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Abstract

Molecular data from the interstellar medium (ISM) contain information that holds the

key to understanding our chemically controlled cosmos and to unlocking the secrets of

our universe. Observational data, as well as synthetic data from chemical codes, provide

a cornucopia of digital information that conceals knowledge of the ISM. Astrochemistry

studies the chemical interactions in the ISM and translates this information into knowledge

of the physical characteristics of the ISM. As larger datasets and more complex models

are being employed in astrochemistry, the need for intelligent data mining algorithms will

increase. Machine learning algorithms provide novel methods for human-driven analysis

of astrochemical data by augmenting scientific intelligence. The aim of this thesis is to

introduce machine learning methods for solving typical astrochemical problems. The main

application focus will be the physical parameter profile of dark molecular clouds.

Time-dependent chemical codes are typically used as a tool to interpret observations,

but their potential to explore a large physical and chemical parameter space is often ne-

glected due to the computational complexity or the complexity of the parameter space.

We will present clustering analysis methods, using traditional and probabilistic hierar-

chical clustering, for the efficient discovery of structure and patterns in vast parameter

spaces generated solely from an astrochemical code. Moreover, we will demonstrate how

Bayesian methods in conjunction with Markov Chain Monte Carlo sampling algorithms

can efficiently solve nonlinear inverse problems for the probabilistic estimation of chemical

and physical parameters of dark molecular clouds. The computational cost of sampling

algorithms can be preventive for a full Bayesian approach in some cases, hence we will

also present how artificial neural networks can accelerate the inference process without

much loss of accuracy. Finally, we will demonstrate how the Bayesian approach and smart
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sampling techniques can tackle uncertainty about surface reactions and rate coefficients,

even with vague and not very informative observational constraints, and assist laboratory

astrochemists by guiding experimental techniques probabilistically .
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Chapter 1

Introduction

When one thinks of our Universe, wondering about all the planets, stars, galaxies, in-

tergalactic and interstellar space or all the matter, energy and the smallest subatomic

particles, some scientific, ethical or religious questions might spring to mind. The Uni-

verse usually answers back with chemistry. More than anything, our cosmos is chemically

controlled and even though only about 0.5% of the total mass of the universe is composed

of molecules, astronomers still insist on the title ‘Molecular Universe’ (Fraser et al. 2002;

Cernicharo & Bachiller 2012; Tielens 2013). Understanding the origin and evolution of

interstellar molecules through chemical interactions has become a fundamental goal of

modern astrophysics and holds the key to understanding the universe and our place in it.

Astrochemistry, the study of the chemical interactions in the interstellar medium (ISM), is

a fascinating topic that can give answers to some of the most exciting questions concerning

astrophysics.

It is the molecules that regulate the interstellar gas temperature and function as our

thermometers and barometers to investigate local physical conditions. It is them that

interact and form larger prebiotic molecules, the building blocks of life for complex species

such as the human species. And, among other processes, it is the molecular gas that func-

tions as a reservoir of matter that is to be processed into galaxies, stars and planets. There

is still so much to learn about the behavior of molecules in a variety of physical situations.

15
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This knowledge enables the understanding of core processes such as the formation of stars

within interstellar clouds, the death of many stars as supernovae explosions, galaxy struc-

ture and evolution and plenty more processes of scientific interest. Astrochemical research

is an essential tool, that becomes functional only with a plethora of data and information

on atomic, molecular, surface and solid-state physics and chemistry. This information

is the main building block of the chemical cosmos’ understanding and comes mainly in

two forms: Observational data taken at the telescope and synthetic data produced using

theoretical astrochemical codes. The exponential growth of new data (Becla et al. 2006;

Brunner et al. 2001; Szalay et al. 2002), which is often described as a data-driven revolution

in astrophysical research, empowers effective and fast research results, but also challenges,

requiring new ‘Big Data’ approaches. The call for novel methods entails inspiration or

solutions that might already be available in other data-driven research areas. Specifically,

areas such as data mining, machine learning or statistical learning provide a structured

way to tackle common tasks in astrophysics such as data organization, data description,

astronomical classification taxonomies, astronomical concept ontologies, probabilistic in-

ference, visualization and pattern recognition. That brings us to the subject, scope and

aim of this thesis.

The ISM and understanding of its processes is still hampered by incomplete knowl-

edge about the dense, cold and dark molecular clouds. Theoretical chemical models, in

conjunction with observations, provide essential data and information to probe molecular

clouds and if properly interpreted can lead to useful insights about the molecular condi-

tions and processes. However, the vast parameter space to explore and the overabundance

of observational information and synthetic data aggravate the knowledge retrieval process.

In this thesis, we concentrate on molecular clouds when both gas and solid (dust) phase

chemistry occur and we present probabilistic and machine learning methods to address

common data mining and inverse astrochemical problems. On one hand, we demonstrate

algorithms that enable qualitative and quantitative data modelling for efficient, fast and

structured inference from large molecular abundance data sets. On the other hand, we

employ Bayesian inference to address inverse problems of estimating the structure, dy-

namics and processes of molecular clouds from observational data. The aim of this thesis

is to provide a prototype of human-driven analysis of astrochemical data by augmenting

scientific intelligence using novel techniques for astrochemistry.

The first three sections of the introduction provide a theoretical background on the
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Figure 1.1: The Chemically Controlled Cosmos (Image credit: Satoshi Kambayashi).

pertinent astrophysical processes. Section 1.1 reviews the ISM processes. The physics and

chemistry of molecular clouds are discussed in Section 1.2, while Section 1.3 focuses on

the interstellar ices and the chemistry that takes place on the grain surfaces. Section 1.4

introduces chemical models and specifically the chemical code used in this thesis. In

Section 1.5 we discuss how machine learning can be a novel approach to common knowledge

discovery and inverse problems in astrochemistry. Finally, in Section 1.6 we talk about

the work in this thesis. This introduction is intended to establish fundamental theoretical

principles that guided the development of the chapters in this thesis.

1.1 The Interstellar Medium

The ISM in our galaxy is filled with gas (99%) and silicate and carbonaceous dust grains

(1%). It consists of roughly 89% hydrogen, 9% helium and 2% heavier atoms (Dyson &
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Table 1.1: Types of interstellar medium and their physical characteristics. (Adapted from
Williams & Viti (2014))

Temperature(K) Density(cm−3)

Coronal gas 5× 105 10−2

HII regions 104 > 100
Diffuse gas 70 100− 300

Molecular Clouds 5− 50 103 − 105

Prestellar cores 10− 30 105 − 106

Star forming regions 100− 300 107 − 108

Protoplanetary disks 10(outer)− 500(inner) 104(outer)− 1010(inner)
Envelopes of evolved stars 2000− 3500 1010

Williams 1997). This interstellar matter can be found in neutral, ionized, atomic and

molecular form and in the gas phase or in the solid phase and can be in several physical

phases. Table 1.1 summarizes the physical characteristics of these phases. Temperature is

a dominant and critical parameter for the ISM processes. Heating of the interstellar gas

and dust is achieved through energy from interstellar radiation, cosmic rays and X-rays,

which is transfered to the gas through molecular collisions. Cooling is achieved through

several molecular microscopic processes that depend on the local physical characteristics

of the gas and result in emitted radiation (Dyson & Williams 1997).

It is impressive how the ISM gas and dust evolution follows a cyclic process. This

evolutionary cycle inside the ISM is schematically depicted in Figure 1.2. The ashes from

present or past stars are injected in the ISM, and it is these ashes that drive the interstellar

gas and dust to gravitational collapse that eventually forms new stars. Hence, the ISM is

the birthplace of stars, but stars are the ones that regulate the structure and processes of

the gas and therefore the star formation process. Both low and high mass stars control

the mass balance of interstellar gas and inject dust and aromatic hydrocarbon molecules

(PAHs) into the ISM through stellar winds. Dust is an important source of opacity,

while PAHs are important heating agents of the ISM gas. Furthermore, stellar winds

and supernova explosions from high-mass stars contribute towards star formation and

the support of clouds against self gravity by controlling the mechanical energy injection

into the ISM and therefore, the turbulent pressure. High-mass stars also control and

regulate the cosmic-ray radiation and the FUV photon energy and hence to some extent,

the heating ionization and dissociation of the interstellar gas. As will be discussed later,

dust opacity and cosmic rays have a catalytic role in the formation of molecular gases.

Then, molecular processes trigger the gravitational instability of the molecular clouds and
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Figure 1.2: The ISM cyclic process (Image credit: Tielens (2013))

consequently the star formation processes.

This clear but complex interconnection between star formation and the ISM regulates

the composition, chemical evolution, structure and observational properties of the ISM in

any galaxy all the way back to when the first stars and galaxies formed. To comprehend

this interaction, we need to unravel the chemical and physical processes that interconnect

interstellar gas to the thermal, mechanical and photon energy inputs from stars. In this

thesis we will focus on novel methods for understanding chemical processes in molecular

cold regions of the ISM, commonly known as molecular clouds. A complex of molecular

clouds is depicted in Figure 1.3 and a more detailed description of molecular clouds and

their processes follows.

1.2 Dark Molecular Clouds

Molecular hydrogen is the key to interstellar chemistry. Star formation processes start in

cold clouds of molecular hydrogen which are simply called molecular clouds. Molecular

clouds are irregularly shaped regions where extinction by dust is high (AV &5 mag), tem-

peratures are low (∼ 10 K), densities are inhomogeneous and high (nH ≥ 103 cm−3) and

where most of the gas is molecular. They contain high density clumps or cores (Myers &

Benson 1983), some of which may become gravitationally unstable and initiate the early
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Figure 1.3: Orion Molecular Cloud Complex: an enormous cloud of interstellar gas and
dust within the Milky Way Galaxy. (Image credit: Josh Knutson)

stages of star formation. Understanding the life cycle of dark molecular clouds is very im-

portant for comprehending star formation and for getting insight into the processes of the

interstellar medium and to that extent galaxy formation. Molecules provide a paramount

tool for the analysis of the chemical and physical conditions of star forming regions. Every

stellar or planetary evolutionary stage is characterized by a chemical composition, which

represents the physical processes of its phase.

1.2.1 The Chemistry of Molecular Clouds

The initial gas-phase chemistry and the efficiency of the gas to form molecules depends

highly on how much of the hydrogen is molecular, on the abundance of heavier elements

of the ISM gas and on cosmic rays. The relative elemental abundance of these heavier
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elements differs from galaxy to galaxy and defines an important galaxy parameter, the

metallicity. The main chemical processes of molecular clouds start when most of the hy-

drogen is molecular and the rest of the reactive elements are initially atomic. When the

density is greater than 103 cm−3, the UV radiation field will not affect the gas chem-

istry due to the high extinction by the dust particles (AV &5 mag), while only cosmic

ray radiation can penetrate through the interior of the cloud. Cosmic rays are particles

that ionize the gas and form predominantly H+
2 , but also H+. The role of cosmic rays

is very important, since the low gas temperature prevents oxygen or other species react-

ing with molecular hydrogen. However, the ion H+
2 has a high probability for reacting

with molecular hydrogen forming H+
3 , which then provides the necessary route to more

complex molecules. H+
3 is very reactive and can donate a proton to many species such

as oxygen and carbon. Further reactions with molecular hydrogen can occur until a sat-

urated molecule is reached such as H2O. An example sequence of reactions for what is

called the backbone chemistry of the H+
3 and oxygen as well as H+

3 and carbon is shown in

Figure 1.4. The products of these backbone chemistry routes react to further enrich the

interstellar molecular canvas with important molecules such as CO. However, the back-

bone chemistry concept is not applicable to all atomic and neutral elements. For example,

nitrogen-bearing species such as NO and CN require the reaction of nitrogen with OH

and CH. At that point, it is important to emphasize the critical role of cosmic rays for

the ionization of the gas and dust for shielding the cloud from the interstellar radiation

field. The role of dust though, is versatile and will be discussed in more detail in the next

paragraph and Section 1.3.

The dust particles constitute about 1% of the molecular clouds, are irregularly shaped

and are composed of silicates, carbon, ice, and/or iron compounds. The various and

paramount roles of dust in the ISM entitle dust as the interstellar catalytic converter

(Hartquist & Williams 2008). The first step towards chemistry in the ISM is the forma-

tion of molecular hydrogen from atomic hydrogen. Molecular hydrogen forms in dense

regions within molecular clouds, on the surfaces of dust grains. The high density and

low temperature profile of star-forming regions create the perfect environment for atoms

and molecules to collide with dust grains frequently. These interactions and reactions on

dust grain surfaces are considered as important and maybe even more important than

gas-phase chemistry since they form the molecular hydrogen. Another important role of

dust that has already been mentioned is to shield gas from UV and visual radiation that
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would dissociate the molecular gas back to its atomic state. Furthermore, some of the

absorbed radiation releases photoelectrons from the dust grains to the gases, which con-

stitute an important energy source for the molecular gas. Finally, in the center of dark

clouds, atomic and molecular gas, other than H, freeze out on to icy mantles accumulated

on the dust grain surfaces. Atoms such as oxygen, carbon and nitrogen will freeze into

the mantles and by hydrogen addition will be converted to water, methane and ammonia

(Tielens 2010). These frozen molecules acquire mobility and are believed to form new,

more complex species. Figure 1.5 depicts the core structure of a dust grain and the main

routes of interstellar ice processing in a dark cloud.

1.2.2 The Physics of Molecular Clouds

The virial theorem states that in order to maintain equilibrium, the internal thermal energy

must equal half the gravitational potential energy. For a timescale over ∼ 3 × 107 years

and depending on the mass of the cloud, turbulent and magnetic pressure and gravity

will be in balance and keep the molecular cloud in a stable state. However, when part of

the magnetic or turbulent support is lost, the core will start to collapse gravitationally.

A molecular cloud can and may collapse and fragment into smaller cores. Each of the

cold cores collapses in an isothermal manner since the gas (atoms and molecules) releases

energy in the form of radiation (Bergin & Tafalla 2007). During the collapse the density

will increase and after a point (105 cm−3−107 cm−3) the fragmented cores will be optically

opaque. This opacity will make the energy release through radiation less efficient and the

central cores, called protostars, will gradually warm up. The increase in temperature

makes solid species still frozen on the grains more mobile and, therefore, drives a rich

grain-surface chemistry. When the temperature increases further (20 K < T < 100 K), H

atoms no longer reside long enough on the grain surfaces to be dominant reactants. Some

species, especially the most volatile ones, such as CO, O2 and N2 will start to sublimate.

When the molecular cloud reaches the hot core phase (i.e. dense, compact cores with

temperatures of 100-300 K, hosting the birth of a massive star), the mantle molecules are

injected back to the gas phase, where they react and form even more complex molecules for

up to 105 years (Herbst & van Dishoeck 2009). Simultaneously to the collapse, a fraction

of matter is violently ejected outward in the form of highly supersonic collimated jets and

molecular outflows. When the outflowing material encounters the quiescent gas of the

envelope and molecular cloud, it creates shocks, where the grain mantles are (partially)
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sputtered and the refractory grains are shattered.

The next stages of the star evolution are not covered in this thesis, but are briefly in-

troduced for completeness. The objects resulting from the cloud collapse are called Young

Stellar Objects (YSOs) and are simply rotating spheres of gas with a central protostar.

Different mechanisms are believed to form stars of different masses. Due to insightful

observations, for single low-mass and intermediate-mass star formation these mechanisms

are roughly understood. The conservation of the angular momentum leads the collapse

of a rotating sphere of gas and dust to the formation of an accretion disk through which

matter is channeled onto a central protostar. However, for high mass stars these mech-

anisms are not fully understood (Bonnell et al. 1998; Yorke & Sonnhalter 2002). It is

believed though that in general the mechanisms are similar to the ones for low-mass star

formation. At the final stages of the formation, protostars with masses less than 0.08 M�,

known as brown dwarfs, will not reach temperatures high enough for hydrogen nuclear

fusion. Protostars with masses between 0.08 M� and 8 M� will stay 107 − 1010 years on

the main-sequence phase and through nuclear fusion elements up to C, O and N will be

formed. After that phase, if the mass of the star is relatively low (< 0.23 M�) it will

become a white dwarf, while stars with higher masses will move into the Red Giant and

Asymptotic Giant Branch (RGB and AGB) phases and will evolve to a planetary nebula

with a white dwarf core. Red giant winds and planetary nebulae enrich the ISM with gas

and dust and complete the cyclic evolution process. High-mass stars burn elements up

to Fe until no more energetically favorable nuclear reactions can occur and the core col-

lapses. The core can become either a neutron star, a pulsar or a black hole depending on

the initial mass of the star. With supernova explosion, the outer shells of the star explode

in a violent event, perturb the surrounding ISM and potentially trigger star formation.

Hence, completing the cyclic evolution process.

1.3 Interstellar Ices

Icy mantles on top of dust grains were first detected by Gillett & Forrest (1973), even

though Eddington (1937) had first postulated interstellar ice. Interstellar ice chemistry is

controlled by the accretion rate of the gas phase species onto the grains, the desorption

rate and the surface reactions network and rates. We have already remarked that during

the gas-phase chemistry some atoms and molecules, called the adsorbates, freeze onto
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Figure 1.4: Backbone chemistry (Adapted from Bergin (2011) )

the dust grains, forming an icy mantle. The rate at which species freeze-out depends on

the density of the grains, the grain radius, the temperature of the dust, the mass of the

species and the sticking coefficient of each species. This coefficient can be considered as

the efficiency of the freeze-out and usually is treated as a free parameter. For weakly

bound species though, such as CO, experiments indicate that the efficiency of the free-out

is close to 100% (Bisschop et al. 2006). The accretion can occur through either weak

van der Waals forces (physisorption) or chemical valence forces (chemisorption). This

process is very important not only because species are removed from the gas, but also

because it allows surface reactions to occur and complex molecules to form on dust grains.

An understanding of freeze-out is crucial because it has a great impact on the cooling

rate of the molecular gas and is also necessary to interpret observations of the emission

from molecules such as gas CO. Since the timescale of the freeze-out process is much less

than the expected lifetime of a typical molecular cloud, we would expect no evidence of

heavy gas-phase species. However, significant observed abundances of gas phase species

(Smith et al. 2004; Wakelam et al. 2006) suggest that desorption mechanisms must be in

place. When the temperature is low (< 20K) desorption can occur either by sublimation

(thermal desorption) for very light species or by non-thermal desorption mechanisms. The

main non-thermal desorption mechanisms are desorption resulting from H2 formation,
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Figure 1.5: Suggested core structure and main routes of interstellar ice processing. Image
credit to Burke & Brown (2010).

desorption by direct cosmic ray heating and cosmic ray induced photodesorption (Roberts

et al. 2007).

As long as the molecules have frozen onto the grains, surface reactions occur through

3 main mechanisms: the Langmuir-Hinshelwood, the Eley-Rideal and the hot atom or

Harris-Kasemo (Herbst & van Dishoeck 2009 and references within). These mechanisms

are depicted in Figure 1.6. In the Langmuir-Hinshelwood mechanism both reactants lie

in adjacent sites on the grain surface and diffusion happens through either tunneling or

thermal hopping over an energy barrier between one site to an adjacent one. In both the

Eley-Rideal and the hot atom mechanism, the surface reaction involves a gas phase species

and an adsorbate. In the first case, the gas phase lands on the adsorbate, while in the

second case the gas phase species lands and moves significantly before thermalization, so

that it is able to collide with the adsorbate. The main type of surface chemical reactions

that occur are hydrogenation reactions and the surface species produced are saturated

ones. That is because atomic hydrogen is very mobile and a very efficient reactant on the

grain surface. The most dominant of the ice species is water ice and is produced either by

two sequential hydrogenations of O atoms landing on a grain:

O→ OH→ H2O
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or via a more complex hydrogenation of O2 and O3 (Tielens & Hagen 1982). Similarly,

NH3 and CH4 are formed from N and C atoms respectively. Complex molecules such as

methanol can be formed through hydrogenation surface reactions as well. In specific, after

CO is produced in the gas-phase and accreted on the grains we can have:

CO→ HCO→ H2CO→ H2COH→ CH3OH.

The above process has been studied and confirmed in the laboratory by two different

groups (Ioppolo et al. 2007; Watanabe & Kouchi 2002). Formation routes to species even

more complex than methanol are being explored. The question is whether heavier species

can be reactive enough since they diffuse much slower than atomic hydrogen. However,

the efficiency or reactions that lead to the formation of ethanol and acetaldehyde from CO

is found to be satisfactory.

