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Abstract. Single equation instrumental variable models for discrete
outcomes are shown to be set not point identifying for the structural functions
that deliver the values of the discrete outcome. Identi�ed sets are derived for a
general nonparametric model and sharp set identi�cation is demonstrated. Point
identi�cation is typically not achieved by imposing parametric restrictions. The
extent of an identi�ed set varies with the strength and support of instruments
and typically shrinks as the support of a discrete outcome grows. The paper
extends the analysis of structural quantile functions with endogenous arguments
to cases in which there are discrete outcomes.
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1. Introduction

This paper gives results on the identifying power of single equation instrumental
variables (IV) models for a discrete outcome, Y , in which explanatory variables, X,
may be endogenous. Outcomes can be binary, for example indicating the occurrence
of an event; integer valued - for example recording counts of events; or ordered - for
example giving a point on an attitudinal scale or obtained by interval censoring of
an unobserved continuous outcome. Endogenous and other observed variables can be
continuous or discrete.

The scalar discrete outcome Y is determined by a structural function thus:

Y = h(X;U)

and it is identi�cation of the function h that is studied. Here X is a vector of
possibly endogenous variables, U is a scalar continuously distributed unobservable
random variable, normalised marginally uniformly distributed on the unit interval
and h is restricted to be weakly monotonic, normalised non-decreasing in U . There
are instrumental variables, Z, excluded from the structural function h, and U is
distributed independently of Z for Z lying in a set 
Z . X may be endogenous in the
sense that U and X may not be independently distributed. This is a single equation
model in the sense that there is no speci�cation of structural equations determining
the value of X. In this respect the model is incomplete.
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This single equation IV model is shown to set identify the structural function h.
Identi�ed sets are characterised and illustrated via examples. Identi�cation is shown
to be sharp in the sense that every structural function in an identi�ed set is capable of
delivering the probability distribution of observables used to calculate the identi�ed
set. Additional parametric restrictions do not typically secure point identi�cation
although they may reduce the extent of identi�ed sets.

Underpinning the identi�cation results is the following pair of inequalities which
hold for all � 2 (0; 1) and all z 2 
Z under a probability measure generated by a
structure admitted by the single equation IV model with structural function h.

Pr[Y � h(X; �)jZ = z] � �
Pr[Y < h(X; �)jZ = z] < � (1)

It is shown that these inequalities sharply de�ne the identi�ed set for the probability
measure used in these probability calculations in the sense that all functions h, and
only functions h, that satisfy these inequalities for all � 2 (0; 1) and all z 2 
Z are
elements of the observationally equivalent structures which generate that probability
measure.

When the outcome Y is continuously distributed (in which case h is strictly
monotonic in U) both probabilities in (1) are equal to � and with additional com-
pleteness restrictions, the model point identi�es the structural function as set out in
Chernozhukov and Hansen (2005) where the function h is called a structural quantile
function. This paper extends the analysis of structural quantile functions to cases in
which outcomes are discrete.

Many applied researchers facing discrete outcome and endogenous explanatory
variables using a control function approach. These are rooted in a more restrictive
model which can be point identifying but the model�s restrictions are not always
applicable. There is a brief discussion in Section 4.

There are a few papers that take a single equation IV approach to endogeneity
in parametric count data models, basing identi�cation on moment conditions.1 Mul-
lahy (1997) and Windmeijer and Santos Silva (1997) consider a model in which the
conditional expectation of a count variable given explanatory variables, X = x, and
an unobserved scalar heterogeneity term, V = v, is multiplicative: exp(x�)� v, with
X and V correlated and with V and instrumental variables Z having a degree of
independent variation. This IV model can point identify � but the �ne details of
the functional form restrictions are in�uential in securing point identi�cation and the
method, based as it is on a multiplicative heterogeneity speci�cation, does not apply
when discrete variables have bounded support.

The paper is organised as follows. The main results of the paper are given in
Section 2 which speci�es an IV model for a discrete outcome and presents and dis-
cusses the set identi�cation results. Section 3 presents two illustrative examples; one
is very simple with a binary outcome and a binary endogenous variable and the other
involves a parametric ordered-probit-type problem. Section 4 discusses alternatives
to the set identifying single equation IV model and outlines some extensions including
the case arising with panel data when there is a vector of discrete outcomes.

1See the discussion in Section 11.3.2 of Cameron and Trivedi (1988).
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2. IV models and their identifying power

This Section presents the main results of the paper. Section 2.1 de�nes a single equa-
tion instrumental variable model for a discrete outcome and develops the probability
inequalities which play a key role in de�ning the identi�ed set of structural functions.
In Section 2.2 theorems are presented which characterise the set of structural func-
tions identi�ed by the IV model and state that identi�cation thus achieved is sharp.
Section 2.3 discusses the set identi�cation result with brief comments on: the impact
of support and strength of instruments and discreteness of outcome on the identi�ed
set, local independence restrictions, and estimation and inference.

2.1. Models. The following two restrictions de�ne a model, D, for a scalar dis-
crete outcome.

D1. Y = h(X;U) where U 2 (0; 1) is continuously distributed and h is weakly
monotonic (normalized càglàd, non-decreasing) in its last argument. X is a
vector of explanatory variables. The codomain of h is the ascending sequence
fymgMm=1 which is independent of X. M may be unbounded. The function h is
normalised so that the marginal distribution of U is uniform.

D2. There exists a vector Z such that Pr[U � � jZ = z] = � for all � 2 (0; 1) and
all z 2 
Z .

A key implication of the weak monotonicity condition contained in Restriction
D1 is that the function h(x; u) is characterized by threshold functions fpm(x)gMm=0
as follows:

for m 2 f1; : : : ;Mg: h(x; u) = ym if pm�1(x) < u � pm(x) (2)

with, for all x, p0(x) � 0 and pM (x) � 1. The structural function, h, is a non-
decreasing step function, the value of Y incrementing as U passes through thresholds
which depend on the value of the explanatory variables, X.

Restriction D2 requires that the conditional distribution of U given Z = z be
invariant with respect to z for variations within 
Z . If Z is a random variable and

Z is its support then the model requires that U and Z be independently distributed.
But Z is not required to be a random variable. For example values of Z might be
chosen purposively, for example by an experimenter, and then 
Z is some set of
values of Z that can be chosen.

Restriction D1 excludes the variables Z from the structural function h. These
variables play the role of instrumental variables with the potential for contributing to
the identifying power of the model if they are indeed �instrumental�in determining
the value of the endogenous X. But the model D places no restrictions on the way
in which the variables X, possibly endogenous, are generated.

Data are informative about the conditional distribution function of (Y;X) given
Z for Z = z 2 
Z , denoted by FY XjZ(y; xjz). Let FUXjZ denote the joint distribution
function of U and X given Z. Under the weak monotonicity condition embodied in
the model D an admissible structure Sa � fha; F aUXjZg with structural function h

a
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delivers a conditional distribution for (Y;X) given Z, F aY XjZ , as follows.

