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Although recent methods for the engineering of antibody–drug conjugates (ADCs) have gone

some way to addressing the challenging issues of ADC construction, significant hurdles still

remain. There is clear demand for the construction of novel ADC platforms that offer greater

stability, homogeneity and flexibility. Here we describe a significant step towards a platform

for next-generation antibody-based therapeutics by providing constructs that combine

site-specific modification, exceptional versatility and high stability, with retention of antibody

binding and structure post-modification. The relevance of the work in a biological context is

also demonstrated in a cytotoxicity assay and a cell internalization study with HER2-positive

and -negative breast cancer cell lines.
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A
ntibody–drug conjugates (ADCs) are comprised of
antibodies that are armed with highly potent warheads
using various conjugation/linker technologies1–4. This

class of therapeutic combines the directing ability of antibodies
(that is, allowing for discrimination between healthy and diseased
tissue) with the cell-killing ability of potent cytotoxic drugs. This
powerful class of targeted therapy has shown considerable
promise in the treatment of various cancers with two US Food
and Drug Administration (FDA)-approved ADCs currently on
the market (Adcetris and Kadcyla) and over 30 ADCs currently in
the clinic5,6. However, in order for ADCs to deliver their full
potential, sophisticated conjugation technologies to connect the
warhead to the antibody and novel strategies and approaches for
their construction are required7,8. Conjugation to native ADCs is
typically achieved through either multiple lysine modification or
by functionalization of thiols generated by reduction of interchain
disulfide bonds; neither of which is ideal (Fig. 1)7,8. Lysine
modification is suboptimal as it results in batch-to-batch
variability and generates heterogeneous ADCs, which have been
shown to have a narrow therapeutic window relative to
homogeneous ADCs, therefore having major pharmacokinetic
limitations9,10. Cysteine modification, following interchain
disulfide reduction, results in the permanent loss of structural
disulfide bonds, which may reduce the stability of the ADC
in vivo7,8. It also generates heterogeneous mixtures when
targeting typical drug-to-antibody ratios. Other approaches
using cysteine-based site-directed mutagenesis and unnatural
amino acids have also been described10,11, but similarly have
limitations, for example, disulfide scrambling post-reduction and
high cost combined with relatively low expression yields,
respectively.

Recently, we have described methods for the insertion of small
molecules into disulfide bonds in various proteins, engineered
antibody single-chain variable fragments, a fragment antigen-
binding (Fab) construct to yield site-selectively modified products
and a full antibody12–19. This has gone some way to addressing
the issues of site-selective antibody modification. There is also
relevant work in this area by Godwin and coworkers, which
highlights an alternative set of reagents for site-selective disulfide
bridging of antibodies20. However, significant barriers still remain
in this rapidly evolving field and there is demand for novel ways
of constructing ADCs with stable and versatile linkers with
retention of core antibody structure1–6.

In this manuscript, we describe a significant step towards
a platform for next-generation ADCs by providing constructs
that combine site-specific native antibody modification, excep-
tional versatility (via a ‘dual click’ approach), high stability

and retention of antibody structure post-modification. The
technology, at its core, is based on the insertion of pyridazine-
diones (PDs) bearing orthogonal ‘clickable’ handles into native
disulfide bonds in antibody fragments and full antibodies, with a
view to then carry out two orthogonal transformations to yield
multifunctionalized adducts (Fig. 2). This enables the rapid
assembly of dual-modified ADCs in a highly convergent manner.
The work described herein could pave the way to novel antibody-
based therapeutics.

