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Abstract

In this article we consider the approximation of expectations w.r.t. probability distributions asso-
ciated to the solution of partial di↵erential equations (PDEs); this scenario appears routinely in
Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically,
using, for instance finite element methods which depends on the step-size level h

L

. In addition, the
expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the
context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC)
method can reduce the amount of computational e↵ort to estimate expectations, for a given level
of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of
a sequence of probability distributions with discretisation levels 1 > h0 > h1 · · · > h

L

. In many
practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of
probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is intro-
duced to deal with this problem. It is shown that under appropriate assumptions, the attractive
property of a reduction of the amount of computational e↵ort to estimate expectations, for a given
level of error, can be maintained within the SMC context, that is, relative to exact sampling and
Monte Carlo for the distribution at the finest level h

L

. The approach is numerically illustrated on
a Bayesian inverse problem.
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1. Introduction

Consider a sequence of probability measures {⌘
l

}
l�0 on a common measurable space (E, E); we

assume that the probabilities have common dominating finite-measure du and write the densities
w.r.t. du as ⌘

l

= ⌘
l

(u). In particular, for some known �
l

: E ! R+, we let

⌘
l

(u) =
�
l

(u)

Z
l

(1)

where the normalizing constant Z
l

=
R
E

�
l

(u)du may be unknown. The context of interest is when
the sequence of densities is associated to an ‘accuracy’ parameter h

l

, with h
l

! 0 as l ! 1 with
1 > h0 > h1 > · · · > h1 = 0. This set-up is relevant to the context of discretised numerical
approximations of continuum fields, as we will explain below. The objective is to compute:

E
⌘1 [g(U)] :=

Z
E

g(u)⌘1(u)du
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for potentially many measurable ⌘1�integrable functions g : E ! R. In practice one cannot treat
h
l

= 0 and must consider these distributions with h
l

> 0.
Problems involving numerical approximations of continuum fields are discretized before being

solved numerically. Finer-resolution solutions are more expensive to compute than coarser ones.
Such discretizations naturally give rise to hierarchies of resolutions via the use of nested meshes.
Successive solution at refined meshes can be utilized to mitigate the number of necessary solves
for the finest resolutions. For Monte Carlo methods, as in the context above, a telescoping sum
of associated di↵erences at successive refinement levels can be utilized. As we will now explain,
this idea can be leveraged so one can obtain a method with smaller computational e↵ort to reach
a pre-determined error than applying a standard Monte Carlo method immediately at the finest
resolution [14].

Multi Level Monte Carlo (MLMC) [14] (see also [15]) methods are such that one typically sets
an error threshold for a target expectation, and then sets out to attain an estimator with the
prescribed error utilizing an optimal allocation of Monte Carlo resources. Within the context of
[14, 16], the continuum problem is a stochastic di↵erential equation (SDE) or PDE with random
coe�cients, and the target quantity is an expectation of a functional, say g : E ! R, of the
parameter of interest U 2 E, over an ideal measure U ⇠ ⌘1 that avoids discretisation. The
levels are a hierarchy of refined approximations of the function-space, specified in terms of a
small resolution parameter say h

l

, for 0  l  L, thus giving rise to a corresponding sequence of
approximate laws ⌘

l

. The method uses the telescopic sum

E
⌘L [g(U)] = E

⌘0 [g(U)] +
LX
l=1

{E
⌘l
[g(U)]� E

⌘l�1
[g(U)]}

and proceeds by coupling the consecutive probability distributions ⌘
l�1, ⌘l. Thus, the expectations

are estimated via the standard unbiased Monte Carlo averages

Y Nl
l

=
NlX
i=1

{g(U i

l

)� g(U i

l�1)}N�1
l

where {U i

l�1, U
i

l

} are i.i.d. samples, with marginal laws ⌘
l�1, ⌘l, respectively, carefully constructed

on a joint probability space. This is repeated independently for 0  l  L. The overall multilevel
estimator will be

Ŷ
L,Multi =

LX
l=0

Y Nl
l

, (2)

under the convention that g(U (i)
�1) = 0. A simple error analysis gives that the mean squared error

(MSE) is

E{Ŷ
L,Multi � E

⌘1 [g(U)]}2 = E{Ŷ
L,Multi � E

⌘L [g(U)]}2| {z }
variance

+ {E
⌘L [g(U)]� E

⌘1 [g(U)]}2| {z }
bias

. (3)

One can now optimally allocate N0, N1, . . . , NL

to minimize the variance term
P

L

l=0 Vl

/N
l

for fixed

computational cost
P

L

l=0 Cl

N
l

, where V
l

is the variance of [g(U (i)
l

)� g(U (i)
l�1)] and C

l

the computa-
tional cost for its realisation. Using Lagrange multipliers for the above constrained optimisation,
we get the optimal allocation of resources N

l

/ p
V
l

/C
l

. In more detail, the typical chronology is
that one targets an MSE, say O(✏2), then (i) given a characterisation of the bias as an order of h

l

,
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one determines h
l

= M�l, l = 0, 1, . . . , L, for some integer M > 1, and chooses a horizon L such
that the bias is O(✏2) and (ii) given a characterisation of V

l

, C
l

as some orders of h
l

, one optimizes
the required samples N0, . . . NL

needed to give variance O(✏2). Thus, a specification of the bias,
variance and computational costs as functions of h

l

is needed.
As a prototypical example of the above setting [14], consider the case U = X(T ) with X(T )

being the terminal position of the solution X of a SDE and ⌘
l

is the distribution of X(T ) under
the consideration of a numerical approximation with time-step �t

l

= h
l

. The laws ⌘
l�1, ⌘l can be

coupled via use of the same driving Brownian path. Invoking the relevant error analysis for SDE
models, one can obtain (for U ⇠ ⌘1, U

l

⇠ ⌘
l

, and defined on the common probability space):

(i) weak error |E[g(U
l

)� g(U)]| = O(h↵

l

), providing the bias O(h↵

l

),

(ii) strong error, E|g(U
l

)� g(U)|2 = O(h�

l

), giving the variance V
l

= O(h�

l

),

(iii) computational cost for a realisation of g(U
l

)� g(U
l�1), Cl

= O(h�⇣

l

),

for some constants ↵, �, ⇣ related to the details of the discretisation method. The standard Euler
Marayuma method for solution of SDE gives the orders ↵ = � = ⇣ = 1.

Assuming a general context, given such rates for bias, V
l

and C
l

, one proceeds as follows.
Set h

l

= M�(l+k), for some integer M > 1. Then, targeting an error tolerance of ✏ and letting
h↵

L

= M�L↵ = O(✏), one has L = log(✏�1)/(↵ log(M)) + O(1), as in [14]. Using the optimal

allocation N
l

/ p
V
l

/C
l

, one finds that N
l

/ h
(�+⇣)/2
l

. Taking under consideration a target error of

size O(✏), one sets N
l

/ ✏�2h
(�+⇣)/2
l

K
L

, with K
L

chosen to control the total error for increasing L.
Thus, for the resulted estimator in (2)-(3), we have:

Variance =
LX
l=0

V
l

N�1
l

= ✏2K�1
L

LX
l=0

h
(��⇣)/2
l

;

Comp. Cost =
LX
l=0

N
l

C
l

= K2
L

✏�2 .