Initially, it was only chemical intuition and gas phase chemistry analogues that was

driving the surface reaction network knowledge. It took many decades for laboratory

astrochemists to initiate the use of experimental techniques to test and evaluate the surface

reaction inventory. Through laboratory experimentations efficiency of reaction routes are

explored and even new reaction routes are revealed. However, the experimentation process

is neither simple nor fast. The truth is that little experimental information is yet available

for the interstellar ices. Many questions need to be answered regarding the surface reaction

efficiencies, the ice composition and the energetics that have an impact on the processed

ices. To disentangle the chemistry of ISM ices, laboratory work combined with chemical

models constitute an invaluable tool.

1.4 Chemical Models

In recent years the molecular complexity of star forming regions has evolved and led to

the development of complex, multi-point time-dependent, gas-grain chemical and photon-

dominated models which accurately simulate the physics and the chemistry of the observed

interstellar material (e.g. Allen & Robinson 1977; Tielens & Hagen 1982; Viti & Williams

1999; Vasyunin et al. 2009). This thesis utilizes chemical models that belong to the

category of time-dependent single-point models or the time-dependent depth-dependent

models that provide astrochemists with time series of molecular abundances as a function

of the physical conditions of the molecular cloud and the chemical parameters of the
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Figure 1.6: Three mechanisms for surface reactions. S is the sticking coefficient, ED the
binding energy of the species to the surface and Eb is the barrier from one site to the an
adjacent one. Image credit to Ioppolo (2010).

defined chemical network. In particular, we consider molecular clouds as continuous time

dynamical systems, where the abundance of K species x(t) = [x1(t), x2(t), ..., xK(t)]T are

represented by a set of K ODEs:

ẋ(t) =
d

dt
x(t) = f(x(t),θ) =

∑
production−

∑
destruction

where θ is a vector of physical and chemical parameters. The production and destruction

terms refer to all chemical and physical processes that produce and destroy atomic and

molecular species (Wakelam et al. 2013). In this thesis, our chemical modeling work will

use or be based on the UCL CHEM chemical code. This code was first implemented

by Viti & Williams in 1999 and subsequently developed further by Viti et al. (2004).

UCL CHEM is a time and depth dependent gas-grain chemical model that can be used to

estimate the fractional abundances (with respect to hydrogen) of gas and surface species

in every environment where molecules are present. The model includes both gas and

surface reactions and determines molecular abundances in environments where not only

the chemistry changes with time but also local variations in physical conditions lead to

variations in chemistry. Regardless of the object that is modeled, the code will always start

from the most diffuse state where all the gas is in atomic form and evolve the gas to its final

density. Depending on the temperature, atoms and molecules from the gas freeze on to the

grains and they hydrogenate where possible. The advantage of this approach is that the

ice composition is not assumed but it is derived by a time-dependent computation of the

chemical evolution of the gas-dust interaction process. The main categories for the physical
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and chemical input parameters are the initial elemental abundances, cosmic ray ionization

rate (ζ) in s−1, radiation field strength (G◦) in Habing, gas density (nH) in cm−3, dust

grain characteristics, freeze-out (species depletion rate), desorption processes and reaction

database. In this thesis, the initial fractional elemental abundances, compared to the total

number of hydrogen nuclei, were taken to be 0.14, 4.0 × 10−4 , 1.0 × 10−4, 7.0 × 10−5,

1.3×10−7, 1.0×10−7 for helium, oxygen, carbon, nitrogen, sulphur and magnesium (Sofia

& Meyer 2001). The gas phase network used by UCL CHEM is based on the UMIST

database (Millar et al. 2000). The chemical network also includes surface reactions as

in Viti et al. (2004). In total we have 208 species and 2391 gas and surface reactions

included in our network. As an output, the code will compute the fractional abundances

of all atomic and molecular species included in the network as a function of time.

1.5 Machine Learning and Astrochemistry

1.5.1 Astrochemical Inference Problems

In astrochemistry, as in astrophysics and other fields, scientists contribute to the growth

of knowledge by formulating and solving problems that depend on the understanding of

some observed phenomenon or some instances of it. These problems can be classified

as either forward or inverse problems. For the forward problems, a theoretical model

is formulated that relates or maps the model parameters with observed or experimental

data. Predicting the molecular abundances of chemical species in molecular clouds given

the physical parameters of the cloud is a forward problem. This problem is solved by

the development of a theoretical chemical model, such as UCL CHEM, that simulates the

cloud processes and relates the molecular cloud parameters with molecular abundances.

The forward approach is usually employed to explore molecular abundances of a large

number of species, under a large number of physical and chemical conditions. On the other

hand, inferring the physical parameters of a molecular cloud, given molecular abundance

observations, is an inverse problem. Such an inverse problem usually requires numerous

runs of chemical codes until a satisfactory solution to the problem is reached. It is apparent

that large data collections are or can be produced by both forward and inverse approaches.

Even though gathering and maintaining these large collection of data is a problem that

can be tackled with chemical codes and data management solutions, extracting useful

information from the data is a very challenging task. Apart from the size of the data,
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the complicated nature of astrochemical models, and to that extent the complexity of the

astrochemical data, amplifies the challenge.

Molecular cloud dynamics depend on a complicated, time-dependent, non-linear chem-

istry that strongly depends on the physical environment. The interaction of gas and

dust, and hence the gas composition varies within very short timescales and the effects of

chemistry and dynamics are interlocked in a complex non-linear problem. The potential

complex interconnection of all the parameters with each other or with extra unknown

parameters augments our difficulty to determine, specify or explore the parameter space

in a straightforward way. On top of that, the large parameter space and the complexity

of the physical system makes the task of parameter estimation highly perplexing. Tra-

ditionally, astrochemistry and molecular cloud physics have always been dominated by

trial-and-error grid based analysis combined with simple statistics (Lefèvre et al. 2014),

an approach that becomes impossible or ineffective when datasets and/or parameter space

are large, complex or heterogeneous. But even if we take efficiency and tractability out

of the equation, the core principles of traditional error treatment in astrochemistry can

be fundamentally wrong. Traditional practices might account for observational error, but

they keep treating modeling error in a deterministic way. The uncertainty of the arbitrary

selected reaction network, the degree to which grain processes are incorporated in the

model and the general uncertainty on the rate coefficients of numerous reactions make a

deterministic treatment fallacious.

On the contrary, machine learning algorithms represents a rigorous, automated frame-

work that intelligently discovers pertinent scientific information in a scalable and efficient

way even for large datasets, with impressive results on stochastic treatment, pattern recog-

nition, extrapolation and probabilistic inference.

1.5.2 Machine Learning

Machine learning is a novel and rapidly expanding research domain that combines arti-

ficial intelligence, statistics and computer science. Fundamentally, machine learning is

about the construction of intelligent enough systems to learn and perform various tasks

such as pattern discovery, extrapolation and data mining, without being explicitly pro-

grammed. Machine learning is finding its way to many scientific and industrial domains

at the moment, because its fully automatic and generic methods simplify and sophisti-

cate most of the typical data scientist tasks. For detailed and advanced information on
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machine learning algorithms, we refer the reader to Bishop (2006) and references therein.

Here, we present a broad list of machine learning approaches which can be categorized

into supervised and unsupervised methods:

Supervised Learning: In supervised learning, machine learning algorithms learn

to infer a function or relation between input and output data from labeled training

examples. After the algorithm is trained, it can generalize the function and infer out-

puts from any given new input. Supervised learning is further divided to regression

and classification problems. Classification is the problem of learning to group a new

observation to a predefined set of classes or subpopulations, given a training set of

already labeled observations. Learning to automatically classify objects detected in

deep surveys to either galaxies or stars, using only the infrared information and a set

of already labeled objects is a classification problem (Kovács & Szapudi 2014). On

the other hand, regression is the problem of learning to infer the relationship among

variables. The prediction of photometric redshifts using training samples of galaxies

from the Sloan Digital Sky Survey would be a regression problem (Hoyle et al. 2014).

Both regression and classification approaches can be utilized for anomaly or outlier

discovery as well. Popular supervised learning algorithms include Support Vector

Machines (SVMs), Artificial Neural Networks (ANNs), Gaussian processes (GPs),

k-nearest neighbors (k-NN) etc.

Unsupervised Learning: In unsupervised learning, machine learning algorithms

learn and uncover the structures and patterns within data when the output is not

known and there are no labeled or training data. Unsupervised learning is associated

with a main class of machine learning problems, clustering. Clustering algorithms

identify the inherent structures in data through common properties and groups data

points in such a way that data in the same group are more similar to each other

compared to those that belong to different groups. Partitioning galaxies in dissimilar

groups of similar galaxies based on their morphology type would be a clustering prob-

lem (Peth et al. 2014). Popular unsupervised learning algorithms include k-means,

mixture models, hierarchical clustering, principal component analysis, independent

component analysis etc.

If we extract the high level essence of most, if not all, scientific tasks astronomers are

called to accomplish, it is apparent that they coincide perfectly with the machine learning
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framework: characterize the known (unsupervised learning), assign the new or unknown

(supervised learning, classification) and discover or predict the unknown (supervised learn-

ing, regression, outlier detection). The advantages of machine learning and data mining

methods over traditional methods in astronomy and astrophysics are reflected through

the numerous scientific publications that employ such methods, as well as reviews that re-

port how machine learning fully exploits the exponentially increasing amount of available

data, promising great scientific advance in astronomy (Borne 2009; Ball & Brunner 2010).

However, astrochemistry is a field that still has not efficiently benefited from ‘the perks’

of machine learning. We hope that the benefits of machine learning in astrochemical re-

search will be clarified and confirmed in the following chapters of this thesis. In the next

sections, we review some machine learning concepts that are fundamental to the methods

used in this thesis and that will appear in the upcoming chapters. We discuss Bayesian

methods, Gaussian Processes and Neural Networks in general, providing an introduction

to the algorithms developed and presented in this thesis

1.5.3 Bayesian Methods

Bayesian methods provide maybe the only way to make consistent and sound decisions

in the face of uncertainty. Bayesian inference uses Bayes’ rule to update probability of

events based upon the model parameters, observed data and the evidence known already

about the modeled situation. This mathematical handling of uncertainty has risen to be

the basis of many machine learning systems. Bayes rule states that:

P (θ|x) =
P (x|θ)P (θ)

P (x)
, (1.1)

where x is a data point and θ some model parameters. The probability of θ before any

observations are made is referred to as the prior and denoted as P (θ). P (x|θ) is the

probability of observing x given θ and is usually known as the likelihood and denoted as

L(θ|x). P (θ|x) is the posterior probability of the parameters θ, after we have observed x.

Finally P (x) is just a normalization factor, called the evidence. The Bayes’ rule can be

rewritten as:

P (θ|x) =
L(θ|x)P (θ)

P (x)
∝ L(θ|x)P (θ) (1.2)
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The decision-making power in Bayesian methods lies with the evidence. If P (x, θ) is

the joint probability of x and θ, in order to get the probability of x, P (x), we need to

marginalize over θ:

P (x) =

∫
P (x, θ)dθ =

∫
P (x|θ)P (θ)dθ. (1.3)

This quantity is called marginal likelihood and is fundamental in many machine learning

algorithms.

1.5.4 Gaussian Processes Training

Gaussian process training involves the learning of the parameters θ of a Gaussian process

(GP) for the estimation of a non-linear function in light of observed data. However, instead

of assuming a specific model for the function (e.g. a quadratic, cubic, polynomial function

etc.), GP represents the function by letting the data ‘speak’ for themselves, without making

any assumptions about the form of the function in advance. In this section, the terms

of observed data or observations are not to be confused with astronomical observations.

We simply refer to statistical observations. Let us start by describing a GP and what

parameters define it.

Imagine that we have a distribution of functions. Each function generated by this

particular distribution has a characteristic form that is uniquely defined by the parameters

of the distribution. We want to be able to decide in a probabilistic way if an unknown

observed function is likely to have been generated by our distribution of functions. We

would also like to find out the parameters of the distribution that have generated one or

more observed functions. All these goals define the essence of Gaussian processes. A typical

example would be to estimate the dependency of an observed variable y on an input x ∈ X,

given by a function f : X → R. The data comes in the form of D = {(yi, xi), i = 1, ..., n},

where n is the number of observations. The inputs are given by x = [x1, ..., xn] and the

outputs by y = [y1, ..., yn]. A parametric approach would assume a model for f (e.g.

a polynomial), and express f as a prior distribution on the weights/parameters of the

model. However, in cases when we can not make any assumptions about the model, the

parametric approach is too restrictive. Therefore, instead of assuming a model and trying

to fit the data to the model, we would like to let the data define their dependency through

the way they covary. GP offers this exact type of representation, by viewing any finite
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number of points, i.e. a subset of a function, as generated by a multivariate Gaussian

distribution with a particular covariance matrix.

A GP is a stochastic process where the joint distribution of any finite subset of its

random variables f = [f(x1), ..., f(xn′)] associated with inputs x = [x1, ..., xn′ ] is a mul-

tivariate Gaussian distribution. GP is a generalization of a Gaussian distribution and is

fully specified by its mean function m(x) and covariance function k(x, x′). This is denoted

as f(x) ∼ GP(m, k). If we think of GP as a distribution over functions, the latter formula

means that function f is distributed as a GP with mean function m and covariance func-

tion k. Without loss of generality, many authors assume that the mean function is zero,

hence the properties of the process are entirely determined by the covariance function

k. Any positive definite function can be used as covariance function. A popular choice

though is the ‘squared exponential’ kernel:

k(x, x′) = σ2f exp(
−(x− x′)2

2l2
). (1.4)

The parameter σf is the maximum covariance and the parameter l is the characteristic

length-scale parameter which defines how much effect distant observations have on each

other. These two parameters specify fully the covariance matrix and are denoted as

θk = {σf , l}. We can now write that:

P (f |θk) = N (0, k(x, x′)). (1.5)

Usually, f(x) can not be observed directly, but only through noisy samples, so that y =

f(x)+ε. We assume that ε is independent and identically distributed and follows a normal

distribution N (ε|0, σ2ε). Therefore, it follows that y ∼ GP(f, k + σ2εδii′), where δii′ is the

Kronecker delta function or written differently :

P (y|f, σ2ε) = N (f, σ2εI), (1.6)

where I is the n× n identity matrix. We can now formulate the likelihood of the data:

P (y|x,θk, σ2ε) = N (0, k + σ2εI). (1.7)

The likelihood function of y is called marginal likelihood and quantifies the probability
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that a group of measurements was generated by the same underlying stochastic process.

Therefore, if we find the optimal θk that maximizes the marginal likelihood, we have

defined both the GP that generated the data and the likelihood that these data were

generated by this particular process. In order to optimize θk, we can maximize the log

marginal likelihood 1 :

logP (y|x,θk, σ2ε) = −1

2
log|K| − 1

2
yTK−1y − n

2
log(2π), (1.8)

where K = k + σ2εI. This space is smooth, so any numerical optimization routine such as

conjugate gradients can be used to approximate a good parameter setting. This approxi-

mation is known as type II maximum likelihood (ML-II).

By maximizing the marginal likelihood, we get a better understanding of the data and

the underlying function. In reality, by learning the optimal parameters θk, we specify

a distribution over functions that not only best describes the dependency between our

data, but also quantifies in a probabilistic way the degree of belief that new data points

belong to the same function or that new points were produced by the same process. As

an illustrative example, Figure 1.7 depicts our belief for the distribution that generated a

set of observed data.

Even though not covered in this thesis, Gaussian process regression is naturally a com-

mon extension of GP training. For completeness, we briefly describe a simple regression

approach with GP. Consider trying to estimate the value y∗ at a new data point x∗. Our

data can be thought as a sample from a Gaussian distribution and their joint distribution

will be:

y
y∗

 ∼ N
0,

K K∗
T

K∗ K∗∗

 ,

where we use K for training set covariances, K∗ for training-test set covariances and K∗∗

for test set covariances. Using the formula for conditioning a joint Gaussian distribution

we have:

1A multivariate Gaussian distribution with mean vector m of length D and a symmetric positive definite
covariance matrix Σ of size D ×D has a joint probability density given by:
P (x|m,Σ) = (2π)−D/2|Σ|−1/2exp(− 1

2
(x−m)TΣ−1(x−m))
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Figure 1.7: Example of Gaussian process trained on noisy data. The black dots indicate
observations, the red line the mean function m(x) and the gray lines samples from the
Gaussian process within two standard deviations (a 95% confidence interval). Image credit:
‘R-bloggers’.

P (y∗|y) ∼ N (K∗K
−1y,K∗∗ −K∗K−1KT

∗ ). (1.9)

The best estimate is the mean of this distribution, ȳ∗ = K∗K
−1y and the uncertainty

about the estimate is given by the variance var(y∗) = K∗∗−K∗K−1KT
∗ . We refer readers

seeking more details about Gaussian process to Rasmussen & Williams (2005).

1.5.5 Artificial Neural Networks

Artificial Neural Networks are machine learning computational models, capable of learning

by example and configured for specific applications through a training process. The struc-

ture of ANNs and the way they process information is inspired from biological nervous

systems such as the human brain. ANNs associate and map inputs with outputs through

a group of interconnected nodes or artificial neurons. The nodes in ANNs are arranged

into layers. The first layer is known as the input layer, the last one as the output layer,
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while the in between layers as the hidden layers. A simple ANN is shown in Figure 1.8.

The more nodes per hidden layer and the more hidden layers, the higher the complexity

of an ANN and hence its computational capacity, but also learning difficulty. Information

is processed, transformed and passed along to other nodes and layers through weighted

connections and transformation functions, known as activation functions, until an output

node is reached. The objective of the training period is to learn the values of these weights,

so that given a new input, the NN will predict the correct output.

There are many computational models able for machine learning. ANNs are preferred

by many researchers because their attributes make them extremely suitable for various

learning tasks. The universal approximation theorem (Hornik 1991) states that an ANN

with one or more hidden layers, containing a finite number of nodes can construct complex

input-output mappings and approximate any continuous function as long as the activation

functions are locally bounded, piecewise continuous, and not a polynomial. Furthermore,

even though the tuning and training of ANNs can be a very challenging task, it is one of

the most studied problems in the fields of machine learning and artificial intelligence, with

very well established learning techniques and continuous research and progress in training

methods of even complex deep neural networks. We refer readers seeking more details

about ANNs and feed forward networks to MacKay (2002).

1.6 This Thesis

This thesis reflects established and new developments in the field of machine learning and

pattern recognition for astrochemical problems. We briefly present an outline of the thesis:

Chapter 2: Machine Learning and Data Mining in Time Series of Molecular Abun-

dances

Chapter 2 provides statistical procedures to detect and highlight structure within

synthetic time series of molecular abundances. The aim is to identify groups of cloud

parameters that appear to regulate and control the chemical mechanism in a similar

way by clustering together sets of models and parameters that exhibit similar dy-

namics. Hence, the goal from an astrochemical perspective is to introduce clustering

techniques that will aid the understanding of the underlying parameter system and

the possible pathways that lead to specific molecular abundance behavior.
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Figure 1.8: A 3-layer neural network with 3 inputs, 4 hidden nodes, and 2 outputs.

Chapter 3: Understanding the Formation and Evolution of Interstellar Ices: A

Bayesian Approach

Understanding the physical conditions of dark molecular clouds and star forming re-

gions is an inverse problem subject to complicated chemistry that varies non-linearly

with time and the physical environment. In this chapter we apply a Bayesian ap-

proach based on a Markov Chain Monte Carlo (MCMC) method for solving the

non-linear inverse problems encountered in astrochemical modelling. We use obser-

vations for ice and gas species in dark molecular clouds and a time dependent, gas

grain chemical model to infer the values of the physical and chemical parameters

that characterize quiescent regions of molecular clouds. We show evidence that in

high dimensional problems, MCMC algorithms provide a more efficient and complete

solution than more classical strategies. The results of our MCMC method enable

us to derive statistical estimates and uncertainties for the physical parameters of
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interest as a result of the Bayesian treatment.

Chapter 4: Fast Astrochemical Parameter Estimation with Neural Networks

Estimating the physical and chemical conditions in dark molecular clouds is a com-

mon inverse problem in astrochemistry. Bayesian inference and Monte Carlo sam-

pling algorithms provide a systematic and consistent approach to tackle these kind of

problems. However, a fast evaluation of the likelihood and the speed of the analysis

remains still a challenge. In this chapter, we present an algorithm that incorporates

ANN to learn the likelihood function and substitute it with a much more rapid evalu-

ation. We demonstrate the performance of the algorithm against an already studied

inverse problem and we show evidence that ANN can be efficiently used to any

astrochemical inverse problem with computationally expensive likelihood function.

