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Abstract

This thesis addresses the emergent electrostatics of two-dimensional, toroidal magnetic

models that possess XY symmetry, providing a platform for novel investigations into the

Berezinskii-Kosterlitz-Thouless (BKT) phase transition.

The BKT transition drives the thermal dissociation of bound pairs of topological defects

in many two-dimensional systems, including the two-dimensional XY model of magnetism.

The XY model is closely analogous to the two-dimensional Coulomb gas, but can be sim-

ulated without computing the long-range interactions of the Coulombic system. This the-

sis elucidates this paradox by showing that Villain’s approximation to the XY model is

strictly equivalent to the Maggs-Rossetto (MR) electrostatic model when applied to the

two-dimensional Coulomb gas.

The mapping is used to probe the BKT transition through the application of the MR algo-

rithm to the two-dimensional Coulomb gas. By simulating the Coulombic system, fluctua-

tions in the winding of charges around the torus are shown to turn on at the BKT transition

temperature. These topological-sector fluctuations in the electric field therefore signal the

high-temperature phase of the transition.

It is then shown that the e↵ective critical exponent of Bramwell-Holdsworth (BH) theory

can be measured in superfluid 4He films, which correspond to e↵ective Coulomb gases in

the limit of large but finite system size. With the Coulombic system taken as the base BKT

system, it is inferred that BH theory is a general property of BKT systems.



Résumé

Cette thèse s’intéresse aux phénomènes électrostatiques émergents dans les modèles

magnétiques toröıdaux bi-dimensionnels à symétrie XY, fournissant ainsi un support pour

de plus amples recherches dans le domaine de la transition de phase Berezinskii-Kosterlitz-

Thouless (BKT).

Dans de nombreux systèmes bi-dimensionnels, dont le modèle bi-dimensionnel XY du

magnétisme, la transition BKT contrôle la dissociation thermique de paires de défauts

topologiques liés. Le modèle XY est analogue au gaz de Coulomb bi-dimensionnel, à ceci

près qu’il peut être simulé sans avoir à modéliser les interactions à longue distance du

système Coulombien. Cette thèse élucide ce paradoxe en démontrant que l’approximation

de Villain appliquée au modèle XY est strictement équivalente au modèle électrostatique

de Maggs-Rossetto (MR) appliqué au système Coulombien bi-dimensionnel.

Cette équivalence est utilisée pour sonder la transition BKT par l’application de l’algorithme

MR au gaz de Coulomb bi-dimensionel. En simulant le système Coulombien, il est prouvé

que les fluctuations dans l’organisation des charges autour du tore sont activées à la

température de transition BKT. Ces fluctuations du champ électrique indiquent ainsi la

phase de haute température de la transition.

Il est ensuite montré que l’exposant critique e↵ectif de la théorie de Bramwell-Holdsworth

(BH) peut être mesuré dans les films d’hélium 4 superfluide, qui correspondent à des gaz de

Coulomb e↵ectifs dans la limite de systèmes de grandes tailles finies.
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Chapter 1

Introduction

The neutral Coulomb gas presents a statistical-mechanical problem in which the e↵ect of

dimensionality is particularly important. In three spatial dimensions, the continuum solu-

tion of Poisson’s equation gives the well-known 1/r interaction potential. This potential

is long-ranged, but is not quite su�cient to confine the positive and negative charges at

finite temperature. In two spatial dimensions, however, the continuum solution of Poisson’s

equation gives a confining ln(r) potential. As first noted by Salzberg and Prager, who found

an equation of state for the two-dimensional Coulomb gas [1], this results in a transition

from a high-temperature phase of deconfined charge to a low-temperature phase of bound

charge pairs.

Berezinskii [2], Kosterlitz and Thouless [3] discovered that the classical two-dimensional

XY model of magnetism is, physically, very similar to the two-dimensional Coulomb gas.

This mapping has a long history, fuelled by its remarkable statistical mechanics [2–4] and

its relevance to a wide variety of experimental systems, such as superconducting films and

two-dimensional Josephson junction arrays [5–8], superfluid films [9–12], liquid-crystal and

polymer films [13], cold-atom systems [14], thin-film Bose-Einstein condensates [15, 16],

superinsulating films [17, 18], and magnetic films and layers [19–21]. In the magnetic rep-

resentation, the charge-binding transition discovered by Salzberg and Prager [1] becomes

the famous Berezinskii-Kosterlitz-Thouless (BKT) transition [2, 3] that involves the un-

binding of spin vortices: as the system passes through the transition temperature from the

low-temperature phase, tightly bound vortex pairs unbind and destroy the quasi-long-range

order of the system.

Despite the long history of the analogy between the XY model and the two-dimensional

Coulomb gas, its precise form on a microscopic level is not so simple or transparent, and is

not found in the pioneering work of BKT and others [2–4]. This omission was recognised by

17
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Vallat and Beck [22], who provided the exact mapping between Villain’s approximation to

the XY model [23] and the two-dimensional Coulomb gas in the grand canonical ensemble

(GCE). This thesis was inspired by this equivalence between the magnetic and Coulombic

systems. From the outset, our aim was to further understand the mapping, and to present

it in a more modern and transparent representation using the Maggs-Rossetto (MR) elec-

trostatic model [24]. This led to a new measure of the BKT transition in Chapter 5, and to

the generalization of Bramwell-Holdsworth (BH) theory [19, 20], which applies to magnetic

films with XY symmetry, to all systems that are governed by BKT physics in Chapter 7.

Throughout this thesis, any real or model system that admits a BKT transition is termed a

‘BKT system’, and all systems will be square and subject to periodic boundary conditions

(PBCs), unless stated otherwise. The PBCs enforce a toroidal topology, but the curvature

of a true torus is not considered.

1.1 Thermodynamics and Phase Transitions

The thermodynamics of a system is the description of the system in its infinite-size limit:

the thermodynamic limit. Any thermodynamic quantity is therefore only strictly defined for

systems of infinite size, which, for most systems, corresponds to its macroscopic description.

This definition is a consequence of the central limit theorem of statistics, which predicts

that, for example, fluctuations from the mean of the internal energy per particle of a gas

of N approximately independent particles is of the order N�1/2, from which it follows

that there are no fluctuations in this quantity in the thermodynamic limit. In general, most

macroscopic volumes of matter at equilibrium can be treated as being in the thermodynamic

limit. There are, however, some exceptions, one being the XY model of magnetism: this

model is predicted to have zero magnetization in the thermodynamic limit [25], but the limit

is approached so slowly that a magnetic film the size of the state of Texas for would still

have finite magnetization [20]. Finite-size e↵ects are therefore extremely important in the

macroscopic description of this system.

Phase transitions are transformations of thermodynamic systems between di↵erent states of

matter. Many phase transitions are measured by order parameters, which are zero in one

phase and finite in the other: in a ferromagnetic system, for example, the order parameter

is usually the magnetization of the system. This thesis revolves around the BKT transition,

which governs the thermal dissociation of pairs of topological defects in the variety of dif-

ferent systems outlined above [5–21]. This phase transition is associated with a topological

ordering, a term we will elucidate through the investigation presented in Chapter 5.
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1.2 Monte Carlo Simulations

The majority of model systems are too complex for the analytic calculation of thermody-

namic quantities. Simulations of the model systems are therefore performed in order to

approximate the quantities of interest: throughout this thesis, the Metropolis Monte Carlo

sampling procedure is used. This involves setting the components of the system in a certain

initial configuration and then sampling a series of new configurations, which are either ac-

cepted or rejected on the basis of the Metropolis update scheme. Any configuration that is

of a lower energy than that of the previous configuration is accepted; if, however, the energy

change is not negative, the sampling procedure then accepts the new configuration if a ran-

dom number in the set [0, 1) is less than exp (���E), where �E is the di↵erence between

the energies of the new and old configurations, � := 1/kBT is the inverse temperature, kB

is Boltzmann’s constant, and T is the temperature of the system. The exponential func-

tion e↵ectively introduces a temperature to the system, by acting as an e↵ective Boltzmann

probability for the system changing from its initial to its final state at the temperature in

question. Between a certain number of proposals, measurements of the system are then

taken, from which the user is able to form approximate thermal averages of the desired

quantities.

1.3 Topology and Ergodicity

Topology [26] and ergodicity [27] are two of the most important concepts in physics. In this

thesis, it will be shown that they can both be used to classify the BKT phase transition

outlined above.

In general, topology is the study of the properties of objects that are preserved under

continuous deformation: it is the classification of shape. In the context of physics, this

corresponds to the shapes of the fields that describe the systems in question. Divergences in

electric fields, for example, cannot be removed by the continuous deformation (stretching or

bending) of the fields: they can only be removed by operations such as the discrete reversal of

field direction. Field configurations that contain a certain number and value of divergences

- or topological defects - are classified as topologically distinct from field configurations that

contain a di↵erent number or value of divergences. Topological defects are ubiquitous in

nature, hence the importance of the concept of topology in physics.

The ergodic hypothesis states that a representative fraction of the accessible microstates

of a real system will be visited by the system over a long enough period of time. (Note

that, in a real system, the same thermal averages result from the representative fraction as
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though all accessible microstates have been visited.) A system is therefore in an ergodic

state if its statistical averages are independent of the dynamics, provided the dynamics could

theoretically explore all accessible microstates. When first introduced, this seems to be an

abstract formalism of the language of physics, but it turns out to be very useful in classifying

the states of certain systems. In this thesis, it will be shown that the two-dimensional

Coulomb gas is classified as non-ergodic in the low-temperature phase of the BKT transition

where charge is confined, but that it is classified as ergodic in the high-temperature phase

where the charges are free to dissociate, or are deconfined. This is because it is valid to allow

a global charge dynamics to complement the required local charge dynamics. The global

dynamics amounts to winding a single charge around the torus, but, physically, confined

charge can never wind around the torus: when charge is confined, the statistical averages

are therefore dependent on the dynamics, and the system is in a non-ergodic state.

1.4 Aims and Thesis Plan

The aims of this thesis are to clearly present the mapping between the two-dimensional

Coulomb gas and the two-dimensional XY model of magnetism in a modern and transparent

representation and to then use this to both show the topological and ergodicity-breaking

nature of the BKT transition, and to also generalize BH theory to all systems that are

governed by BKT physics. To do this, the Coulomb interaction, the MR electrostatic model,

the XY model, the BKT transition, and BH theory are introduced in Chapter 2. Following

this, in Chapter 3, the standard physics of the two-dimensional lattice Coulomb gas is

reformulated in a language suitable for the thesis, and an extension of the MR electrostatic

model to the GCE in a lattice formalism is presented in detail in Chapter 4. The MR

algorithm is then applied to the two-dimensional Coulomb gas in Chapter 5: this allows us

to clearly describe the BKT transition in terms of topology and ergodicity. In Chapter 6,

the equivalence between the MR electrostatic and Villain models in two spatial dimensions

is shown, which allows us to define an emergent electric field for magnetic systems that

possess XY symmetry, and to infer the relevance of Chapter 5 to experiment. Finally, in

Chapter 7, the emergent-field representation outlined in Chapter 6 is applied to BH theory

to generalize this theory to the general BKT system.



Chapter 2

Theoretical Background

This chapter is a review of the background material required for the thesis.

2.1 Classical Continuum Electrostatics

This project began with an analysis of the mapping between the two-dimensional XY model

of magnetism and the two-dimensional lattice Coulomb gas. The theory of electrostatics

on a lattice will therefore be analysed before being used to probe both the famous BKT

transition [2, 3] and the mapping between the Coulomb gas and the ferromagnetic film.

Electrostatics is the theory of the interaction of stationary electric charges. This thesis

concentrates on electrostatics in two spatial dimensions since this is considered to be the base

system that admits BKT physics. Few electric charges are, however, known to behave two-

dimensionally, so we begin with a discussion of three-dimensional continuum electrostatics,

from which we will be able to form the axioms of the two-dimensional system.

2.1.1 Three-dimensional Electrostatics

In this subsection, the electric field is introduced before Gauss’ law and the internal energy

of the field are derived.

2.1.1.1 Gauss’ Law

Three-dimensional electrostatics is governed by Coulomb’s law [28]. This law states that the

force experienced by one point charge q (q will be set as the elementary charge throughout)

21
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due to another point charge qi in a vacuum is given by

Fi(x) =
qqi
4⇡✏0

x� xi

|x� xi|3
8x 6= xi, (2.1)

where x and xi are the positions of the charges q and qi, respectively, and ✏0 is the electric

permittivity of free space. (Note that this force does not account for any harmonic mode.)

We generalize this to the force experienced by q due to a system of n point charges, and

add a harmonic mode to the force F̄, which accounts for dipole-moment and charge-winding

forces in general systems:

F(x) =
q

4⇡✏0

n
X

i=1

qi
x� xi

|x� xi|3
+ F̄ 8x 6= xi. (2.2)

The electric field experienced by some point charge q at x due to n other point charges is

defined to be

E(x) :=
1

q
F(x), (2.3)

hence,

E(x) =
1

4⇡✏0

n
X

i=1

qi
x� xi

|x� xi|3
+ Ē 8x 6= xi, (2.4)

where Ē := F̄/q is the harmonic mode of the electric field. (We refer to a single harmonic

mode because Ē corresponds to the k = 0 mode of the Fourier transform of the electric field,

and we refer to this mode as harmonic because r2 Ē = 0, which follows from the standard

vector calculus of constant vector fields.) From this, the superposition principle follows: the

non-harmonic modes of the electric field experienced by a point charge are given by the sum

of the non-harmonic modes of the fields due to each of the other constituent charges of the

system. By defining the density of electric charge at some point x as

⇢(x) :=
n
X

i=1

qi�
(3)(x� xi), (2.5)

we are able to rewrite Eq. (2.4) as

E(x) =
1

4⇡✏0

Z

⌦
⇢(x0)

x� x0

|x� x0|3d
3x0 + Ē 8x 6= x0. (2.6)

Upon taking the divergence of both sides of Eq. (2.6),

r ·E(x) =
1

4⇡✏0

Z

⌦
⇢(x0)r

x

·
✓

x� x0

|x� x0|3

◆

d3x0
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=
1

✏0

Z

⌦
⇢(x0)�(3)(x� x0)d3x0, (2.7)

we are left with Gauss’ law:

r ·E(x) = ⇢(x)/✏0. (2.8)

Note that r
x

in Eq. (2.7) denotes that the divergence is taken with respect to the x

variables. Eq. (2.8) shows that electric charges are topological defects in the electric field

E: they puncture the electric field lines, which changes the topology of the electric field.

2.1.1.2 The Internal Energy

Upon supposing that the internal energy of the electric fields of the electrostatic system is

given by

U0 =
✏0
2

Z

⌦
|E(x)|2d3x, (2.9)

it follows, from the variational principle, that the functional

F [E(x)] :=
✏0
2

Z

⌦
|E(x)|2 d3x�

Z

⌦
�̄(x) (✏0r ·E(x)� ⇢(x)) d3x, (2.10)

which imposes Gauss’ law, should be minimized with respect to the electric field for an

electrostatic system in equilibrium. Here, {�̄(x)} acts as an infinite set of Lagrange multi-

pliers introduced to enforce Gauss’ law, and ⌦ is the subset of Euclidean space in which the

charges exist. The functional is rearranged to

F [E(x)] =
✏0
2

Z

⌦
|E(x)|2 d3x� ✏0

Z

⌦
�̄(x)r ·E(x)d3x+

Z

⌦
�̄(x)⇢(x)d3x (2.11)

=
✏0
2

Z

⌦
|E(x)|2 d3x� ✏0r ·

Z

⌦
�̄(x)E(x)d3x

+ ✏0

Z

⌦
r�̄(x) ·E(x)d3x+

Z

⌦
�̄(x)⇢(x)d3x (2.12)

=
✏0
2

Z

⌦
|E(x)|2 d3x� ✏0

I

@⌦
�̄(x)E(x) · da(x)

+ ✏0

Z

⌦
r�̄(x) ·E(x)d3x+

Z

⌦
�̄(x)⇢(x)d3x, (2.13)

where da is an infinitesimal element of the surface of the system. The functional is varied

with respect to the electric field:

�F [E(x0)]

�E(x)
= ✏0

�

E(x) +r�̄(x)
�

, (2.14)
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where the boundary term is assumed to be zero (which is the case for PBCs, certain Dirichlet

and Neumann boundary conditions, and the infinite-size system). Hence, for a minimized

functional, the electric field must be given by

E(x) =�r�(x) +C, (2.15)

where

�̄(x) = �(x)�C · x. (2.16)

Here, � is the part of �̄ that does not depend linearly on position, and C is a constant vector

field.

By definition, the harmonic mode of the electric field is given by

Ē :=
1

V

Z

⌦
E(x)d3x. (2.17)

Combining Eqs. (2.15) and (2.17), it follows that C = Ē, because the non-harmonic modes

of the electric field �r� sum to zero. It therefore follows that the functional is minimized

when the electric field is given by

E(x) =�r�(x) + Ē. (2.18)

Electric fields that describe electrostatics are, by definition, irrotational: rotational com-

ponents generate magnetic fields that, in turn, accelerate electric charges. The functional

therefore describes the electrostatics of a neutral charge fluid: Eq. (2.9) is taken to be the

internal energy of the electric fields of the electrostatic system. The scalar field � is the

electric scalar potential that adheres to Poisson’s equation of electrostatics:

r2�(x) = �⇢(x)/✏0. (2.19)

�r� and Ē are referred to as the Poisson and harmonic components of the total electric field

E, respectively. The Poisson component is comprised of all k 6= 0 modes of the electrostatic

field.

2.1.1.3 The Green’s Function

The internal energy of the electric fields is now rewritten in terms of the Green’s function

of the system. The Green’s function G(x,x0) solves

r2
x

G(x,x0) = ��(3)(x� x0), (2.20)



Chapter 2. Theoretical Background 25

which e↵ectively amounts to stripping the information related to the charge value and the

electric permittivity of free space from Poisson’s equation. The above equation is solved by

G(x,x0) =
1

4⇡

1

|x� x0| 8x 6= x0, (2.21)

while the diagonal element of the Green’s function G(x,x) is related to the self-energy of the

charges. To write the internal energy of the electric fields in terms of the Green’s function,

the principle of superposition is applied to Eq. (2.9):

U0 =
✏0
2

Z

⌦
|E(x)|2d3x (2.22)

=
✏0
2

Z

⌦
|�r�(x) + Ē|2d3x (2.23)

=
✏0
2

Z

⌦
|r�(x)|2d3x� ✏0

Z

⌦
r�(x) · Ē d3x+

✏0V

2
|Ē|2 (2.24)

=
✏0
2

Z

@⌦
�(x)r�(x) · da(x)� ✏0

2

Z

⌦
�(x)r2�(x)d3x+

✏0V

2
|Ē|2 (2.25)

=� ✏0
2

Z

⌦
�(x)r2�(x)d3x+

✏0V

2
|Ē|2 (2.26)

=� ✏0
2

Z

⌦

n
X

i=1

�i(x)r2
n
X

j=1

�j(x)d
3x+

✏0V

2
|Ē|2 (2.27)

=� ✏0
2

n
X

i,j=1

Z

⌦
�i(x)r2�j(x)d

3x+
✏0V

2
|Ē|2 (2.28)

=
✏0
2

n
X

i,j=1

Z

⌦

qi
✏0
G(x,xi)

1

✏0
qj�

(3)(x� xj)d
3x+

✏0V

2
|Ē|2 (2.29)

=
1

2✏0

n
X

i,j=1

qiG(xi,xj)qj +
✏0V

2
|Ē|2 (2.30)

=
G(x,x)

2✏0

n
X

i=1

q2i +
1

2✏0

X

i 6=j

qiG(xi,xj)qj +
✏0V

2
|Ē|2 (2.31)

=
G(0)

2✏0

X

m2Z
nmm2q2 +

1

2✏0

X

i 6=j

qiG(xi,xj)qj +
✏0V

2
|Ē|2 (2.32)

=USelf + UInt. + UHarm., (2.33)

where G(0) := G(x,x), �i is the electric scalar potential due to particle i, da is an infinitesi-

mally small surface element, nm is the number of charges mq, m(x) 2 Z is the electric charge

at x in units of q, and USelf :=
P

m2Z nmm2q2G(0)/2✏0, UInt. :=
P

i 6=j qiG(xi,xj)qj/2✏0 and

UHarm. := ✏0V |Ē|2/2 are, respectively, the self-energy, Coulombic charge-charge interaction

and harmonic-mode components of the internal energy of the electric fields U0. The cou-

pling between the harmonic and non-harmonic modes of the electric field in the third line of

the above working is zero because the harmonic term moves outside of the integral and the
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spatial integral over the non-harmonic (k 6= 0) modes is zero; the surface term in the fourth

line is zero for systems with PBCs, or for systems in the thermodynamic limit, in which

fields are assumed to vanish at the boundaries. Note that, while UInt. can be negative, the

sum USelf + UInt. is necessarily � 0 as it arises from the term in |r�|2.

2.1.1.4 The Chemical Potential

The full chemical potential for the introduction of a charge corresponds to the energy re-

quired to introduce each charge to the system, ignoring the Coulombic charge-charge inter-

action and harmonic components of the internal energy of the electric fields. This energy

is a combination of the self-energies of the particles and a set of tuneable core energies.

One may restrict to systems of certain charge species via the addition of the core-energy

component of the internal energy:

UCore :=
1

2

X

m2Z
nm✏c(m)m2q2. (2.34)

Here, ✏c(m) is the core-energy constant of each charge mq, and ✏c(m) = ✏c(�m), since

charges are excited to the vacuum in neutral pairs. We extend the internal energy to

include this term:

U := U0 + UCore = USelf + UInt. + UHarm. + UCore. (2.35)

This is the grand-canonical energy of the whole system, whereas U0 is the internal energy

of the electric fields only.

We define the chemical potential

µm := �


G(0)

✏0
+ ✏c(m)

�

m2q2

2
(2.36)

for the introduction of a charge mq, so that the grand-canonical energy U is now given by

U = �
X

m2Z
µmnm +

1

2✏0

X

i 6=j

qiG(xi,xj)qj +
✏0V

2
|Ē|2. (2.37)

One may then set infinite core energies for the addition of certain charge species such that

the grand potential � := U �TS diverges positively upon their addition, thereby inhibiting

the existence of the species. Note that U ⌘ Ũ�
P

m2Z µmnm, where Ũ is the internal energy

of electrostatics in the canonical ensemble.
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2.1.2 Two-dimensional Electrostatics

The Green’s function and the axioms of three-dimensional electrostatics are now applied to

the two-dimensional system.

2.1.2.1 The Internal Energy and Gauss’ Law

The grand-canonical energy of a three-dimensional electrostatic system is given by

U =
✏0
2

Z

⌦
|E(x)|2d3x+ UCore, (2.38)

and the electric fields must adhere to Gauss’ law,

r ·E(x) = ⇢(x)/✏0. (2.39)

These are the axioms of three-dimensional electrostatics, which we generalize to d-

dimensional systems and consider the d = 2 case, whose grand-canonical energy is given

by

U =
✏0
2

Z

⌦
|E(x)|2d2x+ UCore, (2.40)

where the units of the electric field E and the electric permittivity of the vacuum ✏0 in two

spatial dimensions are outlined in detail in Appendix A (for the lattice electric fields, but

the units are identical to the continuum system).

The two-dimensional Green’s function adheres to the two-dimensional analogue of Poisson’s

equation. Away from a single point charge positioned at the origin,

1

r

@

@r

✓

r
@

@r
G(r,0)

◆

= 08r 6= 0, (2.41)

where we have dropped any angular dependence as we have assumed rotational symmetry.

This is solved by

G(x,0) = B ln

�

�

�

�

x

r0

�

�

�

�

8x 6= 0, (2.42)

where B and r0 are integration constants. We set B = �1/2⇡ to satisfy Gauss’ law and

generalize to source charges at position x0:

G(x,x0) = � 1

2⇡
ln

�

�

�

�

x� x0

r0

�

�

�

�

8x 6= x0. (2.43)



Chapter 2. Theoretical Background 28

Eq. (2.37) then tells us that the grand-canonical energy for a system of electric charges in

a two-dimensional continuum is given by

U = �
X

m2Z
µmnm � 1

4⇡✏0

X

i 6=j

qi ln

�

�

�

�

xi � xj

r0

�

�

�

�

qj +
✏0A

2
|Ē|2, (2.44)

where A is the area of the two-dimensional system, and the chemical potentials µm and

the core-energy component of the grand-canonical energy UCore are both defined as in the

three-dimensional case.