To have a variance of O(✏2), one sets K
L

=
P

L

l=0 h
(��⇣)/2
l

, so K
L

may or may not depend on ✏
depending on whether this sum converges or not (recalling that L = O(| log(✏)|)). In the case
of Euler-Marayuma, for example, � = ⇣, K

L

= L, and the cost is O(log(✏)2✏�2), versus O(✏�3)
using a single level with mesh-size h

L

= O(✏). If � > ⇣, corresponding for instance to the Milstein
method, then the cost is O(✏�2). The latter is the cost of obtaining the given level of error for a
scalar random variable, and is therefore optimal. The worst scenario is when � < ⇣. In this case it
is su�cient to set K

L

= h
(��⇣)/2
L

to make the variance O(✏2), and then the number of samples on
the finest level is given by N

L

= h��2↵
L

whereas the total algorithmic cost is O(✏�(⇣/↵+�)), where
� = 2 � �/↵ � 0. In this case, one can choose the largest value for the bias, ↵ = �/2, so that
N

L

= 1 and the total cost, O(✏�⇣/↵), is dominated by this single sample. See [14] for more details.

It is important to note that the realizations U (i)
l

, U (i)
l�1 for a given increment must be coupled

to obtain decaying variances V
l

. In the case of an SDE driven by Brownian motion one can simply
simulate the driving noise on level l and then upscale it to level l� 1 by summing elements of the
finer path [14]. For the case of a PDE forward model relying on uncertain input the scenario is
quite similar [6].

The present work will focus on the case of an inverse problem with fixed-dimensional input.
Indeed the di�culty arises here because we only know how to evaluate (up-to a constant) the

3



target density at any given level, and cannot directly obtain independent samples from it. The
contribution of this work is then as follows. If one has a sequence of densities {⌘

l

}
l�0 for which

one expects the application of MLMC to be beneficial, but cannot obtain exact samples from the
couples ⌘

l�1, ⌘l, then, we introduce a methodology where a version of the MLMC identity can be
leveraged. Moreover, we show for our inverse problem and relative to the standard (exact sampling)
Monte Carlo method at the finest resolution, there is a reduction in the amount of work, for the
same level of error. There exist alternatives to solving such problems, for example one can review
the recent works [16, 18] which use Markov chain Monte Carlo (MCMC) methods. In this article
a more natural and powerful formulation is considered, related with the use of Sequential Monte
Carlo approaches.

Sequential Monte Carlo (SMC) methods are amongst the most widely used computational
techniques in statistics, engineering, physics, finance and many other disciplines. In particular
SMC samplers [9] are designed to approximate a sequence {⌘

l

}
l�0 of probability distributions on

a common space, whose densities are only known up-to a normalising constant. The method uses
N � 1 samples (or particles) that are generated in parallel, and are propagated with importance
sampling (often) via MCMC and resampling methods. Several convergence results, as N grows,
have been proved (see e.g. [3, 7, 8, 12]). SMC samplers have also recently been proven to be
stable in certain high-dimensional contexts [1]. Current state of the art for the analysis of SMC
algorithms include the work of [3, 4, 7, 8, 12]. In this work, the method of SMC samplers is
perfectly designed to approximate the sequence of distributions, but as we will see, implementing
the standard telescoping identity of MLMC requires some ingenuity. In addition, in order to
consider the benefit of using SMC, one must analyze the variance of the estimate; in such scenarios
this is not a trivial extension of the convergence analysis previously mentioned. In particular, one
must very precisely consider the auto-covariance of the SMC approximations and consider the rate
of decrease of this quantity as the time-lag between SMC approximations increases. Such a precise
analysis does not appear to exist in the literature. We note that our work, whilst presented in
the context of PDEs, is not restricted to such scenarios and, indeed can be applied in almost any
other similar context (that is, a sequence of distributions on a common space, with increasing
computational costs associated to the evaluation of the densities which in some sense converge to
a given density); however, the potential benefit of doing so, may not be obvious in general.

This article is structured as follows. In Section 2 the ML identity and SMC algorithm are
given. In Section 3 our main complexity result is given under assumptions and their implications
are discussed. In Section 4 we give a context where the assumptions of our theoretical results can
be verified. In Section 5 our approach is numerically demonstrated on a Bayesian inverse problem.
In Section 6 we consider extensions to our work. Section 3 and the Appendix provide the proofs
of our main theorem.

2. Sequential Monte Carlo Methods

2.1. Notations

Let (E, E) be a measurable space. The notation B
b

(E) denotes the class of bounded and
measurable real-valued functions. The supremum norm is written as kfk1 = sup

u2E |f(u)| and
P(E) is the set of probability measures on (E, E). We will consider non-negative operators K :
E ⇥ E ! R+ such that for each u 2 E the mapping A 7! K(u,A) is a finite non-negative measure
on E and for each A 2 E the function u 7! K(u,A) is measurable; the kernel K is Markovian
if K(u, dv) is a probability measure for every u 2 E. For a finite measure µ on (E, E), and a
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real-valued, measurable f : E ! R, we define the operations:

µK : A 7!
Z

K(u,A)µ(du) ; Kf : u 7!
Z

f(v)K(u, dv).

We also write µ(f) =
R
f(u)µ(du). In addition k · k

r

, r � 1, denotes the L
r

�norm, where the
expectation is w.r.t. the law of the appropriate simulated algorithm.

2.2. Algorithm

As described in Section 1, the context of interest is when a sequence of densities {⌘
l

}
l�0, as in

(1), are associated to an ‘accuracy’ parameter h
l

, with h
l

! 0 as l ! 1, such that 1 > h0 >
h1 · · · > h1 = 0. Recall that ⌘

l

(u) = �
l

(u)/Z
l

, where for any fixed and finite l, �
l

: E ! R+ can be
evaluated and Z

l

=
R
E

�
l

(u)du typically cannot be. ⌘1 is too expensive or impossible to calculate.
We choose a maximum level L � 1 and we will estimate

E
⌘L [g(U)] :=

Z
E

g(u)⌘
L

(u)du .

By the standard telescoping identity used in MLMC, one has

E
⌘L [g(U)] = E

⌘0 [g(U)] +
LX
l=1

n
E

⌘l
[g(U)]� E

⌘l�1
[g(U)]

o
= E

⌘0 [g(U)] +
LX
l=1

E
⌘l�1

h⇣�
l

(U)Z
l�1

�
l�1(U)Z

l

� 1
⌘
g(U)

i
. (4)

We remark that our approach is simply transferring the problem of sampling from a sequence
of suitably defined couplings to that of sampling from the original sequence of densities and re-
placing coupling with importance sampling. It should be noted that the importance sampling
densities, that is the ⌘

l�1 on the R.H.S. of (4), are well chosen, in that one should be able to find
a method which yields estimators whose computational cost to achieve a reasonable variance is
not prohibitively high. As noted one assumes that one cannot sample from the {⌘

l

}
l�1. If we used

importance sampling but with proposals for which one can sample exactly, then it is often the case
that, for instance, the computational e↵ort to control the variance of the estimate is exponential
in the dimension of the problem [2]. However, for the methodology to be introduced below, it can
be polynomial in the dimension of the problem; see [1].

