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RWound healing is a complex physiological process comprised of discrete but inter-related and overlapping
stages, requiring exact timing and regulation to successfully progress, yet occurs spontaneously in response to
injury. It is characterised by four phases, coagulation, inflammation, proliferation and remodelling. Each phase
is predominated by particular cell types, cytokines and chemokines. The innate immune system represents the
first line of defence against invading microorganisms. It is entirely encoded with the genome, and comprised
of a cellular responsewith specificity provided by pattern recognition receptors (PRRs) such as toll-like receptors
(TLRs). TLRs are activated by exogenousmicrobial pathogen associatedmolecular patterns (PAMPs), initiating an
immune response through the production of pro-inflammatory cytokines and further specialist immune cell
recruitment. TLRs are also activated by endogenous molecular patterns termed damage associated molecular
patterns (DAMPs). These ligands, usually shielded from the immune system, act as alarm signals alerting the
immune system to damage and facilitate the normalwoundhealing process. TLRs are expressed by cells essential
to wound healing such as keratinocytes and fibroblasts, however the specific role of TLRs in this process remains
controversial. This article reviews the current knowledge on the potential role of TLRs in dermal wound healing
where inflammation arising from pathogenic activation of these receptors appears to play a role in chronic
ulceration associated with diabetes, scar hypertrophy and skin fibrosis.

© 2015 Published by Elsevier Inc.
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and regulation to successfully progress, yet occurs spontaneously in
response to injury. It is characterised by four phases, coagulation, in-
flammation, proliferation and remodelling. Each phase is predominated
by particular cell types, cytokines and chemokines.

Mammals and higher organisms have evolved complex immune
defences against pathogenic microbial organisms in the form of the
antibody based adaptive immune system and the innate immune sys-
tem, a primitive evolutionary cellular based system. Pattern recognition
receptors (PRRs) on the cell surface of innate immune cells recognise
discretemicrobial molecular patterns triggering their activation termed
ike receptors and dermal wound healing: A review, Vascul. Pharmacol.
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pathogen associated molecular patterns (PAMPS). A group of highly
conserved and prime PRRs are toll-like receptors (TLRs). In addition to
PAMPs, TLRs also recognise a rage of endogenous self derivedmolecular
patterns released in response to tissue and cellular damage, termed
damage associated molecular patterns (DAMPs).

TLRs are expressed by cells comprising the dermis and epidermis of
the skin, in addition to the immune cells that reside within the skin or
those that are recruited from circulation. The activation and timing of
specific TLRs and the presence of conditions affecting TLR expression
and activation determine whether TLR activation promotes or inhibits
the wound healing process, leading to chronic wounds.

2. Normal dermal wound healing

Immediately following trauma to the skin, platelets aggregate at the
site of injury with haemostasis achieved following local vasoconstric-
tion and activation of the clotting cascade, resulting in fibrin clot forma-
tion [1]. The inflammatory phase of wound healing begins with release
of proinflammatory cytokines such as platelet derived growth factor
(PDGF), transforming growth factor (TGF-β), fibroblast growth factor
(FGF), epidermal growth factor (EGF) and Interleukin 8 (IL-8/CXCL-8)
from the newly formed clot and directly from the damaged tissues [2].
These act as potent chemotactic signals to immediately recruit neutro-
phils to the wound [3]. Circulating polymorphonuclear neutrophils
(PMN) begin migration within minutes from the blood into the
immature wound bed formed by the clot, peaking within the first 24 h
[4]. The neutrophils nowpresent in thewound provide a crucial defence
against microbial invasion following disruption to the skins natural bar-
rier function, clearing both pathogen and tissue debris by phagocytosis
[2,5].

