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Abstract

This paper considers the efficiency and convergence properties of dynamic processes of
social and economic interactions such as exchange economies, multilateral negotiations,
merger and divestiture transactions, or legislative bargaining. The key general feature of
the economy is that agents can implement any move from one state to another as long
as a pre-specified subset of agents approve of it. By means of examples, we show that
inefficiencies may occur even in the long run. Persistent inefficiencies take the form of cy-
cles between states or of convergence to an inefficient state. When agents are sufficiently
patient, we show very generally that the initial state from which the process starts plays
no role in the long run properties of equilibria. Also, when there exists an efficient state
that is externality free (in the sense that a move away from that state does not hurt the
agents whose consent is not required for the move), then the system must converge to this
efficient state in the long run. Conversely, long run efficiency can only be attained in a
robust way if there exists an efficient externality-free state. It is thus more important to
design transitions guaranteeing the existence of an efficient externality-free state rather

than to implement a fine initialization of the process.
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1 Introduction

Most economic activities can be represented as ongoing processes with transitions from states
to states in which agents can affect the course of transitions, and the approval of some agents
is required for the transitions.

For example, in an exchange economy, the states stand for the allocations of assets,
intermediaries may propose transactions between agents, and the old and new owners should
approve of the transactions. In mergers and acquisitions or divestiture transactions, the
states stand for the various market structure configurations, managers or boards of directors
may propose mergers or dissolutions to their stock holder constituencies, and merger laws
or regulations on industry concentration can be viewed as placing additional constraints on
the possible transitions from one market structure to another. In the legislative context,
the states stand for the current policies (or laws), some politicians (like the president or
the head of the government) may have a lead on the agenda setting and the constitution
places constraints on how new policies (or laws) can be implemented (whether by simple
majority or any other procedure). In coalitional bargaining the states corresponds to the
partitions of the agents into coalitions, and transitions from one partition to another (which
may involve break-up or expansion of coalitions) require the consent of those agents whose
coalition changed.

What are the efficiency properties of the equilibria of such dynamic processes? Do the
agents monitoring the transitions eventually stabilize the system to some state or can the
system cycle between states in the long run? If the system is to stabilize, are the stable states
necessarily efficient? What is the effect (if any) of the initial state on the long run properties
of the system?

These questions are of vital importance to assess and/or improve the economic perfor-
mance of existing institutions. The answers to these questions depend on parameters such
as the flows of payoffs at each possible state, the set of allowed transitions including the
specification of whose consent is required to move from one state to another, the patience
of the agents and the probabilities with which the various agents can make proposals in the
various states.

Throughout the paper, we make the following assumptions: 1) Agents can always stay
in the current state (i.e. choose to remain inactive if they wish); 2) If the transition from
state a to state b is possible with the consent of agents in S, then the consent of extra agents
(in addition to those in S) cannot make the move unfeasible; 3) A move from any state a

to any state b is always feasible if everybody approves the change; and 4) Agents can make



side-payments to facilitate the transitions from states to states, but no contracts involving
future actions (or side-payments) are available.

Assumptions 1-2-3 are very natural ones, and are met in most applications of interest.
The assumption that contracts involving future actions are not available is more restrictive.
It is meant to capture simply some limitations in the contracting possibilities of the agents.!
And it allows us to focus on dynamic issues (in particular credibility issues) that the complete
contracting approach cannot address.?

With this structure in place, we obtain sharp characterizations of the efficiency and con-
vergence properties of equilibria.?> We first observe in a series of examples that in equilibrium
sometimes the system cycles, sometimes it converges, and the limiting states may sometimes
be efficient and sometimes inefficient. Whether or not the system converges to a stable state
may also depend on the probabilities that the various agents are selected to make proposals.
It is the absence of contracts involving future actions (say, the impossibility to commit not to
move from the efficient state in the future) that is responsible for the potential inefficiency.*

An interesting robust conclusion that applies to any specification is that there is no effect
of the initial state on the long run properties of the system, as long as agents are sufficiently
patient. And this insight holds true whether the system cycles or converges and whatever the
efficiency properties of the limit behavior of the system. The irrelevance of the initial state
with respect to the long run properties indicates that there is no point in re-initializing the
system to another state if one is to maintain the rest of the process unchanged.’

Since inefficiencies may sometimes occur, and since efficiency is affected by the specifica-
tion of the allowed transitions, we may conclude that institutional reforms should mostly bear
on the form of the allowed transitions (rather than on a fine initialization of the system).b

In this respect, we identify a necessary and sufficient condition that guarantees the con-
vergence to an efficient state irrespective of the probabilities that the various agents are

selected to make proposals (and irrespective of the initial state, as implied by the previous

result). That condition combines properties of the allowed transitions and of the flows of

'Such limitations may reflect legal constraints or common business practices.
2 An interpretation of the set of allowed transitions is that it fully describes the set of available contracts. For

example, if contracts were allowed to involve several periods, then this could be accommodated by expanding
the set of states to consist of these several periods.
3We restrict attention to Markov Perfect Equilibria throughout the paper.

“In the Coasian language, this lack of commitment possibilities is a transaction cost.
®This is in the spirit of the result obtained in Jehiel and Moldovanu (1999), and our result shows that such

an insight carries over to a very broad class of situations.

6Tt may also bear on the contracting possibilities.



payoffs obtained by the agents in the various states. In short, the condition amounts to the
existence of an efficient state that is externality-free in the sense that if a (possibly indirect)
transition from that efficient state to another state is possible without the consent of some
agent, then this agent is no worse off (in terms of immediate flows of payoffs) in the original
(efficient) state than in the reachable state.

The existence of an efficient externality-free state is key for the following reason. Consider
an efficient state a that is not externality-free. That is, there is a group S, a state b such
that S can move from a to b (possibly in several steps), and an agent ¢ outside S who derives
higher immediate payoff in state a than in state b. There is always the temptation for group
S to move from state a to state b in order to extract some surplus from agent ¢ (in exchange
for the equilibrium prospect of moving back to state a). This effect indeed destabilizes state
a whenever the probability that agent i is the proposer at state b is sufficiently small.” In
contrast, when the efficient state a is externality-free, no such move can destabilize a, and
the system must converge to state a in a finite number of steps whatever the probabilities
that the various agents are selected to make proposals in the various states and whatever the
initial state.

We now review some implications of our general results and insights. Some implications
echo results already present in the literature (although generally obtained in less general
setups). Others shed new lights on strands of literature that used different (generally static)
approaches.

In exchange economies, transactions can take place if sellers and buyers both agree. In
absence of externalities (i.e. when agents care only about their allocations), such transitions
guarantee the existence of efficient externality-free states, and thus convergence to an efficient
state follows (this echoes results obtained by Gale (1986) in a setting with no discounting).
When there are externalities (i.e., when agents care about the entire profile of allocations,
see Jehiel and Moldovanu 1995ab), long run inefficiencies and cycles may arise (because there
need not be an efficient externality-free state). In simple instances though, efficiency might
obtain even with externalities (because externalities per se are not incompatible with the

existence of an efficient externality-free state).®

"The equilibrium in this case may involve states other than a and b.
8For example, suppose there is only one good consisting of a cost-reducting technology and the agents are

firms competing in an imperfectly competitive fashion. Suppose the efficient state (the one that maximizes the
profit of all firms) requires that firm 7 gets the innovation and suppose that firm i is the toughest competitor
(i.e., every firm k prefers that firm j # ¢, k gets the innovation rather than firm ). Then our result shows that
firm ¢ will eventually own the cost-reducing innovation and will never resell it to another firm (because the

efficient state -firm ¢ owning the good - is externality-free).



In legislative bargaining, simple majority procedures do not in general guarantee the
existence of an efficient externality-free state even in those contexts where one policy is
preferred by a majority to any other policy (see Example 2 below). Received voting theory
based on static approaches would predict in such a case that a policy winning against any
other policy - a so-called Condorcet winner - should be stable. However, in our dynamic
setup cycles between policies may arise at equilibrium due to the inexistence of an efficient
externality-free state, and even a Condorcet winner may not be stable. It should be noted that
unlike in static approaches (& la Condorcet, say), there is no problem in our dynamic setting
to speak of cycles. And our insights (about the emergence of cycles in dynamic settings) may
suggest a new reason for political instability in democracies. Besides, our theory suggests that
in order to guarantee convergence to an efficient state irrespective of who sets the agenda,
unanimity constraints may have to be imposed (at least to leave the efficient state).” Or, if
unanimity constraints cannot be imposed, it is important to adjust finely the probabilities of
who sets the agenda in every state of the world in order to improve the functioning of the
legislative process.

Our setup can also be used to speak of the process of coalition formation in the presence of
widespread externalities (see Ray and Vohra (1999) and Gomes (2000, 2001)). States corre-
spond now to the partitions of the agents into coalitions, and transitions from one partition to
another should require the consent of those agents whose coalition is affected (either because
they changed coalition or because their coalition was re-organized). Our setup allows for
coalitions to expand or break-up, while most non-cooperative approaches to coalition forma-
tion either assume that coalitions upon forming leave the game (see, for example, Chatterjee
et al (1993), and Ray and Vohra (1999)) or that coalitions may only expand (see Gomes 2001).
Our analysis sheds a new light on the issue of stability (or convergence) and efficiency by
identifying a new concept (other than the core), i.e., the concept of efficient externality-free
state (which appears to be the key stability concept with farsighted agents). In particu-
lar, we obtain that the coalition formation process (despite the existence of externalities) is
asymptotically efficient if the grand coalition is efficient.

Our model can also be applied to understand how mergers, acquisitions, partnership
dissolutions and other governance changes may affect the shape of the market structure.
Similarly to Hart and Moore (1990), in this setting, agents are the owners (or controllers) of
the physical assets that are necessary for productive purposes, and the states of the economy

stand for the various control structures (i.e. mapping that defines which assets are controlled

9Such unanimity constraints guarantee the existence of an efficient externality-free state.



by which agents). The transition rules are defined by the allowed changes in control structure,
and we can accommodate for the existence of regulations and laws, such as regulation on
industry concentration, and laws that endow agents with inalienable rights. The approach
developed in this paper thus allows us to explore the process of changes in market structure
and how agents share the surplus in situations where, for example, off-the-shelf solution
concepts (such as the Shapley value) may not even be available.

There are a few papers in the bargaining literature which share with the present paper the
generality of the setup. These include Rosenthal’s (1976) “effectiveness form”, Greenberg’s
(1990) “inducement correspondence”, and more recently Chwe (1994), Xue (1998), and Kon-
ishi and Ray (2001).1° An important distinction between our approach and the approaches
based on the “effectiveness form” or the “inducement correspondence” (see in particular Kon-
ishi and Ray (2001)) is that we adopt a purely non-cooperative view (in the sense that the
only decision-makers are the agents themselves in our setup). Another distinction is that we
allow for side-payments between agents and we impose some mild (and natural, see above)
restrictions on the allowed transitions. That extra structure of our setup allows us to obtain
sharp predictions in terms of the effect of the initial state and about the conditions ensuring
convergence to an efficient state, which the previous literature did not obtain.

The rest of the paper is organized as follows. In Section 2 we describe the model. In
Section 3 we explain how the model can be used in a variety of applications. In Section 4
we develop some general properties of equilibria and exhibit a few examples with interesting
dynamic properties. We also note a positive role for intermediaries. In Section 5 we analyze
the efficiency properties of the model. In Section 6 we analyze the convergence properties of

the model.

2 The Model

Consider an economy with n agents, infinitely many periods of interactions, and m possible
states. We let N = {1,...,n} denote the set of agents, and Z denote the set of states.
Agents all have the same discount factor §.!1! The flow of utility to agent i at state a € Z

is (1 — &) v;(a) per period. Side payments between agents can also be made at any period

19The effectivity functions introduced by Moulin and Peleg (1982) also shares some common features with

our approach.
1 The analysis easily extends to the case where agents have different discount factors. We have chosen to

present the model with equally patient agents to alleviate a bit the notation.



and in any state, and agents are endowed with enough wealth to afford any transitions from
state to state (i.e., there is no budget constraint).!? That is, let aF and tf be respectively the
state in period k£ and the transfer received by agent ¢ in period k. Let ¢ denote the stochastic
process governing a® and tf.l?’ Agent ¢’s expected utility induced by this stochastic process
is

B |30 64tk 4 (1= yun(at)|
k=0

where E denotes the expectation operator.

The transition from states to states is determined by the agents themselves in every period.
In state a, agent i is selected with probability p;(a) to make a proposal. The proposal consists
of a transition proposal, from state a to state b say, and possibly side-payments.