F aY XjZ(ym; xjz) = F
a
UXjZ(p

a
m(x); xjz); m 2 f1; : : : ;Mg (3)

Here the functions fpam(x)gMm=0 are the threshold functions that characterize the
structural function ha as in (2) above.

Distinct structures admitted by the model D can deliver identical distributions
of Y and X given Z for all z 2 
Z . Such structures are observationally equiva-
lent and the model is set, not point, identifying because within a set of admissible
observationally equivalent structures there can be more than one distinct structural
function. This can happen because on the right hand side of (3) certain variations
in the functions pam(x) can be o¤set by altering the sensitivity of F

a
UXjZ(u; xjz) to

variations in x so that the left hand side of (3) is left unchanged.
Crucially the independence restriction D2 places limits on the variations in the

functions pam(x) that can be so compensated and results in the model having nontrivial
set identifying power. The key to de�ning the sets of structural functions identi�ed
by the model lies in a pair of probability inequalities which are the subject of the
following Theorem.

Theorem 1. Let Sa � f ha; F aUXjZg be a structure admitted by the model D delivering
a distribution function for (Y;X) given Z, F aY XjZ , and let Pra indicate probabilities
calculated using this distribution. The following inequalities hold.

For all z 2 
Z and � 2 (0; 1):

8<:
Pra[Y � ha(X; �)jZ = z] � �

Pra[Y < h
a(X; �)jZ = z] < �

(4)

The proof is straightforward given the following Lemma which is proved in the
Annex.

Lemma 1. Let Y = h(X;U) with U , X and h satisfying Restriction D1. The
following inequalities hold for all � 2 (0; 1) and for all x and z.

Pr[Y � h(X; �)jX = x;Z = z] � FU jXZ(� jx; z)

Pr[Y < h(X; �)jX = x;Z = z] < FU jXZ(� jx; z)
(5)

Proof of Theorem 1. Applying Lemma 1 to each structure Sa considered in Theo-
rem 1 gives the following inequalities which hold for all � 2 (0; 1) and for all x and
z.

Pra[Y � ha(X; �)jX = x;Z = z] � F aU jXZ(� jx; z)

Pra[Y < h
a(X; �)jX = x;Z = z] < F aU jXZ(� jx; z)

Let F aXjZ be the distribution function of X given Z associated with F aY XjZ . Using this
distribution to take expectations over X given Z = z on the left hand sides of these
inequalities delivers the left hand sides of the inequalities (4). Taking expectations
similarly on the right hand sides yields the distribution function of U given Z = z
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associated with F aU jZ(� jz) which is equal to � for all z 2 
Z and � 2 (0; 1) under
the conditions of model D.

2.2. Identi�cation. Consider the model D, a structure Sa admitted by it, and
the set ~Sa of all structures admitted by D and observationally equivalent to Sa. Let
~Ha be the set of structural functions which are components of structures contained
in ~Sa. Let F aY XjZ be the joint distribution function of (Y;X) given Z delivered by

the observationally equivalent structures in the set ~Sa.
The model D set identi�es the structural function generating F aY XjZ - it must be

one of the structural functions in the set ~Ha. The inequalities (4) characterize this set
as follows: the set of structural functions ~Ha is precisely the set of functions which
satisfy the inequalities (4) when probabilities are calculated using distribution F aY XjZ .
No structural function lying outside this set can be a component of an admissible
structure observationally equivalent to Sa. Every structural function lying in this set
is a component of an admissible structure observationally equivalent to Sa. There is
the following Theorem.

Theorem 2. Let Sa be a structure admitted by the model D and delivering the
distribution function F aY XjZ . Let S� � fh�; F

�
UXjZg be any observationally equivalent

structure admitted by the model D. Let Pra indicate probabilities calculated using the
distribution function F aY XjZ . The following inequalities are satis�ed.

For all z 2 
Z and � 2 (0; 1):

8<:
Pra[Y � h�(X; �)jZ = z] � �

Pra[Y < h
�(X; �)jZ = z] < �

(6)

Proof of Theorem 2. Let Pr� indicates probabilities calculated using F �Y XjZ . Be-
cause the structure S� is admitted by model D, Theorem 1 implies that for all z 2 
Z
and � 2 (0; 1):

Pr�[Y � h�(X; �)jZ = z] � �

Pr�[Y < h�(X; �)jZ = z] < �
Since Sa and S� are observationally equivalent, F �Y XjZ = F

a
Y XjZ and the inequalities

(6) follow on substituting �Pra� for �Pr��.

There is the following Corollary whose proof, which is elementary, is omitted.

Corollary. Let Pra indicate probabilities calculated using a distribution function
F aY XjZ generated by a structure Sa admitted by the model D. If the inequalities

(6) are violated for any (z; �) 2 
Z � (0; 1) then h� =2 ~Ha.

The consequence of these results is that for any probability measure F aY XjZ gen-
erated by an admissible structure the set of functions that satisfy the inequalities (6)
contains all members of the set of structural functions ~Ha identi�ed by the model
D. In fact the sets are identical, a sharpness result which follows from the following
Theorem.
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Theorem 3 If h�(x; u) satis�es the restrictions of the model D and the inequalities
(6) then there exists a proper distribution function F �UXjZ such that S

� = fh�; F �UXjZg
satis�es the restrictions of model D and is observationally equivalent to structures Sa
that generate the distribution F aY XjZ .

A proof of Theorem 3 is given in the Annex. The proof is constructive. For a
given distribution F aY XjZ and each value of z 2 
Z and each structural function h

�

satisfying the inequalities (6) a proper distribution function F �UXjZ is constructed
which respects the independence condition of Restriction D2 and has the property
that at the chosen value of z the pair fh�; F �UXjZg deliver the distribution function
F aY XjZ at that value of z.

2.3. Discussion.

2.3.1. Intersection bounds and sharpness. For a distribution, F aY XjZ , of
Y and X given Z and a set, 
Z , of values of the instrumental variables the set
of structural functions identi�ed by the single equation IV model D is the set of
structural functions h� that satisfy the inequalities (6) for all z 2 
Z and all � 2 (0; 1).

Let ~Ha(z) be the set of structural functions satisfying the inequalities (6) for all
� 2 (0; 1) at a value z 2 
Z . Because for each � the inequalities must hold for
all z 2 
Z , the identi�ed set, ~Ha, associated with structures Sa that generate the
distribution F aY XjZ is the intersection of the sets

~Ha(z) for z 2 
Z which can be
expressed as follows.

