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ABSTRACT

We observe an undirected graph G without multiple edges and self-loops, which is to rep-
resent a protein–protein interaction (PPI) network. We assume that G evolved under the
duplication–mutation with complementarity (DMC) model from a seed graph, G0, and we
also observe the binary forest G that represents the duplication history of G. A posterior
density for the DMC model parameters is established, and we outline a sampling strategy by
which one can perform Bayesian inference; that sampling strategy employs a particle
marginal Metropolis–Hastings (PMMH) algorithm. We test our methodology on numerical
examples to demonstrate a high accuracy and precision in the inference of the DMC model’s
mutation and homodimerization parameters.

Key words: duplication–mutation with complementarity (DMC) model, particle marginal

Metropolis–Hastings (PMMH), protein–protein interaction (PPI) network, sequential Monte

Carlo (SMC).

1. INTRODUCTION

As a result of breakthroughs in biotechnology and high-throughput experiments thousands of

regulatory and protein–protein interactions have been revealed, and genome-wide protein–protein in-

teraction (PPI) data are now available. Protein–protein interactions are one of the most important components

of biological networks, as they are fundamental to the functioning of cells. To gain a better understanding of

why these interactions take place, it is necessary to view them from an evolutionary perspective. The

evolutionary history of PPI networks can help answer many questions about how present-day networks have

evolved and provide valuable insight into molecular mechanisms of network growth (Kreimer et al., 2008;

Pereira-Leal et al., 2007). However, inferring network evolution history is a statistical and computational

challenging problem as PPI networks of extant organisms provide only snapshots in time of the network

evolution. There has been recent work on reconstructing ancestral interactions (e.g., Dutkowski and Tiuryn,

2007; Gibson and Goldberg, 2009; Patro et al., 2012). The main growth mechanism of PPI network is gene

duplication and divergence (mutations) (Wagner, 2001); all proteins in a family evolve from a common

ancestor through gene duplications and mutations, and the protein network reflects the entire history of the
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genome evolution (Vazquez et al., 2003). In this article we follow Li et al. (2013), and we develop com-

putational methods to infer the growth history and the parameters under the given model incorporating not

only the topology of observed networks, but also the duplication history of the proteins contained in the

networks. In their article, Li et al. (2013) propose a maximum likelihood approach. The authors establish a

neat representation of the likelihood function, and it is this representation that is used in this article. The

duplication history of the proteins can be inferred independently by phylogenetic analysis (Patro et al., 2012;

Pinney et al., 2007).

The approach we adopt here is first to obtain a numerically stable estimate of the likelihood function,

under fixed parameters; this is achieved via the sequential Monte Carlo (SMC) method (see Doucet et al.,

2000, and Gordon et al., 1993). This approach can then be used to infer the parameters of the model, from a

Bayesian perspective, as well as the growth history, via a Markov chain Monte Carlo (MCMC) method. To

the best of our knowledge, this has not been considered in the literature, although related ideas have

appeared for simpler models in Wang et al. (2014). Our computational strategy not only improves on

likelihood estimation in comparison to Li et al. (2013), but also provides a natural setup to perform

posterior inference on the parameters of interest.

This article is structured as follows. In section 2, we detail the model and associated computational

method for statistical inference. In section 3, our numerical results are presented. In section 4, the article is

concluded with some discussion of future work.

2. MODEL AND METHODS

We follow similar notation and exposition as in Li et al. (2013) to introduce the protein–protein inter-

action network, its duplication history, and the duplication–mutation with complementarity (DMC) model

(Vazquez et al., 2003). In particular, the notions of adjacency and duplication are made concrete there. We

also introduce the associated Bayesian inference problem with which this work is primarily concerned (i.e.,

that of inferring the parameters of the DMC model). We then describe a particle marginal Metropolis–

Hastings (PMMH) algorithm (Andrieu et al., 2010) that can be used to perform such inference.

2.1. PPI network and DMC model

Consider an undirected graph G without multiple edges and self-loops, where the nodes represent

proteins and the edges represent interactions between those proteins. Such a graph is called a PPI network,

and as in Li et al. (2013), we denote the vertex set by V(G), the edge set by E(G), and the number of nodes

in G by jV (G)j. All nodes that are adjacent to a node v (not including v itself) comprise the neighborhood of

v, and that neighborhood is denoted by NG(v).

