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The test-area (TA) perturbation approach has been gaining popularity as a methodology for the
direct computation of the interfacial tension in molecular simulation. Though originally implemented
for planar interfaces, the TA approach has also been used to analyze the interfacial properties of
curved liquid interfaces. Here, we provide an interpretation of the TA method taking the view that it
corresponds to the change in free energy under a transformation of the spatial metric for an affine
distortion. By expressing the change in configurational energy of a molecular configuration as a
Taylor expansion in the distortion parameter, compact relations are derived for the interfacial tension
and its energetic and entropic components for three different geometries: planar, cylindrical, and
spherical fluid interfaces. While the tensions of the planar and cylindrical geometries are charac-
terized by first-order changes in the energy, that of the spherical interface depends on second-order
contributions. We show that a greater statistical uncertainty is to be expected when calculating the
thermodynamic properties of a spherical interface than for the planar and cylindrical cases, and
the evaluation of the separate entropic and energetic contributions poses a greater computational
challenge than the tension itself. The methodology is employed to determine the vapour-liquid
interfacial tension of TIP4P/2005 water at 293 K by molecular dynamics simulation for planar,
cylindrical, and spherical geometries. A weak peak in the curvature dependence of the tension is
observed in the case of cylindrical threads of condensed liquid at a radius of about 8 Å, below
which the tension is found to decrease again. In the case of spherical drops, a marked decrease in
the tension from the planar limit is found for radii below ∼15 Å; there is no indication of a maximum
in the tension with increasing curvature. The vapour-liquid interfacial tension tends towards the
planar limit for large system sizes for both the cylindrical and spherical cases. Estimates of the
entropic and energetic contributions are also evaluated for the planar and cylindrical geometries
and their magnitudes are in line with the expectations of our simple analysis. C 2015 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4913371]

I. INTRODUCTION

Interfaces are omnipresent in real materials and under-
standing how systems behave at boundaries is key to techno-
logical control and manipulation at the smallest scales. Theo-
ries of the mechanics and thermodynamics of interfaces have
been under development for over two centuries,1 but only since
the advent of direct molecular simulation in the late 1950s has
it been possible to investigate interfaces from the microscopic
perspective. In our current paper, we examine the interfacial
properties of vapour-liquid interfaces by molecular dynamics
simulation and examine the effect of different surface geom-
etries (planar, cylindrical, and spherical) on the vapour-liquid
interfacial tension and related thermodynamic properties such
as the energy and entropy associated with these interfaces.
The focus is on the interfacial properties of water as the most
ubiquitous of fluids.

One of the key phenomena where the surface tension
of water plays an important role is the process of atmo-
spheric particle nucleation, which involves the formation of
condensed-phase molecular clusters from the supersaturated
vapour phase.2–6 Within the framework of classical nucleation
theory (CNT), the nucleation rate, which represents a measure
of how quickly these clusters form, is very sensitive to the
value of the vapour-liquid interfacial tension. Calculating the
correct interfacial tension (or more precisely the surface free
energy) for water clusters is therefore crucial to developing
successful theories of nucleation, although one may rightly
question the validity of a macroscopic description of this type
because concepts such as the surface tension are not expected
to apply at small length scales. A further complication is that
the surfaces of nanoscale water clusters are clearly not planar,
and as a result one also has to consider the effect of curvature
on the interfacial tension.

0021-9606/2015/142(11)/114701/14 142, 114701-1 © Author(s) 2015
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Methods for the determination of the interfacial tension
of fluids in molecular simulation (Monte Carlo or molecular
dynamics) at the microscopic level fall into three general clas-
ses.7 In the first, and by far the most common, approach,
one takes a mechanical route where the surface tension is
computed by evaluating the appropriate components of the
pressure tensor.8–13 For a planar configuration, the interfacial
tension γ can be obtained from the condition of mechan-
ical equilibrium as an integral in the difference of the normal
Pn = Pbulk and tangential Pt components of the pressure tensor
across the interface

γ =


[Pn(z) − Pt(z)] dz. (1)

The second class of approaches follows a thermodynamic
perspective and involves the computation of the difference in
free energy for systems in macrostates with different interfacial
areas.7,14–16 The third and final class of methods is based on the
concepts of finite-size scaling (FSS) within the grand canonical
ensemble.17–19

We employ a specific type of thermodynamic approach in
our current work, where a perturbation in the mean interfacial
area of the system is performed to determine the correspond-
ing change in free energy. In this so-called test-area (TA)
method,7 the difference in free energy between a reference
system of interest and a perturbed system of different mean
interfacial areas can be expressed as a ratio of their partition
functions, which reduces to a ratio of configurational phase-
space integrals for isothermal perturbations. A thermodynamic
expression for the interfacial tension can then be written as the
following ensemble average:

γ =

(
∂F
∂A

)
N,V ,T

= lim
∆A→0

− kBT
∆A

ln

exp

(
− ∆U

kBT

)
, (2)

where ∆A is the difference in mean interfacial area (suitably
defined) and ∆U is the difference in configurational energy
between the perturbed and reference systems, T is the temper-
ature, and kB is the Boltzmann constant. The angled brackets
denote a canonical average in the ensemble associated with the
reference system.

The surface tension of the planar vapour-liquid interface
of water has been studied extensively by computer simulation
(e.g., see Refs. 20–26). The procedure typically involves plac-
ing a film of liquid in contact with vapour and computing the
surface tension using the mechanical (pressure tensor) route.
The value of the vapour-liquid interfacial tension reported in
the literature can vary significantly due to several factors such
as the system size and lengths of the runs (finite-size effects
become increasingly important when the interfacial area de-
creases), and details of the intermolecular potential model
such as the cutoff range can significantly affect the computed
properties.

The TA method has also been employed to obtain the inter-
facial tension of the planar vapour-liquid interface of water.
Of particular mention is the thorough study by Vega and de
Miguel25 of the interfacial tension for the most popular classical
non-polarizable potential models of water using both the tradi-
tional mechanical route and the thermodynamic TA approach.
They found that the values of the interfacial tension computed

from the mechanical and thermodynamic routes are consistent
with each other. The TIP4P/2005 model27 has been shown to
provide the most accurate overall description of the vapour-
liquid interfacial tension for temperatures ranging from the
triple to the critical point, the main reason for the choice of this
particular model in our current work: at ambient temperature
(300 K), the value of the tension obtained for the TIP4P/2005
model is γ∞ = 69.3 mN m−1 which compares favourably with
the experimental value of 71.7 mN m−1 for water.

The theoretical treatment of the thermodynamics of curved
interfaces poses a greater challenge than that of planar inter-
faces.28,29 Its history dates back to the seminal macroscopic
mechanical description of Young30 and Laplace31 at the turn of
the nineteenth century, followed by the formal thermodynamic
framework of Gibbs32 and Tolman.33 Young and Laplace noted
that the pressure difference between the inside and outside of
a spherical liquid drop in equilibrium is proportional to the
tension and inversely proportional to its radius

Pl − Pv =
2γ
R
, (3)

where Pl and Pv are the pressures of the liquid inside and the
vapour outside the drop, respectively, and R is the radius of
the drop. Kelvin34 subsequently employed the Young-Laplace
description to relate the saturation properties associated with a
liquid drop to those of the planar interface

ln
Pv(R)
Psat
v

=
2γ∞

R
M

ρlkBT
, (4)

where Pv(R) and Psat
v are the saturated vapour pressures over

a drop of radius R and a planar surface, respectively, γ∞ is
the interfacial tension associated with the planar vapour-liquid
interface, M is the molecular mass, and ρl is the mass density
of the liquid. When the dimension of the drop is decreased to
nanoscopic length scales, macroscopic concepts involving the
bulk properties of the liquid such as the tension, pressure, and
density become increasingly inappropriate. The macroscopic
mechanical treatment of Young, Laplace, and Kelvin is never-
theless still commonplace in the description of curved liquid
interfaces.