~Ha =

8>><>>:h� : for all � 2 (0; 1)
0BB@

min
z2
Z

Pra[Y � h�(X; �)jZ = z] � �

max
z2
Z

Pra[Y < h
�(X; �)jZ = z] < �

1CCA
9>>=>>; (7)

Theorem 3 shows that for each z in 
Z and for each h� in a set ~Ha(z) there exists
an admissible distribution F �UXjZ(u; xjz) such that h

� together with that distribution
delivers the conditional distribution F aY XjZ(y; xjz). It follows that for every h

� in

the intersection ~Ha there is an admissible distribution F �UXjZ which together with h
�

delivers the conditional distribution F aY XjZ for all values of Z in 
Z .

In particular cases the set ~Ha can be enumerated or otherwise characterised.
Two examples are given in Section 3, one of them involving parametric restrictions.
Parametric restrictions on structural functions reduce the identi�ed set to a subset
of ~Ha but do not in general produce a point identifying model.

2.3.2. Strength and support of instruments. It is clear from (7) that the
support of the instrumental variables, 
Z , is critical in determining the extent of an
identi�ed set. The strength of the instruments is also critical.

When instrumental variables are good predictors of some particular value of the
endogenous variables, say x�, the identi�ed sets for the values of threshold crossing
functions at X = x� will tend to be small in extent. In the extreme case of perfect
prediction there can be point identi�cation.
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For example, suppose X is discrete with K points of support, x1; : : : ; xK , and
suppose that for some value z� of Z, P [X = xk� jZ = z�] = 1. Then the values of all
the threshold functions at X = xk� are point identi�ed and, for m 2 f1; : : : ;Mg:2

pm(xk�) = P [Y � mjZ = z�]: (8)

2.3.3. Discreteness of outcomes. The degree of discreteness in the distrib-
ution of Y a¤ects the extent of the identi�ed set. One of the examples in Section
3 demonstrates this in the context of parametric ordered-probit-type models where
increasing the number of classes substantially reduces the size of the identi�ed set of
parameter values.

The di¤erence between the two probabilities in the inequalities (4) which underpin
the identi�cation result is the conditional probability of the event: (Y;X) realisations
lie on the structural function. This is an event of measure zero when Y is continuously
distributed. As the support of Y grows more dense then as the distribution of Y comes
to be continuous the maximal probability mass (conditional on X and Z ) on any
point of support of Y will pass to zero and the upper and lower bounds will come to
coincide.

Even when the bounds coincide there can remain more than one observationally
equivalent structural function admitted by the model. in the absence of parametric
restrictions this is always the case when the support of Z is less rich than the support
of X. The continuous outcome case is studied in Chernozhukov and Hansen (2005)
and Chernozhukov, Imbens and Newey (2007) where completeness conditions are
provided under which there is point identi�cation of a structural function.

2.3.4. Local independence. It is possible to proceed under weaker indepen-
dence restrictions, for example: P [U � � jZ = z] = � for � 2 �L, some restricted set
of values of � , and z 2 
Z . It is straightforward to show that, with this amendment
to the model, Theorems 1 and 2 hold for � 2 �L from which set identi�cation of
h(�; �) for � 2 �L can be developed.

2.3.5. Estimation and inference. The identi�ed set can be estimated by
calculating (7) using an estimate of the distribution of FY XjZ . Chernozhukov, Lee
and Rosen (2008) give results on inference in the presence of intersection bounds.

The probability inequalities of Theorem 1 can be expressed as conditional moment
inequalities involving binary indicators. Inference can be based on marginal moment

2This is so because

P [Y � mjZ = z�] =
KX
k=1

P [U � pm(xk)jxk; z�]P [X = xkjz�] = P [U � pm(xk�)jxk� ; z�];

the second equality following because of perfect rediction at z�. Because of the independence restric-
tion and the uniform marginal distribution normalisation embodied in Restriction D2, for any value
p:

p = P [U � pjz�] =
KX
k=1

P [U � pjxk; z�]P [X = xkjz�] = P [U � pjxk� ; z�]

which delivers the result (8) on substituting p = pm(xk�).
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inequalities obtained from these by taking expectations over the distribution of the
instrumental variables after multiplication by a positive valued weight function.

Consider the case in which Z is a random variable and let EaY XZ indicate expec-
tation with respect to a joint distribution F aY XZ . Under the model D there are the
following marginal moment inequalities holding for all � 2 (0; 1), for any bounded
positive vector valued function w(z) and for all functions h in the identi�ed set asso-
ciated with F aY XZ .

EaY XZ [(1[Y � h(X; �)]� �)w(Z)] � 0

EaXY Z [(1[Y < h(X; �)]� �)w(Z)] < 0:

Taking this to data and evaluating over a grid of values of � leads to set estimation
and inference which falls in the class of problems addressed by Andrews, Berry and
Jia (2004), Moon and Schorfheide (2006), Pakes, Porter, Ho and Ishii (2006) and
Rosen (2006).3

3. Illustrations and elucidation

This Section illustrates the set identi�cation results with two examples.4 The �rst has
a binary outcome and a discrete endogenous variable which for simplicity in this illus-
tration is speci�ed as binary. It is shown how the probability inequalities of Theorem
2 deliver inequalities on the values taken by the threshold crossing function which
determine the binary outcome. In this simple case it is easy to develop admissible
distributions for unobservables which taken with each member of the identi�ed set
deliver the probabilities used to construct the set. The resulting constructive demon-
stration of sharpness of identi�cation serves as a template for such constructions in
the general discrete endogenous variable problem and is somewhat more transparent
than the construction in the proof of Theorem 2 which deals with continuous vector
valued endogenous variables.

The second example employs a parametric ordered-probit-type model such as
might be used when analysing interval censored data or data on ordered choices.
This example demonstrates that parametric restrictions alone are not su¢ cient to
deliver point identi�cation. By varying the number of �choices� the impact on set
identi�cation of the degree of discreteness of an outcome is clearly revealed. In
both examples one can clearly see the e¤ect of instrument strength on the extent of
identi�ed sets.

3.1. Binary outcomes and binary endogenous variables. In the �rst exam-
ple there is a threshold crossing model for a binary outcome Y with binary explana-
tory variable X, which may be endogenous. An unobserved scalar random variable

3Full exploitation of the restrictions of the model yields a continuum of moment inequalities on
which there are few research results at this time although inference with point identi�cation induced
by a continuum of moment equalities is quite well understood, see for example Carrasco and Florens
(2000).

4 In Chesher (2007) there are additional examples covering cases in which the outcome has a
binomial or a Poisson structural function.
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U is continuously distributed, normalised Uniform on (0; 1) and restricted to be dis-
tributed independently of instrumental variables Z.5 The model is as follows.

Y = h(X;U) �

8<:
0 ; 0 < U � p(X)

1 ; p(X) < U � 1
; U k Z 2 
Z ; U � Unif(0; 1)

The distribution of X is restricted to have support independent of U and Z with
2 distinct points of support: fx1; x2g.