We wish to cover situations in which the transition from state a to state b may require
the consent of a subset S C N of agents. Formally, let a,b € Z be two possible states, and
let S C N be a subset of agents. We write a —g b to denote that the move from state a to
state b is feasible with the consent of agents in S.

Throughout the paper, we make the following assumptions about the transition relation:
Al) For all a € Z and S C N, a —g a. (Staying in the same state is always possible.)

A2) For all a,b € Z, if a —g b then a —7 b whenever S C T. (If a subcoalition S C T can
move from state a to state b so does coalition T.)

A3) For all a,b € Z, a —n b. (If everybody agrees, a transition from state a to state b is
always possible.)

These three assumptions are - we believe - very natural in many of applications of interest.
In words, Al states that one may always (if one wishes) stay in the current state (the status
quo is always available). A2 states that if the consent of agents in S is enough to move from
state a to state b, then the extra consent of agents outside S cannot make the move unfeasible.
In a related vein, A3 states that if everybody approves the change from a to b then it can be
done.! In social and economic interaction contexts, Assumptions A2 and A3 seem extremely
natural (we discuss in section 5 how our results are affected when assumptions A2 and A3
are relaxed).

Let a be the current state and let agent ¢ be the agent selected to make a proposal at

that state. Agent ¢’s offer 7 consists of a subset S of agents (with i € S), a state b, such that

121f the payoffs are normalized so that all v; (a) > 0, then a sufficient condition for agents not to be budget
constrained is that they have wealth w; 21;13;( (ZjeN vj (a) .

3Later on it will be made endogenous and result from the strategies employed by the agents.

14 A2 implies A3 if we make the extra assumption A3’ that for any two states a and b there is always a

coalition S (not necessarily V) such that a —s b.



a —s b and transfers t = (t;)jcs between members of S such that 3 cgt; = 0. In words, the
offer 7 = (5, b,t) stands for a proposal made by agent i to agents j € S to switch from state
a to state b in exchange for side-payments t = (t;)jcs where t; is the payment received by
agent j.

Upon the offer 7 = (5,b,t) being made, the agents in S respond to the offer by yes or
no (the order is irrelevant as any agent can always reject the offer). If the offer is rejected
by any agent then the economy moves to the next period and the state remains unchanged
(i.e. it remains a) with no side-payments being made. Otherwise, if all agents in S accept
the offer then the state of the economy moves to b and the (lump-sum) transfers ¢ are made.

Given a transition relation, an economy is characterized by the payoff specification v =
{vi (a)}iy 4> the proposals’ probabilities p = {pi(a)}z., ., and the discount factor 6. The dynamic
game with the fixed transition relation and the above parameters is denoted as the economy
& (v,p,6). Some properties will refer to the specification of the transition relation, v and p
only (but not on ¢); we will then speak of the (v, p)-economy and denote it by & (v,p). Some
properties will refer to the transition relation and v (but not on p and 6); we will then speak
of the v-economy and denote it by £ (v).

We have assumed that agents derive flows of payoffs (and are impatient). An alternative
interpretation of the model is one in which there is an exogenous risk of breakdown. In this
variant, players are not impatient but, in each period, there is a probability 1 — § that the
economy stops at the current state, say a, for ever, in which case players receive a lump-
sum payoff equal to v;(a). The economy with exogenous risk of breakdown and lump-sum
payoffs and the one with discounting and flows of payoffs are equivalent and thus have the
same equilibria (see also Binmore, Rubinstein, and Wolinsky (1986) and Gomes (2001)). For

concreteness, we refer to the economy with discounting.

Equilibrium, efficiency and externalities:

Throughout the paper, we restrict attention to Markov Perfect Equilibria (MPE), which
we refer to as equilibria in the main text. In a MPE, the strategies used by the players may
only depend on the current state of the economy (and also, for the proposer, on his identity,
and, for the responders, on the proposal). A possible rationale for restricting attention to
MPE is that players do not keep track of the entire history of play, and they can thereby

only rely on the current state to condition their strategies.®

15 Another rationale is that such equilibrium behaviors are presumably easier to learn, and equilibrium
selections based on learnability may lead to that restriction (see Maskin and Tirole (1997)). Formal analysis

of this statement as well as the analysis of other equilibria should be the subject of future research.



Formally, a Markovian strategy for player i specifies for every state a such that p;(a) >0
a probability distribution over all feasible offers (S,b,t) that agent ¢ can possibly make at
state a, and for every state a’ and every offer (S’,V/,¢') such that j € S’, a probability of
acceptance for player j.

A Markovian strategy for player ¢ will be denoted by o; and ;[a](S,b,t) will denote the
probability that offer (S,b,t) is made by player 7 at state a when i is the proposer at that
state. Similarly, 0;(a)(S,b) will denote the associated probability that player ¢ at state a
makes a proposal to coalition S to move to state b, and supp (0;(a)) will denote the support
of o;(a).

Definition 1 (Markov Perfect Equilibrium) A strategy profile o = (0;)?_, is a Markov Per-
fect Equilibrium if for each player i, o; is a Markovian strategy, and after every history of

play, o; is a best-response for player i when other players —i play according to o_;.

Efficiency in our context boils down to welfare efficiency, since utilities are assumed to be

transferable:

n

Definition 2 (Pareto Efficiency) A state a € Z is efficient if a €argmax Y. v;(a’). We let
aez =1
ES C N denote the set of Pareto efficient states.

The economies we consider in the paper may have widespread externalities (positive or
negative externalities). The notion of externalities plays an important role in our analysis,

and it is useful to formally define the concept:!©

Definition 3 (Externalities) An economy is said to be without negative externalities if for
all a,b € Z, ifa —g b and i ¢ S then v; (a) < v; (b). Otherwise, the economy is said to be

with (negative) externalities.

Although, we allow for situations with both positive and negative externalities, the latter
will prove to be more important in our analysis.!” The no-negative-externality condition
states that if the consent of player 7 is not required to move from state a to state b, then

the flow of player i’s payoff is no smaller in state a than in state b. Thus, the decision of the

16T the definition, we consider only direct links between states a and b. An alternative definition of absence
of negative externalities is: for all players ¢ € N and every pair of states a and b such that a —s, a1 —
-+ =g, a, = b with S C N\i (excluding player %) then v;(b) > v;(a). However, it is readily verified that the

two definitions are equivalent.
17See Ray and Vohra (2001) for an analysis of situations in which positive externalities play a more important

role.



agents in S to move from state a to state b (where a —g b) creates no negative externality

(at least in terms of instantaneous payoffs) to agents outside S.18

3 Applications

Our setting is very general in that it allows for any specification as to what set of agents
should be consulted to move the economy from one state to another and it allows for any
specification as to who has the lead in making proposals as a function of the state of the
economy. It also allows for any specification of the flow of payoffs as a function of the state
of the economy.

The aim of this Section is to show that as a result of the flexible nature of our setting, a
large range of applications can be dealt with. Thus our results may receive many interpreta-
tions of interest for each possible application (we refer to Greenberg (1990), Mariotti (1997),
and Konishi and Ray (2001) for applications not discussed below to games in strategic and

extensive form).

3.1 Exchange Economies

Exchange economies without externalities:

Consider an economy with n agents N = {1,...,n} and m indivisible goods. Agents start
with some endowment and they can exchange their commodities over the various time periods.
In each period, the state space Z of the economy is represented by the profile w of allocations
(w;)_, where w; is agent i’s allocation in the current period and w; Nw; =0 for all ¢,j € N
(joint ownership is not allowed). The flow of per period payoff of player i in state w is
(1 — é)u;(w;) where u; stands for agent i’s utility function.

As the notion of property right suggests, a move from state w to state w’ requires the
consent of agent ¢ whenever agent i’s allocation is modified, i.e. w; # w;. Thus, the transition
rule for the exchange economy is: for any w,w’ and subset S of agents w —g ' if {i € N:
w; #wi} CS.

We do not make any restriction as to the probabilities p;(w) that agent ¢ makes the offer in
state w. Thus, even someone whose allocation does not change may propose a trade from w to

w’. This, in particular, allows us to analyze the role of intermediaries in exchange economies.

18 A stronger property related to Definition 3 is that agent i is not affected whether he is in state a or in
state b, i.e. v;(a) = v;(b). Note that in those contexts where a —g b implies b —g a - with the interpretation
that what a coalition can do it can also undo - then the two conditions are equivalent. For some applications

though, a —g b need not imply b —s a due to some irreversibilities (see for instance the merger application).



Compared to Rubinstein-Wolinsky (1985) and Gale (1986), our setup allows for multi-
lateral exchanges whereas Rubinstein-Wolinsky and Gale focus on bilateral exchanges. Note
also that Gale and Rubinstein-Wolisnky assume that there is only one time of consumption

whereas our setup uses a flow formulation for payoffs.!?

Exchange economies with externalities:

The exchange economy described above assumes that agents’ flows of utilities depend solely
on their bundles, i.e. there are no externalities. A more general situation with respect to
payoff specification is one in which the flow of per period payoff of player i for a given
allocation profile w does not solely depend on w; but on the entire allocation profile, i.e. it is
of the form (1 — 6)u;(w).

This situation has first been studied in a one-object context in Jehiel-Moldovanu (1995ab-

1999). Our setup is more general in that it allows for an arbitrary number of goods.

3.2 Coalitional Bargaining Games

Our approach is well suited to address the issues of coalition formation in dynamic settings
either in the form of coalitional bargaining models with externalities (e.g., Ray and Vohra
(1999), Bloch (1996), and Gomes (2001)) or in the traditional form without externalities
(Gul (1989), Hart and Mas-Colell (1996)). Generally, the externalities of the coalitional
game among N = {1,...,n} players are described by a partition function v(S,7) € R that
stands for the value of coalition S given the partition m# = {Si,...,Si} of the N players.
When there are no externalities (or, in the language of cooperative game theory, when the
game has a characteristic form representation) we impose the additional restriction that
v(S,m) = v(S, ') for all S € m N «'. That is, the value of coalition S is v(S) and does not
depend on the whole architecture of coalitions, but solely on who is in S.

A natural way to embed the coalition formation problem among the set N = {1,...,n}
of players into our setup is to view the states of the economy as the partitions m of the
players (Z = II, the set of partitions of the N players). The transition rule we specify for
the coalitional bargaining game is applicable for situations where coalitions may expand or
break-up at any point in time and players who change coalitions should approve the transition.
Formally, the transition rule is defined as follows: for any two partitions (states) 7 and 7/,

m —g 7' if and only if S contains those agents whose coalitions changed.

9Tn Gale (or Rubinstein-Wolinsky)’s setup the offer is made by either of the parties who exchange their
goods, whereas in our model intermediaries may propose trades to whoever they wish. Also, our setup

corresponds to the case of durable goods (but, see also the exogenous breakdown interpretation of our model).

10



For notational convenience, in the sequel (including the examples provided throughout
the paper) we represent coalitions and partitions using brackets: for example [12] refers to
the coalition of players 1 and 2, and [12][3] refers to the partition where player 3 is in a solo
coalition whereas players 1 and 2 are partners in a coalition.

In order to make the transition rules defined above more tangible it is helpful to look at
some concrete situations. For example, if the current state is [12][3] a move to [1][2][3] (which
corresponds to a break-up of coalition [12]) can be done with the sole consent of players 1
and 2 (so neither player 1 nor 2 can leave the coalition [12] without the consent of the other
player). On the other hand, a move from [12][3] to state [123] (expansion of coalition [12]) or
a move to state [13][2] (reorganization of coalitions) requires the consent of all three agents.
Also, a move from [123] to any other coalition structure (break-up of the grand coalition)
requires the consent of all three agents.?"

The coalitional bargaining game payoffs for each player i and partition (state) 7 are given
by v;(m), where for every coalition S in 7, v(S,m) = 3 vi(7). That is, the sum of what
agents ¢ € S achieve in partition 7 should be equal tggvihat coalition S can achieve given
the partition . Alternatively, we could have chosen another division of the coalitional value
v} () also satisfying v(S, ) = > v}(), or even include the choice of division of the coalitional
value as part of the state spaéfj However, it can be shown that the equilibrium transitions
generated by these variants are the same (although the payoffs and transfers depend on the
payoff division), and therefore we can without loss of generality consider a specific choice of
payoffs v;(m).2!