Recognising the importance of the effect of curvature on
the interfacial tension of fluids, Tolman33 followed the purely
thermodynamic treatment introduced by Gibbs32 to derive an
expression for the dependence of the tension γ on the drop size

γ = γ∞

(
1 +

2δ∞
Rs

)−1

, (5)

where Rs is the radius of the spherical “surface of tension”
(defined as the surface where the Young-Laplace Eq. (3) holds
exactly1,35), and δ∞ is the so-called Tolman length (in the
planar limit). The common implementation of the Tolman
relation is as a series expansion in powers of the curvature
(inverse radius),

γ = γ∞

(
1 − 2δ∞

Rs
+ · · ·

)
, (6)

though the physical significant of terms beyond leading order
have been brought into question;1,29 furthermore, the existence
of non-analytical contributions have also be suggested.36,37 In
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any case, the magnitude of the Tolman length has been shown
to be small and difficult to determine even for the simplest of
fluids (see Refs. 38–40).

There has been much debate and controversy on the nature
of the curvature dependence of the surface tension of drops (the
reader is directed to Ref. 29 for a relatively recent account).
Gibbs argued that curvature corrections are only significant
when drops approach molecular length scales and hypothe-
sized that the tension decreases monotonically with decreas-
ing radius.41 On the other hand, Thomson and Thomson42

suggested a nonmonotonic behaviour as a possibility, while
Bakker43 insisted that the tension should be independent of the
radius.

Literature on the determination of the surface tension
of drops and other curved fluid interfaces using molecular
simulation is much less extensive than for planar interfaces.
One of the earliest molecular investigations of the vapour-
liquid interfacial tension of drops was by Rusanov and Brod-
skaya44 who studied clusters of spherically truncated and
shifted Lennard-Jones (STS-LJ) particles and extracted the
normal and tangential components of the Irving-Kirkwood45

pressure tensor and also used the Young-Laplace equation
to obtain the tension. The interfacial tension was found to
decrease with decreasing radius of the drop for the clus-
ter sizes studied (R = 3.75σ to 8σ, where σ is the particle
diameter). A number of subsequent studies also employed a
mechanical route involving an integration of the gradient of
the normal component of the pressure tensor from the centre
of the drop to the bulk vapour phase.13,38,39,46 In particular,
the work of Vrabec et al.13 offers a very comprehensive study
of the properties of planar and spherical interfaces of STS-LJ
systems. They studied spherical droplets for radii between R
= 5σ and 16σ and obtained the vapour-liquid interfacial ten-
sion using the mechanical route. The tension was again found
to increase monotonically with the equimolar radius but only
very slowly, not reaching the planar limit even for the largest
drops considered. An important point to note is that the stan-
dard mechanical route to the surface tension becomes prob-
lematic for spherical interfaces due to the non-uniqueness of
the components of the pressure tensor arising from the choice
of contour joining two interacting particles, which results in an
ambiguity in its definition. As pointed out early on by Schofield
and Henderson,47 the non-uniqueness associated with the local
pressure tensor and the definition of the internal pressure for
drops of high curvature will lead to a marked discrepancy in the
free energies of formation determined with the mechanical and
thermodynamic routes as has been observed in simulation.48

The cause of the discrepancy between the values of the
vapour-liquid interfacial tension obtained using the mechan-
ical and thermodynamic routes has been examined recently
with a TA simulation study of spherical drops of STS-LJ
fluids.49 In accord with the findings of the thermodynamic
analysis in the grand canonical ensemble by Binder and co-
workers,18,19 the vapour-liquid interfacial tension was found
to increase very slightly above the planar value on increasing
the radius of the drop to R ∼ 8σ, followed by a slow decay
to the planar limit, which would corresponds to a small nega-
tive Tolman length.49 For a planar vapour-liquid interface, the
change in free energy associated with a deformation in the

interfacial area was shown to be fully characterized by the
average of the change in configurational energy; this leading-
order contribution to the surface tension is found to be equiva-
lent to that obtained with the mechanical relation (cf. Eq. (1)).
However, in the case of liquid drops, a large second-order
contribution to the tension (of the same order of magnitude
as the leading-order term) was found to be associated with
fluctuations in energy, invalidating the use of the mechanical
relation for spherical geometries. The effect of fluctuations in
the thermodynamics of drops was attributed to an additional
entropic contribution. In our current paper, we will provide
an alternative interpretation of the contributions to the free
energy determined by the TA method, explaining the nature
of the fluctuations and their fundamental connection with the
geometry of the fluid structures being studied.

Investigations into the vapour-liquid interfacial tension of
water droplets by molecular simulation are worth a particular
mention as this is the specific subject of our current study.
Samsonov et al.50 used the Stockmayer potential parameterized
to represent water and equated the change in free energy of
formation of a drop to the change in internal energy accompa-
nying its excision from a bulk parent phase. The surface tension
determined in this way at 300 K was found to be a mono-
tonically increasing function of the equimolar radius, starting
from γ ∼ 20 mN m−1 for R ∼ 2 Å and reaching the asymptotic
planar value for relatively small droplets corresponding to R <
10 Å. Ghoufi and Malfreyt51 have performed mesoscale Monte
Carlo simulations of water nanodrops with a DPD (dissipative
particle dynamics)52 model reparameterized to represent the
surface tension at ambient conditions26 using the local compo-
nents of the pressure tensor; a monotonic behaviour for the
curvature dependence of the surface tension was again found.
Following an alternative thermodynamic approach, Joswiak
et al.53 employed the mitosis method to evaluate the free energy
associated with separating a liquid drop into a pair of smaller
drops, thus providing an estimate of the vapour-liquid inter-
facial tension of drops of water for the TIP4P/2005 potential
model. Surprisingly, these authors found that the vapour-liquid
interfacial tension at ambient conditions (300 K) now increased
continuously from the planar limit of γ∞ = 65.5 mN m−1 (for
the TIP4P/2005 model not including long-range corrections25)
to γ ∼ 77 mN m−1 on decreasing the size of the nanodrop to a
radius of R ∼ 6 Å. A similar increase in the interfacial tension
of the TIP4P model by more than 10 mN m−1 from the planar
limit on decreasing the radius to R ∼ 7 Å was reported recently
by Homman et al.54 using the Laplace relation with a novel
approach for the determination of the surface of tension Rs; no
discussion was offered as to why the trend is the opposite to
that shown in earlier work by the group with the DPD model.51

On the other hand, in their analysis of the vapour pressure
of drops of water represented with the mW coarse-grained
model, Factorovich et al.55 demonstrated that the macroscopic
Kelvin relation (cf. Eq. (4)) holds down to radii of R ∼ 6 Å
(i.e., less than two molecular diameters) which suggests that the
corresponding vapour-liquid interfacial tension is essentially
insensitive to the curvature even at these small dimensions.
Given the preceding discussion, it is clearly apparent that there
is an inconsistency in the findings for the interfacial tension of
water nanodrops worthy of further consideration.
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In Sec. II, we discuss the basis of the test-area method
and its connection with transformations of the spatial metric of
the computational cell. We develop expressions for the surface
tension, and its entropic and energetic components, in terms of
the underlying perturbation of the configurational energy. For
spherical geometries, we show that the quantities of interest
depend on the scale of the distortion to second order, while
in the case of planar and cylindrical geometries, the first-
order contributions are sufficient to characterize the interfacial
thermodynamics. In Secs. III–V, we describe our numerical
studies for the planar, cylindrical, and spherical geometries
of liquid water structures of various sizes described with the
TIP4P/2005 model to investigate the curvature dependence
of the interfacial properties. The conclusions of our work are
given in Sec. VI.

