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Abstract 

 

Mesenchymal stem cells (MSCs) in many adult tissues provide cell sources to sustain tissue 

growth and/or repair in vivo, yet MSCs are mainly studied based on their in vitro 

characteristics. One emerging population of such MSCs are from dental pulp mesenchymal 

tissue, termed dental pulp stem cells (DPSCs). For instance, the continuously growing 

rodent incisor model has recently provided the first in vivo evidence that the in vivo 

identities of MSCs are of multiple origins including from perivascular niches. However, little 

is known about the molecular mechanisms underlying MSC response to injury in vivo, 

including that in the context of tooth repair. We therefore compared processes involved in 

recruiting stem cells during injury repair, particularly cell migration of pulp cells isolated 

from distinct anatomical locations. We found pulp cells from the region containing putative 

stem cells showed the highest migration capacity and their migration ability could be 

stimulated by activating Wnt activity in vitro. Furthermore, following in vivo tooth injury on 

transgenic mice, Wnt/β-catenin was also found up-regulated close to the injury site, 

possibly regulating injury repair via promoting perivascular-associated stem cell 

accumulation in close proximity to the injury site. In addition, analysis of a novel injury 

experimental model- the incisor tip, that undergoes constant attrition/repair through 

natural feeding, confirmed that this rapid incisal tip repair is also facilitated by perivascular 

stem cells, similar to other experimental injury models, but at a far more striking level. 

Thus, future work will utilise this novel model to investigate regulatory mechanisms 

including Wnt signalling in mediating mesenchymal tissue repair. Taken together, we 

demonstrated that the Wnt pathway may play a crucial role in regulating MSCs during 

incisor injury repair in vitro and in vivo. Also, the naturally existing “incisal tip niche” is 

potentially a unique model for new insights into mesenchymal tissue repair in vivo. 
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1. Introduction 

1.1 Tooth development 

1.1.1 The dental pulp and the structure of the tooth 

 

The tooth is an organ that can be broadly divided into two segments; the crown, which 

projects into the oral cavity and is encased by a protective layer of enamel, and the root, 

which is embedded in the alveolar bone of the jaw.  Dentine, which forms the majority of 

the tooth mainly consists of the mineral hydroxylapatite and is produced by odontoblasts 

that are derived from neural-crest- (ecto) mesenchyme cells. The dental pulp is the soft, 

fibrous connective tissue that lies within the central cavity of the tooth and is enclosed by 

the dentine. This crucial tissue maintains tooth vitality by supplying nutrients via blood 

vessels and feeling via sensory nerve fibres. Importantly, the pulp tissue is also a reservoir 

of dentine-producing odontoblasts that line the pulp-dentine border as a layer of 

columnar-shaped, polarised cells capable of dentine-matrix deposition under both 

physiological and pathological conditions (Goldberg and Smith, 2004). At the root, the 

continuous layer of dentine is covered by cementum and the periodontal ligament (PDL) 

fibres support and connect the tooth to the alveolar bones (Figure 1.1). All of the tissues 

that surround and support the tooth are collectively termed the periodontium (Young, 

2006)  



 1. Introduction 
 

15 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 1.1 The tooth structure  
The odontoblasts are dentine-producing cells housed within the dental pulp tissue that occupies the 

central cavity of the tooth and is protected by the surrounding layer of dentine. At the crown, 

enamel covers the dentine while cementum covers the root part of the dentine and allows 

periodontal ligament (PDL) attachment to secure the teeth to the alveolar bones (Image adapted 

from Cate, 1998). 

 

1.1.2 Tooth development 

 

Tooth development or odontogenesis involves a series of tightly regulated, sequential 

epithelial and mesenchymal interactions during early embryogenesis (Thesleff and 

Nieminen, 1996). The resulting ectodermal organ, the tooth, is a complex structure that 

consists of two specialised hard tissues, including the enamel which is the hardest 

substance in the human body, and dentine which forms part of the soft-hard tissue 

interface at the root, which anchors to the bone via the periodontal ligament complex. Its 

development is analogous to other ectodermal structures such as hair, skin, sweat glands 

and salivary glands (Pispa and Thesleff, 2003) and forms from the reiterative crosstalk 

between the odontogenic oral epithelium, that gives rise to the enamel-forming 

ameloblasts, and the underlying cranial neural crest-derived mesenchymal cells that form 

Nerves and 

blood vessels 
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the rest of the dental tissues, including the dental pulp, dentine-producing odontoblasts 

and periodontal ligament (Tucker and Sharpe, 2004).     

Specification of the dental field where the tooth later develops occurs prior to the first 

morphological indication of tooth development, a local thickening of the oral epithelium 

(Neubuser et al., 1997). The resulting thickened dental epithelium termed the dental 

lamina occurs at approximately embryonic day E11.5 in mice and at approximately 7 weeks 

into human embryonic development. Subsequent invagination into the underlying 

mesenchyme results in an epithelial “bud” while the surrounding mesenchyme 

simultaneously condenses around it (E12.5-E13.5-bud stage). Further invagination and 

folding of the epithelium around the condensing mesenchyme, leads to the formation of a 

“cap” structure (E14-cap stage). Accompanying this process is the development of the 

enamel knot transient signalling centre which appears at the tip of the late bud and marks 

the onset of tooth crown development and determination of tooth shape. At this stage, 

the peripheral cells of the dental papilla and those surrounding the enamel organ 

proliferate to form the dental follicle or sac (Avery, 2001). The development of a “bell” 

shaped tooth germ then follows at E16 (bell stage) and eventually the invaginated 

epithelium completely encloses the condensed mesenchyme, referred to as the “dental 

papilla” (Miletich and Sharpe, 2003). At the late bell stage (E18), cyto-differentiation occurs 

where the epithelia-derived ameloblasts and mesenchyme-derived odontoblasts 

differentiate terminally along the epithelium-mesenchymal interface and deposit enamel 

and dentine, respectively (Thesleff and Nieminen, 1996; Tucker and Sharpe, 2004; Zhang et 

al., 2005b). It is from the dental papilla in which the future dental pulp tissue arises and 

becomes richly vascularised during the bell stage to deliver nutrition and oxygen to 

support the tooth-forming cells (Avery, 2001; Nanci, 2008) (Figure 1.2 A and B).  
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Figure 1.2 Tooth morphogenesis stages  
A: Frontal view of an embryonic head at E11.5. The enlargement of the boxed region represents the 

mandibular molar site of development and the stages of tooth development are indicated following 

the arrows. The tooth germ is formed from the oral epithelium and neural-crest-derived 

mesenchyme (Tucker and Sharpe, 2004). B: Important stages of tooth development are shown 

histologically. The initial stages of development focus on crown formation. Root development is 

initiated only once this has been accomplished. At the bell stage, the epithelium-derived 

ameloblasts and odontoblasts originating from the mesenchyme deposit the enamel and dentine, 

respectively. At the root, ameloblasts and enamel are missing which is covered instead by the softer 

dentin and cementum. Abbreviations: Ep: epithelium, mes: mesenchyme, sr: stellate reticulum, dm: 

dental mesenchyme, dp: dental papilla, df: dental follicle, ek: enamel knot; erm: epithelial cell rests 

of malassez, hers: hertwig's epithelial root sheath (adapted from (Thesleff and Tummers, 2008)). 

Initiation stage 

A 

B 
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During the cap and bell stages, the leading edge of the invaginating epithelial cells 

enveloping the underlying dental mesenchyme is known as the cervical loop, with the cells 

located at the dental papilla-epithelium interface termed the inner enamel epithelium (IEE) 

and those facing the dental follicle termed the outer enamel epithelium (OEE). In humans, 

when crown formation is almost completed, the IEE and OEE undergo proliferation from 

the cervical loop of the enamel organ to form a double layer of cells known as Hertwig’s 

epithelial root sheath (HERS) (Nanci, 2008). HERS acts as a structural divider at this point 

where the dental papilla lies within the bell shaped tooth germ while the dental follicle 

consists of the rest of the surrounding neural crest-derived mesenchyme. Under the 

guidance of HERS, tooth root development commences. Though HERS is crucial to the 

development of the tooth roots, uncertainty remains over its specific roles (Diekwisch, 

2001; Huang and Chai, 2012; Zeichner-David et al., 2003). It appears that HERS participates 

along multiple stages during root development including the establishment of root number, 

cementogenesis, PDL formation and dentinogenesis of the root (Huang and Chai, 2012). 

One striking feature of HERS in mammals is their transient nature. After inducing the 

dental papilla, cells adjacent to the IEE become odontoblasts and initiate root dentine 

formation, the HERS structure becomes “perforated” allowing the mesenchymal dental 

follicle cells to penetrate into the epithelial layer and invade the newly generated root 

dentine surface (Diekwisch, 2001). As the root elongates, more dental follicle cells invade 

through HERS onto the root surface to form the cementoblasts and generate the 

cementum. Eventually, HERS disintegrates and the remnants of this transient structure 

become known as the epithelial rests of Malassez (ERM) (Luan et al., 2006a).  

To perform its physiological function, the teeth need to establish occlusal contacts with 

opposing teeth, which is fulfilled in the final stage of tooth development, eruption into the 

oral cavity. Following root formation, this process begins with movement in the axial 

direction until the occlusal surface of the tooth is parallel to the occlusal plane of the 
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mouth. At this point, the ameloblasts are still covering the enamel and reduced enamel 

epithelium, which are the remnants of the enamel organs (Nanci, 2008). When the crown 

passes through the overlaying bone and approaches the soft tissue, the reduced enamel 

epithelium and oral epithelium combine to form a dense mass of epithelial cells where the 

central cells within the mass collapse to form an epithelial channel for the tooth to erupt. 

During eruption, the cells of the reduced epithelium degenerate and as the enamel 

becomes exposed, the ameloblasts are lost forever, while the dentine-producing 

odontoblasts remain on the periphery of the dental pulp to support this crucial tissue 

located in the tooth core that provides and maintains tooth vitality throughout life (Nanci, 

2008).  

Tooth development is evidently an intricate physiological process thus, not surprisingly 

requires the orchestration of many different signalling pathways. Paracrine signalling 

molecules belonging to several conserved families mediate these dynamic interactions and 

are used reiteratively as tooth morphogenesis progresses. These include the Transforming 

growth factor β (TGFβ), Fibroblast growth factor (FGF), Hedgehog, Wnt and Tumour 

Necrosis Factor (TNF) family of proteins (Thesleff, 2003). Other modulators of these 

signalling pathways such as inhibitors of BMPs (Follistatin and Ectodin/Sostdc1) and FGFs 

(such as Sprouty) are also required for the correct development of tooth shape, number 

and the production of optimal hard tissue, therefore highlighting the significance of 

regulatory control during odontogenesis (Thesleff and Tummers, 2009).  
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1.1.3 The human and mouse dentition 

 

The mouse dentition is very much a simplification of the human form (Figure 1.3). The 

main difference is that in mice, only two different tooth types exists: the incisors and the 

molars, which are separated by a toothless gap known as the diastema in both jaws 

(Tucker and Sharpe, 2004). Humans on the other hand have additional canine and 

premolar teeth as well as a second dentition, meaning that they possess a set of deciduous 

teeth that are replaced by a permanent set upon adulthood. Nevertheless, the mouse 

dentition is a valuable model to study odontogenesis since it contains unique, continuously 

growing incisor teeth that undergo constant remodelling, thus allows all stages of 

odontogenesis including amelogenesis and dentinogenesis to be examined when observing 

a single tooth from the apical to the incisal end (Harada and Ohshima, 2004; Ohshima et al., 

2005).  

 

 

 

 

 

 

 

 

Figure 1.3 Schematic representation of the mouse and human dentition  
In mice, the incisors and molars are separated by a gap known as the diastema. The human 

dentition is much more complex with 4 different types of teeth where canines and premolar teeth 

are present unlike in mice (adapted from (Tucker and Sharpe, 2004)).   
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1.1.4 The continuously growing rodent incisor 

 

In common with other rodents such as rats, rabbits and guinea pigs, mice have 2 sets of 

continuously growing maxillary and mandibular incisors. Its development is initiated at E12, 

a little later than the molars, which begin developing from the oral ectoderm at E11.5 

(Neubüser et al., 1997). At early stages, incisor and molar development are identical, 

however upon reaching the cap stage, the incisor tooth bud rotates anteroposteriorly 

resulting in a horizontal alignment to the long axis of the mandible (Figure 1.4). As 

development progresses to the bell stage (E16), the ameloblast-producing labial (facing the 

lip) epithelium elongates further than the lingual (facing the tongue) epithelium to form a 

distinctive structure termed the “cervical loop”. This is the junctional zone where the inner 

enamel epithelium meets the external enamel epithelium at the edge of the enamel organ 

(Nanci, 2008) 

 

 

 

 

Figure 1.4 A schematic of mouse incisor development 

Initiation of the incisor occurs at E11 followed by the bud (E13), cap (E14) and early bell stage (E16). 
The initial stages of morphogenesis are similar in all teeth. In comparison to molar tooth 
development, the incisors differs at E14 (cap stage) where the developing germ rotates 
anteroposteriorly becoming parallel to the long axis of the incisors (E16, early bell stage). At early 
bell stage (E16), the cervical loop is seen at the apical end of the labial epithelium. Only the labial 
epithelium gives rise to the enamel- forming ameloblasts. Epithelium: dark blue; dental 
mesenchyme: light blue dots. Abbreviations, cl: cervical loop; cm: condensed mesenchyme, d: 
dentine, dp: dental papilla, eo: enamel organ; m: mesenchyme, vl: vestibular lamina (adapted from 
(Harada et al., 2002)).  
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Interestingly, the labial and lingual epithelia noticeably differ in size with the lingual side 

being much thinner than that of the labial (Figure 1.5A). Star-shaped stellate reticulum 

cells reside at the heart of the labial cervical loop (Figure 1.5C), while the lingual cervical 

loop is thin and contains few stellate reticulum cells. Enamel is deposited exclusively by 

ameloblasts that differentiate along the labial aspect of the mouse incisor, thus visibly 

covers only the labial surface of the tooth (Figure 1.5B). In contrast, the lingual surface is 

enamel-free and directly borders the dentine layer. Therefore, the lingual and labial 

surfaces can be recognised as morphologically and functionally analogous to the non-

continuously growing molar root and crown, respectively (Harada and Ohshima, 2004; 

Ohshima et al., 2005).   

It is the larger, labial cervical loop containing the specialised arrangement of a central core 

of star-shaped stellate reticulum cells, surrounded by a basal layer of epithelial cells that 

possess the epithelial stem cells to support continuous incisor growth (Figure 1.5C). This 

structure is maintained throughout life in teeth that undergo continuous growth and 

eruption, never forming HERS and ERM and consequently remain rootless or “open 

rooted”. In contrast, in non-continuously growing teeth such as mouse molars and all 

human teeth as described previously in section 1.1.2, the cervical loop undertakes 

structural modifications upon root formation resulting in HERS and ERM components 

(Figure 1.4D) (Thesleff and Tummers, 2008; Tummers and Thesleff, 2003).  
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Figure 1.5 Schematics of the mouse incisor and molars 

A: Basic overall organization of the incisor tooth. Growth occurs from the cervical (apical) to the 

incisal end indicated by the arrow. B: Enlargement of boxed region in A showing the individual cell 

types that comprise the lingual and labial cervical loops. Stem cells reside within stellate reticulum, 

core of the cervical loop. Arrow indicates the direction of incisor growth. D: Cross sectional view of 

mouse molar development. The mouse molar crown fate of the cervical loop is lost and switches to 

root indicated by the missing stellate reticulum. Upon completion of root formation the mouse 

molar has no functional cervical loop epithelium unlike the continuously growing mouse incisor, 

where the cervical loop continues to generate crown. Colour coding is as follows: enamel (red), 

dentin (blue), epithelium (orange), and follicular mesenchyme (green). Abbreviations: A: 

ameloblasts, D: dentine, DE: dental epithelium, E: enamel, ERM: epithelial cell rests of Malassez, 

HERS: Hertwig’s epithelial root sheath, DM: dental mesenchyme, FM: follicle mesenchyme, IEE: 

inner enamel epithelium, O: odontoblasts, OEE: outer enamel epithelium, PM: papilla mesenchyme, 

SR: stellate reticulum, TA: transit amplifying (adapted from (Wang et al., 2007) and (Tummers and 

Thesleff, 2003)). 

D 

Mouse  

Molar 
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This region is odontogenically significant, as reports have identified an epithelial stem cell 

niche at the apical end of the labial cervical loop, the control of which is governed by 

mesenchymal molecular cues adjacent to the inner enamel epithelium (Harada et al., 1999; 

Harada et al., 2002; Wang et al., 2007). Mesenchymal FGF signalling was found to regulate 

the perpetual growth of the mouse incisor in conjunction with epithelial Notch signalling, 

ensuring epithelial stem cell progeny survival and proliferation. More specifically, it was 

demonstrated using both in vitro and in-vivo loss of function techniques including FGF10 

bead implantation experiments, Ffg10-deficient mice and anti-FGF10 neutralizing 

antibodies, that mesenchymal FGF10 is indispensible to support the maintenance of the 

self-renewing epithelial stem cells responsible for growth at the cervical end (Harada et al., 

1999; Harada et al., 2002). In the early in vitro experiments, culture of the mouse incisors 

with their cervical loops mechanically excised resulted in stunted epithelium that 

underwent differentiation into ameloblasts. However, when the differentiated region of 

epithelium was removed instead, the intact cervical loop generated new epithelium 

differentiating into secretory ameloblasts, indicating the presence of a primitive cell 

population capable of regenerating the dental epithelium (Harada et al., 1999).  Moreover, 

slowly dividing putative stem cells were also identified among the peripheral stellate 

reticulum cells close to the basal epithelium inside the cervical loop region using BrdU (5-

bromo-2’deoxyuridine) labelling followed by a 7 day chase period. Interestingly, a short 3 

hour chase period revealed a region of rapidly dividing BrdU positive cells throughout the 

inner enamel epithelium zone suggestive of a region of “transit-amplifying” cells (Harada et 

al., 1999). The cells within the cervical loop therefore fulfil key criteria in the definition of a 

stem cell which is that they should regenerate themselves and also produce transit 

amplifying cells that divide and differentiate (Alonso and Fuchs, 2003). A following report 

indicated that FGF10-null mice developed morphologically hypoplastic labial cervical loops. 

In addition, loss of function in vitro studies using cultured incisor explants with neutralizing 
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anti-FGF10 antibody caused apoptosis and destruction of the cervical loop, which was 

subsequently rescued upon addition of human FGF10 protein. Altogether, this provides 

evidence that FGF10 is a key survival factor in maintaining the stem cell compartment of 

developing mouse incisor tooth germs (Harada et al., 2002). Another FGF signal (FGF3) is 

also implicated in the maintenance of the epithelial stem cell niche. The mesenchyme 

around the lingual cervical loop expresses FGF10, while the labial cervical loop receives 

signals from both FGF3 and FGF10. Thus, the differences in structure of the lingual and 

labial cervical loops may be attributed to this asymmetric FGF3 expression in the incisor 

mesenchyme (Wang et al., 2007). This FGF3 expression was found to be modulated by an 

integrated gene regulatory network between Activin, BMP, FGF and Follistatin (a TGFβ 

inhibitor). FGF3 signals promote stem cell proliferation and BMP4 represses Fgf3 

expression, while the repressive effect of BMP4 is in turn inhibited by Activin. Follistatin 

was shown to antagonize the activity of Activin indicating differences between the levels of 

Activin and Follistatin expression contribute to the distinctive asymmetry of rodent incisors 

(Wang et al., 2007). A further study also demonstrated that sprouty (Spry) genes, which 

encode intracellular antagonists of the FGF signalling pathway, are critical for ensuring the 

essential asymmetry in enamel deposition for normal incisor shape and function. The loss 

of Spry4 leads to an ectopic epithelial-mesenchymal FGF signalling loop on the lingual side 

and the formation of ectopic ameloblasts by the stem cells resulting in “tusk-like” adult 

incisors (Klein et al., 2008). 
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Extensive reports have elucidated the role and regulation of the epithelial stem cell niche 

in the continuously growing rodent incisor (Harada and Ohshima, 2004). Yet the precise 

location and regulation of the mesenchymal stem cells (MSCs) in the cervical end of the 

incisor remains unclear. However, two other possible niches alongside the epithelial stem 

cell niche have been identified, a perivascular niche (pericyte cells) and MSCs of a non-

pericyte source reveal dual origins of MSCs present for maintaining homeostasis and tissue 

repair of the pulp counterpart (Feng et al., 2011). Very recently, a third niche originating 

from the neurovascular bundle has also been identified to support MSC homeostasis in the 

adult mouse incisor (Zhao et al., 2014).  

 

1.2 Mesenchymal stem cells  

 

The basic definition of a stem cell is one that can undergo self renewal and multi-lineage 

differentiation (Morrison et al., 1997). Their role is to provide a supply of cells either for 

maintenance or repair of injured tissues. Stem cell studies broadly refer to three types. 

Embryonic stem (ES) cells, first reported in 1981 are derived from the inner cell mass of the 

blastocyst stage of the embryo and are pluripotent meaning that they can form all cell 

types of the body thus are described as most “primitive” and “plastic” (Evans and Kaufman, 

1981). Adult stem cells (ASCs) are multipotent cells present post-natally and function to 

repair tissue and sustain continuous growth in many adult tissues including those of the 

hair and gut (Alonso and Fuchs, 2003). The third group of stem cells are generated from 

ASCs genetically reprogrammed using pluripotency associated genes specifically Octomer-

binding transcription factor 3/4 (Oct3/4), (sex determining region Y)-box2 (Sox2), Krueppel-

like factor 4 (Klf4) and myelocytomatosis viral oncogene homolog (c-myc) to generate 

induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka, 2006). Unlike ES cells, 
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where its harvesting procedure requires the destruction of human embryos, utilisation of 

IPSCs circumvents this controversy. However, there are concerns associated with the 

retrovirus gene transfer method in that random gene insertion could increase the risk of 

tumour formation and since some of the reprogramming factors are oncogenic, this is a 

further important consideration (Okita and Yamanaka, 2011).  

Adult stem cells naturally exist in the body as a safeguard mechanism that activates upon 

injury to repair damaged tissues. Thus, they have great appeal as a practical source for a 

broad range of clinical applications. An important group of ACSs are the mesenchymal 

stem cells (MSCs), present in the majority of connective tissue in the body. The most 

studied and well characterised of which are the bone marrow mesenchymal stem cells 

(BMMSCs). This population was first described in 1970 by Friedenstein et al. as colony 

forming unit fibroblast cells (CFU-Fs) generated in monolayer cultures of guinea pig bone 

marrow (Friedenstein et al., 1970). These clonogenic cells have plastic adherent properties 

that could be expanded in vitro and were later shown to be “multipotent” populations that 

could differentiate along the now considered gold standard criteria of tri-lineage potential; 

meaning that MSCs should have the capacity to undergo osteogenic, chondrogenic and 

apidogenic differentiation (Pittenger et al., 1999).  

MSCs can be isolated from many different adult tissue types, however they are typically 

heterogeneous in nature with varying proliferation and differentiation potentials (Kolf et 

al., 2007). Cell surface markers have been used in an attempt to identify and purify MSCs 

and in 2006 the Mesenchymal and Tissue Stem Cell Committee of the International Society 

for Cellular Therapy provided the scientific community with a standard set of “minimal” 

criteria to define human MSCs. Essentially, these cells must be plastic-adherent when 

cultured in vitro, contain over 95% CD105+, CD73+ and CD90+ cells, lack expression of 

CD45, CD34, CD14 or CD11b, CD79a or CD19 and HLA class II and finally they must have the 
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capacity to differentiate into osteoblasts, adipocytes and chondroblasts under standard in 

vitro differentiating conditions (Dominici et al., 2006). Nevertheless, there remains no 

formal consensus on which markers are appropriate to exclusively isolate MSCs as 

different groups largely employ a diverse collection of markers. Among these, Stro-1 is 

considered the most recognized putative MSC marker and together with negative selection 

against glycophorin-A (an erythroid lineage marker), CFU-Fs enrichment was observed in 

harvested bone marrow cells (Gronthos et al., 2003; Simmons and Torok-Storb, 1991). 

