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We evaluated the performance of an optical camera based prospective motion correction (PMC) system in im-
proving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker
were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by
using the motion information to dynamically update the sequence's RF excitation and gradient waveforms
such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments
on five healthy volunteers followed a 2 × 2 × 3 factorial design with the following factors: PMC on or off;
3.0 mm or 1.5 mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experi-
ments were additionally performed on one of the volunteers at 1.5 mm resolution comparing PMC on vs PMC
off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred
relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking
data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The
PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series
temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast headmovement
relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p b 0.001,
uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78%
and 330%, respectively, for PMC on versus PMC off in the slowmotion cases. The PMC system is a robust solution
to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main road-
blocks to their widespread use in fMRI studies.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Subject motion in functional magnetic resonance imaging (fMRI) is
the most important cause of temporal instability in the data. Typically,
fMRI studies attempt to detect changes from the mean MR signal on
the order of 1% and therefore even minor degradation of the data due
to motion can mask effects of interest. When motion occurs during an
fMRI time series, it is most commonly handled with post-processing
methods that assume rigid body motion and attempt to co-register
and align all image volumes within the time series (Ashburner and
Friston, 2003). These methods are effective for correcting slow inter-
volume motion, but cannot handle the problem of faster intra-volume
motion. The more serious problem of intra-volume motion is most
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oftenmanaged by a combination of restraining the head asmuch aspos-
sible (Yacoub et al., 2008) and scanning with a 2D echo-planar imaging
(EPI) sequence that acquires a single slice within typically 20–80 ms,
thereby “freezing” most subject motion (Feinberg and Yacoub, 2012).
However, even these approaches do not solve the motion problem
completely as overly rigid head immobilization is not always practical
depending on the subject's level of comfort and the functional task
being performed. In addition, motion between slice acquisitions cannot
be corrected for by the most frequently used fMRI analysis packages
(e.g., Friston et al., 2007; Goebel et al., 2006; Smith et al., 2004; SPM8)
and a multi-slice 2D volume can still be corrupted by spin history relat-
ed artifacts and motion in the through-plane direction.

While single-shot 2D EPI sequences remain the dominant method
for data acquisition in fMRI studies, researchers are investigating both
2D multi-band EPI and 3D EPI sequences for improved performance.
2Dmulti-band EPI sequences offer improved temporal resolution by ac-
celerating the data acquisition along the slice directionwhile remaining
a single-shot method (Setsompop et al., 2012). The main advantage of
3D EPI imaging is the signal-to-noise (SNR) gain achieved by volumetric
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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excitation. The slab selective excitation and 3D Fourier encoding used in
3D imaging mean that the amount of data contributing to the k-space
signal is increased by a factor equal to the number of slices acquired,
Nslices, which leads to a theoretical SNR improvement proportional to
√Nslices compared to the same volume acquired with a multi-slice 2D
excitation and readout (Hu and Glover, 2007; Poser et al., 2010). This
theoretical gain in SNR for 3D EPI compared to 2D EPI sequences is real-
ized in practice when imaging at high resolution as the data are in a re-
gime dominated by thermal noise over physiological noise (Hu and
Glover, 2007; Lutti et al., 2013; Poser et al., 2010; van der Zwaag et al.,
2012). Several recent studies have shown that this improved SNR at
high resolution translated into superior BOLD sensitivity at 3 T (Lutti
et al., 2013) and 7 T (Jorge et al., 2013; Poser et al., 2010; van der
Zwaag et al., 2012). Further advantages of 3D imaging at higher resolu-
tions include the ability to simultaneously under-sample the k-space
data in both phase-encoding directions, and thereby realize greater
data acquisition acceleration factors (Poser et al., 2010), reduced specif-
ic absorption rate (SAR), less demanding kz gradient requirements, and
avoidance of slice profile imperfections that occur in 2D imaging (Poser
et al., 2010; Tijssen et al., 2011; van der Zwaag et al., 2012).

Despite these advantages,when it comes to handling subjectmotion
multi-shot 3D EPI sequences have the crucial drawback of acquiring
data for image formation over a time scale of several hundred millisec-
onds to several seconds instead of tens of milliseconds. Post-processing
methods for realigning image volumes of 3D EPI data can still correct
inter-volume motion, but intra-volume motion occurring at any time
during the 3D acquisition will corrupt the whole image volume and
not only a few slices as in single-shot 2D EPI. Strategies for correcting
MR data with intra-volume motion can be broadly classified into ap-
proaches based on how the motion is estimated (internal MR data vs
external sensors), assumptions about the type of motion (affine vs
deformable), and when the correction is done (retrospective vs pro-
spective). Approaches that use internal data to estimate motion, such
as k-space-based or image-based navigators, need additional sequence
time to acquire that information, but the demanding requirements in
fMRI studies of high spatiotemporal resolution and whole brain volume
coverage necessitate that the data sampling be as efficient as possible.
The assumption that head movements can be characterized as rigid
body translations and rotations is a very good approximation for all
areas above the intercommissural (AC–PC) line, and therefore more
complicated approaches to motion correction that can account for de-
formations (Atkinson et al., 1997; Hutton et al., 2013) are not necessary
(Ashburner and Friston, 2003). Retrospective approaches can be very
powerful but they all have one ormore limitations for the current appli-
cation, including the need to operate in the k-space domain, potentially
lengthy computation time, no indication of image quality until after the
scanning session is over, and the potential for sub-Nyquist k-space sam-
pling when large head rotations occur.