Results
Antibody scaffold, drug and fluorophore selection. To evaluate
this chemistry, a suitable antibody system and cytotoxic drug
needed to be selected. Trastuzumab (Herceptin), a monoclonal
immunoglobulin G1 (IgG1) that targets the internalizing HER2
receptor, has been used successfully in the treatment of HER2þ
breast cancer and is the antibody component of a recently FDA-
approved ADC therapy for the same indication, trastuzumab
emtansine (Kadcyla)21,22. Anticancer drug doxorubicin (Dox) has
been used as a cytotoxic model payload previously and has a
relatively distinctive absorbance maximum at 495 nm to facilitate
determination of drug-to-antibody ratios by ultraviolet–visible
absorption12. As such, Herceptin and Dox were chosen as the
antibody and cytotoxic platforms, respectively. To analyse the
effectiveness of the ‘dual click’ approach on a full antibody
scaffold, where accurate mass spectrometry analysis is limited, a
second light absorbing moiety that absorbs at a distinct
wavelength to Dox was needed to enable facile analysis by
ultraviolet–visible spectrometry of the loading of each cargo. To
this end, a photostable, water-soluble, cyanine-based fluorophore
with a maximum absorbance at 646 nm (sulfo-Cy5) was selected.

Choice of linker. In order to deliver a widely applicable and
versatile approach to antibody modification, it was rationalized
that an exceptionally stable linker bearing multiple modalities
that could be introduced via conjugation onto native antibodies
was required. A suitable scaffold was dibromopyridazinedione
(diBrPD) as it has previously been shown to be efficient at
inserting into disulfide bonds and the resulting constructs to be
exceptionally stable to hydrolysis, even at high temperatures
(Fig. 3)18. Moreover, their structure is appealing as they are
ideally set up for attaching various modalities via each nitrogen
atom. As we wanted the platform to be versatile and widely
applicable, orthogonal ‘clickable’ handles, one on each nitrogen
atom, onto the PD motif were to be attached. To this end, Astra-
PD 1, an alkyne-strained alkyne-pyridazinedione was synthesized
(Fig. 3, see Supplementary Information for details on the
synthesis).
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Figure 1 | Approaches used for the generation of FDA-approved ADCs.

(a) Lysine modification leading to a heterogeneous product mixture,

undefined physical and pharmacokinetic properties, and wide distribution of

drug-to-antibody ratio. (b) Modification of reduced disulfide bonds leading

to a heterogeneous product mixture, loss of structural disulfide bonds and a

suboptimal therapeutic index.
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Figure 2 | Functional disulfide re-bridging followed by a dual click

approach. Disulfide re-bridging by a pyridazinedione construct yields a

site-selectively modified antibody with dual modalities.
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Appraisal of dual click strategy on an antibody fragment. With
PD-construct 1 in hand, the insertion of this molecule into a Fab
fragment of Herceptin; Fab-Her 2, by simple reduction of the
single interchain disulfide bond, followed by functional disulfide
re-bridging with the PD construct was carried out (Fig. 4), which
afforded exclusive formation of a re-bridged Fab fragment with a
PD molecule inserted into the disulfide bond, construct 3, by
mass spectrometry and SDS–PAGE. No further purification was
required and a yield in excess of 95% was obtained
(Supplementary Figs 11 and 12).

Moreover, the two orthogonal reactive handles could be
utilized to introduce distinct functionalities selectively. For
example, construct 3 was reacted with PEG4-N3 followed
by reaction with sulfo-Cy5-N3, by applying strain-promoted
azide–alkyne cycloaddition (SPAAC) and copper(I)-catalysed
azide–alkyne cycloaddition (CuAAC) chemistry, respectively, to
form species 5 (Fig. 4). These reactions were shown to be clean

and high yielding with complete selectivity, as demonstrated by
mass spectrometry and SDS–PAGE (Fig. 4 and Supplementary
Figs 13 and 14).

Furthermore, model diethyl-PD-modified Fab construct 6
(Fab-Diet) was shown to have: (i) comparable binding activity
by enzyme-linked immunosorbent assay (ELISA) to Fab-Her 2;
(ii) excellent stability in blood plasma mimicking conditions for 7
days; (iii) complete stability after 8 months of storage at 4 �C in
phosphate-buffered saline (PBS); and stability in (iv) low pH (3.1)
and (v) high pH (9.0) conditions at 37 �C over a protracted period
(the blood plasma mimicking conditions correspond to the
simulated body fluid described by Jalota et al.23 with addition of
human serum albumin (600 mM, 40 mg ml� 1) and glutathione
(20 mM); Fig. 5 and Supplementary Figs 15–20).