2.1.2.2 Salzberg-Prager Theory

Two-dimensional electric charges are tightly bound in neutral pairs by their logarithmic

interaction potential: this gives rise to the BKT phase transition. In the context of the

two-dimensional Coulomb gas, this insulator-conductor transition was first discovered by

Salzberg and Prager, who derived [1] an equation of state for a simply connected, square,

continuum system of linear size L that predates BKT theory [2, 3]. Salzberg and Prager

proceeded as follows.

From the expression for the grand-canonical energy of the system given by Eq. (2.44), one

can transform to the canonical ensemble (Ũ = U +
P

m2Z µmnm) in which charge-species

number is fixed and write the Salzberg-Prager partition function ZSP
Coul. as

ZSP
Coul. :=

Z

Dx e�
P

i 6=j

q
i

q
j

ln(|x
i

�x

j

|/r
0

)/4⇡✏
0 , (2.45)

where the contribution from the harmonic mode of the electric field is assumed to be vanish-

ingly small. This is a functional integral over all positions of all constituent charges, where

the charge-species number is fixed, and each charge configuration is assigned the Boltz-

mann weighting exp
h

��Ũ ({xi}, {nm})
i

(under the assumption of the vanishingly small

contribution from the harmonic mode). Here, the functional integral
R

Dx is defined as

Z

Dx :=
Y

m2Z



1

nm!

� n
Y

i=1



Z

⌦
d2xi

�

, (2.46)

where

Z

⌦
d2xi :=

Z L

r
0

dxi

Z L

r
0

dyi (2.47)

is the integral of the position of particle i over the area of the system. Here, r0 is the UV

cut-o↵, representing an e↵ective radius of the particles.
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In order to approximately isolate the system-size dependence of the partition function,

Salzberg and Prager defined the coordinate system

x0
i := xi/L, (2.48)

and the measure

Z

⌦/L2

d2x0i :=

Z 1

r
0

/L
dx0i

Z 1

r
0

/L
dy0i, (2.49)

so that the Salzberg-Prager partition function becomes

ZSP
Coul. =

Y

m2Z



1

nm!

� n
Y

i=1

"

L2

Z

⌦/L2

d2x0i

#

e�
P

i 6=j

q
i

q
j

ln(L|x0
i

�x

0
j

|/r
0

)/4⇡✏
0

=L2n

Z

D̄x0e�
P

i 6=j

q
i

q
j

(ln(L)+ln(|x0
i

�x

0
j

|/r
0

))/4⇡✏
0

=L2nL�
P

i 6=j

q
i

q
j

/4⇡✏
0Z⇤

Coul., (2.50)

where

Z⇤
Coul :=

Z

D̄x0e�
P

i 6=j

q
i

q
j

ln(|x0
i

�x

0
j

|/r
0

))/4⇡✏
0 (2.51)

is the normalized Salzberg-Prager partition function, and the measure
R

D̄x0 is defined via

Z

D̄x0 :=
Y

m2Z



1

nm!

� n
Y

i=1

"

Z

⌦/L2

d2x0i

#

. (2.52)

The Salzberg-Prager free energy is then given by

F SP =� ��1 ln
⇣

Z⇤
Coul.A

n(1��q2/8⇡✏
0

)
⌘

(2.53)

for the neutral Coulomb gas of elementary charges, since
P

i 6=j qiqj = �nq2 in this case.

The pressure that the system exerts on its boundaries is defined by

p := �@F
SP

@A
. (2.54)

The normalized component of the partition function Z⇤
Coul., which contains all charge-

screening information, has a system-size dependence arising from the lower bound of its

functional integral over charge positions. To proceed, however, Salzberg and Prager assumed

that the system-size dependence of Z⇤
Coul. is negligible, which is a good approximation for

large systems in the limit of low charge density, thereby ignoring charge screening. The

Salzberg-Prager equation of state for the non-screened, two-dimensional Coulomb gas of
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elementary charges in the continuum vacuum is therefore given by

p =��1 n

A

�

1� �q2/8⇡✏0
�

, (2.55)

or

pA =nkBT

✓

1� q2

8⇡✏0kBT

◆

. (2.56)

The above equation predicts that a two-dimensional Coulomb gas constrained to limitingly

low charge density experiences a change from positive to negative pressure as it is cooled

through the non-screened BKT transition temperature,

T̄BKT =
q2

8⇡✏0kB
. (2.57)

This is the BKT transition temperature for the Salzberg-Prager system: negative pressure

is a characteristic of charge confinement. Charge-screening corrections, however, lower this

transition temperature for the Coulomb gas of many charges. In the GCE, one is at liberty

to tune the chemical potentials by varying the core-energy constant of each charge species,

which, in turn, controls the thermal average of the number of charges in the system. For

the harmonic XY (HXY) model [20, 22], q = 2⇡ and the core-energy constant is intrinsically

set to zero (this will be outlined in detail in Chapter 6, where it will also be stated that

non-elementary topological defects are not geometrically possible in the XY models). The

standard core-energy configuration of the Coulomb gas is therefore taken to be {✏c(m =

0,±1) = 0, ✏c(m 6= 0,±1) = 1} with the elementary charge set to q = 2⇡: upon setting

✏0 = kB = 1, charge-screening corrections in this standard system then lower the bare,

non-screened transition temperature T̄BKT = ⇡/2 to TBKT = 1.35 (to three significant

figures) [29], which is the standard BKT transition temperature for the Coulomb gas in

the literature. Throughout this thesis, this transition temperature is taken to be the BKT

transition temperature for the Coulomb gas. It is stressed here that the BKT transition

is driven by a competition between confining energy and entropy, and that its transition

temperature is then lowered through charge screening. Note that the transition temperature

of the XY model is lowered further due to the anharmonic terms in the cosine interaction

potential.

Throughout the remainder of this thesis, we set ✏0 = kB = 1 and q = 2⇡, but we may write

each quantity explicitly to help the reader in identifying units.
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2.2 The Maggs-Rossetto Electrostatic Model: Background

The MR algorithm [24], formulated by Maggs and co-workers [24, 30–34], simulates the

physics of Coulombic interactions on a lattice via local electric-field updates, avoiding the

need to treat computationally intensive long-range interactions. Its corresponding model

introduces a freely fluctuating auxiliary field that is divergence free everywhere. This extends

the electrostatic solution of Gauss’ law to the general solution and results in local field

updates alone being su�cient for the system to e�ciently explore the Gibbs ensemble of the

electrostatic problem. The validity of introducing the auxiliary field is seen in the context

of the separability of the partition function into its Coulombic and auxiliary components:

the auxiliary field contributes to the internal energy of the electric fields, but is statistically

independent of the Coulombic element. A similar lattice-field model was formulated by

Raghu et al. for the two-dimensional system [35].

MR formulated their model in the three-dimensional continuum. The general solution to

Gauss’ law is given by

E(x) = �r�(x) +r⇥Q(x) + Ē, (2.58)

where Q is the auxiliary gauge field (r⇥Q is the auxiliary field). Gauss’ law follows:

r ·E(x) = ⇢(x)/✏0. (2.59)

+ 7�����! +
E

↵�

E
↵�

� q/✏
0

Figure 2.1: A charge-hop update: The field bond connecting charge sites ↵ and � is
updated to mimic a charge hopping from site ↵ to � such that Gauss’ law is obeyed. This
updates all degrees of freedom of the field. The solid arrow represents the field flux flowing
from site ↵ to site �, with the thickness of the arrow representing its relative magnitude;
the curly, dashed arrow represents the charge hopping; the white circle is an empty charge
site; the red circle is a site occupied by a positive charge.

Using a lattice model, Maggs and co-workers initially consider the charge-hop updates de-

picted in Fig. 2.1. This first update alters the electric field to mimic a charge hopping

between two lattice sites. They suppose site ↵ is initially occupied by a positive charge, and

its neighbouring site � is initially an empty charge site. When considering the new charge

configuration in which the charge has moved to site �, one attempts the electric-field update

corresponding to E↵� 7! E↵� � q/✏0 via standard sampling, where E↵� denotes the electric



Chapter 2. Theoretical Background 32

flux flowing from site ↵ to site �. Gauss’ law is satisfied by the new charge configuration,

as required.

1 2

3 4

1 2

3 4

E
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E
34

E
31 E

42

7����!

E
12

+�

E
34

��

E
31

+� E
42

��

Figure 2.2: An update of the rotational degrees of freedom of the electric field: The
flux is rotated by an amount � around a randomly-chosen lattice plaquette, leaving Gauss’
law satisfied. The black arrow represents the flux flowing from site ↵ to site �, with the
thickness of the arrow representing its relative magnitude; the blue arrow represents the
direction of flux rotation; the grey circles represent sites of arbitrary charge.

The charge-hop update alters all degrees of freedom of the field. Electrostatics, however,

is described by field configurations for which the auxiliary field is strictly zero, hence the

algorithm explicitly samples the auxiliary gauge field to improve e�ciency. This involves

randomly selecting a lattice plaquette and proposing a rotation of the electric field around

the plaquette such that the new field configuration satisfies Gauss’ law and leaves the charge

configuration unchanged, as shown in Fig. 2.2. Sampling a suitable ratio of the two local

field updates described here allows the system to reproduce Coulombic physics.

The algorithm may also employ a global update of the harmonic mode of the electric field

to improve e�ciency.

2.3 The Two-dimensional XY Model of Magnetism

The classical two-dimensional XY model of magnetism remains an area of active interest

in condensed-matter physics due in part to its experimental relevance outlined in Chapter

1 [5–21]. BKT showed [2, 3] that the system is critical in the low-temperature phase but

paramagnetic above the BKT transition temperature. Villain proposed [23] an analytic

approximation to the XY model that separates the roles of spin vortices and spin waves, the

latter of which dominate fluctuations in the critical phase. The HXY model, a simplification

of the Villain model that captures the physics of the BKT transition, was later independently

introduced by Vallat and Beck [22] and BH [20]. In this section, we review these three

models.
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2.3.1 Physical Background

Magnetic systems can be modelled using spin models. Spin is a quantum-mechanical phe-

nomenon that causes certain particles to possess an intrinsic magnetic moment that cannot

be explained by its orbital angular momentum. In general, magnetic particles have both

a spin and an orbital contribution to their magnetic moment, but, for most purposes, the

total moment can be represented by an e↵ective spin operator. For this reason, spin models

can be used to describe real magnets, and magnetic moments are often referred to as spins.

In materials, spins can interact with one another in a variety of di↵erent ways. One such

interaction is the exchange interaction, which causes interacting spins to either align or

anti-align in the zero-temperature state of the (non-frustrated) system in which all spins

are correlated. A system in which all the spins are aligned with one another gives rise to

a macroscopic magnetization of the system: this is ferromagnetism (the ground state of a

system whose spins anti-align is an antiferromagnet). As the temperature of such a system is

increased, thermal e↵ects can dominate the exchange e↵ects to destroy the ferromagnetism,

leaving the system in an uncorrelated, paramagnetic state.

At finite temperature, non-frustrated ferromagnetic spin systems that are dominated by

exchange-interaction e↵ects can be modelled as systems of classical spins with a Hamiltonian

given by

H = �J
X

hx,x0i

s(x) · s(x0), (2.60)

where J > 0 is the exchange constant, s(x) is the spin vector at site x, and the sum is over

nearest-neighbour spin sites only, since nearest-neighbour e↵ects are assumed to dominate.

The XY model of magnetism uses this Hamiltonian for planar spins on a two-dimensional

lattice. Its normalized spin field is given by

s(x) := (cos('(x)), sin('(x))), (2.61)

where ' is the phase of each spin, and is referred to as the spin at each lattice point (the

spins are represented by arrows in Fig. 2.3). The Hamiltonian of the XY model becomes

HXY = �J
X

hx,x0i

cos('(x)� '(x0)). (2.62)

This Hamiltonian is composed of two symmetries: one is the global U(1) symmetry, while

the other is the modular symmetry with respect to the set (�⇡, ⇡] (with respect to each
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spin di↵erence). An XY-type spin model is any two-dimensional ferromagnetic model that

possesses these two symmetries.

Figure 2.3: An example of an XY spin configuration. This configuration contains one
pair of topological defects, or vortices. The red circle is the positive vortex; the blue circle
is the negative vortex.

Fig. 2.3 shows a snapshot of a 20⇥20 XY model magnet. This particular spin configuration

contains a vortex – antivortex pair. Vortices are topological defects in the spin-di↵erence

field and approximately behave as two-dimensional Coulombic charges. In Chapter 6, we

will present an emergent electric field description of XY-type spin models in which the

topological defects are emergent electric charges and the spin-wave fluctuations are emergent

auxiliary-field fluctuations.
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2.3.2 Continuum Approximation

To see the basis of the emergent electric charges, the continuum limit of the Taylor expansion

of the Hamiltonian up to second order is considered, ignoring the constant zeroth order term.

This system is described by the continuum, harmonic XY Hamiltonian:

HCont. =
J

2

Z

⌦
d2x |r✓(x)|2 , (2.63)

where the gradient of the spin field r✓ is subject to the constraint

r✓(x) 2 (�⇡, ⇡] (2.64)

in order to take account of the modular symmetry of the real (lattice) Hamiltonian.

The integral of r✓ around any closed contour @� is given by 2⇡p:

I

@�
r✓(x) · dl(x) = 2⇡p (2.65)

where p = 0, ±1. Closed contours that return values of p = ±1 contain vortices: in Fig. 2.3,

the right-hand vortex (red circle) has p = 1 and the left-hand vortex (blue circle) has p = �1

(for contours that only enclose the vortex in question). Ignoring spin-wave fluctuations, it

follows that the energy of an isolated vortex in this continuum formulation is given by

EVort. =
J

2

Z 2⇡

0

Z L

r
0

�

�

�

p

r

�

�

�

2
rdrd�

=⇡J

Z L

r
0

dr

r

=⇡J ln

✓

L

r0

◆

, (2.66)

where r0 := ae��/2
p
2 is now the UV lattice cut-o↵, representing an e↵ective radius of the

vortices. This shows that the energy of an isolated vortex diverges logarithmically with the

size of the system. The entropy associated with an isolated vortex, however, is given by

SVort. = kB ln (N) , (2.67)

where N is the number of lattice sites (N will also be the number of charge-lattice sites of

the lattice Coulomb gas). It follows that the free energy associated with an isolated vortex

diverges negatively with the system size at temperatures above [2, 3]

T̄BKT =
⇡J

2kB
, (2.68)
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the non-screened BKT transition temperature for the system. In the thermodynamic limit,

an isolated vortex is equivalent to a neutral pair of deconfined vortices, from which it follows

that the continuum, harmonic XY model also admits a BKT transition. As explained in

Section 2.1.2.2, this bare, non-screened BKT transition temperature for the continuum,

harmonic XY model is reduced through screening corrections. In Chapter 6, we will see

that Villain’s approximation to the XY model [23] maps on to the lattice Coulomb gas with

a vacuum permittivity given by the inverse exchange constant, hence the equivalence of this

bare transition temperature and that derived in Section 2.1.2.2.

Throughout the remainder of this thesis, we set J = 1, but we may write this quantity

explicitly to help the reader in identifying units.

2.3.3 The Villain Model

Villain introduced the Villain model [23] to approximate the XY model with an analytically

tractable partition function. José et al. provide a useful discussion on the validity of the

approximation [4]. The model uses a set of modular variables {s(x,x0) 2 Z}, which exist

between each lattice site, to mimic the modular symmetry of the XY model. Its partition

function is given by

ZVillain =
X

{s(x,x0)2Z}

Z

D̄' exp

2

4��J
2

X

hx,x0i

|'(x)� '(x0) + 2⇡s(x,x0)|2
3

5 , (2.69)

where the functional integral
R

D̄' is defined via

Z

D̄' :=
Y

x2D0



Z ⇡

�⇡
d'(x)

�

, (2.70)

and D0 is the set of all spin lattice sites. In this model, the modular s variables are not

defined by the spin variables ': topological defects are therefore not topological defects in

the spin-di↵erence field, in contrast with the XY model. In Chapter 6, however, we will

see that the topological defects are topological defects in the emergent electric field. The

Villain model is also used to model the physics of superfluid films [9–12], where the spin

variables ' become the phase of the condensate wavefunction: when the phases at all sites

are correlated, the system is in its superfluid state in which it behaves as one body.

2.3.4 The 2dHXY Model

The harmonic XY (HXY) model is a model of two-dimensional magnetism that is very

similar to the Villain model. Its modular variables, however, are now functions of the spin
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variables, rather than an independently sampled set. This o↵ers a closely related but much

simplified algorithm. Its partition function is given by Eq. (2.69) without the sum over the

set {s}. In the HXY model, the s variables are defined via the associated spin di↵erence:

s(x,x0) 2 {0,±1} is chosen such that '(x) � '(x0) + 2⇡s(x,x0) 2 (�⇡, ⇡]. This instills

the modular symmetry required in XY-type spin models, but the spin variables now define

the modular variables. It follows that the topological defects of this model are topological

defects in both the spin-di↵erence and emergent fields. As in the XY model, we refer to these

topological defects as vortices, because they are topological defects in the spin-di↵erence field

of the model.

2.3.5 Spin-wave Magnetization

In this subsection, the spin-wave analysis of the magnetization of the Villain model [36]

is reviewed. Spin-wave analysis amounts to ignoring the modular term in the partition

function of the Villain model: this removes all topological defects from the system, thereby

disallowing the BKT transition. This analysis will help us to understand the e↵ect of

topological defects and the BKT transition on XY-type spin models. The Villain model

with the modular symmetry removed is referred to as the harmonic model.

2.3.5.1 Instantaneous Magnetization: Definition

To begin, the average instantaneous magnetization direction '̄ is defined by

'̄ :=
1

N

X

x2D0

'(x), (2.71)

where the instantaneous magnetization m is defined via

m :=
1

N

X

x2D0

cos('(x)� '̄). (2.72)

The field  (x) := '(x) � '̄ is defined to be the deviation from the average instantaneous

magnetization at each spin site. As shown in Appendix B, the magnetization is related to

 by [37]

hmi =exp

✓

�1

2
h 2(0)i

◆�

. (2.73)
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2.3.5.2 Spin-spin Correlation Functions

In order to proceed from the above equation, we must find an expression for the spin-spin

correlation function h'(x)'(x0)i, which describes the correlations between the spins at spin

sites x and x0. The partition function of the harmonic model is given by

ZSW =

Z

D̄' exp (��HSW) , (2.74)

where

HSW :=
J

2

X

hx,x0i

('(x)� '(x0))2 (2.75)

is the harmonic (spin-wave) Hamiltonian.

We define the Fourier-transform pair

'(x) :=
1

N

X

k2B
eik·x�(k); �(k) :=

X

x2D0

e�ik·x'(x), (2.76)

and consider

('(x)� '(x0))2 =
1

N2

X

k,k02B
eik·xeik

0·x(1� e�ik·(x�x

0))(1� e�ik0·(x�x

0))�(k)�(k0), (2.77)

where the sum
P

k2B :=
Q

µ2{x,y}

h

P

k
µ

2B
µ

i

, and Bµ := {0,± 2⇡
N

µ

a ,±2 2⇡
N

µ

a , · · · ,±(Nµ

2 �

1) 2⇡
N

µ

a ,
N

µ

2
2⇡
N

µ

a} is the set of k-space values in the µ direction. Note that the sum over

nearest neighbours is given by

X

hx,x0i

⌘
X

�2NN
x

X

x2D0

, (2.78)

where the set NN
x

:= {x + aex, x + aey} is the set of the nearest neighbours of x in the

positive directions. It follows that

X

hx,x0i

('(x)� '(x0))2 =
1

N2

X

�2NN
x

X

k,k02B
(1� eik·�)(1� eik

0·�)
X

x

ei(k+k

0)·x�(k)�(k0) (2.79)

=
1

N

X

�2NN
x

X

k2B
(1� eik·�)(1� e�ik·�)�(k)�(�k) (2.80)

=
1

N

X

k2B

X

�

(2� eik·� � e�ik·�)|�(k)|2 (2.81)

=
X

k2B
�̃
k

|�(k)|2, (2.82)
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where

�̃
k

:=
2

N
(2� cos(kxa)� cos(kya)). (2.83)

Hence,

�HSW =
�J

2

X

x,x02D0

'(x)G̃(x,x0)'(x0), (2.84)

where

G̃(x,x0) :=
X

k2B
�̃
k

e�ik·(x�x

0) (2.85)

is the spin-wave propagator. This leaves us with a Hamiltonian that goes like a double

summation over the whole lattice, rather than a sum over nearest-neighbour lattice sites.

For ease of notation, we define the spin column vector ',

' :=

0

B

B

@

'(x1)
...

'(xN )

1

C

C

A

, (2.86)

and the spin-wave propagator matrix A,

A := �J

0

B

B

@

G̃(x1,x1) . . . G̃(x1,xN )
...

. . .
...

G̃(xN ,x1) . . . G̃(xN ,xN )

1

C

C

A

. (2.87)

The partition function is now given by

ZSW =

Z

D' exp

✓

�1

2
'TA'

◆

. (2.88)

We can now write the spin-wave thermal average of some scalar function of the spin variables

f(') as

hf(')iSW :=
1

ZSW

Z

D̄'f(') exp (��HSW) (2.89)

=
1

ZSW

Z

D̄'f(') exp
✓

�1

2
'TA'

◆

(2.90)

=
1

ZSW

Z

D̄'f
✓

� �

�b

◆

exp

✓

�1

2
'TA'� bT'

◆

�

�

�

�

b=0

(2.91)

=
1

ZSW
f

✓

� �

�b

◆

Z

D̄' exp

✓

�1

2
'TA'� bT'

◆

�

�

�

�

b=0

(2.92)
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=
(2⇡)N/2

ZSW

p
detA

f

✓

� �

�b

◆

exp

✓

1

2
bTA�1b

◆

�

�

�

�

b=0

, (2.93)

which we combine with the definition @i := @/@bi to write

h'µ'⌫iSW =
(2⇡)N/2

ZSW

p
detA

@µ@⌫ exp

✓

1

2
b↵A

�1
↵�b�

◆

�

�

�

�

b=0

, (2.94)

where repeated Greek indices are summed over. We compute the derivatives:

@µ@⌫ exp

✓

1

2
b↵A

�1
↵�b�

◆

�

�

�

�

b=0

=
1

2

�

A�1
µ⌫ +A�1

⌫µ

�

exp

✓

1

2
b⇢A

�1
⇢� b�

◆

�

�

�

�

b=0

. (2.95)

It follows that

h'2(0)iSW = A�1
00 . (2.96)

2.3.5.3 The Inverse Propagator

To compute the spin-wave magnetization (the magnetization of the harmonic model), we

must now find an expression for the inverse propagator A�1
ij . We require that

⇥

A�1A
⇤

ij
= �ij , (2.97)

which is solved by

A�1
ij =

1

�J

X

k2B
�
k

eik·(xi

�x

j

), (2.98)

where

�
k

:=
1

2N(2� cos(kxa)� cos(kya))
, (2.99)

and �
k=0

2 R which we choose to be zero (this is known to be valid from simulation [19, 20]).

We are left with

A�1
ij =

1

�J

X

k 6=0

eik·(xi

�x

j

)

2N(2� cos(kxa)� cos(kya))
, (2.100)

and we may now write

h'2(0)iSW =
1

K
G(0) (2.101)
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where K := �J is the spin sti↵ness, G is the Green’s functions of the two-dimensional lattice

Coulomb gas,

G(x,x0) =
1

2N

X

k 6=0

eik·(x�x

0)

2� cos(kxa)� cos(kya)
, (2.102)

and

G(x) := G(x,0). (2.103)

2.3.5.4 Instantaneous Magnetization: Final Expression

To convert this working to the expression for the spin-wave magnetization, we must now

compute the quantity

h (x) (x0)i = h'(x)'(x0)i � h'(x)'̄i � h'(x0)'̄i+ h'̄'̄i. (2.104)

As shown in Appendix B, the final three terms of the above expression are zero, hence

h (x) (x0)i = h'(x)'(x0)i. (2.105)

Using the Abel-Plana formula,

G(0) =
1

4⇡
ln(cN), (2.106)

hence,

h 2(0)iSW =
1

4⇡K
ln(cN), (2.107)

and the spin-wave magnetization is therefore given by [37]

hmiSW =

✓

1

cN

◆1/8⇡K

. (2.108)

Eq. (2.108) describes the magnetization for a planar ferromagnet that comprises of N

harmonically coupled spins: this is known as the spin-wave magnetization of a general

planar ferromagnet with XY symmetry. At finite temperatures (T 6= 0), this object is zero

in the thermodynamic limit: XY-type spin models cannot sustain long-range order in the

thermodynamic limit, even in the absence of topological defects [25]. The magnetization of

the finite-size system is, however, known to be both measurable [21] and extremely important

to the critical theory of the system [19, 20]. This is due to Eq. (2.108) approaching the

thermodynamic limit so slowly that a ferromagnetic film the size of the state of Texas would

have a finite-size magnetization [19]. In the above working, c = 1.8456.
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Figure 2.4: (Ref. [20]) The magnetization of the HXY (filled circles) and XY (empty
circles) models for square lattices of 104 spins. The dashed curve is the spin-wave mag-
netization of Eq. (2.108). The deviation from the spin-wave magnetization for the HXY
model is due to the appearance of topological defects: this is unsurprising, since the Villain
and HXY models are equivalent when topological defects are not present. The XY data
deviates at a lower temperature where topological defects are not present: this is due to
the anharmonic terms in the cosine potential suppressing the magnetization. The arrows
represent the transition temperature outlined in Section 2.5.2. The solid line represents the
BH scaling of each system, as outlined in Section 2.5.