II. TEST-AREA METHOD

As has already been mentioned in Sec. I, the test-area
method is a technique for calculating the change in free energy
associated with a distortion of the system. In the simplest
implementation, this distortion involves a volume-preserving
modification to the dimensions of a periodically repeated cell,
and the corresponding change in free energy can be associated
with changes in the geometry of a condensed-phase system
that extends through the periodic boundaries. We can employ
this interpretation in studies of films of condensed matter that
take the geometries of a planar slab or a cylindrical rod. These
structures are mechanically stretched or compressed by the
confining cell boundaries as result of the distortion, and the
associated quasi-static work can be related to the difference
in free energy brought about by the change in surface area of
the structure. The test-area method can therefore be used to
calculate the interfacial free energy, or surface tension.

As a simple example, one can consider a planar slab
oriented in the x−y plane. A volume-preserving distortion of
the lengths Li of each side of the cell may be defined by the

transformations Lx → Lx(1 + ε)1/2, Ly → Ly(1 + ε)1/2, and
Lz → Lz(1 + ε)−1 where ε is a dimensionless variable that
characterizes the magnitude of the transformation. For a fluid
system in a thermodynamic state within the binodal envelope,
the structure adopted by N particles in an appropriate rectan-
gular simulation prism is characterized by two vapour-liquid
interfaces in the x−y plane with normals parallel to the z
axis, as illustrated in Figure 1. The total interfacial area of the
fluid in the original cell is therefore A(ε = 0) = 2LxLy and
that of the distorted cell is A(ε) = 2LxLy(1 + ε), so that the
corresponding change in area induced by the distortion is ∆A
= 2LxLyε. For this incremental change in area, the change
in free energy corresponds completely to dF = γdA since the
system is isothermal, and the number of particles and the
volume of the box are also constant. In this case the vapour-
liquid interfacial tension may be expressed as

γ =

(
∂F
∂A

)
N,V ,T

= lim
ε→0

(
F(ε) − F(0)

2LxLyε

)
, (7)

where F(ε) is the free energy of the structure corresponding to
the distortion ε.

A less intuitive interpretation of the TA method is neces-
sary when it is applied to non-periodic structures, such as
quasi-spherical droplets free to move in a rarefied vapour. Here,
a volume-preserving distortion of the cell walls would not in
itself be expected to influence the free energy of the system, and
so the interpretation made for planar slab geometries would
not be appropriate. Instead, we can take the distortion to be a
volume-preserving change in the metric of the physical space,
and therefore effectively in the strength of the interactions
between the particles. We shall show that the corresponding
change in free energy can be associated with a nominal change
in the mean surface area of the droplet under the distortion,
at least in the perturbative limit, and hence, the method again
provides a route to the surface tension.

In Secs. II A and II B, we develop the second of these
interpretations, in readiness for applications of the test-area
method to slabs, cylinders, and droplets of condensed fluid

FIG. 1. Distortions of a drop, a planar
slab, and a cylinder of condensed fluid
under a volume-preserving change in
dimensions of the simulation cell.
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FIG. 2. A representative configuration of N = 1000 TIP4P/2005 water
molecules forming a planar liquid slab structure in equilibrium with vapour
at T = 293 K.

in Secs. III–V, respectively. Expressions for the vapour-liquid
interfacial tension are derived as well as the associated rela-
tions for the interfacial energies and entropies per unit area.
The feasibility of evaluating these quantities numerically on
the basis of the derived expressions is considered for the
various geometries.

A. Interfacial free energy

We begin by calculating the partition function of a system
of N particles in the original and distorted canonical cells,
confining configurations to those that correspond to a slab
in the x−y plane, i.e., those that pass through the periodic
boundaries in the x−z and y−z planes, as illustrated in Fig. 2.
The partition function (or more precisely the configurational
integral) of the original system is Z =


dr exp(−βU(r)) over

a phase space of particle coordinates r ≡ {x1, y1, z1, · · ·, zN}
lying within the undistorted cell, where U is the potential
energy of a configuration and β = 1/(kBT). The particle coor-
dinates in the distorted cell can be written as a transformation
of the coordinates in the original cell: for our current deforma-
tion x ′i = (1 + ε)1/2xi, y ′i=(1 + ε)1/2yi, and z′i = (1 + ε)−1zi for
particle i (i = 1, . . . ,N), or in compact form r′ = Gr, where
G is a transformation matrix that depends on ε. With r and
r′ defined as vectors of dimension 3N , G is a 3N × 3N matrix
that takes a block diagonal form consisting of N 3 × 3 matrices
g defined by

g =
*...
,

(1 + ε) 1
2 0 0

0 (1 + ε) 1
2 0

0 0 (1 + ε)−1

+///
-

. (8)

The partition function of the distorted system is Z ′ =


dr′
exp(−βU(r′)) with the particle coordinates running over the
distorted cell. Since the Jacobian of the transformation from r′
to r is unity, we can express the partition function in terms of
the coordinates of the undistorted cell as

Z ′ =


dr exp(−βU(Gr)), (9)

where the phase space is seen to be the same for the two
partition functions.

The potential energy of the distorted system can be defined
as U ′(r) = U(Gr) such that Z ′ =


dr exp(−βU ′(r)), with

U ′(r) = U(r) + ∆U(r). The difference in the free energies of
the distorted and undistorted systems can then be written as

∆F = F ′ − F = − 1
β

ln
(

dr exp(−β(U(r) + ∆U(r)))
dr exp(−βU(r))

)
= − 1

β
ln⟨exp(−β∆U)⟩, (10)

where F = − 1
β

ln Z , F ′ = − 1
β

ln Z ′, and the ensemble average,
⟨· · · ⟩, is taken over the undistorted reference system described
by U.

The change in the free energy is clearly related to a change
in interaction energy and we emphasize that this change can
be associated with a modification to the metric of the space
represented by the transformation matrix g. When evaluating
Z ′, the energy of a given configuration is to be determined us-
ing effective particle separations represented by ∆x ′ = gxx∆x
+ gxy∆y + gxz∆z, etc., where ∆x and ∆x ′ are particle separa-
tions in the x direction according to the original and distorted
metrics.

Following the formalism of Ref. 49, one can develop an
expansion in ∆U to give

∆F ≈ ⟨∆U⟩ − β

2

(⟨∆U2⟩ − ⟨∆U⟩2
)

+
β2

6

(⟨∆U3⟩ − 3⟨∆U2⟩⟨∆U⟩ + 2⟨∆U⟩3
)
+O(∆U4)

= ∆F1 + ∆F2 + ∆F3 +O(∆U4), (11)

where ∆Fi corresponds to the terms involving βi−1. The mo-
ments of ∆U can be evaluated numerically in the limit ε → 0
to obtain the interfacial tension as γ = limε→0 (∆F/∆A), where
∆A is the generic change in area of the interface brought about
by the distortion of the cell dimensions characterized by ε.

To better understand the nature of the TA methodology as
applied to curved interfaces, one can express the change in the
interaction energy of a molecular configuration r as a Taylor
expansion in the perturbation parameter

∆U(r) = a(r)ε + b(r)ε2 +O(ε3), (12)

which satisfies ∆U = 0 when ε = 0 as required. The coeffi-
cients a and b are the first and second derivatives of ∆U with
respect to ϵ , respectively (a = ∂∆U/∂ε and b = 1

2∂
2∆U/∂ε2).