Chapter 5: Bayesian Uncertainty Analysis of Surface Reactions

There is still too much uncertainty about surface reactions and rate coefficients.

Laboratory experiments can shed some light on the solid phase reactions, but the

large parameter space and the vast number of possible reactions make the task

highly challenging. Chapter 5 demonstrates whether and how we can use Bayesian

inference methods to explore the solid phase chemical network parameter with vague

and abstract constraints. We developed a simple grain chemical code and with the

help of MCMC sampling algorithms we exploited the Bayesian inference principles in

order to get information about the reaction rate constants of a simplified chemical

network. We show evidence that Bayesian methods provide an efficient approach

to get insight on chemical parameters even with vague and not very informative

constraints.

Chapter 6: Conclusions

Chapter 6 presents the concluding remarks of this thesis and discusses future work.



Chapter 2

Clustering Time Series of

Molecular Abundances

Let us consider for a moment what inhibits our full understanding of a physical system

such as molecular clouds. Clearly, we have no direct experience of the systemic processes

in place and our knowledge reserve is solely based on observations. The main drawback on

observations though, is our lack of control over the observational information we obtain.

We can not plan, replicate or control in any way neither the kind nor the evolution of the

data we observe, but only settle with collecting as much observational data as possible.

The scientific significance of chemical models lies exactly upon that absence of enough,

relevant and controllable information that would allow us to connect the dots between

observations and molecular clouds. All chemical models, similarly to all models in general,

are incomplete and inaccurate, but, without doubt, extremely useful. And they are useful

not only as a tool to interpret observations, but also as a tool to reproduce, replicate and

control synthetic data as substitute of real observations. In other words, our ability to

understand molecular cloud processes scales with the amount of available information and

chemical models are our only reliable source for ‘bespoke’ information about molecular

clouds.

One might wonder that since there is a plethora of available chemical models in the

astrochemical academic community, why we are still struggling to comprehend the ISM

39
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processes. It is certainly not that simple. The difficulty lies as much in the incompleteness

of the models as in the complicated processes of the modeled system. Uncertainty or how

to model uncertainty and what our models do not account for, is a problem discussed in

Chapter 3 and Chapter 5. The subject of the present chapter is how to get insight out of

complicated molecular cloud synthetic data. By complicated data, we mean large data sets

of non-linearly interconnected data points and parameters, that are difficult to process by

eye or traditional data processing applications. The complex processes of dark clouds are

reflected on the complex relations between model data attributes and parameters and at

the same time, the size of the data has to scale up in order to reach enough expressive power

for such complex processes. To get insight out of complex synthetic data, this chapter

presents an exploratory data mining method based on cluster analysis. Clustering is an

unsupervised machine learning method that provides a straightforward, but sophisticated

way to uncover hidden data structure, patterns and provide scientific information retrieval.

In simple words, by creating natural groupings of molecular information across a large

parameter space, clustering can tell us what is missing, tell us what should not be there,

tell us what we can ignore and especially what we need to pursue. To our knowledge, this

is the first time a systematic way to statistically explore large synthetic astrochemical data

sets with ‘intelligent’ machine learning methods is suggested in the field of astrochemistry.

The goal of this chapter is to assist the astrochemist by providing statistical proce-

dures to detect and highlight latent structure within synthetic time series of molecular

abundances, by grouping together sets of models and parameters that exhibit similar dy-

namics. The aim is to identify groups of cloud parameters that appear to regulate and

control the chemical mechanism in a similar way. Hence, the astrochemist’ goal is to un-

derstand the underlying parameter system and the possible pathways that lead to specific

molecular abundance behavior and maybe also identify possible chemical code deficien-

cies. Section 2.1 provides a thorough description of the astrochemical data the analysis

of this chapter is based on. Hierarchical clustering, a traditional agglomerative clustering

method, is presented in Section 2.2. A probabilistic approach to hierarchical clustering is

described in Section 2.3 and finally, Section 2.4 concludes this chapter.
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Figure 2.1: Example UCL CHEM time series output for two random chemical species,
N2H

+ and HCN. The notation nx indicates the abundance of species x, where x is any of
our random species.

2.1 Data Understanding

For the cluster analysis we produced a large time series database using UCL CHEM,

described in detail in Section 1.4. For the database, all the models included gas-phase

reactions, freeze-out, surface reactions, thermal and non-thermal desorption, with 155

gas-phase and 53 mantle species. Since we are focusing on cold molecular clouds and the

evolution of ices, only the first phase of the chemical code was run, which corresponds to

the period before any star is born. In total, the database consists of more than 105 chemical

models that extend over a large parameter space, covering broad astronomical conditions.

Each model consists of 208 gas-phase and mantle species time series outputs, produced

according to the model specific physical and chemical parameters. For each species the

database stores a sequence of molecular abundance data points, measured at successive

points in time and spaced at uniform time intervals for each specific model. Example time

series for two random species from two random models are shown in Figure 2.1.

Our time series data set consist of models that explore the physical conditions of

molecular clouds by altering 5 basic, but critical cloud parameters: the final cloud density

nH , the cosmic ray ionization rate ζ, the radiation field rate G◦, the freeze-out parameter
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Table 2.1: Explored Parameter Domain

Parameters Unit Explored Domain

ζ 10−17 · s−1 1-12
G◦ Habing 1-12
nH cm−3 104 − 108

fr - 0− 100%
Cf - 0.5− 3

fr and the cloud collapse rate Cf . Table 2.1 summarizes the explored parameters and

the explored domain space for each one of them. To ease result interpretation we note

that the Milky Way average cosmic ray ionization rate is 10−17 · s−1. Similarly, the mean

interstellar radiation field is 1.7Habing where one Habing expresses the strength of a field

that is equal to 108 photons · cm−2 · s−1. By selecting a subgroup of the total number of

105 models in the database, we basically adjust the granularity of the explored parameter

grid. The freeze-out parameter in our code is effectively the sticking coefficient, a number

in the range of 0−100% that adjusts the rate per unit volume at which species deplete on

the grains. For the collapse to a particular nH we used the modified formula of Rawlings

et al. (1992), where parameter Cf is considered to be a retardation factor (to the free-fall)

with a value less than one, to roughly mimic the magnetic and/or rotational support, or

an acceleration factor with a value greater than one to simulate a collapse faster than a

free-fall (e.g. due to external pressure).

To appreciate the challenges imposed by the nature of our data, we need to get a better

understanding of the time series we want to cluster. For the following data understanding

task we are going to assume that the UCL CHEM user and the person that performs the

data analysis are not necessarily the same person. If we assume uniformly spaced time

intervals and uniform time length for all the models, the distribution of the time points for

all the models should be expected to be uniform. Similarly, if we assume uniformly spaced

time intervals, but variable time series’ length, the distribution of the time points for all

the models should be expected to be step-function shaped. Figure 2.2 uses a histogram to

represent graphically the distribution of discrete time points from all the models. With

a closer look at the histogram, it is easy to conclude without further investigation that

none of the two hypotheses hold. Regarding the length of the time series, it is normal

to assume that parameter Cf should be a causal factor. Figure 2.3(a) shows CO time

series for a random number of models, color coded by the value of Cf . The segregation of
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Figure 2.2: Distribution of time series sampling points for all the models of our database.

time series groups by color is clear and confirms that the collapse rate parameter has an

impact on the length of the time series for each model. Note that similar plots with the

same outcome can be reproduced for all the species. The list of simple and code induced

parameter correlations stops somewhere here though. With the exception of a correlation

between G◦ and fractional abundances for some of the species (see Figure 2.3(b)), there is

no other trivial relationship that can be automatically identified by visual aid. Figure 2.4

depicts exactly that, by reproducing the plots of Figure 2.3, but color coded by ζ and fr

this time. We can observe no correlation between the time series and the parameters.

To summarize, our working data set consists of time series that can have both different

sampling intervals and different length if produced by a different model. The value of a

species’ fractional abundance at any given time point depends on the physical and chemical

parameters of the model, as well as on the values of the model species at the previous

time point. The parameters and species dependence might be trivial to identify, but in

most cases the correlations are complex and non linear and hence difficult to uncover in a

thoroughgoing way. On top of that, the number of the species and the size of the parameter

space make a human driven exploratory analysis very challenging. Cluster analysis can

achieve impressive results in identifying relations and uncovering patterns without any

explicit definition of what we are looking for.
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(a) (b)

Figure 2.3: CO time series scatter plots, color coded by one model parameter: (a) cloud
collapse rate Cf , (b) radiation field rate G◦. Both of the parameters create a natural
grouping among the CO time series.

(a) (b)

Figure 2.4: CO time series scatter plots, color coded by one model parameter: (a) cosmic
ray ionization rate ζ, (b) freeze-out parameter fr. None of the parameters appear to be
relevant to CO time series
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Algorithm 2.1 Hierarchical Clustering

input: Time series data D = y(1), . . . ,y(n) and distance metric E

initialize: number of clusters c = n, and Di = {y(i)}
while c > 1 do
Find the pair Di and Dj that minimize: dist = E(Di, Dj)
Merge Dk ← Di ∪Dj , Delete Di and Dj , c← c− 1
end while
output: A list of consecutive cluster merges, and a dendrogram tree visualizing the
hierarchy of the cluster merges

2.2 Hierarchical Clustering

There are various different methods for clustering data, including hierarchical clustering

(Duda & Hart 1973), spectral clustering (Ng et al. 2001), k-means clustering (Hartigan &

Wong 1979) and mixture modeling (McLachlan & Peel 2000). Even though all of these

methods have been proven useful to a wide range of applications, they all suffer from

serious limitations. One important limitation for many of them is the necessity to pre-

specify the number of clusters. Hierarchical clustering not only does not suffer from that

limitation, but also outputs a tree structure that provides more information and insight

than the unstructured output returned by typical ‘flat’ clustering methods.

Given a set of time series as data points, the output of a hierarchical clustering algo-

rithm is a dendrogram (binary tree). The leaves of the tree represent the data points, while

the internal nodes of the tree represent nested hierarchies of various sizes. The length of

the branches represent the dissimilarity between two time series or two groups of time se-

ries. An example dendrogram output of hierarchical clustering is shown in Figure 2.5. The

advantages of hierarchical clustering come at the cost of its high complexity order. If n is

the number of data points, the complexity order of the hierarchical clustering algorithm

is O(n2logn) (Jain et al. 1999), which means that it does not scale up nicely to large data

sets. However, there are optimal efficient methods of complexity O(n2) that can speed up

the clustering process (Sibson 1973).

For our data, the most typical hierarchical clustering algorithm was employed. That is

a bottom-up agglomerative algorithm as described by Duba and Hart (1973) and presented

in Algorithm 2.1. According to this algorithm, each data point will be initially assigned

to its own cluster. Then, iteratively, the two closest clusters will be merged, until all the

data points belong to a single cluster. The choice of the closest clusters is made based on

a user defined distance measure. The most popular distance measure, which was also used
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Figure 2.5: A dendrogram obtained using a hierarchical clustering algorithm. The dashed
line represents a user defined level to break the tree and yield a desired clustering. Source:
Jain et al. (1999)

in our case, is the Euclidean distance. Given two time series Y (1) and Y (2) of the same

length N, their Euclidean distance is defined as follows:

E(Y (1),Y (2)) =

√√√√ N∑
i=1

(Y
(1)
i − Y (2)

i )2. (2.1)

Both the nature of our data and the large number of time series impose certain chal-

lenges to hierarchical clustering of the total number of our time series. The different

length and time intervals of time series produced by different models make the Euclidean

distance measure impracticable. On top of that, the benefits of hierarchical clustering

depend highly on visual inspection of the dendrogram structure by the user. The total

number of our time series is massive, and obviously, a large number of time series can

be inhibitive for visual assessment of the dendrogram. To overcome the latter problem,

clustering was performed to models, hence sets of time series, instead of single time series.

In that case, the distance metric was altered to be the sum of Euclidean distances between

same species, produced by the models compared. Given two models M (1) and M (2), pro-

ducing abundances for a number of S species each, their altered Euclidean distance is
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Figure 2.6: Full dendrogram for the bottom-up agglomerative hierarchical clustering on
our data. Different clusters are indicated by different color according to a user defined
level of pruning the tree. Each of the leaves in the dendrogram represents a model. The
x-axis labeling though has been deactivated due to the large number of leaves.

defined as follows:

dist(M (1),M (2)) =
S∑
i=1

E(M
(1)
i ,M

(2)
i ), (2.2)

where M
(j)
i is the time series of species i for model j. The problem of the different time

intervals was solved easily by adapting the most granular set of time intervals as the

time interval for all the time series and then filling in the missing abundance values using

simple interpolation methods. Measuring similarity between time sequences of different

length is a very common problem in literature without any explicit solution. Methods

such as dynamic time warping (Sakoe & Chiba 1990), address successfully this problem

by determining a measure of similarity that is independent of certain variations in the

time dimension. However, in our case the time variations are significant of specific phys-

ical processes of the molecular cloud and should be retained and potentially highlighted.

Therefore, we resorted into a heuristic way to address this problem, by penalizing uneven

sets of time series. In case of time series with the same length, the Euclidean distance be-

tween two models is computed normally without any alteration. In case of different lengths
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K and N , where K > N , the Euclidean distance is computed normally till the time point

N and for the rest of the K−N points a user defined penalty is introduced for each extra

time point. The value of the penalty was derived by a trial and error method until the

distance correctly represented the desired similarity or dissimilarity level between test time

series of various different lengths. It has to be noted that all the abundance data were

log-normalized and all the time series distances were divided by their length to become

length invariant.

We performed hierarchical clustering to 8000 models. The output dendrogram of our

cluster analysis can be seen in Figure 2.6. There is no systematic way to decide the

level at which to prune the tree in order to get a specific number of clusters. This level

is application specific and most of the times subjective. Trial and error methods can

be adapted or simply an empirical decision based on examination of the tree and the

dissimilarity axis (y-axis). In our case, we decided to prune the tree at a level that yields

18 different clusters. Each cluster can be examined in two different ways: The time series

of the cluster members and the distribution of the parameters of a cluster. The time series

of the cluster members represent the pattern that was captured by the specific cluster.

On the other hand, the parameter distribution reflect the range and type of parameters

that reproduce the specific pattern. Time series can be visualized with simple plots,

while the distribution of each parameter can be visualized with histograms. This chapter

focuses on the methodology, hence lacks any specific application goal. Considering that

the astrochemical focus of the present thesis is on interstellar ices and that it is impractical

to visualize the time series for all the species, we decided to present several noteworthy

clusters using as a basis the ice H2O:

Cluster 1: The results of cluster 1 are shown in Figure 2.7. It is obvious that some of

the parameter distributions are bimodal, which suggests that different combinations

of parameters produce similar time series patterns. The ζ is constrained to low

values (< 4 · 10−17 s−1), while the G◦ seems to have one peak around 2 and one

around 9 Habing. The nH has a peak around 8 × 105 cm−3, but with considerable

probability density throughout the whole explored parameter space. The fr seems

better constrained with values around 0.8. Finally, the Cf has one main peak around

the expected free fall collapse and one smaller one for a collapse accelerated by a

factor of 2. The latter parameter profile seems to slowly increase the abundance
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of ice water until the first 1000 years and then rapidly increase its abundance until

105 years. At that point, the abundance of ice water appears to plateau. The final

fractional abundance of ice water reaches 10−4. High abundance of ice water with a

high nH and fr parameter profile seems to be consistent with the high abundance

of ice water reported in literature (Pontoppidan et al. 2005).

Cluster 2: The second cluster represents a parameter profile that fails to produce sig-

nificant ice water abundances and its result figures are shown in Figure 2.8. Both the

ζ and G◦ are constrained to values higher than 8 ·10−17 s−1 and Habing respectively.

The nH has a peak around 2× 105 cm−3, but again with significant probability den-

sity throughout the whole explored parameter space. The depletion rate this time

though, is far from dominant and is constrained to values less than 0.25. Finally, the

Cf has again one main peak around the expected free fall collapse and one smaller

one for a collapse accelerated by a factor of 2. The parameter profile of this clus-

ter seems to produce the same trend as cluster 1 for ice water abundance for the

first 1000 years. However until 105 years the abundance either drops significantly

or remains the same and then increases slightly to reach a fractional abundance of

about 10−11. The time series profile of cluster 2 is far from any observational data

obtained for ice water. The low abundance of ice water can be justified by the high

values of ζ and G◦ in conjunction with the low values of fr. Low freeze-out values

obviously restrain adsorption which explains directly the low abundance of ice water.

Moreover, the high values of ζ result in high cosmic ray induced desorption. Finally,

a strong radiation field could also indirectly have an impact on the abundance of

ice water. Consider that the formation of ice water requires the adsorption of O,

OH or OH+, which later hydrogenate to form ice water. High values of G◦ would

dissociate OH to either O and H or OH+ and an electron. Even though the latter

products can still freeze on the grains and produce water, the delay caused by the

dissociation can lead to a further decrease in water ice.

Cluster 6: The results of cluster 6 can be seen in Figure 2.9. The probability density

of ζ seems to have significant density for all the explored parameter range, peaking

around 7 · 10−17 s−1. The G◦ this time is comparable to the interstellar radiation

field, with a value around 2 Habing. The nH is lower this time, with a probability

peak around 5×104 cm−3. The depletion rate is by no means dominant with a peak
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at 0.3, while the Cf is constrained to a free fall collapse. The parameter profile of

this cluster seems to produce an ice water abundance time series that resembles the

shape of an exponential function. The ice water is increased slowly till 104 years and

then increases exponentially to reach a fractional abundance higher than 10−5. The

parameter profile of this cluster along with the ice water abundance are consistent

with ice observations from quiescent molecular clouds that might possibly evolve to

low mass stars (Whittet et al. 2011; Makrymallis & Viti 2014).

2.3 Probabilistic Hierarchical Clustering

The traditional hierarchical clustering might present useful insight on our data, but still

suffers from several limitations. There is no systematic way to specify or suggest what

the ‘correct’ number of clusters is and the time series must be of the same length and

uniformly sampled. The first limitation is usually compensated by the visual benefits of

hierarchical clustering, but in cases where the data set is massive, visualization might be

intractable. Unfortunately, our data sets are usually very large and the time series are of

different lengths and not uniformly sampled. Another limitation is that with traditional

hierarchical clustering the outcome does not define a probabilistic model. Therefore, it

is usually impossible to evaluate the performance of our clustering, compare the results

with a different clustering model or cluster new time series into an existing tree. This

section will present a statistical inference approach to perform agglomerative hierarchical

clustering that aims to overcome most of these limitations.

Our probabilistic version of hierarchical clustering follows the same principle as the

traditional agglomerative hierarchical clustering algorithm, but differs on the merging

criteria of potential clusters and how a clustering setting is evaluated. We can assume

that similar time series were generated by the same underlying process, so similarity is

defined as the probability that the data from two or more time series arose from the same

stochastic process. In order to quantify this probability we used the Gaussian process

marginal likelihood. The probability of a clustering setting is evaluated by the product

of the likelihood of the individual clusters. In other words, the algorithm uses Gaussian

process training and marginal likelihood evaluations to quantify whether a pair of time

series was produced by the same underlying function and whether a cluster setting is likely

to represent homogeneous clusters. We refer the reader back to section 1.5.4 for a reminder
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of the notation and specifics of Gaussian process training.