Fig. 2.4 shows the magnetization of XY and HXY models of 104 spins with the spin-wave

magnetization curve superimposed. Both data sets show that the finite-size system can

sustain long-range order, and also agree with the spin-wave magnetization at low temper-

ature. The deviation from the spin-wave magnetization for the HXY model is due to the

appearance of topological defects and the BKT transition: this is unsurprising, since the

Villain and HXY models are equivalent when topological defects are not present. The XY

data deviates at a lower temperature at which topological defects are not present because

the anharmonic terms in the cosine potential suppress the magnetization.
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2.3.6 Helicity Moduli

In the XY and HXY models, the helicity modulus ⌥ is proportional to the second derivative

of the free energy F of the system with respect to the longest-wavelength twist possible

in either component of the spin field, with the twist length taken continuously to infinity.

The helicity modulus therefore measures the response of the system in question to the long-

wavelength twist being externally applied. The twist is equivalent to adding

k0 :=
2⇡a

L
, (2.109)

to each nearest-neighbour spin di↵erence, where L is the linear system size: taking the twist

length to infinity is therefore equivalent to taking the thermodynamic limit.

The helicity modulus of the Villain model is not measured with a twist, since the modular

variables are not defined by the spin variables. Here, k0 is just added to each '(x) �
'(x0)+2⇡s(x,x0) in Eq. (2.69). In fact, the helicity modulus of each XY-type spin model is

equivalent to performing this perturbation, but the mechanics of the HXY and XY models

means that this perturbation is controlled by a twist in the spin field. This will be outlined

in detail in Chapter 6.

For the general XY-type spin model, the helicity modulus is defined by

⌥(T ) :=
1

N

@2F (A, T, k0)

@k20

�

�

�

�

k
0

!0

, (2.110)

where F (A, T, k0) is the free energy of the system under the influence of the perturbation k0.

Since taking the twist length to infinity (in the XY and HXY models) is equivalent to taking

the thermodynamic limit, this measure is only truly defined in the thermodynamic limit.

The resultant helicity modulus, however, turns out to be measurable in finite-size systems,

so we introduce the finite-size helicity modulus ⌥̃, which is a function of both system size

and temperature.

Following analogous working to that presented in Section 3.4, it follows that the finite-size

helicity modulus of the XY model is given by

⌥̃(N,T ) = hei �N�hj2i, (2.111)

where

e :=
J

N

X

hx,x0i
i

cos('(x)� '(x0)), (2.112)
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Figure 2.5: (Ref. [38]) The finite-size helicity modulus ⌥̃ of the two-dimensional XY model
as a function of T for various system sizes. The helicity modulus is clearly tending towards
zero in the high-temperature phase and to a finite value in the low-temperature phase.

and

j :=
J

N

X

hx,x0i
i

sin('(x)� '(x0)), (2.113)

with
P

hx,x0i
i

denoting a sum over nearest-neighbour spins in the i direction.

Similarly, for the HXY and Villain models, the finite-size helicity modulus is given by

⌥̃(N,T ) = J

0

@1� �J

N
h

2

4

X

hx,x0i
i

�

'(x)� '(x0) + 2⇡s(x,x0)
�

3

5

2

i

1

A . (2.114)

Minnhagen and Kim [38] performed extensive Monte Carlo simulations of the XY model

and measured the helicity modulus for systems of linear size L = 4 to 64, as shown in Fig.

2.5. As seen in the figure, increasing system size shows that this quantity is zero in the

high-temperature phase, above the BKT transition. Note that a phase is only defined in

the thermodynamic limit.
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Figure 2.6: (Ref. [38]) The finite-size fourth-order cumulant ⌥̃
4

of the two-dimensional
XY model as a function of T for various system sizes. As system size increases, the centres
of the wells of the curves move closer to T = T

BKT

(where T
BKT

is the renormalized BKT
transition temperature for the system): a finite-size scaling of the data (shown in the inset)
reveals a well of finite depth in the thermodynamic limit. A combination of a well of finite
depth and a zero-valued helicity modulus ⌥ at T

BKT

is reconciled by a discontinuous jump
to zero in the helicity modulus at T

BKT

.

In order to model the deviation of an XY-type spin sti↵ness from harmonic spin-wave

behaviour, one can define the e↵ective partition function:

Ze↵.(L, T ) :=

Z

D̄' exp

2

4�K̃e↵.(L, T )

2

X

hx,x0i

�

'(x)� '(x0)
�2

3

5 . (2.115)

This is the harmonic partition function with the spin sti↵ness K replaced with the finite-

size e↵ective spin sti↵ness K̃e↵.. Upon identifying the partition function of the XY-type

spin model in question with Ze↵., it follows that (K̃e↵.(L, T ) � K(T )) then has the e↵ect

of measuring the deviation of the system in question from harmonic spin-wave behaviour.

K̃e↵. therefore takes on the role of the finite-size e↵ective spin sti↵ness and it follows that

�

N

@2F (A, T, k0)

@2k0

�

�

�

�

k
0

!0

= lim
L!1

h

K̃e↵.(L, T )
i

=: Ke↵.(T ), (2.116)

where Ke↵. is the thermodynamic limit of the e↵ective spin sti↵ness, which is the e↵ective
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spin sti↵ness that is standard in the literature (since the majority of the literature on XY-

type spin models is in the thermodynamic limit). Combining Eqs. (2.110) and (2.116),

one finds that the e↵ective spin sti↵ness is closely related to the helicity modulus in the

thermodynamic limit:

Ke↵.(T ) = �⌥(T ). (2.117)

In the thermodynamic limit, all systems are predicted to experience a universal jump in their

e↵ective spin sti↵ness (and therefore in their helicity moduli) as they pass through their BKT

transition temperatures from below [2–4, 22, 38, 39]: at these transition temperatures, the

e↵ective spin sti↵ness of each system jumps discontinuously from 2/⇡ to zero [4, 22, 38, 39].

The significance of the value 2/⇡ will become clear in Section 3.32.

The universal jump is consistent with the data in Fig. 2.5 that shows that the helicity

modulus is finite in the low-temperature phase of the BKT transition and zero in the high-

temperature phase. To confirm the discontinuous nature of the universal jump, Minnhagen

and Kim [38] performed a finite-size scaling analysis on the higher-order cumulant ⌥4,

defined by

⌥4(T ) :=
1

N2

@4F (A, T, k0)

@4k0

�

�

�

�

k
0

!0

(2.118)

in the thermodynamic limit. It is again generalized to the finite-size system by introducing

the finite-size cumulant ⌥̃4.

Minnhagen and Kim [38] use the argument that for a system with a finite twist the free

energy of the system can be written as an expansion in small k0:

F (L, T, k0) = ⌥̃(L, T )
k20
2!

+ ⌥̃4(L, T )
k40
4!

+ . . . , (2.119)

and that F (L, T, k0 = 0)  F (L, T, k0). This means that ⌥ � 0 because the lowest-order

non-vanishing derivative of the free energy will always dominate for small enough k0. It also

implies that, for the helicity modulus to be continuous everywhere, the next-order derivative

⌥4 has to be � 0 at any T where ⌥(T ) = 0. Their argument was then the observation that

⌥ cannot continuously tend to zero at the transition temperature TBKT if ⌥4 simultaneously

approaches a non-zero negative value at TBKT. But, since ⌥ is zero in the high-temperature

phase, this means that, if ⌥̃4 approaches a negative value at TBKT in the thermodynamic

limit, then the jump has to be discontinuous.

The depth of the well in Fig. 2.6 scales to a finite value in the thermodynamic limit, implying

that ⌥4 takes a non-zero negative value at T = TBKT, and hence that ⌥ experiences a
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discontinuous jump at the BKT transition temperature TBKT. This discontinuous jump is

a signature of BKT physics.

2.4 The Berezinskii-Kosterlitz-Thouless Transition

The destruction of the magnetization of the finite-size XY-type spin models shown in Fig. 2.4

is due to (the finite-size analogue of) the BKT phase transition. The BKT transition governs

the thermal dissociation of topological-defect pairs that are bound together by a logarithmic

interaction potential. As previously discussed, these pairs correspond to topological defects

in the electric field of the two-dimensional Coulomb gas and to topological defects in the

spin fields of the XY and HXY models of ferromagnetic films, along with defect pairs in

many other condensed-matter systems. The background theory of the transition is provided

here because the reader has now been presented with a couple of basic arguments regarding

the existence of the transition.

BKT introduced the concept of quasi-long-range order and a phase transition in the two-

dimensional XY model [2, 3]. Topological order corresponds to topological defects in the XY

model being tightly bound in neutral pairs in the low-temperature phase of the transition by

the diverging, logarithmic energy barrier presented in Section 2.3.2. As discussed in Section

2.1.2.2 in the context of the two-dimensional Coulomb gas, the phase transition is a result

of entropy reducing the free-energy barrier to deconfined charge to a finite value.

Kosterlitz [39] and José et al. [4, 40] presented extensive renormalization group (RG) analysis

of the two-dimensional XY model to show that XY-type spin models obey the RG equation

for the renormalized spin sti↵ness KRG:

K�1
RG = K�1 + 4⇡2y2

Z 1

r
0

dr

r0

✓

r

r0

◆3�2⇡K
RG

(2.120)

in the thermodynamic limit and forKRG > 2/⇡, where y := 4⇡K⌧2 and ⌧ is the renormalized

lattice spacing.

The above equation diverges as KRG approaches 2/⇡ from the low-temperature phase: this

corresponds to the system reaching the topological-defect critical point, the point at which

the spin-spin correlation length diverges with the system size (when approached from the

high-temperature phase), and implies a universal jump from 2/⇡ to zero.

The universal jump in KRG is the same universal jump that occurs in the e↵ective spin

sti↵ness in the thermodynamic limit Ke↵., hence the finite-size scaling analysis of Minnhagen

and Kim [38] shows the RG analysis of Kosterlitz [39] and José et al. [4] to be correct.
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Tobochnik and Chester [41] fitted BKT theory to their simulation data of the two-

dimensional XY model to find the topological-defect critical point at TXY
BKT ' 0.89. This

was followed by the transfer-matrix approach of Mattis [42] who found that TXY
BKT ' 0.883.

Weber and Minnhagen [43] then performed a finite-size scaling analysis of the system to

find that TXY
BKT = 0.887 up to an error of the order of a tenth of a percent. This final value

is taken to be the renormalized BKT transition temperature of the two-dimensional XY

model and is the value used in the finite-size scaling analysis of Minnhagen and Kim [38].

A simulation of the Villain model was performed by Janke and Nather [29] to find that the

renormalized BKT transition temperature of the Villain system is TBKT ' 1.35 (to three

significant figures). This is also taken to be the BKT transition temperature for the HXY

model due to their similarity at low topological-defect density. The Villain model allows the

excitation of non-elementary topological defects: these defects, however, do not alter the

transition temperature from that of the Villain model restricted to elementary defects, since

the self energies of the non-elementary defects are large enough that the thermal average of

their densities are negligibly low at T = 1.35.

Lapilli et al. [44] listed three criteria to which systems must adhere in order to be classified as

BKT systems: (i) the universal jump in �⌥ in the thermodynamic limit [9]; (ii) an exponen-

tially diverging, high-temperature spin-spin correlation length: ⇣ ⇠ exp
�

c0/|T � TBKT|1/2
�

(where c0 is a constant) [39]; (iii) exponents ⌘(T ) = 1/2⇡Ke↵.(T ) ! 1/4 at T = TBKT (from

the low-temperature phase) [39] and �̃ = 3⇡2/128 at T = TBKT [19] (the latter of which is

an e↵ective critical exponent, and is covered in the next section).

2.5 Bramwell-Holdsworth Theory

The spin-wave magnetization described by Eq. (2.108) approaches zero slowly as the system

size approaches the thermodynamic limit, so that finite-size e↵ects remain extremely impor-

tant in surprisingly large systems, where the magnetization is known to be measurable [21].

As shown by Fig. 2.3, the introduction of topological defects to the system should a↵ect

this experimentally measurable finite-size magnetization.

Bramwell-Holdsworth (BH) theory applies the RG equations derived by Kosterlitz [39] for

the XY model to the finite-size system to find a universal e↵ective critical exponent at

the topological-defect critical point (where the unbinding of topological defects drives the

transition) for XY-type spin models. Clearly, this can only be achieved for systems of finite

magnetization: this prediction and measurement is a key step towards the understanding

of the importance of finite-size e↵ects in magnetic films with XY symmetry. The exponent

will be introduced once the basis of the theory has been outlined. We stress here that
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the exponent is perfectly well defined in the thermodynamic limit, which is taken once the

finite-size analysis has been performed.

2.5.1 Renormalization Group Equations

Kosterlitz derived [39] the following RG equation for large lattice systems:

af
ai

= exp

"

1
p

c0(T � TBKT)

 

tan�1

 

p

c0(T � TBKT)

xf

!

� tan�1

 

p

c0(T � TBKT)

xi

!!#

,

(2.121)

where he used the continuum XY Hamiltonian, which is a good approximation to large

lattice systems, and where c0 is a constant, ai and af are the initial and final values of

the renormalized lattice spacing a, and xi and xf are the initial and final values of the

renormalized deviation from ⇡Ke↵. � 2 = 0, x, defined via

x := ⇡Ke↵. � 2. (2.122)

Here, BH use a measuring system in which T is measured in units of J/kB, hence the

(T � TBKT) /TBKT term that Kosterlitz [39] has in his RG equation becomes T � TBKT in

Eq. (2.121).

This RG flow is towards the point where x = 0, hence xi > xf . It follows that, for af � ai

(topological-defect critical point),

af
ai

' exp

"

1
p

c0(T � TBKT)
tan�1

 

p

c0(T � TBKT)

xf

!#

, (2.123)

since the first term of Eq. (2.121) dominates. This corresponds to

xf '
p

c0(T � TBKT)

tan
⇣

p

c0(T � TBKT) ln(af/ai)
⌘ (2.124)

near the topological-defect critical point.

2.5.2 Finite-size Transition Temperatures

In the thermodynamic limit, BKT systems undergo a transition at the BKT transition

temperature TBKT. In finite-size systems, however, the transition occurs over a temperature

range of finite width that is bounded by the two finite-size transition temperatures of the
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BKT transition. BH defined these temperatures to be T ⇤(L) (lower bound) and TC(L)

(upper bound). The three transition temperatures then satisfy the double inequality,

TBKT  T ⇤(L)  TC(L), (2.125)

where both inequalities become equalities in the thermodynamic limit.

The lower of the two finite-size transition temperatures T ⇤(L) is the temperature at which

the e↵ective spin sti↵ness equals 2/⇡, since this is equivalent to approaching the universal

jump [4, 39] in the thermodynamic limit from below.

The RG equations used in the thermodynamic limit are for x � 0, which is equivalent to

approaching the transition from below. T ⇤(L) therefore has to correspond to the topological-

defect critical point of the RG equations, or, equivalently, to the temperature at which xf = 0

in Eq. (2.124). This cannot occur for a zero-valued numerator in Eq. (2.124) because this

possibility has been cut o↵ by the finite-size system. Hence,

0 '
p

c0(T ⇤(L)� TBKT)

tan
⇣

p

c0(T ⇤(L)� TBKT) ln(k1L)
⌘ , (2.126)

where k1 is a constant of order unity (introduced because af/ai ⇠ L for the finite-size

system), can only correspond to a divergent denominator, which is satisfied by

⇡

2
'
p

c0(T ⇤(L)� TBKT) ln(k1L), (2.127)

or, equivalently, by

T ⇤(L) ' TBKT +
⇡2

4c0 ln2(k1L)
. (2.128)

The arrows on Fig. 2.4 mark T ⇤(L) for the XY and HXY models consisting of 104 spins.

The higher of the two finite-size transition temperatures TC(L) corresponds to the finite-

size analogue of the temperature at which the transition into the high-temperature phase

is complete. One would therefore assume that this corresponds to the lowest temperature

at which Ke↵. = 0. BH, however, noted that a measure of TC(L) via the correlation length

of the system ⇣ is more suitable, since this allows the system size to be taken into account.

BH therefore set TC(L) to be the temperature at which the correlation length decreases to

the linear system size (when TC(L) is approached from below).

Kosterlitz defined the correlation length of the system ⇣ to be the smallest value of af/ai at

which there is a significant deviation from fixed-point behaviour in the RG equations. BH
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used this to set the correlation length ⇣ equal to af/ai when the argument of the tangent

in Eq. (2.124) is approximately ⇡. It follows that

⇣ ' exp

 

⇡
p

c0(T � TBKT)

!

. (2.129)

BH then noted that the correlation length decreasing to the system size corresponds to

⇣ ⇠ L, or to ⇣ = k1L (the constant k1 of T ⇤(L) appears here because Eq. (2.124) is used

again: it is approximated to diverge in this case). Hence,

k1L ' exp

 

⇡
p

c0(TC(L)� TBKT)

!

, (2.130)

which results in

TC(L) ' TBKT +
⇡2

c0 ln2(Lk1)
. (2.131)

Combining Eqs. (2.128) and (2.131), BH approximated the width of the transition temper-

ature range to be

TC(L)� T ⇤(L) ' 3⇡2

4c0 ln2(Lk1)
. (2.132)

2.5.3 The Critical Exponent

The e↵ective critical exponent �̃ relates the reduced temperature t := TC(L) � T and the

magnetization of the system near the critical point:

hmi ⇠ t�̃ (2.133)

in the vicinity of T ⇤(L). It follows that

�̃ =
@ lnhmi
@ ln t

(2.134)

in the vicinity of T ⇤(L). It is this exponent for which BH found a universal law at T = T ⇤(L):

the law occurs away from the temperature from which the temperature T is reduced (TC(L)).

BH then adapt the spin-wave magnetization given by Eq. (2.108) to make the following

ansatz:

hmi =
✓

1

cN

◆1/8⇡K
e↵.

(T )

(2.135)
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for T  T ⇤(L). Eq. (2.122) then leads us to

�̃ = ln(cN)
t

8(2 + x)2
@x

@t
. (2.136)

Near the topological-defect critical point, it follows that

@x

@t
= �1

2

r

c0

T � TBKT

1

tan
⇣

p

c0(T � TBKT) ln(k1L)
⌘

+
c0

2
ln(k1L)

0

@1 +
1

tan2
⇣

p

c0(T � TBKT) ln(k1L)
⌘

1

A . (2.137)

The divergent denominator that leads to Eq. (2.128) also leads to

@x

@t

�

�

�

�

T=T ⇤(L)

' c0

2
ln(k1L). (2.138)

Defining �̃⇤ := �̃
�

�

�

T=T ⇤(L)
to be the critical exponent at T = T ⇤(L), it follows that

�̃⇤ ' ln(cN)
TC(L)� T ⇤(L)

8. 22
c0

2
ln(k1L) (2.139)

=
c0

64
(TC(L)� T ⇤(L)) ln(cN) ln(k1L) (2.140)

' c0

64

3⇡2

4c0 ln2(k1L)
ln(cN) ln(k1L) (2.141)

=
3⇡2

256

ln(cN)

ln(k1L)
(2.142)

=
3⇡2

128

ln(k2L)

ln(k1L)
(2.143)

=
3⇡2

128

1 + ln(k2)/ ln(L)

1 + ln(k1)/ ln(L)
, (2.144)

where Eq. (2.132) is used in the third line, and k2 :=
p
c. In the thermodynamic limit, the

e↵ective critical exponent �̃ therefore takes a universal value at T = TBKT:

�̃⇤ =
3⇡2

128
. (2.145)

The thermodynamic limit taken here is perfectly well defined because the derivative of the

finite-size magnetization is computed before the limit is taken.

The signature of BH theory given by Eq. (2.145) is expected to apply to large but finite-size

systems (since ln(k1), ln(k2) ⌧ ln(L) for large L) [19]. BH numerically tested the application

of their theory to finite-size systems: Fig. 2.7 shows log10hmi versus log10(TC(L)�T ) for XY
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Figure 2.7: (Ref. [19]) log
10

hmi versus log
10

(T
C

(L) � T ) for XY models consisting of
N = 1024 spins (circles) and N = 104 spins (triangles). The filled points correspond
to the theoretical T ⇤(L) of each system size. Curves corresponding to Eq. (2.133) with
�̃ = 3⇡2/128 have been superimposed on the data.

models consisting of N = 1024 spins (circles) and N = 104 spins (triangles) [19]. Curves

corresponding to Eq. (2.133) with �̃ = 3⇡2/128 have been superimposed on the data,

showing the theory to apply to the system sizes presented. Here, BH set T ⇤(L) to be the

temperature at which hmi = (1/cN)1/16, since this corresponds to the e↵ective spin sti↵ness

Ke↵. being 2/⇡. TC(L) is then set using the relationship that follows from combining Eqs.

(2.128) and (2.131):

4 (T ⇤(L)� TBKT) = TC(L)� TBKT. (2.146)

This result has been commonly used by experimentalists to explain the fact that magnetic

films and layers with XY symmetry invariably show a magnetization with an e↵ective critical



Chapter 2. Theoretical Background 54

exponent given by �̃⇤ = 3⇡2/128. A literature survey was performed by Taroni et al. [21]

in which they categorize the critical exponents of a wide variety of magnetic systems: they

find that an extensive number of layered [45–52] and thin-film [53–57] magnets display this

signature of BH theory.



Chapter 3

Classical Electrostatics on a Lattice

In this chapter, the standard theory of two-dimensional lattice electrostatics is reformulated

in a representation suitable for the thesis. To do this, the axioms of continuum electrostatics

that were derived in Chapter 2 are rewritten in terms of discrete mathematics. This will

be followed with an analysis of the harmonic mode of the electric field, the lattice partition

function, and then the lattice Green’s function and the chemical potentials.

3.1 Axioms and Notation

All lattice physics will be based upon functions being defined to be the discrete counterparts

of smooth vector fields, any lattice vector field F will be defined [58] component-wise via

F(x) := Fx

⇣

x+
a

2
ex

⌘

ex + Fy

⇣

x+
a

2
ey

⌘

ey, (3.1)

where x is a lattice point of the lattice D and ex/y is the unit vector in the x/y direction,

and the functional integral
R

DF of any lattice vector field F will be defined via

Z

DF :=
Y

x2D



Z

R
dFx(x)

Z

R
dFy(x)

�

. (3.2)

All functions will be redefined as the lattice counterparts of their original continuum formu-

lation, where applicable.