Suppose now that one applies an SMC sampler [9] to obtain a collection of samples (particles)
that sequentially approximate ⌘0, ⌘1, . . . , ⌘L. We consider the case when one initializes the popula-
tion of particles by sampling i.i.d. from ⌘0, then at every step resamples and applies a MCMC kernel
to mutate the particles. We denote by (U1:N0

0 , . . . , U
1:NL�1

L�1 ), with +1 > N0 � N1 � · · ·N
L�1 � 1,

the samples after mutation; one resamples U1:Nl
l

according to the weights G
l

(U i

l

) = (�
l+1/�l)(U i

l

),
for indices l 2 {0, . . . , L � 1}. We will denote by {M

l

}1lL�1 the sequence of MCMC kernels
used at stages 1, . . . , L � 1, such that ⌘

l

M
l

= ⌘
l

. The algorithm is summarised in Figure 1. For
' : E ! R, l 2 {1, . . . , L}, we have the following estimator of E

⌘l�1
['(U)]:

⌘
Nl�1

l�1 (') =
1

N
l�1

Nl�1X
i=1

'(U i

l�1) .
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We define

⌘
Nl�1

l�1 (G
l�1Ml

(du
l

)) =
1

N
l�1

Nl�1X
i=1

G
l�1(U

i

l�1)Ml

(U i

l�1, dul

) .

The joint probability distribution for the SMC algorithm is

N0Y
i=1

⌘0(du
i

0)
L�1Y
l=1

NlY
i=1

⌘
Nl�1

l�1 (G
l�1Ml

(dui

l

))

⌘
Nl�1

l�1 (G
l�1)

.

If one considers one more step in the above procedure, that would deliver samples {U i

L

}NL
i=1, a

standard SMC sampler estimate of the quantity of interest in (4) is ⌘N
L

(g); the earlier samples are
discarded. Within a multilevel context, a consistent SMC estimate of (4) is

bY = ⌘N0
0 (g) +

LX
l=1

n⌘Nl�1

l�1 (gG
l�1)

⌘
Nl�1

l�1 (G
l�1)

� ⌘
Nl�1

l�1 (g)
o
, (5)

and this will be proven to be superior than the standard one (i.i.d. sampling from ⌘
L

), under
assumptions.

There are two important structural di↵erences within the MLSMC context, compared to the
standard ML implementation of [14], sketched in Section 1:

i) the L+ 1 terms in (5) are not unbiased estimates of the di↵erences E
⌘l
[g(U)]� E

⌘l�1
[g(U)],

so the relevant MSE error decomposition here is:

E
⇥{bY � E

⌘1 [g(U)]}2⇤  2E
⇥{bY � E

⌘L [g(U)]}2⇤+ 2 {E
⌘L [g(U)]� E

⌘1 [g(U)]}2 . (6)

ii) the same L + 1 estimates are not independent. Hence a substantially more complex error
analysis will be required to characterise E[{bY �E

⌘L [g(U)]}2]. In Section 3, we will obtain an
expression for this discrepancy, which will be more involved than the standard

P
L

l=0 Vl

/N
l

,
but will still allow for a relevant constrained optimisation to determine the optimal allocation
of particle sizes N

l

along the levels.

Given an appropriate classification of both terms on the R.H.S. of (6) as an order of the tolerance
for a Bayesian Inverse Problem (to be described in Section 4), one can specify a level L, and
optimal Monte-Carlo sample sizes N

l

so that the MSE of bY is O(✏2) at a reduced computational
cost.

3. Development of Multilevel SMC

3.1. Main Result

We will now obtain an analytical result that controls the error term E[{bY � E
⌘L [g(U)]}2] in

expression (6). This is of general significance for the development of MLSMC in various contexts.
Then, we will look in detail at an inverse problem context (developed in Section 4) and fully
investigate the MLSMC method.

For any l 2 {0, . . . , L} and ' 2 B
b

(E) we write: ⌘
l

(') :=
R
E

'(u)⌘
l

(u)du. We introduce the
following assumptions, which will be verifiable in some contexts. They are rather strong, but could
be relaxed at condsiderable increase in the complexity of the arguments, which will ultimately
provide the same information. In addition, the assumptions are standard in the literature of SMC
methods; see [7, 8].
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0. Sample U1
0 , . . . U

N0
0 i.i.d. from ⌘0 and compute G0(ui

0) for each sample i 2 {1, . . . , N0}: Set
l = 0.

1. Sample Ǔ1
l

, . . . , Ǔ
Nl+1

l

with replacement from u1:Nl
l

with selection probabilities

{G
l

(u1
l

)/
P

Nl
j=1 Gl

(uj

l

), . . . , (G
l

(uNl
l

)/
P

Nl
j=1 Gl

(uj

l

)}.
2. Sample U i

l+1|ǔi

l

from M
l+1(ǔi

l

, ·) and compute G
l+1(ui

l+1) for each sample i 2 {1, . . . , N
l+1}.

3. Set l = l + 1. If l = L stop, otherwise return to the start of Step 1.

Figure 1: The SMC algorithm.

(A1) There exist 0 < C < C < +1 such that

sup
l�1

sup
u2E

G
l

(u)  C ;

inf
l�1

inf
u2E

G
l

(u) � C .

(A2) There exists a ⇢ 2 (0, 1) such that for any l � 1, (u, v) 2 E2, A 2 E :Z
A

M
l

(u, du0) � ⇢

Z
A

M
l

(v, dv0) .

Theorem 3.1. Assume (A1-2). There exist C < +1 and  2 (0, 1) such that for any g 2 B
b

(E),
with kgk1 = 1,

E
⇥{bY � E

⌘L [g(U)]}2⇤  C

✓
1

N0
+

LX
l=1

kZl�1

Zl
G

l�1 � 1k21
N

l�1

+
X

1l<qL

kZl�1

Zl
G

l�1 � 1k1kZq�1

Zq
G

q�1 � 1k1
�



q�l

Nl�1
+ 1

N

1/2
l�1Nq�1

 ◆
.