Finally, to complete the specification of the coalitional bargaining model, the proposals’

probabilities are defined, for all i € N and 7, by p; () > 0 such that Y ,cn pi (m) = 1. The

2Formally, 7 —g 7' if and only if N\ U T C8S.
Ternm!
2 (The coalitional approach to bargaining) We could have chosen instead another equivalent formula-
tion of coalitional bargaining that uses only the partition function, and the players are the coalitions. Formally,

let N' = 2V\{0} be the set of players and Z = II. Define the payoffs and proposals’ probabilities as follows,

for all S € NV:
115(7r)={ v(S,m) i Semn andps(ﬂ')z{ p(S,m) ifSenw
0 otherwise 0 otherwise
which means that if a coalition does not belong to 7 then it is worth zero, and only coalitions that belong to
7 can make proposals. The transition rule is defined by m# —g 7’ if and only if S D (w Un") /(7w N @), which
means that the consent of those coalitions which are reorganized is required. In this interpretation, once a
coalition between various coalitions Sy forms it becomes a decision-maker S = UyS; (whose objective is to
maximize the payoff of the S player as defined above). Also, at the time of the coalition formation of S, the
various Sy receive a transfer payment from S, but lose their decision making power for future moves as long

as the coalition does not break apart.

11



economy with the transition rule described above and parameters (v, p, §) is referred to as the
coalitional bargaining model (note that it accommodates both situations with externalities

and without externalities).

Alternative approaches to coalition formation:

Our setup allows for coalitions to expand or break-up in contrast to most previous non-
cooperative models in the literature. For example, a large body of the literature assumes
that coalitions upon forming leave the game (see Chatterjee et al. (1993), Okada (1996), Ray
and Vohra (1999), and that coalitions may only expand - but may not break-up (see Gomes
(2001).2

The constraint that coalitions once formed leave the game can easily be represented in
our setup, simply by not allowing transitions from partition 7 to partition 7’ where coalition
S € mbut S ¢ n'. However, note that Assumption 3 no longer holds with such an additional
requirement, since a switch from 7 to 7’/ is not allowed even if every agent is willing to do
it. While it is of interest to analyze the effect imposed by the extra constraint that only a
limited number of transitions is allowed, we believe in many applications Assumption 3 is a
very natural one.

Hart and Kurz (1983), in a cooperative game theory setting, considers two interesting
alternative formulations of coalition formation - the I" and A games - and a similar approach
was used by Konishi and Ray (2001) in a dynamic model. In both games coalitions are formed
if and only if the consent of all players is obtained, but unlike our model, a coalition may
break-up if a deviant subcoalition is willing to do so even without having to ask the permission
of the remaining coalitional members (for example, player 1 may move from [12][3] to [1][2][3]
without the consent of 2). The two games of Hart and Kurz differ with respect to the reaction
of the remaining players after the break-up of a coalition: in the I' game the remaining players
break apart and form singleton coalitions, while in the A game the remaining players stay
together. Thus, the main distinction between our coalition game formulation and the one
of Hart and Kurz and Konishi and Ray is about the permission required for a coalition to

break-up (see also the discussion about the core in Section 6).%3

22The constraint that coalitions can only expand may fit well in some merger /acquisition contexts in which

dissolving a partnership involves large transaction costs.
28Note, though, that the permission structures considered in Hart and Kurz and Konishi and Ray give rise

to transition rules that can also be studied within our general framework.
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3.3 Control Structures: Mergers, Acquisitions, and Joint Ventures

Another important application of our setup is the business world in which mergers, acqui-
sitions, partnership dissolutions and other governance changes may affect the shape of the
market structure. In this setting, similarly to that of Hart and Moore (1990), agents are the
owners (or controllers) of the physical assets that are necessary for productive purposes, and
states of the economy stand for the various market structure configurations, i.e. the various
possible combinations of assets, including those that allow for joint ownership.

Formally, consider an economy consisting of N = {1,...,n} agents and of A = {a, ..., am}
assets. Hart and Moore (1990) describe an ownership and control structure using the control
structure mapping « : 2V — 24, In this representation « (S) C A stands for the assets that
are controlled by coalition S.?* Hart and Moore (1990) assume that each coalition S with
assets A can generate a total value worth v(S,A), and thus, for a given control structure
a, the coalition S is worth v (a) (S) = v(S, @ (S)), where v («) is a standard characteristic
function form.

Our approach allow us to talk about two types of situations. First, for a given control
structure a the coalitional bargaining game among the N agents can be described by the
characteristic function form v («) .?® Interestingly, the solution that arises from our bargain-
ing model is likely to be different from the Shapley value, which is the solution used by Hart
and Moore (1990) (and more recently by Segal 2001).26 The difference in the solution concept
may be important for example in the study of the optimal control structures in incomplete
contracting situations, which is the main focus of Hart and Moore (1990). As De Meza and
Lockwood (1998) and Chiu (1998) have shown, alternative solutions of the (ex-post) bargain-
ing game may well lead to very different implications about the optimal control structures,
and the endogenous solution that arises from our bargaining game may well be another source
for different predictions about the optimal control structure.

Second, we can talk about the process of selection of the control structure. In this
situation, the players are IV, the states of the economy are the control structures «, and

the payoff functions are the equilibrium values that arise in the ex-post bargaining. Joint

24Two natural assumptions that the control structure mapping satisfy are (i) o (S') C a(S) for all ' C S -
all the assets controlled by a subcoalition of S are also controlled by S; and (ii) a (S) Na (N\S) = 0 - assets

cannot be controlled by two disjoint coalitions.
25We remark that the interpretation that we adopted for the transition rules for coalitional bargaining game

is particularly suited to describe this contracting situation (see discussion about alternative representations of
the bargaining game in Section 3.2.).

26For some values of the parameters it may well coincide with the Shapley value (see Gomes (2000)).
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ventures, mergers, and acquisitions describe the transitions or changes of the control (or
market) structure of the economy. For example, firms 1 and 2 each controlling assets « (1)
and « (2) may form a joint venture in which some of their assets are now jointly controlled (the
new control structure could be represented by /3, where 3 (i) C « (i) and 3 (12) represent the
jointly controlled assets so that 5 (1)UF(1)UB(12) = a (1) Ua(2)). In addition, the merger
of firms 1 and 2 could be represented by a control structure § in which F(1) = 5(2) = 0
and 3(12) = a (1) U a(2). Moreover, the acquisition of firm 1 by firm 2 (or divestiture of
some of firm 1’s assets) can be described by a new control structure 3 where 3(1) = () and
B(2) = a(1l) Ua(2). These changes in control structure o —g (3 - including joint ventures,
mergers, and acquisitions - define the transition rule.

In describing the transition rule we can also naturally accommodate further restrictions
that may be imposed by regulations and laws, such as regulation on industry concentration,
and other constraints on contracting such as inalienable rights of agents. The approach
developed in this paper thus allows us to explore the dynamics of changes in contracts and
how agents share the surplus in environments with rich contracting possibilities, situations
where, for example, off-the-shelf solution concepts (such as the Shapley value) may not even

be available.

3.4 Legislative bargaining

Baron and Ferejohn (1989) have proposed a model of legislative voting with endogenous
agenda setting. A key feature is that a proposal is implemented whenever a majority vote in
favor of the proposal.

Majority procedures a la Baron-Ferejohn can easily be captured in our model through
appropriate specifications of the transition relation. Formally, let Z be the set of policies,
which are the states of the economy. Consider a situation in which there is an ongoing
process of policy choice by n legislators i = 1,...,1n.27 The current policy a € Z may (or may
not) affect the probabilities with which the legislators have control over the agenda setting.
Accordingly, we let p;(a) be the probability that legislator ¢ has the control in state a. The
flow of payoff of legislator ¢ is assumed to depend only on the current policy a, and we let
vi(a) be that payoff.?8

Majority rules are represented as follows. Suppose a simple majority is required to switch

2"Baron and Ferejohn consider the case in which once a policy a is implemented this is the end (see also

Banks and Duggan (2001)).
28Extensions to the case where legislators care about the last m policies raise no conceptual difficulty. It

would just require defining the states of the economy as streams of policies of length m.
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from policy a to policy b. Then legislators will be able to move from policy a to policy b
whenever the consent of a majority is obtained. That is, a —g b whenever the number of
members of S (i.e. | S|) represents a (strict) majority of N (i.e. | S |> n/2). Other voting

rules, such as for example supermajority voting, can be easily incorporated in our framework.

4 Cycles, Inefficiencies and Other Effects

We first provide some general characterization results and then illustrate a number of inter-

esting dynamics that may arise in our setup.

4.1 Characterization and Existence of Equilibria

Consider a Markov Perfect Equilibrium o of our economy £(v,p,8). For every state a and
player i, we let ¢;(a) represent the associated ezpected equilibrium outcome of player i when
the system is in state a. If the system moves to state a, player i’s expected payoff (gross of

transfers) is given by x;(a) where
i (a) = 6¢i(a) + (1 = 8)vi (a) . (1)

That is, player i receives the flow of payoff (1 — ¢)v;(a) for the current period, and at the
start of next period the system is in state a, resulting in a payoff of d¢;(a).

Consider a Markov Perfect Equilibrium o such that the strategy o; (a) satisfies o;[a] (S, b, t)
0. Then the (equilibrium) transfer that player ¢ proposes to j is t; = x;j(a) — x;(b). This is
indeed the minimum transfer required by j to accept the transition from a to b, and it is such
that player j is indifferent between rejecting and accepting the offer (since t; +x;(b) = x;(a)).
Thus, when player ¢ at state a approaches S to move to state b, transfers are uniquely de-
termined, and the equilibrium strategy of player 7 is characterized by o;(a) (S,b). The above
argument also shows that in equilibrium, player ¢ at state a will approach coalition S and
propose a transition to b whenever 3 ¢(7;(b) — x;(a)) is maximal over feasible transitions.

This in turn yields the following characterization result:

Proposition 1 A strategy profile o is a MPE of an economy & (v, p, §) whenever the following
conditions hold:

i) The support of o; (a) satisfies:

supp (0 (a)) Carg max {Z (xj(b) —zj(a)) :a—gbandi € S’} ; (2)

(S7b) ]GS
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it) For all i and a,
i (a) = (Z Pj (a)(bg(a)) (3)
jEN

where

bl(a) = zi(a)+ I(I[}eg)c {Zjes (xj(0) —zj(a)) :a —gbandie S} j=1i
2sp) 04 (@) (5,0) (1@ € S)xi(a) + 1(i ¢ S)ai(b)) Jj#i

1s player i’s equilibrium payoff at state a when player j is the proposer at that state.

(4)

Concatenating (3) and (4), the expected payoffs z;(a) must satisfy the following system

of equations:

(1 =08)vi(a) + 62 (sp) 05 (@) (5,0) Xjes (25(0) — xj(a))
+6 2 jen pi(a) Xsp) 0 (@) (5,0) (1(i € S)zi(a) + I(i ¢ S)xi(b))

Given a Markov Perfect Equilibrium, it is useful to define the excess of player i at state

zi(a) = (5)

a as

e; (a) =max {Z(mj(b)—wj(a)) :a—>5bandi65’} (6)

0.5) | jes

This is the gain that agent ¢ realizes at state a when he is the proposer at that state. Note
that as player ¢ can always decide to stay in the same state (see Assumption Al ), we always
have that e;(a) > 0 for all i and a. Note also that Assumption A2 implies that in equilibrium
it must be that if player ¢ finds it optimal at state a to approach coalition S and propose
a move to state b, i.e. if o; (a) (S,b) > 0, then agents outside S should be no worse off in
state a than in state b, i.e. ;(b) < zj(a) for all j ¢ S. Indeed, if that were not the case, say
xj(b) > xj(a) for some j ¢ S and if ¢ were to propose a move from a to b to coalition S, then
player ¢ could extract an extra transfer from agent j, i.e., z;(b) —x;(a) > 0, by including agent
j in the coalition (which Assumption A2 permits, thus showing that the original proposal of
agent i was not optimal).?’

Our first general result establishes the existence of equilibrium.

Proposition 2 (Existence) There exists at least one Markov perfect equilibrium for all economies
E(v,p,6).

The proof of the proposition relies on a standard use of the Kakutani fixed point theorem,

and is provided in the appendix.?’

29Gee also section 5 for more on the role of assumption A2.
30Note that both propositions 1 and 2 hold even if we drop assumptions A2 and A3. Moreover, it can be

shown that the equilibrium correspondence is upper-hemi-continuous on the parameters (v, p, ).
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4.2 Stable States and Sets of the Economy

We are primarily interested in understanding the long-run properties of the economy and in
particular their relation to efficiency and stability. To this end, we introduce the concepts of
stable sets (or ergodic classes) and stable states (or absorbing states). The stable sets/states
are the states to which the process converges after a long period of time.

The equilibrium o of an economy & (v, p,d) induces a transition probability in the state

space

p(a,0) = > pjla)aj(a)(S,b).