The grand-canonical energy of the two-dimensional lattice system is given by

U =
✏0a

2

2

X

x2D
|E(x)|2 + UCore, (3.3)

55
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where D is the set of all charge lattice sites and a is the lattice spacing: the a2 term gives

the base element of area of the lattice system.

Introducing r̃ and r̂ as the forwards and backwards finite-di↵erence operators [58], respec-

tively, Gauss’ law on a lattice becomes

r̂ ·E(x) = ⇢(x)/✏0, (3.4)

where ⇢(x) := qm(x)/a2 is the charge density at x. In analogy with the functional analysis

outlined in Section 2.1.1.2, it then follows that the electrostatic solution to this equation is

given by

E(x) = �r̃�(x) + Ē. (3.5)

Upon defining r2f(x) := r̂ · r̃f(x) as the lattice Laplacian [58] acting on some general

scalar function f , Poisson’s equation on a lattice follows:

r2�(x) = �⇢(x)/✏0. (3.6)

3.2 Polarization

The harmonic mode of the electric field contains two components: one describes the polariza-

tion of the system, while the other corresponds to the winding of charges around the torus.

We note that, while there are no charge dynamics in electrostatics, certain electrostatic field

configurations are the field configurations that would be left behind if a charge were to wind

around the torus with a true dynamics: sampling electrostatic field configurations using

the Gibbs ensemble leads to thermal averages from which one can infer an e↵ective time

average of charge-winding dynamics, hence, we refer to charge windings throughout. We

now analyse the harmonic mode of the electric field by employing Gauss’ law over subsets

of the system.

In order to analyse the harmonic mode, we consider the sum of each component of the

electric field over the entire lattice. We split the sum of the x/y-component into separate

sums over all x/y-components that enter a particular strip of plaquettes of width a that

wrap around the torus in the y/x direction. With this, we express each component of the

harmonic mode Ēx/y in terms of the charge enclosed along each of the strips of plaquettes:

L2Ēx =a2
X

x2D
Ex

⇣

x+
a

2
ex

⌘

(3.7)
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=a

L�2a
X

x=0

(x+ a)
L�a
X

y=0



Ex

⇣

x+
a

2
, y
⌘

� Ex

✓

x+
3a

2
, y

◆�

+ La
L�a
X

y=0

h

Ex

⇣

L� a

2
, y
⌘

� Ex

⇣a

2
, y
⌘i

+ La

L�a
X

y=0

Ex

⇣a

2
, y
⌘

(3.8)

=� a2

✏0

L
X

x=a

x
L
X

y=a

⇢ (x) + La
L
X

y=a

Ex

⇣a

2
, y
⌘

, (3.9)

which follows from applying Gauss’ law to each strip of plaquettes that wrap around the

torus in the y direction. The same argument holds for the y-component, hence, the harmonic

mode is given by

Ē = � 1

✏0
P+

q

L✏0
w0, (3.10)

where P :=
P

x2D x⇢(x)/N is the origin-dependent polarization vector of the system and

w0,x := ✏0a
PL

y=aEx(a/2, y)/q is the x-component of the origin-dependent winding field,

with the y-component defined analogously. Here, P and w0 are measured from a specific

origin. The above applies to systems composed of either single- or multi-valued charges.

We have thus shown that Ē, which is origin-independent, is given by the sum of two origin-

dependent terms. One of these is attributed to the polarization of the system, while the other

describes the winding of charges around the torus given that the polarization is measured

with respect to the chosen origin: the harmonic-mode configurations that describe a given

charge configuration are multi-valued. The topological sector of the system changes when

a charge pair unbinds and winds around the torus in opposing directions before assuming

its original configuration. This decomposition of Ē therefore generates an origin-dependent

measure of the topological sector of the system because, in certain cases, shifting the origin

can lead to the exchange of quanta of field between the two Ē terms.

Restricting our attention to the gas of elementary charges, we now devise an origin-

independent measure of the topological sector of the system. First, we note that adding !

windings to either component of the harmonic mode Ē corresponds to

Ēx/y 7! Ēx/y +
q

L✏0
!, (3.11)

and that this results in a change in the grand-canonical energy of the system given by

�U =
Lq

2
!

✓

q

L✏0
! + 2Ēx/y

◆

. (3.12)
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Hence, given an arbitrary charge distribution, the lowest-energy harmonic mode that de-

scribes the charge distribution is an element of the set

✓

� q

2L✏0
,

q

2L✏0

�

. (3.13)

We therefore define a convention in which the harmonic mode is written as

Ē = Ēp + Ēw (3.14)

where Ēp and Ēw are the origin-independent polarization and winding components of the

harmonic mode, respectively. This convention identifies the polarization component with the

lowest-energy harmonic mode that describes a given charge distribution. The polarization

component is found by applying modular-arithmetic to Ē:

Ēp,x/y 2
✓

� q

2L✏0
,

q

2L✏0

�

. (3.15)

Ēw is then given by

Ēw =
q

L✏0
w, (3.16)

where the integer-valued vector field w (the winding field) is the origin-independent mea-

sure of the topological sector of the system and is chosen such that polarization component

Ēp fulfils Eq. (3.15). The winding field w now defines the topological sector of the sys-

tem, corresponding to the number of times charges have wound around the torus in each

direction. The lowest-energy electric-field configuration corresponds to w = 0 for all charge

configurations, and electric-field configurations corresponding to w 6= 0 are the electrostatic

field configurations that would be left behind if a charge were to wind around the torus from

the w = 0 field configuration with a true dynamics.

Non-zero topological sectors correspond to topological defects in the winding field w. These

topological defects are special in that they are not restricted to exist in plus-minus pairs.

Electrostatics on a torus is therefore associated with two topologies: the local topological

defects in the total electric field and the global topological defects in the winding field.

3.3 The Partition Function

In order to formulate the partition function in its full generality, we return to treat the gas

of multi-valued charges: that is, the charges may be integer multiples of the elementary

charge q.
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The constraints imposed upon the electric-field representation by the strictly irrotational

nature of the electric field, and by Eqs. (3.4) and (3.10), are combined with the grand-

canonical energy of the system to write the partition function in terms of lattice electric

fields. We define the setX := qZ/a2 such that the partition function for the two-dimensional

electrostatic system on a lattice with toroidal topology is given by

ZCoul. =
X

{⇢(x)2X}

X

w

0

2Z2

Z

DE
Y

x2D

h

�
⇣

r̂ ·E(x)� ⇢(x)/✏0
⌘

�
⇣

r̃⇥E(x)
⌘i

⇥�
 

✏0
N

X

x2D
E(x) +

⇣

P� q

L
w0

⌘

!

exp

 

��✏0a
2

2

X

x2D
|E(x)|2

!

e��U
Core ,

(3.17)

where
P

{⇢(x)2X} :=
Q

x2D

h

P

⇢(x)2X

i

is the sum over all possible charge configurations.

The above partition function describes the grand-canonical physics of an irrotational U(1)

gauge field of multi-valued topological defects, where we only sum over {w0} since the po-

larization is given by the charge configuration. The delta functions in Eq. (3.17) enforce the

constraints imposed upon the electrostatic system: Gauss’ law; the electric fields describing

the unique, low-energy, irrotational solution to Gauss’ law (a purely rotational field can be

added to the total electric field without a↵ecting Gauss’ law); the form of the harmonic

mode of the electric field. Note that charge neutrality does not need to be enforced with a

delta function because electric fields on a torus describe charge-neutral systems.

In terms of the grand-canonical energy, the harmonic mode decouples from the Poisson part

of the electric field (as shown in detail in Appendix C), hence,

ZCoul. =
X

{r2�(x)2Y }

exp

 

��✏0a
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X

x2D
|r̃�(x)|2

!

X

w
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exp
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◆

e��U
Core ,

(3.18)

with the set Y := qZ/✏0a2. We will show an extension to this transformation in more detail

in Section 4.2.3.

3.4 The E↵ective Electric Permittivity

The e↵ective electric permittivity of the Coulombic system ✏e↵. rescales the electric per-

mittivity of the vacuum ✏0 in the presence of charges: in the GCE, neutral charge pairs

can be excited out of the vacuum, with the thermal averages of each species of charge pair

dependent on both the temperature of the system and the value of the core-energy constant
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✏c of the charge species. The appearance of these charge pairs means that, on average, the

system is no longer a vacuum at finite temperature, and its electric permittivity must change

accordingly.

The e↵ective electric permittivity is an important measure of Coulombic systems: in its

two-dimensional form, it has direct analogues in all of the systems on to which the two-

dimensional Coulomb gas maps, and is an important signature of the BKT transition [4,

22, 39]. It is the product of the electric permittivity of free space ✏0 and the temperature-

dependent relative permittivity of the system ✏rel., which is proportional to the reciprocal

of the second partial derivative of the grand potential of the system with respect to a small,

global applied field D, with the applied field taken continuously to zero. In the following,

we consider an applied field restricted to the i direction.

Vallat and Beck showed [22] that the inverse e↵ective electric permittivity ✏�1
e↵. is given by

the response function

✏�1
e↵.(L, T ) :=

1

✏20L
2

@2�(L, T,Di)

@D2
i

�

�

�

�

D
i

!0

, (3.19)

where Di is the non-zero component of the applied field D and �(L, T,Di) is the grand

potential of the system at temperature T and under the influence of the applied field.

In the following, the field E is taken to be the electric field due to the charges. The partition

function of the system under the influence of the applied field is then given by

ZCoul.,D
i

:=

Z

D̃E exp
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2

2

X

x2D
|E(x) +D|2

!
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where

Z

D̃E :=
X

{⇢(x)2X}

Z

DE
Y

x2D

h

� (r ·E(x)� ⇢(x)/✏0) �
⇣

r̃⇥E(x)
⌘i

(3.24)
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is the constrained functional integral over electrostatic electric-field configurations. Com-

bining this with the definition,

�(L, T,Di) := ���1 ln (ZCoul.,D
i

) , (3.25)

the grand potential of the system under the influence of the applied field is given by

�(L, T,Di) = ���1 ln

"

Z

D̃E exp
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i
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e��U
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#

.

(3.26)

The first partial derivative of the above equation with respect to the applied field Di is given

by

@�(L, T,Di)

@Di
=

1

�ZCoul.,D
i

Z

D̃E�✏0L
2
�

Ēi +Di

�

exp (��UD
i

) , (3.27)

where UD
i

is the grand-canonical energy of the system under the influence of the applied

field. In the limit of vanishing applied field, this quantity is the i-component of the harmonic

mode of the electric field due to the charges, which was shown to be proportional to the

charge polarization of a simply connected system (with a winding-field contribution for the

toroidal system) in Section 3.2. The response function given by Eq. (3.19) is therefore the

response of the harmonic mode of the electric field (due to the charges) to a small applied

field (in the limit of vanishing applied field). The second partial derivative that generates

this response function is then given by

@2�(L, T,Di)

@D2
i

=
1

�Z2
Coul.,D

i

✓
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D̃E�✏0L
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2(Ēi +Di)

2
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exp (��UD
i

) . (3.28)

Combining this with Eq. (3.19), we find that

✏�1
e↵.(L, T ) =✏0

�

1� �✏0L
2
�

hĒ2
i i � hĒii2

��

(3.29)

=✏0

✓

1� 1

2
�
¯

E

(L, T )

◆

, (3.30)

where

�
¯

E

(L, T ) := �✏0L
2
�

hĒ2i � hĒi2
�

(3.31)

is the harmonic-mode susceptibility, which measures fluctuations in the harmonic mode of

the electric field due to the presence of charges. Eq. (3.30) follows from taking the average
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of both components of the electric field. It follows that the e↵ective electric permittivity is

given by

✏e↵.(L, T ) =
✏0

1� �
¯

E

(L, T )/2
. (3.32)

This is the e↵ective electric permittivity of the system due to the introduction of charges to

the vacuum.

Combining Eqs. (3.10) and (3.32), it follows that the e↵ective electric permittivity is inti-

mately related to the charge-charge correlations, and is therefore a signature of Coulombic

physics. It is a function of the sum,

X

x,x02D
x · x0h⇢(x)⇢(x0)i, (3.33)

which increases dramatically when charge begins to deconfine, so that the e↵ective electric

permittivity, in turn, increases. In a conductor, the charges are able to rearrange to com-

pletely cancel the applied field, which results in a divergent e↵ective electric permittivity.

In the thermodynamic limit, the standard two-dimensional Coulomb gas experiences a dis-

continuous universal jump in the e↵ective electric permittivity as it passes through the BKT

transition temperature TBKT from below [4, 22, 39]. Here, kBT ✏e↵. discontinuously diverges

from ⇡/2 to infinity [4, 22, 39] as the system enters its conducting phase. The e↵ective

electric permittivity describes a renormalized vacuum permittivity due to the presence of

charges: the value kBT ✏e↵.(L, T ) = ⇡/2 at T = TBKT reflects precisely the same competition

between confining energy and entropy that is seen with respect to the quantity kBT ✏0 = ⇡/2

at T = T̄BKT in Eq. (2.57) for the limitingly dilute Salzberg-Prager system, hence charge

is deconfined in the standard two-dimensional Coulomb gas at temperatures above TBKT.

Note that the discontinuous jump is universal in the sense that it is a universal property

of all systems in the XY universality class: the significance of the value Ke↵.(T ) = 2/⇡ at

T = TBKT given in Section 2.3.6 is due to precisely the same competition as that described

here with respect to the value kBT ✏e↵.(A, T ) = ⇡/2 at T = TBKT.

Fig. 3.1 shows the inverse e↵ective electric permittivity for two-dimensional lattice Coulomb

gases (of elementary charges) of various system sizes as functions of temperature. The

data clearly shows a transition from an insulating (low-temperature) to a conducting (high-

temperature) phase: as TBKT is approached from below, the e↵ective electric permittivity

diverges, signalling charge deconfinement and the high-temperature phase of the BKT tran-

sition. We simulated this system using the MR algorithm, which is outlined in detail in

Chapter 4. The lattice spacing a is set to unity: throughout the remainder of this thesis, we

set a = 1, but we may write this quantity explicitly to help the reader in identifying units.
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Figure 3.1: The inverse e↵ective electric permittivity 1/✏
e↵.

for two-dimensional lattice
Coulomb gases composed of elementary charges and of linear size L = 8, 16, 32 and 64 as
functions of temperature T , where the lattice spacing a, the vacuum permittivity ✏

0

and
Boltzmann’s constant k

B

are set to unity and the elementary charge q is set to 2⇡. The
data clearly shows a transition from an insulating (low-temperature) to a conducting (high-
temperature) phase. We simulated this system using the MR algorithm, which is outlined
in detail in Chapter 4. Simulation details are outlined in Appendix E.

Finally, the harmonic-mode susceptibility �
¯

E

is not to be confused with the standard sus-

ceptibility of electrostatic theory �0, which is defined by

�0(L, T ) := � lim
D

i

!0



hĒii
hĒi +Dii

�

. (3.34)

Note that, in a more standard representation, the above becomes

✏0�
0(L, T ) = lim

D
i

!0



hPii
h�Pi/✏0 +Dii

�

(3.35)

for a simply connected system (a toroidal topology results in the additional winding-field

contribution), where Pi is the i-component of the charge polarization of the system. The

harmonic-mode susceptibility is bounded above by 2, whereas the standard susceptibility

diverges for a conductor (since the constituent charges of a conductor rearrange to cancel

the applied field). The standard susceptibility is related to the e↵ective electric permittivity
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by

✏e↵.(L, T ) = ✏0
�

1 + �0(L, T )
�

. (3.36)

3.5 The Lattice Green’s Function

The use of lattice electric fields necessitates a Fourier description of the system in discrete k-

space. The Green’s function that describes the lattice electric field in two spatial dimensions

is of a di↵erent form to the logarithmic continuum k-space expression: for large systems,

the lattice Green’s function converges on the continuum expression. To write the partition

function in terms of the lattice Green’s function, we consider Poisson’s equation on a lattice

(Eq. 3.5). This reduces to

X

x

µ

2NN
x

[�(x)� �(xµ)] =
q

✏0

X

x

02D
m(x0) �

xx

0 , (3.37)

where NN
x

is the set of the nearest neighbours of x in the positive directions and �
xx

0 is

the Kronecker delta function.

We apply the principle of superposition such that the scalar potential at x (in terms of the

lattice Green’s function) is given by

�(x) =
q

✏0

X

x

02D
G(x,x0)m(x0), (3.38)

which is combined with Eq. (3.37) to give

�
x,x0 =

X

µ2{x,y}

⇥

2G(x,x0)�G(x+ aeµ,x
0)�G(x� aeµ,x

0)
⇤

. (3.39)

The system exists on a torus, hence the Green’s function is periodic. We define the k-space

Green’s function via

G̃
x

0(k) :=
X

x2D
e�ik·xG(x,x0), (3.40)

with the inverse Fourier transform given by

G(x,x0) =
1

N

X

k2B
eik·xG̃

x

0(k), (3.41)
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where
P

k2B :=
Q

µ2{x,y}

h

P

k
µ
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µ

i

, the set of k-space values in the µ-direction is given by

Bµ := {0,± 2⇡

Nµa
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✓
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◆
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and Nx = Ny =
p
N .

To proceed, we use the standard result that
P

k2B eik·(x�x

0) = N�
xx

0 , and write

X

k2B
eik·(x�x

0) =N
X

µ2{x,y}
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2G(x,x0)�G(x+ aeµ,x
0)�G(x� aeµ,x
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(3.43)

=
X

k2B
eik·x

⇣

4� eikxa � e�ik
x

a � eikya � e�ik
y

a
⌘

G̃
x

0(k) (3.44)

=2
X

k2B
eik·x [2� cos(kxa)� cos(kya)]G̃

x

0(k). (3.45)

This is solved by

G̃
x

0(k) =
e�ik·x0

2 [2�cos(kxa)�cos(kya)]
8k 6= 0, (3.46)

where the k = 0 part of the lattice Green’s function is set to zero since the harmonic

component of E is attributed to Ē. It follows that

G(x,x0) =
1

2N

X

k 6=0

eik·(x�x

0)

2� cos(kxa)� cos(kya)
. (3.47)

The Green’s function is the key di↵erence between lattice and continuum electrostatics in

any dimension. The lattice Green’s function describes electric fields that are constrained

to flow along lattice bonds connecting lattice sites, rather than fields that are free to em-

anate throughout position space. For suitably dilute lattice Coulomb gases, the continuum

Green’s function is a good approximation to the lattice physics since the lattice-field lines

resemble continuum fields well; as the lattice becomes more densely populated with charge,

the approximation begins to break down. As shown by Spitzer [59], the lattice Green’s

function approximation is given by

lim
L!1

G(x,x0) ' � 1

2⇡
ln

�

�

�

�

x� x0

r0

�

�

�

�

(3.48)

in the thermodynamic limit, and for x 6= x0. Here, r0 := ae��/2
p
2 (where � is Euler’s

constant).

Finally, combining Eqs. (3.18), (3.37) and (3.38) with working analogous to that in Section

2.1.1.3, the partition function of a two-dimensional electrostatic lattice Coulomb gas on a
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torus is given by
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with the Green’s function given by Eq. (3.47), and where the delta function is introduced

to enforce charge neutrality.

3.6 The Chemical Potential

The grand-canonical energy of the system is given by

U = USelf + UInt. + UHarm. + UCore, (3.50)

where USelf := a4G(0)
P

x2D ⇢(x)
2/2✏0, UInt. := a4

P

x

i

6=x

j

2D ⇢(xi)G(xi,xj)⇢(xj)/2✏0 and

UHarm. := L2|Ē|2/2✏0 are the self, Coulombic charge-charge interaction and harmonic-mode

components of the grand-canonical energy for the system, respectively, and the core-energy

component UCore is given by Eq. (2.34).

The chemical potentials are defined as in Eq. (2.36), so that, in full, the partition function

given by
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(3.51)

describes a grand-canonical, charge-neutral electrostatic system on a two-dimensional lattice

with toroidal topology. In Chapter 4, we will outline the MR electrostatic model in a lattice-

field formulation, before using it to probe the BKT transition for the two-dimensional lattice

Coulomb gas on a torus (which we consider to be the base BKT system) in Chapter 5. When

probing the transition, we will control the number of each charge species by tuning each

core energy.



Chapter 4

The Maggs-Rossetto Electrostatic

Model

In Chapter 2, Coulombic charges were shown to interact with one another via long-ranged

interaction potentials. This chapter is based around the work of Maggs and co-workers [24,

30–34], who devised a local model of Coulombic physics on a lattice. Here, we reformulate

the MR electrostatic model [24] using a lattice notation and extend it to the GCE.

The MR electrostatic model [24] is a remarkable feat of statistical mechanics in which the

Coulomb fluid is transformed into a local problem. The resultant algorithm locally simulates

the physics of long-range Coulombic interactions on a lattice via the introduction of a freely

fluctuating auxiliary field: the canonical electric-field description of Coulombic systems is

extended to include all degrees of freedom of the field, utilizing the fact that the partition

function of the MR electrostatic model is completely separable into its irrotational and ro-

tational components. The model is an example of long-range interactions emerging from

purely local physics. In Chapter 6, we will show the equivalence between the MR electro-

static model and the Villain model [23], thereby demonstrating this emergent phenomenon

appearing in nature: this was the inspiration for the thesis.

The algorithm simulates Coulombic physics on a lattice: in this chapter, it is therefore

formulated using discrete vector calculus. The formulation is also restricted to two spatial

dimensions since this thesis is based on two-dimensional physics, and promotion to three

dimensions follows easily.

67
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4.1 Mathematical Background

The MR electrostatic model introduces a freely fluctuating auxiliary field to the Coulombic

system. This field is divergence free everywhere and extends the electrostatic solution of

Gauss’ law to the general solution: its introduction results in local field updates alone being

su�cient for the system to e�ciently explore the Gibbs ensemble of the electrostatic problem.

We will show that the partition function for the total field is separable into its Coulombic and

auxiliary (or rotational) components: the auxiliary field contributes to the internal energy

of the electric fields, but its partition function is independent of the Coulombic component.

The construction of the MR electrostatic model begins with a consideration of Gauss’ law

on a lattice,

r̂ ·E(x) = ⇢(x)/✏0. (4.1)

From here, it is standard practice to write the solution to Eq. (4.1) in terms of the unique

minimum-energy configuration (MEC) of the electric field given by Eq. (3.5). This is not,

however, the general solution to Gauss’ law: Helmholtz’ theorem of vector calculus allows

us to extend this electric-field description to include the rotational degrees of freedom of the

field. The total electric field of the MR electrostatic model is given by

E(x) = �r̃�(x) + Ẽ(x) + Ē, (4.2)

where the auxiliary field Ẽ contains the rotational degrees of freedom of the field and nothing

else. This holds with previous electrostatic discussions, where Ẽ(x) = 0 everywhere. The

lattice divergence of this extra term is zero, leaving us with Poisson’s equation on a lattice:

r2�(x) = �⇢(x)/✏0. (4.3)

The units of the electric field and of the electric permittivity are discussed in Appendix A.

Upon inserting the general solution to Gauss’ law (on a lattice) given by Eq. (4.2) into Eq.

(3.3), it follows that the grand-canonical energy of the MR electrostatic model is given by

U = USelf + UInt. + URot. + UHarm. + UCore, (4.4)

where URot. := ✏0a
2
P

x2D |Ẽ(x)|2/2 is the auxiliary-field component of the grand-canonical

energy, and we have used the fact that all coupling terms sum to zero, as shown in detail

in Appendix C. This holds with the grand-canonical energy of the electrostatic system

introduced in Chapter 2, where URot. = 0.
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4.2 Microscopic-variable Representation and the Partition

Function

We start by defining two sets of microscopic variables that represent the local field updates

outlined in Section 2.2. We will then write the partition function for the system in this

microscopic-variable representation before transforming to the electric-field representation.

Rewriting the partition function for the system in the electric-field representation will show

that the MR electrostatic model reproduces Coulombic physics. In order to avoid bulky

notation, we will use the same notation in the microscopic-variable representation as that

used in the Villain model since the systems will be shown to be equivalent.