There are plentiful opportunities in multimodal imaging and
theranostics, which can be made available by the dual labelling
technology described by attachment of a fluorophore and a
radiolabel or cytotoxic drug, respectively24,25. Furthermore, this
technology allows for the construction of novel ADC fragment-
based products. In terms of therapeutics, antibody fragments offer
potential advantages over full antibodies (for example, fragments
are smaller and offer greater tissue penetration, and many lack the
antibody Fc region and can therefore be expressed in bacterial
cell lines as there is no requirement for post-translational
glycosylation)3,26–28. However, antibody fragments below the
ca. 60–70 kDa size cut-off for glomerular filtration lack the
stability afforded by the antibody Fc region and therefore often
have insufficient lifetime in blood serum required to elicit a
beneficial therapeutic effect without intensive and frequent
therapy28–33. It is envisaged that the technology will allow
antibody fragment therapeutics to be far more accessible by
delivering long lifetime antibody fragment–drug conjugates. This
could be achieved by the attachment of an antibody fragment to:
(i) a suitable toxic drug; and (ii) a blood serum-stabilizing
functionality (for example, PEG, albumin or albumin-binding
functionality) to increase lifetime in vivo, using the dual labelling
technology. Moreover, as the chemistry allows for the controlled
stoichiometric addition of each moiety, it will allow for the
construction of well-characterized products.

The construction of an antibody fragment functionalized with
a life-extension technology and a cytotoxic drug was initiated by
choosing Dox as the drug payload and a 20 kDa PEG chain as the
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Figure 3 | Properties of dibromopyridazinediones and structure of

Astra-PD 1. (a) General properties of the pyridazinedione platform.

(b) Chemical structure of Astra-PD 1 with an alkyne and a strained

alkyne handle.
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lifetime extension modality (as its effects on half-life are well-
characterized in vivo and it does not significantly compromise the
penetration ability of a Fab fragment)34–36. As such, Fab-Astra 3
was treated with Dox-N3 (see Supplementary Information for
details on the synthesis) and PEG20k-N3 in a sequential manner
using SPAAC and CuAAC chemistry, respectively, to afford
construct 7 by liquid chromatography–mass spectrometry
(LC–MS) and SDS–PAGE analysis, without the need for gel-
filtration chromatography (Fig. 6 and Supplementary Figs 21
and 22). The formation of this construct with almost complete

retention of binding activity by ELISA on HER2 and no
unspecific binding observed on EGFR (HER1; Fig. 6 and
Supplementary Fig. 23) paves the way for the appraisal of the
strategy on delivering antibody fragment-based therapeutics. The
retention in binding affinity post-conjugation to a large construct
is due to the installation of the PD-bridging moiety at a position
that is distal from the binding site, which is another important
feature of the chemistry. Moreover, the construction of a wide
variety of similar lifetime extension/drug modalities should
be facile and allow for rapid evaluation of various combinations

S

O O
N

Fab-Diet 6

N

S

0.4

Fab-Diet 6
Fab-Her 2

0.3

0.2

0.1

0

1

150
HSA-HSA

No HSA-Fab

No GSH-Fab

HSA
Fab-Diet

100
80

60
50

40

30

25

100

0

25
,0

00

20
,0

00

25
,0

00

30
,0

00

35
,0

00

40
,0

00

45
,0

00

47864.00

47822.00

50
,0

00

47822.00

47865.00

55
,0

00

60
,0

00
Mass

27
,5

00

30
,0

00

32
,5

00

35
,0

00

37
,5

00

%

100

0

%

100

0

25
,0

00

27
,5

00

30
,0

00

32
,5

00

35
,0

00

37
,5

00

40
,0

00

42
,5

00

45
,0

00

47
,5

00

50
,0

00

52
,5

00

55
,0

00

57
,5

00

60
,0

00
Mass

%

2 3 4 5 6

5

Concentration (nM)