Our data comes in the form D = {(yi, ti), i = 1, . . . , n}, where yi is a vector of the

fractional abundance values of data point i for the time points ti and n is the number of

data points. The set of points represented by the leaves of a subtree Ti are denoted as

Di ⊂ D. The steps of the algorithm are outlined in Algorithm 2.2 and are as follows: At

the initial stage of the algorithm, we have n clusters Ci where i = 1, . . . , n, containing a

single data point each, so that Di = {y(i), t(i)} and n sub-trees {Ti : i = 1, . . . , n}. Until

all clusters are merged into one, each stage of the algorithm evaluates the merging of all

possible pairs of existing trees. If the algorithm decides to merge two trees Ti and Tj into

Tm, then the new tree would represent a cluster Cm that contains data Dm = Di ∪ Dj

(see Figure 2.10). In order to decide about a merge, we use the marginal likelihood of

Dm, denoted as L(Dm), to quantify the probability that Di and Dj arose from the same

underlying stochastic process. We assume a probabilistic model of the form P (y|θk). We

recall θk = {σf , l}, where σf and l are the parameters of the covariance function that

specifies fully a Gaussian process. Then, the marginal likelihood of Dm is:

L(Dm) =
∏

y(i),t(i)∈Dm

P (y(i)|t(i)) =

∫ [ ∏
y(i),t(i)∈Dm

P (y(i)|t(i), θk)
]
P (θk)dθk. (2.3)

The quantity L(Dm) can be approximated by type II maximum likelihood approximation

as described in Section 1.5.4. After each merge, the probability of the overall cluster

setting C is evaluated, i.e. P (C|D). In a fully probabilistic setting, this is proportional to

the product of the likelihood P (D|C) times the prior over the clustering P (C). However,

for our applications, we rarely have any prior information over the underlying clustering

and as such, we may safely ignore the affect of the prior. Therefore, the posterior P (C|D)

would be governed by the likelihood P (D|C) and its value is given by:

rc = P (C|D) ∝
∏
k∈C
L(Dk). (2.4)

When all clusters are merged into one, Algorithm 2.2 evaluates the rc for each stage and

suggests as the best clustering the one before the largest decrease in rc.

To test and demonstrate the performance of our algorithm we designed the following

toy example. From the whole list of species, we selected 6 species with relatively distinct

time series’ shape. The selected species were CO, N2H
+, HCO+, ice H2O, ice CO and O.
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Algorithm 2.2 Probabilistic Hierarchical Clustering

input: Time series data D = {(ti,yi), i = 1, . . . , n}, model P (y|θk)
initialize: number of clusters c = n, clusters Ci and data Di = {t(i),y(i)} for i = 1, . . . , n
while c > 1 do
Calculate rc
Find the pair Di and Dj with the highest L(Di∪j) to merge
Merge Dm ← Di ∪Dj , Tm ← (Ti, Tj). Delete Di and Dj , c← c− 1
end while
output: A list of consecutive cluster merges and the corresponding tree
The tree can be cut where we have the largest decrease in rc

For each one of them, we extracted the time series data for 130 random set of parameters

following the specifications of Table 2.1. Our final data set consists of 780 time series. We

assume that each of the species is represented by a unique process that generates time

series that vary according to the parameter settings. Under that hypothesis, we expect

that our algorithm will be able to identify the 6 distinct processes which generated 130

time series each. The Figure 2.11 depicts the 780 time series plotted and color coded

based on cluster number. As can be seen clusters and species coincide. This toy example

demonstrates that our probabilistic hierarchical clustering method can identify clusters of

time series that belong to the same ’family’ without facing any problem to classify together

time series of different sampling rate or varying time length.

In order to discover structure in the parameter space, instead of distinguishing among

species, we applied our method to a different data set. Again, considering that the as-

trochemical focus of the present thesis is on interstellar ices, we created a dataset that

includes time series for ice H2O for more than 104 parameter settings. Our algorithm

yielded an estimated number of 4 clusters. Considering that it is impractical to visualize

all the leaves, a pruned output dendrogram of our cluster analysis can be seen in Fig-

ure 2.12. Figure 2.13 depicts sample time series of each cluster, plotted and color coded

based on the same cluster color of the output dendrogram. We can notice that clusters

1,2 and 4 of Figure 2.13 are nearly identical to the clusters 1,2 and 6 of our traditional

hierarchical clustering analysis. A comparison of their parameter profiles confirms that we

have indeed identified the same clusters. The probability distributions for each parameter

is exactly the same, hence not presented again. We refer readers back to Figures 2.8 –

2.10. The third cluster is discussed here:

Cluster 3: The characteristic parameter distributions and sample time series for

cluster 3 are shown in Figure 2.14. The sample times series of this cluster present a
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similar profile to the time series of cluster 2 for both the traditional and probabilistic

hierarchical clustering analysis. However, the abundance of ice water seems to reach

initially lower values, but after 105 years, higher values than the abundance profile of

cluster 2. Both the ζ and G◦ are constrained to values higher than 8×10−17 s−1 and

Habing respectively, even though G◦ has a second smaller peak around 2 Habing.

The nH has a peak around 8 × 105 cm−3, but again with significant probability

density throughout the whole explored parameter space. The depletion rate, is even

lower than cluster 2 and is constrained to values less than 0.2. Finally, the Cf has

one main peak that indicates a delayed collapse with a collapse acceleration factor

peaking around 0.6. The parameter profile of this cluster initially seems to fail

to produce ice water and that is probably because of the high ζ and G◦ rates, in

conjunction with the low depletion rate. However, because of the slow collapse and

the high final density, there is enough time for ice water abundance to reach higher

values than initially expected.

The reason for not combining our two example applications into a bigger exploratory

analysis was solely the computational cost of the method. The probabilistic hierarchical

clustering might overcome many traditional limitations, but unfortunately the compu-

tational time remains a constraint, mainly because of the type II maximum likelihood

approximation.

2.4 Conclusions

In this chapter we have demonstrated how clustering analysis can help astrochemists dis-

cover structure in molecular time series data. We have introduced two different clustering

methods that are both based on agglomerative hierarchical clustering, but differ on their

approach to defining time series similarity. The traditional approach considers two time se-

ries to be similar when their Euclidean distance is small, whilst the probabilistic approach

considers two time series to be similar if the probability that their joint time series data

are generated by the same stochastic process is high. The example applications described

in this chapter show that both approaches can provide very useful insight regarding the

mapping between the parameter space and the abundance evolution of species, but also

present some drawbacks as well. Our main conclusions are the following:

1. Both traditional and probabilistic hierarchical clustering can efficiently discover
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structure in molecular abundance time series data and provide scientific insight into

the range and type of dark cloud parameters that reproduce specific time series pat-

terns. Each discovered cluster represents a specific time series pattern, while the

parameter distribution of the cluster reflects the parameter profile of the pattern.

2. The results obtained by both traditional and probabilistic approach indicate that

both methods identify the same patterns. Even though the traditional approach was

applied considering models as data points and the probabilistic approach considering

single time series as data points, results on ice water confirmed that the resulting

cluster profiles were the same.

3. Traditional agglomerative clustering shows great performance on clustering effi-

ciently our data, but presents certain limitations. Data and similarity metrics should

be heuristically altered in order to accommodate for time series of varying sampling

rate and length. The number of clusters is not automatically given by the algorithm

and computational time is a significant issue when dealing with very big data sets.

4. The probabilistic hierarchical clustering introduced in this chapter achieves the same

efficiency and manages to overcome some of the previous limitations. Time series

of varying sampling rate or different length are handled naturally by the algorithm.

The number of clusters is also suggested by the algorithm using a statistical model

comparison criterion. The computational time though, still remains an issue.

5. The outcome of an exploratory analysis using our clustering methods could be also

used in conjunction with observations or experimental data to guide lab experiments,

identify chemical code deficiencies or simply constrain cloud physical parameters.

In future work, clustering analysis and especially probabilistic clustering can be used to

cluster and/or classify the evolution, type and parameter profile of dark clouds or cores.

Observational data never come in the form of time series. However, from a particular

source we can have a sequence of observational values for a number of species. This

sequence of data is called cross-sectional data and can be algorithmically treated exactly

as a time series. Cross sectional data can be defined as data collected by observing

many attributes (i.e. species in our case) at the same point of time. Given that we

have a database of molecular abundance time series that covers a large range of species,

parameters and timescales, we can perform cluster analysis on the cross sectional data of
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the database for each evolutionary stage of a core. Each resulting cluster would contain

a group of models that produce similar abundances for a predefined set of species at a

particular evolutionary stage. The parameter distribution of this group of models would

be the parameter profile of the cluster. Essentially, after the analysis, each cluster will

be defined by its evolutionary stage and parameter profile. Therefore, given a set of

observed species from a particular source, we could classify/match the source with the

corresponding cluster and hence have a parameter profile for possible evolutionary stages

of the source. Probabilistic clustering is considered preferable due to its ability to deal

better with abundance uncertainties and missing species’ data.
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Figure 2.7: Cluster 1 after traditional hierarchical clustering. Plots (a) - (e) show the
histogram of the marginalized probability distribution for each of the five parameters for
Cluster 1. These plots show the Gaussian kernel density estimator of each Probability
Density Function. Plot (f) shows sample time series of the cluster members for cluster 1
and the centroid of the cluster members.
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Figure 2.8: Cluster 2 after traditional hierarchical clustering. Plots (a) - (e) show the
histogram of the marginalized probability distribution for each of the five parameters for
Cluster 2. These plots show the Gaussian kernel density estimator of each Probability
Density Function. Plot (f) shows sample time series of the cluster members for cluster 2
and the centroid of the cluster members.
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Figure 2.9: Cluster 6 after traditional hierarchical clustering. Plots (a) - (e) show the
histogram of the marginalized probability distribution for each of the five parameters for
Cluster 6. These plots show the Gaussian kernel density estimator of each Probability
Density Function. Plot (f) shows sample time series of the cluster members for cluster 6
and the centroid of the cluster members.
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Figure 2.10: Part of a tree where Ti and Tj are merged into Tm, and the associated data
sets Di and Dj are merged into Dk. (Adapted from Heller & Ghahramani (2005)).
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2.4. Conclusions 60

Figure 2.12: Dendrogram for the probabilistic hierarchical clustering on ice water data.
Different clusters are indicated by different color according to the algorithm’s suggested
number of clusters. The tree is pruned for practical visualization reasons.
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Figure 2.13: Probabilistic hierarchical clustering of different parameter models of ice H2O.
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Figure 2.14: Cluster 3 after probabilistic hierarchical clustering. Plots (a) - (e) show the
histogram of the marginalized probability distribution for each of the five parameters for
Cluster 1. These plots show the Gaussian kernel density estimator of each Probability
Density Function. Plot (f) shows sample time series of the cluster members for cluster 1
and the centroid of the cluster members.
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Chapter 3

Understanding the Formation of

Interstellar Ices: A Bayesian

Approach

The work presented in this chapter is based on the paper by Makrymallis & Viti (2014)

In the previous chapter, we presented how statistical procedures such as clustering can

detect and highlight structure within synthetic time series of molecular abundances. Syn-

thetic data from chemical codes can also function as an excellent tool for interpreting

observations. By solely analyzing synthetic data, our knowledge gain towards the un-

derstanding of physical and chemical systems such as molecular clouds is constrained.

Observational data can both navigate astrochemists towards a good understanding of the

corresponding molecular cloud dynamics and point out chemical code deficiencies or gaps.

This chapter demonstrates how Bayesian inference methods can alleviate both our uncer-

tainty about physical processes in molecular clouds and our uncertainty about what the

chemical codes do not account for.

63
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3.1 Introduction

In the dense cores of molecular clouds, molecules and atoms previously in the gas phase,

deplete onto the dust grains. For each atom or molecule, freeze-out (or depletion) depends

on a complicated time-dependent, non-linear chemistry that strongly depends on the phys-

ical environment (see section 1.3). It is difficult to quantify depletion observationally (e.g.

Christie et al. 2012). CO emission can be used to infer the fraction of species that is in

the form of icy mantles, by taking the ratio of the observed CO to the expected abun-

dance at a particular density in steady state, if freeze-out did not occur (e.g. Caselli et al.

1999). This however, not only implies that the cores are in steady-state, but also implies

a knowledge of the H2 density, as well as of the efficiency of the non-thermal desorption

mechanisms that can return the depleted CO to the gas. Moreover, the CO depletion

factor is not necessarily equivalent to the molecular gas depletion factor, because different

species freeze and desorb at different rates with different sticking coefficients, which are

mostly unknown.

The detection of water ice mantles in cold dark interstellar clouds and star forming

regions (Öberg et al. 2011) provides us with direct evidence that surface reactions on

dust grains involving oxygen atoms make water molecules, which are then retained on the

surface and make water ice. Not all species undergo surface reactions when they stick to

dust grains. For example, CO sticks efficiently to surfaces at temperatures below ∼ 25

K and is found to be abundant in the ices. Some of this CO can be converted to other

species.

The relatively high abundance of CO2, CH3OH, and H2CO in ices (Öberg et al. 2011;

Whittet et al. 2011), relative to H2O, in some clouds indeed suggest that some processing

of CO to these products is occurring, due possibly by irradiation, by cosmic rays or by

photons generated by cosmic rays inside the cloud. H2CO and CH3OH are stages in the

surface hydrogenation of CO. Similarly, CO2 can be the result of oxygenation of CO:

CO + OH→ CO2 + H.

Some ices can be thermally returned to the gas phase when the gas temperature is

higher than 20 K. At low gas temperatures non-thermal desorption processes can also

return molecules from solid to gas-phase (e.g. Roberts et al. (2007)). However, these

mechanisms ‘compete’ with those of freeze-out. The composition of the icy mantles is
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clearly a time-dependent process highly dependent on the initial conditions of the gas in

any particular cloud. Hence, the ices on dust grain surfaces are of a mixed composition and

may reflect the local conditions and evolutionary history. In some dark molecular clouds,

the ices are abundant, indicating that non-thermal desorption mechanisms may not be very

efficient everywhere. The potential interconnection and linear or non-linear correlation

of these parameters with each other or with extra unknown parameters augments our

difficulty to determine and specify the parameter network. The large parameter space in

combination with the number of parameters and the complexity of the physical system

make the task of parameter estimation highly challenging.

The increasingly detailed observations of molecular clouds and star forming regions

enable us to identify some of the most important processes at work. Chemical and radiative

transfer models can transform molecular observations into powerful diagnostics of the

evolution and distribution of the molecular gas. The results of these models though,

depend on a number of parameters or group of parameters that are most of the times poorly

constrained. Moreover, deriving information about molecular clouds using observational

information and, even well established modeling codes, is an inverse problem that usually

does not fulfill Hadamard’s (Hadamard 1902) postulates of well-posedness. That is, it may

not have a solution, solutions might not be unique and/or might not depend continuously

on the observational data. The first and second postulates simply state that for a well-

posed problem a solution should exist and be unique. The third postulate holds when

small changes in the observational data result in small changes in the solution. As shown

later in Section 3.3.1, in typical astrochemical problems, only the first postulate holds and

we usually have to deal with non linear ill-posed inverse problems.

Employing sampling algorithms is a traditional approach to tackle inverse problems

in many scientific fields with large parameter space. Bayesian statistical techniques and

Monte Carlo sampling methods such as Markov Chain Monte Carlo (MCMC) algorithms

and Nested Sampling have flourished over the past decade in astrophysical data analy-

sis (Christensen & Meyer 2000; Ford 2005; Fitzgerald et al. 2007; Feroz & Hobson 2008;

Isella et al. 2009). A summary of a typical MCMC method and an application to quantify

uncertainty in stellar parameters using stellar codes is given by Bazot et al. (2012). To

our knowledge, MCMC methods have never been applied in the framework of parameter

estimation through astrochemical modeling. In this chapter we present a first astrochem-

ical application of gas-grain chemical modeling, molecular abundances and a Bayesian
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statistical approach based on MCMC methodology.

The motivation of the present chapter is to solve the inverse problem of deriving the

physical conditions in interstellar molecular clouds; in particular: the gas density, cosmic

ray ionization rate, radiation field, the rate of collapse, the freeze-out rate and non-thermal

desorption efficiency. In Section 3.2, we formulate a typical inverse problem for interstellar

molecular clouds and describe the Bayesian method and the Metropolis-Hastings (MH)

algorithm (an example of a wider class of MCMC techniques). In Section 3.3, we discuss

the statistical results and the astrophysical consequences. Finally in Section 3.4, we present

our conclusions.

3.2 Parameter Estimation

In this chapter, we are interested in dense, cold, quiescent regions of molecular clouds

where atoms and molecules in the gas phase freeze-out on to the dust grains. The observed

quantities are molecular abundances for solid and gas phase species. The parameters we

want to estimate are the cloud density nH , the cosmic ray ionization rate ζ, radiation

field rate G◦, the cloud collapse rate Cf and three non-thermal desorption efficiencies ε,

φ, y presented in Section 3.2.3. Due to the nature of the addressed inverse problem, the

theoretical and modeled relationship between the parameters and the observed data is

highly non-linear. Therefore, we anticipate several degeneracies as well as a multi-modal

and non-Gaussian joint parameter distribution. Moreover, the parameters are not uniquely

related to the observations. While the forward problem has (in deterministic physics) a

unique solution, the inverse problem does not. Different combinations of parameters can

produce the same abundances. Furthermore, the possible combinations of parameters are

too many to permit an exhaustive search.

Traditional approaches to tackle inverse problems of this nature fail to cope with

these kind of issues. Methods based on searching iteratively to minimize an appropriate

distance such as the χ2 error, can be stuck in local minimum and give degenerate solutions.

Alternative approaches to aim for a global solution such as simulated annealing would

have some benefits, but since we are not just looking for the global optimum of our

target distribution, the most comprehensive view is obtained by a Bayesian Monte Carlo

sampling method. We selected the Bayesian MCMC approach against other methods

that work equally well with complex and multimodal target distributions (e.g. Nested
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Sampling), since MCMC constitutes a benchmark algorithm in Monte Carlo sampling and

parameter estimation problems.

To overcome the challenges of an ill-posed nonlinear inverse problem we adopted a

Bayesian approach based on the use of Metropolis-Hastings (MH) algorithm. The Bayesian

framework for inverse problems is based on systematic modeling of all errors and uncer-

tainties from the Bayesian viewpoint. The potential of this approach to solve difficult

inverse problems with high noise levels and serious model uncertainties is much higher

and also allows for prior information to be incorporated. The Bayesian solution is the

whole posterior distribution of the parameters and therefore, there is not only one solu-

tion, but a set of possible values. The advantage of MCMC approach is that there is no

restriction concerning the non-linearity of the model. Moreover, an appropriate tuning of

the MCMC parameters allows the algorithm to explore all modes of the target distribu-

tion. Finally, even though it is still not feasible to do an exhaustive search through the

parameter space, MCMC methods can effectively explore the parameters joint posterior

distribution, since model computations are concentrated around regions of interest in the

parameters space.

3.2.1 Bayesian Inverse Problem

Our aim is to obtain information about physical parameters of a molecular cloud θ =

(θ1, θ2, ..., θk), while we measure molecular abundances Y = (Y1,Y2, ...,Yn). These quan-

tities are related to a (forward) function f(·) which represents the physical and chemical

processes in the cloud. The main challenge is that there is no closed form function f

mapping the parameters to the observations, which could be inverted. However, given a

set of parameters, estimated abundance values for the species of interest can be computed

with astrochemical models denoted here as C(·). The addressed problem in our case is

how to estimate θ from

Y = C(θ) + ε (3.1)

and according to Idier (2008) this constitutes an inverse problem. The error term ε,

represents both the observational noise and the modeling error between C(·) and f(·).

We treat Y , θ and ε as random variables and define the solution of the inverse problem

to be the posterior probability distribution of the parameters given the observations. This
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allows to model the noise via its statistical properties, even though we do not know the

exact instance of the noise entering our data. We can also optionally specify a priori the

form of solutions that we believe to be more likely, through a prior distribution. Thereby,

we can attach weights to multiple solutions which explain the data. This is the Bayesian

approach to inverse problems.

Assume we have K parameters θk and N solid phase observable quantities Yn. The

error εn on each observation Yn is assumed to be normally distributed with variance σ2n. In

addition, it is assumed that the observational errors are independent. The σ2n is considered

to correspond to the uncertainty on Yn, which is solely dictated by the observation. The

probability density function of the errors is given by:

pε(ε) =
N∏
n=1

1

(2π)
1
2σ2n

exp(
ε2n

2σ2n
).

Using (1), we can define the likelihood function L of observations given a model parametrized

by a set of parameters as

L(θ;Y) = pε(Y − C(θ)) =
N∏
n=1

1

(2π)
1
2σ2n
× exp(−1

2

N∑
n=1

[
Cn(θ)− Yn

σn
]).

In case any prior information about the unknown parameters is available, the Bayesian

approach allows for this information to be taken into account. This information can be

integrated through a prior probability distribution on the parameters, say π(θ). Then

parameter estimation can be performed through the posterior probability distribution

(PPD), using Bayes’ rule

π(θ|Y) =
L(θ;Y)π(θ)

m(Y)
. (3.2)

The PPD expresses our uncertainty about the parameters after considering the observa-

tions and any prior information. The denominator is simply a normalization factor.