Crucially, Stro-1 expression is not exclusive to MSCs and there is also no equivalent Stro-1 

marker in mice. In addition, the use of Stro-1 is limited to human MSCs at early passages as 

its expression is lost during culture expansion (Shi et al., 2002). Thus, defining the 

phenotype of MSCs from animal models solely based on the expression of markers is 

complicated and not necessarily the most reliable method.  

Further to their roles in the regulation of tooth development, FGFs and Wnts among other 

growth factors have been implicated in the maintenance of “stemness” in MSCs. Unlike 

ESCs which have unlimited self renewal capacity and can be expanded indefinitely in vitro, 

MSCs have shorter lifespan in culture. The addition of FGF2 was shown to prolong MSC 

viability in vitro allowing expansion while retaining multilineage potential (Tsutsumi et al., 

2001). Since in vitro expansion of MSCs is a vital pre-requisite for their use in future 

autologous therapies with a typical average loss of 0.5-1 billion cardiomyocyte cells in the 

human left ventricle after a heart attack (Murray et al.,2006) this is an important 

consideration in the efforts for successful clinical translation. More recently, FGF8 has been 

demonstrated to induce dopaminergic neuron formation in human BMMSCs, when 

supplemented together with SHH (Funk and Alexanian, 2013). Numerous reports suggest 

that Wnts play a critical role in regulating stem cells and cancer (Reya and Clevers, 2005). 

Wnt3a in particular has been demonstrated to maintain undifferentiated human adult 

MSCs while inhibiting osteogenic differentiation (Boland et al., 2004). Furthermore, in rat 
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BMMSCs, Wnt3a is a promoter of MSC migration (Shang et al., 2007).  These studies 

highlight chemical genetics as an important approach to understanding the control of 

MSCs that will undoubtedly aid in unravelling tissue regeneration pathways to further the 

field of regenerative medicine. 

 

1.2.1 Immunomodulation by MSCs 

 

A major advantage of using MSCs in future clinical therapies is their immunomodulatory 

properties. They have been shown to possess immunosuppressive function both in vitro 

and in vivo and mainly act through secretion of molecules that are either induced or 

upregulated via cross-talk with immune cells (Ghannam et al., 2010). Both CD4+ and CD8+ 

T-lymphocyte proliferation is suppressed by MSCs, while Interleukin-2 (IL-2)-induced 

proliferation of resting Natural Killer (NK) cells is also inhibited (Spaggiari et al., 2006). 

Since the anti-proliferative, immunomodulatory and anti-inflammatory effects of MSCs 

have become clear, their regenerative capabilities are now not the exclusive driving force 

behind their study. Excitingly, MSCs as potential therapeutic agents to treat rejection after 

allogeneic transplantation such as graft-vs-host disease (GvHD) has been demonstrated in 

vivo studies with BMMSCs. In 2002, using a baboon skin graft model, it was shown that in 

vitro expanded donor or third-party BMMSCs are immuosuppressive and prolonged the 

rejection of histoincompatible skin grafts (Bartholomew et al., 2002). While in human trials, 

remarkable clinical response has been observed. BMMSCs were found to reverse grade 

acute IV GvHD of the gut and liver of a leukaemia patient suffering from rejection after a 

blood stem cell transplant (Le Blanc et al., 2004). In addition, multiple patients suffering 

from other cancers including myeloma and solid tumours revealed complete eradication of 

acute GvHD in six of eight patients (Ringden et al., 2006). Though the specific mechanisms 
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through which MSC immunomodulation operates warrant further investigation, 

encouraging data indicate comparable therapeutic effects between allogeneic and 

autologous MSCs (Hare et al., 2012).   

 

1.2.2 The MSC niche 

 

The concept of a stem cell “niche” was pioneered by Schofield in 1978. In the study, 

decreased proliferative potential in hematopoietic stem cells (HSCs) of the spleen was 

observed in comparison to HSCs derived from the bone marrow. This led to the important 

hypothesis whereby stem cells are associated with other complementing cells which in 

turn determine their behaviour. Since the HSCs of the spleen were no longer associated 

with their “niche” that supports ongoing stem cell activity, the cells effectively mature and 

lose their stem cell identity (Schofield, 1978). As such, the niche functions to balance the 

production of stem cells and progenitor cells to maintain growth and repair in adults 

tissues. They do so from within specialised and complex microenvironments consisting of 

stem cells (SCs), non-SCs, extracellular matrices and molecular signals that regulate stem 

cell behaviour in a highly dynamic system (Becerra et al., 2011; Scadden, 2006; Voog and 

Jones, 2010). Overall, in order to maintain the crucial balance between homeostasis and 

repair, the stem cells must remain undifferentiated and respond to certain cues that can 

travel into the niche to signal the stem cells that their differentiation potential is required 

for the regeneration or repopulation of a tissue (Kolf et al., 2007). 

Extensive research into MSCs has been largely based upon their behaviour in an entirely 

non-native context; that is in vitro. Therefore, it is important to take into consideration 

that the removal of these cells from their natural environment or “niche” almost certainly 
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causes alterations to their phenotype and behaviour depending on their in vivo or in vitro 

setting (Augello et al., 2010). Thus, to truly harness these potentially powerful cells for 

future regenerative medicines, in vivo identification of MSCs is vital and one aspect of 

determining their function is to define their topography in situ in various organs.  

Stem cell niches have been identified in many different tissue types including the hair 

follicle (Fuchs et al., 2004), intestine (Barker, 2014) and in the tooth (Sloan and 

Waddington, 2009). In teeth, they reside within specific anatomic locations of the dental 

pulp where the microenvironment regulates how the dental pulp stem cell population 

contributes to tissue maintenance, repair and regeneration (Mitsiadis et al., 2011). To date, 

there have been 6 sources of stem cells harvested from dental tissue-related niches and in 

order to provide a greater understanding of stem cell function and aid development of 

future MSC-based therapies, an important avenue to investigate would be to evaluate the 

stem cell niche in healthy vs diseased or damaged tissues. Increasing knowledge of the 

differences between their underlying mechanisms will enable better replication of natural 

tissue repair and enhance the efficiency of this process. One area of great interest is the 

migration of stem cells. 

 

1.2.3 Stem cell homing 

 

The homing effect of stem cells towards sites of injury is another important stem cell 

niche-related paradigm (Augello et al., 2010). During the tissue repair process, cells local to 

the wound may differentiate and carry out repair to the best of their ability, but often 

these cells are post-mitotic, thus are unable to provide the numbers required for successful 

regeneration of the tissue. Hence, signalling to recruit stem/progenitor cells to home 



 1. Introduction 
 

32 
 

towards the site of injury, proliferate and differentiate into the necessary cell type to 

replenish the lost population is required.  Not only are the signals that maintain the stem 

cells within the niche essential, the signals which cause them to exit the niche are equally 

important to fully appreciate the dynamic function of the niche. 

The recruitment of stem/progenitor cells residing within neighbouring healthy tissues to an 

injury site is facilitated by cell homing factors. Stromal-derived factor 1 is among those 

found to regulate MSC migration together with its receptor CXCR4 (Shi et al., 2007; Son et 

al., 2006). They appear particularly important in regulating MSC homing for cardiac repair 

since this protein is upregulated in numerous myocardial infarction models as well as in 

ischemic cardiac patients (Ghadge et al., 2011).  

There are two types of cell homing, the first is defined as cell movement via the blood 

circulatory system until the cell is arrested by microvascular endothelial cells in a target 

organ, while the second is more appropriate to describe the movement of local stem cell 

homing. This type of “homing mode” is known as interstitial movement whereby the stem 

cells recognize and follow extravascular guidance cues independently of blood flow (Laird 

et al., 2008). Interestingly, even without injury, MSCs have the innate capacity to home 

towards bone marrow and lung tissue (Francois et al., 2006). However, during tissue 

damage, this cell homing pattern was altered. This was demonstrated in mice when either 

subjected to total body irradiation or local irradiation at specific sites which produced 

enhanced engraftment of injected MSCs into more organs and in greater numbers than in 

non-irradiated animals (Francois et al., 2006). Later in 2008, a study in mice overexpressing 

MCP-1 (a chemokine) showed that BMMSCs systemically infused into these animals 

preferentially migrated towards their hearts, in comparison to wild-type mice, where 

migration towards the organ was negligible (Belema-Bedada et al., 2008). This correlated 

with other reports demonstrating MSC homing towards bone marrow (Devine et al., 2001; 



 1. Introduction 
 

33 
 

Morikawa et al., 2009; Sackstein et al., 2008). Although many of the MSC homing studies 

discussed above involve systemic delivery of MSCs and their engraftment potential, 

alternative therapeutic approaches other than to use MSCs as direct replenishment of cell 

units to restore the lost tissue should be explored. One example is endogenous cell homing 

which permits cell populations already present in a patient’s body, including 

stem/progenitor cells to be actively recruited to sites of injury. In teeth, Kim et al. showed 

that endogenous cell homing can be achieved without the need for exogenous cell 

transplantation. Their experimental model using endodontically treated human incisors 

implanted in vivo, in the dorsum of mice for 3 weeks, showed that upon delivery of bFGF 

and/or vascular endothelial growth factor (VEGF), re-cellularized and revascularized 

connective tissue that integrated to native dentinal wall in root canals was achieved. 

Furthermore, the addition of platelet-derived growth factor (PDGF), basal infusion of nerve 

growth factor (NGF) and BMP7 resulted in complete filling of the root canal with dental 

pulp-like tissue (Kim et al., 2010). While in the continuously growing mouse incisor model, 

labelled MSCs from the cervical loop pulp can also home towards the injured site (Feng et 

al., 2011). In the liver, in response to injury, BMMSCs were shown to mobilise into the 

circulatory system and were recruited into the injured liver under the direction of 

chemokine (C-C motif) receptor (CCR)9, chemokine (C-X-C motif) receptor (CXCR)4 and 

mesenchymal-epithelial transition factor (c-MET) chemoattraction signals (Chen et al., 

2010). Such studies demonstrate the potential of endogenous MSC recruitment and 

subsequent repair of injured tissues. However, critical to the implementation of MSCs in 

routine clinical practice would be to enable the direction of MSC migration with high 

efficiency, whether therapeutically infused or actively mobilised from tissue-resident 

populations (Chen et al., 2011). 
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1.3 Dental stem cells 

 

Paradoxically, although teeth are non-essential for life and thus not considered a major 

target for regenerative medicine research compared to neural or cardiac diseases, for 

example, this very fact makes teeth ideal for testing new cell-based treatments (Volponi et 

al., 2010). The accessibility of teeth circumvents the need for major surgery and naturally 

lost or surgically removed teeth provide multiple opportunities throughout life to isolate a 

variety of dental stem cell populations. Furthermore, dental disease is a widespread public 

health problem that affects the quality of life of humans from young to old age and is 

associated with heart disease (DeStefano et al., 1993) as well as diabetes (Lamster et al., 

2008). In addition to using dental stem cells for tooth repair, restoration and regeneration, 

significantly, they may also have a purpose for non-dental uses, such as developing stem 

cell-based therapies for major life-threatening diseases.  

 

1.3.1 Dental pulp stem cells 

 

The capacity of dental pulp cells to respond to damage caused by pathological conditions 

such as carious lesions and restorative processes such as cavity preparation has been well 

documented (About et al., 2000; Robertson et al., 1997; Smith et al., 1995b; Smith et al., 

1994). Replenishment of the odontoblast population appears to originate from progenitor 

cell populations that reside in the deeper pulp. These cells are capable of self renewal and 

can migrate after noxious stimuli and differentiate into odontoblasts (Fitzgerald et al., 1990; 

Smith and Lesot, 2001). When dental tissue is moderately damaged, the tertiary dentin 

secreted by the odontoblasts becomes reactionary. On the other hand, during deep cavity 
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preparation the odontoblasts are destroyed which leads to the influx of pericytes or 

mesenchymal cells into the dental pulp. These cells exhibit odontoblastic properties, and 

can replace the necrotic odontoblasts and secrete reparative dentin (Smith et al., 1995b; 

Tziafas, 1995). This suggests that the niche in which the cells normally reside, along with 

the local environment, are important for cell identity. 

In 2000, Gronthos et al. first reported the identification of stem cells from adult human 

dental pulp. This population of DPSCs from permanent third molars was characterized by 

their high proliferation and high frequency of colony-forming cells compared with BMMSCs. 

While both cell types shared similar immunophenotype in vitro, functional studies showed 

that DPSCs produced only sporadic, but densely calcified nodules with no adipogenesis 

whereas BMSCs routinely calcified throughout the adherent cell layer with lipid-laden 

clusters of adipocytes (Gronthos et al., 2000). Additional in vivo transplantation into 

immunocompromised mice demonstrated the ability of DPSCs to generate functional 

dental tissue in the form of dentin/pulp-like complexes.  Further characterization revealed 

that DPSCs were also capable of differentiating into adipoctyes, as measured by the 

formation of characteristic oil red O-positive lipid-containing clusters (Gronthos et al., 2002) 

as well as osteoblasts and endotheliocytes (d'Aquino et al., 2007). In addition, 

differentiation into neural-like cells was observed as they were found to express markers 

of neuronal precursors and glial cells such as nestin and glial fibrillary acid protein (GFAP) 

respectively (Wislet-Gendebien et al., 2003). This evidence suggests that DPSCs may have a 

broader capacity for differentiation than originally proposed and may reflect their 

developmental origin.  
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1.3.2 Stem cells from human exfoliated deciduous teeth 

 

One of the most convenient and easily accessible sources are stem cells from human 

exfoliated deciduous teeth (SHED). In 2003, Miura et al. identified a population of highly 

proliferative, multipotent, clonogenic cells from the remnant pulp of teeth that are 

naturally lost during childhood. SHED demonstrated the capacity to differentiate into a 

range of cell types including neural cells, adipocytes and odontoblasts (Miura et al., 2003). 

In vivo transplantation of SHED have demonstrated induction of bone formation and 

generated dentine (Miura et al., 2003; Sakai et al., 2010; Shi et al., 2005) . In addition they 

promote neuronal survival in mouse brain and express neural markers. The expression of 

neuronal and glial cell markers implies that SHEDs may be related to the neural crest-cell 

origin of the dental pulp. In contrast to DPSCs, SHED exhibited higher proliferation rates, 

increased population doublings, osteoinductive capacity in vivo and an ability to form 

sphere-like clusters (Miura et al., 2003). Furthermore, SHED lack the capacity to 

reconstitute a complete dentin-pulp-like complex thus, supports the notion that this cell 

population is unique and distinct from DPSCs. This could be attributed to their difference in 

developmental timeframe. Since SHED cells are at an earlier stage they likely represent a 

more immature stem cell population. Current in vivo data suggests SHED have greater 

capacity for mineralisation than DPSCs (Wang et al., 2012) .  
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1.3.3 Periodontal ligament stem cells 

 

The periodontal ligament (PDL) is a fibrous layer derived from the dental follicle that 

contains specialised connective tissue which functions to maintain and restrict teeth within 

the jaw. It is located between the cementum and the inner wall of the alveolar bone socket 

and regulates periodontal homeostasis by providing nourishment to the teeth (Nanci, 

2008). It has long been recognized to contain a population of progenitor cells (McCulloch, 

1985). More recently Seo et al., (2004) revealed that dental stem cells from human 

periodontal ligament (PDLSCs) were capable of differentiating along multilineages to 

produce cementoblast-like cells and adipocytes. In this study, the PDLSCs extracted from 

human third molars by single colony selection were characterised as STRO-1/CD146 

positive (Seo et al., 2004). Moreover, during in vivo studies, cementum/PDL-like structures 

formed along with dense collagen fibres similar to Sharpey’s fibres showing their potential 

to regenerate PDL attachment, which is critical for development of a functional tooth. It 

was also demonstrated that the tissue regeneration capacity is maintained even after 

recovery from frozen human tissue (Seo et al., 2005). These findings were confirmed by 

expression of STRO-1, single-colony-strain generation, multipotent differentiation, 

cementum/periodontal-ligament-like tissue regeneration and a normal diploid karyotype, 

all characteristics of normal PDLSC (Seo et al., 2005). Moreover, when PDLSCs were co-

transplanted with human apical papilla stem cells (SCAP), using a hydroxyapatite 

/tricalcium phosphate (HA/TCP) carrier into the tooth sockets of miniature pigs, 

construction of the root/periodontal complex was successfully formed and were even 

capable of supporting a porcelain crown allowing normal tooth function (Sonoyama et al., 

2006). Taken together, these results suggest cryopreserved PDL from extracted teeth may 

be viable for future therapeutic purposes. 
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Regeneration of mineralized tissue and periodontal ligament has been achieved using 

ovine PDLSC transplanted into non-obese diabetic (NOD) and severe combined 

immunodeficiency (SCID) mice (Gronthos et al., 2006). The PDLSCs were derived from 

ovine periodontal ligament using immunomagnetic bead selection, based on expression of 

the mesenchymal stem cell-associated antigen CD106 (vascular cell adhesion molecule 1). 

The CD106+ cells were able to form adherent clonogenic clusters of fibroblast-like cells 

with high proliferative capacity in vitro and expressed a phenotype (CD44+, CD166+, CBFA-

1+,collagen-I+, bone sialoprotein+) corresponding with human-derived PDLSCs (Gronthos 

et al., 2006). Periodontal ligament is able to withstand mechanical forces of stress and 

tension similar to that of a tendon. Not surprisingly, a tendon-specific transcription marker 

called scleraxis was found to be expressed at much higher levels in PDLSCs than in DPSCs or 

BMSCs. Therefore, PDLSCs are considered as a unique population of adult MSCs different 

from pulp tissue or bone marrow (Shi et al., 2005).  

 

1.3.4 Root apical papilla stem cells 

 

Located in the root foramen area of the tooth exists another unique population of dental 

stem cells known as stem cells from the root apical papilla (SCAP). The loosely attached 

“apical cell-rich” zone of the apical papilla tissue is only present during root development 

before the tooth erupts into the oral cavity (Huang et al., 2008). This means that routine 

third molar extraction procedures represent unique opportunities to harvest yet another 

dental stem cell population. 

In 2006, Sonoyama et al., demonstrated that SCAP have capacity to differentiate into 

odontoblasts and adipocytes and display higher proliferative potential compared with 

DPSCs when measured by bromodeoxyuridine (BrdU) uptake (Sonoyama et al., 2006). 
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When co-transplanted with PDLSCs into tooth sockets of miniature pigs, dentin and 

periodontal ligament was formed. These findings suggest that this population of cells could 

be suitable for cell-based regeneration therapies using a combination of autologous 

SCAP/PDLSCs together with artificial dental crown (Sonoyama et al., 2006). Moreover SCAP 

appear to be a source of primary odontoblasts responsible for the formation of root dentin 

(Sonoyama et al., 2006), whereas DPSCs are possibly the source of replacement 

odontoblasts that produce dentin (Gronthos et al., 2000). 

Most human tissue at the developing stage is not clinically available for stem cell isolation. 

However, the root apical papilla is accessible in dental clinical practice via extracted 

wisdom teeth. As these teeth develop later in life in comparison with other tooth types, 

access to a still-developing tissue similar to those in embryonic development is achievable. 

Since there are four wisdom teeth present in adults with the possibility of each one of their 

roots yielding one apical papilla, this poses an opportunity for banking these dental stem 

cells for future autologous use. However, the success of this will depend on their survival 

under freeze-thawing conditions.  

 

1.3.5 Dental follicle stem cells 

 

The dental follicle is a loose ectomesenchyme derived connective tissue sac surrounding 

the enamel organ and the dental papilla of the developing tooth germ prior to eruption 

(Ten Cate, 1998). It is believed to contain progenitors for cementoblasts, PDL and 

osteoblasts. The dental follicle cells form the PDL by differentiation into the PDL fibroblasts 

which secrete collagen and interact with fibres on the surfaces of adjacent bone and 

cementum. The differentiation capacity of bovine dental follicle cells (BDFCs) has been 

determined in vivo when cementoblast formation was observed after their transplantation 
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into SCID mice (Handa et al., 2002a; Handa et al., 2002b). In these studies, monoclonal 

antibody (3G9) against cementum-derived attachment protein (CAP) was used as a marker 

molecule for cementoblasts. Previous research demonstrated that CAP promotes 

attachment of dental follicle cells and its expression is limited to cementum matrix and 

cementoblasts during cementogenesis, illustrating its suitability as a marker for 

cementoblasts (Saito et al., 2001).  

Dental follicle progenitor cells isolated from the follicular sacs of human third molars were 

characterized by their rapid attachment in culture and expression of putative stem cell 

markers Nestin and Notch-1 (Morsczeck et al., 2005). In comparison with BM cells, PDL 

cells and osteoblasts, precursor cells from human dental follicles expressed higher levels of 

insulin-like growth factor-2 (IGF-2). Furthermore, after induction, the cells were able to 

form compact calcified nodules or appeared as plain membrane structures in vitro. When 

transplanted in immunocompromised mice, bone sialoprotein (BSP) and osteocalcin (OCN) 

were expressed differentially, without any indication of cementum or bone formation 

(Morsczeck et al., 2005).  Further analysis has demonstrated heterogeneity amongst cell 

populations in developing follicles as in vitro studies revealed that several cloned dental 

follicle cell lines under the same culture conditions had different activities of alkaline 

phosphatase and different capacities for differentiation. The differentiation pathways 

characterized included periodontal ligament-type lineage, cementoblastic or alveolar bone 

osteoblastic lineage (Luan et al., 2006b). Transplantation of a clone of porcine dental 

follicle cells into SCID mice demonstrated variation in BSP, OCN and periostin expression 

under the effect of collagen 1 matrix, which is postulated to facilitate the mineralization 

process during the crown-formation stage (Tsuchiya et al., 2008). Once the mechanisms 

that drive dental follicle cell differentiation are unravelled, in future, it may not be 

necessary to obtain PDL cells from extracted teeth (Mantesso and Sharpe, 2009).  
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1.3.6 Gingival stem cells 

 

Among the most important elements of the periodontium is the gingival tissue, which has 

demonstrated remarkable wound healing and regenerative capacity. Of the two tissue 

types isolated from the gingiva, the fibroblast population are a heteregeneous mix of cells 

that contribute to the wound healing process by responding to different growth factors 

and secreting certain extra cellular matrix proteins (Phipps et al., 1997; Schor et al., 1996; 

Zhang et al., 2009), while its oral epithelium counterpart has shown remarkable promise 

for the treatment of ocular disorders (Chen et al., 2012; Nakamura et al., 2004; Nakamura 

et al., 2003). Progenitor cells and multipotent MSC subpopulations have been isolated and 

characterised from gingival fibroblasts (Fournier et al., 2010; Hsu et al., 2012; Mitrano et al., 

2010). The straightforward isolation of gingival fibroblasts makes them a very practical 

source of dental stem cells and they have also been recently reprogrammed to form IPSC 

lines (Wada et al., 2011).  

 

 

 

 

 

 

 

 

 

Figure 1.6 Summary of dental stem cell sources 
DPSC: dental pulp stem cell; PDL: periodontal ligament; PDLSC: periodontal ligament stem cell; SCAP: 

Stem cells from the apical papilla; SHED: Stem cells from exfoliated deciduous teeth; DFSCs: dental 

follicle stem cells; GSCs: gingival stem cells (adapted from (Huang, 2009)). 
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1.4 Pericytes 

 

Pericytes are known as mural or Rouget cells that are located along the 

abluminal endothelial wall of microvessels including arterioles, capillaries and venules 

(Bergers and Song, 2005; Crisan et al., 2009; da Silva Meirelles et al., 2008). These 

morphologically distinct cells are embedded within the basement membranes of 

microvasculature and possess cell bodies with prominent nuclei in relation to the 

cytoplasm, from which long processes extend and physically contact and communicate 

with endothelial cells lining the inner vessel wall (Allt and Lawrenson, 2001). Together, 

pericytes and endothelial cells synergistically contribute to the function and maintenance 

of blood vessels via soluble factors and physical interactions (Armulik et al., 2005).  