JEN S
The Markov chain with transition probability p captures the dynamics of the economy, and
for this reason the transition probability p is of central interest.

The long-run behavior of the economy is described by the stable sets (or ergodic classes).

Definition 4 The stable sets (or ergodic classes) of the economy (associated with the equi-
librium o with transition probability p) are the sets E C Z such that:

(i) (Closedness) For any a € E there exists no b € Z\E such that j(a,b) > 0;

(i) (Irreducibility) For any a,b € E there exists a sequence a = ag,...Qg,...am = b with

ar € E and p(ag—1,ax) > 0.

The definition of stability captures the idea that starting from any state that belongs to
a stable set the process remains at the stable set forever, and that no (non-trivial) subset of
a stable set is stable.3! A well-known result of the theory of Markov chains (see for example
Doob (1953)) yields that starting from any state the process converges, in a finite number
of steps, to a stable set. Therefore, the stable sets describe the long-run behavior of the
economy.

When the stable set has a unique state, we refer to it as a stable state or absorbing state.
Note that when the stable set contains several states, the system cycles between these states.

We now investigate a few examples showing how equilibrium cycles might emerge in our

setup. We first consider a coalitional bargaining game with externalities.

31Gtates that do not belong to a stable set are also referred to as a transient states.
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Example 1 Consider the following coalitional bargaining game with partition function:

ui) | [YEJB] | [12)(3] | [13][2] | [23][1]
1 2 2 -2
1 2 -2
1 -2 2

where coalitions may expand and break-up (with the permission of the involved players, see

section 3.2),3% and all proposers are chosen with equal probability.

[12]15]
(2,166, 2.166, -1.833)

33.3%

(0.833, 0,333, 0.833)

333%

1008

[13](2] (2166, -1.833, 2.166) (-1.833, 2.166, 2. 166 [123]

Figure 1: Limit equilibrium payoffs and transition probabilities for example 1 (an arrow
leaving state a and pointing to state b indicates that the process can move from state a to b,
and the percentage in the arrow is probability u(a,b); the equilibrium payoffs at each state
are given by the vector (¢1, ¢2, ¢3)).

For every 4 sufficiently close to 1, this economy has a unique equilibrium. The limit as
6 goes to 1 of this equilibrium is such that equilibrium payoffs and equilibrium transition

probabilities, for each state, converge to the values indicated in Figure 1.

32The grand coalition [123] is not considered because it yields low payoffs to all players, say.
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The unique stable set is the set of all states £ = Z, and the efficient state of this economy
is [1][2][3], which is not a stable state. If it were, each player would only get a payoff of 1.
But, player 1 say could achieve a higher payoff by proposing to player 2 to form a coalition
(i.e. move to [12][3]). Hence, the system must cycle and the only equilibrium cycle is the one
shown above in which all states may occur in equilibrium.

The next example illustrates the possibility of cycles in voting games. The example also
illustrates that even if a Condorcet winner (a policy that cannot be defeated by any other

policy by majority vote) exists it need not correspond to a stable state.

Example 2 Consider the voting game

vi(+) | a b c d

1.5 1 0 1.6
2 1 0 1.5] 1.6
0 1.5 1 1.6

where any policy can be passed by majority voting, i.e. any two players can move from
the current policy (status quo) to any other policy, all players are the proposers with equal

probability in all states, and players are arbitrarily patient).

For every ¢ sufficiently close to 1, this economy has a unique equilibrium where the payoffs
and transition probabilities are as shown in Figure 2.

Note that policy d is a Condorcet winner (a core state), since no majority prefers a, b or ¢
over d. In fact, policy d is even unanimously preferred over a, b, c. Despite the fact that d is
a Condorcet winner (and is even unanimously preferred to other states) state d is not stable!

At first sight it might seem strange that state d - which is unanimously preferred to other
states - happen to be unstable (it does not even belong to the ergodic set). The problem is
that two agents, say agents 1 and 2, are enough to move away from the efficient policy d, to
say policy a, and the left aside agent (i.e. 3) suffers a lot from the move to a. In the language
of our paper (see below), we will say that the efficient state d is not externality-free. And
whenever there is no efficient externality-free state, we will show that the efficient state need
not be stable, at least for some proposers’ probabilities (see below Sections 5 and 6).

In words, agents 1 and 2 move away from state d (despite the fact that they incur imme-
diate losses) because they can improve their bargaining position by moving to a state where
agent 3 is in a weak bargaining position.

It should be noted that if in the same example we had required that to move away from

state d unanimous consent is required, then the economy would have converged to the efficient
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(0,835, 0.840, 0.825)

a

, 08330833

,.835, 0.840)

Figure 2: Equilibrium payoffs and transition probabilities for the voting game of example 2
(an arrow leaving state a and pointing to state b indicates that the process can move from
state a to b, and the percentage in the arrow is probability u (a,b); the equilibrium payoffs
at each state are given by the vector (¢1, ¢2, ¢3)).

state and no cycle would have occurred.?3
The next example illustrates in the context of coalitional bargaining games that the

economy may sometimes converge to an inefficient state.

33Thus, our analysis allows us to disentangle the effects of payoffs and of the allowed transition on the

asymptotic efficiency, which static frameworks (say the core concept) do not allow.
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Example 3 Consider the coalitional bargaining game with partition function 3

vi () | [123] | [12)3] | [13)[2] | [23][1] | [1][2][3]
0 3 2.5 | -10 |1
0 2 10 | 2 1
0 10 |2 2 1

where all proposers are chosen with equal probability.

[12](3]

(4.667, 3667, -8,

100%4

Figure 3: Equilibrium payoffs and transition probabilities in the coalitional bargaining game

of example 3.

In Figure 3 we show the unique equilibrium payoff and transition probabilities for ¢ very

close to 1.

[13][2]

(4.333, -8.167|, 3.833)

1008 100%

[123] & (0,0, 0
O 100%

34The payoffs above could describe for example the values of firms for different market structures. Suppose
that the merger of the three firms is inefficient, and that the merger of any two firms has the effect of making
aggressive policies toward firms outside the coalition less costly. In that context, the efficient coalition structure
(for the set of firms) may well having the three firms operating independently (because of the high cost of
mergers). But, the merger of two firms may induce high profit to the merged firms (and low ones to the firm

left aside) because of the weakening of the firm left aside. A payoff structure with similar qualititative features

would then arise.

21

[23](1]

(-2.0,4.0,4.0)
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Even though state [123] is inefficient -it yields a welfare of 0 whereas state [1][2][3] yields
a welfare of 3-, it is stable!!! Player i does not move from state [123] to state [1][2][3] (which
is more efficient) because player i is afraid that whenever he has no opportunity to make an
offer in state [1][2][3], one of the other players decide to form a coalition without i (i.e., move
to state [jk][¢]), which is very unfavorable to player i.

As we will see, for convergence to an inefficient state to occur, players have to be suffi-
ciently patient. When players are impatient or myopic inefficient states cannot be stable (see

subsection 6.2.).

4.3 Intermediaries and the Excess Function

The goal of this subsection is to develop some basic properties about the excess function (see
expression (6)). When the excess of player 7 is positive at state a, it means that player ¢ can
extract some surplus (equal to the excess) when he is the proposer at state a. The following
proposition shows that in the limit of very patient players, there is always a state in a stable

set such that the limit excess of player ¢ at that state is zero.

Proposition 3 Consider an equilibrium strategy profile o(®) of £ (v,p,8) such that the equi-
librium transition probabilities and payoffs 1% and ¢®) are such that u'® — p and ¢¥ — ¢,
as 6 — 1, and let E C Z be a stable set of p. Consider a player ¢ that can be the proposer with
positive probability at some state in E. Then there exists a state a* € E such that p;(a*) >0

. . . 6
and i’s excess at a* converges to zero, i.e., lim ez(- )(a*) =0.
6—1

The intuition for Proposition 4 is that if the limit excess of say player ¢ were strictly
positive in all states, then it would not be possible that the expected equilibrium payoffs of
this player be finite in all states, which is clearly absurd. (The formal argument relies on a
reasoning about the state where the player gets its minimal equilibrium payoff.) It should be
noted though that the limit excess of players need not be zero in all states of a stable set, as
Example 1 shows (the excesses of all players at state [1][2][3] are strictly positive).

The following Proposition shows that when players are very patient the path of players’
equilibrium value departing from a certain state is markedly different depending on whether

the excesses are zero or positive:

Proposition 4 Consider an equilibrium strategy profile () of £ (v,p,8) that converges as
6 — 1 (and such that the payoffs also converge H0) — ¢). Then, given that the process is at
state a either the excess at state a for player i is:

(i) pi(a)e;(a) = 0, in which case the equilibrium value of player i at state a is independent of
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who makes the proposal at that state;
(i1) pi(a)ei(a) > 0, in which case the equilibrium value of player i at state a varies with the
identity of the proposer, and the system may move to states b and ¢ such that player i’s

equilibrium value is higher (resp. lower) in state b (resp. c) than in state a.

In specific applications, such as the mergers and acquisitions or the coalitional bargaining
games we discussed in the previous section, the result implies that if the excess of firm or
coalition is positive given a current market or coalition structure, then the firm’s stock price
or the coalition’s value is uncertain and can either go up or down from its current value.
The examples previously considered also serve to illustrate the proposition: In examples 1
and 3 the excesses of all players were positive at state [1][2][3] and the players’ values went
up when they happened to participate to a pairwise coalition and went down otherwise; and
in example 2 the excesses were zero at all states and, accordingly, players’ values remained
(approximately) constant.

The positiveness of the limit excess value has also implications for the role of intermediaries
(where an intermediary (or a dummy player) is an agent who serves no fundamental role in
allowing for transitions and gets a constant payoff in all states). We will show that an
intermediary may make positive profits despite his non-essentiality in situations where the
excess is positive and he has some initiative to make proposals. Notice that this property
of our solution is markedly distinct from cooperative solution concepts such as the Shapley
value, where an intermediary (as just defined) makes no profits. We first define intermediaries

formally:

Definition 5 A player i is considered an intermediary (or a dummy player) if vi(a) =0 (or

any constant) for all a € Z and for all feasible transitions a —g b then a — g\ (51 b is also
feasible.

Consider the following variant of example 1 with the addition of player 4 as an interme-

diary.

Example 4 Consider the coalitional bargaining game with partition function similar to ex-

ample 1,
vi() | [JJIS]14] | [12][3][4] | [13]12][4] | [23][1][4]
1 1 2 2 -2
2 1 2 -2
3 1 -2
4 0 0
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where all player are proposers with equal probability and the discount rate are infinitesimally

close to 1. The equilibrium payoff is

¢i() | [LI2]B]A] | [12][3][4] | [13][2][4] | [23][1][4]
1 |o0525 2.125 | 2125 | -1.875
2 | 052 2.125 | -1.875 | 2125 |
3 |0.525 -1.875 | 2125 | 2.125
4| 0.925 0.125 | 0.125 | 0.125

and the equiltbrium transition probability is as in example 1.

In this example, the excess of players ¢ € {1,2,3} at state a = [1][2][3][4] are equal to
ei(a) = 3.2 and the excess of player 4 is e4(a) = 2.4. Interestingly, despite the fact that player
4 is an intermediary, he makes strictly positive profits.

In general, we have that if the economy is at a certain state where at least one player has
positive excess (in the limit) an intermediary with initiative (i.e., positive probability of being
the proposer) is able to make strictly positive profits (and these profits are monotonically
increasing in the excess).?® The intuition is that whenever the intermediary is able to seize
the initiative to move, he can extract positive rents from a player with positive excess. This
is so because, as we have seem in proposition 4, the value of a player with positive excess
can either go up or down, and thus if the intermediary proposes to move to a state where
the players’ value go up then he can obtain some positive rents (which are increasing in the

excess).0

5 Efficiency Analysis

What are the efficiency properties of equilibria? The Coasian view would be that in absence

of transaction costs and in the transferable utility case individualistic bargainers should make

% This monotonic relationship can be seen in example 4: at state [1][2][3][4] the maximum excess is 3.2 and
the intermediary’s profits is 0.925, while at all other states the maximum excess is zero and the intermediary’s

profit only 0.125 (note that the intermediary’s proposer probability were kept fixed at 0.25 in all states).
36More formally, the equilibrium value of an intermediary is given by

wi(a) = pi(a)ei(a) + > p(ab,8) (I(i € S)ai(a) + 1(i ¢ S)z:(b))
(5.b)
where z;(b) > 0 (because v;(a) > 0 for all states and Z(S'b) w(a,b,8)I(i € S) < pi(a)). Thus equation above
implies that

zi(a) > %ei(a),

(notice that the lower bound for the value is increasing in e;(a)).
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efficient decisions (and share the surplus as a function of their relative bargaining power).
This view would suggest that whoever has to move and whatever the state of the economy
there should be an immediate move to an efficient state (and no further move or moves only
within the set of efficient states).