3.2. Proof of Theorem 3.1

The following notations are adopted; this will substantially simplify subsequent expressions:

Y
Nl�1

l�1 =
⌘
Nl�1

l�1 (gG
l�1)

⌘
Nl�1

l�1 (G
l�1)

� ⌘
Nl�1

l�1 (g) ,

Y
l�1 =

⌘
l�1(gGl�1)

⌘
l�1(Gl�1)

� ⌘
l�1(g)

� ⌘ ⌘
l

(g)� ⌘
l�1(g)

�
, (7)

'
l

(u) =
�
Zl�1

Zl
G

l�1(u)� 1
�
,

e'
l

(u) = g(u)'
l

(u) ,

A
n

(', N) = ⌘N
n

('G
n

)/⌘N
n

(G
n

) , ' 2 B
b

(E) , 0  n  L� 1 , (8)

A
n

(', N) = A
n

(', N)� ⌘
n

('G
n

)

⌘
n

(G
n

)
. (9)
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Throughout this Section, C is a constant whose value may change, but does not depend on any time
parameters of the Feynman-Kac formula, nor N

l

. The proof of Theorem 3.1 follows from several
technical lemmas which are now given and supported by further results in the Appendix; the proof
of the theorem is at the end of this subsection. It is useful to observe that Z

l

/Z
l�1 = ⌘

l�1(Gl�1),
⌘
l�1('

l

) = 0 and |A
n

(', N)|  |'|1 with probability 1 as the conditional L1-norm of functional
' over a discrete distribution. We will make repeated use of the following identity which follows
from these observations upon adding and subtracting ⌘Nl�1

l�1 (Zl�1

Zl
g(·)G

l�1(·)):
Y

Nl�1

l�1 � Y
l�1 = A

l�1(g,Nl�1) {⌘l�1 � ⌘
Nl�1

l�1 }('
l

) + {⌘Nl�1

l�1 � ⌘
l�1}( e'l

) . (10)

Lemma 3.1. Assume (A1-2). There exists a C < +1 such that for any l � 1:

kY Nl�1

l�1 � Y
l�1k22 

C kZl�1

Zl
G

l�1 � 1k21
N

l�1
.

Proof. From (10) and the C2-inequality we obtain:

kY Nl�1

l�1 � Y
l�1k22  2 kA

l�1(g,Nl�1){⌘Nl�1

l�1 � ⌘
l�1}('l

)k22 + 2 k{⌘Nl�1

l�1 � ⌘
l�1}( e'l

)k22
 2 k{⌘Nl�1

l�1 � ⌘
l�1}('l

)k22 + 2 k{⌘Nl�1

l�1 � ⌘
l�1}( e'l

)k22

By [7, Theorem 7.4.4] we have that both L2-norms are upper bounded by
CkZl�1

Zl
Gl�1�1k21

2Nl�1
. This

completes the proof.

By the C2-inequality and standard properties of i.i.d. random variables one has:

E
⇥{bY � E

⌘L [g(U)]}2⇤ = E
h� NX

l=1

(Y Nl�1

l�1 � Y
l�1)

 2
i
 C

N0
+ 2E

h� NX
l=2

(Y Nl�1

l�1 � Y
l�1)

 2
i
.

We have that:

E
h� NX

l=2

(Y Nl�1

l�1 � Y
l�1)

 2
i
= E

h NX
l=2

(Y Nl�1

l�1 � Y
l�1)

2
i
+ 2

X
2l<qL

E
⇥
(Y Nl�1

l�1 � Y
l�1)(Y

Nq�1

q�1 � Y
q�1)

⇤
Lemma 3.1 gives that:

E
h NX

l=2

(Y Nl�1

l�1 � Y
l�1)

2
i
 C

LX
l=2

kZl�1

Zl
G

l�1 � 1k21
N

l�1

thus it remains to treat the cross-interaction terms. Using the decomposition in (10), we obtainX
2l<qL

E
⇥
(Y Nl�1

l�1 � Y
l�1)(Y

Nq�1

q�1 � Y
q�1)

⇤
=

=
X

2l<qL

E
⇥
A

l�1(g,N)A
q�1(g,N){⌘Nl�1

l�1 � ⌘
l�1}('l

){⌘Nq�1

q�1 � ⌘
q�1}('q

)
⇤

+
X

2l<qL

E
⇥
A

l�1(g,N){⌘Nl�1

l�1 � ⌘
l�1}('l

){⌘Nq�1

q�1 � ⌘
q�1}(f'q

)
⇤

+
X

2l<qL

E
⇥
A

q�1(g,N){⌘Nl�1

l�1 � ⌘
l�1}( e'l

){⌘Nq�1

q�1 � ⌘
q�1}('q

)
⇤

+
X

2l<qL

E
⇥ {⌘Nl�1

l�1 � ⌘
l�1}( e'l

){⌘Nq�1

q�1 � ⌘
q�1}(f'q

)
⇤
.
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We will now apply Proposition Appendix A.1 to the relevant terms in the sum, to yield the
upper-bound:

C
X

1l<qL

k e'
l

k1kf'
q

k1
n q�l

N
l�1

+
1

N
1/2
l�1Nq�1

o
.

From here one can conclude the proof of Theorem 3.1.

3.3. MLSMC Variance Analysis

This section considers the specification of parameters for the MLSMC algorithm after considera-
tion of Theorem 3.1. Recall that in the simpler SDE setting of [14] one must work with the strong er-
ror estimate E|g(U

l

)�g(U)|2 = O(h�

l

) and the deduced variance V
l

= Var[g(U
l

)�g(U
l�1)] = O(h�

l

).
From Theorem 3.1, a similar role within MLSMC is taken by:

V
l

:= kZl�1

Zl
G

l�1 � 1k21 . (11)

We assume that in the given context one can obtain that V
l

= O(h�

l

) for some appropriate rate
constant � � 1 (see Proposition 4.1 and equation (26) later on). Recall that we have h

l

= M�l,
for some integer M > 1 and we assume a bias of O(h↵

L

). Thus, targeting an error tolerance of ✏,
we have h↵

L

= M�L = O(✏), so that L = log(✏�1)/(↵ log(M)) +O(1). Now, to optimally allocate
N0, N1, . . . , NL

, one proceeds along the lines outlined in the Introduction under consideration of
Theorem 3.1. Notice that

P
L

q=l+1 
q�l  1

1�

and V
q

is smaller than V
l

(in terms of the obtained
upper bounds), so the upper bound in Theorem 3.1 can be bounded by:

1

N0
+

LX
l=1

✓
h�

l

N
l

+
⇣h�

l

N
l

⌘1/2
LX

q=l+1

h
�/2
q

N
q

◆
. (12)

We also assume a computational cost proportional to
P

L

l=0 Nl

h�⇣

l

, for some rate ⇣ � 1, with
the resampling cost considered to to be negligible for practical purposes compared to the cost of
the calculating the importance weights (as it is the case for the inverse problems we focus upon
later). As with standard MLMC in [14], we need to find N0, . . . , NL

that optimize (12) given a
fixed computational cost

P
L

l=0 Nl

h�⇣

l

. Such a constrained optimization with the complicated error
bound in (12), results in the need to solve a quartic equation as a function of V

l

and C
l

. Instead,
one can assume that the second term on the R.H.S. of (12) is negligible, solve the constrained
optimization ignoring that term, and then check that the e↵ect of that term for the given choice of
{N

l

}L�1
l=0 is smaller than O(✏2). Following this approach gives a constrained optimisation problem

identical to the simple case of [14], with solution N
l

/ p
V
l

/C
l

= O(h(�+⇣)/2
l

). One works as in
Section 1, and selects:

N
l

/ ✏�2h
(�+⇣)/2
l

K
L

; K
L

h
LX
l=0

h
(��⇣)/2
l

.