In reality we are not able to access the whole posterior probability distribution. There-

fore, computation of parameter estimates or uncertainties is a hard task. MCMC methods

are efficient methods that allow to sample from complex probability distributions and

approximate complex probability densities.
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3.2.2 Markov Chain Monte Carlo

MCMC methods are a powerful class of algorithms that produce random samples dis-

tributed according to the distribution of interest. The importance and efficiency of MCMC

methods lies in the fact that these samples can be used to approximate the probability

density of the distribution by calculating it only for a feasible number of parameter val-

ues. The MCMC framework uses a Markov chain to explore the parameter space and

approximate the posterior probability distribution. This chain consist of a series of states

θ(1), ...,θ(t), ...θ(T ), where the probability of θ(t) depends only on θ(t−1). MCMC methods

require an algorithm for choosing states in the Markov chain in a random way. Among

the several implementations of possible algorithms, we employ a MH sampling algorithm

(Gilks et al. 1995). The MH algorithm will enable us to explore the parameter space and

approximate efficiently the PPD. A theoretical introduction on MCMC and MH is far

beyond the scope of this chapter. However, we briefly describe the MH algorithm and

how MCMC is employed for parameter estimation in our case. Note that the tuning of

the MH algorithm is very crucial when aiming to approximate possibly multi-modal and

non-Gaussian distribution, which is the case for this study. The MH is briefly outlined

here using the following pseudocode:

1. Select a starting point θ(1) from the parameter space. Then for i = 2, 3, ... until

convergence, repeat the following steps.

2. Propose a random set of parameters according to a proposal distribution q, so that

θ∗ ∼ q(θi|θi−1)

3. Calculate the posterior probability of the new parameters, π(θ∗|Y), using equation

3.2

4. Accept the new parameters with probability

α(θ∗|θi−1) = min{1, q(θi−1|θ∗)π(θ∗|Y)

q(θ∗|θi−1)π(θi−1|Y)
}

5. Calculate u ∼ Uniform(u; 0, 1)

6. if u < a then accept the proposal, θi ← θ∗; otherwise, reject the proposal and

θi ← θi−1

The performance of the MH algorithm is highly dependent on the proposal distribution.

The appropriate distribution should account for the complexity of the target distribution
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but it should still be computationally easy to draw samples from. In non-linear problems

such as ours, we expect a multimodal non-Gaussian target joint distribution. Non gaus-

sianity is not a problem for MCMC algorithms. However classical choices for the proposal

distribution (i.e. Gaussian distribution) can potentially prevent the MCMC to converge

to the target distribution, since the transition of the chain from one mode to another is

not very possible. In our specific case, following former similar choices (eg. Bazot et al.

(2012)), and taking into account the characteristics of the expected target distribution,

we chose the proposal distribution q(θ∗|θt) to be a mixture of two Gaussians distribution

centered at θ(t) and a uniform distribution on Dθ. Hence, for all parameters θ∗k for k=1,..,9

θ∗ ∼ NDθ(θ
t
k, σ

2
k,1)with probability 40%

θ∗ ∼ NDθ(θ
t
k, σ

2
k,2)with probability 40%

θ∗ ∼ UDθwith probability 20%

The values for σ2k,1 and σ2k,2 were selected based on test runs. We run m = 8 independent

Markov chains of length T = 200000. By using parallel and independent chains it is

easier to understand the dependence of the MH performance on the initial parameter

values guesses. Moreover, parallel chains provide insight on whether convergence has been

reached. Convergence was also decided based on empirical graphical aid. The length T

of the chains was chosen confidently larger than the value of decided convergence. In our

case q(·) will be a symmetrical distribution. That means that q(θ(t)|θ∗) = q(θ∗|θ(t)) and

the ratio in the acceptance probability α is simply the PPD ratio computed at θ∗ and

θt. In simple words, that parameters that increase the PPD are always accepted, while

parameters that decrease the PPD are randomly accepted based on α.

3.2.3 Parameter Space

The chemical modeling code used in this chapter and denoted as C(·) in (3.1) is the

UCL CHEM time-dependent gas-grain chemical code (Viti et al. 2004) which is briefly

described in section 1.4. Note that for each set of parameters, C(·) provide us with time

series of chemical abundances. We choose to extract the chemical abundances of interest

for the time points when the final density is reached and the cloud collapse has finished.

Even though we ignore the previous time points, the time-dependency is still taken into

account and investigated through exploration of different final density values.
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Parameters θ Unit Definition Domain Dθ
ζ 10−17 · s−1 1-10
G◦ Habing 1-10
nH cm−3 104 − 108

fr - 0− 100%
Cf - 0.5− 3
ε yield per H2 formed 0.01− 1
φ yield per cosmic ray impact 102 − 106

y yield per photon 10−3 − 102

r - 0− 100%

Table 3.1: Parameter Definition Domain

The parameters for our chemical modeling code create a nine dimensional parameter

space (9D) for molecular clouds as used in our MH and described in Table 3.1:

θ = (nH , ζ, G◦, Cf , fr, ε, φ, y, r),

In a first attempt to employ a Bayesian approach for deriving branching ratios for

poorly understood chemical reaction pathways, we also investigated the parameter r, which

controls how much of the gas phase oxygen turns into ice H2O or ice OH. Parameter r

reflects the percentage of O that turns into H2O, so that 1 − r reflects the percentage of

oxygen that turns into OH. Desorption efficiencies resulting from H2 formation on grains,

direct cosmic ray heating and cosmic ray induced photodesorption are determined by

parameters ε, φ and y, as introduced and studied by Roberts et al. (2007). The freeze-

out parameter in our code is effectively the sticking coefficient, a number in the range of

0 − 100% that adjusts the rate per unit volume at which species deplete on the grain.

For the free-collapse to a particular nH we used the modified formula of Rawlings et al.

(1992), where parameter Cf is considered to be a retardation factor with a value less than

one, to roughly mimic the magnetic and/or rotational support, or an acceleration factor

with a value greater than one to simulate a collapse faster than a free-fall (e.g. due to

external pressure). Table 3.1 lists the set of physical parameters studied in this chapter

along with their definition domain Dθk . The joint definition domain Dθ represents the

parameter space to explore. The selected domain limits refer to the theoretical range of

possible values for molecular clouds where atoms and molecules deplete on to the dust,

ensuring though that extreme values are included.
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3.2.4 Observational Constraints

The observational constraints of our analysis are based on data from the existing literature.

Even though in this application we are primarily interested in ices, we include both gas

phase and solid phase observations. To avoid confusion, we will denote with Y a vector

containing any observed quantity and if required we will specify whether we refer to solid

phase or gas phase observations.

The solid phase observations include column densities and visual extinction data for

molecular clouds in front of field stars. Such sources often provide suitable opportunities

to observe and study ices in quiescent regions of the clouds (e.g. Boogert et al. 2011).

We used 31 observations of H2O, CH3OH, CO and CO2 from 31 different regions of 16

different clouds found in literature and summarized by Whittet et al. (2011). The data

suggest some abundance variation, which was attributed to different evolutionary stages

for different clouds. The scope of this chapter lies beyond studying the behavior of a

specific cloud, but rather on how to get statistical insight into the dynamics of common

cloud classes. Therefore, the observational data is transformed into fractional abundances

with respect to total H nuclei and then the average value is computed and used for our

analysis.

In an attempt to minimize degeneracies we introduce additional gas phase abundances

as an optional observational constraint. Due to the ill-posed nature of our problem, it

is possible for our chemical model to end up with a solution space that fits perfectly the

solid phase observations, but with gas phase abundances far from realistic. Hence, the

addition of gas phase observations can be considered as a mathematical regularization by

introducing additional prior information. Prior information can be naturally integrated

into our Bayesian approach. The gas species observations were collected from more than

one study, attempting to match the clouds, regions or evolutionary stage of the observa-

tional sources used for the solid phase species. If we were to fit observations of a particular

source, then, ideally, every observational gas phase constraint should be able to contribute

to the regularization of our methodology. However, as we are here only attempting at

exploring a methodology, we found that three gas phase species were adequate to provide

insight on the efficiency of gas phase species as a regularization factor. Abundances for

NH3 and N2H
+ were collected from Johnstone et al. (2010) while HCO+ from Schöier

et al. (2002). The gas phase observations are in the form of fractional abundances with
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Solid Phase Species Gas Phase Species

H2O CH3OH CO CO2 NH2 N2H+ HCO+

7.47± 1.81 0.23± 0.13 1.14± 0.84 1.89± 0.79 3.10± 2.24 0.068± 0.049 0.20± 0.01

*The fractional abundances are with respect to H nuclei
**Solid phase abundances are in units of 10−5; Gas phase abundances are in units of 10−8

Table 3.2: Observational Constraints (Average Fractional Abundances)

respect to total hydrogen nuclei. Table 3.2 lists the average molecular abundances for all

the species along with their uncertainties. We emphasize again that the error on each

of the observations Yn is assumed to be normally distributed with a variance σ2n that is

determined solely by the uncertainty reported in Table 3.2.

3.2.5 Priors

We run two identical sets of 8 MCMC chains that differ on the prior distribution infor-

mation. For the first set, the prior information is non-informative and in the form of

acceptable range of possible values. Therefore, π(θ) is just uniformly distributed on Dθ,

as listed in Table 3.1. Note that the observational data Y refers only to the solid phase

molecular abundances and in this case the gas phase species are ignored. In the sec-

ond case, the prior information includes the observational constraints from the gas phase

species as well. Let Y now include all the observational constraints, Ys just the solid

phase and Yg the gas phase observational constraints. In that case, the PPD is defined

as:

π(θ|Y) = π(θ|Ys,Yg) =
π(Ys|θ,Yg)π(θ|Yg)

m(Y)
. (3.3)

The prior information is simply the likelihood function L(·) of Yg given a model parametrized

by θ, since:

π(Ys|θ,Yg) = L(θ;Ys)

π(θ|Yg) ∝ L(θ;Yg)π(θ).

Including prior information in this way is equivalent to attaching weight to the solutions

that explain the gas phase as well as the solid phase chemistry.
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Parameters θ Unit Test Value

ζ 10−17 · s−1 2.4
G◦ Habing 2.6
nH cm−3 105

fr - 42%
Cf - 1.3
ε yield per H2 formed 0.02
φ yield per cosmic ray impact 150
y yield per photon 0.1
r - 75%

Table 3.3: Blind Benchmark Test

3.2.6 Blind Benchmark Test

In order to quantitatively investigate the effectiveness of our method to astrochemical

problems we performed a benchmark test. This benchmark test is basically our Bayesian

analysis applied this time on synthetic observations produced by UCL CHEM using a

pre-defined set of parameters θT . Once we have our synthetic observations, we apply

our methodology and analyse the results and whether the true parameters are recovered.

Knowing the solution to this test a priori, allows us not only to validate the method,

but also to critically perceive the non linear and ill-posed nature of our problem. This

discussion can be found in section 3.3.1. The reasoning behind the particular selection

of parameters was a random choice not far from expected or well accepted values in the

literature. The parameter values used in the test can be found in Table 3.3.

3.3 Results

When quoting parameter estimation results and especially multivariate results, it is con-

venient to decrease the parameter space to posterior intervals about single marginalized

parameters. The MH simulations provide us with the joint parameter PPD. However, be-

cause of the high dimensionality of the distribution it is impossible to represent graphically

the joint probability density. Therefore, we compute the marginal density for each param-

eter or for a subset of parameters by integrating the PPD over the rest of the parameters

except the ones we are interest in. For example, to obtain the joint marginal distribution
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of θa = {d, fr} we integrate over the rest of the parameters θb = {ζ, rad, bc, ε, φ, y, r},

π(θa|Y) =

∫
π(θa,θb|Y)dθb

The marginal probability distributions are visualized either with simple histograms for the

case of univariate probabilities or with a bivariate histogram with intensity map for the

case of bivariate probabilities.

Traditionally, in order to explore the posterior distribution, typical Bayesian estimates,

such as the Posterior Mean are used. However, for multi-modal and/or non Gaussian

distributions the extraction of any useful estimator is most of the times meaningless.

Instead, it is convenient to decrease the parameter space to High Density Regions (HDR) or

credible intervals. HDR computation and graphical representation is explained thoroughly

by Hyndman (1996). Following his paper we shortly define HDR as follows: Let f(x) be

the density function of a random variable X. Then the 100(1 − a)% HDR is the subset

R(fa) of the sample space of X such that

R(fa) = x : f(x) ≥ fa

where fa is the largest constant such that Pr(X ∈ R(fa)) ≥ 1 − a. The above definition

indicates two very important properties. From all the possible regions, HDR occupy the

smallest possible volume and every point in the regions has probability density that is

larger or equal than every point that does not belong in the regions. HDR are very useful

for analyzing and characterizing multi-modal distributions. In such cases, HDR might

consist of several regions that are disjoint due to the number of modes. In the context of

ice formation mechanisms these high density regions are very useful statistical outcomes

of the Bayesian approach. Such regions provide us with a precise quantitative measure of

how the ice and gas observations and their uncertainties impact the cloud parameters.

Figure 3.1 shows the nine 1D marginalized posterior probability distributions of the

parameters for the benchmark test using a uniform prior. In Figure 3.2, we present the

nine 1D marginalized posterior probability distributions of the parameters and their 68%

High Density Regions (HDR), recovered from the uniform prior case. Figure 3.3, presents

the same results for the informative prior case. HDR indicate the parameter space where

the probability density is higher. In order to compare the 2 prior cases and quantify the

level of constraint for each parameter we introduce a measure of parameter constrain, the
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Parameters θ High Density Spread HDS(%)
Non-Informative Prior Informative Prior

ζ 48 36
G◦ 46 30
nH 16 09
fr 38 28
Cf 45 35
ε 50 42
φ 33 28
y 38 33
r 43 32

Table 3.4: High Density Spread. The lower the value of HDS the more constraint is a
parameter.

High Density Spread (HDS), which is defined as follows: Let |HDR| be the width of a

High Density Region of a parameter’s k density function with definition domain Dθk and

|Dθk | the width of the domain. Width is defined with respect to some simple measure such

as the Lebesque measure (Lebesgue 1902). Then the High Density Spread is defined as :

HDS =
|HDR|
|Dθk |

The HDS ratio can be perceived as an index of the level of uncertainty on a predefined

definition domain and the higher it is the less constrained is a parameter. Table 3.4

presents HDS for each parameter for both priors used. Figure 3.4 shows the 2 dimensional

marginal PPD for parameters that present statistical interest. Finally, Table 3.5 lists the

statistical mean and standard deviation for the ∼ 35% HDR of the joint distribution for

all the 9 parameter. The general statistical picture we get from Figures 3.2 and 3.3 shows

that the distributions of all the parameters are far from Gaussian and most of them have

more than one modes. Looking at the models with physical units, we can also notice that

most of the density lies away from the limits of our definition domain for both cases, which

validates our choice for Dθ.

3.3.1 Blind Benchmark Test Results

The results of the performed test as shown in Figure 3.1 reveal two important insights.

First of all, high probability density regions for all the parameters include and hence

recover the true parameters. As we can see in Figure 3.1, all the pre-defined parameter
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values lie under or very close to the highest density point of the marginal PPD. This result

simply validates that both the Bayesian approach makes accurate inference based on the

given observations and the MH algorithm samples efficiently the solution space. Secondly,

we can observe that in many cases there are additional high probability density regions.

These regions prove and highlight the ill-posed nature of our problem by indicating that

different parameter sets can produce similar observations. Combining the two insights, we

can conclude that the Bayesian method with MCMC sampling is exploring efficiently the

parameter space, revealing the solution regions that answer our ill-posed inverse problem.

In addition, we can conclude that in order to constrain our solution space we should

either introduce numerical regularization factors (e.g. gas phase species) or scientific prior

knowledge.

3.3.2 Influence of priors

A visual comparison of Figures 3.2 and 3.3 reveals what we can quantitatively observe in

Table 3.4. With non-informative uniform prior the high density regions seem to cover large

sections of the distribution, which in some cases reach 50% of the definition domain. This

means that most of the parameters are not constrained enough. The most statistically

straightforward parameters seem to be clearly the nH and then the φ and fr parameters,

presenting distinct modes and relatively low HDS. G◦ and ζ seem neither constrained nor

relevant enough, while fr seems to have a clear mode, followed by a very heavy tail. The

rest of the parameters present high HDS, above 40% with several disjoint high density

regions and do not allow us to reach credible conclusions about the parameters. Including

the prior information from the gas phase species changes the picture significantly as can be

seen in both Figure 3.3 and Table 3.4. We can observe that the HDR get smaller and the

parameters seem more constrained. The distribution of ζ is now denser around high values

(> 6), while G◦ has to be low (< 4). The nH remains well constrained with even lower

HDS, while the distribution of fr now clearly constraints the parameter to low domain

values. The distribution of Cf is also altered significantly: not only the HDS has dropped,

but also a large portion of the density has transfered from high accelerated collapse regions

to free fall collapse regions. The non-desorption mechanisms still present a multi-modal

behavior, but with significantly smaller high density regions. Their distribution clearly

highlights the non-linear way these mechanism act together or against each other. For r,

the addition of informative prior information seems to reduce the HDS as well, centralizing
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the density, but still favoring slightly the production of H2O against OH. Therefore, we

conclude that the addition of gas phase species as a regularization factor outperforms the

use of just a non-informative uniform prior distribution. The HDS is reduced at an average

of ∼ 12%, which indicates an equivalent constraint on the parameter space. Section 3.3.3

will discuss the statistical and numerical results of our analysis, while Section 3.3.4 will

discuss the astrophysical implications. For both these Sections we shall only concentrate

on the results of the informative prior case.

3.3.3 High Density Regions

Before presenting the resulting HDR of our analysis, it is useful to explain what is es-

sentially the meaning of such a region. Our results come in the form of probability dis-

tributions. That means that for each parameter, the marginalized posterior probability

distributions links every value of the parameter definition domain with its probability

of being the value that generated our observational constraints. Now, a HDR indicates a

range of values that are significantly more likely than the rest. In practice, this means that

if we were to select a value that best describes physically our expectation of a molecular

cloud, the value would come from this range.

The nH is clearly the most constrained physical parameter. The marginal density

function reveals that most of the density is between 2.2 and 5 × 104 cm−3. The ζ is

constrained to values higher than 6×1017 s−1, while the G◦ to values lower than 4Habing.

The HDR for the fr stays between 20% and 45%, while the Cf has 1 distinct HDR between

0.5 and 1.55 and one long heavy tail between 2 and 3 times the default free fall rate. The

ε presents two modes. The first HDR is between 0.4 and 0.8 and the second between 1.2

and 1.4. The marginal distribution of φ, also presents two modes. One is centered around

105. The second one is centered around 60. The marginal distribution for y, presents 2

disjoint high density regions as well. The first one indicates really low efficiency of about

10−6, while the second one a slightly higher 2× 10−3 − 8× 10−2. Finally, the distribution

for the branching ratio parameter r shows high density between 40% and 70% of oxygen

turning into ice water.

In Figure 3.4 we show the marginalized 2D PPD for our parameters. Note that the nH

and the fr are negatively dependent in a nearly linear way. On the other hand G◦ and nH

seem to have a non-linear positive correlation, hitting a plateau after a certain gas density.

Similarly, the fr and the Cf may have a clear peak, but also some evidence of a positive
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Parameters θ Unit Mean Value

ζ 10−17 · s−1 8.39(±2.8)
G◦ Habing 1.79(±1.27)
nH cm−3 4.07(±2.34)× 104

fr - 31(±21)%
Cf - 1.18(±0.9)
ε yield per H2 formed 0.52(±0.35)
φ yield per cosmic ray impact 2.78(±1.12)× 106

y yield per photon 3.35(±2.27)× 10−3

r - 56(±23)%

Table 3.5: Mean and standard deviation for the most probable mode of the Joint Distri-
bution. The mode corresponds to ∼ 35% HDR of the total joint distribution.

correlation. The relation between the cosmic ray desorption efficiency parameters, φ and

y reveals many distinct peaks throughout the domain space. Note that the marginalized

PPD for cosmic ray ionization rate and parameter φ shows a clear bimodal structure.

