skin tests
(TSTs) from anergic (negative) to positive after treatment
initiation;1,6,20 this demonstrates in vivo that patients experienc-
ing these syndromes have reconstituted CMI, as the TST is a classic
model of a CMI delayed-type hypersensitivity response. HAART
initiation is also associated with a shift from T helper 2 (Th2) to Th1
cytokine patterns,48 and the restoration of T cell lymphoproli-
ferative responses.46 MAC-IRIS has been found to involve vigorous
granulomatous inflammation at the tissue level, another charac-
teristic marker of CMI.49

4. Immunopathogenesis and immune phenotypes

Observations in both HIV seronegative and seropositive
patients implicate Th1-driven CMI responses in a setting of
multibacillary disease and immunodeficiency in the pathogenesis
of PR/IRIS. This is supported by data from the MAC-IRIS mouse
model, where it was demonstrated that CD4+ T cells and interferon
gamma production can drive disease.44 Expansions of MTB-specific
Th1 cells have been identified in patients with paradoxical and
unmasking IRIS,50,51 but the finding that similar expansions can
occur in non-IRIS active TB patients calls into question whether
these are the central or sole pathogenic events.52 As such, a wide
body of work has been performed assessing immune phenotypes in
patients undergoing PR/IRIS, to inform understanding of the
immunopathogenesis of these conditions. This is summarized in
Table 1, and includes both innate and adaptive immune response
phenotypes.

Although a role for the adaptive immune response is supported,
for example by studies showing expansions of pathogen-specific
polyfunctional CD4+ T cells in pan-pathogen IRIS,53 the innate
immune response has been strikingly implicated in PR/IRIS
Table 1
Immune phenotypes in paradoxical reactions and TB-IRIS

Immune phenotypea Parad

Adaptive responses

Expansion of mycobacteria-specific Th1 CD4+ T cells 

Increased activation of circulating CD4+ T cells 

Expansion of polyfunctional CD4+ T cells 

Increased numbers of gd T cells 

Low expression of MTB-specific anti-phenolic glycolipid antibody 

Innate responses

Hypercytokinaemia/increased circulating proinflammatory

cytokines/spontaneous cytokine production

Bekke

Increased MMP expression 

Increased numbers/activation of peripheral blood monocytes Hawk

Dysregulated complement component expression in monocytes 

High TLR-2 expression on monocytes 

High rates of NK cell activation 

High neutrophil counts and TNFa at site of disease Jung e

TB, tuberculosis; IRIS, immune reconstitution inflammatory syndrome; MTB, Mycobacteri

killer; TNFa, tumour necrosis factor alpha.
a All observations were made in samples obtained from the peripheral blood (serum, 

b Study including IRIS events caused by TB and other pathogens.
pathogenesis through descriptions of raised myeloid-derived
proinflammatory cytokine levels and increased numbers of
activated monocytes.38,54 However, the mechanistic basis of these
observations is not yet understood, and they may represent
phenomena resulting from the underlying disease process, rather
than driving PR/IRIS pathogenesis. Several observed responses
have been implicated in TB pathogenesis more broadly. These
include raised levels of circulating matrix metalloproteinases
(MMPs)55 and tumour necrosis factor alpha (TNFa) levels,35,56

lending support to the view that they may at least be implicated in
PR/IRIS disease manifestations, if not in pathogenesis.

A recent hypothesis regarding the underlying mechanism of
IRIS describes an ‘uncoupling’ of the adaptive and innate responses,
wherein an immunodeficient antigen-loaded phenotype leads to a
build-up of primed innate immune cells (such as monocytes and
macrophages), which are then triggered to cause exuberant
inflammation once the adaptive immune response reconstitutes
post-HAART.57 Whether these populations of primed innate
immune cells exist in vivo is yet to be established, though a
hypothesis that reconciles roles for both innate and adaptive
immunity in the pathogenesis of IRIS is compelling. This concept of
a baseline phenotype that predisposes to PR/IRIS raises the
question of whether an underlying host predisposition is necessary
for PR/IRIS to occur. Work suggesting that not only do those who
develop IRIS appear to have an increased frequency of some
inflammatory cytokine polymorphisms,41 but also that differences
in cytokine pathways may be detectable prior to starting IRIS-
triggering treatment in some settings,58 does implicate host
genetics as a potential contributor, and may ultimately offer
opportunities for genotypic risk stratification in clinical practice.