250
1 2 3 4

150
100
80
60

50
40

30

25

0.5 0.05

A
bs

or
ba

nc
e

40
,0

00

42
,5

00

45
,0

00

47
,5

00

50
,0

00

52
,5

00

55
,0

00

57
,5

00

60
,0

00
Mass

297e7

1.48e8

8.73e7

47826.00

35568.00

Expected: 47,820
Observed: 47,826

Expected: 47,820
Observed: 47,822

Expected: 47,820
Observed: 47,822

47868.00
46478.00 49316.0036166.00

Figure 5 | Activity and stability data for model construct Fab-Diet 6. (a) Structure of Fab-Diet 6. (b) Binding activity data for native Fab-Her 2 and

Fab-Diet 6 assessed by ELISA. (c) SDS–PAGE gel following incubation of Fab-Diet 6 in blood plasma mimicking conditions for 0, 1, 2, 3, 5 and 7 days (lanes
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Fab-Diet 6 after 24 h at 37 �C in buffer pH 9.0 (lanes 1–4, respectively). (e) Deconvoluted MS data of Fab-Diet 6 after 8 months of storage at 4 �C in PBS.

(f) Deconvoluted MS data of Fab-Diet 6 after 24 h at 37 �C in buffer pH 3.1. (g) Deconvoluted MS data of Fab-Diet 6 after 24 h at 37 �C in buffer pH 9.0.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7645

4 NATURE COMMUNICATIONS | 6:6645 | DOI: 10.1038/ncomms7645 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


of these modalities. The construction of Fab-Astra-Dox-PEG20k 7
also further demonstrates the flexibility of the chemistry platform
to allow for the attachment of large constructs such as a 20-kDa
PEG moiety in a facile manner.

Appraisal of dual click strategy on a full antibody. The use of
Astra-PD 1 was then applied to the bridging of disulfide bonds in
the full antibody system of trastuzumab (Herceptin), a clinically
approved IgG1 full antibody comprising four disulfide bonds.
Successful application of this method on this scaffold would allow
for the construction of a site-specifically dual-functionalized full
ADC with retention of core antibody structure.

Initially, Herceptin was modified with PD-construct 1 by
reduction of the full antibody interchain disulfide bonds followed
by functional re-bridging. Through optimization of temperature
and concentration of reagents, a full antibody that was re-bridged
in the correct orientation with a 4:1 ratio of PD-to-antibody by
SDS–PAGE and ultraviolet–visible spectrometry was obtained
(Fig. 7 and Supplementary Figs 24 and 25). This provides the first
example of functionally re-bridging the disulfide bonds of a full
antibody with almost complete retention of full antibody
structure. Following this, the site-selectively modified full

antibody was functionalized with a drug (Dox-N3) and a
fluorophore (sulfo-Cy5-N3) using click chemistry. It was
confirmed by ultraviolet–visible spectrometry that each species
was attached with a loading of four, and by SDS–PAGE that there
was retention of full antibody structure (Fig. 7 and
Supplementary Figs 24 and 25). Construct 8 was also stable
under a range of pH conditions and in blood plasma mimicking
conditions (Supplementary Figs 26 and 27). These results provide
proof of concept for the ability to attach multiple modalities in a
controlled manner to a full antibody and a new approach for
native antibody functionalization37. Moreover, retention of
binding by ELISA on HER2, and no unspecific binding on
EGFR (HER1) or evidence of aggregation over a protracted
period could be observed (Fig. 8 and Supplementary Fig. 23).

Internalization study. The effect of the conjugation chemistry on
the internalizing properties of Herceptin and Fab-Her 2 was
appraised next. For this purpose, Herceptin and Fab-Her 2
were directly conjugated to AlexaFluor488 via a PD-linker
to form Her-PD-AlexaFluor488 and Fab-PD-AlexaFluor488
(Supplementary Figs 28 and 29). These constructs were then used
to treat breast cancer cell lines BT-474 (HER2-positive) and
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MDA-MB-468 (HER2-negative). Initially, incubation was per-
formed at 4 �C, a temperature that allowed binding but not
internalization; Her-PD-AlexaFluor488 and Fab-PD-Alexa-
Fluor488 bound to BT-474 cells (Fig. 9a) but not to MDA-MB-
468 cells (Fig. 9b) indicating the specificity of these constructs to
HER2. Internalization of the bound antibodies occurred when the
temperature was increased to 37 �C; incubation under these
conditions for 1 h resulted in cytoplasmic localization of the
labelled constructs in BT-474 cells (Fig. 9a), thus indicating that
the chemistry employed does not interfere with the internalizing
properties of Herceptin or Fab-Her 2.