The process of platelet de-granulation, activation of the complement
cascade, and themigration and signalling of PMNs results in the further
production of chemotactic factors such as complement component 5
(C5), fibrin by products and TGF-βc [6]. These chemokines along with
chemokine (C-C motif) ligand 5 (CCL5) produced by keratinocytes, re-
cruit monocytes to the wound, which under the influence of local cyto-
kines undergo differentiation to become mature wound macrophages
[6,7]. By days three to five following injury, tissuemacrophages become
the dominant cell type [8].Woundmacrophages continue the process of
wound bed clearance through phagocytosis of apoptotic cells including
the early phase PMNs, tissue debris and microbial organisms [8]. In
addition, macrophages also directly aid the debridement of injured and
devitalised tissue through release of protease and metalloprotease en-
zymes [8,9]. Over and above their phagocytic role, an important initial
function ofwoundmacrophages is the release of cytokineswhich further
aid the recruitment and activation of inflammatory cells [2]. As the in-
flammatory phase progresses, macrophages produce important growth
factors such as KGF, TGF-β, VEGF and PDGF which stimulate fibroblast
and keratinocyte growth and migration and the process of angiogenesis
[1]. It is therefore considered that macrophages are responsible for the
transition to the proliferative phase of wound healing [2].

The late inflammatory phase becomes characterised by infiltration
of T-lymphocytes under the influence of IL-1, which peak at day 7
after injury. At this stage there is considerable temporal overlap be-
tween the late inflammatory, proliferative and early remodelling phases
of normal wound healing. [10]. As described, the inflammatory phase
involves a well characterised sequence of immune cell infiltration,
neutrophils followed by macrophages then finally T-lymphocytes [2].

Likemacrophages, T-lymphocytes appear to have a complex yet sig-
nificant role in the normal process of wound healing, however these
processes, functions and pathways remain poorly understood. Studies
utilising In vivo murine knock-out models have suggested that absent
or delayed T-lymphocyte wound infiltration results in an impairment
of the healing process [2]. However there appears to be differential
roles of CD4+ T helper and CD8+ cytotoxic T cells, with CD4+ cells
found to have a positive promoting effect on healing, and CD8+ cells
Please cite this article as: PortouMJ, et al, The innate immune system, toll-l
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an inhibitory effect [11]. In addition, T-lymphocytes have a regulatory
effect on inflammation and fibrosis and a dermal subgroup of gamma
delta T cells produce keratinocyte growth factor (KGF) and insulin-like
growth factor 1 which stimulate keratinocyte proliferation, promoting
healing [12].

Central to the proliferative phase of wound healing is the formation
of granulation tissue. Dermal fibroblast proliferation, migration and
differentiation (into contractile myofibroblasts) occurs under the influ-
ence of growth factors such as fibronectin, PDGF, FGF, TGF-β and C5a, as
inflammatory cytokine release diminishes [13]. Fibroblasts are crucial
for the production of extracellularmatrix comprised of collagen, glycos-
aminoglycans, proteoglycans, fibronectin and elastin [14]. Angiogenesis
occurs as dermal endothelial cellsmigrate into the newly forming extra-
cellular matrix under the influence of macrophage derived angiogenic
factor, forming new capillaries [8].

During the proliferative phase, wound contraction is an important
process that occurs through the action of myofibroblasts, differentiated
from mesenchymal fibroblast cell lines [15]. Myofibroblasts, unlike
fibroblasts express the contractile protein α smooth muscle actin
(αSMA) and as the woundmatures are gradually lost from the granula-
tion tissue [15].

Restoration of the skins crucial barrier function requires successful
epidermal keratinocyte migration, proliferation and differentiation to
cover the newly formed granulation tissue and extracellular matrix in
a process termed re-epithelialisation [16]. In intact skin, keratinocytes
are closely attached to adjacent epithelial cells through desmosomes,
and to the extra cellular matrix of the underlying basement membrane
by hemidesmosomes [17]. Following injury, keratinocytes become mo-
bilized by undergoing phenotypic changes favouring detachment in a
process that remains incompletely understood. However cytokines
such as IL-1, IL-6 and TNF-α produced in inflammatory phase seem to
helpmodulate themigratory phenotypeof keratinocytes [17].Migration
and proliferation are influenced by growth factors such as IGF1 and epi-
dermal growth factors (EGF) [18]. In addition, EGF, KGF and TGF-β have
important pro-migratory or pro-proliferative effects on keratinocytes
[17]. Essential to the process of keratinocyte migration is production
of proteases such as collagenases and matrix metalloproteases [19].
These degrade adhesions between the keratinocyte and the newly
formed extracellular matrix to permit cell movement [16]. Disruption
of the basement membrane after injury requires migrating keratino-
cytes to utilizefibronectin, vitronectin andfibrin components of the pro-
visional extracellular matrix for attachment through focal integrin
receptors [16]. Closely following migration is rapid proliferation and
basementmembrane repair through laminin production [20]. Keratino-
cyte differentiation and keratin production occurs as the epidermal
barrier and normal stratified architecture is restored [21].