5. Core pathogenesis of PR and IRIS and clinical insights

The known risk factors for PR and IRIS strongly suggest that the
key baseline phenotype in both syndromes involves immune
compromise and multibacillary disease. It is also clear that
immune reconstitution processes occurring during therapy,
primarily involving CMI, are central to pathogenesis. Exploring
immune phenotypes has suggested roles for both the adaptive and
innate immune responses in triggering exaggerated inflammation,
a cardinal feature of these syndromes. These observations have
resulted in a hypothesis to explain IRIS in HIV-seropositive
individuals, where TB-IRIS results from accelerated outgrowth of
MTB in poorly inflamed or anergic environments in an immuno-
suppressed patient, followed by a pathological inflammatory
oxical reaction Paradoxical TB-IRIS Unmasking TB-IRIS

Bourgarit et al.50 Wilkinson et al.51

Antonelli et al.71,b

Mahnke et al.53,b

Bourgarit et al.72

Simonney et al.40

r et al.73 Andrade et al.38,

Tadokera et al.54

Tadokera et al.55

ey et al.3 Andrade et al.38

Tran et al.74

Tan et al.75

Pean et al.76 Conradie et al.77

t al.7 Marais et al.35

um tuberculosis; MMP, matrix metalloproteinase; TLR, toll-like receptor; NK, natural

plasma, peripheral blood mononuclear cells, whole blood), unless otherwise stated.
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Low levels of inflammation 
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/+ symptoms of active disease 

Reversal of immunosuppression 
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Figure 3. Proposed common mechanism for pathogenesis in mycobacterial PR/IRIS.

Flowchart depicting the proposed hypothesis for the development of PR and IRIS in

mycobacterial infections in HIV seronegative and seropositive individuals.
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overshoot when immunosuppression is reversed, resulting in the
clinical manifestations16,57 (illustrated in Figure 2). This is
supported by widely described clinical phenotypes in HIV-
seropositive patients, with high rates of TB smear positivity found
in the absence of symptoms,59 commonly observed mycobacter-
aemia,60 and high rates of undiagnosed disseminated TB identified
at post-mortem.61 The tissue pathology of TB in HIV co-infection is
also supportive, where a paucity of inflammation with many
extracellular bacilli is described.62

We suggest that this hypothesis for HIV TB-IRIS, where a
baseline immunosuppressed phenotype is the precursor to
inflammatory pathogenesis, is broadly applicable to mycobacterial
PR/IRIS, including in HIV-seronegative individuals (summarized in
Figure 3). The similarity of PR and TB-IRIS risk factors, such as pre-
treatment immunosuppression, disseminated disease, and the rate
of reconstitution, supports this hypothesis. There are some
instances in which presentations, of PR in particular, may not be
explained easily by this schema, such as lymph node swelling after
or late in antimycobacterial treatment.3 However, even these could
be accounted for by persistent mycobacterial antigen being
detected by the host immune response, resulting in a PR episode.

It has been reported that HIV-seronegative patients who are
treated with anti-TNFa therapy for autoinflammatory conditions
not only have an increased risk of active TB due to immunosup-
pression, but may also experience a form of TB-IRIS when therapy
is withdrawn.63 This also fits the proposed model (Figure 3), where
immunosuppression may lead to the establishment of poorly
inflamed, multibacillary TB lesions and hyper-inflammatory
disease when immunosuppression is removed.57 The pathology
in another significant mycobacterial disease, leprosy, may also be
Poorly 
inflamed 

environment 

Reversal of immunocompromise 

M
yc

ob
ac

te
ria

l l
oa

d 

Im
m

une response/inflam
m

ation 

PR/IRIS 

Non-PR/IRIS 

Figure 2. Schematic diagram demonstrating the proposed pathogenesis of PR/IRIS

in relation to time, mycobacterial load, and the immune response. The lower panel

shows pathogenesis in the non-PR/IRIS context, wherein mycobacterial burden and

the immune response/inflammation are closely coupled temporally, and where

inflammation (and clinical features) resolves in tandem with mycobacterial burden

when treatment is initiated. The upper panel shows pathogenesis in the context of