The dependence of ∆A on ε can then be considered.
For the planar slab, we have already established that ∆A
= 2LxLyε, which implies that we need only consider the
contributions to order ε in the expression for the change in
free energy ∆F. From an inspection of Eqs. (11) and (12), it is
apparent that the lowest-order terms in∆F2 and∆F3 are of order
ε2 and ε3, respectively, and therefore do not contribute to the
interfacial tension for the planar geometry. The only relevant
part of the change in configurational energy ∆U in Eq. (12) is
the term that is linear in ε, and as a consequence

∆F1

∆A
=

⟨a⟩
c1
+O(ε), (13)

and we conclude that the tension can be expressed simply as

γ =
⟨a⟩
c1

, (14)

where c1 = 2LxLy.
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Similarly, the change in surface area of a cylindrical
structure aligned along the z axis brought about by the same
transformation is ∆A = 2πRcLz


(1 + ε)− 1

2 − 1

≈ −πRcLzε

+O(ε2), where Rc is the radius of the cylinder; this means that
for small deformations the change in the exposed surface area
of the cylindrical structure is again governed by contributions
which are linear in ε. Following the same analysis as for
the planar geometry, we find that once again the relevant
contribution to the change in free energy is the first term ∆F1
and the surface tension is

γ =
⟨a⟩
c2

, (15)

where c2 = −πRcLz. In Sec. IV, we scrutinize the significance
of the radius Rc in this context. It is important to note that if the
cylinder is not aligned along the z axis, the said transformation
will give rise to contributions in ε2 as one finds for spherical
structures.

The analysis is more complicated in the case of quasi-
spherical geometries because the leading-order change in sur-
face area of the structure is quadratic in ε: this is because
distortions of a sphere into oblate (ε > 0) or prolate (ε < 0)
spheroids both lead to an increase in the surface area. It can be
shown that for the same spatial transformation as for the planar
and cylindrical cases, the leading-order change in surface area
is now ∆A = c3ε

2 +O(ε3) where c3 = 8πR2
sp/5 and Rsp is the

radius of the sphere, as will be shown later in Sec. V. Terms
in ∆F up to second order in ε now become relevant. Indeed,
there is no term proportional to ε due to the symmetrical nature
of the transformation, which requires that the mean change
in the energy of the system should be minimized at ε = 0, or
equivalently that ⟨∂∆U/∂ε⟩ = ⟨a⟩ = 0 at ε = 0 in this system.
Hence, ⟨∆U⟩ = ⟨b⟩ε2 +O(ε3) and we can write

∆F1

∆A
=

⟨b⟩
c3
+O(ε) (16)

and

∆F2

∆A
= − β

2 (c3ε2 +O(ε3))
�

aε + bε2 +O(ε3)�2
−


aε + bε2 +O(ε3)2



= − β

2c3

(⟨a2⟩ − ⟨a⟩2
)
+O(ε) = − β

2c3
⟨a2⟩ +O(ε), (17)

while ∆F3 remains third order in ε, and so

lim
ε→0

∆F1

∆A
=

⟨b⟩
c3

,

lim
ε→0

∆F2

∆A
= − β

2c3
⟨a2⟩,

lim
ε→0

∆F3

∆A
= 0.

(18)

The tension for a spherical geometry is then obtained by
combining the first- and second-order terms as

γ =
1
c3

(
⟨b⟩ − β

2
⟨a2⟩

)
. (19)

The dependence on second-order contributions (⟨b⟩
= 1/2⟨∂2∆U/∂ε2⟩and ⟨a2⟩ = ⟨(∂∆U/∂ε)2⟩) to the perturbation

in the configurational energy suggests that the evaluation of
the vapour-liquid interfacial tension of spherical liquid drop-
lets will present a greater numerical challenge than the evalua-
tion of the tension for planar and cylindrical interfaces, which
only depends on the first-order energetic contribution ⟨a⟩.

B. Interfacial energies and entropies

The analysis can be extended to determine the separate
energetic and entropic contributions to the interfacial tension
for the three geometries considered. The entropic contribution
is an important quantity to study in the context of the Gibbs
adsorption relation where the surface excess entropy gives
information about the temperature dependence of the tension.
From the definition of the Helmholtz free energy F = E − T S,
the tension can be written as γ = e − T s, where e and s are
the interfacial energy and entropy per unit area. Employing
the thermodynamic identity S = −(∂F/∂T)V ,N , the change in
entropy ∆S brought about by the distortion ε can be obtained
from the TA expression for the change in the free energy, cf.
Eq. (10),

∆S = −
(
∂∆F
∂T

)
= − ∂

∂T

(
− 1
β

ln⟨exp(−β∆U)⟩
)
. (20)

On expanding the change in free energy as a series in energetic
contributions ∆U and differentiating with respect to T , the cor-
responding changes in the entropy and energy can be expressed
as

T∆S = −β (⟨U∆U⟩ − ⟨U⟩⟨∆U⟩) − β

2

(⟨∆U2⟩ − ⟨∆U⟩2
)

+
β2

2
�⟨U(∆U)2⟩ − ⟨U⟩⟨∆U2⟩�

− β2⟨∆U⟩ (⟨U∆U⟩ − ⟨U⟩⟨∆U⟩) +O(∆U3) (21)

and

∆E = ⟨∆U⟩ − β (⟨U∆U⟩ − ⟨U⟩⟨∆U⟩)
− β

(⟨∆U2⟩ − ⟨∆U⟩2
)

+
1
2
β2 �⟨U(∆U)2⟩ − ⟨U⟩⟨∆U2⟩�

− β2 (⟨U∆U⟩ − ⟨U⟩⟨∆U⟩) ⟨∆U⟩ +O(∆U3). (22)

We are now in a position to extract the energetic and entropic
contributions to the interfacial tension, e = limε→0(∆E/∆A)
and s = limε→0(∆S/∆A) from Eqs. (21) and (22), respectively.
For planar and cylindrical geometries, we need only evaluate
the terms in Eqs. (21) and (22) that are proportional to ε,
leading to

e =
1
ci

[⟨a⟩ − β (⟨Ua⟩ − ⟨U⟩⟨a⟩)] (23)

and

T s = − β

ci
(⟨Ua⟩ − ⟨U⟩⟨a⟩) , (24)

with i = 1 and 2 for planar slabs and cylinders, respectively.
These leading order contributions were also derived early on
for planar interfaces by Lekner and Henderson.56 It is also
useful to realise that even though the mechanical work ⟨∆U⟩
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fully characterizes the tension for planar and cylindrical inter-
faces, this does not preclude the existence of a higher-order
entropic contribution. The dependence on a difference between
⟨Ua⟩ and ⟨U⟩⟨a⟩ suggests that the computation of the separate
energetic and entropic contributions to the surface tension will
require good statistics in order to obtain reliable results.

For a spherical interface, the expressions are once again
different because the change in area ∆A does not have a linear
term in ε. The terms proportional to ε in Eqs. (21) and (22)
are expected to vanish due to the symmetrical nature of the
transformation, and therefore we need to identify second-order
contributions in ε2. We find that

e =
1
c3


⟨b⟩ − β (⟨Ub⟩ − ⟨U⟩⟨b⟩) − β⟨a2⟩

+
1
2
β2 �⟨Ua2⟩ − ⟨U⟩⟨a2⟩�


(25)

and

T s =
1
c3


−β (⟨Ub⟩ − ⟨U⟩⟨b⟩) − 1

2
β⟨a2⟩

+
1
2
β2 �⟨Ua2⟩ − ⟨U⟩⟨a2⟩�


. (26)

Since the expressions involve second-order terms in ε, we
expect the numerical evaluation of the energetic and entropic
contributions to the surface tension to be much more chal-
lenging for a spherical interface than for planar or cylindrical
geometries. The numerical scheme has to provide statistics
that are good enough to distinguish ⟨Ub⟩ from ⟨U⟩⟨b⟩ (as well
as ⟨Ua2⟩ from ⟨U⟩⟨a2⟩), which is considerably more difficult
than the resolution of ⟨Ua⟩ and ⟨U⟩⟨a⟩ required for planar or
cylindrical systems, cf. Eqs. (23) and (24), as b represents a
higher-order perturbation to the system energy than a.

A positive energetic contribution to the interfacial ten-
sion is a reflection of the lower coordination of molecules
at the interface compared with the bulk. The larger entropic
contribution quantifies the increased freedom of movement of
molecules at an interface compared with the bulk liquid; from
the Gibbs adsorption equation, the entropy change per unit area
can also be seen to be related to the temperature dependence of
the surface tension, s = −∂γ/∂T , suggesting that the surface
tension decreases with temperature. Furthermore, since the
temperature dependence of the surface tension of liquids is
quite often found to be nearly linear,57,58 such that ∂γ/∂T
∼ −γ/T , the value of T s is expected to be of the same order
as γ so that e would also be similar in magnitude.