4.2.1 Microscopic Variables

A conjugate lattice D0 is defined such that each site exists at the centre of each plaquette of

D (D0 is used because the conjugate lattice will be shown to be equivalent to the spin lattice

of XY-type spin models in Chapter 6). Each site in D0 is associated with a real-valued

variable ' whose adjustment corresponds to an update of the auxiliary field (the rotational

degrees of freedom of the total electric field), while each pair of nearest-neighbour sites is

associated with an integer-valued variable s whose adjustment corresponds to a charge-hop

update. Both sets of variables are subject to PBCs. Component-wise, we now define the

field

[�✓]i
⇣

x+
a

2
ei

⌘

:=
'(x+ aei)� '(x) + qs(x+ aei,x)

a
, (4.5)

where ei is the unit vector in the i-direction (i 2 {x, y}). The field �✓ should be considered

a field in itself, rather than the change in a scalar field. We identify the lattice electric field

E with the following vector field:

E(x) ⌘ 1

✏0

0

B

B

@

[�✓]y(x+ a
2ex)

�[�✓]x(x+ a
2ey)

1

C

C

A

. (4.6)

Note that the sites of the lattice vector-field components of lattices D and D0 coexist.

We now consider the local field updates in terms of these new variables. A charge hop in

the positive x/y direction corresponds to a decrease/increase in the relevant s variable by

an amount q, as shown in Fig. 4.1 (where sij represents the s variable between sites xi and

xj of the conjugate lattice).
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j

Figure 4.1: A charge-hop update in the positive x direction: The s
ij

variable (red arrow)
has its value decreased by an amount q. The value of the electric field flux E

↵�

(black
arrow) flowing from site ↵ to site � then decreases by q/✏

0

, corresponding to a charge-hop
update. Red circles represent positive charges; white circles represent empty charge sites.

1 2

3 4

7������!

1 2

3 4

Figure 4.2: An update of the rotational degrees of freedom of the electric field: The
value of the ' variable at the centre of a randomly chosen lattice plaquette decreases by
an amount �. This rotates the electric flux by an amount �/✏

0

around the plaquette,
leaving Gauss’ law satisfied. Red arrows represent ' variables, black arrows represent the
electric field, dashed red lines represent the conjugate lattice D0, the blue arrow represents
the direction of the field rotation and grey circles represent sites of arbitrary charge.

Fig. 4.2 then shows the microscopic-variable representation of an auxiliary-field update,

with an alteration of a particular ' variable rotating the field around its surrounding pla-

quette: a change in the ' variable by an amount � rotates the electric flux around the

surrounding plaquette by an amount �/✏0. We represent the ' variables with spin-like

arrows to emphasize the rotation of the electric field around the relevant plaquette.

With the grand-canonical energy of the system given by Eq. (3.3) we are able to write

the partition function in the microscopic-variable representation. We consider the GCE, so

we allow charge-hop updates to excite charges out of the vacuum, and we also include the

possibility of all integer-valued multiples of the elementary charge. From Eq. (4.6) it then
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follows that

Z =
X

{s(x,x0)2Z}

Z

D' exp

0

@� �

2✏0

X

hx,x0i

|'(x)� '(x0) + qs(x,x0)|2
1

A exp (��UCore) , (4.7)

where the functional integral
R

D' is defined via

Z

D' :=
Y

x2D0

"

Z q/2

�q/2
d'(x)

#

. (4.8)

Here, the ' variables are restricted to the set (�q/2, q/2] to avoid a multiple counting

of electric-field configurations. In a representation that reflects the mechanics of the MR

electrostatic model, this partition function describes a two-dimensional U(1) lattice vector

field permitted to explore all real values in each of its components. The reader may notice

that the partition function given above is that of the Villain model of two-dimensional

magnetism [23] (omitting the UCore term, and with q = 2⇡). For sums over nearest-neighbour

positions, all positions are on the D0 lattice.

4.2.2 Gauss’ Law

The microscopic variables reproduce Gauss’ law:

X

x2@�
�✓(x) · l(x) = Q�, (4.9)

where Q� is the charge enclosed within some subset of the lattice � ✓ D, @� ⇢ D0 is

the boundary enclosing �, and l traces an anticlockwise path along @� and has dimensions

of length. This equation results from the ' variables cancelling and the s variables being

integer-valued. Combining Eqs. (4.6) and (4.9), it follows that

X

x2@�
�✓(x) · l(x) =a2

X

x2�
✏0r̂ ·E(x) (4.10)

) r̂ ·E(x) =⇢(x)/✏0, (4.11)

recovering Eq. (4.1), as required.

The microscopic-variable representation transforms to the electric-field representation and

also reproduces Gauss’ law, resulting in the required lattice fields.
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4.2.3 The Partition Function in the Electric-field Representation

Now that we have described the model using a representation that mimics the mechanics of

the model, we rewrite the partition function in the electric-field representation to probe the

validity of introducing the auxiliary field. The partition function is given by

Z =
X

{⇢(x)2X}

X

w

0

2Z2

Z

DE
Y

x2D

h

�
⇣

r̂ ·E(x)� ⇢(x)/✏0
⌘i

�

 

X

x2D
E(x) +

✓

N

✏0
P� Lq

✏0a2
w0

◆

!

⇥ exp

 

��✏0a
2

2

X

x2D
|E(x)|2

!

exp (��UCore) . (4.12)

Notice that the delta function that enforced the electric fields of the system described by

Eq. (3.17) to be irrotational is no longer included in order to allow the auxiliary field to

freely fluctuate.

This partition function is separated into two components by defining the divergence-free

field e [30] via

e(x) := E(x) + r̃�(x). (4.13)

Then, since r2�(x) = �⇢(x)/✏0 and Ē = �P/✏0 + qw0/L✏0, it follows that

Z =
X

{r2�(x)2Y }
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2

2

X

x2D
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X
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2Z2

Z

De
Y

x2D

h

�
⇣

r̂ · e(x)
⌘i

⇥ �

 

X

x2D
e(x) +

✓

N

✏0
P� Lq

✏0a2
w0

◆

!

exp

 

��✏0a
2

2

X

x2D
|e(x)|2

!

e��U
Core (4.14)

=
X

{r2�(x)2Y }
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, (4.15)

where ẽ(x) := e(x)� Ē is a purely rotational field and Y := qZ/✏0a2 is the set of all charge

configurations divided by ✏0. We now write the partition function as

Z = ZCoul. ZRot., (4.16)
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where

ZCoul. :=
X

{r2�(x)2Y }

exp
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and

ZRot. :=

Z

Dẽ
Y

x2D

h

�
⇣

r̂ · ẽ(x)
⌘i

�

 

X

x2D
ẽ(x)

!

exp

 

��✏0a
2

2

X

x2D
|ẽ(x)|2

!

(4.18)

are the Coulombic and auxiliary-field components of the partition function, respectively.

The partition function given by Eq. (4.17) is precisely of the form of the partition function

given by Eq. (3.18). This Coulombic component of the partition function separates from the

auxiliary-field component: the auxiliary field is statistically independent of charge-charge

correlations and the MR electrostatic model reproduces the desired grand-canonical, two-

dimensional lattice Coulomb physics.

At this point, it is helpful to emphasize that charge-hop updates alter fields that are de-

scribed by the entire partition function (hence the non-zero auxiliary field) while auxiliary-

field updates only alter fields that are described by the auxiliary-field component of the

partition function ZRot.. A local charge-hop update produces a greater change in the total

energy density than the energy change due to electrostatic-field updates alone. The freely

fluctuating auxiliary field solves this problem by allowing the total fields to relax to field

configurations of lower energy.

4.2.4 The Partition Function in Terms of the Lattice Green’s Function

The Coulombic partition function generated by the MR electrostatic model can now be

written in terms of the lattice Green’s function G(xi,xj), as in Section 3.5:

ZCoul. =
X

{⇢(x)2X}
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exp (��UCore) . (4.19)
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With the chemical potentials introduced as in Section 2.1.1.4, the partition function given

by

ZCoul. =
X

{⇢(x)2X}
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(4.20)

describes the electrostatics of the MR electrostatic model with tuneable chemical potentials.

Again, we have the ability to control the number of each charge species by tuning each core

energy as desired.

4.3 The Coulomb Gas of Elementary Charges

For the remaining analysis, we will restrict our attention to the standard BKT Coulomb gas

of elementary charges by setting the core-energy constants to zero and infinity, as required:

✏c(m = 0, ±1) = 0 and ✏c(m 6= 0, ±1) = 1. It follows that the Coulombic partition function

for this system is given by

ZCoul. =
X

{⇢(x)2{0,±q/a2}}
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x2D
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w|2
◆

, (4.21)

where µ := µ±1 is the chemical potential for the introduction of an elementary charge, and

we are now able to employ the origin-independent measures of the polarization Ēp and the

winding Ēw components of the total harmonic mode Ē, as outlined in Section 3.2.

4.4 The Global Update

The winding component of the harmonic mode may also be independently sampled since

an infinite number of winding fields describe the same charge configuration, and it is the

charge configurations that the MR algorithm sets out to sample. For a system of elementary

charges, these updates correspond to proposing a change in the harmonic mode given by

Ēx/y 7! Ēx/y +
q

L✏0
!, (4.22)
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where ! is some integer, as in Eq. (3.11). This final update is employed in the MR algorithm

to improve e�ciency [24].

A suitable ratio of the three updates described in this section therefore successfully samples

the charge configurations of a Coulombic system. In Chapter 5, this model will be used to

analyse the BKT transition by comparing winding-field (or topological-sector) fluctuations

in the low- and high-temperature phases of the transition.





Chapter 5

Topological-sector Fluctuations at

the BKT Transition

In the context of the two-dimensional lattice Coulomb gas on a torus, the BKT transition

is a confinement – deconfinement phase transition with respect to the neutral charge pairs

that make up the system. In the low-temperature phase, the charge pairs are tightly bound

by their logarithmic Green’s function and can never unbind; in the high-temperature phase,

however, the entropic part of the free energy overcomes the confining energy of the sys-

tem, resulting in deconfined charge. Eq. (4.21) therefore shows the relevance of the winding

component of the harmonic mode in signalling the BKT transition: the two phases are char-

acterized by non-fluctuating and fluctuating winding fields in the low- and high-temperature

phases, respectively. As previously discussed, the winding field defines the topological sector

of the system: in this chapter, we simulate the two-dimensional Coulomb gas using the MR

algorithm to show that topological-sector fluctuations signal the high-temperature phase of

the BKT transition.

For the standard BKT Coulomb gas of elementary charges (with the core-energy constant

set to zero), the BKT transition occurs at TBKT = 1.35 (to 3 significant figures) [29] in

the thermodynamic limit, which is scaled to higher temperatures in finite-size systems (see

below). Fig. 5.1 shows the evolution of the (normalized) x-component of the harmonic

mode of a system of linear size L = 16, simulated using local moves only (numerical sim-

ulation details are described in Appendix E). For the window of simulation time shown,

zero topological-sector fluctuations are visible just below the BKT transition temperature

TBKT = 1.35, but they become important at temperatures above TBKT.
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Figure 5.1: The x-component of the normalized total harmonic mode LĒ
x

/2⇡ (black) and
winding field LĒ

w,x

/2⇡ (blue) versus Monte Carlo time for an L⇥ L system of linear size
L = 16 at T = 1.34 (top) and T = 2.0 (bottom). The system was simulated using the MR
algorithm with local moves only. At the lower temperature, harmonic-mode fluctuations
are finite but there are no topological-sector fluctuations, while at the higher temperature
the winding-field component becomes finite, indicating topological-sector fluctuations.
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In the thermodynamic limit, the di↵erence in the behaviour of the harmonic mode seen in

Fig. 5.1 is represented by the final exponent of Eq. (4.21) performing the transformation

�L2�✏0
2

|Ēp|2 7! �L2�✏0
2

|Ēp +
q

L✏0
w|2, (5.1)

with w not strictly zero-valued in the high-temperature phase. The Coulombic partition

function in the low-temperature phase is therefore given by

ZT<T
BKT
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{⇢(x)2{0,±q/a2}}
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. (5.2)

5.1 Ergodicity Breaking

A convenient measure of topological-sector fluctuations in the electric field is the winding-

field susceptibility �w:

�w(L, T ) := �✏0L
2
�

hĒ2
wi � hĒwi2

�

. (5.3)

As can be seen by combining Eqs. (4.21) and (5.3), limiting the Gibbs ensemble that

contributes to ZCoul. to configurations with zero charge results in Eq. (5.3) reducing to the

winding-field susceptibility due to global moves only:

�global
w (T ) = �✏0L

2
�

hĒ2
wiglobal � hĒwi2global

�

(5.4)

= �✏0L
2 4q

2 exp
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��q2/2✏0
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/✏20L
2 + . . .

1 + 4 exp (��q2/2✏0) + . . .
(5.5)

' �✏0L
2 4q

2 exp
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1
(5.6)

=
4�q2

✏0
exp

�

��q2/2✏0
�

, (5.7)

since hĒwi = 0, and where this approximation holds for kBT ⌧ q2/2✏0. This expression

is system-size independent and shows that an ergodic system would have small but finite

topological-sector fluctuations at all temperatures.

Assuming local charge dynamics, a topological-sector fluctuation requires the separation of

a charge pair over a distance greater than L/2 in either the x or the y direction, as seen

in the condition placed upon the polarization component of the harmonic mode Ēp (Eq.

(3.15)). The energy barrier against such a configuration diverges logarithmically with the

linear system size L [1–3]. As discussed in Section 2.1.2.2, entropy and charge screening
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make the free-energy barrier finite in the high-temperature phase. This allows charge pairs

to unbind and trace closed paths around the torus, giving finite-valued winding fields, as

observed in Fig. 5.1. In contrast, in the low-temperature phase, the probability of separation

is strictly zero (a phase is defined in the thermodynamic limit). This results in an ergodicity

breaking - a change in the phase space explored by the system - which is signalled by the

strict suppression of topological-sector fluctuations in the electric field at T < TBKT. In the

context of the Coulomb gas on a torus, the system is in an ergodic state if the same statistics

are produced whether or not global dynamics are permitted to supplement the mandatory

local dynamics. In order to explore this ergodicity breaking, we have therefore simulated

the two-dimensional Coulomb gas, either with local field updates only, or with both local

and global field updates [24, 30–34].

In the context of simulation, the system is ergodic if the sampling procedure both with the

global update on and with the global update o↵ produce the same statistics. To analyse the

ergodicity of the system, we therefore define the susceptibility quotient �local
w /�all

w , where

�local
w and �all

w are the winding-field susceptibilities as measured via the employment of local

moves only and via the employment of both local and global moves, respectively. Fig.

5.2 shows the susceptibility quotient as a function of temperature for systems of linear size

L = 32 and L = 64. The susceptibility quotient is zero in the regions T < 1.075 (L = 32) and

T < 1.2 (L = 64), tends to unity in the region T > 1.6, and is a strongly fluctuating quantity

between these temperatures. Simulations details (including the Monte Carlo timescale of

the simulations) are outlined in Appendix E.

Fig. 5.2 clearly shows that ergodicity is broken in the vicinity of the BKT transition.

For T > 1.6, �local
w = �all

w , indicating that the free-energy barrier for a topological-sector

fluctuation via local charge dynamics is small. For T < 1.075 (L = 32) and T < 1.2

(L = 64), the quotient is zero, indicating that the energy barrier prevents topological-sector

fluctuations via local dynamics. In between these low- and high-temperature regions there

are strong fluctuations in the quotient because charge deconfinement via local dynamics

represents increasingly rare events, an inevitable precursor to loss of ergodicity. In Section

5.2, this ergodicity breaking is shown to occur precisely at TBKT in the thermodynamic

limit.

Our analysis thus leads to a precise definition of topological order for the two-dimensional

Coulomb gas through the ergodic freezing of the topological sector to its lowest absolute

value. Two-dimensional systems with U(1) symmetry are often associated with an absence

of an ordering field at finite temperature [25]. Here we explicitly show that, in the case of the

BKT transition, the ordering of a conventional order parameter is replaced by topological

ordering through an ergodicity breaking between the topological sectors. The topological

order is directly related to the confinement-deconfinement transition of the charges, the
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Figure 5.2: The susceptibility quotient �local

w

/�all

w

versus temperature for an L ⇥ L
Coulomb gas of linear size L = 32 (top) and L = 64 (bottom). In the regions T < 1.075
(L = 32) and T < 1.2 (L = 64), the quotient is zero, while for T > 1.6, the quotient ap-
proaches unity. This divergence between the results of the local-update and the all-updates
simulations, accompanied by striking fluctuations in the intermediate region, signals ergod-
icity breaking as the system is cooled through the BKT transition. The line is a guide to
the eye. Simulations details (including the Monte Carlo timescale of the simulations) are
outlined in Appendix E.
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local topological defects of the electric field. This type of ergodicity breaking is distinct

from either the symmetry breaking that characterizes a standard phase transition, or that

due to the rough free-energy landscape that develops at a spin-glass transition [27].

5.2 Finite-size Scaling

In order to explore the approach to the thermodynamic limit, the two-dimensional Coulomb

gas was simulated by the Monte Carlo method as a function of system size, using the MR

algorithm. The global update was employed in order to improve the statistics (numerical

simulation details are described in Appendix E).

Fig. 5.3 shows the simulated winding-field susceptibility �w as a function of temperature for

L⇥L Coulomb gases of linear sizes between L = 8 and L = 64. There is a marked increase

in the winding-field susceptibility �w as the system passes through the BKT transition

temperature TBKT = 1.35 [29] for all system sizes. Susceptibility curves for successive

values of L intersect at temperatures above T = 1.8 and below T = 1.5. Between these

two temperatures, the winding-field susceptibility increases for a given temperature as the

linear system size L increases. These results are consistent with the finite-size scaling of the

BKT transition temperature [19, 43]: as the system size decreases the e↵ective transition

temperature T ⇤(L) increases.

Due to the logarithmic interaction potential, in the vicinity of TBKT, the probability of a

charge pair separating over a distance greater than L/2 increases with decreasing system

size. This, combined with the finite-size transition temperature T ⇤(L) also increasing with

decreasing system size, results in the winding-field susceptibility curves for successive values

of L intersecting in the vicinity of TBKT. The inset in Fig. 5.3 shows that these low-

temperature crossover points of the susceptibility curves are at T = 1.45, T = 1.40, and

T = 1.37 (to three significant figures). The inset clearly shows that the crossover points

tend towards a point of maximum curvature in the thermodynamic-limit susceptibility curve,

from which topological-sector fluctuations increase dramatically. To extrapolate the data

shown in Fig. 5.3 to the thermodynamic limit, we define the crossover temperature TCross(L)

to be the lower temperature at which �w(L) = �w(L/2).

Fig. 5.4 shows the crossover temperature TCross as a function of inverse system size 1/L,

along with a straight-line fit to the data. The thermodynamic-limit value of TCross corre-

sponds to the y-intercept in the TCross versus 1/L plot. We find that TCross(L ! 1) =

1.351(2), that is, it extrapolates to the BKT transition temperature [29]:

TCross(L ! 1) = TBKT. (5.8)
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Figure 5.3: The winding-field susceptibility �
w

as a function of temperature for L ⇥ L
Coulomb gases of linear size L = 8, 16, 32, and 64 (using local and global MR moves).
The curves intersect at low and high temperature. Inset: An expanded plot of the data in
the region of the low-temperature intersections (with error bars representing two standard
deviations). The indicated crossover temperatures are given by T

Cross

(L = 16) = 1.45,
T
Cross

(L = 32) = 1.40 and T
Cross

(L = 64) = 1.37 (to three significant figures), based on a
data fit.

The point of maximum curvature in the thermodynamic-limit susceptibility curve therefore

occurs at T = TBKT.

Similarly to the ⌥̃4 scaling seen in the inset of Fig. 2.6, the scaling of the low-temperature

crossover points TCross with inverse linear system size 1/L seen in Fig. 5.4 is in marked

contrast to the scalings of the finite-size transition temperatures of the BKT transition [19,

43]. As seen in Section 2.5.2, the finite-size transition temperatures of the system can be

fitted to 1/ ln2(L) [19] scaling laws. TCross. is therefore neither T ⇤(L) nor TC(L).

The magnitude of the winding-field susceptibility at the crossover points �Cross
w (L ! 1)

similarly extrapolates to ⇠ 5 ⇥ 10�4 in the thermodynamic limit, with an estimated error

of the same order. This small number is not measurably di↵erent to the winding-field

susceptibility due to global moves only, which, at TBKT, evaluates to approximately 5⇥10�5

for all system sizes (see Eq. (5.7)). The inference is that topological-sector fluctuations due
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Figure 5.4: The crossover temperature T
Cross

(black data) and crossover susceptibility
�Cross

w

(red data) as functions of inverse linear system size 1/L, with error bars representing
two standard deviations. Lines are weighted (with respect to the error bars) linear-regression
fits to each data set, from which the y-intercept (L ! 1) was calculated. T

Cross

(L ! 1) =
1.351(2), equal to the BKT transition temperature T

BKT

[29]. The crossover susceptibility
�Cross

w

(L ! 1) ⇠ 5⇥10�4 with an estimated error of the same order: there is no measurable
di↵erence between this quantity and the winding-field susceptibility due to global updates
only at T = 1.351.

to local moves only turn on precisely at the universal point TCross(L ! 1) = TBKT in the

thermodynamic limit. This confirms that topological-sector fluctuations due to local moves

signal charge deconfinement and the high-temperature phase of the BKT transition: in this

phase, it follows that the harmonic-mode of the electric field can no longer be described by

the polarization of the system alone.

This signalling of the high-temperature phase of the transition occurs at the temperature at

which the system experiences the famous universal (and discontinuous) jump in the inverse

e↵ective electric permittivity ✏�1
e↵. in the thermodynamic limit [4, 22, 38, 39]. This quantity

is related to the harmonic-mode susceptibility by Eq. (3.32), from which it follows that �
¯

E

makes a jump of order unity at TBKT. As shown in Fig. 5.5, the ratio (�
¯

E

� �p)/�¯

E

is less

than 5⇥ 10�2 for all T  1.6 for systems of linear size L = 8 to 64, where

�p(L, T ) := �✏0L
2
�

hĒ2
pi � hĒpi2

�

(5.9)
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Figure 5.5: The ratio (�Ē � �
p

)/�Ē as a function of temperature for systems of linear
size L = 8, 16, 32 and 64. We see that the contribution from topological-sector fluctuations
to the universal jump in the harmonic-mode susceptibility �Ē is less than 5 ⇥ 10�2 for all
system sizes at T  1.6.

is the polarization susceptibility, showing that the contribution to the universal jump from

topological-sector fluctuations is small. This is due to the near cancellation of hĒ2
wi and the

coupling term 2hĒp · Ēwi, which reflects the strong correlations between the polarization

and winding components of the harmonic mode at the transition.

This chapter has shown that topological-sector fluctuations in the two-dimensional Coulomb

gas on a torus due to local dynamics only signal the high-temperature phase of the BKT

transition, but that these fluctuations only make a small contribution to the discontinuous

jump in the e↵ective electric permittivity. As the system passes from the high- to the low-

temperature phase of the BKT transition, the phase space of the electric field explored by

a system restricted to local dynamics decreases dramatically, and the system moves into a

non-ergodic sector of the phase space of the electric field precisely at TBKT. This displays the

ergodicity-breaking nature of the BKT transition: again, this type of ergodicity breaking is

distinct from either the symmetry breaking that characterizes a standard phase transition,

or that due to the rough free-energy landscape that develops at a spin-glass transition [27].





Chapter 6

Emergent Electrostatics in

XY-type Spin Models

In this chapter, the equivalence between the Villain model and the two-dimensional MR

electrostatic model in the GCE is shown. An emergent-field description of XY-type spin

models is introduced. It is then shown that the auxiliary field of the MR electrostatic

model corresponds to the spin-wave field of the Villain model, and that topological-sector

fluctuations in the emergent field correspond to twist fluctuations in the spin field of the

XY models.

6.1 Continuum Formulation

Before moving to the continuum formulation, the lattice vector field �✓ (the same notation

is used as that in Chapter 4) is defined component-wise to be

[�✓]i
⇣

x+
a

2
ei

⌘

:=
'(x+ aei)� '(x) + qs(x+ aei,x)

a
, (6.1)

for all XY-type spin models. In the continuum formulation, �✓ becomes r✓.