However, we have already seen examples in Section 4 in which efficiency did not obtain
(either due to long run cycles or to convergence to inefficient states), thus suggesting that
the inability to commit of the players is a form of transaction costs.

In our analysis, we distinguish two forms of efficiency: the strong efficiency which requires
that starting at any given state there is an immediate move to an efficient state (i.e., any
state that yields max vy (a)) and the asymptotic efficiency which only requires that in the
long run (after a number of possible transitory moves) the system stabilizes to states that
are efficient.

Clearly, strong efficiency implies asymptotic efficiency. And a strongly efficient equilib-
rium pattern induces the highest possible welfare. However, in those contexts where players
are very patient, the potential loss induced by asymptotic efficiency relative to strong effi-
ciency is very small (it vanishes to 0 as players get infinitely patient). Asymptotic efficiency
is thus the economically relevant measure of efficiency when considering arbitrarily patient
players.

In the next subsection, we characterize sufficient conditions for asymptotic efficiency. In
short, the condition is that there exists an efficient-externality-free state (EFS), that is, an
efficient state a* such that if a group S can move from a* to b (possibly in several steps),
then players outside S derive no smaller flows of payoffs in state b than in state a*. When
we require robustness with respect to the (possibly state-dependent) probabilities that the
various players are selected to make proposals, the existence of an efficient externality-free
state appears to be necessary. Finally, in subsection 5.3, we characterize the very restrictive

conditions under which strong efficiency holds.

5.1 Asymptotic Efficiency

In Section 4, we showed examples in which the equilibrium cycled between several states. The
flows of aggregate payoffs in such cyclical equilibria also cycle as the various states between
which the economy cycles need not have the same aggregate flows of payoffs. However,
the aggregate equilibrium value attached to a state incorporates not only the instantaneous
aggregate flow of payoffs attached to that state but also the subsequent flows of aggregate

payoffs as derived from the equilibrium transitions from states to states.
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The next proposition shows that the aggregate equilibrium value cannot cycle and must
converge to a well defined limit as players get very patient. That is, the aggregate equilibrium
value is approximately the same at all states if players are very patient. Therefore, social
welfare does not depend on the particular initial state from which the process starts. Even
though the long run pattern may display cycles or inefficiencies, the initial state from which
the process starts has no effect on the long run welfare efficiency properties of the system.

We use from now on the following simplifying notation to denote aggregate value:

vg(a) = ZW(CL), os(a) = Zqﬁi(a) etc., where S C N.
€S i€S
Proposition 5 The aggregate equilibrium values are approximately the same at all states
for all economies € (v, p,d) if players are patient enough (6 close to 1). More precisely, %1_)11%
max{|¢§$) (a) — 5\‘;) )| :a,be Z} = 0, where ¢§$) () is the aggregate equilibrium payoffs

associated with any equilibrium o®) of the economy & (v,p,0).

To illustrate Proposition 5 we refer to Examples 1, 2, and 3. It is no coincidence that the
aggregate welfare was the same in all states (the aggregate welfare was equal to 2.5, 2.5, and
0, respectively, in examples 1, 2, and 3).

The intuition for Proposition 5 is as follows. When players are very patient, whatever
the state one starts from, the aggregate value attached to that state must correspond to the
average aggregate value obtained in the ergodic set reached from that state. However, it
might be a priori that two different states lead to two different ergodic sets (see however
Section 6), and thus this argument alone does not permit to conclude. But, if there were two
ergodic sets corresponding to two different aggregate welfares, any player would be willing to
move (even with unanimous consent) from the less efficient ergodic set to the more efficient
ergodic set extracting for himself the generated surplus. Thus, the two ergodic sets would
have to be in fact a single ergodic set (since players would move from one to the other), and
it is thus impossible to have two ergodic sets with different aggregate values in the limit.3”

Proposition 5 guarantees that there is a well defined notion of limit aggregate welfare.
But, this limit aggregate welfare may well be suboptimal. An equilibrium is said to be
asymptotically efficient if the aggregate equilibrium value, at any given state, is approximately
equal to the aggregate value at an efficient state. Our focus is on economies where all equilibria

are approximately efficient when players are very patient. Formally,

3TNote that the argument does not a priori rule out the possibility of having two ergodic sets with the same

aggregate values in the limit as § goes to 1.
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Definition 6 A (v,p)-economy E(v,p) is asymptotically efficient if and only if%in% qﬁg\‘? (a) =1max
. c

vy (b) for any equilibrium o® of the economy & (v,p,8) and any state a € Z.

Again, the examples in Section 4 may be used to show that economies need not be
asymptotically efficient. However, assume there is an efficient state that is a stable state in
a given equilibrium o® of £ (v,p, ) for all § sufficiently close to 1. According to proposition
5, in such an equilibrium and for sufficiently patient players, the aggregate equilibrium value
must be close to the efficient level at all states. In economies without negative externalities it
can be shown that efficient states are stable, and thus economies without negative externalities
are asymptotically efficient.

The same line of argument can also be applied to economies with externalities. Suppose
that there is an efficient state a that can be left only with unanimous consent. Then such
an efficient state must be stable whatever the equilibrium, which in turn implies asymptotic
efficiency.

More generally, we develop the concept of an efficient-externality-free state (EFS):38:39

Definition 7 A state a is an efficient-externality-free-state (EFS) of the v-economy E(v) if
and only if for all players i € N and moves a —g, a1 — --- —g, an = b by subcoalitions
Sk C N\i (excluding player i) then v;(b) > vi(a). We let EFS C Z (of £(v)) be the set of
states that satisfies the EF'S property.

Observe that the absence of negative externalities and/or the requirement of unanimous
consent to move away from one efficient state implies the existence of an efficient externality-
free state.

The next result (and its corollary) establishes asymptotic efficiency under any of the

conditions discussed above:

Proposition 6 All (v, p)-economies E(v,p) are asymptotically efficient if there exists at least
one efficient externality free state of E(v) (EFS #10).

Corollary 1 An economy E(v,p) is asymptotically efficient (i) if the economy is without
negative externality, or (ii) if there exists at least one efficient state where unanimity is

required to move to any other state.

38Strictly speaking, the efficient state a should be prone to negative (and not necessarily positive) external-
ities, as v;(b) > v;(a) is allowed in the definition.
391f one adds a transitivity axiom (i.e. for any three states b, ¢, d and coalition S, b —s ¢ and ¢ —g d imply

that b —g d), then the definition can be simplified to consider only direct transitions from a to b.
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In the definition of an efficient externality-free state we allow for positive externalities.
Thus, Proposition 6 shows that efficiency obtains even if leaving the efficient state a to some
sub-optimal state b can be done without the consent of player i, as long as player ¢ is not
worse off (in terms of flow of payoffs) in the new state b relative to the original state a. Our
analysis will show that negative externalities and the possibility of exclusion are the essential
features that are responsible for potential inefficiencies (see more on the effect of positive
externalities below).

It is worth pointing out that we cannot weaken the definition of EF'S to consider only
states that are reachable in a one step deviation instead of multiple steps, if we wish to
guarantee asymptotic efficiency.%?

Proposition 6 and Corollary 1 have several practical implications.

Corollary 1 (i) can be used to establish asymptotic efficiency in exchange economies
without externalities (see subsection 3.1), which is reminiscent of Gale (1986). It can also be
used to establish asymptotic efficiency in coalitional bargaining games (see subsection 3.2)
with characteristic function forms (see also Seidmann and Winter (1998)).

Corollary 1 (ii) can be used to establish asymptotic efficiency in coalitional bargaining
games with externalities where the grand coalition is efficient (see also Gomes (2001)).

The next Example illustrates the scope of Proposition 6 when Corollary 1 does not apply
(because there are negative externalities and one can move away from the efficient state

without unanimous consent):

Example 5 Consider the coalitional bargaining game with partition function

vi(a) | [123] | [1ZJ[3] | [13][2] | [23][1] | [1][2][3]
1 3 2 2 0
1 2 2 0 0
1 -1 -2 1 0

It is readily verified that the efficient state [12][3] is EFS, and therefore Proposition
6 guarantees asymptotic efficiency. Note that the economy above is not without negative
externality (since 1 and 3 can move from [1][2][3] to [13][2] and 2 is worse off when 1 and 3
form a coalition), and moreover, unanimity is not required to move away form state [12][3].

Applying Proposition 6 to general coalitional bargaining games, we get:

40Qay, that a is an efficient state satisfying a —s b implies v; (b) > wv; (a) for all i ¢ S. The following
example illustrates that this restriction would not imply efficiency. Example: N = {1,2,3}, Z = {a,b,c},
and v(a) = (0,0,3), v(b) = (—1,-1,4), v(b) = (1,1,0) and a —12 b, b—12 ¢, and ¢ —193 a.
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Corollary 2 Consider a coalitional bargaining game with partition function where there ex-
ists an efficient coalition structure 7 satisfying vg(mw) < vg(mw*) for all S € #* and partitions
m with S € m. Then 7 s an efficient externality-free state, and the coalitional bargaining

game is asymptotically efficient.

In Examples 1, 2 and 3 above (see Section 4), we identified circumstances under which
asymptotic inefficiencies occurred in equilibrium (either due to cycles in Examples 1 and 2
or to convergence to an inefficient state in Example 3). In all three examples, the reason for
the inefficiency is the non-existence of an efficient externality-free state. That is, asymptotic
inefficiencies occur because by deviating from the efficient state a subgroup may impose neg-

ative externalities on excluded players.

Discussion of Assumptions:

Assumption A3 which states that one can always move in one single step to another state
with unanimous consent cannot be dispensed with in Propositions 5 and 6. Suppose that one
weakens the assumption allowing for a move in multiple steps from any state to any other
state.*! The next example illustrates that even if there is an EFS state the economy may not

be asymptotically efficient.

Counter-example 1 (Necessity of assumption A3) Consider a coalitional bargaining game

with payoffs

vi(a) | [12)[3] | [12]]5] | [13][2] | [23][1] | [123]
1 0 J J 0 3
2 0 J 0 J 3
3 0 0 J J 3

where the only change with respect to the transition rules specified in subsection 3.2 is that it
is no longer possible to move directly from state [ijj[k] to state [123] (although it is possible
to move in two steps: [ij][kj—i;[1][2][3]—123[128]). Consider that each player has an equal
probability of being the proposer and that they are very patient.

Note that assumption A3 does not hold (but all other assumptions are maintained) and
the efficient state [123] is an EFS state. The equilibrium transitions in this economy can be
described as follows. From state [1][2][3], player i will move to a state of the form [ij][k] (i.e.

he will form a coalition with one of the two other players) with no further move afterwards;

“Formally, this corresponds to: For all a,b € Z there exists sequences zx € Z and Sy C N such that:

a —g, T3 — - —s, T = b. (It is always possible to move from state a to state b in a finite number of steps.)
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and from the grand coalition state [123], there is no further move. So there are four stable sets
in this equilibrium corresponding to the three pairwise coalitions and the grand coalition. We
do not have asymptotic efficiency as the system may stabilize to one of the pairwise coalition
states, which are suboptimal.

The reason for the inefficiency here is that it is not possible to move from an inefficient
pairwise coalition to the grand coalition directly, and the transition to the disaggregated state
[1]2][3] would involve a loss to the original pairwise coalition (as it would be too favorable
to the third player).

We have already noted that if we assume A3’ that any two states can communicate in one
step (i.e., for all a,b there exists S such that a —g b) then A2 implies A3 (so A2 and A3 are
equivalent to A2 and A3’). We now show that relaxing A2 while maintaining A3’ invalidates
the results in Propositions 5 and 6. The main reason why assumption A2 is important in
order to achieve efficiency is that it facilitates a move to efficient states in that proposers are
able to extract from other players any gains that such move entails. The following war of

attrition example illustrates this point.

Counter-example 2 (Necessity of assumption A2) Consider the following war of attrition

game with payoffs

vi() | al|b
0112
2 0] 2

where the transition rule is as follows: a —1 b, a —9 ¢, and b —12 x, ¢ —12 * and * —; x
forx =a,b,c and v = 1,2. Consider that players have an equal probability of being proposers

and have discount rate §.