III. PLANAR INTERFACE

We first investigate a planar interface of water as a base
case, which has been studied extensively in the past and
for which we expect to have the fewest problems both in
terms of obtaining good statistics and in unambiguously defin-
ing changes in interfacial area. The atomistically detailed
TIP4P/2005 model of water27 is used to represent water in
all of our simulations; TIP4P/2005 is a four-site model (with
three point charges placed in a fixed planar configuration
within a Lennard-Jones core) that has proved to be one of
the most successful classical nonpolarizable force fields for

the simulation of condensed water including the vapour-liquid
interfacial tension.25

A. Methodology

A liquid slab consisting of N = 1000 water molecules is
placed between two empty regions in the centre of a peri-
odic orthorhombic cell with dimensions Lx = Ly = 31.1 Å
and Lz = 100 Å (cf. Fig. 2). Molecular dynamics simulations
are carried out in the canonical NVT ensemble at a temper-
ature of T = 293 K, maintained using a Nosé-Hoover ther-
mostat with a relaxation time of 0.1 ps and using a molec-
ular dynamics timestep of 0.5 fs.59 Interactions are cut off at
15 Å (roughly half the shortest box dimension) and the Ewald
summation method is used to compute the long-range electro-
static interactions; no other long-range corrections are made
for the computed properties. A notable point is the lack of parti-
cles in the vapour at the ambient conditions of the simulation.
This is partially due to a limitations of the TIP4P/2005 water
model, which has an electric dipole moment parameterized to
bulk water rather an isolated gas-phase water molecule, leading
to an underprediction of the saturated vapour pressure and
vapour density.60

Following an equilibration period to stabilize the mean
total energy, running averages of the properties are collected
over a 10 ns period. Changes in configurational energy, ∆U,
are computed by applying virtual perturbations every 100
timesteps equivalent to the transformation Lx → Lx(1 + ε)1/2,
Ly → Ly(1 + ε)1/2, Lz → Lz(1 + ε)−1 for separate values of
ε from −0.005 to 0.005 in steps of 0.001 for all the simu-
lations. It is important to reiterate that the transformation
of the spatial metric involves not only a change in the box
dimensions but that the relative positions between the cen-
tres of mass of the water molecules are scaled according to
the affine transformation. The corresponding changes in free
energy, ∆F(ε), are calculated directly using Eq. (10) and the
changes in area are ∆A(ε) = 2LxLyε. Since the leading order
term in ∆F in this case is expected to be proportional to ε,
the interfacial tension can be obtained from the difference
[∆F(ε) − ∆F(−ε)]/(2c1ε) in the limit as ε → 0; this is equiva-
lent to the form, 1

2 [∆F(ε)/∆A(ε) + ∆F(−ε)/∆A(−ε)]. Similar
constructions employing ∆E(ε) and T∆S(ε) defined in Eqs.
(22) and (21), respectively, can be used to extract the energetic
and entropic contributions to the surface tension. The errors
in the computed properties are estimated from the standard
deviations of the means computed from 10 separate block
averages of 1 ns.

B. Results

The TA methodology for the determination of the surface
tension γ from area perturbations is illustrated in Figure 3:
both positive and negative perturbations in the area are under-
taken, and averages of the associated changes in free energy
per change in area are shown. As expected, the contributions
to the free energy are seen to converge in the limit ε → 0.
A similar construction is followed in Figure 4 to extract the
entropic contribution γentropic = T s. The values of the vapour-
liquid interfacial tensionfor theplanargeometryanditsentropic
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FIG. 3. The change in free energy divided by corresponding change in inter-
facial area brought about by TA distortion of a planar vapour-liquid interface
of N = 1000 TIP4P/2005 water molecules as a function of the perturbation ε.
The interfacial tension at ambient temperature (T = 293 K) is found from the
average (•) of the positive ∆F(ε)/∆A(ε) (+) and negative ∆F(−ε)/∆A(−ε)
(×) changes in area in the limit ε→ 0. The limiting value of the interfacial
tension is denoted by (*).

and energetic contributions are summarized in Table I where the
energetic part γenergetic = e is computed according to γenergetic
= γ + γentropic. Our estimate of γ = 68.4 ± 0.5 mN m−1 at T
= 293 K is consistent with the value of γ = 70.4 ± 1.3 mN m−1

obtainedfromthecorrelationproposedbyVegaanddeMiguel25

for the tension of the TIP4P/2005 model determined with data
from both the mechanical and thermodynamic TA routes (not-
ing that these authors also employ long-range corrections); this
is to be compared with the experimental value of 72.8 mN m−1

for water at 293 K. Furthermore, it is found that the first-order
contribution ⟨∆U⟩ to the change in free energy fully charac-
terizes the surface tension and the second-order contribution is
essentially zero as consistent with the analysis in Sec. II A and
with previous work on Lennard-Jones systems.49 The value of
the entropic contribution reported in Table I can be seen to be
the same order of magnitude as the value of the tension, in line
with our expectations.

FIG. 4. Illustration of the extraction of the entropic contribution γentropic
to the vapour-liquid interfacial tension γ of N = 1000 TIP4P/2005 water at
T = 293 K determined with TA simulations from the average (•) of the posi-
tive T∆S(ε)/∆A(ε) (+) and the negative T∆S(−ε)/∆A(−ε) (×) changes in
area in the limit ε→ 0. The limiting value of γentropic is denoted by (*).

TABLE I. Entropic and energetic contributions to the vapour-liquid interfa-
cial tension of a planar interface of N = 1000 TIP4P/2005 water at 293 K,
where γ =γenergetic−γentropic.

γTA/(mN m−1) γentropic/(mN m−1) γenergetic/(mN m−1) γexp/(mN m−1)
68.4 ± 0.5 66.3 ± 21.7 134.7 ± 21.7 72.8

IV. CYLINDRICAL INTERFACE

The curvature dependence of the vapour-liquid interfa-
cial tension of cylindrical fluid interfaces is examined next
by studying cylinders of TIP4P/2005 liquid water of vary-
ing radii. As with planar interfaces, the tension can be ob-
tained from 1

2 [∆F(ε)/∆A(ε) + ∆F(−ε)/∆A(−ε)] in the limit as
ε → 0 and similarly for the energetic γenergetic and entropic
γentropic contributions.

A. Methodology

Molecular dynamics simulations of cylindrical liquid
structures consisting of between N = 64 and N = 1000 water
molecules are carried out in a periodic cell of dimensions
Lx = Ly = 100 Å and Lz = 30 Å; this choice of rectangular
prism facilitates the formation of a cylindrical structure with
a principal axis along the z axis. As for the planar interface,
interactions are cut off at 15 Å and the Ewald summation
technique is used to compute the long-range electrostatic inter-
actions. Initial configurations of cuboidal lattice configurations
are allowed to relax and equilibrate into periodic cylinders,
as illustrated in Fig. 5, until the mean total energy becomes
time independent. This is followed by a 10 ns production run
to collect statistics with a timestep of 0.2 fs for all simulations.
A smaller timestep is chosen than for the case of the planar
interface as cylindrical interfaces are more inherently unstable
and have larger natural fluctuations in the thermodynamics
properties. The smaller timestep also ensures a better overall
conservation of energy for this system. The temperature is
maintained at T = 293 K with the Nosé-Hoover thermostat,
consistent with the conditions studied for the planar inter-
face. In some circumstances (small system sizes), the cylin-
ders cannot be stabilized for the entire 10 ns period and the
structures relax to form drops; in these cases, independent
simulations of shorter length (timescales where the cylinders
remain mechanically stable) are carried out in parallel and the
results averaged. Changes in configurational energy and the
corresponding free energies are computed by applying the TA
distortion transformation and scaling the particle coordinates
in the same fashion as for the planar geometry.