We assume that G evolved from a seed graph G0 via a series of duplication, mutation, and homo-

dimerization steps under a DMC model. Under the DMC model, at each time step t, the graph Gt evolves

from Gt-1 by the following processes in order:

1. The anchor node ut is chosen uniformly at random from V (Gt-1), and a duplicate node vt is added to

Gt-1 and connected to every member of NGt - 1
(ut). This is the duplication step, and it yields an

intermediary graph denoted G�t - 1.

2. For each w 2 NG�
t - 1

(ut), we uniformly choose one of the two edges in f(ut‚ w)‚ (vt‚ w)g � E(G�t - 1) at

random and delete it with probability (1 - p). This is the mutation step, and the parameter p is

henceforth referred to as the mutation parameter.

3. The anchor node ut and the duplicate node vt are connected with probability pc to finally obtain Gt.

This is the homodimerization step, and the parameter pc is henceforth known as the homodimerization

parameter.

The DMC model is Markovian, and we denote the transition density at time t (which encompasses the

three aforementioned steps) by pM(Gt jGt - 1), whereM : = (p‚ pc). If we assign to a seed graph some prior

density pM(G0), then the density of the observed graph G will be

pM(G) =
X
HnfGng

pM(G0)
Yn

t = 1

pM(Gt jGt - 1)

" #
‚ (1)
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where G = Gn‚ n = jV(G)j - jV(G0)j, and H= (G0‚ G1‚ . . . ‚ Gn = G) denotes the collection of growth histo-

ries. In this work, a seed graph will always be the graph consisting of two connected nodes; thus,

jV(G0)j = 2 and pM(G0) = 1. Note that we are summing over all possible growth histories by which G can

evolve from a seed graph. Also note that a growth history H induces a unique sequence of duplicate nodes,

h(H) = (v1‚ . . . ‚ vn) (Li et al., 2013).

2.2. Bayesian inference

In practice, one will not have access to the parameters ( p, pc), and they must be inferred given G. Thus,

in the Bayesian setting, our objective is to consider the posterior density

p(M j G) / p(M)pM(G)‚ (2)

where p(M) is some proper prior for ( p, pc) that we assume can easily be computed (at least pointwise up

to a normalizing constant).

The total number of growth histories grows exponentially with n (Li et al., 2013), and so any compu-

tations involving (1), and thus (2) [e.g., the evaluation of pM(G)], could potentially become very expensive.

In the following sections, we reformulate the inference problem in the same manner as in Li et al. (2013) to

alleviate this issue.

2.3. Duplication history

As in Li et al. (2013), letG be a binary forest, that is, a collection of rooted binary trees. The authors of Li et al.

(2013) describe a scheme that encodes the duplication history of a growth historyHwithin a series of duplication

forests, (G0‚G1‚ . . . ‚Gn), where each forest Gt corresponds to a graph Gt. We describe that scheme here.

Consider a trivial forest G0, whose only two isolated trees each consist of a single node. Each of those

isolated nodes will correspond to a node within the seed graph G0. To build G1 from G0, one replaces an

anchor node u1 from G0 with a subtree, fu1‚ v1g, consisting of two leaves (v1 is the duplicate node including

G1 but not G0). This process continues until one builds the series of forests (G0‚G1‚ . . . ‚Gn =G) to

correspond to H.

As highlighted in Li et al. (2013), the duplication forest G (corresponding to G) is uniquely determined

by H and a list of anchor nodes, p = (u1‚ . . . ‚ vn). The important thing to emphasize here is that given

the duplication forest G and G, one now only needs to infer the duplication nodes sequence

h(H) = (v1‚ v2‚ . . . ‚ vn) to reconstruct the complete growth history H. For instance, at the first step back-

ward, knowledge of Gn =G together with vn uniquely identifies the anchor node un, thus one can reconstruct

Gn-1 and Gn-1; this is then repeated for the remaining backward steps. Thus, given h(H), one can construct

the growth history H backward-in-time using the backward operators defined in section 2.4 of Li et al.

(2013), which constructs Gt-1, Gt-1 deterministically given (Gt, Gt, vt), for t = n‚ n - 1‚ . . . ‚ 1. An example of

a growth history is given in Figure 1.