Then returning to (12) one can check that indeed the extra summand is smaller than O(✏2) for

the above choice of N
l

. Notice that: (i) h
�/2
q

/N
q

= O(✏2h�⇣/2
l

/K
L

), and the sum
P

L

q=l+1 h
�⇣/2
l

is

dominated by h
�⇣/2
L

= O(✏�⇣/(2↵)); (ii) we have (h�

l

/N
l

)1/2 / ✏/K
1/2
L

h
(��⇣)/4
l

. Therefore,

LX
l=1

✓⇣h�

l

N
l

⌘1/2
LX

q=l+1

h
�/2
q

N
q

◆
= O

⇣
✏2✏1�⇣/(2↵)

LX
l=0

h
(��⇣)/4
l

/K
3/2
L

⌘
= O(✏2✏1�⇣/(2↵)) .
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Thus, when ⇣  2↵, the overall mean squared error is still O(✏2). In the inverse problem context
of Section 4, we will establish that � = 2, ↵ = �/2. Also, in many cases (depending on the chosen
PDE solver) we have ⇣ = d (d is the spatio-temporal dimension of the underlying continuum).

Remark 3.1. If one were able to perform i.i.d. sampling from ⌘
L

, a computational e↵ort pro-
portional to Nh�⇣

L

is used, with N the number of simulated samples. To make the overall error
(bias squared plus variance) of using i.i.d. sampling O(✏2) then one must take N = O(✏�2), as
the variance of the MC estimate is [⌘

L

(g2)� ⌘
L

(g)2]/N = O(N�1), independently of L. This is a
computational cost of O(✏�2�⇣) is used which is far worse than MLSMC samplers in most cases
of practical interest. One notes that, of course, i.i.d. sampling is assumed not to be possible in the
first instance.

4. Bayesian Inverse Problem

A context will now be introduced in which the results are of interest and the assumptions
can be satisfied. In particular, the ubiquitous problem of inferring the di↵usion coe�cient for an
elliptic PDE will be considered. Solution of this problem is of broad interest across science and en-
gineering applications. The di↵usion coe�cient u(x) may represent for example thermal, electrical,
or hydraulic conductivity of a material in the case that the solution p(x) is temperature, electric
potential, or pressure, respectively. An external forcing f(x) on the right-hand side represents
sources and/or sinks.

We begin with another round of notations. Introduce the Gelfand triple V := H1(D) ⇢
L2(D) ⇢ H�1(D) =: V ⇤, where the domain D will be understood. Furthermore, denote by
h·, ·i, k · k the inner product and norm on L2, with superscripts to denote the corresponding inner
product and norm on the Hilbert spaces V and V ⇤. Denote the finite dimensional Euclidean inner
product and norms as h·, ·i, | · |, with the latter also representing size of a set and absolute value,
and denote weighted norms by adding a subscript as h·, ·i

A

:= hA� 1
2 ·, A� 1

2 ·i, with corresponding
norms | · |

A

or k · k
A

for Euclidean and L2 spaces, respectively (for symmetric, positive definite
A with A

1
2 being the unique symmetric square root). In the following, the generic constant C

will be used for the right-hand side of inequalities as necessary, its precise value actually changing
between usage.

Let D ⇢ Rd with @D 2 C1 convex. For f 2 V ⇤, consider the following PDE on D:

�r · (burp) = f , on D , (13)

p = 0 , on @D , (14)

where:

bu(x) = ū(x) +
KX
k=1

u
k

�
k

�
k

(x) . (15)

Define u = {u
k

}K
k=1, with u

k

⇠ U [�1, 1] i.i.d. (the uniform distribution on [�1, 1]). This determines
the prior distribution for u. Assume that ū,�

k

2 C1 for all k and that k�
k

k1 = 1. In particular,
assume {�

k

}K
k=1 decay1 with k. The state space is E =

Q
K

k=1[�1, 1]. It is important that the

1If K ! 1 it is important that they decay with a suitable rate in order to ensure u lives almost surely in an
appropriate sequence-space, or equivalently bu lives in the appropriate function-space. However, here we down-weight
higher frequencies as necessary only to induce certain smoothness properties, while actually for a given value of
u 2 E the resulting permeability bu 2 bE ⇢ C1(D) ⇢ C(D) ⇢ L1(D) ⇢ Lp(D) for all p � 1.

10



following property holds:

inf
x

bu(x) � inf
x

ū(x)�
KX
k=1

�
k

� u⇤ > 0

so that the operator on the left-hand side of (13) is uniformly elliptic. Let p(·; u) denote the weak
solution of (13) for parameter value u. Define the following vector-valued function

G(p) = [g1(p), · · · , gM(p)]> ,

where g
m

are elements of the dual space V ⇤ for m = 1, . . . ,M . It is assumed that the data take
the form

y = G(p) + ⇠ , ⇠ ⇠ N(0,�) , ⇠ ? u , (16)

where N(0,�) denotes the Gaussian random variable with mean 0 and covariance �, and ? denotes
independence. The unnormalized density then is given by:

�(u) = e��[G(p(·;u))] ; �(G) = 1
2 |G � y|2� .

Consider the triangulated domains {Dl}1
l=1 approximating D, where l indexes the number of

nodes N(l), so that we have D1 ⇢ · · · ⇢ Dl ⇢ D1 := D, with su�ciently regular triangles.

Consider a finite element discretization on Dl consisting of H1 functions { 
`

}N(l)
`=1 . In particular,

continuous piecewise linear hat functions will be considered here, the explicit form of which will
be given in section 5.1. Denote the corresponding space of functions of the form ' =

P
N(l)
`=1 v

`

 l

`

by V l, and notice that V 1 ⇢ V 2 ⇢ · · · ⇢ V l ⇢ V . By making the further Assumption 7 of [16] that
the weak solution p(·; u) of (13)-(14) for parameter value u is in the space W = H2 \ H1

0 ⇢ V ,
one obtains a well-defined finite element approximation pl(·; u) of p(·; u). Thus, the sequence of
distributions of interest in this context is:

⌘
l

(u) =
�
l

(u)

Z
l

=
e��[G(pl(·;u))]R

E

e��[G(pl(·;u))]du
, l = 0, 1, . . . , L.

4.1. Error Estimates

Notice one can take the inner product of (13) with the solution p 2 V , and perform integration
by parts on the right-hand side, in order to obtain hburp,rpi = hf, pi. Therefore

u⇤kpk2
V

= u⇤hrp,rpi  hburp,rpi = hf, pi  kfk
V

⇤kpk
V

. (17)

So the following bound holds in V , uniformly over u:

kp(·; u)k
V

 kfk
V

⇤

u⇤
. (18)

Notice that:

|G(p)� G(p0)| =
⇣ MX

m=1

hg
m

, p� p0i2
⌘1/2

 kp� p0k
V

MX
m=1

kg
m

k
V

⇤ = Ckp� p0k
V

. (19)

So the following uniform bound also holds:

|G(p(·; u))|  C
kfk

V

⇤

u⇤
.