 

1.4.1 The perivascular niche   

 

Efforts to trace the identity of tissue-resident MSCs have consistently suggested their close 

association with vasculature (Corselli et al., 2010). In 2009, a study on equine adipose 

tissue revealed that MSC frequency positively correlates with higher blood vessel density 

(da Silva Meirelles et al., 2009) while in bone marrow, the quantity of MSCs (CFU-F) per 

nucleated marrow cell decreased with age, corresponding to the reduction in vascular 

density in older individuals (Caplan, 2009). Furthermore, perivascular cell markers are also 

expressed by MSCs including NG2, Stro-1, αSMA, Thy-1, V-CAM1 and PDGFβ (da Silva 

Meirelles et al., 2008). Based on the expression of a combination of markers (CD146, NG2 

and PDGFR-β) and the absence of hematopoietic, endothelial and myogenic markers, 

vascular pericytes from multiple human organs have been identified (Crisan et al., 2008a). 

On the basis of this evidence, MSCs seem likely to reside within widespread “perivascular 

niches” along microvessels throughout the body. The proximity to vessels would allow 
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pericytes rapid access into the bloodstream to replace cells lost due to physiological 

turnover or repair of local tissue injury (da Silva Meirelles et al., 2008).  

Other evidence to suggest the relationship between MSCs and pericytes is their common 

multipotent feature. Pericytes have long been suggested as progenitors for tissue repair 

(Richardson et al., 1982). Using thermally injured fat pads of rats, cells local to the wound 

appeared liberated from their anatomical site and 5 days post injury, adipocytes together 

with neo-vascularisation was observed; demonstrating the capacity of pericytes to 

differentiate into adipocytes during the wound healing process (Richardson et al., 1982). 

Later on, generation of bone and cartilage was also observed using labelled perivascular 

cells during periosteal bone healing and in grafted perichondrium respectively (Diaz-Flores 

et al., 1992a; Diaz-Flores et al., 1992b). Roles for pericytes as progenitors for neural and 

muscle lineages has also been suggested (Dore-Duffy et al., 2006; Meyrick and Reid, 1978). 

While both in vitro and in vivo experiments have shown that in addition to their clonal 

osteogenic, chondrogenic and adipogenic potential, which fulfils a key MSC criteria, 

pericytes retain myogenicity regardless of whether they are isolated from human muscle 

or non-muscle tissues (Crisan et al., 2008b). Furthermore, it was recently shown that 

cultured human perivascular cells transplanted in vivo, enhanced cardiac improvement 

post-infarction in mice (Chen et al., 2013).    

In further support of the perivascular/MSC niche concept, in common with MSCs, pericytes 

natively express markers CD44, CD73 and CD90, possibly reflecting their developmental 

affiliation. Furthermore, cultures of MSC-like cells have been generated from cells isolated 

with pericyte-specific markers CD146 and PDGFR from human endometrium and were 

shown to be phenotypically and functionally similar to MSCs (Schwab and Gargett, 2007).  

Classic label retaining cell (LRC) assays have been used to identify stem/progenitor cells 

based on the retention of nucleotide label incorporated into the DNA of cells during DNA 
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synthesis in slowly proliferating stem cells (Lajtha, 1979; Potten et al., 1979). In the PDL of 

mouse molars, slowly cycling stem cells were identified using 3H-thymidine pulse 

experiments followed by radioautographic analaysis. Cells located in close proximity to 

blood vessels (<10µm) were label retaining (slow-cycling) while proliferating cells that lost 

their labelling upon cell division were detected at distances further than 10µm from blood 

vessel walls. This evidence supports the notion that slowly dividing populations of 

progenitor cells are resident in perivascular locations (McCulloch, 1985). Other congruent 

recent data from murine endometrium indicates the presence of perivascular BrdU LRCs 

(after a 12 week chase period) positive for α-SMA and lacking expression of CD31 or CD45 

assuring pericyte origin (Chan and Gargett, 2006). Taken together, these results provide 

evidence in support of the hypothesis that pericytes are possibly in vivo native cells of the 

well characterised ex vivo MSCs (Augello et al., 2010). 

 

1.4.2 Perivascular cells of the dental pulp 

 

To date, all pioneering studies in search of dental pulp stem cell populations have 

presented consistent expression of pericyte/perivascular markers (Gronthos et al., 2000; 

Miura et al., 2003; Sonoyama et al., 2006). Immunoselection of perivascular cells from 

human dental pulp based on positive expression of pericyte markers and negative 

expression of endothelial cells have demonstrated that isolated fractions generated 7 fold 

greater CFU-Fs than unfractionated dental pulp cells (Shi and Gronthos, 2003). Moreover, 

in comparison to BMMSCs, FACS sorted subfractions of CD146 positive clonogenic dental 

pulp cells contained a larger proportion (63%) of pericyte-associated cell surface antigen 

(3G5) positive cells, while in bone marrow only a minority were positive for 3G5. 

Subsequent in vivo transplantation of these cells demonstrated the capacity to regenerate 
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bone marrow and dental pulp microenvironments (Shi and Gronthos, 2003). These findings 

may correspond to a common ontogeny between dental pulp tissue and pericytes 

originating from neural crest derived cells (Chai et al., 2000) and suggest DPSCs reside 

within perivascular niches inside the dental pulp. 

Further in vivo tooth damage LRC studies on extracted human immature third molars 

drilled to artificially produce pulp cavities demonstrated localised labelling of perivascular 

cells surrounding blood vessels after 1 day of BrdU uptake. When collected 2 or 4 weeks 

post BrdU labelling, the labelled perivascular cells had proliferated, migrated and were 

observed restricted to the cavity area only, suggesting that the progenitor/stem cell niche 

resides predominantly in perivascular regions from which they migrate to the site of injury 

(Tecles et al., 2005). While in another study involving rat molar odontoblast injury, 

pericytes both nearby and distant from the injury were shown to be activated by the Notch 

signalling pathway, known to be important for controlling stem cell fate (Lovschall et al., 

2005). In recent years, EphB/ephrin-B molecules have also revealed important roles in 

signalling DPSC in tooth maintenance and their receptor/ligand expression within the 

perivascular sites demonstrated involvement in response to tooth damage (Arthur et al., 

2009; Stokowski et al., 2007). While in the continuously growing mouse incisor model, LRC 

studies have identified slowly dividing pulp mesenchymal cells close to the epithelial stem 

cell niche (Lapthanasupkul et al., 2012; Seidel et al., 2004) and perivascular MSCs have 

been identified using cre-mediated genetic lineage tracing of pericytes (Feng et al., 2011).  

Using the NG2creER;Rosa26R pericyte reporter line mice, pericytes were shown to 

differentiate into odontoblasts during tooth growth and in response to damage in vivo. 

However, in both cases, pericyte contribution did not account for all of the cell 

differentiation since only 15% of the newly formed odontoblasts were pericyte derived. 

This suggested that an additional source of non-pericyte derived MSC cells coexists with 

those that are of pericyte origin (Feng et al 2011). In their odontoblast injury study, using 
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Dil labelling in different regions of the mouse incisor pulp to identify any responses to 

tooth damage, cells labelled in the cervical area migrated to the damaged area after 2 days, 

while in the absence of damage, the cells remained quiescent. This provides evidence that 

a distinct population of MSCs are resident close to the cervical end of the incisor (Feng et 

al., 2011). Taken together, the role of the perivascular niche may be to maintain the DPSCs 

in their functional state and pericyte contribution to MSC-derived mesenchymal cells in 

any given tissue is variable and may be dependent on the extent of the vascularity. 

 

1.5 Dental stem cells for injury repair  

 

Inside the pulp chamber of teeth, compact nonhematopoietic fibrous tissue is permeated 

by a microvascular network that is entombed by mineralized dentine (Shi and Gronthos, 

2003). Together they form the dentine-pulp complex which displays a remarkable and 

entirely natural, albeit limited regenerative potential in response to injury (reviewed by 

(Sloan and Smith, 2007; Sloan and Waddington, 2009). Following primary dentinogenesis 

during tooth formation, the post-mitotic odontoblasts remain functional in that they retain 

their ability to respond to mild injury, such as attrition or early caries, whereby surviving 

odontoblasts up-regulate secretory activity resulting in the formation of “reactionary 

dentine” without other pulp cell involvement (Smith et al., 1994). However, damage of 

greater intensity that result in odontoblast death requires cell renewal by a new 

generation of odontoblast-like cells differentiated from a local progenitor population 

resident in the pulp and this process is termed “reparative dentinogenesis” (Smith et al., 

1995a). Endogenous dentine extracellular matrix components were capable of stimulating 

odontoblasts to secrete reactionary dentine when implanted into unexposed cavities in 

ferret teeth for 14 days (Smith et al., 1994). The absence of odontoblast death confirmed 
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that reactionary dentinogenesis can arise from interactions between existing odontoblasts 

and appropriate molecular stimuli in contrast to the reparative process, where a whole 

new cascade of biological events such as proliferation, chemotaxis, cell migration and 

finally terminating in cytodifferentiation are necessary to provide a new generation of 

odontoblast-like cells prior to matrix secretion (Smith et al., 1995a). Underpinning these 

reparative/regenerative processes are several important bioactive molecules that signal 

and regulate tertiary dentine production and are sequestered within the dentine matrix. In 

particular, members of the TGF-β family including TGF-β1, β3 and BMP-7 have been shown 

in vitro to stimulate odontoblast secretions (Sloan et al., 2000; Sloan and Smith, 1999). 

Using cultured rat incisor tooth slices, it was shown that TGF-β1 and TGF-β3 soaked beads 

stimulated predentine secretion at the bead application site (Sloan and Smith, 1999). While 

BMP-7 soaked beads similarly led to increased extracellular matrix secretion by the 

odontoblasts located at the site of application (Sloan et al., 2000). During reparative 

dentinogenesis, ECM components released local to the site of injury are likely to provide 

chemotactic stimuli for pulp cell recruitment of those within the immediate vicinity of the 

damage but also progenitors resident in quiescent niches in other areas of the pulp. 

Knowledge of the underlying mechanisms by which pulp cell recruitment occurs holds 

exciting possibilities in the development of therapeutic strategies to target endogenous 

dental pulp stem cells for regenerative dentistry. However, vital to this will be 

understanding the niches in which the progenitors reside in order to exploit their function 

by either maximising recruitment or even influencing specific populations recruited for 

greater specificity to tissue response. One possible population are the perivascular 

stem/progenitor cells in light of the local angiogenic response common to all wound repair 

sites (Sloan and Smith, 2007). Pulp cell mobilization has been demonstrated to involve bi-

directional EphB/EphrinB interactions and suggest a role for perivascular DPSC attachment 

and migration to maintain these cells within their stem cell niche under steady state 
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conditions (Stokowski et al., 2007). A follow up study by the same group using the tooth 

injury model showed in the presence of ephrin-B1-Fc fusion protein, not only were 

perivascular BrdU positive cells retained at the injury site, but colony forming capacity was 

also increased both in size and number suggestive of a role in restricting mobilization of 

DPSCs from the perivascular niche and/or increase in proliferation and growth (Arthur et 

al., 2009). Moreover, reverse signalling in the presence of EphB2-Fc revealed enhanced 

mineralization capacity, which may be associated with the stimulation of odontogenic 

differentiation (Arthur et al., 2009). The potential role of other signalling molecules SDF1, 

bFGF, and BMP7 could play in the migration of dental stem/progenitor was recently 

investigated. Using 3D migration assays, bFGF and SDF1 enhanced migration while BMP7 

had little effect, most likely because the latter induced odontoblastic/osteoblastic 

differentiation of dental pulp cells (Suzuki et al., 2011). Migration of DPSCs from specific 

dental pulp niches in response to injury and the underlying mechanisms that regulate this 

process involves a diverse range of signalling pathways and therefore remains an area of 

ongoing enquiry. A useful model would be to investigate repair responses in healthy vs 

damaged tissues in a continuously growing organ where a readily active pool of stem cells 

provides an opportunity to study the delicate balance between maintenance and repair, 

such as the continuously growing rodent incisor.     
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1.5.1 Wnt signalling and injury repair 

 

Wnt proteins belong to the large family of secreted ligands that activate several receptor 

mediated pathways and plays a fundamental role in diverse embryonic developmental and 

cellular processes such as embryonic induction, generation of cell polarity and specification 

of cell fate (Cadigan and Nusse, 1997; Logan and Nusse, 2004). This pathway is also 

essential for morphogenesis and homeostasis of several oral organs including teeth, taste 

buds, salivary glands and oral mucosa (Yang and Liu 2013) (Liu and Millar, 2010). The 

importance of this signalling pathway is not limited to influencing embryogenesis, in adults, 

the maintenance of stem cells for tissue homeostasis is also Wnt regulated and its 

disruption is linked to diseases such as cancer (Moon et al., 2004; Nusse, 2008; Reya and 

Clevers, 2005).   

At the cell membrane, the Wnt signalling cascade begins when the Wnt family protein 

interacts with its receptor Frizzled (FZD) and LDL receptor related protein (LRP) family of 

co-receptors. Upon Wnt receptor activation, several different pathways can be activated, 

among these, the most extensively studied is the canonical, also known as the β-catenin 

pathway. In the absence of Wnt, β-catenin, a component of intercellular adhesion 

junctions is recruited to the “destruction complex” consisting of adenomatous polyposis 

coli (APC) and Axin proteins, which phosphorylate β-catenin by casein kinase I (CK1) 

followed by glycogen synthase kinase 3β (GSK3β). This results in ubiquitination and 

protease-mediated degradation of β-catenin (Moon et al., 2004). 

When the β-catenin pathway is activated, interaction of FZD with the cytoplasmic 

dishevelled (DSH) protein results in phosphorylation of DSH and the inhibition of GSK3β, 

causing the inactivation of the destruction complex. This allows the stabilization of 

cytoplasmic β-catenin and its subsequent translocation and accumulation in the nucleus 
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where it interacts with T-cell factor (TCF) and lymphoid enhancer-binding protein (LEF) 

transcription factors to activate the transcription of downstream Wnt target genes (Figure 

1.7).  
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Figure 1.7 Schematic of WNT/β-catenin signalling 
In the absence of active WNT (a), β-catenin is degraded, and prospective target genes are in a 

repressed state. If WNT signalling (b) is active, β-catenin degradation is reduced. As β-catenin 

accumulates, it enters the nucleus, binds to T-cell factor (TCF)- and lymphoid enhancer- binding 

protein (LEF)-family transcription factors and activates transcription. The components shown are 

described in more detail in the text; additional pathway components are described on web sites 

that are linked to the main text. APC, adenomatous polyposis coli; β-cat, β-catenin; CBP, CREB-

binding protein; CK, casein kinase; DKK, Dickkopf; DSH, Dishevelled; GBP, GSK3- binding protein; GSK, 

glycogen synthase kinase; LRP, LDL- receptor-related protein; P, phosphorylation; sFRP, secreted 

Frizzled-related protein; TCF, T-cell factor (Moon et al., 2004). 
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Wnt signalling is known to be elevated during injury to mammalian and some aquatic 

species. Injury is thought to trigger the upregulation of the endogenous Wnt pathway and 

is implicated in the subsequent healing of the wound. Growing evidence implicates the 

Wnt pathways as essential to stimulate the recruitment of stem/progenitor cells for tissue 

regeneration and repair (Whyte et al., 2012). In animals capable of regeneration for 

example zebrafish and axolotls, inhibition of Wnt signalling disrupts or impairs dorsal fin, 

retinal and limb regenerative capacity respectively (Gurley et al., 2008; Kawakami et al., 

2006; Ramachandran et al., 2011). Blocking Wnt is thought to disrupt the recruitment of 

stem/progenitor cells to the site of injury and in skin it was shown in mice that inhibition of 

this pathway resulted in the prevention of effective healing of the epidermis as hair and 

sweat gland was absent. Interestingly, overexpression of Wnt ligand (Wnt-7a) in the 

epidermis promoted hair follicle neogenesis, a key criteria of functioning skin (Ito et al., 

2007). Both hair and teeth are derivatives of the ectoderm and share common 

developmental regulation of sequential and reciprocal interactions between the 

epithelium and mesenchyme (Pispa and Thesleff, 2003). Thus, unsurprisingly, Wnt 

signalling has been shown to play an integral role during odontogenesis and several Wnt 

genes are broadly expressed in the oral and dental epithelium (Sarkar and Sharpe, 1999). 

Targeted inactivation of lymphoid enhancer factor-1 (LEF-1), a nuclear mediator of Wnt 

signalling, leads to the arrest of tooth development at the bud stage (Kratochwil et al., 

2002; Sasaki et al., 2005; van Genderen et al., 1994). More recently, expression of Axin2 

has also indicated a role for canonical Wnt signalling in the development of the crown and 

root during both pre- and postnatal tooth development (Lohi et al., 2010). In terms of 

dental tissue repair, Yamashiro and colleagues demonstrated that Wnt10a is specifically 

expressed in the odontoblast cells in mouse molars and co-localises with dentin 

sialophosphoprotein (DSPP)(Yamashiro et al., 2007). This tooth specific non-collagenous 

matrix protein regulates dentine mineralisation and is secreted in fully differentiated 
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odontoblasts (Arana-Chavez and Massa, 2004). Thus indicating that Wnt plays a role in 

regulating dentine mineralisation in the mature secretory odontoblasts and further 

evidence of specific Wnt10a expression in epithelial secondary enamel knots reveals a 

potential link between tooth morphogenesis and differentiation of odontoblasts that is 

Wnt associated (Yamashiro et al., 2007). Other research implicating the importance of Wnt 

signalling in dentinogenesis derives from data showing that the inhibition of mesenchymal 

Wnt/ β-catenin by Dickkopf-related protein 1 (Dkk1) (a potent antagonist of the pathway) 

over-expression in mice leads to impaired post-natal mandibular molar dentine formation 

(Han et al., 2011). Collectively, these data suggest Wnt/ β-catenin signalling originating 

from the pulp mesenchyme is key to the formation of dentine, thus local modulation of 

this pathway could provide therapeutic benefits and enable effective tooth regeneration 

(Yang and Liu, 2013). However, to date, little is known about the in-vivo response during 

tooth damage in terms of Wnt signalling, thus future work focusing on this will yield 

further clues to the mechanisms and interplay with other cellular processes important for 

tooth repair. In order to monitor the Wnt/ β-catenin signalling activity in vivo, mouse 

reporter lines should be used. At present, several reporter lines have been developed to 

follow canonical Wnt signalling activity, the TCF Optimal Promoter (TOP)-β-galatosidase 

(TOPGAL) reporter line allows the detection of β-catenin/TCF complexes as does the β-

catenin Activated Transgene (BAT)-β-galatosidase (BATGAL) reporter (DasGupta and Fuchs, 

1999; Maretto et al., 2003). While the Axin2LacZ reporter line is considered the most 

accurate readout for canonical Wnt signalling because the lacZ reporter gene is knocked 

into the Axin2 locus and therefore is under control of the Axin2 promoter, which is a direct 

transcriptional target of Wnt/ β-catenin signalling (Lustig et al., 2002). Axin2 also known as 

Conductin or Axil, is a homolog of Axin within the cytoplasm and forms part of the 

destruction complex thus forms a negative feedback loop in the pathway (Jho et al., 2002). 

Interestingly a study comparing the lungs of the three described Wnt reporter mouse lines 
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revealed that the optimal choice of Wnt reporter line is based upon whether an up- or 

downregulation of Wnt activity is being evaluated. However, Alam and colleagues 

concluded that the Axin2LacZ mouse line is most robust for the detection of Wnt signalling 

especially in the context of injury (Al Alam et al., 2011).   

 

1.6 Aim of the research project 

 

MSCs are a population of cells resident in adult stromal tissues responsible for tissue 

growth and/or repair, whose biology has mainly been studied in vitro. The rodent incisor is 

a continuously growing organ and provides an excellent model to study MSC contributions 

to both growth and repair. Previous reports have demonstrated a role for pericytes during 

injury repair of the mouse incisor and that growth is supported by the MSCs that reside in 

a niche at the cervical end of the tooth. Interestingly, the MSCs responsible for growth also 

have the capacity to respond to injury. Based on this, the hypothesis was that 

mesenchymal pulp cells from different anatomical regions of the incisor display varying 

stemness and in vitro characterization of these cells was conducted initially. Since cell 

migration is a process believed to be involved in effective injury repair, the cell migration 

capacity of the pulp cells was analysed to address the question of what molecular 

mechanisms underlie stem cell recruitment. 

The properties of MSCs in vitro alone cannot accurately reflect the in vivo response to 

injury. Given that canonical Wnt signalling plays crucial roles in tooth development, 

postnatal dentinogenesis as well as stem cell regulation, this signalling pathway was 

hypothesised to be involved in tooth injury and repair. Experimental in vivo damage 

experiments were conducted to address this, using both wild type and a Wnt reporter 

mouse line. Since pericytes have already been described to contribute to incisor tooth 

repair, it is likely that the pericytes are a candidate population to respond to injury 
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response cues such as Wnt signals therefore, lineage tracing of the pericytes in the context 

of in vivo tooth damage in molars was also investigated. 

From a different perspective of studying the mouse incisor, we examined the incisal tips. 