The calculation of the associated changes in the surface
area of the cylinders requires a knowledge of their radii which
can be determined from an appropriate analysis of the density
profiles: the mass-density profiles ρ(r) are obtained for each
cylinder by counting the number of water molecules lying in
cylindrical bins from the centre of mass and averaging over the
entire trajectory. The data are correlated with a simple profile,46

ρ(r) = 1
2
(ρl + ρv) − 1

2
(ρl − ρv) tanh


2
D

(r − r0)

, (27)
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FIG. 5. A representative configuration of TIP4P/2005 water molecules form-
ing a cylindrical liquid structure in equilibrium with vapour at T = 293 K.

where ρl is the liquid density, ρv is the vapour density, and
D is the interfacial width. The density profile is used to locate
the equimolar (Gibbs) dividing surface, which corresponds to a
vanishing adsorption in a one-component system, ensuring that
the surface free energy per unit area so defined corresponds to
the surface tension.1 The radius Re of the equimolar dividing
surface can then be calculated using numerical quadrature,46

R3
e =

1
ρv − ρl

 ∞

0
r3 dρ(r)

dr
dr. (28)

Though Eq. (28) for the equimolar radius was specifically
developed for spherical geometries (which are treated sepa-
rately in Section V), we employ this in our analysis of the
cylinders for convenience as the differences are found to be
very small; the resulting differences in the values of surface
tension are within the statistical uncertainties of the simulation.
The change in area corresponding to a distortion parameter ε
is then obtained from∆A(ε) = 2πReLz


(1 + ε)− 1

2 − 1

, where

the cylinder radius Rc introduced in Sec. II A is now repre-
sented by the equimolar radius Re. The errors in the tension
are estimated from standard deviations of the means computed
from 10 separate block averages of 1 ns.

FIG. 6. Curvature dependence of the vapour-liquid interfacial tension γ
(•) and the corresponding entropic contribution γentropic (⃝) for cylindrical
interfaces formed by TIP4P/2005 water molecules at T = 293 K, where Re

is the equimolar radius of the cylinder. The dashed line corresponds to the
interfacial tension in the planar limit.

TABLE II. Vapour-liquid interfacial tensions and entropic contributions for
different sizes of cylindrical interfaces of TIP4P/2005 water at 293 K.

N Re/Å γ/(mN m−1) γentropic/(mN m−1)
64 4.27 68.9 ± 3.3 33.2 ± 22.8
96 5.45 72.2 ± 1.8 60.1 ± 25.5
128 6.20 72.8 ± 0.5 72.5 ± 7.7
216 7.99 76.4 ± 0.5 43.7 ± 15.2
512 12.4 74.7 ± 0.4 24.3 ± 24.3
1000 17.5 72.1 ± 0.5 76.6 ± 31.4

B. Results

The vapour-liquid interfacial tension of the cylindrical
liquid structures formed by TIP4P/2005 water and the cor-
responding entropic contribution are depicted in Figure 6 as
a function of cylinder radius Re; the corresponding data are
summarized in Table II. A weak curvature dependence in the
tension is observed with a broad faint peak at a cylinder radius
of Re ∼ 8 Å (though it should be recognized that the thinnest
cylinders are also the most unstable); the values are seen to be
very close to (and slightly above) the planar limit after taking
into account statistical error and the uncertainty in defining
the equimolar radius. The relative insensitivity of the vapour-
liquid interfacial tension to curvature for equilibrium cylin-
drical geometries of the LJ fluid has already been noted by
El Bardouni et al.61 As in the case of the planar interface, the
change in free energy is found to be equal to the average of
the change in configurational energy (∆F = ⟨∆U⟩), consistent
with the analysis in Sec. II A.

No clear evidence of a curvature dependence of the en-
tropic and energetic contributions to the tension for cylindrical
geometries can be seen in Figure 6. Furthermore, it is apparent
that the error in γentropic is significantly larger than the error in
the overall γ, which is negligible in comparison. A closer inves-
tigation of the entropic component of the interfacial tension of
fluid cylinders formed by N = 216 TIP4P/2005 water mole-
cules for 1 ns independent simulation blocks indicates that the
mean values for each block fluctuate significantly, in contrast

FIG. 7. Variation of the vapour-liquid interfacial tension γ (•) and the
corresponding entropic contribution γentropic (⃝) for a cylindrical interface of
average equimolar radius Re ∼ 8.0 Å formed by N = 216 TIP4P/2005 water
molecules at T = 293 K obtained from 10 independent 1 ns simulation runs.
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FIG. 8. A representative configuration of N = 1000 TIP4P/2005 water
molecules forming a quasi-spherical liquid structure in equilibrium with
vapour at T = 293 K.

to the highly reproducible values for the full interfacial tension
(see Figure 7). The fluctuations observed for this system are to
be expected in view of the analysis carried out in Sec. II B,
cf. Eq. (24), which demonstrates that the entropic contribution
depends on quantities that are likely to be more susceptible
to less extensive statistical sampling. This behaviour has been
observed before, e.g., Fleischman and Brooks,62 who found
that the errors in the energetic and entropic components of the
Helmholtz free energies of hydration for alkanes and alcohols
were at least an order of magnitude greater than the error of
the free energy itself. One can nevertheless conclude that the
entropic and energetic contributions are of the same magnitude
as γ, and much longer simulations would be required to obtain
more reliable values with smaller statistical errors.

V. SPHERICAL INTERFACE

We now come to the central theme of our current paper: an
in-depth analysis of the curvature dependence of the interfacial
tension of quasi-spherical condensed water clusters of varying
size. As was mentioned in the Introduction such an understand-
ing is important in the modelling of nucleation; in classical
nucleation theory, quantities such as the size of the critical
cluster and its free energy of formation are characterized by
a sensitive dependence on the surface tension. The capillarity
approximation used in CNT, where the surface tension of small
clusters is assumed to be that of a macroscopic planar interface,
is most likely a contributor to the discrepancy between theo-
retical predictions and experimental nucleation rates which are
often seen to be different by several orders of magnitude.63

A. Methodology

Molecular dynamics simulations of TIP4P/2005 water
droplets in equilibrium with vapour are performed for clusters
consisting of between N = 16 and N = 1000 molecules in a
cubic cell of dimensions Lx = Ly = Lz = 270 Å. The initial
configurations are constructed from cubic lattices in the centre

of the cell that are allowed to equilibrate into spherical clusters
until the mean of the total energy is essentially time inde-
pendent. One observes immediately that the assumption that
the drops are perfectly spherical is inaccurate, especially for
the smaller clusters, as can be seen in Fig. 8. This intrinsic
non-sphericity is problematic when considering statistics over
short time scales because the “surface area” of the drop is
not that of a sphere, the fundamental assumption made when
computing the changes in area. The problem can be overcome
by running sufficiently long simulations so that the assumption
of a spherical cluster geometry holds true on average.

For the same reason as in the case of cylindrical inter-
faces, a relatively small timestep of 0.2 fs is used for all the
simulations to ensure the stability of the droplets and suit-
able conservation of the total energy. The temperature of the
system is again maintained at T = 293 K using the Nosé-
Hoover thermostat. Pairwise interactions between all atomic
sites are calculated by choosing a suitably large cutoff of
135 Å, precluding the need for periodic boundary conditions
and Ewald summations. The configurational sampling is split
into 50 independent runs (each 2 ns in length) executed in par-
allel corresponding to a total 100 ns worth of data. The velocity
components of any water molecules (vapour phase) that reach
a position which is 10 Å beyond the equimolar radius of the
cluster are reversed. The velocity reversal and the choice of a
very large cutoff effectively allow one to study isolated drops
during the simulation. The neglect of the interaction between
the condensed phase and the vapour beyond the reversal point
is an appropriate approximation because the saturated-vapour
density of the TIP4P/2005 model is very low at 293 K. The
centre of mass of the drops is also repositioned to the centre of
the simulation box every 1000 timesteps to minimize boundary
effects. The procedure does not affect the energy of the system
as the potential and kinetic energy of the target molecule are
both conserved.