Note that assumption A2 does not hold since the moves a —19 b and a —19 ¢ are
not feasible (assumptions Al and A3’ are maintained though). We now show that despite
the fact that states b and ¢ are EFS states, the economy above have equilibria that are
not asymptotically efficient. It is clear that in any equilibrium, starting from states b or
¢ the payoffs of players are given by v (b) and v(c), and thus we only need to analyze
the strategy profiles at state a. Consider a symmetric strategy profile where both players
randomize whether to give in or not whenever they are proposing (i.e. o1(a)(b) = o2(a)(c) =p
and o;(a)(a) =1 —p). A necessary and sufficient condition for the strategy profile above to
be an MPE is that

zi(a) = 6((1—]3)@(&)—0—%1—0—%2),
zi(a) = 1,
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which implies that p = 2(1(; 6), and thus for 6 > % (probability p < 1) there is an equilibrium

with the strategy profile above. Note that the aggregate welfare ¢ (a) at state a is given by
zn(a) = é¢n(a) + (1 — &) vn(a), and thus ¢y (a) = 2. So when § — 1 the aggregate welfare
converges to ¢y(a) = 2 < 3, and thus the economy is not asymptotically efficient.*?> Note
that the equilibrium above has two ergodic classes: stable states b and ¢ (and these ergodic

classes are robust to parameter perturbations).

5.2 The Role of Proposer’s Probabilities

In this part, we discuss the role of proposer’s probabilities. We start with an illustrative

example.

Example 6 Consider the game where the only possible moves are a —1 b, a —12 b, and

b —12 a and the payoffs are

vi(-) | alb
1|z
2 110

We assume that both players may propose with positive probability in state a and we let p be

the probability that player 1 is the proposer at state b, and let 6 be the discount rate.

What are the conditions under which the equilibrium outcome is asymptotically efficient?

It might seem that as long as < 1, player 1 will not be willing to move from state a to
state b (even though he may) because such a move would hurt him (in addition to hurting
player 2), and thus such a move might seem non-credible. However, this argument ignores
the possibility that player 1 may have a strong bargaining position in state b, thus providing
player 1 with a payoff greater than 1 in state b. This turns out to be the case when the
probability that player 1 is the proposer at state b is sufficiently large.

Formally, let

¢1(b) = x+p2-x)
¢2(b) = (1-p)(2-2)

be the payoffs that players 1 and 2 would obtain in expectation at state b if player 1 (resp.
2) were to make the proposal with probability p (resp. 1 — p) and the proposal could only

42The war of attrition game though have two other asymmetric equilibrium in which one player immediately

gives in resulting in an efficient outcome (see also Gomes (2001)).
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consist of a move to state a (with no further moves allowed). In such a setup, the condition

for the stability of state a is
vi(a) 2 6¢1 (b) + (1 — &) v1 (b),

and thus a is stable if and only if

< 1—=x
P=0 "0
(the ergodic classes are {a} and {a,b} if p is, respectively, smaller or greater than (21__—;)6)

To summarize, the example illustrates that the inefficiencies are driven by the asymmetry
of payoffs and/or bargaining power at states that can be reached from the efficient state.
It also shows that the search for stronger bargaining positions may cause distortions in the
allocation of resources. However, as we have demonstrated in proposition 6 the bargaining
power of players create no distortions if there exists at least one efficient externality-free state
(which is not the case in Example 6).

The following proposition shows that the existence of an EFF'S state is a necessary condi-

tion for asymptotic efficiency to hold irrespective of the proposers’ probabilities.

Proposition 7 Any v-economy E(v) that has no efficient-externality-free-state (EFS = ()
is such that there exist (an open set of) proposers’ probabilities p such that E(v',6,p) is not

asymptotically efficient, for almost all v' in a neighborhood of v.

Consider an economy with no efficient externality-free state. That is, coalition S may
move (possibly in several steps) from the efficient state a to a suboptimal state b such that
player i ¢ S ’s flow of payoff is lower at state b than at state a. Proposition 7 shows that for
some specifications of p, asymptotic inefficiencies may occur. In fact, inefficiencies will occur
when the probabilities that player ¢ is the proposer at state b is sufficiently small. Under
such circumstances, state a will not be stable because coalition S would rather leave state a
to move to state b in order to exploit the weak bargaining position of player ¢ at state .

Remark: In proposition 7 it is important to consider perturbations of the payoff. For
example, if all states of the economy are efficient, then even though there may be no EFS,

the economy is certainly asymptotically efficient.

5.3 Strongly Efficient Equilibria

Strong efficiency requires that any player who has a chance to make an offer at an inefficient
state proposes to move to the efficient state right away (with no delay). That is the pattern
that an omniscient benevolent planner would implement, and we characterize the conditions

under which the players voluntarily conform to it in equilibrium.
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Proposition 8 Suppose the proposers’ probabilities are state independent (i.e. p;(a) = p;

for all a). If an economy E(v,p,d) satisfies

vs (b) —vs (a) < ps (vn (b) —vN (a), (7)

for all a —g b then it has an equilibrium o where, starting from any state, there is an
immediate move to an efficient state with unanimous agreement, and the equilibrium payoff

corresponds to the Nash Bargaining solution, i.e.
T (a) (N7 a*) =1, (8)

¢i (@) = vi (@) +pi (vn (@*) = o (), (9)

foralla € Z,i € N, and a* is an efficient state. Reciprocally, if an economy E(v,p, ) with
patient players (6 arbitrarily close to 1) has an equilibrium satisfying (8) then the payoffs
satisfy inequalities (7).

Strong efficiency is, of course, a much stronger requirement than asymptotic efficiency.
In Example 5, where all players have an equal probability of being proposer in all states,
players 1 and 3 would move from [1][2][3] to [13][2] (instead of [23][1]) in order to improve
their bargaining position vis a vis player 2.

Notice that for the case where all players have an equal probability of being the proposer
the condition (7) is equivalent to

vg (b) —vg (a) < N (b) — vy (a)
5| - IN| ’

which resembles the condition given in Chatterjee et al. (1993) and Okada (1996) for existence

of a no-delay stationary equilibrium.

6 Convergence and Stability Analysis

In this Section, we analyze the effect of the initial state on the long run properties of the
system (convergence). We establish in Proposition 9 that in generic economies there is no
effect of the initial state on the long run properties of the system whatever the equilibrium
under study. We also analyze the conditions under which a state (not necessarily efficient)
can be stable and relate the condition to the core condition and the existence of an efficient

externality-free state.
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6.1 Convergence

In Section 5 we have shown in economies with arbitrarily patient players that the aggregate
welfare must converge and cannot cycle. We now show that generically?®, any equilibrium
has a unique stable set or state whenever players are sufficiently patient. Thus, the long-run
behavior of the dynamic process (not only the aggregate welfare and not only in the limit of
arbitrarily patient players) is (generically) the same regardless of the initial state from which
the system starts. And this conclusion holds true whether the system converges to a single

state or cycles between several states.

Proposition 9 For generic economies £ (v,p,8) there exists a & > 0 such that if § > 6
all equilibria of € (v,p,d) have only one stable set (ergodic class). Therefore, the long-run

properties of economies are not dependent of the initial state, if players are patient enough.

In the context of exchange economies (with or without externalities) or the merger /dissolution
application, this result means that there is no long run effect of the initial allocation of
property rights whenever players are sufficiently patient, which is reminiscent of Jehiel and
Moldovanu (1999) (even though applied to a broader context).

When players are not patient enough, the following example shows that there may be
equilibria with multiple stable sets. The example considers the case of myopic or totally

impatient players.

Example 7 Consider a voting problem where three legislators are myopic (each have discount
rate 6 = 0) and derive the following utility with respect to four policy choices (players have
equal probability of being proposers):

vi() | a |0
1 1.5] 1 0
2 1 0 1.5
3 0 1.5 | 1

NN~

Any of the policies a, b, or ¢ can be approved and changed by a simple majority (at least two

legislators), and policy d requires unanimity to be approved and changed.

The equilibrium for this game, for § = 0, is as depicted in Figure 4.
In this example there are two stable sets: {a,b,c} in which the system cycles between
a, b, c, and the stable state d. This structure of ergodic classes prevail until the discount rate

reaches § = 0.75, and are robust to perturbations of payoffs.

“3Except in a subset of the set of payoffs v € R™!?! of Lesbegue measure zero .
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(0,833, 1.167, 0.5)

a

(1.167, 0.5, 0.833) (0.5, 0.833, 1.167)

Figure 4: Equilibrium payoffs and transition probabilities for the voting game in example 7.

Notice that the process does not converge to the efficient state d, despite the fact that it
satisfies the unanimity property of Corollary 1 (ii). However, if players are patient enough
(6 > &) the stable state d is the unique limit state.

We conclude this subsection by noting that the dynamics in economies without negative
externalities is particularly simple irrespective of the patience of the players. We have already
noted in Corollary 1 (i) that an economy without negative externalities is asymptotically
efficient (i.e. in the limit of infinitely patient players). We now extend this result to show
that no matter what the patience of the players is, there is convergence to an efficient state

in economies without negative externalities.

Proposition 10 Any v-economy £ (v) without negative externalities is such that any equi-
librium of € (v, p, ) converges, in a finite number of steps, to the set of efficient states irre-

spective of 6 and p.

The convergence result of proposition 10 can in fact be extended for economies with ex-

ternalities satisfying the unanimity property or for economies admitting efficient externality-
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free-states (EFS) at least when players are sufficiently patient.?* Such convergencies are
illustrated by Examples 5 and 7, which satisfy, respectively, the EFS and unanimity proper-

ties.

6.2 Stability

In this subsection we analyze the conditions under which the economy converges to a (stable)
state a* (whether or not efficient). To this end, for each economy £ (v,p,6) and state a*, we
define the a*-restricted economy Eg+ (v, 6, p), obtained from & (v, p,d) by deleting all moves
a* —g b with S # N allowed in & (v,p, ¢) (while keeping a* —y b by A3). We have:

Proposition 11 Let o be an equilibrium of € (v,p,d), and assume that state a* is a stable
state of o. Then
vs (a%) = w5 (b) = 665 (b) + (1— 6) v (b) (10)

Moreover, if a* is a stable state of some equilibrium o of the a*-restricted economy Eg= (v, 6, p)

and if inequalities (10) hold then o is an equilibrium of € (v,p, ) with stable state a*.

Remember that, as Example 3 shows, a stable state may well be inefficient. We now
investigate the link between the stable states and the states lying in the core, which is
formally defined by:4?

Definition 8 (Core) The core of v-economy & (v) is the set of states C C Z, where a € C
if and only if for all coalitions S C N and states b € Z with a —g b then vg(a) > vs(b).

The relation of our concept of core to the classical definition deserves a few comments.
Even tough the above definition of core corresponds to the classical concept, the application
of the concept to, for example, coalitional bargaining games leads to some notable differences.
For example, the characteristic function game v(i) = 0, v(ij) = 8, v(123) = 9 is typically
referred to, in the context of cooperative game theory, as a game with empty core (no im-

putation z € R® with Y2, 2; = 9 satisfies x5 > v(S) for all S C N). In our formulation of

#4To see this, consider an efficient state a € Z that satisfies the unanimity property or the externality-free
(EFS) property as defined in section 5.1. Consider now a slight perturbation of the payoffs of the economy so
that the condition of proposition 9 holds. As we have seen in the proof of proposition 6, efficient states satisfying
the unanimity or the externality-free (EFS) property can be sustained as stable states of any equilibrium, and

thus, according to proposition 9, are unique limit states when 6 > 4.
45The core of the games we considered so far are: examples 1, 3, and 4 have empty core; example 2 core={d},

or equivalently, state d is a Condorcet winner; example 5 core={[12][3]}; example 6 core={a}; and example 7
core={d}.
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the coalitional bargaining game (see subsection 3.2) the core of the corresponding economy
is non-empty and consists of the state where the grand coalition [123] forms. The distinction
comes not from the concept of core per se but from the transition relation that specifies the
possible moves by coalitions. Implicit in the cooperative interpretation, is the view that a
subcoalition can break-up from a coalition without the consent of the players left behind (see
also discussion in Section 3.2). But this view is inconsistent with the idea that once players
have agreed to form a coalition it cannot be re-organized without the consent of all players
in the coalition. We believe that in an explicit dynamic setup in which players have agreed
to form the grand coalition [123] it makes more sense (at least in some contexts) to assume
that breaking that grand coalition apart requires the consent of all three players.

Clearly, the conditions expressed in inequalities (10) bear some resemblance with the
conditions for the Core (as just defined) whenever § = 0. The following Proposition formalizes
the intimate relationship between absorbing states and the core when players are myopic. It
also shows that whenever the core is empty there must be cycles in economies with myopic

players.