11



The uniform bound on G provides the Lipschitz bound

|�(G)� �(G 0)|  C|G � G 0|, (20)

obtained as follows:

|�(G)� �(G 0)| =1

2

��|G � y|2� � |G 0 � y|2�
��

=
��|G|2� � |G 0|2� + 2hG 0 � G, yi�

��
 (|G|+ |G 0|+ 2|y|) |��1||G � G 0| ,

Setting G 0 = 0 gives the boundedness of �.
Considering some sequence h

l

indicating the maximum diameter of an individual element at
level l, with h

l

! 0 (e.g. h
l

= 2�l), the following asymptotic bound holds for continuous piecewise
linear hat functions [5]2

kp(·; u)� pl(·; u)k
V

 Ch
l

kp(·; u)k
W

. (21)

Furthermore, Proposition 29 of [16] provides a uniform bound based on the following decomposition
of (13):

��p =
1bu (f +rbu ·rp) .

Thus, we have

sup
u

kp(·; u)k
W

 C 0sup
u

k�p(·; u)k
 C 0

u⇤
sup

u

(kfk+ kbuk
V

kpk
V

)

 Ckfk , (22)

where the first line holds by equivalence of norms, the second holds since bu 2 C1, by the triangle
inequality and Cauchy-Schwarz inequality, and the last line holds by (18) and the fact kfk

V

⇤  ckfk
for some c. The constant C depends on u⇤, krbuk1, C 0, and c . Note that kbuk

V

 krbuk1  C 00 <
1 by (15). Note that the bound (22) in (21) together with (18) provides a uniform bound over l
for Gl, defined by Gl : u 7! G(pl(·; u)), following the same argument as (19), which means that the
Lipschitz bound in (20) holds here over di↵erent l as well.

Now, the following holds by (21), (22), (18), and the triangle inequality

kpl(·; u)� pl�1(·; u)k
V

 Ch
l

. (23)

Hence, from (19)
|Gl(u)� Gl�1(u)| = |G(pl(·; u))� G(pl�1(·; u))|  Ch

l

, (24)

where C is independent of the realization of u.
Recall from Section 3, G

l�1(u) = �
l

(u)/�
l�1(u) and that we seek to be able to verify (A1); the

following result will help us to do that.

Proposition 4.1. For G
l�1(u) := exp{�(Gl�1(u)) � �(Gl(u))} one has the following estimates,

uniformly in u:

1�O(h
l

) = C
l

:= e�Chl  G
l�1 = exp{�(Gl�1)� �(Gl)}  eChl =: C

l

= 1 +O(h
l

). (25)

2Higher order finite elements can yield stronger convergence rates, but will not be considered here in the interest
of a more streamlined presentation. In fact, even this estimate is not sharp, but it is suitable to illustrate the theory.
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Proof. In combination with (20), equation (24) gives the stated result.

Proposition 4.2 (Bias). Let g 2 B
b

(E). Then

|E
⌘L [g(U)]� E

⌘1 [g(U)]|  Ch
L

.

Proof. It follows from the same reasoning as in Proposition 4.1, upon observing that

E
⌘L [g(U)]� E

⌘1 [g(U)] = E
⌘1


g(U)

✓
d⌘

L

d⌘1
� 1

◆�
.

4.2. Verification of Assumptions

Assumption (A1) is satisfied by letting

C := inf
l�1

C
l

; C := sup
l�1

C
l

.

Notice that the asymptotic bounds of Proposition 4.1 imply that C
l

is increasing with l while C
l

are decreasing with l. Therefore, these will actually be minimum and maximum over a su�ciently
large set of low indices. We remark that as

Z
l�1

Z
l

G
l�1 � 1 =

Z
l�1

Z
l

[G
l�1 � 1]� Z

l

� Z
l�1

Z
l

=
Z

l�1

Z
l

[G
l�1 � 1]� 1

Z
l

Z
E

(G
l�1(u)� 1)�

l�1(u)du

then by the above verification of (A1) and Proposition 4.1, one does indeed have that

kZl�1

Zl
G

l�1 � 1k21 = O(h�

l

) (26)

as was claimed in Section 3.3.
Assumption (A2) can be shown to hold in this context, if a Gibbs sampler is constructed. Let

✓ be the uniform measure on [�1, 1] and consider a probability measure ⇡ on E :=
Q

K

i=1[�1, 1]
with density w.r.t. the measure

N
K

i=1 ✓(dui

):

⇡(u) =
exp{��(u)}R

E

exp{��(u)}NK

i=1 ✓(dui

)

where it is assumed that 8u 2 E, �(u) 2 [0,�⇤]. This is the setting above, for all l, following from
equations (20) and (24).

Let k 2 N, k < K be given and consider a partition of {1, . . . , K} into k disjoint subsets
(a

i

)k
i=1. For example k = 2 and a1 and a2 are the sets of (positive) odd and even numbers up to

K, respectively.
One can consider the Gibbs sampler to generate from ⇡, with kernel:

M(u, du0) =
⇣ kY

j=1

⇡(u0
aj
|u0

a1:aj�1
, u

aj+1:ak)
⌘ KO

i=1

✓(du0
i

)
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with

⇡(u0
aj
|u0

a1:aj�1
, u

aj+1:ak) =
⇡(u0

a1:aj , uaj+1:ak)R
[�1,1]|{aj}|

⇡(u0
a1:aj , uaj+1:ak)

N
i2(aj) ✓(du

0
i

)
.

One can, for example, perform rejection sampling on ⇡ using the prior as a proposal (and accepting
with probability exp{��(u)}) and we would still have a theoretical acceptance probability ofZ

E

exp{��(u)}
KO
i=1

✓(du
i

) � exp{��⇤}.

Sampling from the full conditionals will have a higher-acceptance probability and thus the Gibbs
sampler is not an unreasonable algorithm.

Proposition 4.3. For any u, ũ 2 E

M(ũ, du0) � exp{�2�⇤(k � 1)}M(u, du0).

Proof. Consider

⇡(u0
aj
|u0

a1:aj�1
, u

aj+1:ak)

⇡(u0
aj
|u0

a1:aj�1
, ũ

aj+1:ak)
=

⇡(u0
a1:aj , uaj+1:ak)

⇡(u0
a1:aj , ũaj+1:ak)

R
[�1,1]|aj |

⇡(u0
a1:aj , ũaj+1:ak)

N
i2(aj) ✓(du

0
i

)R
[�1,1]|aj |

⇡(u0
a1:aj , uaj+1:ak)

N
i2(aj) ✓(du

0
i

)

 exp{2�⇤}.
Thus, since

M(u, du0) =
⇣ kY

j=1

⇡(u0
aj
|u0

a1:aj�1
, u

aj+1:ak)
⌘ KO

i=1

✓(du0
i

),

and

M(ũ, du0) =
⇣ kY

j=1

⇡(u0
aj
|u0

a1:aj�1
, ũ

aj+1:ak)
⌘ KO

i=1

✓(du0
i

),

and the final element in each product is identical, it follows that

M(ũ, du0) � exp{�2�⇤(k � 1)}M(u, du0).

as was to be proved.