Here we present an approach to correct motion during 3D EPI scan-
ning for fMRI applications. In light of the constraints noted above, we
have chosen a method that uses an external sensor, assumes rigid
body motion, and is applied prospectively. The prospective motion cor-
rection (PMC) system uses an optical camera to track a marker that is
rigidly attached to the subject's head. The motion information is used
to realign the imaging field-of-view (FOV) with the subject's measured
head position and orientation immediately before each radio-frequency
(RF) pulse. The performance of the approach was tested on five healthy
volunteers during task-free fMRI scanning, with the following condi-
tions in a 2 × 2 × 3 factorial design: PMC on vs off; 3.0 mm isotropic
vs 1.5 mm isotropic spatial resolution; no head movement, intentional
slow head movement, and intentional fast head movement. Further
testing was done on one of the volunteers during visual and motor
task fMRI using a 2 × 2 factorial design of PMC on vs PMC off and no
head movement vs head movement. The objective of the study was to
evaluate the extent to which the PMC system can improve the quality
of the 3D EPI data under these various conditions.
Methods

PMC camera and sequence control system

The PMC system uses an optical camera (Kineticor, HI, USA)
mounted on the inside of the scanner bore to track the motion of a pas-
sive Moire phase marker at 80 Hz frame rate (Maclaren et al., 2012).
Grating patterns and fixed markings on the Moire phase marker allow
the three translational and three rotational degrees of freedom to be
measured with precision on the order of tens of microns for the transla-
tions and hundredths of degrees for the rotations (Maclaren et al.,
2012). The information containing the position and orientation of the
marker is sent to the scanner host computer, where the data are trans-
formed from camera coordinates to scanner coordinates using a pre-
calibrated transformation matrix. Special libraries have been developed
in the Siemens IDEA programming environment (version VB17) to use
this data to dynamically update the imaging FOV such that it follows
the movement of the marker (Herbst et al., 2012, 2014; Speck et al.,
2006; Zaitsev et al., 2006). This is done immediately before each excita-
tion by updating the RF pulse frequency, the RF pulse phase offset, and
the amplitudes of the imaging gradients. The camera time-series data
are not temporally smoothed or filtered before being sent to the MR
host. The motion information that is logged by the PMC system gives
the three translation and three rotation measurements of the marker
relative to its initial position.

3D EPI sequence

The 3D EPI sequence acquired each kx–ky plane of data in one
echo train using Cartesian sampling and applied linearly ascending
phase encoding along the partition dimension, where partition refers
to the slow phase encoding direction (Lutti et al., 2013). The experi-
mental design was set up to test the PMC system at two different reso-
lutions, 3.0 mm isotropic and 1.5 mm isotropic. Sequence parameters
were kept as similar as possible between the two different reso-
lutions. The two versions of the sequence had different imaging matri-
ces (64 × 64 × 44 vs 128 × 128 × 44, giving 44 RF excitations per
volume for both versions), different bandwidths (2367 Hz/pixel vs
1395 Hz/pixel), and the high-resolution acquisition was accelerated by
GRAPPA parallel imaging with factor 2 in the phase encoding direction.
All other parameters were as follows for both sequences: Transverse
slice orientation with phase encoding along the anterior–posterior
direction, repetition time TR = 78 ms, echo time TE = 37.3 ms, flip
angle = 15°, 10% data oversampling in the partition direction,
3.4 second acquisition time per image volume.

Imaging experiments

All scanning was performed on a Siemens TIM Trio scanner using a
standard 32-channel head coil andwith volunteer informed consent ob-
tained under the approval of the institution's local ethics committee.
Five healthy volunteers were scanned under task-free fMRI conditions
and one of the volunteers was also scanned in two separate task fMRI
sessions. Custom made mini bite bars were used to rigidly attach the
Moire phase marker to the front upper teeth of the volunteer, thereby
ensuring the best coupling of marker and head movement (see Fig. 1).

To fully test the performance of the PMC system, the task-free
imaging experiments were set up as a 2 × 2 × 3 factorial design,
resulting in twelve permutations of the following conditions: PMC on
vs PMC off; 3.0 mm isotropic resolution vs 1.5 mm isotropic resolution;
and no head movement vs slow head movement vs fast head move-
ment. For each combination of conditions, 100 image volumes were
acquired over 5 min and 40 s. The volunteers were told which type of
headmovement to do before the start of each run, but were blinded re-
garding the sequence resolution and whether PMC was on or off. The
order of the twelve conditions was randomized over the volunteers.



Fig. 1.Mini bite bar set up used to securely attach the tracking marker to the subject. A) Each bite bar was individually molded to the volunteer's upper front teeth using a medical grade
hydroplastic (TAK Systems) and included a two-hinge mounting system for flexible placement of the trackingmarker. B) Image of a volunteer with themini bite bar and trackingmarker
taken from approximately the same angle as where the camera would be located in the scanner bore.
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For the cases of slow and fast head movement, the volunteers were
instructed to keep still for the first 12 image volumes in order to obtain
artifact-free data to be used in the creation of a reference image
(described below). Motion data were recorded for use in analysis in all
conditions. This information was used to prospectively correct the FOV
alignment for the PMC on condition.