However, focusing only on the denser areas of the distribution we can observe a potential

non linear correlation between the cosmic rays and the efficiency of the cosmic ray related

parameter φ. In general though, ζ is evidently a parameter that is not sufficiently con-

strained. This is already obvious by the 1D marginal distribution of ζ, but the contrast of

constrain between ζ and one of the most constrained parameters such as nH is depicted

in Figure 3.2(6).

Due to the non-uniqueness of our solution space, examining the joint probability distri-

bution of the PPD provides a useful insight. The dimensionality of the distribution makes

a visualization impossible, so we chose to extract the statistical mean and the standard

deviation for each one of the parameters from the most probable mode of the joint distri-

bution. The joint distribution was approximated using a multivariate histogram and the

most probable mode was chosen in a heuristic way and corresponds to ∼ 35% HDR of the

whole PPD. The values for the mean and standard deviation are given in Table 3.5. As

expected, the most probable mode of the joint PPD agrees with the HDR of the marginal

parameter distributions. For the unimodal 1D marginalized distributions the most prob-

able mode coincides completely, while for the multi-modal cases the most probable mode

coincides with one of the modes. Hence, purely based on the statistical interpretation we

conclude that: a molecular cloud that matches the observed abundances should have low

nH , a low fr and a low G◦. The ζ on the other hand is more likely to have high values,

but the high standard deviation leaves room for significant variation. The collapse of the
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cloud may be insignificantly accelerated, while the branching ratio r favors slightly the

branching into water, but with a high standard deviation. In terms of the non-thermal

desorption efficiency parameters, we notice increased efficiency for all three of them. As a

general result we conclude that the 9D space of the joint distribution has multiple peaks.

Both the marginalized distributions and the denser peak of the joint distribution indicate

that some of the parameters (nH , G◦, fr, Cf ) are well constrained, while other parame-

ters (ζ, r, ε, φ, y) present possible variation that implies further astrophysical or statistical

implications.

3.3.4 Astrophysical Consequences

Here, we discuss our results for each of the parameters with regards to their astrophysical

implication:

nH : The derived credible intervals for the gas density are in very good agreement

with the properties of typical collapsing dark clouds, clumps and cores (Myers & Benson

1983; Benson & Myers 1989; Bacmann et al. 2002; Bergin & Tafalla 2007). Higher cloud

densities (> 106 cm−3), that are usually expected in hot cores after the cloud has collapsed

(Hoare 2004), were explored, but showed nearly zero probability density in our analysis.

fr: Our study implies a depletion rate that is not high enough to dominate and is

probably lower than 50%. Bacmann et al. (2002) suggest that freeze-out dominates when

nH exceeds ∼ 3 × 104 cm−3 which is marginally the case in our study. When the freeze-

out dominates and densities exceed ∼ 105 cm3 , the abundance of CO ice is found to be

significantly increased to typical gaseous values (∼ 10−4) (Pontoppidan 2006; Bergin &

Tafalla 2007). Furthermore, the ice water abundance is typically 5 × 10−5 to 9 × 10−5

and even higher at the highest densities (Pontoppidan et al. 2005). The ice CO and H2O

abundances in our case though, are about 0.5− 1 magnitude lower. Therefore, along with

the nH results, the lower freeze-out rate estimated by our analysis can be explained by a

different evolutionary stage of the observed clouds. According to Fontani et al. (2012) low

depletion values can also imply a cloud that is going to form less massive objects.

G◦: Our analysis showed that in order to match the observed ice abundances the G◦

is comparable to the standard interstellar radiation field of 1 Draine or ∼ 1.7Habing

(Draine 1978).

ζ: In dense gas ζ is measured to be in the range of 1 to 5 × 10−17 s−1 (Bergin et al.

1999). However, considerable uncertainties have been reported in the literature with
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derived values as high as 10−15 s−1, accounted to x-rays from a central source (Doty

et al. 2004). These discrepancies may be due to whether ζ is determined via H+
3 or

HCO+ measurements. Yet, Dalgarno (2006) claims that given latest evidence that the

ζ range is narrow and between 10−16 and 10−15, the question should be focused not on

why the estimations are different, but on why they are so similar. Our analysis confirms

ζ values higher than the typical estimations and is even consistent with the 10−16 s−1

estimations through the H+
3 determination. Most importantly, our study indicates high

standard deviation on these values highlighting that such a variation should be expected.

Theoretically, this is explained considering the fact that ζ lose energy while ionizing and

exciting the gas through which they travel in conjunction with the possible variation in

the origin of ζ. Even though our astrochemical model does not account for the latter

factors, our probabilistic approach reflects their impact.

Cf : Our study shows that the collapse of the cloud should follow the expected free

fall collapse. Higher Cf values present moderate probability density, which implies that

the observational constraints could potentially also be matched with different but also less

likely sets of parameters (e.g. higher values for both Cf and fr).

ε, φ, y: The desorption from H2 efficiency parameter (ε) estimates are significantly

higher than the value reported by Roberts et al. (2007) (ε < 0.1). The direct cosmic

ray desorption efficiency (φ), presents two peak values. One of them agrees with Roberts

et al. (2007) and is centered around 105. The second one is centered around 60, which is

lower than the lowest limit studied by Roberts et al. (2007). For the cosmic ray-induced

photodesorption efficiency (y), we have two probable estimates as well. The first one

indicates really low efficiency. The second one presents a slightly higher efficiency that is

still lower than the one estimated by Hartquist & Williams (1990) (y = 0.1), but consistent

with the results of Öberg et al. (2009) for CO2. Our analysis in general indicates useful

credible intervals for non-thermal desorption efficiencies, highlighting though, that the

reported non linearities can be tackled with further regularization factors such as molecule

specific analysis and additional grain properties. Note as well that our astrochemical model

does non include direct UV photodesorption which has recently be found to be efficient

(Zhen & Linnartz 2014).

r: The branching ratio proved to be a parameter with high but anticipated variability.

Its marginal probability distribution presents the most statistically normal behavior with

a mean that implies a shared branching ratio of oxygen freezing into ice H2O and ice
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OH, favoring slightly solid H2O. The first laboratory experiment to reproduce the ice H2O

formation (Dulieu et al. 2010) implied that the hydrogenation of oxygen is an important

route for water formation. Furthermore, Cazaux et al. (2010) state that species such as

OH are only transitory and quickly turn into ice water. However, they also state that

∼ 30% of the O coming on the grain is released in the gas phase as OH which can freeze

back as H2O. A pathway that is included in our model and can explain both the high water

abundance on the grains and the shared branching ratio r. At last the high branching

ratio towards ice OH highlights the importance of ice OH for the production of ice CO2.

We now look at the correlation between our parameters as presented in Figure 3.4.

The relation between the nH and depletion or freeze-out has been the subject of many

studies (Bacmann et al. 2002; Christie et al. 2012; Fontani et al. 2012; Hocuk et al. 2014).

They all conclude that the amount of depletion, the ice abundances and the density of

the cloud should all scale together, as shown by theoretical studies (Rawlings et al. 1992).

Even though our analysis suggests a clear anti-correlation between nH and fr (Figure

3.4(a)), this result is completely in line with literature, since we are not analyzing the time

evolution of the cloud, but instead focus on parameter fitting at specific time points. This

negative correlation suggests that the less gas density we have the higher the depletion

should be in order to match the observed ice abundances. Our results are also in line

with the negative correlation between depletion factor and nH , derived by Fontani et al.

(2012) from CO observations. The positive correlation between nH and G◦ depicted in

Figure 3.4(b) is confirming that the denser a cloud, the higher G◦ values are needed to

match the observations. The plateau after a density value (∼ 7 × 104 cm−3) indicates

that the explored radiation field domain space is not high enough to penetrate the cloud

after a density threshold. When Cf is increased the freeze-out timescale needs to be

decreased since the final nH is reached quicker. This reduced timescale requires higher

fr values in order to simulate the observed ice abundances and this relation is depicted

in Figure 3.4(c). Even though not very straightforward, the relation between the cosmic

ray desorption efficiency parameters, φ and y, is very interesting (Figure 3.4(d)). In most

cases, the cosmic ray photodesorption efficiency is either low or either high for both direct

cosmic ray heating and cosmic ray induced cases. However, there is a significant peak

when the direct cosmic ray impact is very efficient, whilst the cosmic ray induced impact

is very inefficient.
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3.4 Conclusions

In this chapter, we implemented a Bayesian MH parameter estimation analysis to solve a

typical ill-posed inverse astrochemical problem. We have employed a chemical modeling

code and solid phase observations in order to get a holistic insight into the behavior of

physical and chemical parameters that drive ice chemistry in dark molecular clouds. The

main conclusions of this work are as follows.

1. The Bayesian method provides a systematic approach to solve nonlinear inverse

problems with high noise levels and significant model uncertainties. The MCMC

technique allows to sample from complex probability distributions in an efficient

way. As highlighted by our Blind Benchmark Test, we can conclude that the latter

methods succesfully handle astrochemical ill-posed problems and reveal a more com-

plete set of solution regions. On the contrary, single solution estimates derived from

traditional approaches would not have provided a complete picture of the solution

space and would have contained a high risk of degeneracy.

2. Our probabilistic approach to physical and chemical parameter estimation used a

chemical network with deficiencies (especially for the grain part) and several assump-

tions. Nevertheless, the results both derived useful credible intervals and highlighted

model deficiencies implying even more promising results for tackling physical, chem-

ical and model uncertainties for up to date models with targeted astrophysical goals.

3. We confirm that the joint PPD of the solution space is highly non linear and mul-

timodal and the 1D marginal PPD for each parameter are far from Gaussian high-

lighting the complexity of the problem.

4. Including abundances of gas phase species as a regularization factor and introduced

as a Bayesian prior, increases the parameter constrain efficiency by 12%. This result

can imply that observational regularization constraints compensate for any chemical

code deficiencies. Also, increasing the number of gas phase regularization factors

will constrain even more the solution space.

5. We show that physical parameters such as nH , G◦, Cf are highly constrained and

their variation has a great impact on the derived ice abundances.
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6. The high variation of ζ contradicts the theoretical ζ standard values in dense gas

and indicates a larger credible interval instead.

7. Non-thermal desorption efficiencies act and counteract in a non-linear way with each

other or ζ. This complex behavior should be analyzed with extra regularization

factors.

8. Branching ratio parameters such as r can be successfully estimated through Bayesian

MCMC methods. Our results even though with high variability, indicate that the

detail or simplicity of the dust grains chemical network can be encapsulated and

reflected as certainty or uncertainty respectively.
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Figure 3.1: 1D Marginalized PPD for each of the nine parameters for the Blind Benchmark
Test. The plots show the Gaussian kernel density estimator of each Probability Density
Function. Dashed lines indicate the pre-defined parameter values θT we wish to recover.
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Figure 3.2: 1D Marginalized PPD for each of the nine parameters using uniform non in-
formative prior. The plots show the Gaussian kernel density estimator of each Probability
Density Function.Darker regions indicate 68% HDR.
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Figure 3.3: 1D Marginalized PPD for each of the nine parameters using informative prior
from gas phase chemistry. The plots show the Gaussian kernel density estimator of each
Probability Density Function. Darker regions indicate 68% HDR.
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Figure 3.4: 2D marginalized posterior probability density functions.Warmer colors indicate
higher probability density.



Chapter 4

Fast Astrochemical Parameter

Estimation with Neural Networks

The present chapter extends our work on Bayesian inference methods for astrochemical

inverse problems by introducing a machine learning solution to the speed problem of the

inference process. With the size of parameter spaces commonly encountered in astron-

omy, most researchers have to wait for hours or even days for a result. As introduced

in section 1.5.5, Artificial Neural Networks (ANNs) are machine learning computational

models that can learn and substitute computationally expensive functions and speed up

significantly the whole Bayesian inference process. Section 4.1 introduces the problem

and how ANNs can contribute towards a solution to astrochemical problems. Multilayer

Perceptron is the type of ANNs employed in this chapter and is presented in Section 4.2.

The training process of our network is described in Section 4.3 and both an algorithm to

speed up Bayesian inference and a simple application example are discussed in Section 4.4.

Finally in Section 4.5, we present our conclusions.

4.1 Introduction

Bayesian inference methods are consistently becoming a common practice for constrain-

ing parameters in astronomy, cosmology and other fields of astrophysics (Christensen &

89
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Meyer 2000; Ford 2005; Fitzgerald et al. 2007; Feroz & Hobson 2008; Isella et al. 2009;

AMI Consortium et al. 2012; Bazot et al. 2012; Makrymallis & Viti 2014). The parameter

exploration and estimation is performed with a Monte Carlo sampling algorithm, which

usually is a Markov Chain Monte Carlo (MCMC) variant or a nested sampling algorithm.

In Chapter 3 and in Makrymallis & Viti (2014), we showed that Bayesian inference tech-

niques based on sampling algorithms can also be successfully applied in astrochemical

problems for the estimation of physical and chemical parameters of molecular clouds. The

probability distribution of molecular cloud physical properties, as well as chemical reaction

coefficients can be accurately approximated, even when the inverse problem is ill-posed

or the posterior distribution is multi-modal with inherent degeneracies. Despite the great

benefits, this method can present some drawbacks usually related with the computational

cost and the speed of the process.

Bayesian inference methods require the evaluation of a likelihood function for each

sample point of the explored parameter space. The likelihood function represents the

probability of reproducing the observed data for a given set of parameters and in most

cases requires cumbersome runs of complex chemical codes. A standard chemical code is

usually a time and depth dependent gas-grain chemical model that can be used to esti-

mate the abundances of gas and surface species in every environment where molecules are

present. The model can include both gas and surface reactions and determines molecular

abundances in environments where not only the chemistry changes with time, but also

local variations in physical conditions lead to variations in chemistry. One model run can

take from a few seconds up to a few minutes, depending on the complexity of the model

and the number of reactions. Monte Carlo sampling algorithms can reduce the number of

likelihood evaluations, but only up to a point. Furthermore, when the target distribution

is complex and multi-modal, which is usually the case, most sampling algorithms would

require more time to adequately explore all the modes. That simply means even more

likelihood computations. If we also consider the fact that the time and computational

cost required to explore the parameter space increases exponentially with the number of

parameters we wish to estimate, it is easy to conclude that great gains can be achieved if

we are able to speed up the evaluation of the likelihood function.

In this chapter, we present a real time accelerated astrochemical parameter estimation

algorithm based on ANNs. The algorithm follows the successful use of machine learning

techniques and specifically ANN for similar tasks in other fields of astrophysics (Auld et al.



4.2. Multilayer Perceptron 91

2007; Graff et al. 2012) and evaluates the suitability and efficiency of ANN for learning and

replacing the likelihood function, speeding up parameter estimation tasks in Astrochemical

inverse problems. For the rest of the chapter, we will assume that the problem to tackle

is to constrain physical and chemical parameters of dark molecular clouds using Bayesian

inference and a Metropolis-Hastings (MH) algorithm as our MCMC method.

4.2 Multilayer Perceptron

In this chapter we will only consider one class of ANNs, the multilayer perceptron (MLP)

with one hidden layer as shown in Figure 4.1. The choice of a MLP with one hidden layer

was made as the simplest, yet adequately efficient type of ANNs to prove the concept

of using ANNs for accelerating astrochemical parameter estimation. The efficiency of a

MLP with one hidden layer is reassured by the universal approximation theorem (see

Section 1.5.5). Multilayer Perceptron Neural Networks are feed-forward directed networks

composed of multiple layers. Each layer consists of perceptron nodes and is fully connected

to the next layer. MLP maps input data x ∈ <n onto scalar output yi(x;w, q) through

linear or non-linear function nodes. The number of the input nodes correspond to the

number of physical and chemical parameters we want to constrain, while the output in

our case will be just one node corresponding to the likelihood that these parameters

describe a system that can reproduce the observed molecular abundances. The number

of hidden nodes is a user defined parameter that adjusts the complexity of the network.

The outputs of the nodes in the hidden and output layers are as follows:

hidden layer: hj = g(1)(f
(1)
j ); f

(1)
j = q

(1)
j +

∑
l

w
(1)
jl xl, (4.1)

output layer: yi = g(2)(f
(2)
i ); f

(2)
i = q

(2)
i +

∑
j

w
(2)
ij hj , (4.2)

where w is the ‘weight’ parameter and q the ’bias’ parameter of the perceptron. Index l

runs over input nodes, j runs over hidden nodes, and i runs over output nodes that in our

case is just one. An example of a simple MLP and its corresponding outputs is shown in

Figure 4.1.

The weights and biases are the values we wish to determine in our network training

session. MLP learns a non-linear relationship between input and output nodes by adjusting
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Figure 4.1: A MLP with one hidden layer, 2 inputs, 2 hidden nodes, and 1 output, along
with the the outputs of the nodes in the hidden and output layers. For brevity, the bias
nodes are ommitted.

the weighted connections and the bias given a set of training data and then can make

predictions of the output for new input data. The number of hidden nodes is a parameter

that has a crucial effect on the performance of the MLP. As a rule of thumb, the number of

training points should function as an upper limit for the number of hidden nodes. However,

the more hidden nodes we use, the better accuracy we will achieve on our training data.

This accuracy though is not representative of how well the NN generalizes to situations

not presented during training. This issue is known as overfitting and in Section 4.3 we

will discuss ways to deal with it. The activation functions g(1) and g(2) are both selected

in accordance to the universal approximation theorem to be bounded, smooth, monotonic

and one of them non-linear, allowing the network to model non-linear functions. We chose

g(1)(x) = tanh(x) and g(2)(x) = x.
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4.3 Network Training

The training data set D = {x(k), y(k)}, consists simply of the parameter points explored

by the MH algorithm and the corresponding evaluated likelihood values respectively. The

objective of the training session is to both tune appropriately the values of the weight and

bias parameters and optimize the number of hidden nodes, so that maximum ANN per-

formance is achieved, avoiding overfitting. The ANN performance is defined as the mean

squared error between the network output and the real likelihood value for each particular

set of parameters. The training method used in our case is the backward propagation of

errors, known as backpropagation (Rumelhart et al. 1988), and as an optimization method

the Levenberg–Marquardt algorithm (Marquardt 1963). In reality, any standard numeri-

cal optimization algorithm can be used instead. Backpropagation performs computations

backward through the network and computes the gradient of the mean squared error with

respect to all the weights and biases in the network. The Levenberg–Marquardt algo-

rithm uses this gradient to update the weights and biases, minimizing gradually the mean

squared error.

For the training session, D is randomly split into two subsets. The first of them is

the actual training subset and is used to tune the weight and bias values. The second is

used as a validation subset to avoid overfitting the training data. The training error and

the validation error are monitored together and both are expected to decrease while the

training progresses. However, if and when the ANN starts to overfit the data, the training

error will keep decreasing, while the validation error will start increasing. The weight

and bias values are chosen to minimize the validation error. The validation subset is also

used to compare different ANN models after the training is over. In our case the different

models are networks with different number of hidden nodes. For a given training data

set D and N candidate models, the validation error reflects the accuracy of the respective

network. If the validation error is less than a user defined threshold, it can be used to

decide between the best network structure. The default ratios for training and validation

are 0.7 and 0.3 respectively.

4.4 ANN Accelerated Bayesian Inference

Our algorithm combines Bayesian statistical methods and Monte Carlo sampling tech-

niques with ANNs in order to solve astrochemical non-linear inverse problems faster. We
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adopt the exact problem and notation of Makrymallis & Viti (2014) and Chapter 3. We

refer readers back to Chapter 3 for a reminder on the notation and specifics of the Bayesian

inverse problem and we simply revisit here the main ingredients of the solution. We wish

to constrain a set of physical parameters θ, given molecular observations Y for mantle

species H2O, CH3OH, CO and CO2 and gas phase species NH3, N2H
+ and HCO+. Pa-

rameter estimation can be performed through the posterior probability distribution of the

parameters, given the observational data:

π(θ|Y) =
L(θ;Y)π(θ)

m(Y)
(4.3)

The likelihood function L of observations, given a model parametrized by a set of param-

eters is defined as:

L(θ;Y) = pε(Y − C(θ)) =

N∏
n=1

1

(2π)
1
2σ2n
× exp(−1

2

N∑
n=1

[
Cn(θ)− Yn

σn
]).

The likelihood function L involves runs of the chemical code UCL CHEM, denoted here

as C(·). UCL CHEM though, slows down the likelihood evaluation significantly, therefore

we wish to train our ANN to learn and replace the likelihood function.

The algorithm used to perform the parameter estimation is shown in Algorithm 4.1.