The lifelong growth of these teeth is counterbalanced by attrition at the tip via feeding and 

gnawing. This therefore provides an opportunity to analyse an alternative form of constant, 

natural tooth damage in situ. The tip is distant from the cervical loop which is where most 

of the stem cell population for growth is located, so we hypothesised that the population 

responsible for its maintenance would likely be of a different origin such as the pericyte 

population. Using this unique injury model designed by nature, mesenchymal tissue organ 

repair was mimicked and confirmed a pericyte role for a proposed “incisal tip niche”.  
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2. Materials and methods 

2.1 Reagents and solutions 

2.1.1 In vitro cell culture 

 

Alcian blue      Sigma, A5268 

Alizarin Red S      Sigma, A5533 

AlphaMEM medium     Lonza, BE02-002F  

Antibiotic-antimycotic solution    Sigma, A5955 

Ascorbic acid      Sigma, 49752  

Dulbecco’s phosphate buffered saline   Sigma, D8537 

Fetal bovine serum     Lonza, DE14-801F 

Oil Red O      Sigma, O0625 

STEMPRO adipogenesis kit    Gibco, A10070-01 

STEMPRO chondrogenesis kit    GIbco, A10071-01 

STEMPRO osteogenesis kit    Gibco, A10072-01 

TryplE Express      Gibco, 12563-011 

FGF8       R&D Systems, 423-F8 

BFGF       R&D Systems, 233-FB 

BMP4       R&D Systems, 314-BP 

WNT3A       R&D Systems, 1324-WN 
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2.1.2 Tissue processing 

 

DePex mounting medium    BDH, 360294H  

Diethyl pyrocarbonate (DEPC)    Sigma, D5758 

Ehrlich's Haematoxylin     Solmedia, HST003 

Eosin, aqueouos solution (0.5% Eosin Y in distilled H2O) Riedel-de Haën, 32617 

Ethanol       VWR, 101077Y 

Ethylenediaminetetraacetic acid (EDTA)   VWR, 20302.293 

Formic acid, 98%     Fisher, F/1850/PB17 

Histoclear       National Diagnostics, HS-202 

Neomount mounting medium    Merck, 1090160500 

Paraformaldehyde     Sigma, P6148 

Ultraplast Polyisobutylene Histological Wax             Solmedia, WAX060 

 

2.1.3 β-galactosidase staining 

 

1,2,3,4 -Tetrahydronaphthalene     Sigma, 429325 

5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal)           Fermentas, R0404 

Eosin, Alcoholic Solution (in Ethanol) 

0.25% Eosin Y disodium salt    Riedel-de Haën, 32617 

21% Distilled H2O  
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0.5%ml Glacial Acetic Acid     VWR, 20104.334 

Glutaraldehyde                   MERCK, 1042390250 

IGEPAL CA-630 (NP-40)      Sigma, I3021 

Magnesium chloride (MgCl2)     Fisher, BP214-500 

Methanol   Fisher, M/4056/PB17 

Nuclear Fast Red (in H20) 

0.2% Nuclear Fast Red     Sigma, 60700 

10% Aluminum potassium sulfate              Fisher, A/2400/53 

Phosphate buffered saline (PBS) Fisher, BP-665-1 

Potassium ferricyanide (K3[Fe(CN)6])     BDH,102044D 

Potassium ferrocyanide (K4[Fe(CN)6])    BDH, 102054F 

Propan-2-ol (isopropanol)           AcorsOrganics, 389710025 

Sodium deoxycholate      Sigma, D6750 

Trizma® base (Tris base)         Sigma, T1503 

 

2.1.4  Molecular biology techniques 

 

5-alpha Competent E. Coli cells     New Eng Biolabs,C2988J 

Ampicillin Sodium Salts (50 mg/ml)     Sigma, A9518 

Fast Plasmid® Mini          Eppendorf AG, 955150601 
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Luria-Bertani (LB) broth      

  1% Tryptone       Oxoid, LP0042 

  1% NaCl          BDH, 102415K 

  0.5% Yeast      Oxoid, LP0021 

Luria-Bertani (LB) agar        

  1% Tryptone      Oxoid, LP0042 

  1% NaCl         BDH, 102415K 

  0.5% Yeast      Oxoid, LP0042 

  1.5% Agar      Oxoid, LP0011 

QIAGEN Plasmid Maxi Kit     QIAGEN, 12163 

QIAquick® Gel Extraction Kit     QIAGEN, 28706 

Restriction enzymes and buffers     Promega 

 

2.1.5 In-situ hybridization  

 

Polymerase enzymes         Promega 

Acetic anhydride      BDH, 100022M 

Anti-Digoxigenin-AP Fab fragments    Roche, 11093274910 

BCIP (5-Bromo-4-chloro-3-indolyl-phosphate)        Roche, 11383221001 
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Boehringer Blocking Reagent     Roche, 11096176001 

CHAPS        Sigma, C3023 

50x Denhardt’s       

1% (w/v) Ficoll 400     Sigma, F4375 

1% (w/v) Polyvinylpyrrolidone    BDH, 436032C 

1% (w/v) Bovine Serum Albumin   Sigma, A9647  

50% Dextran sulphate      Chemicon, 0702051849 

DIG RNA labelling Mix (10X)                   Roche, 11277073910 

DL-Dithiothreitol (DTT)                 MP Biomedicals, 100597  

Formamide       Merck, K36952408 

Glycine        Sigma, G7403 

Heparin lithium salt, from Porcine Interstinal mucosa  Sigma, H08078 

IGEPAL CA-630       Sigma, I3021 

NBT (4-Nitro blue tetrazolium chloride)         Roche, 11383213001 

Polyvinyl alcohol      BDH, 297914D 

Proteinase K       Sigma, P2308 

SDS (Sodium dodecyl sulfate)     Severn, 30-33-50 

SigmaSpin™Post-Reaction Clean-Up Column   Sigma, 5059 

TEA (Triethanolamine)      BDH, 103704U 
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Triton® X-100 (Iso-Octylphenoxypolyethoxyethanol)  BDH, 306324N 

tRNA (RNA from yeast)        Roche, 109223 

Tween-20       Sigma, P7949 

 

Table 1. Details of plasmids used for making probes 
 

Gene Vector Size of 

insert 

Digestion enzyme to 

linearise plasmid DNA 

Polymerase enzyme to 

generate antisense probe 

Axin2  2.5kb XbaI T7 

Ptc1 pBluescript 1kb BamHI T3 

 

 

2.1.6 In-vivo administered chemicals 

 

Tamoxifen                  Sigma, T5648  

Corn oil          Sigma, C8267 

Tetracycline                                                                                      Sigma, T4062 

EMLA anaesthetic      Centaur, 21190516  

Hynorm       Centaur, 30209036 
 
 
Hynovel       Centaur, 23191407 

Buprenorphine       Centaur,30276871 
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2.2 In-vitro experimental procedures 

 

2.2.1 Primary rat dental pulp cell culture 

 

Dental pulps from five day old wistar rat pups were used for all in vitro experiments. The 

animals were sacrificed by cervical dislocation followed by decapitation. Using sterile 

tweezers, both mandibular and maxillary incisors were carefully dissected out in cold 

sterile 1XPBS supplemented with antibiotic-antimycotic solution. The dental pulp was then 

extracted by squeezing the tooth gently to withdraw the whole pulp mesenchyme. The 

tissue was then divided into the cervical loop and incisor body regions by removing a small 

section of the central region of the pulp to ensure two distinct populations (Figure 2.1). 

After washing with sterile 1XPBS, the dissected tissues were minced into fine pieces and 

digested with TrypLE Select by incubating at 37oC. Digestion was monitored every 10-15 

minutes by aspirating and resuspending the tissue until the solution became cloudy and 

individual pieces of tissue was no longer observed. The cells were centrifuged at 1200rpm 

for 5 minutes followed by removal of the supernatant and resuspension in expansion 

medium consisting of Alpha Minimum Essential Medium (αMEM) supplemented with 15% 

fetal bovine serum, 1% antibiotic-antimycotic and 0.1% 0.1M L-ascorbic acid. The 

resuspended cells were then filtered through a 70µm cell strainer to obtain single cell 

suspensions. 
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Incisor body 

Cervical loop 

Overlapping region 

removed and discarded 

 

 

 

 

 
Figure 2.1 Schematic of the rat incisor pulp 
After extraction of the intact dental pulp, and removal of the dental epithelium, the overlapping 

region between the cervical loop and the incisor body was removed to ensure two distinct 

populations of cells. In this experimental work, where the text refers to “cervical loop” and “incisor 

body” cells, unless otherwise stated, this refers to mesenchyme derived pulp cells only. 

Abbeviations CL: cervical loop, IB: incisor body.  

 

2.2.2 Growth curve 

 

Cervical loop and incisor body cells were seeded into 3, 6 well plates at a density of 1x104 

cells per well and cultured in αMEM expansion medium at 37oC , 5% CO2. Media was 

replaced every 2-3 days and cells were counted in triplicate by trypan blue exclusion at 

days 3, 6, 9, 12, 15 and 18 after seeding. The mean and standard deviation were calculated. 

 

2.2.3 Differentiation experiments 

2.2.3.1 Osteogenic differentiation  

 

Cells were seeded into 24 well plate wells at 5x103 cells/cm2 with αMEM and incubated at 

37oC, 5% CO2 , in a humidified atmosphere for 4 days before replacing with osteogenesis 

differentiation medium (Gibco-Invitrogen, Paisley, UK) supplemented with 1% antibiotic-



 2. Materials and Methods 
 

64 
 

antimycotic. Media was replaced every 3 days and the osteogenic cultures were fixed and 

processed for 0.2% Alizarin Red S staining after 9 days to visualise calcium deposition.  

2.2.3.2 Chondrogenic differentiation 

 

Micromass cultures were generated by seeding 5μL droplets of 80,000 cells in the centre of 

24 well plate wells and incubating at 37oC for 2 hours under humidified conditions. After 

allowing the cells to attach, warmed chondrogenesis media (Gibco-Invitrogen, Paisley, UK) 

supplemented with 1% antibiotic-antimycotic was added to the wells taking care to avoid 

disturbing the cell micromass. Cultures were refed every 2-3 days, after 16 days the 

chondrogenic pellets were processed for Alcian blue staining. For alcian blue staining the 

cells were washed with PBS twice and fixed in 4% paraformaldehyde for 30 minutes. Alcian 

blue solution was prepared first (0.5% Alcian blue in 95% ethanol) then, cells were washed 

twice with 0.1M HCl before incubating overnight with a  4:1 solution of alcian blue (4:1 

0.1M HCl to Alcian blue) at room temperature. Cells were washed with 70% ethanol before 

observing for the presence of blue staining demonstrating synthesis of proteoglycans. 

 

2.2.3.3 Adipogenic differentiation 

 

Cells were seeded at a density of 1x104 cells/cm2 into 24 well plate wells and cultured in 

αMEM for 4 days in 37oC, 5% CO2, under humidified conditions before replacing with 

adipogenic differentiation medium (Gibco-Invitrogen, Paisley, UK) supplemented with 1% 

antibiotic-antimycotic. The cultures were refed every 3-4 days. After 3 weeks in culture, 

the cells were washed and fixed as previously described. Oil red O working solution was 

prepared by diluting 30mL of stock stain (0.5g Oil Red O dissolved in 100mL isopropanol 

using gentle heat from a water bath) with 20mL distilled water. After leaving to stand for 
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10 minutes, the solution was filtered and used immediately. Cells were washed in distilled 

water for a few minutes, rinsed in 60% isopropanol, stained with freshly prepared Oil Red 

O working solution for 10 minutes, rinsed in 60% isopropanol again. Cells were rinsed with 

distilled water and observed for the presence of red stained lipid droplets.  

 

2.2.4 CFU Assay 

 

Colony forming assays were performed by seeding 103 cells/well into 6 well culture plates 

in αMEM expansion medium. Medium was changed every 3 days and after 2 weeks the 

wells were stained directly with crystal violet (0.5% in 2% ethanol) to visualise colony 

formation. Whole 6 well plates were scanned in an Epson 1200U photo scanner and 

colonies were quantified using Image J software where >50 cells was classed as a colony.   

 

2.2.5 Scratch migration assay 

 

The cells were seeded with αMEM medium at a density of 6x104 cells/ well into 12 well 

plates and cultured until confluent. After reaching confluency a wound was created by 

scraping a channel into the monolayer in each well using the P100 pipette tip. Images were 

taken daily until closure of the gap. Wound areas were measured using Image J software 

and the rate of wound closure was calculated. 
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2.2.6 Transwell migration assay  

 

Prior to seeding, the lower surface of the transwell membranes were coated with collagen 

type I (10µg/mL) for 1 hour inside a 37oC, 5% CO2 humidified tissue culture incubator. 

Dental pulp cells were seeded in triplicate onto the upper surface of the transwell 

membrane in migration buffer (2mM CaCl2, 1mM MgCl2, 0.2mM MnCl2 and 0.5% BSA) at a 

density of 2.5x104  cells/ well. The bottom wells were filled with the same migration 

medium with 10ng/mL FGF8b, 100ng/mL bFGF, 100ng/mL BMP4, 100ng/mL Wnt3a or 

without growth factors and the 24 well plate was subsequently incubated at 37oC for 24 

hours. For analysis, the media within the transwells was discarded and the upper surface of 

the membrane was scrubbed with a cotton swab to remove the non migrated cells (Figure 

2.2). After washing briefly in 1X PBS, the whole membrane was then fixed in 4% PFA for 15 

minutes at room temperature followed by staining in 0.5% crystal violet in 2% ethanol. 

Excess staining was gently rinsed off with tap water and the inserts were air dried 

overnight at room temperature. To quantify cell migration, 18 random microscopic fields 

were chosen for analysis and images were taken on a Zeiss microscope with the AxioCam 

HRC (Zeiss) using the Axiovision software. 

 

 

 

 

 
Figure 2.2 Non-migrated cell removal in transwell assay 
To verify the efficiency in removal of the non-migrated cells on the upper surface of the membrane, 

images were taken before and after scrubbing with the cotton bud. Non-migrated cells are visible 

prior to cell removal (A) and are entirely removed following the scrubbing process (B). Scale bars 

represent 300µm. 
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2.2.7 MTT Assay  

 

Cells were seeded in triplicate at a density of 5x103 cells/well (100µL) into a 96 well plate 

with migration medium containing growth factors as described in section 2.2.6. Triplicate 

wells without growth factors were used as controls. After a 24 hour incubation period at 

37oC, the medium was removed and replaced with 25µL of MTT (5mg/mL) followed by 

incubation for 4 hours at 37oC to allow the cells to metabolise MTT and yield purple 

formazan crystals. All media was removed from each well and the cells were then lysed 

with 100µL of extraction buffer (20% SDS in 50% dimethyl formamide) per well. The plate 

was then swirled gently before reading absorbance at 570nm using a spectrophotometer 

plate reader. 

 

2.2.8 Scratch migration towards dentine 

 

Cells were seeded into 10mm x 35mm cell culture dishes (Greiner, CELLSTAR) using αMEM 

expansion medium cultured until 100% confluent. Once confluency was reached, cells 

were removed from half of the dish using a cell scraper (Sarstedt) and twice rinsed in PBS 

to remove any remaining floating cells. After replacing each well with fresh αMEM, the cell 

free zone was dried by tilting the plate to expose it to air, taking care to avoid drying the 

wound edge. Using collagen II solution (BD Biosciences) a single piece of fresh dentine 

approximately 2mm2 isolated from the lower incisor was attached to the cell free area 

2mm from the scratch wound edge before carefully returning the plate to a horizontal 

position (Figure 2.3). Images of the wound edge were taken daily using the Nikon Eclipse 

TS100 microscope to track cell movement.   
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Figure 2.3 Schematic of the scratch wound dentine assay 
Half the well of a confluent monolayer of cells was scraped to achieve a cell free zone in which 

freshly dissected dentine was adhered to using collagen. Abbreviations, cc: confluent cells, cfz: cell 

free zone, d: dentine.  

 

2.3 Collection of neonatal and adult mouse tissues 

 

All animal experiments were approved by the UK Home Office. Mouse colonies of wild type 

CD1 and transgenic mice were maintained with the assistance of Mr Alex Huhn. Neonatal 

and adult tissues were collected following the Home Office schedule one specification. For 

postnatal pups, the day the litter was born was assigned as postnatal day 0 (P0). Cervical 

dislocation was performed to sacrifice the animals followed by decapitation and the heads 

were collected in ice-cold 1XPBS. 

 

2.4 Tissue processing 

 

2.4.1 Fixation, decalcification and dehydration of mouse tissue 

 

Mandibles and maxillae of postnatal mice were carefully dissected in cold 1XPBS and 

subsequently fixed overnight in 4% paraformaldehyde (PFA) at 4oC. The P5 tissues were 

decalcified in 10% EDTA pH8.0 at 4oC for 1-2 weeks. For adult tissues, depending on the 

subsequent processing steps, the samples were either decalcified for 3-5 weeks with 

cc cfz 

d 

cc cc 



 2. Materials and Methods 
 

69 
 

Morse’s Solution (10% sodium citrate, 22.5% formic acid) at room temperature on a shaker 

or decalcified in 10% EDTA pH7.4 at 4oC for 4-6 weeks. All decalcifying solutions were 

changed every other day. Following fixation or decalcification, tissues were washed 

thoroughly with 1X nuclease- free PBS to eliminate residual fixative or decalcification 

solution.  

 

2.4.2 Paraffin wax embedding 

 

After decalcification, the samples were then dehydrated through a series of ascending 

ethanol concentrations (30%, 50%, 70%) the duration of each step was 6 hours – overnight 

per change and then subsequent further processing was conducted with the Leica ASP300 

Tissue Processor (Table 2). After the long incubation stage in Ultraplast wax, mandibles and 

maxillae were embedded sagittally using stainless steel moulds. Wax blocks were stored at 

room temperature until sectioned. 

Table 2. Tissue processing protocol 

 

Solution P5 tissue Adult tissue 

70% IMS 30 min 3 hours 

90% IMS 2 hours 3 hours 

4 x 100% IMS  2 hours each 3 hours each 

3 x Xylene 2 hours each 3 hours each 

3 x Ultraplast wax  2 hours each  4 hours each 
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2.4.3 Tissue sectioning and mounting 

 

Wax blocks were initially trimmed to remove excess wax and then sectioned using a 

microtome (Leica RM2245) to produce wax ribbons 7 µm in thickness. Consecutive sections 

were mounted onto glass slides (Superfrost®Plus, VWRTM) to achieve a series of slides each 

with a set of similar serial sections.  

 

2.4.4 Haematoxylin and eosin staining 

 

To view the general cell morphology, sections were stained with haematoxylin and eosin 

(H&E). Haematoxylin stains the nuclei blue while cytoplasm, connective tissue and other 

extracellular structures are stained pink or red by eosin. Selected sections were 

deparaffinized with 2 x 10 minute histoclear washes followed by rehydration through a 

graded series of 2 minute ethanol washes (100%, 90%, 70% and 50%). Afterwards, sections 

were washed for 10 minutes in distilled water before submersion in Erhlich’s Haematoxylin 

for 10 minutes. Excess haematoxylin was removed by washing the sections under running 

water for 10 minutes. Next, the sections were rinsed briefly in distilled water and then 

immersed in acid alcohol (0.5% HCl, 70% ethanol) for 15 seconds. The sections were then 

stained with 0.5% aqueous Eosin for 2 minutes and washed in distilled water before 

dehydration through a series of ethanol washes (70%, 90% and two 100%) for 2 minutes 

each. After clearing in two changes of histoclear, the sections were coverslipped with 

Neomount® under the fume hood. Sections were viewed in brightfield using the Zeiss 

microscope (Axioskope 2 plus) and captured with an AxioCam HRC using Axiovision 

software. 
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2.4.5 Aniline blue staining 

 

The slides were placed into two histoclear washes 10 minutes each, followed by 

rehydration in descending ethanol washes (100%, 90%, 70%, 50%) all at 2 minutes each, 

after a 2 minute deionised water wash the slides were stained with Ehrlich’s haematoxylin 

for 10 minutes. Afterwards, the sections were washed gently in running water for 10 

minutes and rinsed in deionised water before staining in 2.5% aniline blue for 2 minutes. 

Following this, the slides were rinsed briefly in deionised water and then submerged in 1% 

acetic acid for 5 minutes followed by another deionised water rinse. The slides were 

dehydrated with 90% ethanol (1 minute) and two 100% ethanol washes at 5 minutes each. 

Before coverslipping, with neomount the slides were cleared in two 5 minute washes with 

histoclear and subsequently left to dry overnight at room temperature in a fume hood. 

 

2.5 β-galactosidase staining for LacZ activity 

 

2.5.1 Whole mount β-galactosidase staining 

 

To visualise lacZ activity in the lacZ reporter mice samples used in this work, whole mount 

β-galactosidase staining was performed. After dissection, the samples (mandibles or 

incisors) were washed several times in 1XPBS followed by fixation in 1%PFA: 0.2% 

glutaraldehyde in 1XPBS solution at 4oC overnight. After fixation, to remove any remaining 

fixative, the samples were washed in 1XPBS three times followed immediately by 

incubation in x-gal staining solution (Table 3) in a 37oC oven and protected from light. After 

24 hours when adequate blue staining had developed, the samples were rinsed in 1XPBS 
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three times for 5 minutes each to stop the reaction followed by a post-fix step in 4% PFA 

for 1 hour at room temperature.  

 

 
Table 3. Reagents in X-gal staining solution 

 

 

 

 

 

 

 

 

 

 

2.5.2 Preparation of samples for cryo-embedding and sectioning 

 

Post-fixation, the whole mount x-gal stained samples were washed thoroughly in 1XPBS 

three times for 10-15 minutes each to remove residual PFA. The tissues were then 

decalcified as previously described in section 2.4.1 before rinsing in 1XPBS to remove any 

remaining decalcification solution. In preparation for cryoembedding the samples were 

dehydrated in 15% sucrose solution containing 2mM MgCl2 at 4oC overnight followed by a 

further dehydration step in 30% sucrose solution with 2mM MgCl2 again at 4oC overnight. 

Prior to embedding, the samples were placed into Peel-A-Way embedding molds and 

covered in OCT medium for 1 hour before embedding in a sagittal orientation by 

Components  Concentration  

Tris HCl pH 7.3  10mM  

Sodium deoxycholate  0.005%  

IGEPAL  0.01%  

K3Fe(CN)6 5mM  

K4Fe(CN)6 5mM  

MgCl2   2mM  

X-Gal   0.8 mg/ml  

1x PBS  up to final volume  
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submerging the molds into a mixture of dry ice and 70% ethanol. The samples were stored 

in -80oC before sectioning using a cryostat (Bright OTF) into 12µm sections and mounting 

directly onto Superfrost®Plus glass slides before storing at -80oC until further processing. 

 

2.5.3 Counterstaining of x-gal stained sections 

 

To better visualise cell morphology of the unstained structures, the x-gal stained 

cryosections were counterstained with nuclear fast red. The slides were first removed from 

the -80oC freezer and allowed to equilibrate to room temperature for 15 minutes before 

washing in 1XPBS three times 5 minutes each to remove residual OCT embedding medium, 

followed by counterstaining in 0.2% nuclear fast red for approximately 1-3 minutes until 

adequate staining was achieved. The sections were subsequently dehydrated in 70%, 90% 

and two 100% ethanol washes followed by histoclear for 5 minutes twice and coverslipped 

with Neomount and left to air dry overnight at room temperature in a fume cupboard.  

  

2.6 Molecular biology techniques 

2.6.1 Plasmid DNA transformation to competent E coli cells 

 

A 50µL aliquot of NEB 5-alpha competent E.coli cells was thawed on ice before adding 

approximately 1.0ng of plasmid DNA. After gentle mixing, the tube was placed on ice for 

30minutes to aid DNA adherence to the bacterial cell membrane. The cells were 

subsequently heat shocked at 42oC for 45 seconds and placed on ice immediately for 2 

minutes. Luria-Bertani (LB) medium (450µL) was added to the mixture and incubated for 1 
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hour at 37oC. LB- agar plates with 100µg/mL ampicillin were streaked with 30-50µL of the 

transformed cells and then inverted before placing in the 37oC oven to incubate overnight. 

Single cell colonies were confirmed the next morning and the plates were stored for up to 

one week at 4oC. 

 

2.6.2 Amplification and isolation of plasmid DNA 

 

A single colony was selected from the LB agar plate and inoculated into either 4mL of LB 

medium (mini-preparation) or 200mL of LB medium (maxi-preparation) along with 

100µg/mL ampicillin. This starter culture was then incubated for 12-16h at 37oC while 

shaking at 250rpm. Following the manufacturer’s instructions, plasmid DNA was isolated 

using the QIAprep Spin Miniprep kit (mini-preps) and the QIAGEN Plasmid Plus Maxi kit 

was used to isolate and purify large quantities of plasmid DNA obtained from the maxi 

cultures. 

 

2.6.3 DNA Quantification and sequencing 

 

Plasmid DNA concentration was determined using the NanoDrop® ND-1000 

spectrophotometer by placing 1.5µL of the DNA sample onto the pedestal and measuring 

the absorbance at 260nm. Verification that the plasmid contained the gene of interest was 

achieved by sequencing the plasmid DNA (source bioscience, UK.). Using the Basic Local 

Alignment Search Tool for Nucleotides (BLASTN) the sequencing results obtained were 

queried on the National Centre for Biotechnology Information (NCBI) website. 
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2.6.4 Preparation of DIG-labelled RNA probes 

2.6.4.1 Linearisation and purification of plasmid DNA 

 

 To generate the antisense probes, 10µg of plasmid DNA containing the specific gene 

sequence was linearised at the 5’ end of the insert using the appropriate restriction 

enzyme in a reaction mixture as shown in Table 4. The linearization reaction mixture was 

incubated at 37oC for 3 hours.  To confirm complete digestion, 1µL of the linearized DNA 

product (approx. 400ng of linearized DNA) and the equivalent quantity of non-linearised 

DNA along with a 1kb DNA ladder were loaded onto a 1% w/v agarose gel. Subsequent 

electrophoresis was performed at 100V for 30-45 minutes until clear separation of the 

bands was achieved and DNA was visualised with an UV transilluminator light (3UV 

transilluminator). The linearised plasmid DNA was then purified using the QIAquick Gel 

Extraction Kit following the manufacturer’s instructions. 

 

Table 4. Reagents used to linearise plasmid DNA (per reaction) 

 

Reagents Volume 

Plasmid DNA 

Bovine serum albumin (10µg/µl) 

Restriction enzyme 

10x Buffer 

Nuclease-free H2O 

20 µg 

0.5 µl 

2 U/ µg plasmid DNA 

5 µl 

up to final volume (50 µl) 
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2.6.4.2 Synthesis of antisense DIG-labelled RNA probe 

 

Antisense RNA probes were synthesised from each linearised plasmid by the addition of 

reagents detailed in Table 5. After thorough mixing, the reaction mixture was incubated at 

37oC for 1 hour. Next, 1µL of the specific polymerase was added followed by further 

incubation at the same temperature for an additional hour. Afterwards, 1µL of the 

transcribed DNA was analyzed by gel electrophoresis to confirm successful transcription of 

the RNA probe. The DNA template was then removed by adding 2µL of RNase free DNase 

to the mixture and incubated at 37oC for 15 minutes. The synthesised RNA was 

subsequently purified using a SigmaSpinTMPost-Reaction Clean-Up Column following the 

manufacturer’s instructions and stored at -80oC. 