In order to gain an intuitive understanding of the XY model and its emergent electric field,

we return to the continuum approximation of the model given by Eq. (2.63).
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6.1.1 Spin-field Representation

In this subsection, we pause to review the standard analysis of the continuum, harmonic

XY model presented by BKT [2, 3]. As seen in Fig. 2.3, any closed contour must adhere to

I

@�
[r✓(x)] · dl = 2⇡p, (6.2)

where p = 0,±1 and @� is some closed path within the system. Upon transforming to the

emergent-field representation, the above expression will become an emergent Gauss’ law.

The spin-di↵erence field r✓ splits into two parts: its minimum-energy configuration (MEC)

r✓̄ and fluctuations around these MECs r such that

r✓(x) = r✓̄(x) +r (x). (6.3)

These are called the vortex and spin-wave fields and are governed by the path integrals

I

@�

⇥

r✓̄(x)
⇤

· dl = 2⇡p (6.4)

and

I

@�
[r (x)] · dl = 0. (6.5)

The vortex field will be shown to map on to the irrotational component of the electric field

of the MR electrostatic model, and the spin-wave field to the auxiliary field.

The vortex and spin-wave components of the spin-di↵erence field energetically decouple.

This is seen by considering Eq. (6.4) for a single vortex centred on the origin: this generates

r✓̄(r,�) = r✓Harm. +
2⇡p

r
e� (6.6)

for any r > r0 (with r0 a lattice cut-o↵), and where r✓Harm. is the harmonic component of

the spin-di↵erence field. We apply the principle of superposition to the above equation and

write, for a system consisting of n vortices,

r✓̄(x) = r✓̄Harm. +
n
X

i=1

2⇡pi
|x� xi|

e�,i (6.7)

where e�,i is the angular unit vector with respect to a coordinate system centred on vortex

pi (which exists at xi). For a single vortex pi the following cross term sums to zero:

Ii :=

Z

⌦

2⇡pi
|x� xi|

e�
i

· [r (x)] d2x
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=

Z L

r
0

Z 2⇡

0

2⇡pi
|x� xi|

[r (x)]�
i

ridrid�i

= 2⇡pi

Z L

r
0

1

|x� xi|



Z 2⇡

0
[r (x)]�

i

rid�i

�

dri

= 2⇡pi

Z L

r
0

1

|x� xi|

"

I

�
r

i

[r (x)] · dl(x)
#

dri (6.8)

= 0, (6.9)

since the spin-wave contour integral vanishes for all paths. This shows that the non-harmonic

part of the vortex field energetically decouples from the spin-wave field. Since the harmonic

mode straightforwardly decouples from the rest of the spin-di↵erence field, the continuum

Hamiltonian becomes [2, 3]

HCont. =
J

2

Z

⌦
|r✓̄(x)|2d2x+

J

2

Z

⌦
|r (x)|2d2x, (6.10)

where the total vortex field has been recombined.

6.1.2 Emergent-field Representation

The (continuum) emergent electric field of XY-type spin models can now be defined. The

field defined by Binney et al. [60] is extended to include the spin-wave part of the spin-

di↵erence field:

E(x) := J [r✓(x)]⇥ ez. (6.11)

The divergence of this field is given by

r ·E(x) = r · [J (r✓(x))⇥ ez]

= J@i [✏ijk(r✓(x))j(ez)k]

= J✏ijk@i [(@j✓(x))(ez)k]

= J✏ijk(@i@j✓(x))(ez)k

= J✏ijz@i@j✓(x)

= J [r⇥r✓(x)]z . (6.12)

Integrating over a subset � of the system then gives

Z

�
r ·E(x)d2x =

Z

�
J [r⇥r✓(x)]z d

2x (6.13)

= J

Z

�
[r⇥r✓(x)] · da(x) (6.14)
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= J

I

@�
[r✓(x)] · dl(x) (6.15)

= JQ�, (6.16)

where da is an infinitesimal area element pointing in the positive z direction, dl is an

infinitesimal element of the boundary enclosing � and Q� 2 2⇡Z is the emergent charge

enclosed within �. This generates the emergent Gauss’ law

r ·E(x) = J⇢(x), (6.17)

where ⇢ is the density of the emergent electric charge. The topological defects in the spin-

di↵erence field have been transformed into topological defects in the emergent field: they are

of precisely the same form as electric charges in the two-dimensional continuum Coulomb

gas.

Using Helmholtz’ theorem, any vector field can be split into its divergence-full, rotational

and harmonic components:

E(x) = �r�(x) +r⇥Q(x) + Ē, (6.18)

where � and Q are smooth scalar and vector fields, respectively, and Ē :=
R

⌦ d2xE(x)/L2

is the harmonic mode of the emergent electric field. This generates an emergent Poisson’s

equation:

r2�(x) = �J⇢(x). (6.19)

We have that |E(x)| = |r✓(x)| · |ez| = |r✓(x)|, hence

HCont. =
1

2J

Z

⌦
|E(x)|2d2x, (6.20)

the continuum Hamiltonian in the emergent-field representation. Appendix C shows that

the irrotational and rotational parts of the above expression decouple (on a lattice, but the

continuum analogue follows easily), hence

HCont. =
1

2J

Z

⌦
|�r�(x) + Ē|2d2x+

1

2J

Z

⌦
|r⇥Q(x)|2d2x, (6.21)

where the irrotational modes have been recombined to identify

J
⇥

r✓̄(x)
⇤

⇥ ez ⌘ �r�(x) + Ē (6.22)
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and

J [r (x)]⇥ ez ⌘ r⇥Q(x). (6.23)

This shows the emergent electrostatics of the continuum XY model. Identifying the Hamil-

tonian in the emergent-field representation with the internal energy of the electric fields

of the two-dimensional continuum Coulomb gas amounts to asserting that the exchange

coupling is an emergent inverse electric permittivity of free space: J = 1/✏0.

Figure 6.1: The lattice mapping between the spin configuration shown in Fig. 2.3 and
the emergent-field representation. The red circle represents a positively charged topological
defect; the blue circle represents a negatively charged topological defect

Although the lattice mapping is not of quite the same form as the continuum formulation

outlined here, it is informative to display what will turn out to be the lattice mapping

between the spin configuration shown in Fig. 2.3 and its emergent-field representation.

This mapping, illustrated in Fig. 6.1, is addressed in the next section.

6.2 Lattice Mapping

Based on this intuitive understanding of the emergent physics of the continuum model,

the mapping between the lattice ferromagnetic film and the lattice Coulomb gas is now

presented.
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6.2.1 The Villain Model

The Villain model explicitly samples modular variables, rather than defining them by the

spin variables to which they couple: the s variables mimic the modular symmetry of the XY

model and exist on the bonds between each lattice site. The partition function is given by

Eq. (2.69), which is an almost identical partition function to that of the two-dimensional

MR model of electrostatics in the microscopic-variable representation (Eq. (4.7)), with the

only di↵erence being that the Villain model has its core energies set to zero for all emergent-

charge species: upon setting q = 2⇡, ✏0 = 1/J and ✏c(m) = 08m 2 Z, the partition functions

are equivalent (for an MR electrostatic model applied to multi-valued, dimensionless charges

in the GCE).

The mapping between the two models is now straightforward. We define the emergent

electric field E on a lattice:

E(x) := J

0

B

B

@

[�✓]y(x+ a
2ex)

�[�✓]x(x+ a
2ey)

1

C

C

A

. (6.24)

With ✏0 = 1/J , q = 2⇡ and ✏c(m) = 0 8m 2 Z, it follows that the emergent field of the

Villain model is of the same form as the electric field of the two-dimensional MR electrostatic

model. These emergent charges are topological defects in the emergent electric field, but

not in the spin-di↵erence field '(x+ aei)�'(x): the ' variables do not define the modular

variables of the model, hence the topological defects are not defined by the ' variables.

In Chapter 4, the microscopic mechanics of the MR electrostatic model and Gauss’ law in

terms of the microscopic-variable representation were presented. The same arguments hold

here, hence the microscopic mechanics are identical (topological-defect hops are equivalent,

and spin-wave updates in the Villain model are equivalent to auxiliary-field updates in the

MR model) and the Villain model admits an emergent Gauss’ law:

r̂ ·E(x) = J⇢(x), (6.25)

where ⇢(x) := 2⇡m(x)/a2 is the emergent-charge density, and the integer m(x) denotes

the value of the emergent charge at x in units of 2⇡. The emergent field E is Helmholtz

decomposed into the same form as Eq. (4.2) by defining emergent analogues of the Poisson,

auxiliary and harmonic components of the electric field of the MR electrostatic model.

As in Chapter 4, the partition function then splits into its Coulombic and auxiliary-field

components:

Z = ZCoul. ZRot.. (6.26)
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With X̄ := 2⇡Z/a2, the Coulombic component is given by

ZCoul. :=
X

{⇢(x)2X̄}

�

 

X

x2D
⇢(x)

!

exp

2

4�a4�J

2

X

x

i

6=x

j

⇢(xi)G(xi,xj)⇢(xj)

3

5

⇥e�
P

m2Z µ
m

n
m

X

w

0

2Z2

exp

✓

��J
2
|LP� 2⇡w0|2

◆

, (6.27)

where nm is the number of emergent charges 2⇡m,

µm := �2⇡2JG(0)m2 (6.28)

is the the chemical potential for the introduction of an emergent charge 2⇡m (since the

emergent core-energy constants are all zero),

P :=
1

N

X

x2D
x⇢(x) (6.29)

is the origin-dependent emergent polarization vector for the system, and

w0 :=
a

2⇡J

 

L
X

y=a

Ex

⇣a

2
, y
⌘

,
L
X

x=a

Ey

⇣

x,
a

2

⌘

!

(6.30)

is the origin-dependent emergent winding field. The auxiliary-field component is given by

ZRot. :=

Z

Dẽ
Y

x2D

h

�
⇣

r̂ · ẽ(x)
⌘i

�

 

X

x2D
ẽ(x)

!

exp

"

��a
2

2J

X

x2D
|ẽ(x)|2

#

, (6.31)

where the field

ẽ(x) := E(x) + r̃�(x)� Ē (6.32)

is similarly defined.

For all XY-type spin models, we define �✓̄ to be the field that describes the MECs of the

system, and the spin-wave field � , which describes fluctuations around the MECs, to be

the remainder of the total field �✓ in the spin-field representation:

�✓(x) = �✓̄(x) +� (x). (6.33)

The transformation of the field �✓̄ to the emergent-field representation then corresponds

to the irrotational components of the emergent field, and the equivalent transformation of
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the field � corresponds to the rotational components of the emergent field:

�r̃�(x) + Ē ⌘ J

0

B

B

@

[�✓̄]y(x+ a
2ex)

�[�✓̄]x(x+ a
2ey)

1

C

C

A

, (6.34)

and

Ẽ(x) ⌘ J

0

B

B

@

[� ]y(x+ a
2ex)

�[� ]x(x+ a
2ey)

1

C

C

A

. (6.35)

We thus confirm the emergence of electric charges described by a U(1) gauge field in the Vil-

lain model by showing the absolute equivalence between this model and the two-dimensional

MR electrostatic model applied to dimensionless charges in the GCE (with all core-energy

constants set to zero). Given the definitions of the helicity moduli ⌥ of the magnetic systems

and the e↵ective electric permittivity ✏e↵. of the Coulomb gas (Eqs. (2.110) and (3.19)), it

follows from the emergent electrostatics of the Villain model (J = ✏�1
0 ) that the finite-size

helicity modulus of the Villain model is precisely the inverse e↵ective electric permittivity

of the two-dimensional lattice Coulomb gas [22]:

⌥̃(L, T ) = ✏�1
e↵.(L, T ). (6.36)

As for the two-dimensional Coulomb gas, a harmonic-mode susceptibility �
¯

E

, which is a

function of the emergent charge-charge correlations, is defined for the emergent field (from

Eq. (3.31)), and it follows that

⌥̃(L, T ) =J (1� �
¯

E

(L, T )/2) = ✏�1
0 (1� �

¯

E

(L, T )/2) = ✏�1
e↵.(L, T ). (6.37)

As analogously discussed in Section 3.32, the helicity modulus of the Villain model is there-

fore intimately related to the emergent charge-charge correlations. It is a signature of the

emergent MR physics of the system, so that a zero-valued helicity modulus signals emergent

Coulombic conductivity.

6.2.2 The 2dHXY Model

The partition function of the HXY model is given by

ZHXY =

Z

D̄' exp

2

4��J
2

X

hx,x0i

|'(x)� '(x0) + 2⇡s(x,x0)|2
3

5 , (6.38)
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where the s variables are now defined via the associated spin di↵erence: s(x,x0) 2 {0,±1} is

chosen such that '(x)�'(x0)+2⇡s(x,x0) 2 (�⇡, ⇡]. This enforces the modular periodicity

required in XY-type spin models, but the spin variables now define the modular variables.

Topological defects are therefore defects in the spin-di↵erence field '(x+ aei)� '(x) (and

in the emergent electric field E).

The emergent electric field is defined as in Eq. (6.24), which produces an emergent Gauss’

law of the same form as Eq. (6.25). Again, this emergent field is Helmholtz decomposed

into the same form as Eq. (4.2) so that the Hamiltonian can be written in its emergent-field

representation:

HHXY =
a4J

2

X

x

i

,x
j

2D
⇢(xi)G(xi,xj)⇢(xj) +

a2

2J

X

x2D
|Ẽ(x)|2 + L2

2J
|Ē|2. (6.39)

Geometrically, emergent charges given by m(x) 6= 0,±1 are not permitted for any emergent-

charge lattice site: this enforces a core-energy configuration {✏c(m = 0,±1) = 0, ✏c(m 6=
0,±1) = 1} that corresponds to a system of elementary emergent charges. The polarization

and winding components of the harmonic mode of the emergent field of an elementary-charge

system can be computed via the modulo approach outlined in Section 3.2: Ē = Ēp + Ēw,

where

Ēp,x/y 2
✓

�⇡J
L

,
⇡J

L

�

, (6.40)

and

Ēw =
2⇡J

L
w. (6.41)

Here, the origin-independent winding field w defines the topological sector of the emergent

electric field and is chosen such that Eq. (6.40) holds. The Hamiltonian given by Eq. (6.39)

then becomes

HHXY = �µn+
a4J

2

X

x

i

6=x

j

⇢(xi)G(xi,xj)⇢(xj) +
a2

2J

X

x2D
|Ẽ(x)|2 + L2

2J
|Ēp +

2⇡J

L
w|2,

(6.42)

where µ := µ1 is the chemical potential for the introduction of an elementary emergent

charge (defined in Eq. (6.28)), and n is the number of emergent charges. It follows that the

HXY Hamiltonian corresponds to the internal energy of an emergent electric field:

HHXY = U = USelf + UInt. + URot. + UHarm., (6.43)
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where USelf := �µn (since UCore = 0), UInt. := a4J
P

x

i

6=x

j

⇢(xi)G(xi,xj)⇢(xj)/2, URot. :=

a2
P

x2D |Ẽ(x)|2/2J , and UHarm. := L2|Ēp + 2⇡Jw/L|2/2J .

Figure 6.2: The normalized field di↵erence � (Eq. (6.44)) and the thermal average of the
emergent-charge density ⇢ as functions of temperature for an HXY system of linear size
L = 32. The emergent-charge density is vanishingly small at low temperature, so that the
normalized di↵erence tends to �(T ! 0) = h|ÊQ|i/h|ÊQ|i = 1. At high temperature, how-
ever, the emergent-charge density becomes relevant, and the normalized di↵erence tends to
zero, indicating that the linear solver correctly calculates the emergent field of the quenched
system. 10000 quench sweeps were performed before each measurement.

To confirm that the rotational and irrotational components of the emergent field energeti-

cally decouple as in Eq. (6.39), the normalized di↵erence � is defined:

�(T ) :=
h|ÊQ � ÊLS|i
h|ÊQ + ÊLS|i

, (6.44)

where ÊQ and ÊLS are the irrotational components of the emergent field of the system

as found by quenching the system and by applying a linear solver to the emergent-charge

configuration to solve the Green’s function (and then adding the harmonic component of

the internal energy of the field), respectively. Fig. 6.2 shows the normalized di↵erence �

and the thermal average of the emergent-charge density ⇢ as functions of temperature for

an HXY system of linear size L = 32. The emergent-charge density is vanishingly small at

low temperature, so that the normalized di↵erence tends to �(T ! 0) = h|ÊQ|i/h|ÊQ|i =

1. At high temperature, however, the emergent-charge density becomes relevant, and the
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Figure 6.3: The thermal average of the internal energy of the irrotational components
of the emergent field of the HXY model for a system of linear size L = 32 as a function
of temperature T as computed by both measuring the energy of the quenched spin system
(blue stars) and by employing the linear solver (red circles) (J = 1). Fig. 6.3 shows good
agreement between the two methods. 10000 quench sweeps were performed before each
measurement.

normalized di↵erence tends to zero, indicating that the linear solver correctly calculates the

emergent field of the quenched system.

Further to this, Fig. 6.3 shows the thermal average of the internal energy of the irrotational

components of the emergent field of the HXY model for a system of linear size L = 32 as a

function of temperature T as computed by both measuring the energy of the quenched spin

system (blue stars) and by employing the linear solver (red circles). Fig. 6.3 shows good

agreement between the two methods. The results in Figs. 6.2 and 6.3 confirm the energetic

decoupling of the emergent field of the HXY model in Eq. (6.39).

The confirmed field decomposition given by Eq. (6.42) is illustrated in Figs. 6.7 - 6.14,

which depict the Helmholtz decomposition of a snapshot of an HXY simulation: Fig. 6.7

shows a snapshot of a 20 ⇥ 20 HXY simulation at T = 2 in the spin-field representation;

Fig. 6.8 shows Fig. 6.7 transformed to the emergent-field representation; Figs. 6.9 and 6.10

show the polarization and winding components of the total emergent field, respectively; Fig.
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6.11 shows the Poisson component of the total field as found via the employment of a linear

solver; Fig. 6.12 shows the auxiliary-field component of the total field, found by taking the

fields in Figs. 6.9 - 6.11 from the total field; Fig. 6.13 shows the total irrotational component

of the total field, found by summing the fields shown in Figs. 6.9 - 6.11; Fig. 6.14 shows the

irrotational component, found by quenching the system. The observed agreement between

Figs. 6.13 and 6.14 reflects the energetic decoupling of the emergent field of the HXY model

for this snapshot.

In the emergent-field representation, the partition function is given by

ZHXY =

Z

D̄ẽ �

 

X

x2D
⇢(x)

!

exp

2

4�a4�J

2

X

x

i

6=x

j

⇢(xi)G(xi,xj)⇢(xj)

3

5 e�µn

⇥ exp

✓

�L2�

2J
|Ēp +

2⇡J

L
w|2
◆

Y

x2D

h

�
⇣

r̂ · ẽ(x)
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⇥ �

 

X

x2D
ẽ(x)

!

exp

"

�a2�

2J

X

x2D
|ẽ(x)|2

#

, (6.45)

which is derived using a similar method to that used for the Villain model. Here, the diver-

gent core-energy constants enforced by the geometry of the model result in zero contribution

to the partition function from non-elementary emergent charges, and the measure
R

D̄ẽ is

defined via

Z

D̄ẽ :=
Y

x2D

"

Z ⇡�Ê
x

(x+ae
x

/2)

�⇡�Ê
x

(x+ae
x

/2)
dẽx(x+ aex/2)

Z ⇡�Ê
y

(x+ae
y

/2)

�⇡�Ê
y

(x+ae
y

/2)
dẽy(x+ aey/2)

#

⇥
X

{⇢(x)2{0,±2⇡/a2}}

X

w2Z2

, (6.46)

where Ê is the irrotational component of the emergent electric field. The exponents related

to the irrotational component of the emergent field cannot be taken outside of the functional

integral over the rotational component of the emergent field: the (�⇡, ⇡] restriction that

constrains the emergent field results in the available configurations of its rotational compo-

nent being a function of each emergent-charge configuration. Hence, while the rotational

and irrotational components of the emergent field energetically decouple, the partition func-

tion is not separable into Coulombic and auxiliary components: the HXY model is not a

precise emergent MR electrostatic model. At lower temperatures, the partition function

approximately decouples because emergent-charge density is low, resulting in approximate

emergent MR electrostatics; at higher temperatures, however, increased emergent-charge

density restricts the available auxiliary-field configurations such that approximate emergent

MR electrostatics breaks down. The (�⇡, ⇡] restriction is lifted in the MR electrostatic and
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Figure 6.4: The finite-size helicity modulus ⌥̃ of the HXY model (left) and the inverse
e↵ective electric permitivity ✏�1

e↵.

of the two-dimensional Coulomb gas (right) as functions
of temperature for systems of linear size L = 8, 16, 32 and 64 (✏

0

= J = 1). At higher tem-
peratures, the finite-size helicity modulus begins to increase with increasing temperature,
thus signalling a breakdown of e↵ective Coulombic physics above the temperature at which
the finite-size helicity modulus stops monotonically decreasing. Below this breakdown, the
HXY model behaves as an e↵ective Coulomb gas with a temperature-dependent e↵ective
electric permittivity. Finally, the finite-size helicity modulus does not reach zero for the
system sizes shown: the emergent e↵ective electric permittivity therefore never diverges (for
L = 64 and below) and the system does not behave as an e↵ective Coulombic conductor at
high temperature.

Villain models, since at least one set of microscopic variables is permitted to explore all

possible values, resulting in electrostatic Coulombic physics at all temperatures.

In the emergent-field representation, the finite-size helicity modulus of the HXY model is

given by

⌥̃(L, T ) = J

✓

1� 1

2
�
¯

E

(L, T )

◆

, (6.47)

as was the case for the Villain model. Again, this expression is intimately related to the

emergent charge-charge correlations. It is therefore a measure of the emergent MR physics of

the system, as well as its emergent Coulombic conductivity: in this case, emergent Coulombic

conductivity corresponds to the emergent charges being able to rearrange to completely

cancel the e↵ect of an externally applied global twist in the spin field, which would result

in a zero-valued helicity modulus.

Fig. 6.4 shows the helicity modulus ⌥̃ of the HXY model (left) and the inverse e↵ective

electric permittivity ✏�1
e↵. of the two-dimensional Coulomb gas (right) as functions of tem-

perature for systems of linear size L = 8 to 64. At lower temperatures, the helicity modulus

displays the same monotonic behaviour as the inverse e↵ective electric permittivity; above

T = 1.8, however, the helicity modulus transitions into a monotonically increasing regime,

never reaching zero.
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The first observation shows that the HXY model statistically behaves as an e↵ective

Coulomb gas with a temperature-dependent e↵ective electric permittivity in the low-

temperature region: one can pick a temperature of the HXY model and compare the

helicity modulus of that temperature with the inverse e↵ective electric permittivity of

the Coulombic system to find the e↵ective Coulombic temperature of the magnetic sys-

tem. The second observation shows that the e↵ective Coulombic physics breaks down

in the high-temperature region of monotonically increasing behaviour: this confirms the

breakdown of e↵ective emergent MR electrostatics at high temperatures predicted by the

non-decoupling of the partition function given by Eq. (6.45). Finally, a diverging e↵ective

electric permittivity is the key signature of conductivity in Coulombic systems, hence, the

observation that the helicity modulus does not reach zero for the system sizes presented

shows that the system does not behave as an e↵ective emergent Coulombic conductor for

systems of linear size L = 64 and below. This is a result of the emergent charges being

constrained by the spin waves in such a way that, statistically, they cannot rearrange to

completely cancel the e↵ect of an externally applied global twist in the spin field. The

absence of this signature of emergent Coulombic conductance is due to the entropy of the

spins being lower for emergent-charge configurations that are able to cancel the global

twists than for those that cannot.

6.2.3 The 2dXY Model

The partition function of the XY model is given by

ZXY =

Z

D̄' exp

2

4�J
X

hx,x0i

cos('(x)� '(x0))

3

5 , (6.48)

whose exponent can be expanded to quadratic order for small spin di↵erences, as shown in

Section 2.3.2. Notice that the modular symmetry is enforced via the same mechanism as that

of the HXY model, but implicitly by the cosine function, in this case. Again, the emergent

electric field is defined as in Eq. (6.24), resulting in an emergent Gauss’ law equivalent to

Eq. (6.25). The emergent electric charges of the XY model are topological defects in both

the spin-di↵erence field '(x+ aei)� '(x) and the emergent electric field E.