Cytotoxicity assay. Finally, the selectivity and cytotoxicity of
constructs Fab-Astra-Dox-PEG20k 7 and Her-Astra-Dox-Cy5 8 in

in vitro studies, using the same HER2-positive and -negative cell
lines in the microscopy studies (that is, BT-474 and MDA-MB-
468), were evaluated. Initially, the sensitivity of both cell lines
to Dox to assess their suitability in a cytotoxicity assay was
appraised. A comparable reduction in cell viability was observed
for both cell lines at similar concentrations of the toxic payload
(IC50¼ 39 and 10 nM for BT-474 and MDA-MB-468, respec-
tively) (Fig. 10a), thus paving the way for toxicity studies with
Dox conjugates 7 and 8. Notably, BT-474 cell viability was
reduced significantly when incubated with the conjugates
(IC50¼ 2.8 and 2.1 mM for conjugates 7 and 8, respectively),
especially when compared with the controls of native Herceptin
and Fab-Her 2 where the reduction in cell survival was minimal
at high concentrations (Fig. 10b). In addition, highlighting the
targeted delivery aspect of the method, no toxicity was observed
in analogous studies with MDA-MB-468 cells incubated with
either conjugate 7 or 8 (Fig. 10c). This is consistent with the
observations by microscopy, that is, Herceptin and Fab-Her
conjugates do not appear to bind to these cells, and hence
Dox could not be internalized and thereby cause a toxic effect.
These results highlight the selectivity of conjugates 7 and 8
over Dox alone, and indicate that the toxic drug in conjugates
7 and 8 is delivered by an HER2-dependent internalization
mechanism.

Not only does this chemistry have the potential to make a
significant contribution to the current ADC field, it is also flexible
and has far reaching scope. Indeed, from a full antibody construct
modified with Astra-PD 1, it is wholly feasible that entirely new
branches of strategies for ADC development will ensue. For
example, the attachment of drugs that operate by an orthogonal
mechanism of action, which is a concept that is gathering
increasing momentum38–41.
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Discussion
In conclusion, by the introduction of PD molecules bearing
orthogonal ‘clickable’ handles into the native disulfide bonds of
antibodies, we could demonstrate: (i) the opportunity to
synthesize multifunctionalized Fab fragments, which should be
useful in a variety of applications (for example, imaging and
theranostics); (ii) the potential of the technology to make a novel
Fab-based ADC drug candidate; (iii) a new approach to a
multifunctionalized, homogeneous full antibody to open the door
to next-generation full antibody-based drug conjugate therapeu-
tics; (iv) selective internalization into HER2-positive cells with
conjugates of Herceptin and Fab-Her 2 that were directly
conjugated to AlexaFluor488 via a PD-linker; and (v) selective

cell killing over Dox alone for conjugates 7 and 8 on appropriate
HER2 cell lines. Moreover, the ‘plug-and-play’ approach has
broader applications in fields outside the scope of ADC
technologies (for example, dual warhead antibiotics)39–41.