Proposition 12 Any economy & (v,p,0) where players are myopic (6 = 0) satisfies:
Y Y Y Y
(i) the stable states (absorbing states) are contained in the core®®;

(i) if the core is empty all equilibria of € (v,p,0) have cycles.

Non-myopic or farsighted players though, when considering deviations from a state, put
weight 6 on the expected equilibrium value (which incorporates the expected value of all
future payoffs) of the deviant coalition in the new state (see inequality 10), as opposed to
putting all the weight on the coalitional value in the new state (which is the case in the
definition of the core).

As our examples illustrate the relationship between stability and the core, and the exis-
tence of cycles and emptiness of the core break-down in farsighted situations. In example 3,
[123] is an (inefficient) stable state and there are no cycles despite the fact that the core is
empty, and in examples 2 and 6 the core is non-empty but there are no stable states and the
economy cycles.

We use the following example to provide some further intuition for why the notion of
core is not useful to capture stability in farsighted economies, as well as to illustrate that an

economy may have an empty core and still have an efficient state that is absorbing.

“Moreover, if there is a core state a such that vs(h) < vs(a) for any state b and S C N, then the core is

the unique stable state.

37



Example 8 Consider a situation with two patient players with the following payoffs

vi() |a|b c
1.5 0
2 110 |15

where a —1 b, b —9 ¢, and all x —12y for all x,y € Z (both players are proposers with equal

probability in all states).

While state a (which is efficient) is not in the core (because 1 can move to state b, which
he prefers), it is a stable state. This is so because player 1 knows that if he moves from state
a to state b player 2 will then move to state ¢ which would be very unfavorable to player 1.

So when players are farsighted, the core concept does not capture the long run stability
property of our dynamic processes of social and economic interactions.

When stability is required irrespective of the proposers’ probabilities, it turns out that
the notion of efficient externality-free state (as introduced earlier) is key to the analysis of

stability:

Proposition 13 If state a* is not an externality-free-state of £(v,6,p) then there exists pro-
posers probability p and 6 > 0 such that if § > § state a* is not a stable state of any equilibrium
of E(v,0,p). Reciprocally, if state a* is an efficient externality-free-state of £(v) then a* is a
stable state of any equilibrium of E(v, 6, p) for all p and é.

The intuition for this result is as follows. For a state to be stable irrespective of the
proposer’s probabilities it has to be efficient. (Otherwise, there would be a player who is
better off in the efficient state than in the candidate stable state, and by making this player
the proposer with a probability close to 1 in all states, we would get a contradiction.) Also, an
efficient state can be stable irrespective of the proposer’s probability only if it is externality-
free. (Otherwise, choose the proposer’s probabilities such that a player who is suffering
the negative externality from the move away from the candidate efficient stable state is the
proposer at the deviating state with a very small probability).

Interestingly, if we consider a v-economy £(v) that does not have any efficient externality-
free-state (EF'S = (), then it is easy to see that there exist a proposer’s probability p and
& > 0 such that if § > ¢ no equilibrium of £(v,,p) has stable states, and thus all solutions

are cyclical (note the similarity of this result and proposition 12).
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Finally, it should be noted that whenever there exists an efficient externality-free state,
the core (as defined above) is non-empty and contains that efficient state.*” However, the
non-emptiness of the core does not guarantee the existence of an E'F'S. Thus, when stability
is to be obtained irrespective of the proposer’s probability a more stringent condition than

the non-emptiness of the core is required; that is,~the existence of an externality-free state.

7 Conclusion

This paper has made two important points regarding the efficiency and convergence analysis
of dynamic processes of social and economic interactions. First, there is no effect of the initial
state on the long run properties of the economy if players are sufficiently patient. Second,
if efficiency and stability (of a single state) are to be obtained irrespective of the proposers’
probabilities (with the idea that there is little control over these probabilities), then it is
indispensable to have an efficient state that is externality-free (in the sense that if a coalition
can move away from that state to some alternative state without the consent of some agent
then this agent should get a flow of payoff at least as large in the new state than in the original
(efficient) state). Imposing that one can move from the efficient state only with unanimous
consent is a simple way to guarantee the existence of an EFS, but there are many other
possible transition mappings that allow for such a property. Applications of these insights to

contract theory should be the subject of future research.

“"Suppose that a € EF'S and consider any a —s b. Then vy (a) > vy (b) and vy s(b) > v\ s(a) (from EFS

property). Concatenating the two inequalities we have that vs(a) > vs(b), which shows that a € core.
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A Appendix

PROOF OF PROPOSITION 1: The necessary part follows directly from the discussion before
the statement of the result and the definition of MPF solution. Let us prove the sufficient part
of the theorem. Suppose that the strategy profile o satisfies all the conditions of the lemma.
We use the one-stage deviation principle for infinite-horizon games. This result states that
in any infinite-horizon game with observed actions that is continuous at infinity, a strategy
profile ¢ is subgame perfect if and only if there is no player ¢ and strategy o} that agrees with
0; except at a single stage t of the game and history h', such that o is a better response to

o_; than o; conditional on history k! being reached (see Fudenberg and Tirole (1991)).Q.E.D.

PROOF OF PROPOSITION 2: Let the map f: R? x ¥ — R¢ be defined as

fia)(@,0) = (1= 8)vi(a)+
s ( Pi(@) X,5) i (@) (8,6) (Sjes (w5(0) — 25(a))) + )
+ Y jen Pi(@) S5 75 (a) (S,6) (i € S)as(a) +1G ¢ S)mi(v)) )

for (z,0) € R x ¥. Consider the set
Yi(a) ={(S,b) : where a —g bandic S}

and o; (a) € A% be the set of probability distributions over ¥;(a). Let

and X be the set of offering strategies for all player.

Let the correspondence F : R —— R% be defined as

F(x)={f(z,0):0€X(x)},
where

Y(x)={ceX: supp(o(i,a)) Carar;ax {e(a)(S,b)(z) :a —gbandiec S}.

According to proposition 1 a payoff x € R? is a MPE if and only if z is a fixed point of F.

(1) Let X C R™ be a compact and convex set defined where the coordinate

N v < 7 < _ N V.
min v; (a) < x;(a) _I;leazx vy (a) Z min v; (a)

and X = X;en/;. It is immediate that F (X) C X.
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(2) F (z) is a convex (and non-empty) set for all x € X: Say that 2,2’ € F (x) with
z = f(z,0) and 2/ = f(x,0’) where 0,0’ € ¥(x). Then, for any A € [0,1], Az + (1 —\) 2/ =
f(z, o+ (1 = X)o’) € F(z) because Ao + (1 — \) ¢’ € X(z) (X(z) is convex).

(3) F is u.h.c., that is, for any sequence (z", f(2",0")) — (x,2) with ¢” € X(2™) then
z € F(z) (i.e., there exists an o € ¥(x) such that f(x,0) = z). The sequence (¢") belongs to X
a compact subset of a finite-dimension Euclidean space. Therefore, there exists a subsequence
of (¢™) that converges to o € 3. Rename this subsequence as (¢") for notational simplicity.
We have that 0" (a) (b, S) — o (i,a) (b,S), and that f(2",0") — f(x,0), due to the continuity
of y, and thus z = f(z,0).

It is sufficient to show that o € ¥(z). By the definition of ¥(x), 0 € X(z) if and only if
o € ¥ and 0; (a) (b,S) =0 for all (b, S) such that

xg(b) — zg(a) <I(Ib17%)){ {e(a) (S,b) (x) :a —gband i€ S}.

Consider any S C 7 for which the inequality above holds. By continuity, we have that there
exists a large enough ng such that for all n > ny,

x'¢(b) — x%%(a) <I(Ibl%})( {e(a)(S,b) (") :a —gband i € S}.

But since 0" € 3(2™), this implies that 7" (a) (b,S) = 0, and 05 (a) (b, S) = 0.
Since all the conditions for the Kakutani fixed point theorem holds, the correspondence
F has a fixed point, which yields an MPE. Q.E.D.

PROOF OF PROPOSITION 3 AND 4: Let e;(a) = lim eg‘”(a). Taking the limit of the

6—1

expressions in equation (5) we have that
o) = pla)esta) + 3 1(a,,) (166 € S)a(a) + 1 ¢ S)zi(0) (1)
(S,b)

where 1 (a,b,S) = > ;cnpj(a)oj(a) (S,b). We have already seen that x;(b) < w;(a) for all
b € Z such that p(a,b,S) >0 and ¢ ¢ S (see remarks after the statement of proposition 1).

Let player ¢ be a proposer with positive probability in at least one state in E (i.e, p;(a’) >0
for some a’ € E). Let x be the limit solution and g the limit transition probability. For any
player ¢ let a* be a state where the min{ x;(a’)} is attained ( x;(a*) =min{ z;(a’)}) and thus
p(a*,b,S) > 0 implies that x;(b) zalaiia*) (because E is a closed clacgse,Eand w(a,b,8) >0
and a € E implies that b € F).

Suppose that p;(a*) > 0. Applying equation (11) to state a*, and taking into account that
(s H(a,b,5) =1, we get that

zi(a*) = pi(a)ei(a”) + ai(a”), (12)
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which implies e;(a*) = 0, since p;(a*) > 0.

Now if p;(a*) = 0, then any state b such that p (a*,b,S) > 0 is also such that z;(b) :n}in{
x;(a’)} (this is so because z;(b) < z;(a) for all b € Z such that p(a,b,S) > 0). Thus, oneacgzil
find a state a** such that z;(a**) =min{ z;(a’)} and p;(a**) > 0, and use the same argument
above to this state. er

Consider now proposition 4.

(i) If pi(a)ei(a) = O then if player ¢ is the proposer (e;(a) = 0) his payoff is qﬁz(a) =
oi(a) +e;(a) = ¢i(a) (note that in the limit ¢;(a) = x;(a)); if player j is the proposer then i’s
payoff is ¢! (a) = (s 75 (@) (8,0) (I(i € S)xi(a) + I(i & S)xi(b)). But since equation (11)
corresponds to x;(a) = 3(gp) 1 (a,0,5) (I(i € S)zi(a) + I(i ¢ S)zi(b)) and z;(b) < x;(a) then
zi(b) = x;(a), and thus ¢! (a) = ¢;(a).

(ii) If pi(a)ei(a) > O then in the event that 4 is the proposer (which happens with pos-
itive probability) he gets ¢/(a) = ¢i(a) + e;(a) > ¢i(a). But equation (11), p;(a)e;(a) > 0,
and z;(b) < x;(a) imply that there must exists p (a, b, S) with ¢ ¢ S such that x;(b) < x;(a).
Therefore there exists a proposer j that proposes an acceptable move to go b where the payoff

of player i is ¢! (a) = ¢i(b) < ¢i(a). Q.E.D.

PROOF OF PROPOSITION 5: Suppose by contradiction that there exists a subsequence
6, — 1 such that lim max 168 (a) — ") (b) | - a,b € Z} > 0, where 1) and ¢() are the
equilibrium transition probabilities and payoffs. Now, consider a convergent subsequence of

8, such that p®) — 1 and @) — ¢ (of course, Hzl)a}éWN (a) = on (b) | > 0).
a,be

The aggregate value ¢§$) (+) satisfies
N (@) =" (a,0) [(1 = 6) on(b) + 80 (8)], for all a € Z,
b

which is equivalent to
[1 - 5,@] ) = (1—6) uOuy. (13)

Taking the limit when 6 — 1 we have,

I — p]on =0. (14)

Let Fy,- -+, Ep, be the ergodic classes and T' C Z the class of transient states of the limit
transition probability ¢ (Z = E1 U---U E,, UT). Equation (14) is equivalent to ¢n = pdn
and thus ¢y is an (right) eigenvector of p corresponding to the eigenvalue 1. A well-known

result from the theory of Markov chains (see Doob (1953)) implies that ¢ (-) is a constant
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within each ergodic class E; and that the value of ¢y (-) at any transient state is a linear
combination of the values of ¢y (+) at the ergodic states.

By Proposition 3 there a exists state a; in each ergodic class E; such that the excess
(6n)

i

ez(-é") (a;) of player i at state a; converges to zero: e; "’ (a;) — 0, for all j =1,...,m.

We now show that the values of ¢n () across ergodic classes are equal: say that there
are two ergodic classes F; and Ej such that ¢y (a;) < ¢n (ar). But since it is feasible
for player ¢ to move from state a; to state ap with the agreement of all players N then
lim sup 62(6”) (aj) > én (ag) — ¢ (a;) > 0 (contradiction). Also, because the value of ¢ (-)
aint_r);nsient states is a linear combination of the values at ergodic states, then we conclude
that ¢ () is constant across all states in Z. Finally, this leads to a contradiction with
ﬂg}éMN (a) — ¢n (b) | > 0, completing the proof. Q.E.D.