The remodelling phase is the longest phase of the wound healing
process, continuing for weeks to months [8]. This phase is characterised
by reduced proliferation and inflammation, active re-organisation of the
extracellular matrix and regression of the newly formed capillaries as
the nutrient requirements of the wound site reduce [8].

Type III collagen produced by fibroblasts during the proliferative
phase is gradually replaced by structural type I collagen, through the ac-
tion of collagenases andmatrix-metalloproteases [16]. During remodel-
ling, collagen becomes more organised and increasingly cross-linked
strengthening the scar; fibronectin disappears, and hyaluronic acid
and glycosaminoglycans are replaced by proteoglycans. The result is
the re-organisation of the extracellular matrix to an architecture more
closely resembling normal tissue [2].

3. The innate immune system and the skin

3.1. The innate immune system

Mammals and other higher vertebrate organisms have evolved com-
plex immune defences against invading pathogenic microorganisms,
ike receptors and dermal wound healing: A review, Vascul. Pharmacol.
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comprised of the innate and adaptive immune systems [22]. The innate
immune system is in evolutionary terms primitive and unlike the clonal
selection antibody-based response of the adaptive immune system, is
entirely encoded within the genome [23]. Innate immunity comprises
the entire immune response of invertebrate organisms, however in
higher species it provides the first line of defence against infectious
pathogens and aids adaptive responses through antigen presentation,
with the adaptive response concerned with later stages of infection,
providing a targeted and specific response and immunological memory
[22].

The innate immune system is comprised of numerous different
cellular components such as neutrophils, eosinophils, basophils, mast
cells, monocytes, macrophages, dendritic cells, NK cells, gamma delta
T cells, B-1 cells [24]. Rather than coordinating a non-specific pro-
inflammatory or phagocyte response, cell activation, pathogen recogni-
tion and a specificity of the innate immunity is conferred by the
presence of specific receptors expressed by these immune cells termed
pattern recognition receptors (PRRs) [25,26].

3.2. Toll-like receptors

Toll-like receptors (TLRs) are key pattern recognition receptors of
the innate immune system [27]. Other examples of PRRs include scaven-
ger receptors (SRs), C-type lectin receptors (CLRs), NOD-like receptors
(NLRs) and B2 integrins [26]. These receptors are highly conserved in
evolution and recognise discrete molecular components of invading
pathogens termed pathogen associated molecular patterns (PAMPs),
such as lipids, lipopeptides, proteins and nucleic acids [22,27]. The
recognition of microbial PAMPs by PRRs leads to activation of specific
signalling pathways and a variety of cell dependent responses, including
pro-inflammatory cytokine release, phagocytosis and antigen presenta-
tion [26].

The Toll-like receptor family consists of thirteen identifiedmembers
ofwhich ten are expressed in humans [24]. TLRs are located either at the
cell surface (TLRs 1,2, 4, 5, 6) or in the intracellular compartment (TLRs
3, 7, 8, 9) primarily on exosomes and endoplasmic reticulum [28,29].
TLRs are transmembrane proteins consisting of an ectodomain com-
prising leucine-rich repeats, a transmembrane domain and an intracel-
lular (TIR) domain [28]. The binding of TLR ligands results in activation
through the recruitment of specific adaptor molecules such as myeloid
differentiation factor 88 (MyD88), MyD88 adaptor like (MAL), TIR
domain-containing adapter-inducing interferon-β (TRIF) and TRIF
adaptor molecule (TRAM) to the intracellular domain [28,30]. All TLRs
except TLR3 utilize one of two signalling pathways, the MyD88
dependent and MyD88 independent (TRIF) pathways, resulting in the
activation of nuclear transcription factors such as NFkB, JNK and MAPK
[28]. TLR3 signals solely through the TRIF pathway [27]. The result is
proinflammatory cytokine and type 1 interferon gene induction [22].