The type of motion that the volunteers were instructed to carry out
was designed to sample as well as possible the full range of motions
seen in fMRI studies, from compliant healthy volunteers to more diffi-
cult patient populations (Brown et al., 2010; Lemieux et al., 2007; Van
Dijk et al., 2012). Before scanning, volunteers were coached to limit
the amplitude of their translational and rotational movements such
that the marker movement stayed within a range of ±10 mm and
±5°. This was done by projecting the real-time camera motion traces
onto a screen in the scanner bore for the volunteer to see. The volun-
teers were instructed to intersperse periods of movement with periods
of lying still such that different image volumes would have differing
amounts of total motion occurring during the data acquisition period,
and so that the motion would occur at different times with respect to
the partition encoding. The movement events were frequent compared
to what would typically be seen from a compliant volunteer, but not
beyond the upper limit ofwhat has been reported for either healthy vol-
unteers (Van Dijk et al., 2012) or patients (Brown et al., 2010; Lemieux
et al., 2007). The relatively high rate of movement events was deliber-
ately chosen in order to efficiently sample asmuch of themotion trajec-
tory space as possible.

For the task-based imaging experiments, the fMRI time series data
were acquiredwith the 3D-EPI sequence at 1.5mm isotropic resolution.
The 2 × 2 factorial designed consisted of conditions of PMC on vs PMC
off and no head movement vs slow head movement. The visual para-
digm used a 10-Hz flickering black/white checkerboard alternately
stimulating the left and right visual hemifields. The motor paradigm
was a standard finger-to-thumb tapping taskwhere the volunteer alter-
nated blocks of tapping with the left and right hands. For both tasks,
block designs of 15-second left stimulation, 15-second rest, 15-second
right stimulation, 15-second rest were repeated 5 times for a total
scan time of 5 min.
Data analysis

The goal of the study was to evaluate the performance of the PMC
system as a function of head movement. In order to accomplish this,
severalmetrics were established to quantify both the amount of motion
occurring during data acquisition and the image quality resulting from
the acquired data.
The first motion metric, total speed, combined the high temporal
resolution camera-measured translations (in mm), x, y, z, and rotations
(in degrees), P, R, Y, into a single scalar quantity, S, designed tomeasure
the rate of the motion:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx
dt

� �2
þ dy

dt

� �2
þ dz

dt

� �2
þ dP

dt

� �2
þ dR

dt

� �2
þ dY

dt

� �2
s

: ð1Þ

S has the temporal resolution of the camera data. To remove noise
due to mechanical scanner vibration and other sources, a low pass filter
was applied to the translation and rotation data to remove information
above 10 Hz (the scanner vibration noise occurred at the partition rep-
etition frequency, 12.8 Hz). Note that weighting the rotations by the
same amount as the translations is equivalent to assuming a rotational
radius of 5.7 cm, which is reasonable considering the typical head size.

The next two motion metrics, integrated motion and partition-
weighted integrated motion, were designed to create a single estimate
of the total amount of motion that occurred throughout the acquisition
of one image volume. The integrated motion metric is a simple numer-
ical integration of the total speed metric over the time of each image
volume.

M ¼
X
i

Si � Δtð Þ ð2Þ

Si refers to the ith data point of the total speed variable,Δt is the time
step between camera samples, and the sum is over all data pointswithin
one image volume acquisition. M has the temporal resolution of the
image volume acquisition rate and the total speed values are all weight-
ed equally. The next metric, partition-weighted integrated motion, is
designed to reflect the fact that the k-space energy is distributed non-
uniformly along the partition encoding dimension, and therefore mo-
tion occurring during different partition encoding steps will affect the
image quality differently. The partition weightings are determined by
converting the reference image of the time series into k-space using a
Fourier transform and integrating the squared modulus of the k-space
values, c, over the jth kx–ky plane:

kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
kx j

X
ky j

c kx j; kyj

� �
� c kxj; kyj

� ��� �
:

s
ð3Þ

These weightings for the jth partition are then used to create the
partition-weighted integrated motionmetric:

MPW ¼
X
j

X
i

Si; j � kj � Δt
� �

: ð4Þ
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Here the sums are now over the i data points of the total speed var-
iable that are within a single partition and over the j partitions that
make up the image volume. Note that because the Fourier transform
of the reference image was done on the magnitude of the image, an ar-
tificial symmetry is imposed on the k-space thatmay not have existed in
the original complexmulti-channel data. This will affect the kj values by
a few percent, but was deemed preferable to calculating the weights
from the large raw k-space data sets.

Fig. 2 shows an example of themotion data that the camera captures
and how it is used to create the motion metrics. The three translation
and three rotation measurements shown in Figs. 2A and B were from
Volunteer #2 during experimental conditions of 1.5 mm resolution im-
aging, PMC off, and fast head motion. The amplitude of the movements
shown in these plots was similar across volunteers. It is larger andmore
frequent than the type of motion typically seen in fMRI studies with
healthy volunteers but roughly in line with the amplitude of motion
seen in certain patient populations (Kochunov et al., 2006; Lemieux
et al., 2007; Schulz et al., 2014; Versluis et al., 2010). Figs. 2C–E show
the motion metrics of total speed, integrated motion, and partition-
weighted integrated motion, all from Volunteer #2 with PMC off and
no, slow, and fast motion respectively. The data shown in Fig. 2E corre-
sponds to the data shown in Figs. 2A and B, giving an indication of how
the metricsM andMPW are related to the translation and rotation mea-
surements. The grid lines indicate the timing of the MR data acquisition
per image volume and the dot markers on the motion metrics indicate
the timing of the central k-space partition.