The anharmonic terms in the Hamiltonian of the XY model result in a partition function

that is not separable into emergent Coulombic and auxiliary-field components at any tem-

perature. The XY model is therefore not a precise emergent MR electrostatic model. The

helicity modulus, however, measures the response of the system to an externally applied

global twist in the spin field, and is therefore a measure of the ability of the emergent

charges to cancel the twist. Fig. 6.5 shows the helicity modulus ⌥̃ of the XY model as a
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Figure 6.5: The finite-size helicity modulus ⌥̃ of the XY model as a function of temper-
ature for systems of linear size L = 8, 16, 32 and 64 (J = 1). The helicity modulus is a
monotonically decreasing function of temperature, reaching zero in the high-temperature
phase of the BKT transition. In this phase, the XY model therefore behaves as an emergent
conductor.

function of temperature for systems of linear size L = 8 to 64. The helicity modulus is a

monotonically decreasing function of temperature, reaching zero at higher temperatures.

Although the XY model is not precisely an emergent Coulomb gas, the connection between

the two systems is a very close one [3, 4, 39]. The definitions of the helicity modulus of the

XY model (Eq. (2.110)) and the inverse e↵ective electric permittivity of the Coulomb gas

(Eq. (3.19)) are with respect to analogous perturbations in their (emergent) electric-field

representations, leading to analogous monotonic behaviour in the helicity modulus of the

XY model as that observed in the inverse e↵ective electric permittivity of the Coulomb

gas. This indicates that the XY model admits emergent electrostatics to a good approxi-

mation, a standard result of the literature [3, 4, 39]. In addition, RG calculations [4, 9, 39]

show that these systems are in the same universality class at the BKT transition. In the

high-temperature phase, the emergent charges of the XY model are able to rearrange to

completely cancel the e↵ect of an externally applied global twist in the spin field, signalling
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emergent conductance. Compared to the HXY model, the anharmonic terms in the Hamil-

tonian reduce the energy of such emergent-charge configurations so that their reduced spin

entropy cannot increase the free-energy barrier to their formation to prohibitive values.

6.2.4 Spin-update Mechanics of the XY Models

The mechanics of the spin updates of the XY models (that is, the HXY and XY models)

are now considered. Spin-wave updates are entirely equivalent to spin-wave updates in the

Villain model; an emergent-charge update is, however, a two-step process, and is the result

of a particular type of spin update. As shown in Fig. 6.6, if a spin update results in the

di↵erence between the value of the spin and the value of an adjacent spin leaving the set

(�⇡, ⇡], the consequential modular update causes the emergent charge to hop across to the

relevant adjacent charge site. This two-step process is equivalent to the superposition of a

charge-hop and an auxiliary-field update in the MR electrostatic model, and is due to the

emergent charges being topological defects in the spin-di↵erence field '(x+ aei)� '(x).

+
1 2

3 4

7����!

+
1 2

3 4

7����!

1
+

2

3 4

Figure 6.6: A vortex-hop update in the XY models: The spin at the centre of the diagram
has its value decreased by an amount ⇡/2 + � (where we consider the small, positive � to
ensure that the relevant spin di↵erence leaves the set (�⇡, ⇡]). Initially, we observe a spin
update of the same form as that of the Villain model. This is followed by an intrinsic
modular-symmetry update: the emergent field experiences the equivalent of an MR charge-
hop update, with E

12

+ ⇡J/2 + �J 7! E
12

+ ⇡J/2 + �J � 2⇡J .

6.2.5 Global Twists in the Spin Representation of the XY Models

As shown in Chapter 5, fluctuations in the winding component of the electric field of the

two-dimensional Coulomb gas signal the high-temperature phase of the BKT transition.

In the Villain model, such fluctuations arise via the same mechanism as that of the MR

electrostatic model; in the XY models, however, the subtle di↵erence with respect to the

mechanics of the emergent-charge updates causes global twists in the spin field to map on

to emergent winding fields.
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Fig. 6.15 shows an emergent-charge pair, which has been created out of the vacuum but with

an idealized spin configuration, in an HXY or XY system. The pair unbind, wind around

the torus in the x direction, and, finally, annihilate one another in Figs. 6.16 – 6.18. The

remnant MEC due to this sequence of events is shown in Fig. 6.19: this spin configuration

is equivalent to a global twist in the y direction of the spin system. This spin configuration

is mapped on to the emergent-field representation in Fig. 6.20 thus showing the equivalence

between global twists in the spin representation and non-trivial topological sectors in the

emergent-field representation.

Since the XY models admit an emergent electric field of the form of the lattice electric fields

of the MR electrostatic model, the twists in the spin representations seen here correspond

to the winding of electrical charges around the torus in the Coulomb gas. The topological-

sector fluctuations observed in the Coulomb gas in the high-temperature phase of the BKT

transition (Chapter 5) therefore correspond to twist fluctuations in the spin field of the

XY models. This elucidation of the equivalence between twist fluctuations in the spin-field

representation and topological-sector fluctuations in the emergent-field representation shows

the utility of representing the XY models with the quasi-MR electrostatic model presented

here: the result of Chapter 5 is now seen to have relevance to real magnetic systems. The

topological-sector fluctuations of Chapter 5 could be observable in ultrathin ferromagnetic

metallic films [61], magnetic Langmuir-Blodgett films [62, 63], or ferromagnetic films with

a ‘washer’ geometry (PBCs in one direction).

6.3 The Harmonic Model

It is instructive to consider the purely harmonic planar-spin model, the Villain and HXY

models with the modular periodicity removed. From this discussion, it is now clear as to

why no BKT transition occurs in this spin model: the lack of modular periodicity results in

the model having no update analogous to the charge-hop updates of the MR electrostatic

model, so that the irrotational component of the emergent electric field returns zero for all

field bonds at all temperatures.
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Figure 6.7: The spin representation of a snapshot of a 20 ⇥ 20 HXY simulation at T =
2J/k

B

. Red circles are positive emergent charges; blue circles are negative emergent charges.
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Figure 6.8: The emergent-field representation of Fig. 6.7. The absolute values of the field
lines are relative within each figure. Red circles are positive emergent charges; blue circles
are negative emergent charges.
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Figure 6.9: The polarization component of Ē of the field configuration in Fig. 6.8, given
by Ē

p

= �2⇡(9, 7)/L. The absolute values of the field lines are relative within each figure.
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Figure 6.10: The winding-field component of Ē of the field configuration in Fig. 6.8. The
system’s topological sector is given by w = (1, 0). The absolute values of the field lines are
relative within each figure.
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Figure 6.11: The Poisson component �r̃� of the field configuration in Fig. 6.8 as found
via the employment of a linear solver. The absolute values of the field lines are relative
within each figure. Red circles are positive emergent charges; blue circles are negative
emergent charges.
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Figure 6.12: The auxiliary-field component Ẽ of the total field configuration in Fig. 6.8.
The absolute values of the field lines are relative within each figure.
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Figure 6.13: The electrostatic component Ē � r̃� of the field configuration in Fig. 6.8,
found by applying the linear solver to the topological-defect configuration in Fig. 6.8 (and
adding the harmonic mode of the emergent field in Figs. 6.9 and 6.10). The absolute values
of the field lines are relative within each figure. Red circles are positive emergent charges;
blue circles are negative emergent charges.
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Figure 6.14: The electrostatic component Ē � r̃� of the field configuration in Fig. 6.8,
found by quenching the HXY system. The absolute values of the field lines are relative
within each figure. Red circles are positive emergent charges; blue circles are negative
emergent charges.
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- +

Figure 6.15: An emergent-charge pair in the XY models with an idealized spin configu-
ration.
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Figure 6.16: The positive emergent charge has hopped to the right.
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Figure 6.17: The emergent charge has hopped to the right again.
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Figure 6.18: The emergent charges have annihilated.
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Figure 6.19: The MEC corresponding to Fig. 6.18.
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Figure 6.20: Fig. 6.19 with the emergent field shown in black.





Chapter 7

Bramwell-Holdsworth Theory in

General BKT Systems

This thesis has been based around the emergent electrostatics of XY-type spin models. In

this chapter, a final link between the harmonic-mode susceptibility of the Coulombic system

and the magnetization of the magnetic system is presented. From this, it follows that BH

theory applies to the non-magnetic system, and is in fact measurable in superfluid 4He films.

7.1 E↵ective Spin Sti↵ness

To begin, instead of employing the BH ansatz (Eq. (2.135)), the partition function of the

XY-type spin model in question is identified with the e↵ective partition function that was

defined in Eq. (2.115). This makes intuitive sense since the object (K̃e↵.(L, T ) � K(T ))

describes the deviation of the the finite-size system from harmonic spin-wave behaviour.

Following the same method as that in Section 2.3.5, the magnetization of the system is then

given by

hmi =
✓

1

cN

◆1/8⇡K̃
e↵.

(L,T )

(7.1)

for all temperatures. The BH ansatz amounts to asserting that replacing K̃e↵. with Ke↵. in

the exponent of the above expression for T  T ⇤(L) should be a limitingly good approx-

imation in the thermodynamic limit; however, numerical and experimental evidence (see

Section 2.5) suggests that this is approximately true at finite system size. We recall that

119
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these two objects are related by Eq. (2.116):

Ke↵.(T ) := lim
L!1

h

K̃e↵.(L, T )
i

. (7.2)

Analysis is restricted to the Villain model, since this system is analytically tractable. Eq.

(7.1) results from performing a spin-wave analysis on the e↵ective partition function Ze↵.

(Eq. (2.115)), which is valid since the identification Z ⌘ Ze↵. is made (throughout, all

partition functions and thermal averages are for the Villain model). A similar analysis is

now performed on the left-hand side of the identification Z ⌘ Ze↵..

The Hamiltonian of the Villain model is expanded to give

�H =
�J

2

X

x,x0

'(x)G̃(x,x0)'(x0) + 2⇡�J
X

x

✓(x)�s(x) + 2⇡2�J
X

hx,x0i

s(x,x0)2, (7.3)

where �s(x) :=
P

i2{x,y}�si(x), with �si(x) := si(x + aei/2) � si(x � aei/2) and si(x +

aei/2) := s(x,x0). Following a similar method to that used in Section 2.3.5, the partition

function can then be written as

Z =
X

{s(x,x0)2Z}

Z

D̄' exp

✓

�1

2
'TA'� jT'

◆

exp

0

@�2⇡2�J
X

hx,x0i

s(x,x0)2

1

A , (7.4)

where

j := 2⇡�J

0

B

B

@

�s(x1)
...

�s(xN )

1

C

C

A

(7.5)

is the modular current. The thermal average of any scalar function f can now be expressed

as

hf(')i := 1

Z

X

{s(x,x0)}

Z

D̄'f(') exp (��H) (7.6)

=
1

Z

X

{s(x,x0)}

Z

D̄'f(') exp
✓

�1

2
'TA'� jT'

◆

exp

0

@�2⇡2�J
X

hx,x0i

s(x,x0)2

1

A

(7.7)

=
1

Z

X

{s(x,x0)}

Z

D̄'f
✓

� �

�b

◆

exp

✓

�1

2
'TA'

◆

exp
⇥

�(jT + bT )'
⇤

⇥ exp

0

@�2⇡2�J
X

hx,x0i

s2
x,x0

1

A

�

�

�

�

�

�

b=0

(7.8)
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=
(2⇡)N/2

Z
p
detA

X

{s(x,x0)}

f

✓

� �

�b

◆

exp



1

2
(jT + bT )A�1(j+ b)

�

⇥ exp

0

@�2⇡2�J
X

hx,x0i

s(x,x0)2

1

A

�

�

�

�

�

�

b=0

. (7.9)

We define @i := @/@bi, and compute

@µ@⌫ exp



1

2
(j↵ + b↵)A

�1
↵�(j� + b�)

�

�

�

�

�

b=0

=
1

2

�

A�1
µ⌫ +A�1

⌫µ

�

exp

✓

1

2
j⇢A

�1
⇢� j�

◆

+
1

4

�

A�1
µ↵ +A�1

↵µ

�

⇣

A�1
⌫� +A�1

�⌫

⌘

j↵j�

⇥ exp

✓

1

2
j⇢A

�1
⇢� j�

◆

, (7.10)

where implicit summations over repeated Greek indices are taken. Hence,

h'µ'⌫i =
1

Z

X

{s(x,x0)2Z}



1

2

�

A�1
µ⌫ +A�1

⌫µ

�

+
1

4

�

A�1
µ↵ +A�1

↵µ

�

⇣

A�1
⌫� +A�1

�⌫

⌘

j↵j�

�

⇥
Z

D̄' exp (��H) , (7.11)

which simplifies to

h'µ'⌫i =
1

2

�

A�1
µ⌫ +A�1

⌫µ

�

+
1

4
h
�

A�1
µ↵ +A�1

↵µ

�

⇣

A�1
⌫� +A�1

�⌫

⌘

j↵j�is, (7.12)

where h. . . is denotes a quasi-thermal average over the modular s variables.

To connect with the magnetization of the system, the object

h'2
0i = A�1

00 +
1

4
h
�

A�1
0↵ +A�1

↵0

�

⇣

A�1
0� +A�1

�0

⌘

j↵j�is, (7.13)

is computed. In Section 2.3.5, it was shown that

A�1
ij =

1

K
G(xi,xj). (7.14)

Combining the above two equations with Eq. (2.73), the magnetization of the system is

then given by

hmi =
✓

1

cN

◆1/8⇡K

exp

2

4�⇡
2

2
h
"

X

x2D0

(G(x) +G(�x))�s(x)

#2

is

3

5 (7.15)
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(using h'2
0i = h 2

0i, as shown in Appendix B), which, when combined with Eq. (7.1),

generates

K̃�1
e↵.(L, T ) = K�1 +

4⇡3

ln(cN)
h
"

X

x2D0

(G(x) +G(�x))�s(x)

#2

is. (7.16)

This equation describes the deviation of the finite-size e↵ective spin sti↵ness K̃e↵. of the

Villain model from its spin-wave behaviour. As in Section 2.3.5, the Abel-Plana formula

was used.

Eq. (7.11) relates the the spin-spin correlation with a quasi-thermal average: this is not

a true thermal average. However, for weak coupling between the spin ' and modular s

variables, which corresponds to low topological-defect density, the total Boltzmann weighting

for the coupling between spin and modular variables is small. In this weak-coupling regime,

we can therefore approximate Eq. (7.11) by moving the expression in the square parentheses

back inside the functional integral over spin variables
R

D':

h'µ'⌫i '
1

Z

X

{s(x,x0)2Z}

Z

D̄'


1

2

�

A�1
µ⌫ +A�1

⌫µ

�

+
1

4

�

A�1
µ↵ +A�1

↵µ

�

⇣

A�1
⌫� +A�1

�⌫

⌘

j↵j�

�

e��H .

(7.17)

We therefore approximate

h'2
0i ' A�1

00 +
1

4
h
�

A�1
0↵ +A�1

↵0

�

⇣

A�1
0� +A�1

�0

⌘

j↵j�i (7.18)

for low topological-defect density. Defining

Ḡx/y(x+ aex/y/2) :=G(x) +G(�x)�G(x+ aex/y)�G(�x� aex/y), (7.19)

this approximation is written in the more compact form:

h'2
0i '

1

K
G(0) + ⇡2h

"

X

x2D0

Ḡ(x) · s(x)
#2

i. (7.20)

The magnetization is then approximated by

hmi '
✓

1

cN

◆1/8⇡K

exp

0

@�⇡
2

2
h
"

X

x2D0

Ḡ(x) · s(x)
#2

i

1

A , (7.21)

for low topological-defect density. This is an approximate correction to the spin-wave ex-

pression of the magnetization of the Villain model for low topological-defect density, but in

terms of true thermal averages.
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We are able to simplify the thermal average in the exponent of the above equation by

employing the weak-coupling argument: hsx(x+aex/2)sy(x0+aey/2)i, hsx(x+aex/2)sx(x0+

aex/2)i, and hsy(x+aey/2)sy(x0+aey/2)i are all small compared with hs2x(x+aex/2)i and
hs2y(x+aey/2)i in the weak-coupling regime, where the second and third expressions are for

x 6= x0. It follows that

h
"

X

x2D0

Ḡ(x) · s(x)
#2

i '
X

x2D0

Ḡ2
x(x+ aex/2)hs2x(x+ aex/2)i

+
X

x2D0

Ḡ2
y(x+ aey/2)hs2y(x+ aey/2)i (7.22)

=hs2xi
X

x2D0

Ḡ2
x(x+ aex/2) + hs2yi

X

x2D0

Ḡ2
y(x+ aey/2) (7.23)

for low topological-defect density. This can be further simplified:

X

x2D0

Ḡ2
x(x+ aex/2) =

X

x2D0

X

k,k0 6=0

�
k

�
k

0eix·(k+k

0)(1� eiakx)(1� eiak
0
x)

+
X

x2D0

X

k,k0 6=0

�
k

�
k

0eix·(k�k

0)(1� eiakx)(1� e�iak0
x)

+
X

x2D0

X

k,k0 6=0

�
k

�
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0e�ix·(k�k

0)(1� e�iak
x)(1� eiak

0
x)

+
X

x2D0

X

k,k0 6=0

�
k

�
k

0e�ix·(k+k

0)(1� e�iak
x)(1� e�iak0

x)

=2G(0), (7.24)

and similarly in the y-component. Hence,

h
"

X

x2D0

Ḡ(x) · s(x)
#2

i ' 1

2⇡
ln(cN)

�

hs2xi+ hs2yi
�

(7.25)

for low topological-defect density, where we have again used the Abel-Plana formula. The

inverse finite-size e↵ective spin sti↵ness K̃�1
e↵. is then approximated by

K̃�1
e↵.(L, T ) ' K�1 + 2⇡2

�

hs2xi+ hs2yi
�

(7.26)

for low topological-defect density.
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7.2 Connection with José et al.

It is worth pausing here to check the relationship between this result and the RG equations

of José et al. [4]. The factor

X

x2D0

x2hm(0)m(x)i (7.27)

in Eq. (4.34) of José et al. [4] can be related to our expression by considering the definition

of the m values in José et al. [4]. They are given by m(x) = �s(x) in our notation. Using

the same weak-coupling arguments for the non-hs2xi-like terms, we approximate

X

x2D0

x2hm(0)m(x)i ' �a2
�

hs2x(aex/2)i+ hs2y(aey/2)i+ hs2x(3aex/2)i+ hs2y(3aey/2)i
�

.

(7.28)

Eq. (4.34) of José et al. [4] then becomes

K�1
e↵. ' K�1 + 2⇡2

�

hs2xi+ hs2yi
�

(7.29)

in the weak-coupling regime (a factor of 2 comes from the erratum of José et al. [40]), which

is the same as our expression for K̃�1
e↵. . Note that our connection with the finite-size e↵ective

spin sti↵ness allows for a connection to be made with the finite-size magnetization before

the thermodynamic limit is taken.

7.3 Harmonic-mode Susceptibility

To relate our quantity to the harmonic-mode susceptibility, we switch to the emergent-

field representation. In Chapter 6, we showed that the Villain model admits an emergent

electric field E: the e↵ective spin sti↵ness can be expressed in terms of the harmonic-mode

susceptibility of the emergent field �
¯

E

. The definition of Ē results in

Ēx =
2⇡J

Na

X

x2D0

sx(x+ aex/2), (7.30)

and similarly in y. Hence,

hĒ2
xi =

4⇡2J2

N2a2
h
"

X

x2D0

sx(x+ aex/2)

#2

i (7.31)

=
4⇡2J2

N2a2
h
X

x2D0

s2x(x+ aex/2) +
X

x 6=x

0

sx(x+ aex/2)sx(x
0 + aex/2)i (7.32)
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'4⇡2J2

N2a2
Nhs2xi (7.33)

for low topological-defect density, and similarly in the y-component. It then follows that

hĒ2i = hĒ2
x + Ē2

yi '
4⇡2J2

N2a2
Nhs2x + s2yi, (7.34)

and hence that

K̃�1
e↵.(L, T ) 'K�1(T ) + 2⇡2

Na2

4⇡2J2
hĒ2i (7.35)

=K�1(T ) +
L2

2J2
hĒ2i (7.36)

=K�1(T ) +
1

2
K�1(T )

�L2
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◆
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for low topological-defect density. Combining this with Eq. (7.1), we have that

hmi '
✓

1

cN

◆(1+�
¯

E

(L,T )/2)/8⇡K(T )

(7.40)

for low topological-defect density.

7.4 The Helicity Modulus

The connection with the finite-size helicity modulus ⌥̃ is made in this section. Eq.

(7.39) becomes an equality in the limit of vanishing �
¯

E

, since all approximations

used in this chapter become equalities in this limit. It follows that the perturbation

K�1(T ) 7! K�1(T ) (1 + �
¯

E

(L, T )/2) describes the change in the inverse e↵ective spin

sti↵ness due to an infinitesimally small increase in the value of �
¯

E

from zero. In the

following, we apply a Dyson-like self-consistent approach to applying this perturbation an

infinite number of times. It follows that

�

K�1
�0
(L, T ) = K�1(T ) +K�1(T )

1

2
�
¯

E

(L, T ) (7.41)

is the first perturbation of the inverse spin sti↵ness. On the right-hand side of the above

equation, repeating this perturbation to the inverse spin sti↵ness that has not already been
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perturbed (i.e., the right-hand inverse spin sti↵ness), it follows that

�

K�1
�00

(L, T ) =K�1(T ) +
�

K�1
�0
(L, T )

1

2
�
¯

E

(L, T ) (7.42)
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¯

E
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4
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¯

E

(L, T )

◆

(7.43)

is the second perturbation of the inverse spin sti↵ness. Repeating this perturbation an

infinite number of times, we find the inverse finite-size e↵ective spin sti↵ness:

K̃�1
e↵.(L, T ) ⌘

�

K�1
�1

(L, T ) (7.44)
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=K�1(T )

✓

1� 1

2
�
¯

E

(L, T )

◆�1

, (7.46)

where the symbol 1 denotes an infinite number of perturbations. Taking the reciprocal of

the above equation, it follows that

K̃e↵.(L, T ) = K(T )

✓

1� 1

2
�
¯

E

(L, T )

◆

= �⌥̃(L, T ), (7.47)

which relates the finite-size e↵ective spin sti↵ness to the finite-size helicity modulus in the

limit of small �
¯

E

. We expect this expression to be a good approximation at any temperature

at which topological defects are bound, and to therefore remain a good approximation up

to the finite-size transition temperature T ⇤(L), where topological defects begin to unbind.

Combining Eqs. (7.1) and (7.47), it follows that

hmi =
✓

1

cN

◆1/8⇡�⌥̃(L,T )

(7.48)

in the limit of small �
¯

E

. Again, we expect this expression to remain a good approximation

up to the temperature T = T ⇤(L). As the behaviour of the helicity modulus at the BKT

transition is universal in XY-type spin models, it follows that Eqs. (7.47) and (7.48) should

apply to all XY-type spin models. Fig. 7.1 shows Eq. (7.48) analytically continued into the

high-temperature regime in which it breaks down. The data sets are for elementary-charge

Coulomb gases of linear sizes L = 32, 64 and 128, where we have recalled Eq. (6.36):

✏�1
e↵.(L, T ) ⌘ ⌥̃(L, T ), (7.49)

which is a result of the equivalence between the MR electrostatic and Villain models.
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Figure 7.1: Eq. (7.48) (analytically continued into the high-temperature regime in which
it breaks down for the modest system sizes shown) as a function of T for two-dimensional
Coulomb gases of elementary charges (with the core-energy constant set to zero). The data
sets are for systems of linear system size L = 32 (red dots), 64 (blue stars), and 128 (green
crosses). Dashed / solid vertical grey lines meet each curve at T = T̃ ⇤(L) / T = T̃

C

(L).