Methods
General experimental. All reagents were purchased from Sigma-Aldrich,
Promega, Molecular Probes, AlfaAesar, Sino Biological, Invitrogen, UCLH or
Lumiprobe and were used as received. Where described below, petrol refers
to petroleum ether (40–60 �C). All reactions were monitored by thin-layer
chromatography on pre-coated SIL G/UV254 silica gel plates (254 mm) purchased
from VWR. Flash column chromatography was carried out with Kiesegel 60 M
0.04/0.063 mm (200–400 mesh) silica gel. 1H and 13C NMR spectra were recorded
at ambient temperature on a Bruker Avance 500 instrument operating at a
frequency of 500 MHz for 1H and 125 MHz for 13C and a Bruker Avance 600
instrument operating at a frequency of 600 MHz for 1H and 150 MHz for 13C in
CDCl3 or CD3OD (as indicated below). The chemical shifts (d) for 1H and 13C are
quoted relative to residual signals of the solvent on the p.p.m. scale. 1H NMR peaks
are reported as singlet (s), doublet (d), triplet (t), quartet (q), quint. (quintet), sext.
(sextet), oct. (octet), m (multiplet), br (broad), dd (doublet of doublet), dt (doublet
of triplets), ABq (AB quartet). Coupling constants (J values) are reported in hertz
(Hz) and are H-H coupling constants unless otherwise stated. Signal multiplicities
in 13C NMR were determined using the distortionless enhancement by phase
transfer spectral editing technique. Infrared spectra were obtained on a Perkin
Elmer Spectrum 100 FTIR Spectrometer operating in ATR mode with frequencies
given in reciprocal centimetres (cm� 1). Melting points were measured with a
Gallenkamp apparatus and are uncorrected. Mass spectra of small molecule organic
compounds were obtained on a VG70-SE mass spectrometer.

Protein LC–MS. LC–MS was performed on protein samples using a Waters
Acquity uPLC connected to Waters Acquity Single Quad Detector. Column:
Hypersil Gold C4, 1.9 mm, 2.1� 50 mm; wavelength: 254 nm; mobile phase: 95:5
water (0.1% formic acid):MeCN (0.1% formic acid); gradient over 4 min (to 5:95
water (0.1% formic acid):MeCN (0.1% formic acid); flow rate: 0.6 ml min� 1; MS
mode: ESþ ; scan range: m/z¼ 250–2,000; scan time: 0.25 s. Data obtained in
continuum mode. The electrospray source of the MS was operated with a capillary
voltage of 3.5 kV and a cone voltage of 50 V. Nitrogen was used as the nebulizer
and desolvation gas at a total flow of 600 l h� 1. Ion series were generated by
integration of the ultraviolet-absorbance (at 254 nm) chromatogram over the
1.4–2.0 min range. Total mass spectra for protein samples were reconstructed from
the ion series using the MaxEnt 1 algorithm pre-installed on MassLynx software.

Ultraviolet–visible spectroscopy. Ultraviolet–visible spectra were recorded on a
Varian Cary 100 Bio UV-Visible spectrophotometer, operating at room temperature.
Sample buffer was used as blank for baseline correction. Calculation of molecule over
antibody ratio, r, follows the formula below with e280¼ 215,380 M� 1 cm� 1

for Herceptin mAb, e280¼ 68,590 M� 1 cm� 1 for Herceptin Fab, e345¼ 9,100 M� 1

cm� 1 for Astra-PD, e495¼ 8,030 M� 1 cm� 1 for Dox, e646¼ 271,000 M� 1 cm� 1,
and 0.724, 0.28 and 0.13 as a correction factor (CF) for Dox, Astra-PD and sulfo-
Cy5, respectively, for the absorbance at 280 nm.

r ¼ Al=el

ðA280 �
P

l CFl � AlÞ
.
e280

With Al the absorbance of a molecule at the wavelength l in nm, and el, the
corresponding extinction coefficient.

SDS–PAGE gels. Non-reducing glycine-SDS–PAGE at 12% acrylamide gels were
performed following standard laboratory procedures. A 4% stacking gel was used
and a broad-range molecular weight (MW) marker (10–250 kDa, BioLabs) was
co-run to estimate protein weights. Samples (3–5 ml at B10mM in total mAb) were
mixed with loading buffer (1–2 ml, composition for 6� SDS: 1 g SDS, 3 ml glycerol,
6 ml 0.5 M Tris buffer pH 6.8, 2 mg R-250 dye) and heated at 75 �C for 3 min.
The gel was run at constant current (30–35 mA) for 40 min in 1� SDS running
buffer. All gels were stained with Coomassie. Gel photographs were taken with a
Wiko-Stairway device.