Fig. 3 shows an example of the importance ofmotion timingwith re-
spect to k-space partition acquisition that motivates the MPW metric.
Fig. 3A shows the motion metrics during two consecutive image vol-
umes acquired from Volunteer #2 (1.5 mm resolution, PMC off, fast
motion). Moremotion occurred during the acquisition of image volume
69, but the motionmainly occurred as the peripheral k-space partitions
were being acquired, whereas the motion from image volume 70
was coincident with the acquisition of the central portion of k-space.
Fig. 3B shows the baseline image from this run that was used as the
motion-free reference image, and respective images and difference
Fig. 2.Example plots ofmotion data fromVolunteer #2. Theplots in panels A and B show the thr
Panels C–E show themotionmetrics calculated from the camera data for cases of nomotion (C)
The grid lines indicate the timing of the MR volume acquisition. Note the different scale on the
images from volumes 69 and 70 are shown in Figs. 2C–F. It can be
seen that the image error was worse for image volume 70, which sup-
ports the MPW metric being a better predictor of the artifact level than
the simple integrated motion metric.

Twomeasures of image qualitywere calculated to quantify the effect
that motion had on the acquired data, the tSNR of the time series and
the root mean square error (RMSE) of all individual image volumes.
Before calculation of themetrics, all 4D image data sets were registered
to their respective first image in the 100-volume time series using the
Estimate & Reslice algorithm in SPM 8 (Ashburner and Friston, 2003;
SPM8), and the first five of the 100 image volumes were discarded
to allow for equilibration of the longitudinal magnetization. The high
resolution scans had an initial period of “dummy” data acquisition to
allow for longitudinal magnetization equilibration before acquisition
of the calibration data for the GRAPPA kernel, but the first five volumes
were still discarded in order to match the number of volumes kept
in the low resolution scanning cases. The tSNR was calculated on a
voxel-by-voxel basis as the mean signal over time divided by the tem-
poral standard deviation of the signal. Before calculating the temporal
standard deviation, a first order detrending was performed. The refer-
ence image for the RMSE calculation was obtained by averaging all
image volumes in the time series that had an MPW value that was at
or below the MPW values of the baseline images (before motion com-
menced). A 3D mask was created to cover the entire brain and exclude
signal from the skin surface and background noise. The entire 4D data
set was scaled by the mean signal of all voxels within this mask. An
RMSE value was calculated for each image volume using the reference
image and all voxels within the mask. While the tSNR values gave an
indication of the quality of the image data over the entire time series,
the RMSE metric reflected the image quality of individual image vol-
umes as a function of the amount of motion that occurred during data
acquisition.

The FOV coverage in the head–feet direction was different for the
3.0 mm and 1.5 mm cases. To facilitate comparison between the two
types of scans, a common volume was chosen for the analysis that
started several millimeters above the top of the brain and covered
ee translation and three rotationmeasurements from theoptical camera (fastmotion case).
, slowmotion (D), and fast motion (E, with data corresponding to plots in panels A and B).
axes for panels C–E.



Fig. 3. Example of howmotion timing with respect to 3D data acquisition affects image quality. Panel A shows the motion metrics during the data acquisition of the 69th and 70th image
volumes fromVolunteer #2 (1.5mm resolution, PMC off, fastmotion), where themotion is occurring in the peripheral partitions for volume 69 and in the central partitions for volume 70.
Panels B–E display one slice of the reconstructed volume, showing the reference image (B), the reconstructed volumes 69 and 70 (C and E), and the difference images (D and F).
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48mm towards the feet (16 slices for the 3.0 mm data and 32 slices for
the 1.5 mm data).

The data sets from the task fMRI experiments were processed in
a standard pipeline using SPM8 (Friston et al., 2007; SPM8). The first
five image volumes were discarded to be consistent with the analysis of
the task-free data. All image volumes from each data set were realigned
to the first image but no spatial smoothing was performed in order to
maintain the high resolution of the data. The general linear model
used for fitting the data contained only the task indicators for left/
right stimulation and a high pass filtering cut off of 128 s. To measure
the BOLD sensitivity across the four conditions of the factorial design,
t-scoreswere analyzed for all voxelswithin the respective regions of in-
terest (ROI) covering the visual cortex and the motor and sensorimotor
cortices for the visual and motor experiments, respectively.
Fig. 4. tSNR histograms for 3.0mm data comparing PMC on vs PMC off for cases of no, slow, and
for each condition. The inset image in each histogram shows one slice through the tSNR map f
Results

Task-free fMRI

The tSNR results over all twelve experimental conditions are
summarized in Figs. 4 and 5, and Table 1. Fig. 4 shows data from the
3.0 mm resolution runs, comparing the PMC on vs PMC off conditions
for no motion, slow motion, and fast motion. The histograms of tSNR
values use data that has been pooled over all five subjects. The ex-
ample images in the upper right corner of each plot show one slice
through the tSNRmaps of Volunteer #3. The distribution of tSNR values
were very similar for the no motion cases, indicating that the PMC sys-
tem is not introducing any errors through spuriousmodifications of the
RF pulses and imaging gradients. When motion was present, the tSNR
fast motion. The tSNR values have been pooled from all five volunteers into one histogram
rom Volunteer #3.