The values taken by p(X) are denoted by �1 � p(x1) and �2 � p(x2). These
are the structural features whose identi�ability is of interest. Here is a shorthand
notation for the conditional probabilities about which data are informative..

�1(z) � P [Y = 0jx1; z] �2(z) � P [Y = 0jx2; z]

�1(z) � P [X = x1jz] �2(z) � P [X = x2jz]

Here expressions like P [Y = 0jx1; z] are shorthand for P [Y = 0jX = x1; Z = z].
The set of values of � � f�1; �2g identi�ed by the model for a particular distrib-

ution of Y and X given Z = z 2 
Z is now obtained by applying the results given
earlier. There is a set associated with each value of z in 
Z and the identi�ed set
for variations in z over 
Z is the intersection of the sets obtained at each value of z.
The sharpness of the identi�ed set is demonstrated by a constructive argument.

The identi�ed set. First, expressions are developed for the probabilities that
appear in the inequalities (4) which de�ne the identi�ed set. With these in hand
it is straightforward to characterise the identi�ed set. The ordering of �1 and �2 is
important and in general is not restricted a priori.

First consider the case in which �1 � �2. Consider the event fY < h(X; �)g. This
occurs if and only if h(X; �) = 1 and Y = 0, and since h(X; �) = 1 if and only if
p(X) < � there is the following expression.

P [Y < h(X; �)jz] = P [(Y = 0) \ (p(X) < �)jz] (9)

So far as the inequality p(X) < � is concerned there are three possibilities: � � �1,
�1 < � � �2 and �2 < � . In the �rst case p(X) < � cannot occur and the probability
(9) is zero. In the second case p(X) < � only if X = x1 and the probability (9) is
therefore

P [Y = 0 \ (X = x1)jz] = �1(z)�1(z):

In the third case p(X) < � whatever value X takes and the probability (9) is therefore

P [Y = 0jz] = �1(z)�1(z) + �2(z)�2(z):
5Here and in the second example, the independence restriction is the conditional independence

required by Restriction D2, allowing the possibility that Z is not a random variable. The notation
U k Z is shorthand for this conditional independence.
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The situation is as follows.

P [Y < h(X; �)jz] =

8<:
0 ; 0 � � � �1
�1(z)�1(z) ; �1 < � � �2
�1(z)�1(z) + �2(z)�2(z) ; �2 < � � 1

The inequality P [Y < h(X; �)jZ = z] < � restricts the identi�ed set because in each
row above the value of the probability must not exceed any value of � in the interval
to which it relates and in particular must not exceed the minimum value of � in that
interval. The result is the following pair of inequalities.

�1(z)�1(z) � �1 �1(z)�1(z) + �2(z)�2(z) � �2 (10)

Now consider the event fY � h(X; �)g. This occurs if and only if h(X; �) = 1
when any value of Y is admissible or h(X; �) = 0 and Y = 0. There is the following
expression.

P [Y � h(X; �)jz] = P [(Y = 0) \ (� � p(X))jz] + P [p(X) < � jz]

As before there are three possibilities to consider: � � �1, �1 < � � �2 and �2 < � .
In the �rst case � � p(X) occurs whatever the value of X and

P [Y � h(X; �)jz] = �1(z)�1(z) + �2(z)�2(z)

in the second case � � p(X) when X = x2 and p(X) < � when X = x1, so

P [Y � h(X; �)jz] = �1(z) + �2(z)�2(z)

while in the third case p(X) < � whatever the value taken by X so

P [Y � h(X; �)jz] = 1:

The situation is as follows.

P [Y � h(X; �)jz] =

8<:
�1(z)�1(z) + �2(z)�2(z) ; 0 � � � �1
�1(z) + �2(z)�2(z) ; �1 < � � �2
1 ; �2 < � � 1

The inequality P [Y � h(X; �)jZ = z] � � restricts the identi�ed set because in each
row above the value of the probability must at least equal all values of � in the interval
to which it relates and in particular must at least equal the maximum value of � in
that interval. The result is the following pair of inequalities.

�1 � �1(z)�1(z) + �2(z)�2(z) �2 � �1(z) + �2(z)�2(z) (11)

Bringing (10) and (11) together gives, for the case in which Z = z, the part of
the identi�ed set in which �1 � �2, which is de�ned by the following inequalities.

�1(z)�1(z) � �1 � �1(z)�1(z) + �2(z)�2(z) � �2 � �1(z) + �2(z)�2(z) (12)
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The part of the identi�ed set in which �2 � �1 is obtained directly by exchange of
indexes, thus:

�2(z)�2(z) � �2 � �1(z)�1(z) + �2(z)�2(z) � �1 � �1(z)�1(z) + �2(z) (13)

and the identi�ed set for the case in which Z = z is the union of the sets de�ned
by the inequalities (12) and (13). The resulting set consists of two rectangles in the
unit square, one above and one below the 45� line, oriented with edges parallel to the
axes. The two rectangles intersect at the point �1 = �2 = �1(z) = �2(z).

There is one such set for each value of z in 
Z and the identi�ed set for� � (�1; �2)
delivered by the model is the intersection of these sets. The resultis not in general
a connected set, comprising two disjoint rectangles in the unit square, one strictly
above and the other strictly below the 45� line. However with a strong instrument
and rich support one of these rectangles will not be present.

Sharpness. The identi�ed set just derived is sharp in the sense that for every
value � in the identi�ed set a distribution for U given X and Z can be found which
is proper and satis�es the independence restriction, U k Z, and delivers the distri-
bution of Y given X and Z used to de�ne the identi�ed set. The existence of such
a distribution is now demonstrated, providing a template for such constructions in
other discrete outcome problems in which endogenous variables are discrete.

Consider some value z and a value �� � f��1; ��2g with, say, ��1 � ��2, which satisfy
the inequalities (12), and consider a distribution function for U given X and Z,
F �U jXZ . The proposed distribution is piecewise uniform but other choices could be
made. De�ne values of the proposed distribution function as follows.

F �U jXZ(�
�
1jx1; z) � �1(z) F �U jXZ(�

�
1jx2; z) � (��1 � �1(z)�1(z)) =�2(z)

F �U jXZ(�
�
2jx1; z) � (��2 � �2(z)�2(z)) =�1(z) F �U jXZ(�

�
2jx2; z) � �2(z)

(14)
The choice of values for F �U jXZ(�

�
1jx1; z) and F �U jXZ(�

�
2jx2; z) ensures that this

structure is observationally equivalent to the structure which generated the condi-
tional probabilities that de�ne the identi�ed set.6 The proposed distribution respects
the independence restriction because the implied probabilities marginal with respect
to X are independent of z, as follows.