5. Numerical Results

5.1. Set-Up

In this section a 1D version of the elliptic PDE problem in (13) is considered. Let D = [0, 1]
and consider f(x) = 100x. For the prior specification of u, we set K = 50, ū(x) = 0.15, and for
k > 0, let �

k

= (2/5)4�k, �
k

(x) = sin(k⇡x) if k is odd and �
k

(x) = cos(k⇡x) if k is even. The
forward problem at resolution level l is solved using a finite element method with piecewise linear
shape functions on a uniform mesh of width h

l

= 2�(l+k), for some starting k � 1 (so that there
are at least two grid-blocks in the finest, l = 0, case). Thus, on the lth level the finite-element basis

functions are { l

i

}2l+k�1
i=1 defined as (for x

i

= i · 2�(l+k)) [5]:

 l

i

(x) =

(
(1/h

l

)[x� (x
i

� h
l

)] if x 2 [x
i

� h
l

, x
i

],

(1/h
l

)[x
i

+ h
l

� x] if x 2 [x
i

, x
i

+ h
l

].
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The functional of interest g is taken as the solution of the forward problem at the midpoint of the
domain, that is g(u) = p(0.5; u). The observation operator is G(u) = [p(0.25; u), p(0.75; u)]>, and
the observational noise covariance is taken to be � = 0.252I.

To solve the PDE, the ansatz pl(x) =
P2l+k�1

i=1 pl
i

 l

i

(x) is plugged into (13), and projected onto
each basis element:

�
D
r ·

⇣
ûr

2l+kX
i=1

pl
i

 l

i

(x)
⌘
, l

j

(x)
E
= hf, l

j

i ,

resulting in the following linear system:

A

l(u)pl = f

l,

where we introduce the matrix A

l(u) with entries Al

ij

(u) = hbur l

i

,r l

j

i, and vectors p

l, f l with
entries pl

i

and f l

i

= hf, l

i

i, respectively. Omitting the index l, the matrix is sparse and tridiagonal
with

A(i�1)i(u) = A
i(i�1)(u) = �(1/h2)

Z
xi

xi�1

bu(x)dx , A
ii

= (1/h2)

✓Z
xi

xi�1

bu(x)dx+

Z
xi+1

xi

bu(x)dx◆ ,

and zero otherwise. The elements f
i

are computed analogously. The system can therefore be solved
with cost O(2l+k), corresponding to a computational cost rate of ⇣ = 1.

To get some understanding about the numerics and validate the theory, a number of results
and figures will be generated. First, in subsection 5.2.1 the MSE as a function of cost is considered
using the theoretical rate � = 2 (21) and ↵ = �/2 (following the error analysis in Section 4.1). The
numbers N

l

are optimally allocated with this � and the ⇣ above, using the formulae from Section
3.3. Observing the cost vs. error trend for a range of errors ✏, we observe the appropriate scaling
between computational cost and mean squared error (e.g. cost / MSE�1 for MLSMC). Next, in
subsection 5.2.2, the rate � is estimated, illustrating that the estimate (21) is not sharp.

5.2. Results

The following setting is simulated. The sequence of step-sizes is given by h
l

= 2�(l+k), k = 3.
The data G(u) is simulated with a given u

i

⇠ U [�1, 1] (i=1,. . . ,50) and h = 2�20. The observation
variance and other algorithmic elements are as stated above. We will contrast the cost of two
algorithms for di↵erent target errors. The first is (i) MLSMC as detailed above; the second is (ii)
plain SMC: the same sequence of distributions as MLSMC, but using equal number of particles for
a given L, and averaging only the samples at the last level. For both MLSMC and SMC algorithms,
random walk MCMC kernels were used. The algorithm updated u in blocks of variables.

5.2.1. Algorithmic Performance with Diminishing MSE

Given the choices of ↵ = 1 and � = 2, the performance of the MLSMC algorithm is bench-
marked by simulating samplers with di↵erent maximum levels L. The value of ⌘1(g) was first
estimated with the MLSMC algorithm targeting ⌘12(g) (h�14), with N

L

= 1000. This sampler was
realized 100 times and the average of the estimator is take as the ground truth. The standard
deviation is much smaller than the smallest bias of subsequent simulations. Now, for each L the
MLSMC and standard SMC samplers are each realized 100 times and the MSE with respect to this
ground truth is reported. When updating L ! L+ 1, the new bias is approximately a factor 2�↵

smaller than the previous one. Therefore the two sources of error in (6) can be roughly balanced
by setting N 0

l

= 22↵N
l

, for l = 0, 1, . . . , L, and N 0
L+1 = 22↵�(�+⇣)/2N 0

L

for the MLSMC algorithm.
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Figure 2: Acceptance rates of MCMC kernel.

For the SMC algorithm, the number of particles is updated to N 0 = 2�2↵N . To check the e↵ec-
tiveness of the MCMC steps employed for dispersing the particles within the SMC methods, we
show in Figure 2 the average (over the number of particles) acceptance probability of the first
two parameters for each iteration when the MCMC was executed. The plot indicates reasonable
performance of this particular aspect of the sequential algorithm.

The cost-vs-error plots for SMC and MLSMC are shown in Figure 3. Note that the bullets
in the graph correspond to di↵erent choices of L (ranging from L = 0 to L = 9 for MLSMC and
L = 0 to L = 6 for SMC). As mentioned above, the MSE data points are each estimated with 100
realizations of the given sampler. The fitted linear model of log Cost against logMSE has a gradient
of �1.568 and �1.061 for SMC and MLSMC respectively. This verifies numerically the expected
asymptotic behavior Cost/MSE�1 for MLSMC, determined from the theory. Furthermore, the
first rate indicates that the single level SMC performs similarly to the single level vanilla MC with
asymptotic behavior cost/MSE�3/2. The results clearly establish the potential improvements of
MLSMC versus a standard SMC sampler. It is remarked that the MLSMC algorithm can be
improved in many directions and this is subject to future work.

5.2.2. Numerical Estimation of Algorithmic Rates

In general a rate of convergence may not be a priori available, and so one may wish to empirically
estimate the rate. In the case presented above the rate is not sharp, so the value of � can be
estimated numerically. To this end the quantity kpl(·; u)�pl�1(·; u)k2

V

is computed over increasing
levels l, using a reference value of u. Figure 4 shows these computed values plotted against h

l

on
base-2 logarithmic scales. A fit of a linear model gives rate � = 2.009, and a similar experiment
gives ↵ = 1.015. This is consistent with the rate � = 2 and ↵ = �/2 expected from the theoretical
error analysis in Section 4.1 (and agrees also with other literature [5]) and used above in subsection
5.2.1.

An expensive MLSMC, using theoretical rates � but exceedingly larger N
L

is executed to
get some results over the algorithmic variabilty. The simulations are repeated 100 times. The

16



Figure 3: Computational cost against mean squared error against.