Chemical biology. Conjugation of Astra-PD 1 onto Fab-Her 2: To a solution of
Fab-Her 2 (1 eq) in borate buffer (25 mM sodium borate, 25 mM NaCl, 0.5 mM
EDTA, pH 8.0) was added TCEP (3 eq) and the reaction mixture was incubated at
37 �C for 90 min. After this time, was added a solution of Astra-PD 1 in DMF
(5 eq) and the reaction mixture was incubated at 37 �C for 1 h. The excess reagents
were then removed by repeated diafiltration into fresh buffer using VivaSpin
sample concentrators (GE Healthcare, 10,000 molecular weight cut-off (MWCO)).

Conjugation of Astra-PD 1 onto Herceptin: To a solution of Herceptin (1 eq) in
borate buffer (25 mM sodium borate, 25 mM NaCl, 0.5 mM EDTA, pH 8.0) was
added TCEP (10 eq) and Astra-PD 1 (20 eq) in DMF and the reaction mixture was

100
90

80

70

60

50

40

30

20

10

0
0.001 0.01 0.1 1 10 100

C
el

l s
ur

vi
va

l (
%

)

Concentration (µM)

Doxorubicin BT-474

Doxorubicin MDA-MB-468

100

90

80

70

60

50

40

30

20

10

0
0.001 0.01 0.1 1 10 100

C
el

l s
ur

vi
va

l (
%

)

Concentration (µM)

Fab conjugate 7 

Herceptin conjugate 8 

Fab-Her 2 

Herceptin

100

90

80

70

60

50

40

30

20

10

0
0.001 0.01 0.1 1 10 100

C
el

l s
ur

vi
va

l (
%

)

Concentration (µM)

Herceptin

Fab-Her 2

Herceptin conjugate 8 

Fab conjugate 7 

Figure 10 | Inhibition of cell proliferation in cancer cell lines with

different levels of HER2 expression. (a) BT-474 (HER2-positive) and

MDA-MB-468 (HER2-negative): Dox alone; IC50¼ 39 and 10 nM for

BT-474 and MDA-MB-468, respectively. (b) BT-474: Fab-Astra-Dox-

PEG20k 7, Her-Astra-Dox-Cy5 8 (at similar concentration in Dox) in

comparison with Herceptin and Fab-Her 2; IC50¼ 2.8 and 2.1mM for

conjugates 7 and 8, respectively (c) MDA-MB-468: Fab-Astra-Dox-PEG20k

7, Her-Astra-Dox-Cy5 8 (at similar concentration in Dox) in comparison

with Herceptin and Fab-Her 2.
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incubated at 4 �C for 6 h. The excess reagents were then removed by repeated
diafiltration into fresh buffer using VivaSpin sample concentrators (GE Healthcare,
10,000 MWCO).

SPAAC click conditions: To a solution of an antibody or antibody fragment
(1 eq) modified with Astra-PD 1 in PBS or borate buffer was added azide cargo
(5 eq per re-bridged Astra-PD molecule) and the reaction mixture was incubated at
37 �C for 4 h. The excess reagents were then removed by repeated diafiltration into
fresh buffer using VivaSpin sample concentrators (GE Healthcare, 10,000 MWCO).

CuAAC click conditions: To a solution of an antibody or antibody fragment
(1 eq) modified with mono-functionalized-Astra-PD 1 in PBS was added tris(3-
hydroxypropyltriazolylmethyl)amine (1.25 mM), CuSO4 (250 mM) followed by the
addition of azide cargo (3 eq for Herceptin-Fab-Astra-PD and 10 eq for Herceptin-
Astra-PD) and sodium ascorbate (final concentration 5 mM), and the reaction
mixture was incubated at 37 �C for 16 h. The excess reagents were then removed by
repeated diafiltration into fresh PBS with 2 mM EDTA (to remove residual copper
ions) using VivaSpin sample concentrators (GE Healthcare, 10,000 MWCO).