TLRs efficiently recognise distinct components of pathogens that are
essential to their metabolism, preventing mutations rendering them
undetectable [31]. TLRs 1, 2 and 6 recognise gram positive bacteria cell
wall constituents such as lipoproteins, peptidoglycans and lipoteichoic
acid [31]. TLR4 is activated by the gram negative bacteria cell wall
component lipopolysaccharide (LPS) [32] and TLR5 bacterial flagellin
[31]. The intracellular TLRs 3, 7 and 8 recognise double and single
stranded viral RNA, and TLR9 non-methylated CpG dinucleotides
present in bacterial DNA [31,33].

In addition to exogenous microbial PAMP ligands, TLRs are also
activated by a range of endogenous ligands released as a result of tissue
and cellular injury termed damage associated molecular patterns
(DAMPs). These are usually hidden from recognition, however follow-
ing injury they are released or revealed, triggering a TLR mediated
inflammatory response [31]. It has been suggested DAMPs act as danger
signals, released by injured tissues, alerting the immune system of
damage [34]. The resulting sterile inflammation is a key stimulator for
the recruitment of innate immune inflammatory cells and initiation of
Please cite this article as: PortouMJ, et al, The innate immune system, toll-l
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the wound healing process [31]. DAMPs identified as TLR ligands
include the extracellular matrix constituent hyaluronic acid, HMGB1
(a nuclear protein), Heat shock proteins (HSPs) 60 and 70, oxidised
LDL, fibrinogen and fibronectin [35].

3.3. Toll-like receptors and the skin

Intact skin provides an external barrier to the environment,
preventing infection by the majority of pathogenic bacteria, viruses
and fungi [36]. In addition to this physical defence, cells of the innate
immune system present in skin such as dermal mast cells, phagocytes
and dendritic cells such as Langerhans cells of the epidermis, and
those readily recruited from blood such as neutrophils, macrophages,
basophils, eosinophils, NK cells and gamma-delta T cells all express
TLRs for pattern recognition [31]. On detection of invading microbial
pathogens through recognition of PAMPs, TLR activation results in the
initiation of a pro-inflammatory defence response, promoting phagocy-
tosis, immune cell recruitment and antigen presentation [36]. In addi-
tion to immune cells, TLRs are also widely expressed by a variety of
non-immune cells contained within both the epidermis and dermis
which are vital to wound healing [37].

The epidermis is primarily comprised of keratinocytes, which have
been demonstrated to express TLRs 1–6 and TLR9 and 10 [38]. Unlike
specialist immune cells, keratinocytes and other epithelial cells com-
prise the boundary and interface with the external environment and
are under constant exposure to microbes and PAMPS [31]. They are
able to maintain a delicate balance between tolerance of commensal
organisms and the detection of infection and injury and subsequent in-
flammatory response [31]. The relative expression of TLRs by keratino-
cytes also seems to vary depending on position of the cell, for instance
TLR5 is predominantly expressed in the basal layers, whereas TLR9 is
expressed to a greater degree by more differentiated cells of the upper
epidermal layers [39]. It does appear however all TLRs are functional,
and produce distinct immune responses [40]. For instance, activation
of keratinocyte TLRs 2, 3, 4, 5 and 9 by their respective ligands resulted
in TNF-α, IL-8, CCL2 (basophil chemokine) and CCL20 (macrophage in-
flammatory protein-3) release [40]. TLR3 and TLR9 activation produced
CXCL9 and CXCL10, involved in T-memory cell activation and type 1
interferon production [40].