Fig. 5. tSNR histograms for 1.5mm data comparing PMC on vs PMC off for cases of no, slow, and fast motion. The tSNR values have been pooled from all five volunteers into one histogram
for each condition. The inset image in each histogram shows one slice through the tSNR map from Volunteer #3. Note that the scales are different on both the histogram axes and tSNR
maps from Fig. 4.
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distributions were shifted towards lower values, as would be expected.
This occurred for both the PMC on and PMC off cases, but the average
tSNR values for the slow and fast motion cases were 37% and 34% great-
er, respectively, for PMC on compared to PMC off.

Similar results are shown in Fig. 5 for the tSNR distributions from the
1.5 mm resolution runs, where the inset image of the tSNR map is also
from Volunteer #3. Note that the scales on both the histogram axes
and the tSNR maps are different from those in Fig. 4. The same effects
as seen in the 3.0 mm resolution data were seen here as well: the no
motion distributions of tSNR were very similar between PMC on and
PMC off, the effect of decreasing tSNR with increasing motion was
seen, and the runs with PMC on had clearly higher overall tSNR values
for comparable levels of motion (43% improvement for the slowmotion
case, 32% improvement for the fast motion case). One slight anomaly is
seen in the double-peaked distribution of the PMC on, fast motion case.
This is due to the fact that Volunteer #5's movements during the
fast motion cases were significantly greater than all of the other
volunteer's movements, which created a subset of the pooled data
Table 1
Comparison of tSNR values across all twelve experimental conditions. The mean tSNR
values are reported with the standard deviation being over volunteers. Significant dif-
ferences between the PMC on and PMC off cases are indicated by * for p b 0.05 and
** for p b 0.01. Mean and standard deviation of the partition-weighted integrated motion
values are shown in parenthesis. The partition-weighted integrated motion values were
not significantly different for any of the PMC On vs PMC off cases.

tSNR (partition-weighed
integrated motion)

No motion Slow motion Fast motion

3.0 mm case
PMC on 68.0 ± 2.9

(1.9 ± 0.3)
37.6 ± 6.6*
(8.4 ± 1.9)

23.3 ± 6.5*
(16.0 ± 9.0)

PMC off 63.6 ± 8.4
(2.3 ± 0.4)

27.3 ± 4.4
(6.5 ± 1.8)

17.4 ± 4.5
(15.3 ± 7.2)

1.5 mm case
PMC on 35.5 ± 4.3

(2.5 ± 0.7)
23.7 ± 2.5**
(8.1 ± 1.0)

18.0 ± 4.6*
(14.3 ± 9.0)

PMC off 33.3 ± 3.9
(1.8 ± 0.2)

16.6 ± 2.9
(8.2 ± 1.8)

13.6 ± 3.0
(14.5 ± 6.7)
that had significantly lower tSNR values. Volunteer #5 had consistently
higher motion metrics for all fast motion cases, but the effect on the
total distribution of tSNR values was not as obvious for the PMC off
case or the 3.0 mm resolution cases.

The effects seen in the tSNR distributions are quantified in Table 1.
The values are presented as the mean tSNR value and standard devia-
tion over subjects. Two-tailed paired t-tests determined significant
differences between the PMC on and PMC off conditions for all six com-
binations of themotion and resolution parameters. Therewas no signif-
icant difference between PMC on vs PMC off when therewas nomotion
present (for either resolution), but the tSNR values for PMC onwere sig-
nificantly higher for all cases when motion was present. To check the
levels of motion performed by the volunteers between the PMC on
and PMC off cases, average values for the partition-weighted integrated
motion metric are also reported in the parenthesis as the mean over all
image volumes and standard deviation over subjects. Despite the fact
that it was not possible to have the volunteers recreate exactly the
same motion between the different runs, there were no significant dif-
ferences in the average partition-weighted integratedmotion values be-
tween the different paired PMC on and PMC off cases.

Fig. 6 illustrates how the losses in tSNR due to motion were distrib-
uted across the brain. The data are from the 3.0mmresolution cases and
averaged over all five volunteers. The first row displays sagittal slices of
a representative magnitude image from the no motion, slow motion,
and fast motion cases (all PMC off). The second and third rows show
the average tSNR values for the PMC off and PMC on cases respectively.
The fourth row displays the percent difference between the PMC on and
PMC off cases, showing the spatial distribution of tSNR improvements
that can be achieved by using PMC. For both the slow motion and fast
motion cases, the largest improvements in tSNR occurred at the surface
of the brain, while the tSNR values in many areas in the center of the
brain did not show significant differences.