PR/IRIS, wherein the baseline immunocompromised phenotype means there is

excessive mycobacterial outgrowth in a poorly inflamed environment. When

treatment is initiated that reverses immunocompromise, an excessively exuberant

inflammatory response develops (PR/IRIS) with symptoms temporally distinct from

those arising as part of the original untreated infection.
analogous to this. In leprosy, a cutaneous and neural infection
caused by Mycobacterium leprae, commencing therapy is associat-
ed with type 1 reversal reactions, in which poorly inflamed
multibacillary lepromatous-type lesions shift towards highly
inflamed tuberculoid-type lesions.64 Recent advances in our
understanding of the molecular basis of lepromatous leprosy,
which have implicated type I interferon-driven immunosuppres-
sion,65 may therefore inform our understanding of baseline states
in the pathogenesis of PR/IRIS.

Other recent advances in identifying the basis of mycobacterial
pathogenesis, and which may enhance an appreciation of PR/IRIS,
have been made in the Mycobacterium marinum zebrafish infection
model. This has shown that either too little or too much production
of TNFa can drive disease, whilst ‘just the right amount’ is
protective56,66 – a so-called ‘Goldilocks effect’. The downstream
impact of either low or high TNFa is macrophage necrosis and
uncontrolled extracellular replication of bacteria. The potential
relevance of this phenotype to human TB is confirmed by genetic
studies of homologues of implicated factors.56,66 The model of a
spectrum of inflammation being bimodally associated with disease
may be very relevant to PR/IRIS, as it mechanistically demonstrates
how an overly exuberant inflammatory response driven by TNFa,
such as might be found in PR/IRIS patients at the time of reaction,
can cause mycobacterial disease. In addition, this model has been
used to explore immunotherapeutic options for TB, by demon-
strating that genetic polymorphisms in components of the
implicated pathways can predict responses to corticosteroid
treatment in TBM,56 thus potentially paving the way for host-
directed immunotherapy in TB.

As corticosteroids are a mainstay of therapeutic intervention in
the treatment of IRIS,67 this may provide opportunities for patient
stratification and therapeutic optimization in PR and IRIS. It has
been shown that the effective use of corticosteroids in IRIS
correlates with the suppression of innate-produced proinflamma-
tory cytokines, suggesting a potential mechanism for their efficacy
and demonstrating that modulation of the immune system in these
syndromes has therapeutic potential.68 Further understanding of
the molecular basis of pathogenesis may also yield novel
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therapeutic targets, as the potential for host-directed immuno-
therapy for TB based on specific inflammatory pathways is
increasingly investigated.69 Immunotherapy for PR/IRIS has also
been explored in the mouse MAC-IRIS model, in which the
blockade of interleukin 6 (IL-6) signalling with neutralizing
antibodies extended survival and alleviated pathology.70 However,
as both PR and IRIS are self-limiting in many cases, the specific
utility of corticosteroids and other immune-modulating treat-
ments should be considered in the context of the impact of
inflammation in specific clinical scenarios.

6. Conclusions

PR and IRIS constitute a spectrum of clinical presentations
occurring during infections with mycobacteria including MTB and
NTM. They are associated with morbidity and some mortality in
HIV seronegative and seropositive patients. We propose that the
unifying feature of these conditions is the triggering of inflamma-
tion in an immunodeficient, antigen-loaded setting, via the
reversal of immunosuppression, an event that may itself result
from the initiation of immune-reconstituting treatments or the
withdrawal of immunosuppressive therapies. Defining the funda-
mental processes that are shared between the syndromes and the
molecular mechanisms underlying this pathogenesis will inform
the development of appropriate immunotherapy for PR/IRIS and
may also enhance our understanding of the role of immunodefi-
ciency and inflammation in mycobacterial and related infections.
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