Fibroblasts located in the dermis produce extra cellular matrix
constituents, cytokines, growth factors and have a crucial role in the
wound healing process as described above. They have been found to
express the full range of human TLRs from 1 to 10 [41]. Studies have
demonstrated in vitro activation of TLRs 2, 3, 4, 5 and 9 resulted in pro-
duction of interferon-γ, CXCL9, CXCL10 and CXCL11, important in the
recruitment of T-cells andNK cells [40]. TLR4 activation in dermal fibro-
blasts has been demonstrated to result in IL-6, IL-8 and monocyte
chemotactic protein (MCP) [42]. Microvascular cells such as dermal
endothelial cells have been shown to highly express TLR4 and to a lesser
extent TLR2. In vitro treatment with the exogenous TLR4 ligand LPS re-
sulted in NFkB activation. Likewise exposure to the endogenous derived
ligand hyaluronan induced IL-8, a potent chemokine, stimulating the
recognition of tissue injury and promoting initiation of the early stages
of the wound healing process [43].

3.4. Toll-like receptors and wound healing

As previously described, recognition of endogenous ligands by TLRs
on both immune and non-immune cells of the skin provide alarm
signals via TLR activation and resulting sterile inflammation alerting to
tissue injury. However, the effect of TLR activation on the wound
healing process extends beyond the initial recognition of cellular
damage, and it appears depending on the location, timing and degree
of activation may have a promoting or inhibiting effect on the process
of wound healing and tissue regeneration [44] (Table 1).
ike receptors and dermal wound healing: A review, Vascul. Pharmacol.
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t1:1 Table 1
t1:2 Summary of TLR wound healing studies.

t1:3 Study TLR Model Wound Findings

t1:4 Dasu et al. (2010) [44] 2 In vivo murine, knock out Diabetic TLR2 knock out was beneficial for wound healing in diabetes induced animals
t1:5 Dasu et al. (2013) [45] 4 In vivo murine, knock out Diabetic TLR4 knock out improves wound healing and reduces inflammation in diabetic mice
t1:6 Suga et al. (2013) [7] 2 and 4 In vivo murine, knock out Non-diabetic TLR 2 and 4 knock out impaired wound healing at days 3 and 7. TLR4 rather than TLR2

regulates healing through TGF-β and CCL5
t1:7 Chen et al. (2013) [43] 4 In vitro, In vivo murine, knock out Non-diabetic Injury stimulates TLR4 mRNA expression in keratinocytes.

Wound healing is prolonged in TLR4 deficient mice.
t1:8 Sato et al. (2010) [31] 9 In vivo murine, knock out Non-diabetic Wounds treated with TLR9 agonists exhibit accelerated healing.
t1:9 TLR9 deficient animals demonstrate delayed wound healing
t1:10 Lin et al. (2011) [47] 3 In vivo murine Non-diabetic Wound healing is significantly delayed in TLR3 deficient mice compared to wild type
t1:11 Lin et al. (2012) [48] 3 In vivo murine, human Non-diabetic Topical application of TLR3 agonist accelerated wound healing when applied to human

and mouse wounds
TLR3 deficiency inhibited wound healing
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In vitro and in vivo data has suggested that TLR4 becomes upregulat-
ed within the first 12–24 h following injury and slowly decreases to
baseline at day 10, and is primarily concentrated in epidermal
keratinocytes [45]. The same study demonstrated significantly impaired
wound healing in TLR4 deficient mice at days 1–5, with no difference
seen from wild type at 10 days [45]. An altered pattern of cytokine re-
lease and inflammatory cell infiltration was observed with decreased
IL-1β and IL-6, and an increase in neutrophil, macrophage and T-cell
infiltrates in the wounds of knockout animals at discreet time points
[45]. Another study also observed impairment in wound healing in
TLR2 and TLR4 deficient mice at days 3 and 7, but observed a decrease
in neutrophil and macrophage infiltration, and reduced TGF-β and
CCL5 expression [7]. Activation of TLR4 and TLR2 appears therefore to
have a beneficial effect on wound healing in the early stages following
acute injury, at least in absence of other influences on TLR expression,
signalling and activation.

However the story does not end there. Controversy exists as to the
exact effect of TLR4 and TLR2 in the wound healing process. Given the
seemingly important regulatory role of TLR4 and TLR2 in initiating the
early stages of wound healing, it perhaps seems counter-intuitive that
wound healing was significantly improved in TLR2 deficient mice with
induced diabetes compared to diabetic wild-type animals [46]. The
same effect was also observed in diabetic TLR4 deficient mice [47] in
apparent contradiction of the studies described above.