Motion metrics and characterization

While the tSNR values gave an indication of the quality of the image
data over the entire time series of each run, the RMSE metric was
intended to evaluate the image quality of individual image volumes



Fig. 6. tSNR values averaged over all 5 volunteers, 3.0 mm isotropic data. The first row shows a sagittal slice of one representativemagnitude image; the second and third rows show tSNR
maps averaged over the five volunteers for the PMC off and PMC on cases; the fourth rows shows the percent difference between the tSNR values of the PMC off and PMC on cases ((PMC
on− PMC off)/PMC off).
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as a function of the amount of motion that occurred during data acqui-
sition. Fig. 7 presents scatter plots of the RMSE values against the
partition-weighted integrated motion (MPW) values. The data were
pooled over all subjects, with each dot representing one image volume.
The blue dashed lines represent the fit to the function:

RMSE ¼ A � 1− exp −R �MPWð Þð Þ: ð5Þ

where A and R are the fitted parameters. Several observations emerge
from the scatter plots. The first is that RMSE increased with increasing
values of MPW, as would be expected. However, the RMSE values did
not increase linearly, but plateaued at some maximum level as MPW

continued to increase. The fits to the data indicate that the RMSE values
were, on average, lower for PMC on compared to PMC off for compara-
ble values of MPW.

Goodness of fit tests were performed to evaluate the usefulness of
the MPW metric compared to the simpler M metric for predicting
motion-related artifacts. The function defined in Eq. (5) was fit using
both theMPW and M values for the PMC off motion cases, and r2 values
were calculated in all instances. The r2 values were higher for all four
cases when MPW was used as the input. The range of r2 values was
from 0.61 to 0.77 when using MPW compared to 0.51 to 0.68 when
usingM.

Fig. 8 shows percent decrease in RMSE values from PMC off to PMC
on cases as a function of MPW. The plots were generated by averaging
the data shown in Fig. 7 over bins along the MPW dimension that
were 2.5 mm wide. Only bins that had 5 or more data points were
kept. The percent reduction in RMSE was calculated as (RMSEPMC_Off −
RMSEPMC_On) / RMSEPMC_Off, and the error bars show the standard errors
of the binned RMSE values propagated through the percent differ-
ence calculation. The trend over the data sets showed small percent de-
creases in RMSE at low levels ofmotion (MPW b 5mm), and then greater
percent decreases in RMSE as the level of motion rises until a plateau
was reached. This plateau in percent decrease of RMSE was larger for
the slowmotion cases (50%–60%) than for the fastmotion cases (~40%).
Task fMRI

The results from the two task fMRI experiments are shown in Figs. 9
and 10. Fig. 9 shows representative t-score maps of activated voxels
(uncorrected p b 0.001) overlaid on a high resolution structural image
for each of the four conditions of the 2 × 2 factorial design. The motor
task results are displayed in Fig. 9A and the visual task results are
displayed in Fig. 9B. For both tasks, the t-scoremaps indicate that the ac-
tivation for the two no motion cases is very similar, but the activation
appears significantly suppressed for the condition of slow motion and
PMC off.

The task fMRI t-score and tSNR values are summarized in histograms
in Fig. 10. The data shown were extracted from anatomically defined
regions for the motor and visual cortices. The tSNR distributions from
the four conditions show similar behavior as seen in the task-free
fMRI results. When comparing the conditions of PMC on, no motion to
PMC on, slow motion, the mean tSNR values decreased by 25% and



Fig. 7. Scatter plots of RMSE vs partition-weighted integratedmotion. Data from all image volumes and all volunteers are pooled for each of the cases shown. The blue dashed lines are fits
of the data to the functional form of Eq. (5), with the blue text indicating the value of A from the fit.
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30%, for the motor and visual tasks respectively. The corresponding
tSNR decreases for the PMC off cases were considerably larger, with
percent decreases of 53% and 37%. The effect of these tSNR decreases
on the BOLD sensitivity can be seen in the histograms of t-scores
Fig. 8. Plots of percent reduction in RMSE for PMC On compared to PMC Off as a function of par
MPWbins thatwere 2.5mmwide (only binswith 5 ormore data pointswere used). Thepercent r
show standard error of the binned RMSE values propagated through the percent difference cal
shown in Figs. 10A and C. The histograms show t-score values for
all voxels that were within an anatomically defined region correspond-
ing to where the activation is expected to occur and that had a t-score
greater than 3.2 (corresponding to an uncorrected p b 0.001). For the
tition-weighted integratedmotion. The RMSE data presented in Fig. 7 were averaged over
eduction inRMSEwas calculated as (RMSEPMC_Off−RMSEPMC_On) / RMSEPMC_Off. Error bars
culation.



Fig. 9. Statistical t-scoremaps of significantly activated voxels (uncorrected p b 0.001) from the task fMRI experiments. Results from2 × 2 factorial design experiments showing combined
activation maps from A) left and right finger-tapping stimulation and B) left and right visual hemi-field stimulation.
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nomotion cases in both tasks, the t-score distributions had similarmax-
imum t-score values and numbers of voxels activated. For the motion
cases when PMC was on, the number of activated voxels decreased by
Fig. 10. Task fMRI results. A)Histogramsofmotor task t-scores for PMCon vs PMCoff andnomo
than 3.2 were included (corresponding to uncorrected p b 0.001). B) Histogram of tSNR values
task.
35% for the motor task and 14% for the visual task. When PMC was off,
the drops in number of activated voxels were 82% and 52% for the two
tasks.
tion vsmotion cases. All voxelswithin an anatomically defined ROI having a t-score greater
from all voxels within the same ROI. C) and D) T-score and tSNR histograms for the visual
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Discussion

The results presented here demonstrate that a PMC system using an
external camera andmarker with real-time feed-forward control to the
imaging pulse sequence can significantly improve the data quality of 3D
EPI images when motion occurs during data acquisition. For all condi-
tions tested at different spatial resolutions and with differing amounts
of deliberate head movement, the PMC system was able to improve
the time series tSNR by 30% to 40% compared to uncorrected data. The
tSNR increases translated into higher functional sensitivity in two sepa-
rate fMRI test experiments. For the tested caseswith nomotion present,
the PMC system was sufficiently precise and stable that its updates did
not degrade the tSNR compared to the no correction cases. Multi-shot
3D EPI sequences are particularly susceptible to data degradation due
to motion because of their relatively long acquisition time. Success-
fully integrating a PMC system to alleviate this problem represents
a large step towards making 3D EPI sequences an attractive option for
conducting fMRI studies.