Cell lines. Breast cancer cell lines BT-474 and MDA-MB-468 were purchased from
ATCC. BT-474 cells were maintained at 37 �C, 5% CO2 in Hybricare Medium
(ATCC) complemented with 10% foetal calf serum (Labtech International,
Ringmer, UK). MDA-MB-468 cells were maintained at 37 �C, 5% CO2 in
Dulbecco’s modified Eagle’s medium complemented with 10% foetal calf serum
and 2 mM L-glutamine (PAA Laboratories, UK).

Internalization analysis by confocal microscopy. Cells on coverslips at
70% confluency were incubated with AlexaFluor488-conjugated constructs at
10mg ml� 1 for 1 h at 4 �C. Cells were extensively washed with PBS to remove
unbound antibodies and incubated at 37 �C in growth media. Internalization was
allowed for 1 h, followed by extensive washing and fixation with 4% formaldehyde
for 10 min at 4 �C. Coverslips were then blocked with 5% goat serum in 0.3%
Triton-X100 (Sigma). Actin was detected with phalloidin-568 (Invitrogen) and
Hoechst trihydrochloride (Invitrogen) was used to stain cell nuclei. Coverslips were
mounted on slides using ProLong Gold Antifade (Invitrogen) and examined using
Perkin Elmer Spinning Disc Confocal microscope and Volocity Visualization
software.

Toxicity assays. Cells were seeded in 96-well plates at 104 cells/well and allowed to
attach for 24 h. Serial dilution of Herceptin, Fab-Her 2, Dox, and conjugates 7 and
8 were added to the cells at concentrations ranging from 40 to 0 mM in complete
growth medium. After 96 h, cell viability was measured using the CellTiter 96
Aqueous Non-radioactive cell proliferation assay (Promega) following manu-
facturer’s instructions. Cell viability was plotted as percentage of untreated cells.

Ellman’s test. Herceptin and Fab-Her 2, respectively; To a solution of trastuzu-
mab (50ml, 40mM, 1 eq) in phosphate buffer (100 mM sodium phosphate, 1 mM
EDTA, pH 8.0), was added TCEP (final concentration 400mM, 10 eq) and the
reaction mixture was incubated at 37 �C for 2 h. The excess reagents were then
removed by repeated diafiltration into fresh buffer using VivaSpin sample con-
centrators (GE Healthcare, 10,000 MWCO). The concentration of protein was then
adjusted to 40 mM. Following this, a solution of Ellman’s reagent (5,50-dithio-bis-
(2-nitrobenzoic acid)) in phosphate buffer (100 mM sodium phosphate, 1 mM
EDTA, pH 8.0; final concentration 1.6 mM, 40 eq) was added, and the reaction
mixture was incubated at 21 �C for 30 min. Analysis by ultraviolet–visible
spectrometry after a tenfold dilution revealed an absorption at 412 nm of 0.439 that
corresponds to 7.8 accessible sulfhydryl groups (e412¼ 14,150 M� 1 cm� 1). A
similar experiment without TCEP reduction before incubation with Ellman’s
reagent showed no absorbance at 412 nm.

To a solution of Fab-Her 2 (50 ml, 20mM, 1 eq) in phosphate buffer (100 mM
sodium phosphate, 1 mM EDTA, pH 8.0), was added TCEP (final concentration
100mM, 5 eq) and the reaction mixture was incubated at 37 �C for 2 h. The excess
reagents were then removed by repeated diafiltration into fresh buffer using
VivaSpin sample concentrators (GE Healthcare, 10,000 MWCO). The
concentration of protein was then adjusted to 20 mM. Following this, a solution of
Ellman’s reagent (5,50-dithio-bis-(2-nitrobenzoic acid)) in phosphate buffer
(100 mM sodium phosphate, 1 mM EDTA, pH 8.0; final concentration 200 mM, 10
eq) was added, and the reaction mixture was incubated at 21 �C for 30 min.
Analysis by ultraviolet–visible spectrometry revealed an absorption at 412 nm of
0.557 that corresponds to two accessible sulfhydryl groups (e412¼ 14,150 M� 1 cm� 1).
A similar experiment without TCEP reduction before incubation with Ellman’s reagent
showed no absorbance at 412 nm.
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