 

Table 5. Reagents used to transcribe a DIG-labelled RNA probe (per reaction) 

 

Reagents Volume 

Linearised DNA  1µg 

100mM dTT 4µL 

5X Transcription Buffer 8µL 

RNasin (40U/µL) 1µL 

DIG RNA Nucleoside Labelling Mix 2µL 

Polymerase enzyme (20U/µL) 1µL 

Nuclease-free H2O  Up to the final volume of 40µL 

 

 



 2. Materials and Methods 
 

77 
 

2.6.5 DIG in situ hybridization on paraffin sections 

 

2.6.5.1 Deparaffinization and hybridization of probe 

 

All glassware used in this protocol was baked overnight at 180oC prior to use. In addition, 

all the solutions used were DEPC-treated and autoclaved. Slides containing the wax 

sections were deparaffinized in two, 15 minute histoclear washes, followed by rehydration 

through descending ethanol washes (100%, 90%, 70%- 2 minutes twice each) and finally 

washed in RNase free H2O (1minute, twice).  After rehydration, the tissues were fixed in 4% 

paraformaldehyde in 1XPBS for 10 minutes at room temperature followed by washing in 

1XPBS (5mins, twice). To permeabilise the tissues, the slides were incubated in 10µg/mL 

proteinase K in 1XPBS for 8 minutes followed by a 5 minute 1XPBS wash and refixation in 4% 

PFA for 5 minutes all at room temperature. After rinsing with 1XPBS for a further 5 minutes, 

the remaining positive charges in the tissue were removed by acetylation for 10 minutes at 

room temperature in a solution of 125µL acetic anhydride in 50mL 0.1M Triethanolamine 

made immediately before use. Afterwards the slides were washed with 1xPBS (5 minutes, 

three times) and dehydrated in 70% ethanol (5 minutes) and 95% ethanol (1 minute) 

before air drying until the tissues became white. 

For hybridization, the hybridization box was pre-warmed with paper towel soaked in 50% 

formamide and water. Approximately 20-50ng of DIG-labelled RNA probe diluted into 1mL 

of hybridization solution (Table 6) was denatured by heating at 80oC for 2 minutes followed 

immediately by 2 minutes on ice before applying 300µL of probe to each slide. Glass 

coverslips were placed onto each slide to evenly spread the probe and prevent evaporation 

and then carefully placed inside the hybridization box. The hybridization box was 

subsequently sealed with tape to retain humidity and incubated overnight at 65oC in the 
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hybrisation oven where a 300mL beaker of water was placed inside to maintain a stable 

humidity level.  

Table 6. Reagents within hybridisation solution 

 

 

 

 

 

 

 

 

 

 

 

2.6.5.2 Post hybridization washes and signal detection  

 

After hybridization, the glass coverslips were removed by submerging in pre-warmed 5X 

SSC solution. The slides were then placed into prewarmed high stringency wash for 30 

minutes inside the 65oC oven to remove the unbound probe. This was followed by three, 

10 minute washes in RNAse buffer (0.5M NaCl, 10mM Tris-HCL-pH7.5, 5mM EDTA-pH8 in 

dH2O) before treating the slides with RNAse buffer containing 20µg/mL RNaseA for 30 

minutes at 37oC followed by a final 15 minute RNAse buffer wash. The high stringency 

wash at 65oC was repeated on the slides for 20 minutes twice and subsequently washed in 

Reagents Volume (mL) 

Formamide  25 

50% Dextran sulphate 10 

50X Denhardt’s solution 1 

Yeast tRNA (10mg/mL) 1.25 

5M NaCl (DEPC treated) 3 

1M Tris HCL pH8 1 

0.5M EDTA pH8  0.5 

1M sodium phosphate monobasic 0.5 

20% N-Lauroyl sarcosine sodium 2.5 

Nuclease free H2O  5.25 
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2x SSC and 0.1X SSC at 37oC both for 15 minutes each. A final MABT wash (100 mM maleic 

acid pH7.5, 150 mM NaCl, 0.1% Tween 20) at room temperature for 15 minutes was 

performed before the sections were blocked in blocking buffer containing 10% heat 

inactivated sheep serum and 2% BBR in MABT for 1 hour at room temperature. Finally, the 

sections were incubated in blocking buffer supplemented with a 1:5000 dilution of anti-

digoxigenin antibody conjugated to alkaline phosphatase overnight at 4oC for probe 

detection. The following morning the antibody was removed with four, 15 minute washes 

in MABT at room temperature. The sections were then washed for 10 minutes twice in 

freshly made NTMT buffer (100mM NaCl, 100mM Tris-HCl pH9.5, 50mM MgCl2, 0.1% 

Tween-20) supplemented with 0.5mg/mL levamisole to help reduce background alkaline 

phosphatase activity.  

 

Color reaction was developed at room temperature in the dark by incubating the sections 

with 2.5 µl/ml NBT and 1.7 µl/ml BCIP in a colour development solution consisting of 50% 

Polyvinylalcohol, 100mM Tris-HCl pH 9.5, 100mM NaCl, 5mM MgCl2 and 0.1% Tween-20. 

When sufficient colour had developed (blue-purple), the reaction was stopped by rinsing 

with 1X PBS for 2 minutes, post fixing in 4% PFA for 1 minute and a briefly rinsing in 1X PBS 

before counterstaining in 0.005% nuclear fast red for 1 minute.  The slides were then 

dehydrated in a series of increasing ethanol washes (70%, 95%, 100%) for 2 minutes twice 

each before being air-dried and mounted with cover slips using DePex mounting medium. 
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2.7 In vivo experimental procedures 

2.7.1 Tamoxifen administration 

Adult NG2creERT; R26R and NestincreERT;R26R transgenic mice were given 3 

intraperitonial injection of 4 mg tamoxifen (200µl of 20mg/ml tamoxifen in corn oil 

solution) per 30 g body weight over 3 weeks to activate the cre-expression in NG2/Nestin 

expressing cells. Following tamoxifen administration, the NG2 mice were then use for the 

in vivo molar damage experiments and the Nestin mice were used for incisor tip analysis. 

To visualise the cre-activated gene expression, staining for β-galactosidase (LacZ) activity 

previously described in 2.5 was performed.  

2.7.2 Tetracycline administration 

A single intraperitoneal injection of 41.6 nmol/g body weight of tetracycline hydrochloride 

was administered to adult CD1 mice before collection after 24 hours. The mandibles were 

dissected out and fixed overnight in 4% PFA at 4oC. The tissues were dehydrated in sucrose, 

embedded in OCT medium as detailed in 2.5.2 and sectioned (approximately 100μm) on 

the Bright OTF cryostat. Samples were imaged using a Leica SP5 laser-scanning confocal 

microscope with an ultraviolet laser (LD405 nm) and 405- to 488-nm excitation filter.   

2.7.3 In vivo incisor tooth damage 

All incisor tooth damage experiments were performed by Dr Andrea Mantesso. Lower 

mandibles of P5 wild type CD1 mice or Axin2LacZ/+ mice were locally anaesthetized using 

emla anaesthetic cream. After approximately 10 minutes, an 18-gauge needle was used to 

pierce the right mandible resulting in tooth damage and left mandibles were used as 

controls. After 24 hours, the mice were sacrificed and the mandibles were fixed and 

processed as described in section 2.4.1. For the Axin2 samples, LacZ activity was 
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determined following section 2.5.1 and the wild type mice sampled were used for in situ 

hybridization as previously described. 

2.7.4 In vivo molar tooth damage 

All mice were anaesthetised and the damage procedure was performed by Mr Alex Huhn. 

For the anaesthetic, a 1:1:2 ratio of hypnorm: hynovel: ddH2O was administered at 1µL per 

gram body weight. After the mice were unconscious, using a ball tip diamond burr 

connected to a high speed dental drill handpiece, the centre of the maxillary first molars 

were pierced to generate molar pulp damage. Post surgery, 10 µL per gram body weight of 

buprenorphine was administered the to the mice for pain relief and they were placed in 

37oC for 1 hour to recover and at 30oC for 24 hours before returning to room temperature. 

Post surgery, the mice were fed on a mash (softened pellets) diet. 

2.7.5 Raman microspectroscopy  

Adult CD1 wild-type mouse incisors were sent to Dr. Molly M. Gentleman at the 

department of Materials Science and Engineering, Stony Brook University where her group 

kindly conducted the Raman microspectroscopy analysis after collecting Raman spectra 

from the incisor tips. Briefly, spectra were collected using a Renishaw InVia spectrometer 

with a 785nm diode laser connected to a Leica confocal microscope with a motorised stage. 

A 1800 line/mm grating was used in scanning mode (10 s/scan) to collect spectra (350 to 

3200 Raman shift cm-1) with approximately 1cm-1 resolution. Prior to each measurement, 

the system was calibrated for position and intensity using an internal silicon standard. All 

curve-fitting was completed using Renishaw’s Wire software. 
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3.  Results chapter I: Characteristics of dental pulp 

mesenchymal cells of the rat incisor 

 

3.1 Introduction 

 

Dental pulp stem cell populations reported in the literature are heteregeneous in nature 

and their in vivo properties remain poorly understood. Unlike human teeth which have 

limited regenerative potential, the continuously growing rodent incisor undergoes 

constant self-renewal. It was reported that an epithelial stem cell niche is present at the 

apical end where residing cells continually replenish those lost through constant wear 

(Harada et al., 1999). However, whether the mesenchymal niche supports this continuous 

growth still remains elusive.  

Since both the epithelial and mesenchymal component of the mouse incisor is replenished 

synergistically, the first hypothesis is that in addition to the epithelial stem cells, rodent 

incisors must also possess MSCs that can sustain the growth of the connective tissue 

element. However, the precise in vivo identity of these mesenchymal stem/progenitor cells 

is largely unknown. This is the same case for other mesenchymal cells such as fibroblasts, 

the principal stromal cells of mesenchymal origin. These cells function to synthesise 

extracellular matrix in connective tissues and play major roles in wound healing (Chang et 

al., 2002). It was demonstrated that even within the same tissue, fibroblasts from different 

anatomical locations of the skin displayed distinct characteristics (Chang et al., 2002).  

Therefore, since heterogeneity and topographic variation exist within mesenchymal tissues, 

this leads to the second hypothesis of this chapter in that not all cells from the entire 

dental pulp have equal “stemness”. To test both hypotheses, the continuously growing rat 
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incisor model was used to examine in vitro, pulp cells from two anatomically distinct sites 

associated with varied differentiation status.  

 

3.2 In vitro comparison between pulp cells from two distinct anatomical locations 

 

3.2.1 Cell proliferation 

 

To examine the proliferation characteristics of cells isolated from different regions of the 

incisor, a growth curve was plotted for the cervical loop pulp (CL) and incisor body (IB) 

mesenchymal cells immediately after isolation (Figure 3.1A). Between day 0 and day 3 a lag 

period is apparent in both cell populations as shown by the reduction in cell number from 

the original seeding density of 1x104 cells/ well suggesting the cells adapting to the culture 

conditions. The IB cells exhibited the largest reduction, where only a small number of cells 

had attached in comparison to the CL cells (Figure 3.1B). Both cell types showed similar 

proliferation between days 3 to 6. From day 6 to 12, as the CL cells progressed through to 

exponential growth until the experimental end point, interestingly, proliferation remained 

relatively static in the IB cultures. Here, cell growth reaches a peak at day 12 and declines 

thereafter. This is reflected in cell culture images taken on the initial and final cell count 

days (Figure 3.1B). 
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Figure 3.1 Growth curve of cervical loop and incisor body pulp cells. 
Cells from two different anatomical locations, CL and IB were isolated and cultured on tissue culture 

plastic in 6 well plates. Cells counts were performed per well every 3 days using trypan blue 

exclusion. (A) The growth curve indicates a lag phase in both cultures until day 3. From day 6 there 

is a large increase in proliferation in the cervical loop cells, which enters exponential growth after 

day 12. Proliferation of the incisor body cells peaks at day 12 and declines thereafter. Values are 

mean ± s.d., n=3. (B) At day 3, attachment of cells is significantly greater in the cervical loop cultures 

(C) in comparison with the incisor body cells (D). By day 18, the cells have become enlarged, more 

elongated and compact (E, F). Images were taken using the Nikon Eclipse TS100 phase-contrast 

microscope. Scale bars indicate 300µm. 
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3.2.2 Differentiation capacity 

 

Multilineage differentiation is another key in vitro characteristic of MSCs (Pittenger et al., 

1999). To determine whether cells from the cervical loop pulp and incisor body regions are 

multipotent, each cell type was cultured in lineage-specific culture conditions. Under 

osteogenic conditions, the cervical loop cells showed the greatest formation of mineralized 

deposits with a few particular areas exhibiting dense mineralization shown by strong 

alizarin red staining after 9 days in culture (Figure 3.2A). Lack of alizarin red staining 

indicated little or no calcium deposition by the incisor body cells demonstrating their 

limited osteogenic capacity (Figure 3.2B). Chondrogenic differentiation in micromass 

cultures was induced by 7-8 cycles of induction and maintenance. After 16 days under 

chondrogenic conditions, the cells from the cervical loop had transformed morphologically, 

appearing less spindle-shaped and more compact and cuboidal. Moreover, a raised matrix-

like layer was visible above the original micromass, which stained positive for alcian blue 

indicating the synthesis of proteoglycans (Figure 3.2C). The incisor body cells did not 

produce any matrix and were negative for alcian blue (Figure 3.2D). For adipogenic 

differentiation, the cells were cultured to around 70% confluency before inducing with 

adipogenic medium. Three weeks after initial induction, the appearance of lipid-laden cells 

was observed in both cervical loop and incisor body cultures and Oil red O staining 

confirmed the presence of adipocyte cells (Figure 3.2E). However, with cells from the 

incisor body, adipocyte differentiation was much more limited compared with the cervical 

loop cultures (Figure 3.2F). 

The positive alcian blue and alizarin red staining together with the Oil red O stained 

adipocytes suggested that dental pulp cells from the cervical loop region have the ability to 

differentiate into fat, cartilage and bone. This indicates that a mesenchymal stem cell 

population may exist within this region of the continuously growing incisor. Although the 
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incisor body cells appeared to form adipocytes, their overall multilineage potential is more 

restricted.   
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Figure 3.2 Multipotency of cervical loop and incisor body cells 
Cervical loop and incisor body pulp cells cultured in osteogenic differentiation medium for 9 days 

stained with alizarin red, revealed intense calcium deposition by the cervical loop cells in 

comparison with the incisor body cultures (A, B).  Under chondrogenic differentiation for 16 days in 

micromass culture, the cervical loop cells produced a matrix-like layer, positive for alcian blue that 

stains proteoglycan deposits indicative of functional chondrocytes. Conversely, incisor body cells 

were negative for alcian blue staining (C, D). After three weeks in adipogenic medium, characteristic 

lipid laden cells stained positively for Oil red O in cervical loop cultures while the incisor body cells 

appeared to have comparatively limited adipogenic potential (E, F). Inserted panels denote control 

cultures without differentiation medium. Scale bars represent 50µm in A,B,E,F and 500µm in C,D. 
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3.2.3 Colony forming capacity  

 

Mesenchymal stem cells can be identified in vitro based on their ability to form adherent 

fibroblast-like colony forming units. Colony forming assays were performed on both cell 

populations to compare this characteristic (Section 2.2.4). During the colony-forming assay 

where over 50 cells were classed as a colony, in the cervical loop pulp cultures, fibroblast-

like colonies (Figure 3.3A) as well as more morphologically compact colonies were 

observed after 14 days in culture (Figure 3.3C). Interestingly, the incisor body cells failed to 

form colonies (Figure 3.3B-D). To assess their colony forming ability, the plates were 

stained with crystal violet before counting. Crystal violet staining of the culture plates 

revealed many purple stained colonies, demonstrating the strong clonogenicity of cervical 

loop pulp cells (Figure 3.4A). Almost no colonies formed in the incisor body cultures, 

evident from the lack of purple staining in the incisor body wells indicating their deficiency 

in colony formation (Figure 3.4B). Quantification of this result indicated that on average, 

around 21.9 colonies were formed by cervical loop pulp cells compared to the 0.44 by the 

pulp body cells, this was greater to a highly significant extent where the p=0.0007 (Figure 

3.4C).  
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Figure 3.3 Morphology of cervical loop pulp and incisor body colonies 
Distinctive colonies were observed in the cervical loop cultures 14 days after the initial cell seeding 

density of 10
3
 cells per well in a 6 well plate. Morphological differences between colonies were 

visible where some developed more spindle-shaped appearance (A) compared to others that were 

compact (C). The incisor body cells fail to form colonies indicated by the sparsely attached cells (B,D). 

Scale bars indicate 300µm. 
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Figure 3.4 Colony forming capacity of cervical loop pulp and incisor body cells  
Colony formation was examined by culturing the cells using a low initial seeding density of 10

3
 cells 

per well of a 6 well plate. After a 14 day culture period, crystal violet staining allowed visualisation 

of the colonies determined as > 50 cells. Crystal violet stained plates indicated that cervical loop 

pulp cells were clonogenic (A), whereas incisor body cells lacked colony forming ability (B). Image J 

was used to quantify colony formation. Data was analysed by unpaired student’s t test, *** 

indicates P≤0.001. Error bars indicate SD, n=3. Scale bars represent 1000µm in  
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3.3 Analysis of dental pulp cell migratory capacity  

 

3.3.1 Scratch migration assay 

 

A previous study by Feng et al. (2011) revealed that dental pulp cells from the mouse 

incisor located in the cervical loop region possessed the ability to undergo directed cell 

migration toward tissue damage. To confirm this property under in vitro conditions, a 

scratch wound assay was performed to assess the migratory capacity of the cells by 

observing the duration required for the cells to close the gap created by a scratch wound. 

The results indicated that both cell types were capable of migrating towards each other. 

However, the initial rate of wound space closure by the cervical loop cells was 25.4% per 

day compared to the incisor body cells which was 12.3% per day. The wound space 

generated in the cervical loop cultures closed fully by 4 days whereas the incisor body 

cultures which required 13 days (Figure 3.5 and 3.6). Again, this result reveals that the 

cervical loop cells are distinct in their behaviour compared to the incisor body cells. 

However, as this assay cannot explicitly determine that the scratch closure is due to 

migration alone and not proliferation, a more functional migration assay using transwell 

migration chambers was used to further investigate their in vitro migration properties. 
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Figure 3.5 Scratch wound healing assay 
The cell scratch assay revealed that complete wound closure was observed after 4 days in the 

cervical loop cell cultures. In comparison, the incisor body cells required 13 days to completely 

enclose the scraped area. Image J analysis was used to quantify percentage wound closure. Scale 

bars = 500µm for all panels. Data is representative of three independent experiments.  
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Figure 3.6 Percentage scratch wound closure   
The rate of scratch wound closure by the cervical loop pulp cells is three times greater than the rate 

at which incisor body cells close the scratch. Data is representative of three independent 

experiments. 

 

 

3.3.2 Transwell migration assay 

 

The transwell assay also known as the Boyden chamber assay consists of two medium filled 

compartments separated by a microporous membrane that allows for the analysis of 

chemotaxis. During this assay, cells are seeded onto the upper side of the membrane 

which permits migration through the pores and into the lower well where chemotactic 

factors are present (Chen, 2005). Therefore, quantification of cell migration is achieved by 

counting the number of cells on the underside of membrane. Using 3µm pore sized 

transwell inserts, pulp cells that had migrated through the membrane were fixed and 

stained with crystal violet and subsequently counted. Many crystal violet stained cells were 

observed in the cervical loop cultures whereas migrated cells were scarce in the incisor 
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body experiments (Figure 3.7A). Subsequent quantification by counting 6 fields of view per 

transwell membrane revealed that on average, approximately 24 cervical loop cells 

migrated through the membrane per field of view compared to 8 incisor body cells per 

field of view. Therefore, cervical loop pulp cells appeared to have three times more 

migratory ability than the incisor body cells (Figure 3.7B). 
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Figure 3.7 Transwell migration assay  
(A) Crystal violet stained transwell membranes after a 24 hour migration period. Purple stained 

migrated cells were abundant in the incisor cervical loop cell cultures compared to the incisor body. 

Scale bars: 100µm (B) Quantification of the migrated cells confirmed almost three times as many 

cervical loop cells migrated through the 3µm pore sized transwells compared to the incisor body 

cultures. A total of 6 fields of view were counted and averaged per transwell. Data was analysed by 

unpaired student’s t test, (**) indicates p≤0.01. Error bars represent SEM, n= 3.  
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3.3.3 Cell homing response to damaged dentine 

 

On confirming the distinctive migration function of the cervical loop cells using both the 

scratch and transwell assays, this population was further examined to assess some of the 

potential mechanisms involved in the directed cell migration effect in response to incisor 

tooth damage observed by Feng et al. (2011).  

Further to the scratch wound healing assay detailed in Figure 3.5, the assay was modified 

to determine whether cervical loop dental pulp mesenchymal cells in vitro respond to 

damaged dental tissue. To attempt to replicate chemotactic processes that occur during 

tooth damage, the original scratch migration assay detailed in section 3.3.1, was adapted 

to analyse migration towards a piece of damaged dentine. The rationale behind using 

dentine as a source of chemoattractants stems from reports indicating that during tooth 

development, members of the TGFβ family and other growth factors become sequestered 

within the dentine matrix (Cassidy et al., 1997; Finkelman et al., 1990). Furthermore, 

dentine chips formed as a result of operative debris can actually stimulate reparative 

dentineogenesis (Seltzer, 1999). This led to the reasoning that growth factors sequestered 

within the dentine may become released upon injury to the tooth and plays a role in the 

recruitment of cells involved in the repair process.  

After generating a scratch wound by removing a section of the cell monolayer, a piece of 

damaged dentine was attached close to the wound edge and cell movement was traced by 

images taken every 24 hours (Figure 2.3). Three days after initiation of the “wound” where 

a straight leading edge was present (Figure 3.8C), there was a distinct protrusion of cells 

along the wound edge adjacent to the dentine compared with the cells located either side 

(Figure 3.8D). In the control experiments, using a collagen drop seeded the equivalent 

distance from the wound edge as the dentine piece marked by the dark spot, wound 
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repopulation was observed where cell movement of the entire leading edge was 

essentially parallel (Figure 3.8A,B). There was no marked protrusion of cells close to the 

collagen droplet indicating that the cell homing effect was attributed to the presence of 

the damaged dentine (Figure 3.8B).  
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Figure 3.8 Cell homing of cervical loop pulp cells towards damaged dentine 
Confluent cervical loop cells were scraped to provide a “cell free” zone where either a collagen 

droplet (A) or a piece of damaged dentine was attached (C). Tracing the leading of the cells revealed 

that after 3 days, these cells underwent directed cell migration towards the damaged dentine as 

shown by the protruding wound edge (D). In the control experiments, the wound edge moved in a 

parallel manner towards the collagen drop (B). Abbreviations d: dentine, c: collagen drop. Scale bar 

indicates 500µm. n=2 
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3.3.4 Transwell migration with stimulatory factors 

 

From the observations in Figure 3.8, evidently, injury to the dentine triggers certain signals 

to be released to the surrounding cells which in turn respond by migrating towards the 

region where repair is necessary. To determine which signals the cervical loop pulp cells 

react to, the transwell assay was used together with different stimulatory factors as 

detailed in section 2.2.6. A variety of growth factors and proteins were selected as 

chemotactic factors because they are implicated in both tooth development and dentine 

repair. For example, in addition to TGF-β (Sloan and Smith, 1999), other proteins including 

recombinant BMPs were shown to mediate tooth repair by induction of dentine formation 

(Nakashima, 1994). 

When the tooth is damaged, in order to repair the injury, it would be necessary to 

recapitulate certain processes during tooth morphogenesis. Thus, of the four key pathways 

involved in the regulation of tooth development, BMP, FGF and WNT signalling were 

selected for screening their effect on dental pulp cell migration. After a 24 hour migration 

period, all selected growth factors caused an increase in cell migration which was 

statistically significant from the control wells where no chemotactic factors were added 

(Figure 3.9). 