P [U � ��1jz] = �1(z)F �U jXZ(�
�
1jx1; z) + �2(z)F �U jXZ(�

�
1jx2; z) = ��1

P [U � ��2jz] = �1(z)F �U jXZ(�
�
2jx1; z) + �2(z)F �U jXZ(�

�
2jx2; z) = ��2

It just remains to determine whether the proposed distribution of U given X and
Z = z is proper, that is has probabilities lying in the unit interval and respecting
monotonicity. Both F �U jXZ(�

�
1jx1; z) and F �U jXZ(�

�
2jx2; z) lie in [0; 1] by de�nition.

The other two elements lie in the unit interval if and only if

�1(z)�1(z) � ��1 � �1(z)�1(z) + �2(z)

�2(z)�2(z) � ��2 � �1(z) + �2(z)�2(z)
6This because for j 2 f1; 2g, �j(z) � P [Y = 0jxj ; z] = P [U � �j jX = xj ; Z = z].
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which both hold when ��1 and �
�
2 satisfy the inequalities (12). The case under consid-

eration has ��1 � ��2 so if the distribution function of U given X and Z = z is to be
monotonic, it must be that the following inequalities hold.

F �U jXZ(�
�
1jx1; z) � F �U jXZ(�

�
2jx1; z)

F �U jXZ(�
�
1jx2; z) � F �U jXZ(�

�
2jx2; z)

. Manipulating the expressions in (14) yields the result that these inequalities are
satis�ed if:

��1 � �1(z)�1(z) + �2(z)�2(z) � ��2
which is assured when ��1 and �

�
2 satisfy the inequalities (12). There is a similar

argument for the case ��2 � ��1.
This argument applies at each value z 2 
Z so it can be concluded that for each

value �� in the identi�ed set formed by intersecting sets obtained at each z 2 
Z
there exists a proper distribution function F �U jXZ with U independent of Z which,
combined with that value delivers the probabilities used to de�ne the identi�ed set.

Numerical example. The identi�ed sets are illustrated using probability dis-
tributions generated by a structure in which binary Y � 1[Y � > 0] andX � 1[X� > 0]
are generated by a triangular linear equation system which delivers values of latent
variables Y � and X� as follows.

Y � = a0 + a1X + "

X� = b0 + b1Z + �

Latent variates " and � are jointly normally distributed conditional on an instrumental
variable Z. �

"
�

�
jZ � N

��
0
0

�
;

�
1 r
r 1

��
Let � denote the standard normal distribution function. The structural equation

for binary Y is as follows:

Y =

�
0 , 0 < U � p(X)
1 , p(X) < U � 1

with U � �(") � Unif(0; 1) and U k Z and p(X) = �(�a0 � a1X) with X 2 f0; 1g.
Figure 1 shows identi�ed sets when the parameter values generating the proba-

bilities are:

a0 = 0 a1 = 0:5 b0 = 0 b1 = 1 r = �0:25

for which
p(0) = �(�a0) = 0:5 p(1) = �(�a0 � a1) = 0:308

and z takes values in 
Z � f0;�75;�:75g.
Pane (a) in Figure 1 shows the identi�ed set when z = 0. It comprises two

rectangular regions, touching at the point p(0) = p(1) but otherwise not connected.
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In the upper rectangle p(1) � p(0) and in the lower rectangle p(1) � p(0). The
dashed lines intersect at the location of p(0) and p(1) in the structure generating
the probability distributions used to calculate the identi�ed sets. In that structure
p(0) = 0:5 > p(1) = 0:308 but there are observationally equivalent structures lying
in the rectangle above the 45� line in which p(1) > p(0).

Pane (b) in Figure 1 shows the identi�ed set when z = :75 - at this instrumental
value the range of values of p(1) in the identi�ed set is smaller than when z = 0 but
the range of values of p(0) is larger. Pane (c) shows the identi�ed set when z = �:75 -
at this instrumental value the range of values of p(1) in the identi�ed set is larger than
when z = 0 and the range of values of p(0) is smaller. Pane (d) shows the identi�ed
set (the solid �lled rectangle) when all three instrumental values are available.

The identi�ed set is the intersection of the sets drawn in Panes (a) - (c). The
strength and support of the instrument in this case is su¢ cient to eliminate the
possibility that p(1) > p(0). If the instrument were stronger (b1 � 1) the solid �lled
rectangle would be smaller and as b1 increased without limit it would contract to a
point. For the structure used to construct this example the model achieves �point
identi�cation at in�nity� because the mechanism generating X is such that as Z
passes to �1 the value of X becomes perfectly predictable.

Figure 2 shows identi�ed sets when the instrument is weaker, achieved by setting
b1 = 0:3 . In this case even when all three values of the instrument are employed
there are observationally equivalent structures in which p(1) > p(0).7

3.2. Ordered outcomes: a parametric example. In the second example Y
records an ordered outcome inM classes, X is a continuous explanatory variable and
there are parametric restrictions. The model used in this illustration has Y gener-
ated as in an ordered probit model with speci�ed threshold values c0; : : : ; cM and
potentially endogenous X. The unobservable variable in a threshold crossing repre-
sentation is distributed independently of Z which varies across a set of instrumental
values, 
Z . This sort of speci�cation might arise when studying ordered choice us-
ing a ordered probit model or when employing interval censored data to estimate a
linear model, in both cases allowing for the possibility of endogenous variation in the
explanatory variable. In order to allow a graphical display of the identi�ed sets just
two parameters are unrestricted in this example. In many applications there would
be other free parameters, for example the threshold values.

The parametric model considered states that for some constant parameter value
� � (�0; �1),

Y = h(X;U ;�) U k Z 2 
Z U � Unif(0; 1)

where, for m 2 f1; : : : ;Mg, with � denoting the standard normal distribution func-
tion:

h(X;U ;�) = m; if: �(cm�1 � �0 � �1X) < U � �(cm � �0 � �1X)

and c0 = �1, cM = +1 and c1; : : : ; cM�1 are speci�ed �nite constants. The notation

7 In supplementary material more extensive graphical displays are available.
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Figure 1: Identi�ed sets with a binary outcome and binary endogenous variable as
instrumental values, z, vary. Strong instrument (b1 = 1). Dotted lines intersect
at the values of p(0) and p(1) in the distribution generating structure. Panes (a) -
(c) show identi�ed sets at each of 3 values of the instrument. Pane (d) shows the
intersection (solid area) of these identi�ed sets. The instrument is strong enough and
has su¢ cient support to rule out the possibility p(1) > p(0).
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Figure 2: Identi�ed sets with a binary outcome and binary endogenous variable as
instrumental values, z, vary. Weak instrument (b1 = 0:3). Dotted lines intersect
at the values of p(0) and p(1) in the distribution generating structure. Panes (a) -
(c) show identi�ed sets at each of 3 values of the instrument. Pane (d) shows the
intersection (solid area) of these identi�ed sets. The instrument is weak and there
are observationally equivalent structures in which p(1) > p(0).
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h(X;U ;�) makes explicit the dependence of the structural function on the parameter
�

For a conditional probability function FY jXZ and a conditional density fXjZ and
some value � the probabilities in (6) are:

Pr[Y � h(X; � ;�)jZ = z] =
MX
m=1

Z
fx :h(x;� ;�)=mg

FY jXZ(mjx; z)fXjZ(xjz)dx (15)

Pr[Y < h(X; � ;�)jZ = z] =
MX
m=2

Z
fx :h(x;� ;�)=mg

FY jXZ(m� 1jx; z)fXjZ(xjz)dx (16)

In the numerical calculations the conditional distribution of Y and X given Z = z
is generated by a structure of the following form.