FIG. 1. An example growth history for a network together with the corresponding history of the duplication forest. In

this example, (u1, u2, u3) = (2, 1, 3) and (v1, v2, v3) = (3, 4, 5).
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2.4. Bayesian inference given the duplication history

Now suppose that in addition to G, a practitioner is given G corresponding to G. Our new objective—and

the primary inference problem with which this work is concerned—is to consider the posterior density

p(MjG‚G). Notice that we have the joint distribution:

p(M‚ fG‚Gg‚ h) = p(M)pM(Gh
0‚Gh

0)
Yn

t = 1

pM(Gh
t ‚Gh

t j Gh
t - 1‚Gh

t - 1)

where h = (v1‚ . . . ‚ vn) is a sequence of duplication nodes compatible with the observed G, G, and

Gh
0‚Gh

0‚ . . . ‚ Gh
n‚Gh

n the corresponding reconstructed history. We are thus interested in the parameter

posterior:

p(M j G‚G) / p(M)pM(G‚G)‚

pM(G‚G) =
X
hjG‚G

pM(Gh
0‚Gh

0)
Yn

t = 1

pM(Gh
t ‚Gh

t jGh
t - 1‚Gh

t - 1)

" #
‚

(3)

The density pM(G0‚G0) is typically a trivial term that can be ignored in practice. As the duplication forest

G limits the number of allowable anchor-and-duplicate node pairs, one can see that the number of possible

growth histories is reduced.

2.5. Methods

We will now present an SMC algorithm that can sample the latent growth histories from the DMC

model given the fixed parametersM := (p‚ pc). We then show that this algorithm can be employed within

a PMMH algorithm, as in Andrieu et al. (2010), to sample from the posterior (3) and infer M (and

even hjG, G).

An SMC algorithm simulates a collection of N samples (or, particles) sequentially along the index t via

importance sampling and resampling techniques to approximate a sequence of probability distributions of

increasing state-space, which are known pointwise up to their normalizing constants. In this work, we use

the SMC methodology to sample from the posterior distribution of the latent duplication history:

pM(h j G‚G) / pM(Gh
0‚Gh

0)
Yn

t = 1

pM(Gh
t ‚Gh

t j Gh
t - 1‚Gh

t - 1)

backward along the index t via Algorithm 1 in the Appendix. The technique provides an unbiased estimate

of the normalizing constant (Theorem 7.4.2 of Del Moral, 2004), pM(G‚G):

p̂M(G‚G) =
Yn - 1

t = 0

�
1

N

XN

i = 1

Wi
t

�
‚ (4)

where each Wi
t is an unnormalized importance weight computed in Algorithm 1. Note that under as-

sumptions on the model, if N > cn for some c <N , then the relative variance of the estimate is O(n/N) (see

Cérou et al., 2011). It is remarked that, as in Wang et al. (2014), one could also use the discrete particle

filter (Fearnhead, 1998), with a possible improvement over the SMC method detailed in Algorithm 1 (see

Wang et al., 2014, for some details).

This SMC can be employed within a PMMH algorithm to target the posterior ofM in (3). One can think

of the deduced method as an MCMC algorithm running on the marginal M-space, but with the SMC

unbiased estimate p̂M(G‚G) replacing the unknown likelihood p̂M(G‚G). More analytically, we can

consider all random variables involved in the method and write down the equilibrium distribution in the

enlarged state space, withM-marginal the target posterior pM(G‚G). Following Andrieu et al. (2010) and

letting /i
t denote a sample (Gt, Gt) at time t, the extended equilibrium distribution is written as:

pN l‚M‚ a1:N
1:n - 1‚ /1:N

0:n - 1 j G‚G
� �

=
p M‚ /l

0:n - 1jG‚G
� �

Nn
� CM(a1:N

1:n - 1‚ /1:N
0:n - 1)

qM(v
al

n - 1
n )

Qn - 1
t = 1 w

al
t

t qM(v
al

t - 1
t )

� � ‚ (5)
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where CM is the probability of all the variables associated to Algorithm 1, with a
j
k‚ l 2 f1‚:::‚ Ng and the

/’s being the simulated variables at each step of Algorithm 1.