We assume that we have already set up a Bayesian inference approach, based on a MH

algorithm and we need to accelerate the inference process. Initially the user defines N

ANN models with different number of hidden nodes, a maximum accepted validation error

Verr and a number M which represents the minimum number of samples required before

the ANN training is initiated. The Verr is a user defined threshold that represents our

belief that a ANN has learned the likelihood function satisfactory. The MH algorithm

proceeds as usual. Sets of parameters are generated, and for each set of parameters the

likelihood function is evaluated as well as the posterior probability of the specific set.

Every time a set of parameters is accepted by the MH, the training and validation data

set is incremented by one data point. Each data point consist of one input, the vector

of parameters, and one output, the value of the likelihood function computed for these

parameters. When the size of our data set reaches M , all N ANNs are trained and then

validated. Then, the minimum validation error is compared to Verr. If it is smaller than

Verr, then the ANN with the minimum validation error replaces the likelihood function
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Algorithm 4.1 Accelerated Bayesian Inference

input: MH algorithm, N ANN (j) models with j = {1, ..., N},
maximum accepted validation error Verr,
number of minimum samples required before ANN training M

initialize: random set of parameters θ(1), empty training/validation ANN dataset D = {}
Compute L(θ;Y)

Add {θ(1),L} to D
while size(D) < M do

θ∗ ∼ q(θi|θi−1)
MH accepts/rejects θ∗

if θ∗ is accepted by MH
Compute L(θ∗;Y)
Add {θ∗,L} to D
end if
end while

Train the N ANNs and compute validation error Err(j) for j = {1, ..., N}
if argmin{Err} = Err(j) and Err(j) < Verr
Continue with MH until convergence with L(θ;Y) = ANN (j)(θ)
else Repeat while clause with M = M + 1

2M
output: MH output

and the MH algorithm proceeds until convergence. If it is not smaller than Verr, then

we need more data points to train our ANNs better. The MH proceeds normally with

likelihood function evaluations until the data set reaches M + M
2 . This is repeated until

the minimum validation error gets smaller than Verr.

To evaluate and demonstrate the efficiency of ANN to learn complex likelihood func-

tions, such as complex chemical code functions, our algorithm was benchmarked and tested

against a simplified and controlled version of the inverse problem studied in Chapter 3. We

assume a smaller set of parameters θ = {nH , ζ, G◦, fr} and we create a controlled test envi-

ronment such as the blind benchmark test of Chapter 3. The rest of the parameters studied

in the previous chapter were kept fixed at the most probable values, as found by our anal-

ysis in Chapter 3. We selected a set of parameters θ = {105 cm−3, 2.2 s−1, 1.2Habing, 0.5}

and we used UCL CHEM to produce Y . The particular selection of control parameter

values was a random choice not far from expected literature values or the result values

of Chapter 3, but different enough to ensure the reliability of the benchmark test. As

a control result, we perform Bayesian parameter estimation by running a MH algorithm

normally until convergence. We will refer to this as the normal Bayesian inference method

to differentiate from the fast Bayesian inference method that employs our algorithm. The

final Markov chain was of length 105 and the 1D Marginalized posterior probability dis-
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tribution and the 68% highest density region for each of the four parameters after normal

Bayesian inference is shown in Figure 4.2. For our algorithm we set 18 ANN models with

different hidden nodes. For the first 16 models the hidden nodes vary between 5 and 20

nodes and in addition we have two more models with 30 and 40 nodes. We run our fast

Bayesian inference algorithm for the same observational values and after a Markov chain

of length 45000 the ANN with 8 nodes took over the evaluation of the likelihood function.

The 45000 samples translate to 18000 unique training data points. In terms of duration,

the benefits from the fast Bayesian inference method were great. In normal mode the du-

ration of the whole inference process was 108 hours. The fast Bayesian inference method

managed to complete the whole process in under 49 hours. The speed of the algorithm

though would be of no actual purpose, if the results were not accurate. Figure 4.3 shows

the 1D Marginalized posterior probability distribution and the 68% highest density region

for each of the four parameters after the fast Bayesian inference algorithm.

The results from the two inference methods as shown in Figure 4.2 and Figure 4.3

reveal some important insights. First of all, high probability density regions for all the pa-

rameters include and hence recover the true parameters. As we can see, all the pre-defined

parameter values lie under or very close to the highest density point of the marginal pos-

terior probability distribution. To support numerically this insight we chose to extract

the statistical mean and standard deviation for each one of the parameters from the most

probable mode of the joint distribution. The results can be seen in Table 4.1 and con-

firm our visual intuition. This result simply validates that both normal and fast Bayesian

approaches make accurate inference based on the given observations and the MH algo-

rithm samples efficiently the solution space with both the normal and the approximated

likelihood function. We can also observe that most distributions are not Gaussian and in

some cases we can observe two modes (see Figure 4.2(d) and Figure 4.3(d)). Finally, it

is obvious that even though the highest density regions of the distributions between both

the normal and the fast Bayesian inference methods are similar, the general shape of the

distributions and especially across the less dense probability regions are different in some

cases.
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Parameters θ Unit True Parameter Value Normal Bayesian

Inference

Fast Bayesian

Inference

Mean and Standard Deviation

ζ 10−17 · s−1 2.2 2.8(±0.74) 2.89(±0.64)
G◦ Habing 1.2 1.28(±0.48) 1.87(±0.89)
nH cm−3 105 1.27(±1.02) ·105 5.81(±1.44) ·105

fr - 50% 54(±0.08)% 52(±0.07)%

Table 4.1: Summary statistics for the most probable mode of the joint distribution.The
mode corresponds to the 68% of the highest density of the distribution.

4.5 Conclusions

In this chapter we have introduced a fast Bayesian inference algorithm that combines the

sampling efficiency of MCMC algorithms such as MH and the approximation efficiency of

ANNs. We have demonstrated the performance of our algorithm in both accelerating the

Bayesian analysis and approximating efficiently complex and non-linear likelihood func-

tion, using a toy example of typical astrochemical inverse problems. Our main conclusions

are the following:

1. The fast Bayesian inference method provides an efficient way to speed up typical

Bayesian methods for solving inverse astrochemical problems. We succeeded the

same parameter estimation results as the normal Bayesian inference method in less

than half of the duration.

2. ANNs can approximate successfully complex likelihood functions that include non

linear chemical codes. Both the 68% high density regions and the summary statistics

for both the normal and fast Bayesian inference method agree. The pre-defined

parameter values lie under or very close to the highest density point of the marginal

posterior probability distribution .

3. Even in the case of bimodal distribution the fast Bayesian inference method discovers

fully all the modes of the posterior distribution (see Figure 4.2(d)), but seems to miss

the density proportion between the main and the secondary mode.

4. Even though the high density regions of the posterior distributions are approximated

properly by the fast Bayesian inference method, the exact shape of the distribution

deviates a bit from the one derived by the normal Bayesian inference method. This
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Figure 4.2: 1D Marginalized Posterior Probability Distribution for each of the four param-
eters using normal mode Bayesian inference with MH sampling algorithms. The plots show
the Gaussian kernel density estimator of each Probability Density Function. Dark gray
area indicate 68% highest density region, while dashed red lines indicate the pre-defined
parameter values.

is probably due to the way ANNs generalize for data points that have not been

presented during the training period.

Our results and conclusions indicate that ANNs can be especially useful for applications

for which the Bayesian inference process would be expected to be tedious. This is usually

the case when the set of the parameters and/or the parameter space are too large. In

future work, ANNs can be used to estimate a large parameter set that would include

both physical and chemical parameters of surface chemistry. The physical parameters

can represent the physical conditions of the molecular cloud, the grain properties or the

mechanisms that control surface chemistry (e.g. non-thermal desorption mechanisms,

freeze-out e.t.c.). The chemical parameters can represent the reaction rates of chemical

reactions. Chemical parameters of the latter type are explored in the next Chapter.



4.5. Conclusions 99

−4 −2 0 2 4 6 8 10 12 14
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

cosmic ray ionization rate (ζ)

(a)

−2 0 2 4 6 8 10 12 14
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

radiation field factor (G
o
)

(b)

3.0e+03 2.2e+04 1.6e+05 1.2e+06 8.9e+06 6.6e+07 4.9e+08 3.6e+09 2.6e+10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

cloud density (n
H
)

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.005

0.01

0.015

0.02

0.025

freeze−out (fr)

(d)

Figure 4.3: 1D Marginalized Posterior Probability Distribution for each of the four pa-
rameters using accelerated Bayesian inference with ANNs. The plots show the Gaussian
kernel density estimator of each Probability Density Function. Dark gray area indicate
68% highest density region, while dashed red lines indicate the pre-defined parameter
values.
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Chapter 5

Bayesian Uncertainty Analysis of

Surface Reactions

At this point, we can acknowledge that Bayesian inference can and should play an impor-

tant role in astrochemical problems. The past two chapters have highlighted the benefits

of the Bayesian approach towards understanding dark cloud processes and constrain their

physical parameters. It is true that our knowledge regarding the molecular gas phase

chemistry in the ISM has made impressive progress over the last years. However, we can

not claim the same for the solid phase chemistry, where there is still too much uncertainty

about surface reactions and rate coefficients. The aim of this chapter is to demonstrate

whether and how we can use Bayesian inference methods to explore the solid phase chemi-

cal network parameter space and in particular the efficiency of established or new reaction

routes. The outcome of such inference processes can be used either directly by theoretical

astrochemists or alternatively can guide, in a structured probabilistic way, the labora-

tory experimentation processes. The latter reasons formed the motivation for the present

chapter. Such probabilistic approach against grain chemistry uncertainty has not been at-

tempted in the past. This chapter will function as a proof of concept to demonstrate the

feasibility and efficiency of Bayesian methods for inferring grain chemistry parameters and

providing helpful insight for laboratory experiments. To prove our concept, a simplified

chemical modeling and theoretical problem setting will be utilized as a toy example.

101
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5.1 Introduction

Before laboratory experimentations, all our knowledge about the surface reaction network

was based on chemical intuition and gas phase chemistry analogues. Since laboratory

astrochemists started using experimental techniques to test and evaluate the surface re-

action inventory, efficiency of reaction routes are being properly explored, new reaction

routes are constantly discovered and in general important information on how molecules

form on grain surfaces is being revealed. The first experimental work on the dust surfaces

studied the formation of molecular hydrogen (Pirronello et al. 1997). Several more exper-

iments followed studying either the formation of more complex molecules (e.g. Watanabe

et al. 2005; Ioppolo et al. 2009) or the ice morphology and ice mantle mechanisms (e.g.

Fraser et al. 2004; Collings & McCoustra 2005). A typical experiment setting consists of

a substrate, an Ultrahigh Vacuum (UHV) and Quadrupole Mass Spectrometer (QMS).

The substrate represents the dust surface, while the UHV creates an environment that

can reach a pressure of 10−10 − 10−11 mbar and a temperature as low as 12 − 15 K. Ices

are monitored by means of the QMS. Surface reactions of simple or more complex ices

can be studied and investigated while varying a wide range of laboratory conditions. Typ-

ically, these conditions include different atomic fluxes, ice temperatures, ice thicknesses,

ice structures, and mixture ratios. The aim of these experiments is to reveal the physics

and chemistry of molecule formation on dust surfaces by replicating ice composition in

star forming regions. The main focus is to both explore the impact of energetic processing

on the interstellar chemistry and characterize ice and dust processes that are relevant to

astrochemists. Such processes can include surface molecule formation, thermal desorption,

non thermal desorption and diffusion of molecules. However, the truth is that little exper-

imental information is yet available for the interstellar ices. And the main reason is that

the experimentation process is neither simple nor fast. There is a huge list of questions

that need to be answered regarding the surface reaction efficiencies, the ice composition

and the energetics that have an impact on the processed ices. On the other hand, there

is an even bigger list of potential experiments that need to be carried out and evaluated

before beginning to answer all these questions. It is easy to grasp the complexity of the

whole process. By the use of probabilistic inference and chemical models, we can help

lab scientists to prioritize specific experiments that are more likely to produce insightful

results. At the same time, while our knowledge of the interstellar medium is constantly
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improving, chemical models have to be employed to simulate the complex chemistry of

diverse regions including icy mantles. To ensure the robustness of our models, it is essen-

tial to estimate or at least understand the sensitivity of as many chemical parameters as

possible. Hence, to disentangle the chemistry of ISM ices, laboratory work combined with

chemical models and Bayesian inference can be an invaluable tool.

The addressed problem in this chapter is intended to be as general as possible and is

defined as follows: Given a grain or gas-grain chemical network and a set of observational,

intuitive or scientifically hypothesized constraints, estimate confidence intervals and/or

the sensitivity of the grain reactions or the grain reaction rates to the constraints. The

reaction network to explore is defined by the user as an input. The free parameters of our

problem are the reaction rates and any prior information on them can be included based

on the exploratory level of the project. Therefore, we have an inverse problem similar to

the one addressed in Chapter 3, where we want to infer parameter values using some sort

of constrain. However, in this case we are focusing mainly on chemical parameters instead

of physical parameters. Another crucial difference is that we do not necessarily have actual

observational values as constrains for the species of interest, since very few ices have been

observed. However, it is important to understand that the priority of the inference process

in this case is not to estimate the precise parameter values, but to evaluate the reactions

and get insight on the reaction rates. The toy example of this chapter was designed so

to abide by the definition of the above problem and at the same time allow us to derive

useful conclusions. Specifically, we want to get insight regarding the reactions and reaction

rate constants of a grain chemical network. Our constraint is defined through a fractional

abundance interval that includes the fractional abundance values that a species needs to

reach in order to be observed. We will refer to this interval as observational interval and

we can constrain our reaction rates based on whether species lie within that interval or

not. The use of observational intervals allows us to make inference about species that we

believe/assume that can or can not be observed, but we hold no specific observational

information for. Similarly and based on what hypothesis we might wish to form, we can

construct different constraints. The choice of the specific constraint was made so to test

whether a traditional Bayesian approach can provide useful results from such a general

and abstract restriction.

Similarly to Chapter 3, we combine Bayesian inference, a chemical code and a sampling

algorithm as our proposed parameter estimation method. The Bayesian inference and the
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sampling algorithm setting are the same in principle, but adjusted to the specific problem

requirements. Specifically for this project we developed a simple grain chemical model that

ignores gas chemistry and focuses solely on surface reactions. In Section 5.2, we describe

the chemical grain model. The inference process is presented in Section 5.3 and the results

of our analysis in Section 5.4. Finally, our conclusions are discussed in Section 5.5

5.2 The Chemical Model

We developed a simple chemical modelling code that accounts solely for the surface chem-

istry of a dark molecular cloud. Our simplified model is a time-dependent single-point

model that generates time series of solid phase molecular abundances as a function of

the physical conditions of the molecular cloud and the chemical parameters of the de-

fined chemical network. In total we have a chemical network of 22 species and 23 surface

reactions that are listed in Table 5.2 and Table 5.3 respectively.

To model the surface chemistry of a dark cloud the abundance of each solid species is

derived by solving rate equations for grain-surface chemistry. The formation and destruc-

tion mechanisms for a species i are given by the following kinetic equation:

dni
dt

=
∑
l,m

kilmnlnm − ni
∑
i 6=r

krnr − kdesi ni + kadsi ni, (5.1)

where kilm is the reaction rate of all the reactions between species l and m that produce i, ni

is the concentration of species i, kr represents the reaction rates of all the reactions where

species i participates as reactant, while kdesi and kadsi are the desorption and adsorption

rates. For dense cores we expect freeze out to dominate over desorption. Therefore, for

simplicity, the desorption rate in our case is assumed to be zero. Such assumptions are

made keeping in mind that this project is a proof of concept and we need to focus on the

applicability of our method rather than the accuracy of our modeling approach. Gas-phase

species can be adsorbed on the grain surfaces and the adsorption rate is assumed zero for

all but the following 5 species: CO, CS, O, OH and S. Ideally, we could have defined a

gas phase species depletion rate that would be a function of the cross section of the grain,

the thermal velocity of the species and the density of the species. However, our model

does not include any gas chemistry or gas-grain interaction and it is impossible to retain

a species concentration equilibrium. To compensate for the lack of gas phase information
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Species i Qiads

CO 10−4

CS 10−12

O 10−4

OH 10−8

S 10−7

Table 5.1: Cumulative gas to grain abundance with respect to H nuclei.

we consider the following. If we knew in advance the maximum cumulative quantity Qiads

for each species i that would freeze on to the grains after the longest possible collapse

period (e.g. nH ∼ 108 cm−3), then we could define the adsorption rate as a function of the

molecular cloud density. To specify Qiads we run UCL CHEM models for a range of possible

physical parameters and set the average value of the sum of the depletion quantities of

gas phase species i from all the runs as Qiads. The values of Qiads can be seen in Table 5.1.

Considering that this is a proof of concept project, we chose to use UCL CHEM instead

of setting Qiads as a free parameter in order to keep our set of free parameters as small as

possible. For the collapse to a particular cloud density nH we use the modified formula of

Rawlings et al. (1992). Finally, all initial fractional abundances are practically zero and

their actual value is set to 10−30.

The type of reaction rate coefficients usually included in gas-grain chemical modeling

codes, such as UCL CHEM, for two body reactions is the Kooji-Arrhenius’ equation (Côme

2001):

k(T ) = α
T

300

β

e−γ/T [cm3s−1], (5.2)

where T is the gas temperature in K, β is the temperature exponent, γ is the fraction

of the activation energy in J mol−1 to the gas constant (8.3145 J mol−1K−1) and α

is a constant factor. The above equation accounts for reactions that occur in a three

dimensional environment such as gas-phase reactions. Hence, in order to calculate surface

rate constants we need to transform the formula or take a different approach. A full

description of how the above formula can be transformed to account for surface reactions

can be found in Occhiogrosso et al. (2012). In reality, in our case we can simplify the task

by ignoring the temperature dependency and assume that both β and γ are equal to zero.

Essentially, our parameter estimation is restrained to exploring values for the constant

α. In this case, α represents a constant that simply describes the efficiency of a reaction,
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Species

CH3OH, CO, CO2, CS, CS2, H, H2CO, H2CS, H2O, H2S,
H2S2, HCO, HCS, HOCS, HS, HSO, O, OCS, OH, S, SO, SO2

Table 5.2: Species

No. Reactions

1. O + H → OH
2. OH + H → H2O
3. CO + OH → CO2

4. S + H → HS
5. HS + H → H2S
6. H2S + S → H2S2

7. CS + H → HCS
8. HCS + H → H2CS
9. CO + S → OCS
10. OCS + H → HOCS
11. H2S + CO → OCS
12. H2S + H2S → H2S2

13. H2S2 + CO → CS2 + O
14. H2S + O → SO2

15. CS2 + O → OCS + S
16. CO + HS → OCS
17. S + O → SO
18. SO + O → SO2

19. SO + H → HSO
20. HSO + H → SO
21. CO + H → HCO
22. HCO + H → H2CO
23. H2CO + H → CH3OH

Table 5.3: Reaction Network

which at this point is the only aspect we seek to explore. The constant α is normally in

units of mol−1cm−3s−1. However, in the context of this chapter we will consider it as a

unitless index of efficiency.

5.3 Bayesian Inference

Our aim is to obtain information about the set of reaction rates k = (k1, k2, ..., k23) of our

surface chemical network, where kj is the reaction rate of reaction j, using the simulated

molecular abundances Y = (Y1,Y2, ...,Y22) where Yi is the abundance of species i. In

our toy example, we will not need to constrain the whole set of Y , but on a limited set

of species. Hence, we define the set of simulated molecular abundances S = {S1, S2},
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where S ⊂ Y and S1 = {H2O, CO, CO2, CH3OH}, S2 = {HCO, HOCS, HS, O, S, H2S2}.

Note that S1 and S2 refer to the fractional abundances of the noted species. However, for

convenience and since there is no risk of confusion, we will use the same notation for the

set of the species themselves as well.

These quantities are related through our chemical code C(·), so that S = C(k). Note

that we do not include an error term since we do not attempt to match an actual observed

value. Instead, we are trying to generate values that do or do not lie in an observable

abundance interval. Let Oint be the observable abundance interval, then with respect to

H nuclei we define Oint as:

Oint = [10−8, 10−4] = {x ∈ R|10−8 ≤ x ≤ 10−4}. (5.3)

We want to derive insight for the reaction rate constants that generate fractional abun-

dances so that S1 ∈ Oint ∧ S2 /∈ Oint, where the symbol ∧ denotes the logical ‘and’.