 

 

 

 

 



 3. Characteristics of dental pulp mesenchymal cells 
 

100 
 

C
O
N
TR

O
L

bFG
F

FG
F8

W
N
T3A

B
M

P4

0

20

40

60

80

100

**
***

**
N

u
m

b
e

r 
o

f 
ce

lls
 p

e
r 

fi
e

ld
 o

f 
vi

e
w

 

 

 

 

 

 

 

 

 

 
Figure 3.9 Transwell assay of cervical loop pulp cells with different stimulatory factors   
Cervical loop pulp cell migration through 3µm pore sized transwells was enhanced by BFGF, FGF8, 

WNT3A and BMP4 as measured by counting the number of crystal violet stained migrated cells. 

Control wells contained cervical loop pulp cells without chemotactic factors. A statistically signifcant 

increase in migration was observed under all stimulatory conditions. Data was analysed by One-way 

ANOVA with post hoc Newman Keuls test; (*) and (**) indicate statistical significance at p <0.05 and 

p<0.01 respectively, relative to the control. Error bars represent SEM. 

 

 

Since the results in 3.3.4 appeared to indicate that there was no significant differences 

between the chemotactic properties of each stimulatory factor, this lead to the reasoning 

that by not taking into account the proliferative effect of the factors, the migration result 

may have been masked, especially since FGFs have long been known as potent mitogens 

(Esch et al., 1985). The time course for this migration assay was 24 hours and although the 

doubling time for cervical loop cells calculated from Figure 3.1A was 46.5 hours, there is 

still the potential for enhanced proliferation due to the mitogenic effect of the growth 
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factors over the 24 hour migration period. Therefore, two different approaches were used 

to try and discount the proliferation effect. 

The first method was to use mitomycin C to inhibit proliferation prior to seeding the cells 

into the transwells, with the premise that it may cause irreversible changes to the cells 

because of its potent DNA crosslinking effect (Section 3.3.5). The second approach 

discussed in Section 3.3.6 involves using a correction factor based on data derived from the 

MTT proliferation assay.  

 

3.3.5 Transwell migration using mitomycin treated cells 

 

The cervical loop pulp cells were treated with mitomycin C which is an anti-tumour 

antibiotic that inhibits DNA synthesis and nuclear division, therefore the true migration 

result should be observed. However, following exposure to mitomycin C and subsequently 

seeding the cells into the transwell assay, the results appeared skewed. Firstly, there was a 

noticeable decrease in overall cell migration (Figure 3.10) in comparison to the data 

achieved without addition of the anti-tumour antibiotic (Figure 3.9). Secondly, there was 

no significant difference in cell migration between the control wells and those with added 

growth factors, confirmed using a one way ANOVA test (Figure 3.10). This possibly suggests 

that the effect of mitomycin C was perhaps overly detrimental to the pulp cells. Mitomycin 

C is generally used on fibroblast cell lines to inactivate feeder cells required for the culture 

of human embryonic stem cells. These cells are more stable and robust whereas the cells 

used for these experiments were primary cell cultures and were perhaps be less able to 

withstand the noxious effect of the proliferation inhibitor.   
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Figure 3.10 Transwell assay of cervical loop pulp cells with mitomycin  
Prior to the growth factor transwell assay, the cervical loop pulp cells were treated with mitomycin 

C to eliminate any subsequent mitogenic effect the growth factors may produce on the cells. 

Treatment with the proliferation inhibitor was detrimental to the cells resulting in no significant 

difference between the controls and the growth factor treated wells. Data was analysed by One-

way ANOVA with post hoc Newman Keuls test. Error bars represent SEM. 
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3.3.6 Transwell migration correction for proliferation 

 

From the results in 3.3.5 it appears that the effect of mitomycin C has resulted in not only 

inhibition of cell proliferation but its toxicity may have also resulted in decreased migration 

caused by cell death owing to the sensitivity of primary pulp cell cultures as premised. In 

the alternative method, rather than directly inhibiting proliferation of the cells by adding 

mitomycin C, the data from section 3.3.4 was corrected to account for proliferation using a 

crude correction factor calculated by an MTT assay.  

The MTT assay first described by Mosmann in 1983, tests the viability of cells through their 

mitochondrial enzymatic activity. Healthy cells cleave MTT, resulting in purple formazan 

crystals which can be quantified by spectrophotometric means. The level of formazan 

product generated is therefore directly proportional to the number of surviving cells. Using 

this assay, the proliferative effect of the growth factors on the cells was measured over a 

24 hour time period (the same time period of the transwell assay), to determine the extent 

of proliferation caused by the growth factor. Analysis of the relative increase in 

proliferation compared to the control wells without the stimulatory factors allowed the 

extent of proliferation caused by the growth factor to be deduced and the generation of a 

rough correction factor by normalising the values to the controls.  

The MTT assay revealed that as expected, the FGF family of growth factors had a definite 

proliferation effect on the cervical loop pulp cells. Although, this correction factor method 

is crude, nevertheless, following the correction of the results in Figure 3.8, the results now 

suggested that in fact, WNT3A had the greatest migratory effect on the cells followed by 

BMP4 which were statistically significant where p=0.0042 and p=0.0177 respectively 

(Figure 3.11).   
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Figure 3.11 Transwell migration assay corrected for proliferation 
A correction factor to account for proliferation was generated using the results from the MTT assay 

allowing the effect of proliferation by the growth factors to be calculated. Applying this correction 

factor to the results obtained in Figure 3.8 revealed that WNT3A and BMP4 significantly enhanced 

cervical loop pulp cell migration.  Data was analysed by One-way ANOVA with post hoc Newman 

Keuls test. Error bars represent SEM. (*) and (**) indicate statistical significance at p <0.05 and 

p<0.01 respectively. 
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3.4 Discussion 

 

To determine whether a mesenchymal stem cell niche exists in an anatomically defined 

region of the rat incisor, the responses of cells from two distinct regions of the pulp, the 

incisor body and the cervical loop were compared. Analysis of the proliferation potential of 

cells isolated from the two regions demonstrated that that cervical loop cells were highly 

proliferative in comparison to the incisor body cells, which displayed poor proliferative 

capacity.  

Within a stem cell niche, there are a small number of “true” adult stem cells that are slowly 

dividing and have the capacity for infrequent, yet almost unlimited self-renewal. When 

these cells replicate, in addition to renewal of undifferentiated daughter stem cells, they 

also give rise to transit amplifying progeny. These transit amplifying progenitor cells are 

highly proliferative and display multipotent characteristics, differentiating along multiple 

mesenchymal lineages upon stimulation (Sloan and Waddington, 2009). Previous studies 

using rodent incisors identified the cervical loop epithelial stem cell niche responsible for 

continuously replenishing the enamel that is constantly worn down at the tip of the tooth 

(Harada et al., 1999; Harada et al., 2002). However, in order to maintain these teeth, which 

grow continuously throughout the life of the animal, they must possess stem cells that 

replenish both epithelial and mesenchymal compartments. The precise location of these 

MSCs remains elusive, though they have been postulated to also reside close to the 

cervical end of the incisor close to the cervical loops, since the growth and differentiation 

of the incisor always initiates at the apical end then extends towards the incisal end (Feng 

et al., 2011). Historically, label retaining studies using bromodeoxyuridine (BrdU) followed 

by a long chase period has been used to determine the location of putative stem cell 

niches in a range of different epithelial tissues including the hair follicle, skin epithelium 
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and intestinal crypts (Cotsarelis et al., 1990; Potten et al., 2002; Tumbar et al., 2004). In the 

mouse incisor, BrdU label retention identified slow cycling (label retaining) cells within the 

stellate reticulum of the labial cervical loops in cultured explants, indicating the location of 

the epithelial stem cell niche (Harada et al., 1999). More recently, in addition to the 

epithelial stem cell niches within the labial and lingual cervical loops, the possible location 

of the MSC niche was restricted to between the two loops indicated by BrdU pulse chase 

experiments (Seidel et al., 2004). Further evidence confirmed the presence of this MSC 

niche in the mouse incisor when BrdU labelling with a short chase period revealed rapidly 

dividing cells were also located close to the previously identified niche implicating a transit 

amplifying cell population (Lapthanasupkul et al., 2012). From the proliferation data, the 

highly proliferative cells isolated from the cervical loop region certainly fulfil the 

requirement to replenish the mesenchymal pulp cell population. In addition, the significant 

difference in the proliferative nature between the cervical loop and incisor body cell 

cultures could be attributed to the cell isolation approach. By separating the cell 

populations anatomically, the cervical loop cultures would most likely include the highly 

proliferative transit amplifying progenitor population. While the incisor body region of the 

pulp probably contained largely terminally differentiated cells and therefore did not 

propagate well in culture.  

When markers have yet to be identified for specific stem cell populations, the BrdU 

method allows you to determine at least the location of stem cells, though label retention 

on its own does not verify “stemness” since cells that incorporate the BrdU and undergo 

cell cycle withdrawal and differentiation will also appear label retaining (Hsu and Fuchs, 

2012). Therefore, it was also important to examine other mesenchymal stem cell 

properties of the located cell population to assess whether the cervical loop cell population 

meet certain criteria required for MSCs (Dominici et al., 2006).  
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To further characterize this population of highly proliferative cervical loop cells, 

differentiation experiments were performed. Multilineage differentiation is a well known 

and defining characteristic of MSC populations (Jiang et al., 2002). Numerous reports have 

shown that human impacted third molars contain rich sources of dental pulp stem cells 

with multilineage potential (Gronthos et al., 2002; Ikeda et al., 2008; Seo et al., 2004; 

Sonoyama et al., 2006). This is also true for rat dental pulp cells which have been 

confirmed to differentiate into a variety of cell types including neural cells, adipocytes, 

myocytes, chondrocytes (Yang et al., 2007b), odontoblast-like cells (Zhang et al., 2005a) as 

well as osteoblasts  (Yu et al., 2010). Consistent with previous studies on the multilineage 

capacity of rat incisor dental pulp cells (Zhang et al., 2005a) the results from this study 

confirmed the existence of a multilineage population. In addition, we reveal that dental 

pulp cells of multilineage potential are not homogeneously dispersed throughout the 

tissue, rather they exist in a defined anatomical location and reside in the cervical loop 

region of the pulp. In vitro comparisons between the two distinct dental pulp cell 

populations has never been performed before and, until now, no direct evidence for 

heterogeneity within the incisor pulp has been shown. More specifically, the cells from the 

cervical loop have strong osteogenic, chondrogenic and adipogenic potential while the 

incisor body cells appear to possess much more limited differentiation capacity. A possible 

explanation for the observed variability of the differential potency of the rat incisor pulp 

cells is that the main MSC niche resides in the cervical loop end. Therefore, in addition to 

resident stem cells this population would contain the transit amplifying population. The 

role of transit amplifying cells has been well characterised in the epidermis (Jensen and 

Watt, 2006; Jones and Watt, 1993). These progenitor cells are termed transit or 

“transiently” amplifying because their role is dynamic and influences the stem cell niche to 

regulate homeostatis of the tissue undergoing different physiological changes such as 

development and aging and pathological conditions, for example, injury and disease 
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respectively (Voog and Jones, 2010). Therefore, the heteregeneous combination of both 

the resident stem cells as well as the transit amplifying cell population would possess the 

greatest multipotent capacity. In contrast, the limited differentiation capacity of the incisor 

body cells but not entire lack of multipotency could be explained through the mixed origins 

of the rodent incisor tissue. This is perhaps unsurprising given that in the mouse incisor, 

there are dual origins of dental pulp cells (Feng et al., 2011). The incisor pulp body region 

possesses other much smaller stem cell niches including perivascular niches where a few 

isolated pericyte mesenchymal stem cells reside in a quiescent state prior to activation 

upon tooth injury or damage. Therefore, since only very few isolated pericytes are present 

within this region of the pulp, this represents a small minority of MSCs within the pulp and 

this restricted multilineage capacity would be reflected during in vitro culture under 

different multilineage conditions. 

Evidence in the literature suggests that a distinct population of dental pulp mesenchymal 

cells located specifically in the apical dental mesenchyme possess cell homing capacity in 

response to damage (Feng et al., 2011). In this study using mouse incisors, upon damage to 

the tooth, mesenchymal cells close to the cervical opening migrated towards the site of 

injury. Cell labelling using 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine 

perchlorate (diI) and tracking experiments demonstrated that directed migration did not 

occur for cells from non-cervical regions. These findings led us to investigate the migratory 

capacity of these cells in vitro using pulp cells from the cervical loop and comparing their 

migratory behaviour to cells isolated from the pulp body.  

Scratch wound assays are classically used to study cell migration in a wound healing 

context and have been employed in previous studies using cultured skin fibroblasts (Wall 

et al., 2008) and bone marrow mesenchymal stem cells (Hao et al., 2009; Smith et al., 

2010). In this method, a “wound” is created in a confluent plate of cells by scraping away a 
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specific area of the plate. Cell migration over time can then be monitored by imaging the 

cells to capture their movement towards the wounded area. Our results revealed that both 

cervical loop and incisor body pulp cells have inherent migratory ability but the wound 

closure period for cervical loop cells was much shorter at 4 days compared with 13 days for 

the incisor body cells. The scratch wound assay was used as a simple, quick assessment of 

wound repopulation capacity. However, wound repopulation in these assays can be a 

combination of migration and proliferation. Therefore, a second assay using transwell 

inserts was used to quantitatively measure migration in isolation from proliferation of 

these cells. Using 3µm pore sized transwell inserts, cervical loop region pulp cells 

underwent significantly greater migration than the incisor body cells, supporting the 

enhanced wound repopulation observation and provides confirmation that the in vitro 

properties of the pulp cells reflected those observed by Feng et al (2011) in their incisor 

pulp damage culture experiment (Feng et al., 2011).  

Cell migration is part of the tissue repair process involving a series of highly orchestrated 

sequence of events such as cell-cell and cell-matrix interactions (Midwood et al., 2004; 

Mutsaers et al., 1997) and MSC/progenitor mobilisation involves proliferation, cell homing 

(chemotaxis) and differentiation. Identities of factors that drive these processes in vivo are 

poorly understood. Prior to using in vivo models, we initially created a novel cell-to-tissue 

migration assay modified from the well known in vitro scratch assay (Liang et al., 2007), by 

examining the response of cervical loop pulp cells towards a piece of damaged dentine. 

Cervical loop pulp cells immediately adjacent to the wounded dentine responded by 

mobilising towards it indicating cell recruitment. This provides evidence that chemotactic 

molecules which would normally be sequestered within the dentine matrix are released 

after injury (Sloan and Smith, 1999).  
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To screen a range of possible chemotactic molecules and elucidate the possible signalling 

pathways involved in the recruitment of the cervical loop MSC population during tooth 

injury, cervical loop pulp cells were stimulated with a selection of growth factors using 

transwell migration assays. Initial results indicated the enhanced migratory effect of all the 

selected growth factors. However, when the proliferative effect of the stimulatory factors 

was taken into account and corrected accordingly, the data suggested that Wnt3a 

produced the greatest migratory effect. Wnt ligands and their receptors coordinate many 

critical cellular and physiological processes such as the control of differentiation, 

proliferation and patterning during embryologic development and postnatally, where they 

regulate adult tissue homeostasis through maintaining a delicate equilibrium between 

stem cell proliferation and differentiation. Wounding or injury is responsible for the 

activation of Wnt signalling and Wnt activity contributes to all subsequent stages of the 

wound healing process including the control of inflammation, programmed cell death and 

more interestingly, the mobilization of stem cell “reservoirs” close to the wound site 

(Whyte et al., 2012). Among its different functions, the β-catenin or canonical Wnt 

pathway is a major regulator of stem/progenitor cell maintenance, expansion, and lineage 

specification in both embryonic and adult tissues (Grigoryan et al. 2008). Wnt signalling has 

been shown to be necessary for tissue regeneration. In animals that naturally possess 

regenerative capacity, when Wnt signalling is inhibited, this leads to the cessation in their 

regenerative ability demonstrated in experiments with axolotl, xenopus and zebrafish 

(Kawakami et al., 2006; Ramachandran et al., 2011). Abundant data from regenerative 

retinal studies also suggests that Wnt signalling blockade results in the disruption of stem/ 

progenitor cell recruitment towards the wound site (Das et al., 2008; Denayer et al., 2008; 

Liu et al., 2007). In other mammalian organs where regenerative capacity is limited, Wnt 

activity is still required for the repair process since its inhibition leads to enhanced scar 

tissue formation after myocardial infarction (Chen et al., 2004) and following wounding to 

http://genesdev.cshlp.org/content/24/22/2517.full#ref-17
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the skin (Ito et al., 2007). In terms of wound healing, it is clear that Wnt signalling is 

elevated during the initial stages of the injury response as shown in a variety of models 

including bone fractures and lung injuries (Chen et al., 2007; Villar et al., 2011). Therefore, 

the enhanced migratory response of cervical loop pulp cells to Wnt3a in the transwell 

migration experiments is suggestive of the pulp stem/progenitor cell response towards the 

upregulation of Wnt activity during injury.  

In summary, for the first time, the data from this chapter demonstrates that specific 

regions of the rat incisor pulp mesenchyme harbours cells with different behavioural 

characteristics. In combination with published data, findings from these in vitro 

experiments using the rat incisor dental pulp provides supporting evidence that both the 

rat and mouse incisor MSC niche is situated in the proximal end of the dental pulp 

mesenchyme and confirms the cervical loop pulp cell migratory response observed 

previously (Feng et al., 2011). To further examine the dental pulp cell response during 

tooth damage, we hypothesised that Wnt signalling possibly plays a role in the tooth 

damage/response mechanism and using in vivo models, this will be further investigated in 

the subsequent chapter. 
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4. Results chapter II: In vivo tooth damage response 

 

Data from the in vitro studies in chapter 3 suggest that canonical Wnt activity is important 

for the migration of cells from the incisor cervical pulp, the putative region for 

stem/progenitor cells. This result is consistent with previous reports demonstrating the 

role of the canonical Wnt pathway in wound healing, in which cell recruitment and 

migration are important components, within a variety of different tissues including bone 

(Minear et al., 2010), skin (Cheon et al., 2006), heart (Aisagbonhi et al., 2011) and cartilage 

(Dell'Accio et al., 2006). Thus, it would be of great interest to further test the role of Wnt 

signalling during tooth repair in vivo. 

 

Given that Wnt signalling is also crucial in regulating stem cell behaviour and fate in several 

other tissues (reviewed by (Nusse, 2008; Reya and Clevers, 2005), we hypothesised that 

the Wnt signalling pathway might also be important during in vivo tooth injury and repair 

via regulating the stem/progenitor cell population. We initially utilised Axin2LacZ (or 

conductinLacZ) transgenic mice containing the mutation that both abolishes endogenous 

Axin2 gene function and expresses the LacZ reporter under the control of the endogenous 

Axin2 promoter/enhancer regions (Lustig et al., 2002). Since Axin2 forms part of the 

degradation complex and induces β-catenin degradation in a negative feedback loop, it is a 

direct downstream target of canonical Wnt signalling and is therefore, considered an 

accurate reporter (Al Alam et al., 2011; Barolo, 2006; Jho et al., 2002). Axin2Lac/+ 

heterozygous mice was previously used as reporter mice for Wnt activities and Axin2LacZ/LacZ 

homozygotes for upregulation of Wnt activity in skeletal bone defect repair (Minear et al., 

2010). Thus, in vivo tooth damage was performed on the Axin2LacZ/+ and Axin2LacZ/LacZ mouse 
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incisors and molars to detect and enhance Wnt activities during injury response, 

respectively. 

 
To further investigate the mechanism for Wnt signals in regulating important cell 

populations during tooth damage and repair, the response of a potential MSC population, 

the pericytes, to tooth injury in vivo was evaluated. In vivo injury was provoked in the teeth 

of a tamoxifen-inducible pericyte reporter mouse line (NG2creER;Rosa26R), in which 

pericytes and their derivatives are labelled indelibly following tamoxifen induction, thus 

allowing permanent tracing of pericyte lineage cells during injury response and repair 

(Feng et al., 2011). To summarize, this chapter progresses from the in vitro characterization 

of the dental pulp cells from the rat, into modelling in vivo tooth damage in the mouse and 

the results suggest that canonical Wnt signalling is a likely candidate to coordinate the 

tooth repair process via the mobilisation of MSC populations such as pericytes.  

 

4.1 In vivo incisor damage  

 

To investigate whether Wnt expression plays a role during tooth injury and repair, initially, 

Axin2 expression in the damaged tooth of postnatal day 5 wild type mice was examined. 

Tooth damage was generated in the mouse incisor by piercing the tooth with a needle as 

detailed in section 2.7.3 and collected 24 hours post injury. The wound created by the 

needle is indicated by the arrows in Figure 4.1C and D.  Axin2 expression is observed in 

cervical loop mesenchymal regions of the incisor as well as in the presumptive molar root 

areas indicated in both the damaged teeth and non-damaged controls (Figure 4.1A and C). 

Interestingly, only the pulp cells in the region immediately surrounding the pulp damage 

show increased expression of Axin2, indicating an upregulation of canonical Wnt activity 
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(Figure 4.1C and C’). Moreover, the high level of Axin2 expression was restricted to the 

odontoblast layer close to the damage region (arrows in Figure 4.1C’).  

In addition to the 3 signalling pathways (FGF, TGF-β and WNT) selected to explore their 

effect on dental pulp cell migration in chapter 3, the Sonic hedgehog signalling (SHH) 

pathway is also one of the major signalling pathways involved in the growth and 

morphogenesis of the tooth (Dassule et al., 2000) as well as regulation of stem cell niches 

in the mouse incisor (Seidel et al., 2004). Therefore, its possible role during the tooth injury 

and repair process was of interest. To detect SHH signalling, the expression of sonic ligand 

receptor Patched1 (Ptch1) was examined in the damaged incisors. Figure 4.1B indicates 

Ptch1 expression present where SHH is normally active in the mesenchyme adjacent to the 

labial cervical loop in the undamaged tooth.  However, when wounded, in contrast to 

Axin2, there is a marked absence of Ptch1 expression close to the wound area (Figure 4.1D) 

and indicated at higher magnification in Figure 4.1D’. 

Following examination of the canonical Wnt signalling response in wild type mice, using 

the Axin2LacZ/+ mutant mice, the same needle damage procedure was performed. Because 

Axin2 is a negative regulator of the canonical Wnt pathway that suppresses signal 

transduction by promoting β-catenin degradation, lacZ expression in these mice would 

reveal any changes to the endogenous canonical Wnt signals in the dental pulp during the 

tooth damage and repair process. In Figure 4.2A, lacZ expression is absent from the 

undamaged incisor pulp. However, one day post injury the blue β-galactosidase+ve pulp 

cells surrounding the wound demonstrated the activation of the Wnt/β-catenin by the 

dental pulp cells in response to damage (arrow Figure 4.2B). This further confirmed the 

upregulation of canonical Wnt activity in response to damage observed previously in the 

wild type mice. 
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Figure 4.1 Expression of Axin2 and Ptch1 in incisor pulp injury.  
Incisor damage with a needle was performed on post natal day 5 wild type CD1 mice and collected 

24 hours later. In situ hybridisation on sagittal sections of the mandibles was performed. The control 

mandible without damage shown in panels A and B indicate Axin2 and Ptch1 expression close to the 

cervical loop mesenchyme. Incisor pulp damage is indicated by the black arrows in C and D. 

Increased Axin2 expression surrounding the damaged pulp is observed (C). Furthermore, the 

odontoblast layer close to the injury strongly expresses Axin2 indicated by the dark purple colour 

(arrows in C’). However, Ptch1 expression is absent around the injury (D and D’).  Scale bars indicate 

500µm (A, B, C, D), 100µm (C’, D’).    
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Figure 4.2 Axin2 activation during incisor pulp damage 
Incisor pulp damage was performed on Axin2

LacZ/+ 
P5 mouse incisors and collected 24 hours after 

injury. In the control undamaged incisor pulp, no β-galactosidase positive pulp cells were present 

(A). Upon damage, lacZ expression is visible in the dental pulp cells within the immediate wound site 

(arrow in B). Scale bars represent 150µm in A and 250µm in B.  
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4.2 In vivo molar damage 

 

The needle damage method was found difficult to reproduce because the teeth were non-

erupted and therefore the precise location of the incisor pulp region had to be estimated. 