The changes in configurational energy are obtained using
the TA distortion transformation specified for the planar inter-
face, but with additional equivalent transformations in the other
axes made possible by the (average) spherical symmetry of the
system: Lx → Lx(1 + ε)−1, Ly → Ly(1 + ε)1/2, Lz → Lz(1
+ ε)1/2; and Lx → Lx(1 + ε)1/2, Ly → Ly(1 + ε)−1, Lz → Lz

(1 + ε)1/2. A positive value of the perturbation parameter
ε > 0 results in a deformation of the spherical drop into an
oblate ellipsoid after the scaling of the particle coordinates,
while a negative value of ε < 0 corresponds to a prolate
ellipsoid.

Radial density profiles for each cluster are computed by
counting the number of water molecules in spherical bins
centred at the centre of mass and correlated to Eq. (27); Eq. (28)
is then used to extract the equimolar radii Re. The differences
in area between the perturbed oblate/prolate ellipsoids and the
reference sphere can be calculated analytically,64

∆Aoblate(ε) = 2πR2
e(ε − 1) + πR2

e

ξ(1 + ε)2 ln
(

1 + ξ

1 − ξ

)
(29)

and

∆Aprolate(−ε) = 2πR2
e


(1 − ε) + 1

(1 − ε)2
α

tan α


, (30)
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where ξ is the ellipticity of the oblate ellipsoid defined as

ξ =


1 − 1

(1 + ε)3 , (31)

and the parameter α = arccos(1 − ε) 3
2 is convenient to char-

acterize the change in area for the deformation into a prolate
ellipsoid. One can show that both expressions for the change
in area tend towards the form ∆A = c3ε

2 for small ε, with
c3 = 8πR2

e/5. In the following analysis, we use the equimolar
radius Re to represent the radius Rsp of the sphere introduced
in Sec. II A.

The leading-order terms in the change in free energy ∆F
accompanying the TA distortion of a quasi-spherical geom-
etry turn out to be quadratic in ε and so the interfacial ten-
sion is obtained from 1

2 [∆Foblate(ε)/∆Aoblate(ε) + ∆Fprolate(−ε)/
∆Aprolate(−ε)] or (for small ε) from the central difference
[∆F(ε) + ∆F(−ε) − 2∆F(0)]/(2c3ε

2) in the limit as ε → 0.
Similar expressions can be used for the energetic γenergetic
and entropic γentropic contributions to the interfacial tension.
Standard deviations of the means computed for 50 separate
block averages of 2 ns are employed to estimate the errors in
the properties.

B. Results

The radial mass-density profiles determined for water
clusters formed by the TIP4P/2005 model are presented in
Figure 9. More substantial density fluctuations can be observed
as the number of particles in the cluster is decreased. An
oscillatory nature of the density is observed on the liquid side
of the cluster as one approaches the centre of mass of the drop
(particularly for the smaller radii). This could be partly due
to a lack of statistical sampling in this region, but is expected
for smaller clusters as a real consequence of the nanoscopic
confinement of the system; cf. the non-local density functional
theory calculations of liquid drops of the Lennard-Jones sys-
tem.29 Although Eq. (27) can be used to correlate the profiles
(see Table III for the values of the coefficients), parameters
such as ρl do not necessarily coincide with the “bulk” liquid

FIG. 9. Mass-density profiles ρ(r ) for the quasi-spherical liquid drops
formed by N = 16, 32, 64, 128, 216, 512, and 1000 TIP4P/2005 water
molecules atT = 293 K. The dashed lines indicate the average equimolar radii
Re of the clusters.

TABLE III. Liquid and vapour densities, interfacial widths and equimo-
lar radii obtained for the spherical clusters by correlating the density data
with Eq. (27).

N ρl/(g cm−3) ρv/(g cm−3) D/Å r0/Å Re/Å

16 1.064 3.4×10−3 1.47 4.30 4.40
32 1.143 7.4×10−4 2.24 5.42 5.60
64 0.962 7.7×10−3 2.20 7.13 7.25
128 1.070 4.6×10−4 2.59 9.09 9.24
216 1.047 8.7×10−4 2.71 10.97 11.11
512 1.029 6.9×10−4 2.87 14.87 14.97
1000 1.020 1.1×10−4 3.15 18.74 18.85

density for such small structures. The average equimolar radii
are also indicated on the figure for the various cluster sizes;
Re is used to compute the change in area under the ellipsoidal
distortion as described in Sec. V A.

The dependence of the vapour-liquid surface tension on
the equimolar radius of the water drop is depicted in Figure
10, and the corresponding data are reported in Table IV. The
tension computed with the TA deformations of TIP4P/2005
water clusters at T = 293 K is found to be a monotonically
increasing function of the equimolar radius, tending to the
planar limit γ → γ∞ as Re → ∞. At the lower end of the scale,
the tension is apparently found to vanish for clusters of N
= 16 water molecules corresponding to Re ≈ 4.5 Å. In pre-
vious studies with Lennard-Jones systems, the vapour-liquid
interfacial tension was found to exhibit a small maximum
followed by a weak decay towards the planar value as Re

was increased.49 A similar maximum is not apparent for the
TIP4P/2005 water drops, at least within the statistical uncer-
tainty of our calculations. Although not explicitly presented
here, the change in free energy for spherical water inter-
faces is found to comprise both first-order and second-order
contributions in the configurational energy (∆F = ⟨∆U⟩
− β

2

(⟨∆U2⟩ − ⟨∆U⟩2
)
), consistent with the analysis in

Sec. II A.

FIG. 10. Curvature dependence of the vapour-liquid interfacial tension γ for
quasi-spherical clusters of water at ambient conditions. The data obtained in
our current study using TA simulations for the TIP4P/2005 model at 293 K
(•) are compared with the corresponding values from: the free energy of
excision simulations of Samsonov et al.50 for the Stockmayer model at 300 K
(△); the TA simulations of Ghoufi and Malfreyt51 for the DPD model at 298 K
(♦); and the mitosis simulations of Joswiak et al.53 for the TIP4P/2005 model
at 300 K (⃝). The dashed line corresponds to the planar limit of the interfacial
tension for the TIP4P/2005 model at 293 K (cf. Table I).
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TABLE IV. Vapour-liquid interfacial tensions for different sizes of spherical
interfaces of TIP4P/2005 water at 293 K.

N Re/Å γ/(mN m−1)
16 4.40 0.1 ± 13.5
32 5.60 17.3 ± 9.8
64 7.25 39.0 ± 7.9
128 9.24 53.6 ± 7.6
216 11.11 55.8 ± 5.8
512 14.97 64.0 ± 9.8
1000 18.85 66.4 ± 9.7

As is apparent from Figure 10, our findings for the curva-
ture dependence of the interfacial tension TIP4P/2005 water
at 293 K are in general qualitative agreement with those of
other studies for Stockmayer (dipolar Lennard-Jones)50 and
DPD51 water nanodroplets. A direct comparison cannot easily
be made because these authors employ different intermolec-
ular potential models, run their simulations at the slightly
higher temperatures of T = 298 K51 and 300 K,50 report a
different planar limit, and do not quote error bars. The asymp-
totic planar value is reached at a significantly larger value of
Re ∼ 15 Å (within error bars) based on our TA calculations for
the TIP4P/2005 model than based on the calculations of the
energy of excision for the Stockmayer model or the TA values
for the DPD model. Our finding that the tension essentially
vanishes, albeit with a large error, for a small system size of
N = 16 water molecules (corresponding to Re ≈ 4.5 Å) is how-
ever inconsistent with the stable drops reported by Samsonov
et al.50 and by Ghoufi and Malfreyt51 for systems of similar and
even smaller sizes: Samsonov et al.50 find a value of the tension
which is very close to the planar limit at a radius of ∼4.5 Å
while Ghoufi and Malfreyt51 find a value which is ∼65% of the
planar limit at the same radius. It is possible that this difference
can be attributed to the different force fields considered.