This analysis is seen to be consistent with Eq. (2.117) of BKT theory when the thermody-

namic limit of Eq. (7.47) is taken for T  TBKT:

Ke↵.(T ) = lim
L!1

h

K̃e↵.(L, T )
i

= � lim
L!1

h

⌥̃(L, T )
i

= �⌥(T ). (7.50)

7.5 Preliminary Applications

The relationship between the magnetization and the finite-size helicity modulus seen in Eq.

(7.48) suggests that the signature of BH theory - the unique value of the e↵ective critical

exponent - outlined in Section 2.5 should be measurable through the helicity modulus of

the XY-type spin model in question. This section comprises of a preliminary study of the

relationship between the helicity modulus and BH theory.
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7.5.1 Finite-size Transition Temperatures: Revision

In finite-size BKT systems, the two transition temperatures are the upper (TC(L)) and

lower (T ⇤(L)) bounds of the temperature range over which the transition occurs. In BH

theory, the e↵ective critical exponent is measured with respect to the reduced temperature

t(L) := TC(L)�T at the lower bound of the transition. This lower bound is the temperature

at which

K̃e↵.(L, T ) = 2/⇡. (7.51)

In the vicinity of this temperature, few topological defects are unbound, hence Eq. (7.48)

is a good approximation. For a measurement of the signature of BH theory via the helicity

modulus to be considered rigorous, the finite-size transition temperatures must be measured

through the finite-size helicity modulus. We define T̃ ⇤(L) to be the lower bound of the

transition as measured via the finite-size helicity modulus:

�⌥̃(L, T ) = 2/⇡ (7.52)

at T = T̃ ⇤(L). Since Eq. (7.48) is a good approximation in the vicinity of the lower bound

of the transition, it follows that T̃ ⇤(L) ' T ⇤(L). The vertical dashed grey lines in Fig. 7.1

meet each curve at the T̃ ⇤(L) of the corresponding system size.

Topological defects deconfine at temperatures above the lower bound so that, for modest

system sizes, Eq. (7.48) completely breaks down: defining an upper bound of the transition

with respect to the finite-size helicity modulus will give a markedly di↵erent value to the

true TC(L) of BH theory. For very large systems, however, the �⌥̃ and e↵ective spin-sti↵ness

curves converge, as seen in Eq. (2.117). The upper bound of the transition as measured

through the finite-size helicity modulus will therefore converge on the true TC(L) in the

asymptotic regime of very large system size (as will T̃ ⇤(L) on T ⇤(L)): the signature of BH

theory is expected to measurable through the helicity modulus in the limit of very large

system size. We test the appearance of this signature on modestly sized Coulombic systems,

before extending into the asymptotic regime in the final subsection, where we apply BH

theory to superfluid 4He data, which corresponds to an extremely large Coulombic system.

It must be kept in mind that any signature measured through the finite-size helicity modulus

at modest system size is only to be taken as an indicator of this signature being truly

measurable in the asymptotic regime.

To proceed, a pragmatic revision of the upper bound (with respect to the finite-size helicity

modulus) is the temperature at which the analytically continued curve of Eq. (7.48) has

decreased to the fourth power of its value at T = T̃ ⇤(L): the upper bound T̃C(L) is therefore
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defined to be the point at which

�⌥̃(L, T ) = 1/2⇡. (7.53)

The vertical solid grey lines in Fig. 7.1 meet each curve at the T̃C(L) of the corresponding

system size, which is seen to be a good, pragmatic estimate of the upper bound of the

transition. The reduced temperature with respect to the finite-size helicity modulus t̃(L) is

now defined via

t̃(L) := T̃C(L)� T. (7.54)

Considering Eqs. (2.128) and (2.131), these new definitions of the bounds of the finite-size

transition range necessarily result in a floating, system-size dependent T̃BKT(L): this object

has no physical significance at modest system sizes. It does, however, scale like 1/ ln(L) to

TBKT = 1.35 (to three significant figures) in the thermodynamic limit, recovering consistency

with the asymptotic regime.

7.5.2 The Critical Exponent

The connection with BH theory now follows. Combining the approximation of Eq. (7.48)

at T = T̃ ⇤(L) with standard BH theory, we predict that

3⇡2

128
' ln (1/cN)

8⇡

@
⇣

kBT/⌥̃(L, T )
⌘

@ ln(t̃(L))

�

�

�

�

�

�

T=T̃ ⇤(L)

. (7.55)

for large but modestly sized Coulomb / Villain systems. We stress again that any agreement

with this prediction should only be taken as an indication of the signature of BH theory

being measurable through the finite-size helicity modulus in the asymptotic regime, where

T̃C(L) converges on TC(L) so that the temperatures of the above equation can be replaced

by their non-tilde counterparts.

Fig. 7.2 shows ln (1/cN) /8⇡�⌥̃(L, T ) versus ln(t̃(L)) for two-dimensional Coulomb gases

of elementary charges (with the core-energy constant set to zero). The data sets are for

systems of linear size L = 32, 64 and 128. Tangents with gradients of 3⇡2/128 are compared

with each data set, and vertical lines show each T̃ ⇤(L). We observe excellent comparisons

between the data and the tangents at T = T̃ ⇤(L) for all system sizes, as predicted by Eq.

(7.55). This result, combined with the scaling of the floating T̃BKT(L) to TBKT (as 1/ ln(L))

into the asymptotic regime, indicates that the e↵ective critical exponent of BH theory should

be measurable through the finite-size helicity modulus in the limit of very large but finite
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Figure 7.2: ln (1/cN) /8⇡�⌥̃(L, T ) versus ln(t̃(L)) for two-dimensional Coulomb gases of
elementary charges (with the core-energy constant set to zero). The data sets are for systems
of linear system sizes L = 32 (red dots), 64 (blue stars), and 128 (green crosses). Straight
lines with gradients of 3⇡2/128 are superimposed on each data set at t̃(L) = T̃

C

(L)� T̃ ⇤(L),
which is represented by the red (L = 32), blue (L = 64), and green (L = 128) vertical dashed
lines.

system size. The requirement of an asymptotically large system is not a drawback of the

theory, as the thermodynamic limit of Eq. (2.108) is approached so slowly that any real

BKT system would be asymptotically large but finite [19].

7.5.3 Superfluid Films

Superfluid 4He films are described by the two-dimensional Coulomb gas [9–12] with

⌥̃(L, T ) =
m2

~2 ⇢s(L, T ), (7.56)

where m is the mass of 4He, ~ is the reduced Planck’s constant, and ⇢s is the superfluid

density. The data presented in the work of Bishop and Reppy [11, 12] corresponds to a

superfluid film of linear size L = e12, an extremely large but finite e↵ective Coulomb gas for
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which

K̃e↵.(L, T ) ' �⌥̃(L, T ) (7.57)

at T = T̃C(L) ' TC(L). We therefore combine Eqs. (7.48) and (7.56) to transform data

digitized from Bishop and Reppy [11, 12] into an e↵ective magnetization given by

hmi =
✓

1

cN

◆~2/8⇡�m2⇢
s

(L,T )

(7.58)

in the asymptotic regime corresponding to the Bishop-Reppy experiment [11, 12], which

has been set as an equality since K̃e↵.(L, T ) has e↵ectively converged on �⌥̃(L, T ) at T =

T̃C(L) ' TC(L). From this, we expect to measure an e↵ective critical exponent of �̃ =

3⇡2/128 at T = T ⇤(L), which corresponds to measuring the signature of BH theory through

the finite-size helicity modulus of an asymptotically large Coulomb gas. Since the system is

in the asymptotic regime, we drop the tilde from T̃ ⇤(L) and T̃C(L), as these temperatures

have e↵ectively converged on their true counterparts of Section 2.5.

The Bishop-Reppy experiment [11, 12] consists of a 4He film adsorbed on a sheet of Mylar

that has been wrapped into a coil. A sinusoidal driving frequency ! is applied to the Mylar

coil in the direction of its long axis. This generates a frequency-dependent analogue of the

electric permittivity of the Coulomb gas ✏(!, T ) [10]. Bishop and Reppy then measured the

reduced shift in the period of oscillation of the Mylar coil �P/P , as well as the superfluid

dissipation Q�1 of the 4He film. This reduced shift in the period of oscillation is due

to the 4He film decoupling from the Mylar coil as its superfluid density increases at low

temperature. By defining

p(!, T ) :=
2�P (!, T )

P (T )
(7.59)

and

q(!, T ) := Q�1(!, T ), (7.60)

it follows from Eqs. (A4) and (A5) of Bishop and Reppy [12] that

p(!, T ) = CRe
⇥

✏�1(!, T )
⇤

(7.61)

and

q(!, T ) = CIm
⇥

�✏�1(!, T )
⇤

, (7.62)
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where C is a constant given in the paper.

Upon setting ✏0(!, T ) and ✏00(!, T ) to be the real and imaginary parts of ✏(!, T ), respectively,

it follows from Eq. (9) of Ambegaokar et al. (AHNS) [10] that

✏0(!, T ) = ✏(r = L(!), T ) (7.63)

and

✏00(!, T ) =
⇡

4

@✏(r, T )

@ ln r

�

�

�

�

r=L(!)

, (7.64)

where the dynamic length scale L(!) :=
p

14D/a2! (defined in anticipation that it will

correspond to an e↵ective linear system size of the Coulomb gas) is taken from Bishop and

Reppy [12], and, from José et al. [4], ✏(r, T ) is the static, distant-dependent analogue of the

permittivity that includes the e↵ect of screening only from topological-defect pairs whose

separation distance d  r (it is standard to use the same notation for the static and dynamic

permittivities). Combining Eqs. (7.61) to (7.64), it then follows that

✏�1(L(!), T ) =
p(!, T )

C

 

1 +

✓

q(!, T )

p(!, T )

◆2
!

, (7.65)

which, when combined with Eqs. (6.36) and (7.56), can be rewritten as

⇢s(L(!), T ) =
~2J
Cm2

p(!, T )

 

1 +

✓

q(!, T )

p(!, T )

◆2
!

. (7.66)

This is set as an equality since Eq. (7.57) converges on an equality at T = TC(L) in the

asymptotic regime of the Bishop-Reppy experiment. Substituting the above expression into

Eq. (7.58) provides a route to testing the applicability of BH theory to the superfluid film.

Although not stated explicitly, it appears that Bishop and Reppy set J = 2T ⇤(L)/⇡ in our

notation.

Fig. 7.3 shows the signature of BH theory to be hidden in the experimental data of Bishop

and Reppy [11, 12]. We extract the superfluid density from the digitized data using Eq.

(7.66) and transform this into the e↵ective magnetization given by Eq. (7.58). We plot this

quantity as a function of T (left) and reduced temperature t(L) := TC(L)�T (right), where

the right-hand plot is on a log-log scale, and T in units of K. The data presented has no

fitted parameters: T ⇤(L) = 1.2043K, TC(L) = 1.215K, and L = e12 are all taken as quoted

in Bishop and Reppy [11, 12]. Inserting �̃ = 3⇡2/128 at T = T ⇤(L) into Eq. (2.133), it
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Figure 7.3: Digitized Bishop-Reppy superfluid data transformed into an e↵ective finite-
size magnetization (left) and on a log-log scale (right), with BH �̃ = 3⇡2/128 curves super-
imposed in red. T ⇤(L) (left-hand red circle) and T

BKT

(right-hand red circle) are marked
on the right-hand plot. In the region of the dashed line, BH theory is not expected to
describe the data. There are no fitted parameters: all parameters are taken from the work
of Bishop and Reppy [11, 12]. The black data is the total superfluid density, as given by the
full AHNS theory; the blue data corresponds to setting q(!, T ) = 0, which is only permitted
near T = T ⇤(L) and below: this subtlety is outlined in Appendix D.

follows that

✓

1

cN

◆1/16

= const. (TC(L)� T ⇤(L))3⇡
2/128 . (7.67)

From this, BH theory then predicts that

hmi =
✓

1

cN

◆1/16

(TC(L)� T ⇤(L))�3⇡2/128 (TC(L)� T )3⇡
2/128 (7.68)

at T = T ⇤(L). We superimpose this curve in red on both plots in Fig. 7.3, again, with no

fitted parameters, showing agreement between the curves and the data at T = T ⇤(L): BH

theory is shown to apply to real, thin-film superfluids, and its signature is in fact hidden in

the data of the seminal work of Bishop and Reppy [11, 12].

Further to showing that BH theory applies to the superfluid film, the analysis presented

in this subsection also o↵ered an asymptotically large e↵ective Coulomb gas on which to

test the validity of measuring the signature of BH theory through the e↵ective electric

permittivity / helicity modulus of the Coulomb gas / Villain model. This final subsection

has shown that, for su�ciently large systems, the analysis leading to Eq. (7.55) holds: it is

inferred that BH theory applies to general BKT systems, and its signature can be measured

through the finite-size helicity modulus of su�ciently large but finite-size systems.





Chapter 8

Conclusions

In conclusion, we have investigated two important properties of the BKT transition: the

signalling of the high-temperature phase by topological-sector fluctuations and the applica-

bility of BH theory to general BKT systems. This was performed in parallel with the helpful

mapping between the MR electrostatic model applied to the two-dimensional Coulomb gas

and Villain’s approximation to the XY model of magnetism.

We simulated the two-dimensional lattice Coulomb gas on a torus using the MR algorithm

with both local and global updates employed to relate topological-sector fluctuations in the

electric field to the BKT phase transition. Topological-sector fluctuations in the electric

field switch on precisely at the BKT transition temperature. Our analysis showed that, in

the case of the BKT transition, the ordering of a conventional order parameter is replaced

by topological ordering through an ergodicity breaking between the topological sectors.

The topological order is directly related to the confinement-deconfinement transition of the

charges, the local topological defects of the electric field. This type of ergodicity breaking is

distinct from either the symmetry breaking that characterizes a standard phase transition,

or that due to the rough free-energy landscape that develops at a spin-glass transition [27].

The topological-sector fluctuations are very clearly revealed in the lattice electric field de-

scription of the two-dimensional Coulomb gas, but we expect them to be equally relevant

to any system that has a BKT transition. In suitable systems, the winding-field suscep-

tibility that signals the onset of topological-sector fluctuations will contribute to exper-

imentally measurable responses of the system. A promising system on which to measure

these topological-sector fluctuations is the one-dimensional quantum lattice Bose gas. When

the system is placed on a ring, its angular momentum is no longer a good quantum num-

ber. The angular momentum can therefore fluctuate quantum mechanically, and the system

should undergo a dramatic increase in these fluctuations as it passes through the superfluid
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– Mott insulator quantum phase transition [64, 65]. This dramatic increase in the fluctu-

ations corresponds to finite-valued global topological defects in the quantum system, and

therefore, via the Feynman path-integral mapping, to topological-sector fluctuations in the

two-dimensional classical lattice Coulomb gas on a torus. Murray et al. measured the angu-

lar momentum of ring-shaped Bose-Einstein condensates via the vortex-density profile of the

system [66]. Our measure of the BKT transition could therefore correspond to equivalent,

experimentally measurable topological-sector fluctuations in the cold-atom system.

We performed a series of simulations of the two-dimensional XY and HXY models in order to

confirm the emergent Coulomb lattice Green’s function of the HXY model and to probe the

e↵ective Coulombic behaviour of the two models. This, combined with analytic work on the

MR electrostatic and Villain models, allowed us to elucidate the emergent Coulombic physics

of XY-type spin models and to show that topological-sector fluctuations in the emergent

electric field of the XY models correspond to twist fluctuations in their spin fields. The

signature of the topological-sector fluctuations of Chapter 5 could therefore be observable

in ultrathin ferromagnetic metallic films [61], magnetic Langmuir-Blodgett films [62, 63], or

ferromagnetic films with a ‘washer’ geometry (PBCs in one direction).

The emergent electrostatics shown by the mapping allowed us to use the Villain model to

show that BH theory applies to the general BKT system: the unique value of the e↵ective

critical exponent of BH theory is hidden in the classic experimental data of the superfluid
4He film [11]. This unification of identical, experimentally measurable signatures in the

ferromagnetic and superfluid films is a triumph of both BH and BKT theory, and provides

an incredible example of the power of statistical mechanics and the renormalization group.



Appendix A

Dimensional Analysis of the

Two-dimensional Coulomb Gas

In the following, [ . . . ] denotes the units of some quantity, L denotes the dimensions of

length, d is the spatial dimensionality of the system, and ✏0 is the vacuum permittivity in

d-dimensional space.

With Gauss’ law on a lattice,

r̂ ·E(x) = ⇢(x)/✏0, (A.1)

and the dimensions of the electric-charge density in d dimensions,

[⇢(x)] = [q]L�d, (A.2)

it follows that

[E(x)] = [q]L(1�d) [✏0]
�1 . (A.3)

The exponent of the Boltzmann probability must be dimensionless, hence,

1 =

"

ad�✏0
2

X

x2D
|E(x)|2

#

(A.4)

=Ld [�] [✏0] [E(x)]2 (A.5)

, [✏0]
�1 =Ld [�] [E(x)]2 (A.6)

) [E(x)] =[q]L(1�d)Ld [�] [E(x)]2 (A.7)

, [E(x)] =[q]�1L�1 [�]�1 . (A.8)
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In d = 2, we set the charge to be dimensionless, and it follows that

[E(x)] = [�]�1L�1, (A.9)

and hence that

[✏0] = [�] . (A.10)

The same dimensions follow for the electric fields of the continuum system.



Appendix B

Spin-wave Analysis

B.1 Relationship between  and the Magnetization

The magnetization of the harmonic model is related to the quantity  by

hmi =h 1
N

X

x2D
cos( (x))i (B.1)

=
1

N

X

x2D
hcos( (x))i (B.2)
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=
1
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=
1
X

p=0

1
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h�1

2
 2(0)ip (B.7)

= exp

✓

�1

2
h 2(0)i

◆�

, (B.8)

where Wick’s theorem is used in Eq.(B.5).
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B.2 Relationship between  and '

In all XY-type spin models, the quantity

h (x) (x0)i = h'(x)'(x0)i � h'(x)'̄i � h'(x0)'̄i+ h'̄'̄i. (B.9)

becomes

h (x) (x0)i = h'(x)'(x0)i (B.10)

because the final three terms of the above expression are zero:

h'(x)'̄i =h'(x) 1
N

X

x

00

'(x00)i (B.11)
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1
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X
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�(2)(k) (B.15)
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Appendix C

The Decoupling of the Internal

Energy of the Lattice Electric Field

The internal energy of the general electric field of the two-dimensional lattice system is given

by

U0 =
✏0a

2

2

X

x2D
|E(x)|2 . (C.1)

This expression generates terms which go like the sum of the squares of each contribution

to the total field along with some cross terms which sum to zero:

U0 =
✏0a

2

2
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x2D

h
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+
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io

(C.2)

=
✏0a

2

2

X

x2D

h

|� r̃�(x) + Ẽ(x)|2
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|Ē|2

+ ✏0a
2
X

x2D
�(x)

h
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X
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i

+
L2✏0
2

|Ē|2, (C.6)

where the sum in the final term of the second line returns zero since it is a sum over the

k 6= 0 modes, and the sum over the auxiliary-field elements in Eq. (C.5) is zero because it

is the sum of the rotational degrees of freedom of the field leaving site x.
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It follows that

U0 = UPoisson + URot. + UHarm., (C.7)

where UPoisson := ✏0a
2
P

x2D |r̃�(x)|2/2, URot. := ✏0a
2
P

x2D |Ẽ(x)|2/2, and UHarm. :=

L2✏0|Ē|2/2.



Appendix D

The Relationship between the BH

and AHNS Theories

Combining Eqs. (6.36), (7.57) and (7.65), it follows that

K̃e↵.(L(!), T ) =
�J

C
p(!, T )

 

1 +

✓

q(!, T )

p(!, T )

◆2
!

(D.1)

in spin-sti↵ness notation (set as an equality as the Bishop-Reppy experiment is in the asymp-

totic regime). From the standard manipulation of complex numbers, we have that

q(!, T )

p(!, T )
=
✏00(!, T )

✏0(!, T )
. (D.2)

We combine this with Eqs. (7.63) and (7.64) to find that
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=
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from which Eq. (D.1) becomes
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where K̃�1
e↵.(r, T ) is the static, distant-dependent e↵ective spin sti↵ness that includes the

e↵ect of screening only from topological-defect pairs whose separation distance d  r, as

defined by Nelson and Kosterlitz [9].

The BH ansatz [19] given by Eq. (2.135) amounts to asserting that the Nelson-Kosterlitz

e↵ective spin sti↵ness is constant across a sample. Hence, in order for the BH [19, 20] and
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AHNS [10] theories to agree, we require that K̃e↵.(r, T ) can be replaced with K̃e↵.(L, T ) for

all r < L, which is certainly true in the region of the critical point for topological defects

(T ⇤(L)), where the Nelson-Kosterlitz e↵ective spin sti↵ness becomes scale independent. In

Fig. 7.3, the black circles (full AHNS theory) and the blue circles (constant Nelson-Kosterlitz

e↵ective spin sti↵ness) coincide. Outside of this region, where BH theory is not predicted to

apply, we observe a deviation between these two data sets. There is therefore no contradic-

tion between the two theories, since BH theory is only predicted to apply at T = T ⇤(L).



Appendix E

Simulation Details

E.1 The Coulomb Gas

The two-dimensional Coulomb gas was simulated using the MR algorithm on an L ⇥ L

lattice of lattice spacing a = 1. One charge-hop sweep corresponded to picking a charge

site at random, picking the x or y direction at random, then proposing a charge hop in the

positive or negative direction (at random), repeating this 2N times (replacing each site /

field bond after each proposal). One auxiliary-field sweep corresponded to picking a charge

site at random and proposing a field rotation around the site, repeating this N times (the

range of field rotation was tuned at each temperature to keep the acceptance rates between

40 and 60%.). One global sweep corresponded to proposing a winding update in the positive

or negative (at random) x and y directions. For all simulations, we performed five auxiliary-

field sweeps per charge-hop sweep, and, for those simulations that also employed the global

update, we performed one global update per charge-hop sweep. One charge-hop sweep

corresponds to one Monte Carlo time step.

All data sets were averaged over multiple runs of 106 charge-hop sweeps per lattice site,

with all those presented outside of Chapter 5 averaged over 16 runs, barring the L = 64 and

L = 128 data sets, which were averaged over 48 runs.

The L = 32 data set in Fig. 5.2 was averaged over 512 runs between T = 1.0 and 1.1375, 992

and 768 runs between T = 1.15 and 1.45 with the global update o↵ and on respectively, and

over 256 runs between T = 1.46 and 1.75. The L = 64 data set in Fig. 5.2 was averaged over

608 and 446 runs between T = 1.15 and 1.45 with the global update o↵ and on respectively,

over 384 runs between T = 1.5 and 1.6, and over 256 runs between T = 1.65 and 1.75.

The L = 8 data set in Fig. 5.3 was averaged over 128 runs (T = 0.1� 1.1), 256 runs (T =

1.15� 1.39;T = 1.41� 1.44;T = 1.46� 1.49), 768 runs (T = 1.4;T = 1.45;T = 1.5� 1.75),
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and 256 runs (T = 1.8�2.5); the L = 16 data set was averaged over 128 (T = 0.1�1.1) and

256 runs (T = 1.15� 2.5); the L = 32 data set was averaged over 128 runs (T = 0.1� 1.1),

256 runs (T = 1.15� 2.0), and 128 runs (T = 2.0� 2.5); the L = 64 data set was averaged

over 128 runs (T = 0.1 � 1.1), 448 runs (T = 1.15 � 1.45), 384 runs (T = 1.5 � 1.6), 256

runs (T = 1.65� 2.0), and 128 runs (T = 2.05� 2.5).

We also simulated the L = 10, L = 20, and L = 40 systems over small temperature ranges

to calculate additional crossover points for Fig. 5.4: all data sets were averaged over 512

runs.

E.2 The XY Models

The XY and HXY models were simulated using the standard Metropolis update scheme.

One sweep corresponded to picking a spin site at random, then proposing a spin rotation,

repeating this N times (replacing each site after each proposal). The range of spin rotation

was tuned at each temperature to keep the acceptance rates between 40 and 60%.

All non-quench data sets were averaged over 16 runs of 106 sweeps per lattice site, barring

the L = 64 data, which was averaged over 32 runs. The quench test performed on the HXY

model in Chapter 6 was one run of 105 sweeps per lattice site.
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