Y � = a0 + a1X +W X = b0 + b1Z + V�
W
V

�
jZ � N

��
0
0

�
;

�
1 suv
suv svv

��
Y = m; if: cm�1 < Y � cm; m 2 f1; : : : ;Mg

Here c0 � �1, cM � 1 and c1; : : : ; cM�1 are the speci�ed �nite constants employed
in the de�nition of the structure and in the parametric model whose identifying power
is being considered.

The probabilities in (15) and (16) are calculated for each choice of � by numerical
integration.8 Illustrative calculations are done for 5 and 11 class speci�cations with
thresholds chosen as quantiles of the standard normal distribution at equispaced
probability levels. For example in the 5 class case the thresholds are ��1(p) for
p 2 f:2; :4; :6; :8g, that is f�:84;�:25; :25; :84g. The instrumental variable ranges
over the interval 
Z � [�1; 1] , the parameter values employed in the calculations
are:

a0 = 0; a1 = 1 ; b0 = 0; suv = 0:6; svv = 1

and the value of b1 is set to 1 or 2 to allow comparison of identi�ed sets as the strength
of the instrument varies.9

Figure 3 shows the identi�ed set for the intercept and slope coe¢ cients, �0 and �1
in a 5 class model. The dark shaded set is obtained when the instrument is relatively
strong (b1 = 2). This set lies within the identi�ed set obtained when the instrument
is relatively weak (b1 = 1). Figure 4 shows identi�ed sets (shaded) for these weak
and strong instrument scenarios when there are 11 classes rather than 5. The 5 class

8The integrate procedure in R (Ihaka and Gentleman (1996)) was used to calculate probabilities.
Intersection bounds over z 2 
Z were obtained as in (7) using the R function optimise. The resulting
probability inequalties were inspected over a grid of values of � at each value of � considered, a value
being classi�ed as out of the identi�ed set as soon as a value of � was encountered for which there
was violation of one or other of the inequaltites (7). I am grateful to Konrad Smolinski for developing
and programming a procedure to e¢ ciently track out the boundary of the identi�ed sets.

9Equivalently as the support of the instrument varies because varying b1 from 1 to 2 has the same
e¤ect as holding b1 �xed at 1 and varying 
Z from [�1; 1] to [�2; 2].
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sets are shown in outline. The e¤ect of reducing the discreteness of the outcome is
substantial and there is still a substantial reduction in the extent of the identi�ed set
as the instrument is strengthened.

4. Concluding remarks

It has been shown that, when outcomes are discrete, single equation IV models do
not point identify the structural function that delivers the discrete outcome. The
models have been shown to have partial identifying power and sharp set identi�cation
results have been obtained. Identi�ed sets tend to be smaller when instrumental
variables are strong and have rich support and when the discrete outcome has rich
support. Imposing parametric restrictions reduces the extent of the identi�ed sets
but in general parametric restrictions do not deliver point identi�cation of the values
of parameters.

To secure point identi�cation of structural functions more restrictive models are
required. For example, specifying recursive structural equations for endogenous ex-
planatory variables and restricting all latent variates and instrumental variables to
be jointly independently distributed produces a triangular system model which can
be point identifying.10 This is the control function approach studied in Blundell and
Powell (2004), Chesher (2003) and Imbens and Newey (2003). The restrictions of
the triangular model rule out full simultaneity (Koenker (2005), Section 8.8.2) such
as arises in the simultaneous entry game model of Tamer (2003). An advantage of
the single equation IV approach set out in this paper is that it allows an equation-
by-equation attack on such simultaneous equations models for discrete outcomes,
avoiding the need to deal directly with the coherency and completeness issues they
pose.

The weak restrictions imposed in the single equation IV model lead to partial
identi�cation of deep structural objects which complements the many developments
in the analysis of point identi�cation of the various average structural features studied
in for example Heckman and Vytlacil (2005) and their many other works referenced
there. This paper�s set identi�cation results for structural functions together with
the methods set out here for construction of distributions of latent variates leads to a
complete characterisation of the distinct observationally equivalent structures admit-
ted by the single equation IV model. With this to hand a next step in this research
agenda is to examine the identi�ability of a wide variety of alternative structural
features.

There are a number of immediate extensions of the results resented here. For
example the analysis can be extended to the vector discrete outcome case such as
arises in the study of panel data. Here endogeneity may arise because of the presence
of �individual e¤ects�which may be correlated with observed explanatory variables.
Consider a case in which there are T discrete outcomes each determined by a struc-
tural equation as follows:

Yt = ht(X;Ut); t = 1; : : : ; T

10But not when endogenous variables are discrete, Chesher (2005).
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Figure 3: Identi�ed sets for intercept, �0, and slope co¢ cient, �1, in a 5 class ordered
probit model with endogenous explanatory variable. The dashed lines intersect at the
values of a0 and a1 used to generate the distributions employed in this illustration.
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Figure 4: Identi�ed sets for intercept, �0, and slope co¢ cient, �1, in a 11 class ordered
probit model with endogenous explanatory variable. Identi�ed sets for the 5 class
model displayed in Figure 3 are shown in outline. The dashed lines intersect at the
values of a0 and a1 used to generate the distributions employed in this illustration.
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in which each function ht is weakly increasing in Ut and each Ut is a scalar random
variable normalised marginally Unif(0; 1) and U � fUtgTt=1 and instrumental vari-
ables Z 2 
Z are independently distributed. In practice there will often be cross
equation restrictions; for example requiring each function ht to be determined by a
common set of parameters.

De�ne h � fhtgTt=1 and � � f� tgTt=1 and:

C(�) � Pr
"
T\
t=1

(Ut � � t)
#

which is a copula since the components of U have marginal uniform distributions.
An argument along the lines of that used in Section 2.1 leads to the following pair of
inequalities which hold for all � 2 [0; 1]T and z 2 
Z .