In addition to decreased healing time, the wounds from TLR2
deficient mice also demonstrated significantly reduced NFkB activation,
IL-6 and TNF-α release [46]. In the same study when comparing wild-
type diabetic mice to non-diabetic controls, TLR2 mRNA and protein
expressionwas significantly increased, alongwithmarkers of activation
such as increased expression of MyD88, IRAK and NFkB [46]. Likewise,
TLR4 mRNA and protein expression, IL-6, TNF-α and NFkB activation
was increased in wild-type diabetic compared to non-diabetic animals,
with a corresponding reduction in IL-6, TNF-α and NFkB activity in the
TLR4 deficient diabetic populations [47].

These studies demonstrated significantly increased TLR2, TLR4 and
MyD88 expression in diabetic compared to non-diabetic wounds and
suggests in diabetes, TLR2 and TLR4 mediated hyperinflammation
results in an impairment of wound healing. Persistent activation of
TLR2 and TLR4 is also associated with other chronic non-healing
wounds such as chronic venous ulceration [48].

Wound healing studies utilising TLR3 deficient mice resulted in
significantly delayed wound healing compared to wild-type controls,
led to decreased neutrophil and macrophage recruitment, and reduced
CXCL2, CCL2 and CCL3 chemokines [49]. Further to this effect, the TLR3
agonist poly(I:C) significantly accelerated wound healing when applied
topically to human andmouse wounds compared to control and result-
ed in greater neutrophil and macrophage recruitment and upregulated
CXCL2 [50].

TLR9 deficient mice demonstrated delayed wound healing com-
pared to wild-type [33]. In addition, topical administration of the TLR9
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agonist CpG ODN to wounds resulted in significantly improved healing
times, increased macrophage infiltration and increased production of
VEGF [33].

4. Non-healing, hypertrophy and other wound complications

Chronic wounds such as foot ulceration are a frequent and challeng-
ing complication of diabetes with a life time risk of between 15 and 25%
[51,52]. This translates to a 20× greater risk of major amputation
compared to non-diabetics, and remains the most common cause of
hospitalisation amongst diabetic patients [6]. Diabetic foot ulcers are
multifactorial in causation, although a predomination for either neurop-
athy or ischaemia often exists [6]. The result is awound characterised by
poor healing, with the progression of the normal process stalled, or
failed to initiate, leading to a chronic, static wound.

The diabetic wound environment differs from the normal acute
wound process through a prolonged and persistent inflammatory
phase (Fig. 1). There is an exaggerated and sustained neutrophil and
macrophage infiltration, which in a db/db mouse model was demon-
strated to be associated with deregulated and prolonged chemokine
expression, such as macrophage inflammatory protein 2 and macro-
phage chemoattractant protein 1 [53].

Although the initial infiltration of immune cells is impaired, once
activated the result is a hyperinflammatory response with elevated in-
flammatory cytokine production of TNF-α, IL-1β and IL-6, and increased
NFkB regulated matrix metalloprotease (MMP) production leading to
excessive extracellular matrix destruction and grossly impaired granu-
lation tissue formation [6]. Neutrophils in particular appear to con-
tribute to these destructive wound conditions through upregulated
release of MMP-8 and downregulated release of the MMP inhibitor
TIMP1 in chronic wounds [54]. The resulting hostile environment of
excess inflammatory cytokine production (TNF-α, IL-6) also impairs
other events and processes crucial to healing such as fibroblast migra-
tion and proliferation, collagen synthesis and promotes apoptosis in
fibroblasts and vascular precursor cells [6].