The general overall trend obtained in our and the afore-
mentioned50,51 studies that the vapour-liquid interfacial tension
of nanoscopic drops of water decreases quite sharply with a
decrease in the drop radius after a given size is reached is
in stark contrast with the recent findings of Joswiak et al.53

for TIP4P/2005 water (the same potential model as we use)
and of Homman et al.54 for TIP4P water; the data for the
TIP4P model have not been included in Figure 10 because
the force field leads to an underestimate of the planar value
of the tension of real water of almost 20%.25 Both of these
groups report a significant increase in the interfacial tension
of water drops by more than 10 mN m−1 from the planar limit
as the radius is decreased to Re ∼ 7.0 Å at ambient temperature
(300 K). Joswiak et al.53 computed the free energy associated
with separating a liquid drop into a pair of smaller drops to
estimate the interfacial tension, while Homman et al.54 deter-
mine the tension from the surface of tension Rs and the Laplace
relation (with R = Rs in Eq. (3)). It is difficult to uncover the
reason for the discrepancy with our findings for the curvature
dependence of water nanodrops, though it is possible that the
use of a local pressure of the liquid at the interior of the drop
by Homman et al.,54 rather than the pressure of an equivalent
bulk liquid phase with the same chemical potential, could be

FIG. 11. Variation of the vapour-liquid interfacial tension γ (+) for the
quasi-spherical clusters of average radius Re ∼ 11 Å formed by N = 216
TIP4P/2005 water molecules at T = 293 K for independent 2 ns simulation
runs.

problematic; the reader is directed to Ref. 29 for a discussion
of the issues associated with the use of the Laplace relation for
small systems. One should also recall at this stage that Fac-
torovich et al.55 do not find a significant curvature dependence
for the vapour-liquid interfacial tension of the mW coarse-
grained model of water determined from the Kelvin relation
(cf. Eq. (4)) even for small drops with radii down to Re ∼ 6.0 Å,
though the validity of the macroscopic Kelvin description can
also be questioned at these microscopic length scales.

It is important to reflect on the statistical uncertainties in
the reported interfacial tensions for the spherical structures. In
Sec. II A, we demonstrate that the tension for spherical drops
depends on second-order contributions to the configurational
energy perturbation. Specifically, the change in free energy
due to the distortion is derived from a mean and a fluctuation
term in the statistics of the configurational energy change, both
of which turn out to be of the same order of magnitude (and
orders of magnitude larger than the value of the shift in free
energy) but of opposite sign. The requirement of evaluating a
difference between two large numbers means that extremely
long runs are needed to provide sufficient statistics to extract an
accurate value for the tension: typically, 100 ns simulation runs
are required for each spherical structure in contrast with 10 ns
for a planar slab. We illustrate this point in Figure 11 where
fluctuations between estimates of the tension from separate
2 ns simulation runs are seen to range from negative values to
values more than twice the average for the N = 216 cluster. The
uncertainty in extracting a reliable average from this “noise”
is represented by the error bars associated with the reported
vapour-liquid interfacial tensions in Figure 10.

The entropic and energetic contributions to the surface
tension discussed in Sec. II B for spherical structures involve a
difference of second-order configurational energy correlations,
and we find that our simulations are too limited in extent to
allow for a reliable computation of these properties.

VI. CONCLUSIONS

We provide an interpretation of the test-area method in
terms of a perturbation in the metric of the coordinate space and
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hence of the configurational energy, reminiscent of a distortion
of the cell boundaries but more far-reaching. The change in
energy ∆U(r) of a molecular configuration under a shift in
the metric can be written as a Taylor expansion in a dimen-
sionless parameter ε that characterizes the extent of the distor-
tion. Expressions are then derived for the interfacial tension
of condensed-phase structures for three different geometries:
planar, cylindrical, and spherical. It is shown that when the
change in free energy ∆F associated with the distortion is
expanded in powers of ∆U, only the first moment of ∆U
contributes to the tension of planar and cylindrical interfaces
because the leading-order change in the surface area is linear in
ε. As a consequence, the only part in∆U that is relevant for the
surface thermodynamics of planar and cylindrical interfaces is
the term that is linear in ε. By contrast, the distortional change
in area is quadratic in ε for spherical geometries, and terms in
∆F up to second order in ε are now relevant implying that the
second moment of ∆U contributes to the tension.

The energetic and entropic contributions to the interfacial
tension are also derived. For planar and cylindrical geometries,
these quantities are shown to depend on first-order correlations
between the configurational energy U and its change due to the
distortion ∆U . In the case of spherical geometries, the contri-
butions depend on both first- and second-order correlations,
involving second moments of ∆U. Our analysis indicates that
the calculation of the surface tension of spherical structures
with the test-area perturbative approach will be more chal-
lenging than for planar and cylindrical cases. Furthermore, the
extraction of entropic and energetic contributions to the tension
will be more difficult than the task of calculating the surface
tension itself for all geometries.

As an important application, we investigate different ge-
ometries of condensed structures formed by water represented
with the TIP4P/2005 model at ambient temperature using
molecular dynamics simulation. For the planar interface, our
calculations of the vapour-liquid interfacial tension are consis-
tent with literature values obtained with both the mechanical
(pressure-tensor) route to the tension and the test-area method.
Additionally, we find that the magnitude of the entropic contri-
bution is similar to that of the tension, in line with our anal-
ysis. The surface entropy term has received little attention in
previous studies. In the case of cylindrical interfaces formed
by TIP4P/2005 water, the tension is computed for a range of
cylindrical radii: no clear curvature dependence is observed,
at least within the range of radii studied and the statistical
uncertainty of the method. There is also no clear curvature
dependence for the entropic and energetic contributions, but
the magnitude of these contributions is again consistent with
our analysis. On the other hand, we find a significant curvature
dependence of the vapour-liquid interfacial tension for spher-
ical clusters formed by TIP4P/2005 water: the tension is found
to be a monotonically increasing function of the drop radius,
taking a value of around zero at an average equimolar radius
of ∼ 4.5 Å (corresponding to just N = 16 water molecules),
and then approaching the planar limit for a radius of about
∼ 15 Å (corresponding to ∼5 molecular diameters). This is
consistent with previous test-area simulations of Lennard-
Jones drops49 where the tension retains a value close to that
of the planar limit for drops with equimolar radii down to ∼ 6

molecular diameters; in the case of the LJ system, however,
a weak maximum in the tension is found which is not seen
for water within the statistical uncertainty of our results. The
curvature dependence that we obtain for the TIP4P/2005 model
is qualitatively in line with some other studies on water nan-
odrops,50,51 though in the latter work, the tension was found to
approach the planar limit at much smaller radii (corresponding
to 1-2 molecular diameters). The general trend uncovered here
does not however support the findings reported in some recent
work on water nanodrops53,54 where the interfacial tension was
found to increase from the planar limit with decreasing drop
radius.

Statistical uncertainties are found to be much larger for
the surface tension of spherical interfaces than for those of
planar and cylindrical interfaces, as expected from the theo-
retical analysis. The importance of second-order contributions
means that much longer simulations (by an order of magnitude)
are required in the simulations of droplet to extract surface
tensions, and the statistical error associated with our results is
higher than that obtained from the shorter simulations of the
planar and cylindrical cases. The entropic and energetic contri-
butions for planar and cylindrical interfaces are also noted
to be susceptible to limited statistical sampling. In the case
of spherical interfaces, a computational effort far beyond that
undertaken here would be needed to resolve the surface tension
into these contributions with acceptable statistical accuracy.
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