PROOF OF PROPOSITION 6: We first show that economies is without negative externality
(i), the unanimity property (ii), and the EFS property (iii), imply that there exists a state
a* such that ¢y (a*) =max vy (a).

(i) If the economy is without negative externality then
¢i(a) >v;(a) foralla € Z and i € N : (15)

an utility level at least equal to v;(a) can be achieved by player ¢ if he does not make
any proposals and if he does not accept any proposals due to the no-negative-externality

assumption (whenever a —g, -+ —g, ap — -+ —g, a, and i ¢ Sy then v; (a,) > -+ >

K
v; (ag) > -+ > v; (a)). Therefore, if a* is an efficient state then ¢n(a*) > vy (a*) and thus
on(a*) =max vy (a).

(ii) If a* is an efficient state where unanimous agreement is needed to move to any other
state then a* € EF'S. We thus have (i)=-(ii)==-(iii).

(iii) Let a* € EFS. We claim that ¢;(a*) > v;(a*) for all ¢ € N. Indeed any player
¢ can get an utility level at least equal to v;(a*) if he does not make any proposals and
if he does not accept any proposals (whenever a* —g, -+ —g, ax — -+ —g, an and
i ¢ Sk then v; (an) > v; (a*)). Therefore, if a* € EFS then ¢n(a*) > vy(a*) and thus
on(a*) =max vn(a). Moreover, ¢;(a*) = v;(a*).

Now suppose there exists a state a* such that ¢y (a*) =max vy (a). By proposition 5 if
players are patient enough (6 > ¢) then znéél on(a) > ¢n(a*) — e for any given ¢ > 0, which
implies that £ is asymptotically efficient. Q.E.D.
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PROOF OF COROLLARY 1: Let a* be an absorbing state. Then e;(a*) = 0 for all ¢, and

because p(a*,a*) =1 equation (5) correspond to
zi(a*) = dxi(a®) + (1 — ) v; (a”).

Thus z;(a*) = v; (a*), and ¢n(a*) = zn(a*) = vy(a*). Since a* is an efficient state then

on(a*) =max vy (a). The result now follows from proposition 6. Q.E.D.

PROOF OF PROPOSITION 7: Consider any small perturbation v’ of the payoff v such
that the new payoff v/ has only one efficient state, say a. Of course, for any small enough
perturbation, a is also an efficient state of E(v), and since a ¢ EFS(v) then there must
exist a player i and a state b such that @ —g_p\; b and v;(b) < v;(a). Note that any small
perturbation also satisfies v(b) < v}(a) and v\ (b) < vy (a) (a is the only efficient state of
E(v")). Consider now any proposer probability p such that p;(b), the probability that i is
proposer at b, is close enough to zero (for simplicity, say that p;(b) = 0).

We now show that the economy E(v,p) is not asymptotically efficient. Suppose to the
contrary that it is asymptotically efficient, so that any sequence (¢(5),0(5)) with ¢(®) — ¢
and p®) — p the payoffs satisfy ¢n(-) = én(a) = v/y(a). Since a is the only efficient state
of E(v') and ¢n(a) = vly(a) then p(a,a) =1, which implies that vﬁv\i(a) > ¢n\i() (other-
wise the excess from moving away from state a would be positive). But vy (a) = ¢n(b) and
thus v)(a) < ¢;(b). Also, because player i is not proposer at b then ¢’s excess at b is zero,
and equation 5 implies that ¢;(b) < v}(b). Concatenating the last two inequalities yields,
vi(a) < vi(b), a contradiction. Q.E.D.

PROOF OF PROPOSITION 8: Let us first show that if conditions (7) hold then the pair
(¢, 0) proposed is a MPE. Note that ¢ (a) = vy (a*) and the excesses are,

ei(a) = xy (a*) —ay (a) = 6 (on (a7) = ¢n (@) + (1 = 6) (vn (a¥) — vy (a)),

which simplifies to
ei(a) = (1 - 8) (v (a*) — vy (a)). (16)

We now show that both equations (5) and inequalities (2) hold, and thus, by Proposition 1,
(¢,0) is a MPE:
(i) Equations (5) correspond to

zi(a) = opiei(a) + dxi(a) + (1 — 6) v; (a),
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which hold given the expressions for the excesses and the payoffs x;(a),

i(a) = vi (a) + 6pi (vy (a7) — vy (@) ; (17)

(ii) Inequalities (2) are equivalent to

e(a)(5,0) = x5 (b) — xs (a) < ei(a) = (1 = §) (v (a”) —vn (a))

for all @ —g b. But from equation (17) these inequalities are equivalent to

x5 (0) — s (a) = vs (b) — vs (a) = 6ps (vn (0) —vn (@) < (1= 6) (vw (a*) —vn (). (18)

But inequality (7) is equivalent to

vs (b) — vs (a) = bps (vn (b) —vn (@) < (1= 08)ps (von (0) —vn (a)), (19)

and, because a* € ES and pg € [0, 1], then
ps (v (b) — v (a)) < vy (a¥) —vn (a) (20)

always hold. These two inequalities jointly imply that inequalities (18) hold, which completes
the proof of the first part of the proposition.

Reciprocally, consider an economy with MPE o satisfying (8). By a similar argument as
above, inequalities (18) must hold. Suppose now, by contradiction, that there is a a —g b
with

(v (b) — vs (@) > ps (v () — vy (a))

It is easy to verify that there exists a § close enough to one such that inequality (18) is
violated for all § > § (contradiction). Q.E.D.

PROOF OF PROPOSITION 9: Suppose by contradiction that there is a sequence of o,
converging to one (8, — 1) with equilibrium transition probability u®) and payoff ¢(®)

%) with invariant probabilities /\gé) and /\gS) (given by

having two ergodic classes E@ and Eé
A p® = A and D e ®
named 6,) such that u(‘s") — [, dn) — &, )\1(.5") — N, and E; = Ei(‘sn).

Multiplying equation (13) to the left by /\2@ yields,

)\Z(-'S) (a') = 1). Consider a convergent subsequence of ¢, (also

N 1= 6u®] 68 = AP (1= 8) f®uy, (21)
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which is equivalent to (1 — ) )\Z(-é)qﬁgé) = /\2@ (1 —6) u®uvy, (after taking in to account that
)\Z(-é),u(‘s) = )\2(6)), and thus,
/\(5)¢§$) — /\(6)#(6)11]\[.

7 7

Taking the limit of the above expression (using A\;jp = \;), we have
ANidN = Aipwn = AU
But proposition 5 implies that ¢y (-) is constant over Z, and thus

Moy = Z i (@) oy (d) = Z i (@) o (d) = Xon. (22)

a'€Fy a'€Fy

Finally, the equality Myvy = Aovy cannot be satisfied generically: The two ergodic classes
are disjoint E1 N Ey = () and the invariant measures A; only depend on the payoffs v(a) for
a € E;. If equality (22) happened to be satisfied for some choice of parameters, changing
slightly the payoffs in one of the classes (say by adding an e to the payoff of a player in one
of the classes) would lead to violation of the equality. Q.E.D.

PROOF OF PROPOSITION 10: We first show that the set of efficient states is a closed
set. According to item (i) in the proof of proposition 6 for any state a, ¢;(a) > v;(a) for all
i € N. Therefore, for any a € ES, ¢;(a) = v;(a). Suppose by contradiction that in equilibrium
a —g b, where b is not an efficient state. Since the move from a to b is in the equilibrium
path then the excess is non-negative, i.e. xg(b) — xg(a) > 0, and v;(b) > v;(a) for all i ¢ S
(no-externality). Therefore, ¢;(b) > v;(b) > v;(a) and x;(b) = 6¢;(b)+ (1 — ) v;(b) > v;(a) for
all i ¢ S, and thus, zy\g(b) > v\ g(a). Because a is an efficient state and b is an inefficient
state we have that

z5(b) + 2\ 5(b) < wvn(a),

and, using that zg5(a) + zp\s(a) = vn(a),

r5(b) — zg(a) < zy\g(a) =z s(b) <0,

which is a contradiction. Thus set of efficient states (core) is a closed class and thus the union
of all stable sets (ergodic states).

A well-known result of the theory of Markov chains (Doob (1953)) yields that the equilib-
rium converges, in a finite number of steps, to ES if and only if there are no ergodic classes

E containing inefficient states (i.e, E C Z\ES).
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Suppose now that there is an equilibrium with and ergodic class E C Z\ES. We claim
that vy(a) = vy (b) for all a,b € E : let @ €arg max vy(a') and suppose that vy (@) > vy (D)
for some b € E. Inequalities (15) imply that q;jve(g) > vy(a), and since E is an ergodic class,
then ¢ (@) is an average (with strictly positive weights) of vy (a’) for ' € E (contradiction).

We thus have that ¢y (a) = vn(@) for all a € E, and inequalities (15) imply that ¢;(a) =
v;(a) for all @ € E. We now show that the excess is zero for all players at all states in E.

Suppose that there is a move a —g b with a,b € E with positive excess:

25(b) —s(a) = 6 (ds(b) — ¢s(a)) + (1 = 6) (vs(b) —vs(a)) = vs(b) —vs(a) > 0.

By the no-externality assumption vy g(b) > vy s(a). But then vy (b) > vy(a) with a,b € E
(contradiction).

But if the excess is zero for all players at all states in £ then E cannot be an ergodic
class, because any player can move to an efficient state b from any state a € F and get a

positive excess (@ —y b): zn(b) —zn(a) = vy (b) — vy (a) > 0 (contradiction). Q.E.D.

PROOF OF PROPOSITION 11: Suppose that (¢,0) is equilibria of the restricted econ-
omy & (a*), with a* absorbing state. The same argument used in the proof of item (iv) of
proposition 6 implies that ¢; (a*) = v; (a*). By Proposition 1, in order to prove that (¢, o)
is equilibria of economy &, it is sufficient to verify that equations (5) and inequalities (2)
hold. But all equations and inequalities are already satisfied, with the exception of the in-
equalities xg (b) — xg (a*) < 0 for all a* —g b, which also hold because vg (a*) > xg (b) and

¢i (a*) = z; (a*) = v; (a*) . The reciprocal result is immediate. Q.E.D.

PROOF OF PROPOSITION 12: Note that any equilibrium (¢, @) of £©) is such that z;(a) =
0¢i(a) + (1 —6)vi(a) = vi(a).

(i) Let a* be an absorbing state of an MPE. Then all moves a* —g b for all S and b must
have non-positive excess vg (b) — vg (a*) < 0, which implies that a* belongs to the core.

(ii) If the core is empty then there are no absorbing states (item i). But the associated
equilibrium Markov chain in the state space must have an ergodic class, and since it cannot
be an absorbing ergodic class, it yields a cycle.

(iii) State a is an absorbing state because the excess from moving a* —g b is vg (b) —

vg (a*) < 0, and thus all players propose to remain at a, where the excess is zero.  Q.E.D.

PROOF OF PROPOSITION 13: Suppose that state a is an stable state (thus v;(a) = ¢;(a))
and is not an F'F'S state. Since a ¢ EF'S then there exists a —g_n\; b such that v;(b) < v;(a).
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Note that the stability of state a implies that vy\;(a) > én\i(b) (otherwise the excess from
moving away from state a would be positive). Consider now any proposer probability p such
that p;(b), the probability that i is proposer at b, is close enough to zero.

Proposition 5 implies that vy (a) = ¢n(b) and thus v;(a) < ¢;(b). Also, because player
i is not proposer at b then i’s excess at b is zero, and equation 5 implies that ¢;(b) < v;(b).
Concatenating the last two inequalities yields, v;(a) < v;(b), a contradiction.

Consider now the reciprocal. Suppose that a € EFS. We now show that any move
a —g b by coalition S yields non-positive excess, where the excess associated with the move
is e = xg(b) — xg(a), which is sufficient to prove that a is an stable state.

We have show in Proposition 6 (item iii) that if a € EFS then ¢;(a) = v;(a) for
all i € N and the efficiency of a implies that vy(a) > vy (b) and vy(a) > ¢ (b) for
all b € Z. We also have, due to the fact that a € EFS and a —g b, that ¢y\g(b) >
vy\s(a) (this comes from the definition of EFS). Concatenating the inequalities yields that
e = x5(b) —ws(a) = 6(gs(b) —ds(a)) + (1 —06) (vs(b) —vs(a)) < 0: ¢s(b) — ¢s(a) <
(65(0) — 95(@) + (S35(8) — v s(@) = Gn(b) — vnla) < 0 and also it is easy to see
that vg(b) — vg(a) < 0. Q.E.D.
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