Pr

"
T\
t=1

(Yt � ht(X; � t))jZ = z
#
� C(�)

Pr

"
T\
t=1

(Yt < ht(X; � t))jZ = z
#
< C(�)

Let Pr a indicate probabilities taken with respect to a distribution function F aY XjZ
generated by an admissible structure Sa � fha; F aUXjZg. Consider an admissible
structure S� � fh�; F �UXjZg and let C

� be the copula (for U) associated with the
distribution function F �UXjZ . Arguing as in Section 2.2 it can be shown that S

� is
observationally equivalent to Sa for z 2 
Z if and only if the following inequalities
hold for all � 2 [0; 1]T and z 2 
Z .

Pra

"
T\
t=1

(Yt � h�t (X; � t))jZ = z
#
� C�(�)

Pr a

"
T\
t=1

(Yt < h
�
t (X; � t))jZ = z

#
< C�(�)

These inequalities de�ne an identi�ed set of structural functions and copula functions
associated with Sa. The set may be reduced in extent by restrictions on admissible
copulas.

Some other extensions of the results arise on relaxing restrictions embodied in
the model considered so far. For example it is straightforward to generalise to the
case in which exogenous variables appear in the structural function. In the binary
outcome case additional heterogeneity, W , independent of instruments Z, can be
introduced if there is a monotone index restriction, that is if the structural function
has the form h(X�;U;W ) with h monotonic in X� and in U . This allows extension
to measurement error models in which observed ~X = X +W . This can be further
extended to the general discrete outcome case if a monotone index restriction holds
for all threshold functions.
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Annex

Proof of Lemma 1. Probability inequalities

It is shown that under restriction D1 of model D there are the following inequal-
ities which hold for all x, z and � .

Pr[Y � h(X; �)jX = x;Z = z] � FU jXZ(� jx; z) (A1.1)

Pr[Y < h(X; �)jX = x;Z = z] < FU jXZ(� jx; z) (A1.2)

Consider the �rst inequality, (A1.1). Directly from the de�nition of Y :

Pr[Y � h(X; �)jX = x;Z = z] = Pr[h(X;U) � h(X; �)jX = x;Z = z] (A1.3)

and because h(x; �) = ym if and only if � 2 (pm�1(x); pm(x)] there is the following.

Pr[h(X;U) � h(X; �)jX = x;Z = z] =

MX
m=1

1[h(x; �) = ym] Pr[h(X;U) � h(X; pm(x))jX = x;Z = z]

1[�] is the indicator function, equal to 1 if its argument is true and 0 otherwise. Since
h(x; u) is non-decreasing with points of increase only at u 2 fp1(x); : : : ; pM (x)g there
is

Pr[Y � h(X; pm(x))jX = x;Z = z] = FU jXZ(pm(x)jx; z)

and so

Pr[Y � h(X; �)jX = x;Z = z] =
MX
m=1

1[h(x; �) = ym]FU jXZ(pm(x)jx; z)

and since FU jXZ(tjx; z) is a strictly increasing function of t and h(x; �) = ym if and
only if � 2 (pm�1(x); pm(x)] there is,

Pr[Y � h(X; �)jX = x;Z = z] � FU jXZ(� jx; z)

which is the inequality (A1.1).
Consider the second inequality, (A1.2) and equation (A1.3). Because h(x; �) = ym

if and only if � 2 (pm�1(x); pm(x)] there is the following.

Pr[h(X;U) < h(X; �)jX = x;Z = z] =

MX
m=2

1[h(x; �) = ym] Pr[h(X;U) � h(X; pm�1(x))jX = x;Z = z]

Arguing as before:

Pr[Y � h(X; pm�1(x))jX = x;Z = z] = FU jXZ(pm�1(x)jx; z)
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and so

Pr[Y < h(X; �)jX = x;Z = z] =

MX
m=2

1[h(x; �) = ym]FU jXZ(pm�1(x)jx; z)

and because FU jXZ(� jx; z) is a strictly increasing function of t and h(x; �) = ym if
and only if � 2 (pm�1(x); pm(x)] there is

Pr[Y < h(X; �)jX = x;Z = z] < FU jXZ(� jx; z)

which is the inequality (A1.2).

Proof of Theorem 3. Sharp set identi�cation

The proof proceeds by considering a structural function h(x; u), that:

1. is weakly monotonic non-decreasing for variations in u,

2. is characterised by threshold functions fpm(x)gMm=0,

3. satis�es the inequalities of Theorem 1 when probabilities are calculated using
a conditional distribution FY XjZ .

A proper conditional distribution FUXjZ is constructed which respects the in-
dependence restriction (U and Z are independent) and has the property that the
distribution function generated by fh; FUXjZg is identical to FY XjZ used to calculate
the probabilities in Theorem 1.11

Most of the proof is concerned with constructing a distribution for U conditional
on both X and Z, FU jXZ . This is combined with FXjZ , the (identi�ed) distribution
of X conditional on Z implied by FY XjZ , in order to obtain the required distribution
of (U;X) conditional on Z.

The construction of FUXjZ is done for a representative value, z, of Z. The argu-
ment of the proof can be repeated for any z such that the inequalities of Theorem 1
are satis�ed.

Unless otherwise stated belowm 2 f1; : : : ;Mg whereM is the number of points of
support of Y and M may be unbounded. It is helpful to introduce some abbreviated
notation.

Let 
XjZ denote the support of X conditional on Z. De�ne conditional probabil-
ities as follows.

�m(x) � Pr[Y = ymjX = x;Z = z] = FY jXZ(ymjx; z)

�m � Pr[Y = ymjZ = z] =
Z

x2
XjZ

�m(x)dFXjZ(xjz)

11This method of construction builds on a method proposed for the discrete endogenous variable,
binary outcome case by Martin Cripps.
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��m(x) �
mX
j=1

�j(x) ��m �
mX
j=1

�j

De�ne �0(x) � �0 � 0, and
P0
m=1 �m � 0 and note that ��M = 1 and for all x,

��M (x) = 1. Both f�m(x)gMm=0 and f�mgMm=0 depend on z but, to avoid clutter,
dependence on z is not made explicit at many points in the notation in this Annex.

De�ne functions:

um(v) =

8><>:
0 ; 0 < v �

Pm�1
j=1 �j

v �
Pm�1
j=1 �j ;

Pm�1
j=1 �j < v �

Pm
j=1 �j

�m ;
Pm
j=1 �j < v � 1

which have the property
PM
m=1 um(v) = v:

De�ne sets as follows. Let � denote the empty set.
For m 2 f1; : : : ;Mg:

Xm(s) � fx : pm(x) = sg

for m 2 f1; : : : ;M � 1g:
Xm[s] � fx : pm(x) � sg

and, for the case m =M :

XM [s] � fx : pM�1(x) � sg:

De�ne

sm(v) � min
s

(
s :

Z
x2Xm[s]

�m(x)dFXjZ(xjz) � um(v)
)

and de�ne functions �m(v; x) as follows.