In addition, local anaesthesia was used since general anaesthesia poses greater risk in 

neonatal death from hypothermia during the recovery period. Therefore, because the pups 

were able to move, generating equivalent damage in the incisors was challenging. To 

circumvent these inconsistencies, damage response was investigated in another tooth 

model, the adult mouse molar. Unlike the incisors, the mouse molar teeth possess roots 

and therefore do not grow continuously. Since these teeth will not contain a continuously 

active source of MSCs for growth, any stem cells present in the pulp would presumably 

become stimulated upon injury thus, the molar tooth provides a more comparable model 

of repair in human teeth. 

In place of the needle damage method, a high speed dental drill was used for a better 

damage technique. The arrows in Figure 4.3A and A’ illustrate the drill damage wound site 

created by the ball tipped diamond burr. The samples were collected 8 days after damage 

and H&E staining was performed on sagittal sections of the maxillary molars. Located 

within the injury site (shown by the arrow in Figure 4.3B), regions in the damaged pulp that 

resemble mineralized nodules were reflected by the intense areas of red staining (Figure 

4.3B’). Also, at the top of the molar pulp wound, there appears to be the presence of red 

blood cells indicating the remnants of the initial inflammatory response (Figure 4.3B’). The 

control molar sections indicated in Figures 4.3C and 4.3C’ show uniform pulp morphology 

with a distinctive odontoblast layer of columnar cells located adjacent to the dentine 

(Figure 4.3C’). 
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Using a different soluble dye, aniline blue staining confirmed the presence of osseous 

tissue inside the injured molar dental pulp of CD1 adult mice (Figure 4.4). Dark patches of 

aniline blue staining were present in the damaged pulp (Figure 4.4B, D) in comparison to 

the undamaged molar pulp where staining appears paler and more uniform (Figure 4.4A, 

C). Similar to the H&E stain, at higher magnification, regions of disorganized matrix-like 

mineral is apparent within the injured pulp (arrows in Figure 4.4F), while the control pulp 

morphology is regular in appearance as shown by the uniform odontoblast layer of cells 

adjacent to the dentine (arrows in Figure 4.4E).  
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Figure 4.3 Drill damaged maxillary first molars 
Maxillary first molars of adult CD1 wild type mice were drilled with a ball tipped diamond burr to 

achieve more controlled tooth damage in comparison to the needle damage method (arrows A and 

A’). Animals were culled 8 days post damage and stained with H&E. The drill pulp injury is indicated 

by the arrows in B and areas that resemble irregular matrix/ reparative dentine are shown in more 

detail by the arrows in B’. H&E stained control undamaged molar teeth are shown in C and C’ 

demonstrating the natural morphology of the teeth. Scale bars represent 500µm (B) and 200µm (B’). 
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Figure 4.4 Aniline blue staining of drill damaged maxillary first molars 
To detect areas of osseous tissues, sagittal sections of CD1 drill damaged and undamaged mouse 

molars were sectioned and stained with aniline blue. In the undamaged tooth (A), the intensity of 

aniline blue within the pulp chamber is weaker than the pulp region at the wound site (B). At higher 

magnifications (D, F), darker blue patches of staining indicate more ossified regions (arrows in F), 

while in the undamaged pulp the staining remains uniform (C). The morphology of the undamaged 

molar pulp is normal indicated by the presence of the columnar odontoblast cell layer adjacent to 

the dentine (arrows in E). Scale bars represent 500µm (A, B), 200µm (C,D) and 100µm (E,F). 
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4.3 Canonical Wnt response to molar tooth damage 

 

To examine the Wnt/β-catenin activity response during tooth damage, using the Axin2 lacZ 

mice, the same maxillary first molar drill damage procedure was performed on the 

Axin2+/- and the Axin2-/- mutants. Because Axin2 is a negative regulator of the canonical 

Wnt pathway that suppresses signal transduction by promoting β-catenin degradation, lacZ 

expression in these mice will reveal any changes to the endogenous canonical Wnt signals 

in the dental pulp during the tooth damage and repair process.  

In the heterozygous (+/-) mice, where lacZ has been knocked into a single allele, the  repair 

response shown by osseous tissue formation is limited to small patches of aniline blue 

within the injured pulp chamber (arrows in Figure 4.5A). However, in the homozygous 

mutants (-/-), where Wnt/β-catenin signalling is upregulated, the repair response is 

massively enhanced indicated by the mass secretion of osseous matrix present within the 

entire damage pulp area (asterisk in Figure 4.5B). In contrast to the control, uninjured 

molar teeth, when stained with aniline blue, the pulp is uniformly pale in colour 

demonstrating the absence of reparative mineral formation inside the pulp (Figure 4.5C 

and C’).   
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Figure 4.5 Enhanced molar pulp response in Axin2LacZ/LacZ adult mice 
The drill damage procedure was performed on the first molars of Axin2

LacZ/+
 and Axin2

LacZ/LacZ
 mice. 

In the Axin2
LacZ/+

 mutant, small regions of darker aniline blue staining is observed (arrows in A). In 

contrast, the wound response observed in the Axin2
LacZ/LacZ

 mice is immensely upregulated as shown 

by the marked increase in dark blue staining of the pulp (asterisk in B). Scale bars represent 500µm 

(A,B) and 50 µm (C, C’). Data in panels A and B from collaboration with Helms group (Stanford 

University, USA). 
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4.4 Pericyte response to dental pulp damage 

 

It is clear that canonical Wnt signalling is enhanced in the region where damage to the pulp 

occurs. However, it is unknown on what cells the signals are acting on. Following the initial 

response via inflammatory cells one such population to react to the signal could be the 

endogenous mesenchymal stem cells. An important source of these MSCs within the 

dental pulp is the pericyte population. These cells are associated with blood capillaries and 

under normal conditions remain in a “quiescent” state in the pulp. However, upon injury to 

the mouse incisor tooth, they could become mobilised as suggested by Feng et al., (2011). 

In contrast to the open-rooted incisors that continue to grow throughout life, mouse 

molars develop roots and remain constant in size after eruption. Therefore, unlike the 

incisors which have a readily available “pool” of MSCs responsible for growth, in the molar 

tooth, the MSCs present in the pulp would exclusively serve to maintain pulp homeostasis 

and orchestrate injury repair. We believe these stem cells belong to the pericyte 

population hence, to fully appreciate their contribution and involvement in tooth injury 

and repair, the molar tooth damage model was used as a novel approach.  

In order to trace these MSCs, permanent labelling of NG2+ve pericytes within the dental 

pulp was achieved by crossing NG2creER mice (Zhu et al., 2011) with the Rosa26R reporter 

mice (Soriano, 1999) to produce tamoxifen inducible NG2creER; R26R transgenic mice. 

After tamoxifen induction, the NG2+ve pericytes and their derivatives are labelled indelibly 

and can be visualised by x-gal staining, thus, this system was used to lineage-trace the 

contribution of pericytes during molar tooth injury.     

When the upper first molar teeth of adult NG2creER; R26R transgenic mice were drilled to 

mimic tooth damage, a massive pericyte response (blue lacZ+ve cells) was visible adjacent 

to the injury site indicated by the arrow in Figure 4.6A. At higher magnification, areas 

suggestive of disorganized reparative mineral close to the lacZ positive pericytes was 
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visible (labelled as rd in Figure 4.6B). In the same tooth, the pulp cells away from the injury 

site shown in Figure 4.6C indicate the presence of very few pericytes. In any section, the 

number of pericytes was no greater than 4 or 5. This is consistent with the study by Feng et 

al. (2011) where numbers of NG2+ve pericytes at the resting phase were low. Similarly, in 

the control undamaged tooth, very few lacZ+ve pericytes was observed (Figure 4.6D). In 

this image, immediately adjacent to the dentine, there is a noticeable columnar-shaped 

odontoblast-like pulp cell demonstrating pericyte contribution to odontoblast 

differentiation in a non-continuously growing tooth (Arrow in Figure 4.6D). 
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Figure 4.6 Pericyte response following in vivo molar tooth damage   
First molars of NG2creER; R26R transgenic adult mice were drill damaged (arrow in A) and the 

animals were culled 4 days after. Following x-gal staining, a huge pericyte response is observed 

within the wound indicated by the lacZ+ve cells in A and also at higher magnification, disorganized 

mineral-like areas resemble reparative dentine within and surrounding the NG2-lacZ+ve cells (B). 

Compared to the non-injured region of the same tooth, few lacZ+ cells are present (arrows in C). 

Similarly, in the undamaged molar control tooth, few NG2-lacZ+ve cells are present however, notice 

the elongated odontoblast-like LacZ+ cell close to the dentine (arrow in D). Abbreviations d: dentine, 

rd: reparative dentine, pm: pulp mesenchyme. Scale bar indicates 200µm (A) and 50µm (B,C,D).  
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4.5 Discussion  

 

While previous studies have focused on the role of canonical Wnt signalling in tooth 

development (Lin et al., 2011; Liu et al., 2008; Lohi et al., 2010; Sarkar and Sharpe, 1999), 

little is known about its role during tooth repair of mature adult teeth. In light of the 

results obtained in chapter 3 that suggest rat dental pulp cell migration in a Wnt-

dependent manner, this chapter investigated the in vivo pulp cell properties taking 

advantage of the mutant mouse line Axin2LacZ, to follow canonical Wnt signalling, and NG2-

creER; R26R to explore the extent that pericytes contribute to postnatal tooth repair.  

 

4.5.1 Canonical Wnt signalling in tooth injury 

 

Wnt/β-catenin signalling plays essential roles in organogenesis and tissue homeostasis 

(Grigoryan et al., 2008).  The importance of this pathway led to the investigation of its role 

in tooth repair. Using experimentally injured teeth from wild type CD1 mice and Axin2LacZ 

mice, in situ hybridization and x-gal staining respectively, revealed activation of canonical 

Wnt signalling exclusively within close proximity to the wound. This represents a novel 

finding and shows that Wnt/β catenin signalling acts as a damage response mechanism 

during tooth injury in both the mouse incisors and molars. Similar responses upon damage 

have been described in other tissues in species of both vertebrate and invertebrate origins 

(Gurley et al., 2008; Kawakami et al., 2006; Petersen and Reddien, 2009). Common to all 

these studies, the Wnt/β catenin pathway is activated upon injury to the tissue, thereby 

indicating the relevance of the results achieved from modelling tooth injury in the mouse 

in this chapter. Morever, in terms of tooth development, the canonical Wnt signalling 

pathway has been demonstrated to be essential for the activation of the odontogenic 
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mesenchyme (Chen et al., 2009) and further development, including the crown and root 

both embryonically and postnatally (Lohi et al., 2010; Zhang et al., 2013). β-catenin-

mediated canonical Wnt signaling was confirmed necessary for the activation of 

odontogenic potential in the developing tooth mesenchyme. Using the Catnbf/f;Osr2-

IresCre mutant mice where β-catenin is inactivated in the dental mesenchymal cells, molar 

tooth development failed to progress from the bud to cap stage (Chen et al., 2009). Later 

studies using the Axin2LacZ reporter mice revealed for the first time the canonical Wnt 

expression patterns in the secondary enamel knots and also in the underlying odontoblasts 

that previous Wnt/ β-catenin reporter mice (TOPgal and BATgal) were unable to detect 

(Lohi et al., 2010). This therefore demonstrated that the Axin2 reporter mouse represents 

the most accurate transgenic mouse line to identify canonical Wnt expression. This study 

was also the first to examine canonical Wnt signalling postnatally, where strong Axin2 

expression in the developing roots of P10 to P15 mice revealed new roles for Wnt/ β-

catenin signalling in tooth root development (Lohi et al., 2010), further confirmed by a 

recent report showing that conditional knockout of the β-catenin gene (Ctnnb1) within 

developing odontoblasts and cementoblasts during the development of tooth roots results 

in rootless molar teeth (Zhang et al., 2013). Together, this data substantiates the important 

role that canonical Wnt signalling plays during the mesenchymal component of tooth 

development, therefore, it is not surprising that this signalling pathway was found to be 

upregulated during damage to the dental pulp mesenchyme both in the incisor and molars, 

where presumably, similar developmental signals are required to orchestrate the repair of 

the dentin/pulp complex by odontoblast differentiation.  

 

One of the most striking results observed in this chapter was the huge repair response 

indicated by the aniline blue stained osseous areas in the Axin2-/- drill damaged molars 

compared to the heterozygous Axin2+/- mutants. In the homozygous mutants where both 
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Axin2 alleles have been replaced by the LacZ gene, nuclear β-catenin protein levels are 

increased because Axin2 is a negative regulator of the canonical Wnt pathway and under 

normal conditions, suppresses signal transduction by promoting degradation of β-catenin 

(Jho et al., 2002). This has been demonstrated by Axin2 knock out studies in bone 

remodelling where increased Wnt–β-catenin signalling produces enhanced bone formation 

(Yan et al., 2009) and in craniofacial morphogenesis where homozygous Axin2 knockout 

(KO) mice were shown to have craniofacial defects and premature closure of the cranial 

sutures due to increased β- catenin signaling (Yu et al., 2005). 

 

Increased canonical Wnt signalling led to increased mineral formation as part of the tooth 

repair response. This result is consistent with data observed from studies in bone, where 

damage to the tibia of TOPgal Wnt reporter mice indicated upregulation of Wnt signalling 

analogous to the results observed here in teeth, and causes bone-marrow derived 

progenitor cells to respond to the endogenous Wnt signal by differentiating into 

osteoblasts (Kim et al., 2007). In the case of tooth damage, the endogenous Wnt signal 

would signal pulp progenitor cell differentiation into odontoblasts. Further in situ 

hybridisation studies using odontoblast markers such as DSPP would confirm this. 

 

4.5.2 Pericyte response to postnatal tooth repair  

 

Cells with mesenchymal stem cell like properties isolated from a range of mesenchyme 

tissues using expression of pericyte markers followed by long term culture have provided 

evidence that pericytes can act as a source of MSCs in vitro (Crisan et al., 2008b; Shi and 

Gronthos, 2003). More recently, one study using genetic lineage tracing experiments has 

confirmed that pericytes are a source of MSCs in vivo (Feng et al., 2011). Using expression 

of the pericyte marker gene, NG2, inducible NG2-Cre expressing mice crossed with R26R 
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reporter mice allowed permanent labelling of NG2-expressing pericytes and their progeny 

with β galactosidase (LacZ+). The contribution of pericytes to incisor mesenchymal 

differentiation was then followed during growth and in response to injury. Very few LacZ+ 

(pericyte derived) odontoblasts were observed under normal postnatal incisor growth 

suggesting that an in addition to the MSCs derived from the pericyte niche, another source 

of MSCs must be of non-perivascular origin which contributes to the continuous renewal of 

odontoblasts during normal incisor growth. In contrast, incisor damage to the 

NG2creER;R26R double transgenic mice showed that pericytes are stimulated to 

proliferate and also differentiate into new reparative-dentine producing odontoblast cells 

(Feng et al., 2011). This was the first report to indicate dual origins of MSCs within the 

continuously growing mouse incisor. Interestingly, the unique properties of this 

continuously growing tooth is reflected in the different responses to tooth damage in that 

for all teeth, under injurious conditions, a generic perivascular response occurs whereas 

the cervical loop MSC niche response only takes place in continuously growing teeth. 

Therefore, the pericyte damage response in non-continuously growing mouse molar teeth 

was examined on the basis of it being a potential source of Wnt-responsive MSCs.  

 

Using the NG2creER;R26R double transgenic mice under normal conditions without 

stimulus, consistent with results in the study conducted in incisors by Feng et al. (2011),  

there are very few pericytes in the molar pulp. In addition, pericytes appear to contribute 

to odontoblast differentiation in non-continuously growing teeth which has not been 

documented in the past. In the molar tooth damage scenario, there appears to be massive 

proliferation of LacZ+ pericytes situated at the injury site, alongside the appearance of 

mineral resembling reparative dentine, further substantiating the original hypothesis in 

that pericytes may be a Wnt responsive MSC population contributing to the tooth repair 

process.       
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In summary, the results presented in this chapter build upon a body of evidence suggesting 

that pericytes are directly involved in the tooth repair process and provide a source of 

MSCs for tooth homeostasis as well as repair. Furthermore, alongside the in vitro transwell 

results in Chapter 3, the in vivo studies here using transgenic Wnt reporter mice suggest 

that canonical Wnt signalling appears to be a likely candidate to drive the mobilisation of 

these MSCs and subsequent proliferation and differentiation as part of the healing process.  

After studying the damage response mechanism by intentional drill damage to the molar 

tooth as a way to circumvent the difficulties in creating damage to the mouse incisor, the 

unique continuously growing property of this tooth led to the consideration of modelling 

tooth damage at their tips. Constant attrition at the incisal tips as a result of gnawing and 

feeding provides a unique opportunity to examine a form of natural, continuous damage 

and repair process which has never been studied before.  This intriguing avenue will be 

further explored in the following chapter. 
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5. Results chapter III: The incisor tip niche 

 

Tooth damage has been experimentally modelled by artificially injuring the teeth providing 

evidence for Wnt signalling and pericyte contribution to the tooth repair process. In 

rodents, incisors are continuously abraded at their tips, with tissue loss being balanced by 

continuous growth. In 1915, a study on the structure and growth of the rat incisors by 

Addison and Appleton described a region at the tip of the incisor that contains irregular 

structured dentine that appears to seal off the pulp chamber preventing pulp damage as 

the tooth is continually sheared (Addison and Appleton, 1915). The presence of both 

mesenchymal and epithelial stem cells located at the proximal ends of mouse incisors 

allows them to sustain continuous growth and renewal to counterbalance the wearing at 

the incisor tips (Harada et al., 1999; Seidel et al., 2004). Because the tips of the mouse 

incisors undergo constant functional attrition when the animal feeds and gnaws, in order 

to protect the pulp from damage and infection, the mouse must rapidly “seal” the exposed 

pulp. To test this hypothesis, tetracycline studies and histological analysis were performed 

on the mouse incisors under different stimulus conditions to assess the tip response to the 

natural damage of tooth wear.  

To further understand the mineral composition of the incisor tips and compare differences 

between the region of normal and irregular dentine at the occlusal surface of the tips 

based on the morphological differences observed, micro-Raman spectroscopy was carried 

out. This laser based technique enables biochemical analysis of cells and tissues using the 

inelastic scattering of light by chemical bonds, allowing the biomolecular composition of 

cells or tissues to be determined by the relative intensities of characteristic molecular 

vibrations (Swain and Stevens, 2007).  
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Based on the results presented in chapter 4 suggesting a pericyte contribution to both 

homeostasis and repair of the tooth, a possible role of pericytes in mineralization at the 

incisor tips was investigated. The expression of another known pericyte marker Nestin, was 

studied using the double transgenic mouse (NestincreER; Rosa26R) to lineage trace Nestin+ 

pericyte contribution to the incisor tip region. Any Nestin-positive pericytes could then be 

visualised following x-gal staining. This work allows a comparison between two contrasting 

forms of repair: that mediated in response to intentional tooth damage (presented in 

chapter 4); and continuous repair from natural damage. 

 

5.1 Mouse incisor tip features 

 

“Osteodentine” was described as granular material filling the apex of the pulp chamber in 

the tips of the rat incisor tooth (Addison and Appleton, 1915). To begin to examine in detail 

how this compares with the morphology of the mouse incisor tips, gross morphology of 

freshly dissected teeth was assessed. Freshly dissected mouse incisors viewed under the 

dissecting microscope revealed that the occlusal surfaces of both the maxillary and 

mandibular incisors showed evidence of mineralised tissue in the exposed pulp (Figure 

5.1A, 5.1B). The central region of the tip mineral appears irregular and coarse (arrows in 

Figure 5.1A, 5.1B), while the regular dentine is smooth in appearance (labelled as d in 

Figure 5.1A, 5.1B). To test the hypothesis that the irregular mineral is created to seal off 

and protect the pulp, tetracycline labelling was performed. Tetracyline is an antibiotic that 

has long been known to be incorporated into newly formed human dentine and fluoresces 

under UV light microscopy (Kawasaki et al., 1977). More recently, this property has been 

exploited to label newly formed dentine by SHED cells in mice (Sakai et al., 2010). The 

same method was applied to this study in search of evidence to support the hypothesis 
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that the patch of irregular mineral located at the occlusal surface of the incisal tips is 

rapidly produced to “repair” the continuous damage that takes place. After tetracycline 

labelling for 24 hours, areas of rapid mineral production, characterised by strong 

fluorescence signals, were located at the tips of both the maxillary and mandibular incisors, 

seen in Figure 5.1C and 5.1D respectively. Furthermore, both patches indicated by the 

arrows correspond to the central region containing the morphologically irregular mineral 

indicated by the arrows in Figure 5.1A and 5.1B. This suggests that mineral is being rapidly 

generated in the exposed pulp cavity at the tips of the mouse incisor teeth. 
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Figure 5.1 The incisor tip of CD1 adult mice 
The tips of the mouse maxillary (A) and mandibular (B) incisors show a central region on the occlusal 

surface of the tooth that contains morphologically irregular mineral (arrows in A and B) compared 

to the surrounding dentine that is smooth in appearance (labelled d in A and B). A single tetracycline 

injection to the mice followed by a 24 hour chase period was used to locate any areas of rapid 

mineralisation. With UV confocal laser scanning microscopy, frontal (C) and saggital (D) cryosections 

of the tip reveal an intense fluorescent patch indicating newly deposited tooth mineral that 

corresponds to the irregular mineralised region on the tip surface (arrows in A and B). Abbreviations: 

d: dentine. Scale bars represent 500 µm (A, B) and 250µm (C, D). 
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5.2 Tip niche response to different stimulus 

 

To analyse the role of this irregular patch of mineralised tissue capping the incisor tips, it 

was important to evaluate the response of this mineral under different external stimuli. 

The primary stimulus to influence this deposition of mineral at the incisal tips is feeding 

since it is a direct cause of incisal tooth abrasion. To investigate the response of the incisal 

tips towards this external stimulus, mice were placed onto soft “mash” diets for a period of 

1 and 4 days in contrast to their normal diet that consists of hard rodent chow pellets. 

Mineralization at the tips was observed under all feeding regimes (arrows Figure 5.2 

A,B,C,D), which was consistent with the location of the irregular occlusal surface observed 

in Figure 5.1. On the soft diet, the incisor pulp appeared more mineralised in comparison 

to the control mice on their normal hard chow (Figure 5.2B,C). The percentage area of 

irregular tip mineralisation compared to the whole tip in the control mice was 12.5% while 

the mineralisation of the tips of those on the 4 days and 1 day soft diet were 44.1% and 

44.2% respectively. Interestingly, although the percentage area of tip mineralisation for 

both the short and longer term soft diet were similar, there was a distinct morphological 

difference in mineral deposition over the 4 day period resulting in a multilayered–lacunae 

type structure (Figure 5.2B’). In comparison, the mineralization after 1 day on the soft diet 

was less intricately developed and more granulated in appearance (Figure 5.2C’). 

Interestingly, after feeding on a soft diet for 1 day, when the mice were changed back to 

their regular hard pellets for 4 hours before collection, there is a prominent reduction 

(~52%) in the area of the irregular tip mineral (Figure 5.2D’) which appears to restore the 

tooth closer to its original morphology under normal hard diet conditions (Figure 5.2A’). 