Diabetic ulceration is an example of chronic inflammation directly
leading to a significant impairment in the healing process and the crea-
tion of a chronic non-healing wound. As previously described, there is
compelling evidence this pathological inflammation is mediated via ex-
cessive TLR activation. Another consequence of abnormal TLR mediated
inflammation on the wound healing process is in over healing in the
form of hypertrophic scar formation [42]. Hypertrophic scars develop
following trauma as a result of excessive production of ECM compo-
nents such as collagen, and although the mechanism remains unclear,
are associated with prolonged inflammation and bacterial contamina-
tion [42]. Comparison of hypertrophic and normal scar tissue from
burns patients demonstrated increased TLR4 staining in hypertrophic
tissues and increased TLR4 and MyD88 mRNA in fibroblasts isolated
from hypertrophic scars [42]. A corresponding increase in pro-
inflammatory cytokines such as PGE2, IL-6, IL-8 and MCP-1 were also
ike receptors and dermal wound healing: A review, Vascul. Pharmacol.
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detected. It is therefore suggested that persistent TLR4 activation in
dermal fibroblasts leads to hypertrophic scarring, possibly through the
increased production of growth factors by supporting cells [42].

Another example of a maladaptive healing response that occurs in
response to chronic inflammation isfibrosis. TLR activation is implicated
in fibrotic abnormal healing responses in specific organs such as the
liver, following repeated tissue injury [31]. TLR4 in particular is thought
to contribute to thefibrotic reaction through chronic activation from the
continuous translocation of gut bacteria associated with chronic liver
diseases, and as demonstrated by the protective effect of TLR4 knock
out in animal models of liver injury [31]. There does however appear
to be a differential TLR effect on fibrosis depending on the organ
involved, with TLR9 implicated in lung fibrosis, and TLRs 2 and 4 likely
to have a greater effect in acute renal inflammation rather than chronic
kidney fibrotic responses, where evidence is conflicting [31].

The role of TLRs in fibrotic skin reactions has been of particular
interest in conditions such as systemic sclerosis. TLR4 activation has
been implicated by murine models of skin fibrosis utilising bleomycin,
through increased hyaluronan production, a potent TLR4 endogenous
ligand [55]. In addition, studies utilising human tissue biopsies from
scleroderma patients have demonstrated TLR4 and associated adaptor
molecules are overexpressed in affected skin, and correlate with disease
progression [56]. In vitro studies in ex-planted scleroderma fibroblasts
have shown activation of TLR4 resulted in increased collagen produc-
tion and gene expression of factors associated with ECM production
Please cite this article as: PortouMJ, et al, The innate immune system, toll-l
(2015), http://dx.doi.org/10.1016/j.vph.2015.02.007
and remodelling, in addition to an increased susceptibility to the effects
of TGF-β [57]. Recent work has also identified TLR4 as a crucial mecha-
nism throughwhich in scleroderma, injured keratinocytes interact with
fibroblasts through increased production of the protein S100A9, a
known ligand of TLR4, leading to increased production of the pro-
fibrotic gene CCN2 [58].

It is therefore proposed that in chronic fibrotic skin diseases such as
scleroderma, persistent TLR4 activation through endogenous ligand
stimulation results in altered response to TGF-β, and subsequent
dysregulated production and remodelling of the extracellular matrix,
leading to profound skin fibrosis.

5. Conclusion

Wounds that fail to heal, such as chronic diabetic ulcers, do not prog-
ress through the normal stages of the healing process described in detail
earlier in this review. It is clear the innate immune system and the
pattern recognition receptors that confer specificity such as toll-like re-
ceptors have a crucial role in the initiation and regulation of normal
wound healing, however the role of the innate immune response in
chronic wounds remains controversial.

In addition to the excess morbidity and mortality associated with
foot ulceration and subsequent amputation, andwith the global burden
of diabetes set to reach 350 million people, non-healing wounds
of all aetiology are set to remain an enormous economic liability for
ike receptors and dermal wound healing: A review, Vascul. Pharmacol.
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healthcare systems around the world. Manipulation of the innate
immune response therefore represents a potential novel therapeutic
opportunity to reduce the hyperinflammation associated with chronic
wounds, and to restart the normal wound healing process.

The impact of dysregulated TLR activation and subsequent chronic
inflammation on the wound healing process appears to be significantly
more complex however, when the pathological yet intuitively opposed
outcomes of non-healing, hypertrophy and fibrosis can all occur in
different disease phenotypes within the same tissue, the skin.
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