�m(v; x) �
�
�m(x) ; x 2 Xm[sm(v)]
0 ; x =2 Xm[sm(v)]

�(v; x) �
MX
m=1

�m(v; x)

For a structural function h(x; u) characterised by fpm(x)gMm=1 the distribution
function FU jXZ is de�ned as

FU jXZ(ujx; z) � �(u; x)

where z is the value of Z upon which there is conditioning at various points in the
de�nition of �(v; x). The distribution function FUXjZ is then obtained as

FUXjZ(ujx; z) =
Z
s�x

FU jXZ(ujs; z)dFXjZ(sjz):

It is now shown that FU jXZ is a proper distribution function exhibiting the inde-
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pendence property U k Z, that is:Z

XjZ

FU jXZ(ujx; z)dFXjZ(xjz) � FU jZ(ujz) = u

for all u.
It is required to show that (1) �(0; x) = 0 for all x, (2) �(1; x) = 1 for all x,

(3) for each x, �(v; x) � �(v0; x) for all v > v0 and (4) independence, speci�cally:
EXjZ [�(v;X)jz] = v for all z and recall that �(v; x) depends on z although this is
not made explicit in the notation.

1. �(0; x) = 0 for all x. For each m, um(0) = 0, so sm(0) = 0. Therefore for
each m; Xm[sm(0)] = �, so for each m and all x, �m(0; x) = 0 and so for all x,
�(0; x) = 0.

2. �(1; x) = 1 for all x. For each m, um(1) = �m, so sm(1) = 1. Therefore for
each m, Xm[sm(1)] = 
XjZ , so for each m and all x, �m(1; x) = �m(x) and so,
on summing across m, for all x, �(1; x) = 1.

3. �(v; x) � �(v0; x) for all v > v0. The functions um(v) are non-decreasing,
therefore the functions sm(v) are non-decreasing. Therefore for all v > v0,
Xm[sm(v)] � Xm[sm(v0)], and so each function �m(v; x) is non-decreasing from
which the result follows.

4. Independence. For each m and all v:Z
x2
XjZ

�m(v; x)dFXjZ(xjz) =
Z

x2Xm[sm(v)]

�m(x)dFXjZ(xjz) = um(v)

and soZ
x2
XjZ

�(v; x)dFXjZ(xjz) =
Z

x2
XjZ

MX
m=1

�m(v; x)dFXjZ(xjz) =
MX
m=1

um(v) = v:

It is now shown that FUXjZ , de�ned above, has an observational equivalence prop-
erty. Speci�cally it is shown that, when h(x; u) satis�es the inequalities of Theorem
1, the structure fh; FUXjZg, employing FUXjZ de�ned above, generates FY XjZ which
de�nes the values of the probabilities f�m(x)gMm=1 and f�mg

M
m=1 that are employed

in its construction.
Expressed in terms of the functions fpm(x)gMm=0 the inequalities take the following

form.

MX
m=1

Z
pm�1(x)<u�pm(x)

��m�1(x)dFXjZ(xjz) < u �
MX
m=1

Z
pm�1(x)<u�pm(x)

��m(x)dFXjZ(xjz)

This involves the cumulative probabilities ��m(x). It is convenient to write the in-
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equalities in terms of the point probabilities f�mgMm=1, as follows.

M�1X
m=1

Z
pm(x)<u

�m(x)dFXjZ(xjz) < u � �1 +
MX
m=2

Z
pm�1(x)<u

�m(x)dFXjZ(xjz) (A3.1)

It is now shown that, under this condition h together with FU jXZ de�ned above
(that is �(u; x)) generates FY jXZ . That happens if and only if the following conditions
hold: for each m and all x:

�(pm(x); x) = ��m(x)

which is true if, for all i and j and all x the following conditions hold.

�j(pi(x); x) =

�
�j(x) ; j � i
0 ; j > i

(A3.2)

It is now shown that when the constraints (A3.1) are satis�ed this condition is sat-
is�ed.

First consider the case j = i. Every term on the left hand side of (A3.1) is
nonnegative, so when the constraints are satis�ed, for each i and all uZ

pi(x)<u

�i(x)dFXjZ(xjz) < u

that is for some �(u) > 0 Z
pi(x)<u

�i(x)dFXjZ(xjz) = u+ �(u)

equivalently Z
pi(x)<u��(u)

�i(x)dFXjZ(xjz) = u

and so for all v, si(v) > v. It follows that for each i, Xi[si(v)] contains Xi[v] of which
Xi(v) = fx : pi(x) = vg is a subset. Therefore, if the constraints (A3.1) hold then
�i(pi(x); x) = �i(x).

Now consider the case i > j. Because each �j(v; x) is non-decreasing in v, and
because for all i > j, pi(x) � pj(x), �j(pi(x); x) � �j(pj(x); x). But the maximum
value that �j(v; x) can take is �j(x). It follows that for all i � j, �j(pi(x); x) = �j(x).

Now consider the case i = j � 1. Consider some j and u < pj(x) and the right
hand side of the constraints (A3.1). All contributions from terms in the summation
with i > j are zero. All contributions with i < j are bounded by �i and so there is
the following inequality. Z

pj�1(x)<u

�j(x)dFXjZ(xjz) � u�
j�1X
i=1

�i
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Consider the content of the set Xj [sj(v)]. For v <
Pj�1
i=1 �i, uj(v) is zero and the set

is empty. For pj(x) > v �
Pj�1
i=1 �i, the inequality above requires that sj(v) � v. In

particular, for i < j, sj(pi(x)) < pi(x). It follows that Xj [sj(v)] has no intersection
with Xi(v) and so �j(pi(x); x) = 0 for i < j.

Finally consider the case i < j � 1. Because each �j(v; x) is non-decreasing in v,
and because for all i < j � 1, pi(x) � pj�1(x), �j(pi(x); x) � �j(pj�1(x); x) = 0 and
so for all i < j � 1, �j(pi(x); x) = 0. This concludes the demonstration that (A3.2)
holds.

It has been shown that FU jXZ(ujx; z) = �(u; x), constructed as above, is a proper
distribution function respecting the independence restriction, U k Z, delivering, with
the structural function h, the conditional distribution function FY jXZ . It follows that
FU jXZ de�ned as above, brought together with FXjZ to produce FUXjZ , combines with
h to deliver FY XjZ .

The inequalities of Theorem 1 are crucial in endowing fh; FUXjZg with the obser-
vational equivalence property. It has been shown that for each h that satis�es those
inequalities there exists at least one distribution FUXjZ such that fh; FUXjZg gener-
ates the distribution FY XjZ used to calculate the probability inequalities of Theorem
1.