The metrics developed for analyzing motion were designed to com-
press the very rich camera motion tracking data down into a lower
dimensionality while maintaining enough information to make useful
predictions about the effect of motion on the image quality. They have
several advantages over previous motion assessment strategies that
use the image data to retrospectively estimate the movement between
scans (Lemieux et al., 2007;Wilke, 2012). The high frame rate of the op-
tical camera (one sample every 12.5 ms) is fast enough to capture all
rigid body physiologicalmotion and allows for correlation of themotion
with the timing of the data acquisition. For 2D imaging, motion can be
correlated with the individually acquired slices, and for 3D imaging, as
presented here, the motion can be correlated with the different parti-
tion encodings. Additionally, because the metrics are defined based on
integrating the modulus time derivatives of the camera data, instead
of the total displacement relative to some starting point, they can pro-
vide an accurate measure of howmuch total motion occurred through-
out the data acquisition period. For example, a rapid nod that displaces
the head significantly and then returns to nearly the original position
might be calculated as only a small displacement using retrospective
image-based approaches, butwould be characterized by ourmetrics ac-
cording to when the motion occurred relative to the partition acquisi-
tion timing. As another example, if the subject initially moves from
their starting position but then remains still during the acquisition of
subsequent image volumes, our metrics would calculate both the total
speed and integrated motion metrics to be zero for these later volumes
despite the displacement from the initial position. This is a purposeful
feature of the metrics as no image artifact will be introduced in these
volumes and the realignment to the original position can be well han-
dled by post-processing methods.

The results shown in Fig. 7 indicate that the partition-weighted inte-
grated motion metric for 3D EPI,MPW, is a good predictor of the level of
artifact introduced into individual image volumes bymotionwhen PMC
is off. The scatter plots are noisy due to the complicated relationship be-
tween motion and image artifact, but a clear trend of increasing RMSE
with increasing MPW can be seen. The functional form of Eq. (5) used
to fit the data was not derived from physical principles of how motion
affects k-space data acquisition, butwas rather a heuristicmodel chosen
because it fits the datawell and reflects the fact that the RSME as a func-
tion of motion must eventually reach an asymptote. The results also
show that incorporating information about the timing and relative
weighting of the 3D k-space partitions allows for better correlation be-
tween the measured motion and resulting image artifacts. With some
tailoring to the specific application, the motion quantification metrics
presented here show enough predictive capability that they could be
likely used as criteria in data rejection/resample schemes.

One problem faced by any study attempting to evaluate a motion
correction scheme is how to best sample the infinite parameter space
of possiblemotion trajectories. Subjectmotion seen during fMRI studies
can vary according to factors such as the task being performed, whether
the subjects are healthy or patients, which particular patient popula-
tion the subjects are from, how securely the head is immobilized
within the RF coil, if the subject is falling asleep during scanning, if
the subject is coughing or swallowing in the scanner, and so on. This
study design took the approach of instructing volunteers to perform a
wide range of motion types that fell within constraints of what has
been reported in the literature (Brown et al., 2010; Lemieux et al.,
2007; Van Dijk et al., 2012), and then characterizing the level of motion
present using theMPW metric. This approach has two advantages. First,
it does not require that volunteers execute the exact same motion tra-
jectory between “correction on” and “correction off” runs, which is a dif-
ficult task in practice. The level ofmotion present during “correction on”
and “correction off” runs can be assessed with theMPW metric to deter-
mine if significant differences exist. Second, the performance of themo-
tion correction scheme can be evaluated as a function ofmotion level. As
Fig. 8 shows, the reduction in RMSE provided by the PMC system as a
function of the motion level is not trivial. If only one type of motion
had been performed, then only one point on this curve would be
known. By performing a wide range of motion types, and characterizing
them with the MPW metric, the entire curve is described.

The present study only evaluated the PMC system for the case of 3D
EPI scanning. A direct extrapolation of these tSNR and t-score results to
the more common approach of 2D EPI scanning for fMRI is not trivial
given the different imaging parameters that would be used (e.g. longer
TR and larger flip angles) and the fundamentally different data acquisi-
tion strategy. However, the implementation of the PMC system for 2D
EPI scanning or 2D multiband EPI scanning (Setsompop et al., 2012)
would be done in exactly the same way, with the imaging parameters
still updated immediately before every RF pulse as shown by Schulz
et al. (2014) and Speck et al. (2006). In addition to the benefits of
rigid-body realignment discussed here, problems particular to 2D EPI
scanning such as spin-history artifacts and intra-volume acquisition
motion artifacts would also be expected to be improved. For both 3D
EPI and 2D EPI scanning, the PMC system presented here can provide
precise motion information to help avoid bias and false positives in
the data analysis (VanDijk et al., 2012) andmayhave thebiggest impact
for studies where larger levels of motion are unavoidable, such as overt
speech studies (Price, 2012) or studies involving patient populations
where non-compliance is a problem (Schlund et al., 2011).