The parameter estimation can be performed through the posterior probability distribu-

tion (PPD) of the reaction rates given the species abundances. Using Bayes’ rule we have

that the PPD is:

π(k|S) =
L(k;S)π(k)

m(S)
∝ L(k;S)π(k) (5.4)

The PPD expresses our uncertainty about the reaction rates after considering the species

abundances and any prior information we might have. The denominator is simply a

normalization factor. The prior information on reaction rates is defined as a uniform

distribution that is non-zero when the reaction rates are between 10−7 and 10−18 and zero

elsewhere. The limits of the exploration domain (i.e. 10−7 and 10−18 ) were considered to

define a reasonable exploration range, however their values are up to the end user. Our

specific limit values were chosen so as to represent a more exploratory range than the one

we usually meet in gas phase reactions.

The peculiarity of our case is the form of the likelihood function, which is taken to be

a Poisson distribution. The likelihood function should express the probability of species

in S1 lying within and species of S2 lying outside Oint, given a set of reaction rates.

We require this probability to be maximum when all the species in S lie within their pre-

specified interval and minimum when none of the species in S lies within their pre-specified

interval. Hence, we require a discrete probability distribution that would express this
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probability. The Poisson distribution is a discrete probability distribution that expresses

the probability of a given number of events occurring. An event occurrence in this instance

is considered to be the case when S1 ∈ Oint or S2 /∈ Oint. We define a random variable

X which expresses the number of species in S1 that lie within the observable abundance

interval plus the number of species in S2 that do not, so that X ∈ {0, 1, ..., 10}, where 10

is the cardinality of S. The likelihood of a reaction rate set k given that the sum of the

species from S1 that lie within Oint and the species from S2 that do not is n, is equal to

the probability mass function of X being equal to n. If X has a Poisson distribution with

parameter λ, the probability mass function of X being equal to n is given by:

Pr(X = n) =
λne−λ

n!
. (5.5)

The positive real number λ is equal to the expected value of X and in our case is equal

to all possible event occurrences, so that λ = 10. It is apparent that when a number n of

species lie within Oint for different sets of k, all these sets will be ‘scored’ equally from our

likelihood function, independently of the exact species or the exact abundances. Therefore,

we do not aim or expect to estimate an optimal reaction rate setting. Our objective is to

estimate probable areas of the reaction rates’ that generate observable abundances and to

that extend make a comparative study on the efficiency of the reactions.

Again, we are not able to access the whole posterior probability distribution. Therefore,

we employ the exact MH sampling algorithm of Chapter 3. We run 5 independent Markov

chains of length 500, 000 samples and for each sample we collect the fractional abundance

for H2O, CO, CO2, CH3OH at a final density of 107 cm−3. For more details on MCMC

and MH we refer readers to section 3.2.2 and references within.

Before presenting the results of our analysis, it is useful to justify the choice of the sets

S1 and S2. The species that belong to S1 are the ones that we require to be abundant

enough to be observed. Since this is a toy example, we chose species (i.e. H2O, CO,

CO2, CH3OH) that are already observed in icy mantles, so that it would be easier to

benchmark our results. Regarding the set S2, we chose species (e.g. HCO, HOCS) that

are not expected to be abundant enough to be observed or species (e.g. O, S) that even

though we expect them to be abundant, since they adsorb from the gas phase, they

efficiently hydrogenate to form other species.
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5.4 Results

Our results are presented in the form of marginalized posterior probability distributions

(PPD) for the reaction rate constants. The density of each marginalized PPD reveals

the areas where the corresponding reaction rate is more probable based on the imposed

constraints. The marginalized PPD can be seen in Figure 5.1 and Figure 5.2. An obvious

result is that for 8 of the reaction rates (see Figure 5.1) the distributions present enough

variability to reach some constructive conclusions around our constraints. On the contrary,

for the remaining 15 of the reaction rates the distributions are nearly uniform. For brevity,

the marginalized PPD for 4 of those can be seen in Figure 5.2. Although obvious, it is

worth noting what a flat distribution for a reaction rate constant entails. Essentially,

the reactions of the reaction rates with uniform distributions do not impact in any way

our desired outcome as defined by our imposed constraints. In different words, for the

given constraints our chemical network could have been simplified by omitting 15 out of

23 reactions. Such a result was expected and could have been speculated based on the

defined constraints. However, we could have not predicted the specific result.

Let us focus now on Figure 5.1 and the reaction rates that present some variability. A

general observation would be that for most of the distributions in Figure 5.1 we can notice

two or three different probability density levels that are not always smoothly separated.

This step-function behavior can be accounted to the fact that our likelihood function is

discrete. The PPD of k1 has a dense peak around 10−7, with a less dense flat region

between 10−14 and 10−9. The first reaction produces OH and based on the marginal PPD

of k1, it needs to be extra efficient. This result can be explained considering that OH is

crucial for the production of H2O and CO2, both members of the S1 set. The PPD of

k2 presents a denser region between 10−13 and 10−7, with a slight denser peak close to

10−12. The second reaction produces H2O, hence needs to be efficient, but also competes

for OH with reaction number 3 that produces CO2. The distribution of the reaction rate

constant k3 shows a nearly uniform behavior, with a small denser region between 10−13 and

10−9. The third reaction destroys CO which is a member of S1, so we wouldn’t expect an

extremely high reaction rate. At the same time, the third reaction, as already mentioned,

competes with the second for OH, which also explains the lack of high dense regions at the

right side of the distribution. However, the product of reaction number 3 is CO2, which

is also a member of S1. That probably explains why the denser bump is somewhere in
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the middle. The distribution of k4 shows a somehow smoother behavior and resembles a

bimodal distribution. Both modes are quite wide. The denser mode is peaking around

10−8, while the second one around 10−17. The behavior of k4 shows that intermediate

values are way less likely to produce results that align with our constraints. In order to

understand or speculate why that might happen we will try to analyze all possible cases.

The forth reaction destroys H and S to produce HS. Both S and HS are members of the S2

set, so our results should point us towards low abundance values for both of them. Let us

assume that k4 is high. That means that S is destroyed, which agrees with our constraint.

On the other hand, that would also mean that HS would be abundant. HS though, will

only be an intermediate stage and will hydrogenate again. The distribution rate of k5 that

will be discussed later indicates that HS will be destroyed for the production of H2S. Now,

let us assume that reaction number 4 is not efficient. The abundance of HS will be low,

however in order to decrease the abundance of S, different reactions should become more

efficient and that could potentially increase the abundance of other members of S2 (see

HOCS and reactions 9 and 10). Hence the mode around 10−17 is less dense. Lastly, if k4

was somewhere in the middle, we would probably retain most of the risks discussed in the

previous situations without gaining any of the benefits. That explains the deep smooth

drop of k4 marginal PPD around 10−13. Moving to reaction number 5, we have already

argued that since HS is a member of S2, it should only function as an intermediate species.

Hence, k5 is most likely to be high enough to keep HS out of the observational interval.

The marginal PPD of k21 highlights that the 21st reaction should not be efficient. For the

reactions 21, 22 and 23 CO is hydrogenated successively to form HCO and CH3OH. HCO

is a member of S2, while CH3OH of S1. According to the marginal PPD of k21, k22 and

k23, in order to keep the final abundance of HCO outside the observational interval and

at the same time produce enough CH3OH, the 21st reaction should not be efficient. The

k21 peaks around 10−18, but a value around 10−14 is also very likely. The 22nd reaction

on the other hand should be very efficient, with the k22 peaking around 10−8. Finally, k23

has a wide dense region that peaks around 10−10 and indicates a relative efficient reaction.

The marginalized PPD of the reaction rates clearly indicate that there is a clear con-

nection between the species we impose constraints on and the reaction rates that present

sensitivity on the results. However, there are species and reactions that are not directly

impacted by the constraints, but nevertheless present certain sensitivity. We should be

really careful in these cases. By imposing constraints only on certain species from a chem-
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ical network we automatically imply that we are either indifferent or ignorant about the

rest. Therefore, we must either be certain that we are indeed indifferent or perform some

post-algorithm analysis on the behavior of these species for useful insights. Let us make

that clearer with an example. Reactions 4,5 and 6 describe the successive hydrogenation

of S, to HS and H2S, which then reacts with S to form H2S2. The species S, HS and

H2S2 belong to the S2 set, however we have set no constraint on H2S. Figure 5.3 shows

the fractional abundance of the above species as a function of time using a set of reaction

rate constants based on our earlier results. The S adsorbs from the gas, but never gets to

its Qiads value, since it gets destroyed from multiple reactions including reactions number

4 and 6. The abundance of HS seems to increase steadily for about 104 years, but then

seems to be destroyed more than produced. The high value of k5 can explain that. At

the same time, the abundance of H2S2 seems to start increasing, but no matter what is

the efficiency of reaction 6, there is not possibly enough time to reach the observational

interval levels. On the other hand, the abundance of H2S increases enough to end up in

the observational interval. Therefore, it is safe to assume that by not constraining H2S,

we allowed our algorithm towards a very efficient route to keep S, HS and H2S2 outside

of the observational interval. Let us assume that this was a real case scenario and not

a proof of concept project. In that case, if H2S should have never reached an observa-

tional interval abundance, then by not constraining it we forced our algorithm to a wrong

analysis. However, if we assume that we held no prior information at all about H2S, our

analysis would indicate that based on our imposed constraints, H2S should be abundant

enough to be observed. That would be a very useful insight.

While this was clearly only a proof of concept exercise, we succeeded in delivering a

small subset of experimentally ‘interesting’ reactions. From this subset, one could prioritize

focusing on the reactions that are extremely sensitive on the value of the reaction rate

constant. For example, k1 presents a very dense mode, which indicates that the first

reaction has to be very efficient, since any other alternative reduces the probability density

by much. Reactions 21 and 22 present similar behavior, with k21 also presenting two very

dense modes, that could be worth experimenting with. The rest of the remaining reactions

might not present as high dense regions, but still constraint enough the parameter space

to either guide experimental scientists or aid theoretical astrochemists with determining

possible values for their chemical codes. Finally, by monitoring the evolution of the species’

abundances under the most probable reaction rate set, we can identify dependencies or
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insights on species that we have no prior information at all.

5.5 Conclusions

This chapter presented a novel way to tackle uncertainty about surface reactions and rate

coefficients using Bayesian inference. To prove the efficiency of Bayesian techniques to

provide insight on the chemical parameters of surface reactions, we tested our algorithm

with a proof of concept toy example. For our analysis we developed a simple grain chemical

code and with the help of MCMC sampling algorithms we exploited the Bayesian inference

principles in order to get information about the reaction rate constants of a simplified

chemical network. In order to test for situations where there is no specific observational

information, we defined general and vague constraints. The main conclusions of this work

are as follows.

1. The Bayesian method provides a systematic approach to get insight on chemical

parameters even with vague and not very informative constraints.

2. The results are highly sensitive to the definition of the constraints. The constraints

should reflect exactly our knowledge or what we are willing to allow the algorithm

to know in order to make inference.

3. Despite the vague constraints, our approach managed to estimate wide but useful

intervals for the reaction rates.

4. Our method managed to identify the list of reactions and species that are important.

A simpler chemical network could be designed after our results.

5. The algorithm can recognize indirect dependencies even among the species that are

not directly impacted by the constraints.

6. On the whole, Bayesian inference proved that can be an invaluable knowledge dis-

covery tool against our uncertainty about surface reactions and rate coefficients.

7. Finally, both our type of analysis and potential results can greatly contribute to

both experimental and theoretical benefits.

The scope of the present chapter was to demonstrate whether Bayesian analysis tech-

niques can be used by astrochemists to tackle surface reaction uncertainty problems. Since
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we have established that the Bayesian approach is an invaluable tool and based on our

results and conclusions, we now state what can be improved or what further steps should

be made. First of all, to increase the validity of our results, better, more complete and

accurate chemical modeling should be made. Radiation field and cosmic rays should be in-

cluded, as well as thermal and non-thermal desorption mechanisms. A more sophisticated

way should be found to model the gas-grain interaction by either physical simulation or by

including the adsorption parameters as free parameters. In order to get more information,

a more complete chemical network can be used. Apart from the adsorption parameters,

more parameters can be explored, such as the final density of the cloud. In addition, the

benefits of Bayesian analysis could be further exploited in conjunction with a more com-

plicated chemical modeling approach such as the one suggested by Garrod (2008). Finally,

the whole approach should be applied to a more realistic and useful project.



5.5. Conclusions 114

1.9e−22 4.7e−19 1.1e−15 2.8e−12 6.8e−09 1.7e−05
0

0.005

0.01

0.015

0.02

0.025

k
1

(a)

1.9e−22 4.7e−19 1.1e−15 2.8e−12 6.8e−09 1.7e−05
0

0.005

0.01

0.015

k
2

(b)

1.9e−22 4.7e−19 1.1e−15 2.8e−12 6.8e−09 1.7e−05
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

k
3

(c)

1.9e−22 4.7e−19 1.1e−15 2.8e−12 6.8e−09 1.7e−05
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

k
4

(d)

1.9e−22 4.7e−19 1.1e−15 2.8e−12 6.8e−09 1.7e−05
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

k
5

(e)

1.9e−22 4.7e−19 1.1e−15 2.8e−12 6.8e−09 1.7e−05
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

k
21

(f)

1.9e−22 4.7e−19 1.1e−15 2.8e−12 6.8e−09 1.7e−05
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

k
22

(g)

1.9e−22 4.7e−19 1.1e−15 2.8e−12 6.8e−09 1.7e−05
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

k
23

(h)

Figure 5.1: 1D Marginalized Posterior Probability Distribution for 8 reaction rate coeffi-
cients using Bayesian inference with MH sampling algorithm. The plots show the Gaussian
kernel density estimator of each Probability Density Function.
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Figure 5.2: 1D Marginalized Posterior Probability Distribution for 4 reaction rate coeffi-
cients using Bayesian inference with MH sampling algorithm. The plots show the Gaussian
kernel density estimator of each Probability Density Function.
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Chapter 6

Conclusions

The aim of this thesis has been to introduce machine learning and probabilistic methods

for solving typical astrochemical problems. As larger datasets and more complex models

are being employed in astrochemistry, the need for intelligent data mining algorithms

will increase. We have explored 3 different machine learning approaches for interstellar

knowledge discovery through molecular data and chemical models: Clustering analysis,

probabilistic inference and predictive modelling. Each chapter presents a new way to

combine, interpret and analyze this cornucopia of data observed in ISM or generated by

chemical models. The following points summarize the key conclusions from each chapter

of the present thesis:

1. In Chapter 2, we demonstrated how traditional and probabilistic clustering algo-

rithms can provide insight in synthetic time series of molecular abundances. We

described the nature of the data produced by chemical codes and the challenges the

data present. The analysis of the chapter was based on a traditional clustering algo-

rithm, the hierarchical clustering algorithm. Advantages and disadvantages of the

method were discussed, as well as ways to overcome data challenges. A probabilistic

version of the algorithm was then suggested as a natural upgrade of the traditional

algorithm. By adopting a probabilistic approach we managed to naturally overcome

most of the challenges and still discover structure in our data. Both approaches were

tested against a database of synthetic time series of molecular abundances for a large

117
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grid of physical and chemical parameters. The results pointed out that clustering

methods perform efficiently in finding structure, patterns and insight in big data

sets of astrochemical data. Furthermore, our results constituted a perfect showcase

on how both traditional and emerging machine learning algorithms can discover and

highlight useful astrophysical information in readily available data.

2. Chapter 3 combined a new way of solving astrochemical parameter estimation prob-

lems with an application in icy mantles of molecular clouds. Discovering the prop-

erties of dark molecular clouds where icy mantles evolve, using observational con-

straints of solid phase species is a typical inverse problem. Bayesian inference was

employed to alleviate our uncertainty about the physical processes in these molec-

ular clouds. We implemented a Bayesian inference algorithm that used Metropolis

Hastings (i.e. a MCMC algorithm) to explore the parameter space and a chemical

code for the evaluation of the likelihood function. We concluded that the Bayesian

method provides a systematic approach to solve non-linear inverse problems with

high noise levels and significant model uncertainties. The MCMC technique allows

us to sample from complex probability distributions in an efficient way. Our method

successfully handled a typical astrochemical ill-posed problem and revealed a more

complete set of solution regions compared to traditional approaches.

3. The scope of Chapter 4 was to improve the speed and computational cost of the

methods suggested in Chapter 3, without any loss of accuracy. A machine learning

supervised algorithm was used and tested against a simplified (compared to Chapter

3) problem. The most computationally and timely expensive component of our

Bayesian approach was the evaluation of the likelihood function. This function

estimates how likely is for a set of parameters to be valid, based on the chemical

abundances it generates and given our observational constraints. For each evaluation

of the likelihood function, a single run of a lengthy chemical code is required. We

suggested and implemented an ANN that learned the likelihood function after a

number of evaluations. Our results demonstrated that ANNs can be used successfully

to accelerate Bayesian inference without loss of accuracy. We also concluded that

ANNs can efficiently learn complex non-linear function that commonly occur in

astrophysics.

4. In Chapter 5, we extended our Bayesian inference algorithm to vaguely constrained
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astrochemical problems. There is too much uncertainty regarding surface reactions

and rate coefficients. On top of that, there are no structured ways to explore the

solid phase chemical network so far, apart from lengthy lab experiments. The com-

plication of the network, the lack of any prior information and the duration of lab

experiments makes an actual parameter exploration and significant knowledge dis-

covery unfeasible. In order to contribute towards a faster and smarter parameter

exploration, we demonstrated with a proof of concept toy example how Bayesian

inference can provide invaluable insight, information and guidance about both sur-

face reactions, reaction rates and specific surface species. This information can

be used either directly by theoretical astrochemists or guide experimentation for

a more accurate and precise parameter value. We constructed a simplified grain

chemistry chemical code over a simple chemical network. We assumed we had no

precise observational constraints and tested our method with vague and incomplete

observational intervals instead. Based on the results, we concluded that Bayesian

inference performs efficiently even under those conditions, discovering and providing

useful insights. Bayesian inference proved to be an invaluable knowledge discovery

tool against our uncertainty about surface reactions and rate coefficients. We also

suggested that further work should be carried out to extend the capabilities of this

approach and support real scientific projects.

Before the end of this chapter and thesis, it is worth recapping what this thesis has

accomplished at a higher level. In a few words, we managed to build and/or put together

the components of an agile and modular framework that can guide and assist an astro-

chemist through advanced inference techniques and algorithms. Our contribution was not

only through the machine learning algorithms that provided and supported the analytical

aspect of the framework, but also through the process design and infrastructure of such

a framework. The process diagram that visually describes the developed framework can

be seen in Figure 6.1. Every rectangular box in the diagram describes a process. Each

one of the processes represents a component of the framework that can be redesigned,

augmented, altered or replaced by the user with an alternative process that benefits the

scope of each project. For example, the chemical code to be used is totally up to the

end user, who can choose between UCL CHEM and other established chemical modeling

codes or simply develop his own and plug it in. On top of that, each component may or
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Figure 6.1: Process diagram of the developed framework in this thesis.

may not consist of multiple processes that can either be employed or simply ignored. For

example the inference component may consist of a number of modules such as different

sampling algorithms to choose from or accelerated likelihood evaluation through ANNs

that can be switched on or off. Finally, the database is simply a relational database for

data storage, management, retrieval and integration of all the information generated from

chemical codes, observations or analytical processes.
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Bergin, E. A., 2011, in M. Röllig, R. Simon, V. Ossenkopf & J. Stutzki (eds.), EAS

Publications Series, volume 52 of EAS Publications Series, pp. 207–216

Bergin, E. A., Plume, R., Williams, J. P. & Myers, P. C., 1999, The Ionization Fraction

in Dense Molecular Gas. II. Massive Cores, ApJ, 512, 724

Bergin, E. A. & Tafalla, M., 2007, Cold Dark Clouds: The Initial Conditions for Star

Formation, Ann. Rev. Astr. Astrophys., 45, 339

Bishop, C. M., 2006, Pattern Recognition and Machine Learning (Information Science and

Statistics) (Springer-Verlag New York, Inc., Secaucus, NJ, USA)
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I felt once more how simple and frugal a thing is happiness: a glass of wine, a

roast chestnut, a wretched little brazier, the sound of the sea. Nothing else.

Nikos Kazantzakis