Thus, tip mineralisation appears to change based on exposure to different abrasion stimuli 

and overcompensation by the pulp cavity defence mechanism results in excess mineral 

production when under-stimulated by the soft diet. 
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Figure 5.2 The incisal tip niche in CD1 adult mice.  
CD1 mice were exposed to 4 different feeding regimes including control ordinary hard pellet diet, 4 

days and 1 day on soft mash diet or 1 day soft diet followed by 4 hours ordinary hard diet. Incisor tip 

mineral of the mice on normal hard chow are shown in panels (A and A’). Both the incisor tips of the 

mice on the 4 days and 1 day soft diet had a larger region of irregular mineral indicated by the 

arrows in B and C in comparison to A. Upon higher magnification, the mineral produced after 4 days 

on the soft diet appears to contain lacunae structures and cells (B’) compared to 1 day (C’) where 

the mineral appears more granulated. Interestingly, after switching back to the hard diet for 4 hours, 

this chunk of mineral diminished significantly (D, D’). Scale bars indicate 200µm (A,B,C,D) and 50µm 

(A’, B’, C’,D’).  
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5.3 Pericyte contribution to incisor tip mineralisation 

 

To evaluate whether pericyte-derived MSCs contribute to incisor tip mineralisation, 

Nestincre; R26R double transgenic mice were used. Following x-gal staining of 

cryosections, it is clear that blue lacZ+ve pericyte-derived cells were in abundance at the 

tip of the incisors (Figure 5.3). Again, there appears to be a mass of mineral at the tip of the 

incisors (asterisk in Figure 5.3A) consistent with the the morphology observed both 

immediately following dissection and the results obtained from the tetracycline studies. 

Remarkably, the LacZ+ pericyte-derived cells appear visibly embedded within the irregular 

tip mineral at the apex of the pulp chamber indicated at a higher magnification by the 

arrows in Figure 5.3A’.  

In cross sections of the incisal tip just beneath the occlusal surface, the tip of the pulp 

mesenchyme region is visibly rich in Nestin+ve cells (Figure 5.3B). Interestingly, Nestin+ve 

dentine tubules resembling remnants of odontoblast processes and dentinogenesis are 

observed at the tips suggesting pericyte contribution towards odontoblast differentiation 

(arrows Figure 5.3B’). 
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Figure 5.3 Nestin-positive pericyte contribution to the incisal tip niche  
A region of irregular dentine is located at the tip of the mouse incisor indicated by the asterisk in A. 

At higher magnification, genetically labelled Nestin+ve pericytes appear visibly embedded beneath 

the irregular mineral-like structure at (arrows in A’). Panel B indicates a pool of lacZ+ve pericyte cells 

located in the apical end of the pulp mesenchmye. Interestingly, lacZ+ve dentinal tubules are 

present suggestive of pericyte contribution to odontoblast differentiation (arrows in B’). 

Abbreviations, d: dentine, pm: pulp mesenchyme.  Scale bars represent 250µm (A), 150µm (A’, B) 

and 50µm (B’).  
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5.4 Incisor tip mineral composition 

 

The standard biological techniques used thus far including morphological, histological and 

lineage tracing experiments have enabled the identification of observational differences 

between the normal dentine and irregular mineral on the incisal tip occlusal surface. 

However, these techniques provide limited information on the overall structural and 

biochemical properties of the mineralised tissue produced at the incisor tips. To better 

understand the structural composition and differences in the mineral properties between 

the normal dentine and irregular mineral, laser-based Raman microspectroscopy was used 

as a more materials-based analytical approach. When an intense monochromatic light 

source (laser) is fired at a sample, the majority of the light is scattered elastically and this is 

known as the Raleigh effect. A small quantity of light scatters inelastically, which is the 

Raman effect. Small shifts in the wavelengths of the inelastically scattered light occur as a 

result of energy exchange between the excitation light and the molecules within the tissue. 

These Raman shifts yields a spectrum that indicates the type of bonds present in the 

sample that caused the particular shifts, thus providing a “biochemical fingerprint” of the 

tissue. Moreover because Raman microspectroscopy was used, this enabled the analysis of 

micro-scale features of the mineral providing molecular-level information about the 

biochemical composition and structure of the incisor tips (Figure 5.4).  
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Figure 5.4 Schematic of Raman spectra collection 
The occlusal surface of the mouse incisor tip is illustrated in the schematic above. Raman spectra 

were collected from two different regions of the occlusal surface to compare structural and 

compositional mineral differences between the morphologically normal dentine located towards 

the outer region of the occlusal surface, and the central region of irregular hard matrix where the 

presumptive pulp chamber seal is situated. 
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Raman spectra obtained from the irregular and normal dentine revealed strong peaks 

indicative of inorganic phosphate (PO4
3-v1) near wavenumber 960cm-1 and weaker peaks 

associated with substituted CO3
2-v1 near 1070cm-1  (Figure 5.5 C,D). In contrast to the 

normal dentine, prominent protein bands corresponding to amide I (1,595-1,720cm-1) and 

amide III (1,243-1,269cm-1) in the Raman spectra of the irregular pulp mineral, reflected a 

proteinaceous component suggestive of less mineralisation and the presence of more 

collagen/protein in this region. Further evidence from the microspectroscopic mapping of 

the spectra displayed as heatmaps of the occlusal surface suggests high mineral content 

compared to collagen/proteins for areas containing normal dentine shown as red in the 

960/amide I ratio heatmap and less mineral in the black regions which correspond to the 

central occlusal surface containing irregular pulp mineral (Figure 5.5E). The Figure 5.5F 

heatmap indicating the CO3 intensity enables information on the presence of 

hydroxyapatite (Ca10(PO4)6(OH)2), a mineral component of bones and teeth where OH- ions 

or PO4
3- groups can be substituted with carbonate  (CO3

2-). Therefore, the difference in 

carbonate intensity on the occlusal surface suggests more crystallised/solid mineral in the 

normal dentine (red areas) in comparison to the irregular mineral containing less 

carbonate substitution indicated in black (Figure 5.5F). The final heat map (Figure 5.5G) 

indicates the full width at half maximum (FWHM) of the peak corresponding to amide I 

where the presence of the strong red region along the centre of the irregular mineral 

suggests many amide bonds and collagen whereas the outer areas are darker and 

therefore suggests more mineralization and less protein (Figure 5.5G).  

The Raman spectra analyses thus reveal that the mineral covering the tip pulp tissue is less 

mineralised than regular dentine and contains more protein/collagen bonds and is 

therefore structurally weaker. This would correlate with the tetracycline result as rapidly 

generated mineral would be “immature” and less structurally complex and consequently 

“softer”. 
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Figure 5.5 Raman spectroscopy conducted on the incisor occlusal surface 
Image A illustrates the incisor occlusal surface and the region where Raman spectra were obtained 

is indicated in image B. Raman spectra of the irregular pulp mineral and normal dentine on the 

occlusal surface are shown in C and D respectively. Both Raman spectra reveal a strong 

characteristic PO4
3-

v1 peak at 960cm
-1

 in addition, peaks associated with substituted CO3
2-

v1 appear 

near 1,070cm
-1

, further towards the right of the phosphate peak, lower intensity protein bands are 

evident including amide I and III at (1,595-1,720cm
-1

) and (1,243-1,269cm
-1

) respectively (C,D). E, F 

and G represent high spatial resolution mapping of the occlusal surface region indicated by the box 

in B and correspond to the phosphate/amide I ratio, CO3 area and full width at half max 

(FWHM)/amide I. The red and black colour denotes high and low intensity respectively.  

Amide I 
CO3

2-
v1 

Amide III 
PO4

3-
v2 

PO4
3-

v4 

PO4
3-

v1 

Amide I CO3
2-

v1 

Amide III PO4
3-

v2 

PO4
3-

v4 

PO4
3-

v1 



 5. The incisor tip niche 
 

143 
 

5.5 Discussion  

 

The rationale behind studying the incisor tip was based on the assumption that continuous 

wear must involve “repair” of exposed pulp, i.e. a continuous, natural form of tooth repair. 

Thus, this could provide more insight into reparative dentine formation. The interest in the 

continuously growing mouse incisor tips stems from a study conducted over almost a 

century ago where the authors observed a region of irregular hard matrix on the occlusal 

surfaces of both the maxillary and mandibular incisors of the adult rat (Addison and 

Appleton, 1915). The results presented are consistent with those observed by Addison and 

Appleton in the mouse incisor tips where the exposed pulp cavity contained a narrow strip 

of coarse and irregular structured mineral. The similarities between the results presented 

here and those observed in the 1915 study are illustrated in the Figure 5.6. 

After distinguishing a clear morphological difference between the regular dentine and the 

irregular hard matrix at the occlusal surface, to enable a more detailed analysis of the 

mineral properties, tetracycline labelling technique (Skinner and Nalbandian, 1975) was 

employed to detect any regions of rapidly produced mineral. Since protection of the pulp 

chamber is necessary to prevent pulp damage and infection from the constant wearing at 

the tips, the hypothesis was that constant mineral turnover would provide a “plug” to seal 

off the pulp cavity and prevent infection to the most vital component of the tooth. The 

strong UV fluorescence indicated remarkably rapid production of fresh mineral 

corresponding to the region that displayed irregular mineral morphology, thereby 

confirming this hypothesis. Furthermore, histological analysis of the tips using H&E staining 

provided further evidence to indicate the presence of the distinctive pulp-mineral “plug”. 

Interestingly, the varied morphological response achieved by subjecting the teeth to hard 

and soft diets reflected the stem-cell niche-like nature of the incisal tips.  
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Figure 5.6 Schematic comparison between rat and mouse incisal tip morphology 
In the left panel, photographic images presented in Figure 5.1 demonstrate the similarities between 

the mouse and rat incisor occlusal surfaces. The location of the lines on the occlusal surfaces in the 

hand drawn figure (right panel) indicates the region of irregular dentine or “filled in pulp chamber” 

as described by Addison and Appleton (1915).   
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Stem cell niches are not static in function, rather, they are highly dynamic since their role is 

to participate in the regulation of tissue generation, maintenance and repair (Scadden, 

2006). Given that the incisor tips are continuously subjected to different external stimuli 

whether that is changes in the diet or gnawing pattern, the incisal tips provided an ideal 

opportunity to explore all three roles of the stem cell niche as it undergoes constant 

damage, repair and therefore maintenance of the tissue. On the longer term 4 day soft diet, 

a thicker mineral-plug containing a complex lacunae-type structure was observed. In 

comparison, the mineral produced after 1 day on the soft diet appeared more granulated 

in morphology. These results could be attributed to the lack of abrasion to offset 

continuous mineral production under normal feeding conditions where the tooth is worn 

down more destructively. As a result, the long term soft diet appears to lead to an 

overproduction of complex, denser mineral illustrated by the lacunae formation. 

Intriguingly, when the mice were returned to their normal hard diet for 4 hours after 1 day 

on the soft mash diet, the accumulated mineral appears to have been sheared off, 

resulting in the mineral returning closer to the original size and morphology as observed in 

the normal diet samples.  

Raman spectroscopy was employed to compare differences in mineral composition 

between the regular dentine and irregular pulp mineral observed on the occlusal surface of 

the mouse incisor tips. Interestingly, the Raman spectra suggested that the central 

irregular dentine region was more proteinaceous in comparison to the outer normal 

dentine shown by the stronger amide I and III peaks, and less mineralised reflected by less 

carbonate substitution within hydroxyapetite (the main mineral component of teeth). This 

substantiates the hypothesis of continuous filling or “restoration” of the apex of the pulp 

chamber as the Raman spectra suggests rapidly produced, structurally weaker, more 

immature mineral that is therefore more easily abraded. In 1915, Addison and Appleton 

referred to the region at the apex of the rat incisor as “osteodentine”. However, after the 
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combination of histological analysis and Raman spectroscopy, a more appropriate term 

should be allocated to this specialised product of the incisal tip niche. Previous terms 

including reactionary and reparative dentine are both variants of tertiary dentine and seem 

unsuitable because they do not reflect the specific function of this mineral production at 

the tip of the mouse incisor. Reactionary dentine is produced upon irritation or damage to 

the post-mitotic odontoblasts causing them to upregulate extracellular matrix secretion 

and by definition do not require pulp cell involvement other than the surviving 

odontoblasts (Goldberg and Smith, 2004). In contrast, with tooth injury that is more severe 

resulting in odontoblast death and pulp damage, reparative dentine is formed from a new 

generation of odontoblast-like cells differentiated from pulp progenitor cells (Smith et al., 

1995b). At the incisal tips the mineral formed must be a form of reparative dentine 

because the pulp cells are involved in the generation of the mineral shown by the results of 

the lineage tracing experiment where Nestin positive cells were located close to the tip of 

the pulp chamber. This suggests that the source of progenitor cells likely to give rise to the 

“secondary odontoblast-like” cells belong to the vascular-derived pericytes which is 

perhaps unsurprising given that compelling evidence suggests that pericytes act not only as 

generic sources of MSCs (Crisan et al., 2008b) but they have also been demonstrated more 

specifically to contribute to both tooth growth and repair (Feng et al., 2011).  

The nature of the signalling processes that mediate MSCs within the incisal tip niche 

warrants further investigation. However, the combination of morphological, histological, 

Raman microspectroscopy as well as lineage tracing data so far suggests that the incisal tip 

represents a specialised niche devoted to constant restoration of the “mineral plug” to 

defend the pulp from damage and infection. This continuous replenishment or restoration 

of rapidly abraded mineral therefore requires a novel, more appropriate term to highlight 

its unique function, which we propose as “restorative” dentine. 
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6. General discussion and future considerations  

 

Rodent teeth provide excellent models for the in vivo study of MSC characteristics. Not 

only do they have non-continuously growing sets of molar teeth that are equivalent to the 

non-continuous growth of the human dentition, mice possess incisors with the unique 

ability to grow continuously throughout life and harbour MSCs that reside in a niche at the 

cervical end of the tooth. In the last few years, exciting research on the rodent incisor has 

enabled it to emerge as a model for the study of MSC biology by providing new insights for 

their roles in tissue homeostasis and injury repair (Feng et al., 2011; Zhao et al., 2014) and 

discovery of new MSC origins (Kaukua et al., 2014).           

Human dental pulp stem cells have been isolated in the past decade yet already show 

great clinical potentials in tissue engineering and immunoregulation applications. These 

MSCs are heterogeneous populations identified based on their in vitro MSC characteristics 

and to date, their in vivo identities remain contentious as specific markers for their 

isolation are lacking. Interestingly, in rodents, several lines of evidence indicate that the 

continuous growth of mouse incisors is sustained by the undifferentiated epithelial 

stem/progenitor cells located in the most apical end (Harada et al., 1999; Harada et al., 

2002; Juuri et al., 2012; Seidel et al., 2004) . We reasoned that the presence of an MSC 

niche must also exist to support the homeostasis of the mesenchymal counterpart and 

therefore hypothesised that pulp cells within the rodent incisor have varying stemness 

based on their anatomical location. In vitro characterization of pulp mesenchymal cells 

isolated from two specific regions of the rat incisor enabled the identification of a MSC-like 

population from the cervical end, while those at the incisor body end lacked MSC features 

including tri-lineage potential and colony forming capacity. In agreement with previous in 
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vitro reports of rat dental pulp cells demonstrating MSC criteria (Alge et al., 2010; Yang et 

al., 2007a), our results support and augment these findings by showing that stemness is 

not uniformly distributed among the whole pulp tissue. Despite numerous in vitro studies 

on the pulp mesenchyme of rat incisors, their isolation has previously been derived from 

the whole pulp and/or sorting with MSC markers (Yang et al., 2007a; Yu et al., 2010; Zhang 

et al., 2005a). Our data reveals that similar to mice, rat incisors may house a MSC niche at 

the cervical end of the tooth and shows that isolation based upon anatomical location 

certainly provides novel supporting in vitro evidence for the presumptive MSC niche 

recently identified in vivo (Feng et al., 2011; Lapthanasupkul et al., 2012).  

 

6.1 Molecular mechanisms regulating MSC response during injury repair in vivo 

and in vitro 

 

During the in vitro characterization of the dental pulp cells, our novel in vitro cell homing 

assay enabled the observation of rat cervical loop pulp cell migration towards damaged 

dentine which corroborates with findings observed by Feng and colleagues in their mouse 

incisor pulp damage culture (Feng et al., 2011) and suggests the release of chemotatic 

molecules upon injury, that under normal conditions are sequestered within the dentine 

matrix, in agreement with previous studies demonstrated in rat incisor tooth slice cultures 

by Sloan and Smith (Sloan et al., 2000; Sloan and Smith, 1999). The qualitative nature of 

the assay used in this thesis is a limitation, however, subsequent transwell assays together 

with various growth factors implicated during tooth development provided quantitative 

assessment of cell migration and Wnt3a was found to promote greatest pulp cell migration, 

consistent with a similar study where Wnt3a promoted rat BMMSC migration (Shang et al., 

2007). Growing evidence has implicated Wnt signalling as a key regulator of stem cells and 
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in tissue injury and repair where it is known to be elevated soon after damage (reviewed 

by (Whyte et al., 2012). Our in vitro results are suggestive of pulp stem/progenitor cell 

migratory response towards the upregulation of canonical Wnt signalling that could 

possibly be associated with the injury response mechanism. Interestingly, a recent report 

showed that the common dental restorative material 2-Hydroxyethyl methacrylate has an 

inhibitive effect on the migration of dental pulp stem cells suggestive of poor wound 

healing (Williams et al., 2013), this highlights that common dental procedures are yet to be 

fully compatible restorative processes and natural repair methods are still unmet in the 

clinical setting. Our results demonstrating the involvement of the Wnt/β-catenin pathway 

supports the idea of utilizing chemical genetics where small molecules are employed to 

perturb biological processes, in this case, tooth repair. This alternative strategy of 

controlling Wnt signalling by enhancing it with the addition of small 

molecules/recombinant protein to guide tooth repair could represent a more feasible 

approach of activating resident dental pulp stem cells to proliferate and differentiate for in 

situ regeneration of a damaged tooth.   

To evaluate Wnt signaling in regulating MSC behaviour during injury repair in vivo, we 

utilised an in vivo transgenic mouse model tooth damage experiment. We hypothesised 

that canonical Wnt signalling is implicated during tooth injury and possibly guides the 

repair process. Our work demonstrates for the first time, that canonical Wnt signalling is 

upregulated in the tooth after damage, more specifically within the pulp mesenchyme 

which corresponds to our in vitro data and the hypothesis that dental pulp mesenchymal 

cells can respond to injury through Wnt signalling. Further to the candidate signalling 

pathways such as BMPs, TGFβ and Notch signalling that have been suggested to mediate 

dental pulp stem cells during tooth repair previously (Mitsiadis et al., 2011), our in vivo 

data suggests the addition of Wnt signalling to this list can be applicable. We showed that 

both incisor and molar tooth damage exhibit increased Axin2 activity indicating increased 
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β-catenin signalling. In addition, in vivo analysis of the Axin2LacZ Wnt reporter mice 

provided further support that Wnt signalling contributes to the repair process since 

enhanced Wnt signalling in the Axin2-/- animals results in amplified secretion of mineral-

like matrix reminiscent of increased odontoblast secretory activity during reparative 

dentinogenesis (Smith and Lesot, 2001). These results are not only in line with a diverse 

range of literature regarding enhanced Wnt signalling during injury, Wnt associated repair 

seems related to a mineralization response in the tooth reflecting pulp cell contribution to 

repair. Using the NG2creER;R26R transgenic mouse line, that labels pericytes and their 

progeny we demonstrated limited pericyte response under homeostasis conditions of 

mouse molar teeth, which upon damage stimulation underwent a considerable 

proliferative response. These in vivo results support those observed by Feng et al, 2011 in 

the continuously growing mouse incisor. Here, we complement their findings 

demonstrating for the first time a pericyte contribution to odontoblast differentiation in a 

non-continuously growing tooth, which is a more comparable model for human teeth. It is 

tempting to speculate that these pericytes are Wnt-responsive, to accurately demonstrate 

this it would in theory be possible to cross our Axin2LacZ mice with the NG2 cre mice. 

However, both readouts of pericyte lineage and Wnt activity are through lacZ activity 

rendering this option unfeasible. Instead, an Axin2LacZ; NG2ERT2Cre; mT/mG triple 

transgenic mouse line could be generated allowing β-galactosidase activity as the readout 

for Wnt and GFP expression for the NG2 lineage tracing of the pericytes. Future time 

course experiments will also give a clearer picture of the extent Wnt signalling participates 

during tooth repair which was a limitation in this study. Interestingly a recent study has 

shown using lineage tracing in a mouse incisor model a neurovascular bundle MSC niche 

where Gli1+ derived NG2+ pericytes were shown to be actively involved in injury repair but 

provide limited contribution to homeostasis of the organ (Zhao et al., 2014). In common 

with this study, our NG2creER;R26R molar tooth injury experiments also demonstrated 
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analogous findings. Another interesting role for pericytes is their ability to regulate the 

extracellular matrix microenvironment which has been implicated in human skin tissue 

regeneration (Paquet-Fifield et al., 2009) it would therefore be interesting to further 

investigate their role in a tooth repair context given that extracellular matrix produced by 

the pulp cells and their interactions are important regulators of the reparative processes. 

 

6.2 The incisal tip model to study perivascular MSCs in injury repair 

 

In this thesis I have also used the mouse incisor model from a different perspective by 

studying the incisor tip as an injury repair model “designed by nature”. The lifelong growth 

of these unique teeth is compensated by continuous functional attrition at the incisal tips 

during occlusion of the upper and lower incisors and feeding. We hypothesised that the 

persistent abrasion at the tips must be counterbalanced with continuous sealing of the 

pulp chamber to prevent infection. Tetracycline labelling studies confirmed this idea, as 

freshly deposited mineral located at the apex of the tooth was visually distinct from regular 

dentine, in agreement with a study that first reported this morphological feature of rodent 

incisor teeth (Addison and Appleton, 1915). By giving different feeding regimes to the mice, 

we also demonstrated that this tip “niche” appeared to respond to environmental stimulus 

where tip mineralisation altered based upon exposure to hard or soft feed. Further work 

with longer periods of soft and hard diet regimes will provide more in depth understanding 

of the tip niche response. Importantly we found the proposed incisal tip niche contained a 

pericyte contribution demonstrated by a resident Nestin positive population. This novel 

finding supports the notion that pericytes mainly function in injury repair as we argue that 

the tip of the incisors undergo a form of natural, consistent “injury” through abrasion. This 

work provides an innovative perspective to investigating different injury repair processes 
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and highlights the diverse applications of the mouse incisor model in studying different 

MSC populations.  Raman microspectroscopy is a useful tool to analyse the biochemical 

and structural composition of mineralised tissue such as bone differentiated from MSCs to 

produce a material that is capable of replicating the natural function of healthy native 

tissue (Gentleman et al., 2009). The use of Raman microspectroscopy on mouse incisors 

has never previously been performed and from the tetracycline results we hypothesised 

that the composition of the mineral produced as a defence mechanism at the tips would 

be distinct from normal dentine. As expected this tip mineral was unique and appeared 

more proteinaceous with a higher collagen content than regular dentine, which could be 

justified based on its rapid production thus, a distinctive, immature mineral that is 

structural weaker is present here. Future work to investigate the underlying signalling 

pathways that regulate the tip niche are necessary. Initially, whether canonical Wnt 

signalling is also implicated in this tip niche that undergoes constant “natural” injury/repair 

in comparison to the experimental damage response detailed in Chapter 4 should be 

examined. In addition, Raman spectra of reactionary, reparative and our new proposed 

term of the incisal tip niche mineral, “restorative” dentine would provide new insights into 

the biochemical composition of these minerals to enable the production of tissue that 

better replicates native dentine for therapeutic applications in dental care.   
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7. Concluding remarks 
 

This work has demonstrated that dental pulp cells from different anatomical locations have 

different behaviours. We have demonstrated that those associated with the MSC niche at 

the cervical end demonstrate key properties required for successful injury repair which 

includes the capacity to proliferate, migrate and differentiate. We have also began to shed 

light on Wnt signalling involvement in the tooth repair process demonstrated from our in 

vivo tooth injury experiments. This begins to address the deeper question of what 

mechanisms underlie the MSC response to injury in vivo, which is undoubtedly a key 

element in supporting the development of future stem cell therapies not limited dental 

MSCs but to all other MSC populations. Finally, we have identified a novel specialised 

region of the incisor, the “incisal tip niche” which has never been studied before and 

provides an exciting new concept of “restorative dentine” and a totally different 

perspective to assessing a continuous, natural injury repair system. To provide a biological 

basis for tooth repair the combination of new tissue engineering approaches together with 

greater biological understanding of MSCS will enable the development of novel treatments 

in clinical dentistry. 
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