Figure 4: Variance rate estimate using H1-norms.
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Figure 5: Empirical variance rate estimates.

estimated variance of ⌘Nl
l

(gG
l

)/⌘Nl
l

(G
l

) � ⌘Nl
l

(g) multiplied by the sample size N
l

, as a proxy of
V
l

, is plotted in Figure 5 against h
l

on the same scales as before. The estimate of the rate now
is � = 4.111. In this case the numerical estimate is much stronger than the theoretical rate used
here. In fact, under suitable regularity conditions one may theoretically obtain the rate � = 4
with a stronger L2(D) bound on kp(·; u) � pl(·; u)k, which follows from an Aubin-Nitsche duality
argument [13]. Nonetheless, the objective of the present work is to illustrate the theory and not to
really optimize the implementation. In fact, similar results as presented above are obtained using
either rate, presumably owing to the fact that � = 2 > ⇣, which is already the optimal relationship
of � and ⇣ and hence already provides the optimal asymptotic behavior of MSE/cost�1. In case
an optimal � induces a change in the relationship between � and ⇣, one may expect a change in
asymptotic behavior of cost vs. MSE, which justifies such empirical rate estimation.

6. Extensions

This work has considered an MLSMC sampler for a Bayesian inverse problem. Many extensions
are possible. One extension concerns new ML estimators of the normalising constant Z

L

as well
as a complexity investigation. Another is consideration of the removal of discretisation bias in the
spirit of [20]. A third extension is the implementation on more challenging and advanced models.
These extensions are considered in [11, 17] as they require considerable extra e↵orts to achieve.
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Appendix A. Technical Results

Introduce the following notations. For ' 2 B
b

(E), p � 0 and ⌘ 2 P(E)

�
p

(⌘)(') =
⌘(G

p�1Mp

('))

⌘(G
p�1)

where M
p

(')(u) =
R
E

'(v)M
p

(u, dv). Define the operator Q
p+1(u, dv) = G

p

(u)M
p+1(u, dv) and

denote Q
p,n

(') = Q
p+1(· · ·Qn

(')) (0  p  n, Q
n,n

is the identity operator). Also set

D
p,n

(') =
Q

p,n

('� ⌘
n

('))

⌘
p

(Q
p,n

(1))
,

D
n,n

is the identity operator, and define the following

V Np
p

(') =
p

N
p

[⌘Np
p

� �
p

(⌘
Np�1

p�1 )](') ,

R
Np

p+1(Dp,n

(')) =
⌘
Np
p

(D
p,n

('))

⌘
Np
p

(G
p

)
[⌘

p

(G
p

)� ⌘Np
p

(G
p

)] , (A.1)

with the convention that �0(⌘
N�1
�1 ) ⌘ ⌘0. Working similarly to the derivation of [10, Eq. (6.2)], but

now with varying number of particles, we have that for any n � 0

[⌘Nn
n

� ⌘
n

](') = [⌘Nn
n

� �
n

(⌘Nn�1
n�1 )](') + [�
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(⌘Nn�1
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](')

=
V Nn
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(')p
N
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+
⌘
Nn�1
n�1 (G

n�1Mn

('))

⌘
Nn�1
n�1 (G

n�1)
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n�1(Gn�1Mn

('))

⌘
n�1(Gn�1)

=
V Nn
n

(')p
N

n

+RNn�1
n

(D
n�1,n(')) + [⌘Nn�1

n�1 � ⌘
n�1](Dn�1,n('))

where notice that D
n�2,n�1Dn�1,n = D

n�2,n. Thus, working iteratively we have that

[⌘Nn
n

� ⌘
n

](') =
nX

p=0

V
Np
p

(D
p,n

('))p
N

p

+
n�1X
p=0

R
Np

p+1(Dp,n

(')). (A.2)

Throughout this Section C is a constant whose value may change, but does not depend on any
time parameters of the Feynman-Kac formula, nor (N0, . . . , NL�1).

Now a technical Lemma is introduced, which will contain results that are frequently used in
the below calculations.

Lemma Appendix A.1. Assume (A1-2). There exist C < +1,  2 (0, 1) such that for any
n � p � 0, q � s � 0, 1  r < +1 and '

n

,'
q

2 B
b

(E):

i) kD
p,n

('
n

)k1  Cn�pk'
n

k1.

ii) kV Np
p

(D
p,n

('
n

))k
r

 Cn�pk'
n

k1.

iii) kRNp

p+1(Dp,n

('
n

))k
r

 C

n�pk'nk1
Np

.

iv) kV Np
p

(D
p,n

('
n

))V Ns
s

(D
s,q

('
q

))k1  Cn�p+q�sk'
n

k1k'
q

k1.
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v) kV Np
p

(D
p,n

('
n

))RNs
s+1(Ds+1,q('q

))k1  C

n�p+q�sk'nk1k'qk1
Ns

.

vi) kRNp

p+1(Dp+1,n('n

))RNs
s+1(Ds+1,q('q

))k1  C

n�p+q�sk'nk1k'qk1
NpNs

.

Proof. For (i). This follows from standard calculations in the analysis of Feynman-Kac formulae;
see e.g. the proof of Proposition 2 in [19]. For (ii).This follows from [7, Lemma 7.3.3] and (i). For
(iii). Recall (A.1) and note that ⌘

p

(D
p,n

('
n

)) = 0; then on application of Cauchy-Schwarz and
assumption (A1) one has that

kRNp

p+1(Dp,n

('
n

))k
r

 C k⌘Np
p

(D
p,n

('
n

))k2r · k⌘p(Gp

)� ⌘Np
p

(G
p

)k2r .
The result follows from [7, Theorem 7.4.4] and (i). (iv) follows from Cauchy-Schwarz and (ii). (v)
follows from Cauchy-Schwarz, (ii) and (iii). (vi) follows from Cauchy-Schwarz and (iii).

Recall equations (8) and (9), and define the following terms,

V
n

(', N) =
nX

p=0

V
Np
p

(D
p,n

('))p
N

p

; R
n

(', N) =
n�1X
p=0

R
Np

p+1(Dp,n

(')) .

Here we use a slight abuse of notation for N , representing (N0, . . . , Nn

) (or (N0, . . . , Nn�1)).

Lemma Appendix A.2. Assume (A1-2). There exist a C < +1,  2 (0, 1) such that for any
n > q � 0 and '
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, g 2 B
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Proof. Set FN

q

as the � algebra generated by particle system up to time q.

i)We start by noting that E [V Np
p
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q
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Lemma Appendix A.3. Assume (A1-2). There exists a C < +1, such that for any n � 0,
1  r < +1 and ' 2 B
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Proof. The result is standard, but we give the proof for completeness. We have
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Application of Minkowski, (A1) and [7, Theorem 7.4.4] complete the proof.
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By Lemma Appendix A.2 and the fact that ⌘n(|g|Gn)
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We will deal with each of the 4 terms on the R.H.S. separately.
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where for the third line we have used |A
q

(g,N
q

)|  1 and two applications of Hölder’s inequality;
for the forth line we have used Lemma Appendix A.1(ii) and Lemma Appendix A.3.

Using very similar calculations one can obtain the upper bounds,���E [A
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The proof is now complete.
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