Several other groups have implemented and evaluated similar fast
prospective motion correction approaches for 2D EPI scanning for
fMRI studies. Schulz et al. used a system consisting of three cameras
tracking three passive optical markers for prospective motion correc-
tion during a leg movement task known to induce correlated head
movements (Schulz et al., 2014, 2012). Their evaluation demonstrated
that their PMC systemwas able to reduce the number of falsely activat-
ed voxels and improve the group level statistical power compared to the
case of only doing volume-wise retrospective realignment. Rotenberg
et al. implemented a scheme that combined prospective correction
using a two-camera system tracking passive reflective markers with a
real-time geometric distortion correction method (Rotenberg et al.,
2013). Their results showed reduction of false activations during a
finger-tapping task with cued intentional head movement. The ap-
proach presented by Muraskin et al. used active markers in their track-
ing system and demonstrated improved group-level statistics for block-
designed flickering checkerboard, face localizer, and finger tapping
paradigms (Muraskin et al., 2013).

While the PMC system shows great promise for reducingmotion ar-
tifacts, practical limitations exist that may make the method unsuitable
for certain fMRI studies. Perhaps the biggest practical issue is securely
attaching the tracking marker to the subject's head. A number of ap-
proaches to fixating themarker to the subject's skin were tested, for ex-
ample using an adhesive to attach it to the bridge of the nose or to the
forehead, or attaching it to non-prescription eye glasses that the subject
was wearing. However, each of these methods showed some degree of
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uncorrelated motion between the marker and the brain due to the
malleability of the skin. Individually molded mini bite bars were there-
fore chosen for this study, but this may not be a feasible solution for all
studies. For example, not all patient populations may tolerate the mini
bite bars, it may be impractical to create many individual bite bars for
a study involving a large number of subjects, or the mini bite bar set
up may hinder certain speech related tasks.

The results in Table 1 show that the mean tSNR values decrease
when motion occurs, even for the cases when PMC is on, indicating
that the PMC system does not perfectly correct motion-induced errors.
This is to be expected, as the PMC system only corrects for rigid body
motion at discrete time points. This leaves many potential sources of
error. While it is impossible to identify them all and separate out their
individual contribution to the overall decrease in image quality, several
major sources are known from previous studies (for an overview, see
Maclaren et al., 2013). One of the biggest challenges is that motion con-
tinues to occur in between PMC updates. In this study, PMC updates
were done every TR of 78 ms and maximum translation velocities
along one dimension were typically in the range of 10–15 mm/s for
the slow motion cases and 40–50 mm/s for the fast motion cases. Over
the length of one TR, these values correspond to displacements of
approximately 1 mm for the slow motion cases and 3 to 4 mm for the
fast motion cases, which are clearly significant for the voxel sizes used.
This long recognized problem could be ameliorated by performing
PMC updates of the imaging gradients more often, as has been done
by Herbst et al. (2012).

Other known contributors to motion-induced errors are related
to the fact that the head is moving through inhomogeneous B0 and
B1-receive fields, neither of which the PMC system controls. B0 field
distortions due to susceptibility changes at tissue boundaries cause
well known artifacts of geometric distortions and signal drop out in
EPI (Hutton et al., 2013). Head movement will cause the level of these
artifacts to change from volume to volume, leading to spurious changes
in the signal over time. In addition to these B0 related effects, the head
will also be moving through a static coil sensitivity profile that is highly
inhomogeneous for modern multi-coil receiver arrays. Therefore, even
if perfect rigid body realignment is achieved to correct inter-volume
motion, the MR signal will still change due to modulation by the coil
sensitivity profile. Internal experiments (not shown) carried out at
our institution on phantoms undergoing step-wise motion in the
head/foot direction with PMC on indicate that the signal can change
by 1–2%/mm when imaged with the Siemens 32 channel head coil
used in this study.

Finally, remaining sources of motion-induced error that pose a
challenge for the PMC system include non-rigid body motion that can
occur, for example, near the lower brainstem or cervical spinal cord
(Mohammadi et al., 2012); signal changes that arise when movement
changes the bulk susceptibility field (Hutton et al., 2013); signal fluctu-
ations due to physiological noise (Hutton et al., 2011); and any latency
that may occur between skull movement and brain movement. The
problems of signal changes from susceptibility effects and physiological
noise can be addressed using strategies that are complementary to the
PMC system (Glover et al., 2000; Hutton et al., 2013; Lutti et al., 2013).
However, the remaining problems related to motion will require a
more sophisticated approach for full correction.

Conclusion

Motion during fMRI studies is a persistent problem that is only par-
tially addressed by standard retrospective image-based correction
methods. The PMC system used here represents a further step forward
due to its ability to pre-emptively suppress motion artifacts and more
accurately characterize head motion. For a 3D EPI implementation, we
have demonstrated temporal SNR improvements in the range of 30%
to 40% and improvements in the numbers of significantly activated
voxels during task fMRI in the range of 70% to 330%. We developed
motion quantification metrics that reliably predict image artifact levels
due to motion during data acquisition. The methods presented here
can be directly extended to all types of fMRI studies, resting state or
task-based with 2D EPI or 3D EPI scanning.
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