A PMMH algorithm (see Algorithm 2) samples from (5), and one can remove the auxiliary variables

from the samples to obtain draws for the parameters from (3). Furthermore, one could even save the

sampled growth histories with particle index l to obtain draws from the joint posterior p(M‚ h j G‚G).
However, in this work, we are primarily interested in the inference of M.

3. RESULTS

The variance of the estimate (4) plays a crucial role in the performance of Algorithm 2, as (4) is used to

compute the acceptance probability within the PMMH algorithm. Thus, we first tested the variability of (4)

as computed by Algorithm 1 to understand how the variance changes with jV (G)j. We then ran Algorithm 2

to sample from the posterior (3) and inferM for a given pair of observations (G, G). We present the details

of those experiments below.

3.1. Variance of p̂M(G‚G)

We simulated a graph G and a forest G from the DMC model with the parameters set as ( p = 0.7,

pc = 0.7), where jV(G)j = 40. We saved each pair (Gt, Gt) for 1 £ t £ 40, and we ran Algorithm 1 50 times per

pair (with N = jV(Gt)j * 5) to compute 50 unbiased estimates of pM(Gt‚Gt)for 1 £ t £ 40. In the top of

Appendix Figure A1 in Appendix A, we plot the relative variance of the estimate (or, the variance divided

by the square of the expected value) per each value of jV(Gt)j. We repeated the experiment two more times,

with N = jV(Gt)j * 10 and N = jV(Gt)j * 20, and the associated output is also presented in Appendix Figure A1.

As remarked above, if N > cn for some c < N , then the relative variance of p̂M(Gt‚Gt) isO(n=N). Appendix

Figure A1 confirms that the variance increases linearly, and that increasing the value of N with jV(G)j (at least

linearly) will help to control the variance. However, the plots show that the relative variance is still high, which

means that N will have to be large to ensure satisfactory performance of the PMMH in practice.

3.2. Parameter inference

We separately simulated a graph G and a forest G from the DMC model with the parameters again set as

( p = 0.7, pc = 0.7), and we set jV(G)j = 15. Given only (G, G), we inferred ( p, pc) with each parameter

having a uniform prior on the interval [0.1, 0.9]. We set the number of particles within Algorithm 1 to be

N = 2,000, and we ran the PMMH algorithm to obtain 10,000 samples from the extended target.

Appendix Figure A2 in Appendix A illustrates good mixing of the PMMH algorithm and accurate

inference of the parameters ( p, pc). The trace plots show that the algorithm is not sticky, and the auto-

correlation functions give evidence to an approximate independence between samples. The posterior

densities are also interesting, in that they are clearly different from the uniform priors, and they show that

the PMMH algorithm spends a majority of the computational time sampling the true parameter values.

4. DISCUSSION

We have introduced a Bayesian inferential framework for the DMC model, where, as in Li et al. (2013),

one assumes the pair (G, G) is observed and the parameters ( p, pc) are unknown. We then described how an

SMC algorithm can be used to simulate growth histories and ultimately be employed within PMMH to

target the posterior distribution of the parameters (3), thereby opening up the possibility of performing

Bayesian inference on the DMC model.

Numerical tests demonstrated that Algorithm 1 can have a high variability when jV(G)j is large and N is

not sufficiently high, and this limits the scope of the inference problem, which can be tackled using the

complete Algorithm 2. However, the proposals used in the example experiments within Algorithms 1 and 2

are naive, as the method simply chooses a candidate duplicate node vi
t at random from all permitted nodes

given the current Gi
t, G

i
t. It is reasonable to assume that more sophisticated proposal densities could reduce

the variance of the SMC and/or improve the mixing of the PMMH, thereby allowing one to perform

inference when jV(Gt)j is large and N is smaller. This could be explored in a future work.
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5. APPENDIX A

APPENDIX FIG. A1. All plots illustrate the relative variance of p̂M(Gt‚Gt), per jV (Gt)j on the horizontal axis; the

relative variance is the variance divided by the square of the expected value. In the top plot, the number of SMC

particles used to compute each p̂M(Gt‚Gt) is jV(Gt)j * 5. In the middle and bottom plots, that number is jV(Gt)j * 10 and

jV(Gt)j * 20, respectively. Recall that the seed graph, G0, has two nodes, and note that we did not compute p̂M(G0‚G0)
because it is trivial.
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APPENDIX FIG. A2. Plots associated with p and pc are at left and right respectively. The top figures are trace plots,

with PMMH iteration running along the horizontal axes and parameter value running along the verticals. The middle

figures are plots of the autocorrelation functions (with lag running along the horizontal axes), and at the bottom we

present the parameter posterior densities.
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6. APPENDIX B: ALGORITHM SUMMARIES

Algorithm 1 Sequential Monte Carlo (SMC)

� Step 0: Input an observed graph G = Gn and a corresponding observed forest G=Gn, where G is not a seed graph.
� Step 1: Set t = n. For i 2 f1‚ . . . ‚ Ng, sample a subtree with two nodes uniformly at random from Gi

t, and choose one

of the two nodes uniformly as the proposed duplicate node vi
t (thus the other will be the anchor node). Using the

backward operators defined in [10, section 2.4], construct each (Gi
t - 1‚Gi

t - 1) from the subtrees and (Gi
t‚G

i
t). For

i 2 f1‚ . . . ‚ Ng, compute the unnormalized weight

Wi
t - 1 =

pM(Gi
t‚G

i
t j Gi

t - 1‚Gi
t - 1)

qM(vi
t)

‚

where qM is the density of the proposal mechanism used to sample fui
tg.

� Step 2: If fG1:N
t - 1g are not seed graphs, then set t = t - 1 and continue to Step 3. Otherwise, the algorithm terminates.

� Step 3: For i 2 f1‚ . . . ‚ Ng, sample ai
t 2 f1‚ . . . ‚ Ng from a discrete distribution on {1, . ,N} with jth probability

w
j
t f W

j
t . The sample fa1:N

t g are the indices of the resampled particles. Set all normalized weights equal to N-1.

� Step 4: For i 2 f1‚ . . . ‚ Ng, sample a subtree with two nodes uniformly at random from the resampled forest Gai
t

t , and

select uniformly one of the two nodes as the proposed duplicate node vi
t. Construct (Gi

t - 1‚Gi
t - 1) from vi

t‚ (G
ai

t
t ‚Gai

t
t ).

For i 2 f1‚ . . . ‚ Ng, compute the unnormalized weight

Wi
t - 1 =

pM(G
ai

t
t ‚Gai

t
t j Gi

t - 1‚Gi
t - 1)

qM(vi
t)

:

Return to Step 2.

Algorithm 2 Particle Marginal Metropolis—Hastings (PMMH)

� Step 0: Set r = 0. Sample M(r)~p(�). All remaining random variables can be sampled from their full conditionals

defined by the target (5):

- Sample /(r)‚ 1:N
0:n - 1 ‚ a

(r)‚ 1:N
1:n - 1 ~CM(r) (�) via Algorithm 1.

- Choose a particle index l(r) / W
(r)‚ l(r)

0 .

Finally, calculate p̂M(r) (G‚G) via (4).

� Step 1: Set r = r + 1. Sample M�~q( � jM). All remaining random variables can be sampled from their full

conditionals defined by the target (5):

- Sample /�‚ 1:N
0:n - 1‚ a�‚ 1:N

1:n - 1~CM� (�) via Algorithm 1.

- Choose a particle index l� / W�‚ l�

0 .

Finally, calculate p̂M� (G‚G) via (4).

� Step 2: With acceptance probability

1 ^ p̂M� (G‚G)q(MjM�)

p̂M(r - 1) (G‚G)q(M�jM)
‚

set (l(r)‚M(r)‚ /(r)‚ 1:N
0:n - 1 ‚ a

(r)‚ 1:N
1:n - 1 ) = (l�‚M�‚ /�‚ 1:N

0:n - 1‚ a�‚ 1:N
1:n - 1). Otherwise, set

(l(r)‚M(r)‚ /(r)‚ 1:N
0:n - 1 ‚ a

(r)‚ 1:N
1:n - 1 ) = (l(r - 1)‚M(r - 1)‚ /(r - 1)‚ 1:N

0:n - 1 ‚ a
(r - 1)‚ 1:N
1:n - 1 ).

Return to the beginning of Step 1.
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