
Project planning with alternative technologies in

uncertain environments

Stefan Creemersa, Bert De Reyckb and Roel Leusc∗

a Management Department, IESEG School of Management, Lille, France
E-mail: s.creemers@ieseg.fr

b Department of Management Science & Innovation, University College London, United Kingdom
E-mail: bdereyck@ucl.ac.uk

c Research Group ORSTAT, Faculty of Economics and Business, KU Leuven, Belgium
E-mail: Roel.Leus@kuleuven.be

Abstract: We investigate project scheduling with stochastic activity durations to maximize the expected

net present value. Individual activities also carry a risk of failure, which can cause the overall project

to fail. In the project planning literature, such technological uncertainty is typically ignored and project

plans are developed only for scenarios in which the project succeeds. To mitigate the risk that an

activity’s failure jeopardizes the entire project, more than one alternative may exist for reaching the

project’s objectives. We propose a model that incorporates both the risk of activity failure and the

possible pursuit of alternative technologies. We find optimal solutions to the scheduling problem by

means of stochastic dynamic programming. Our algorithms prescribe which alternatives need to be

explored, and how they should be scheduled. We also examine the impact of the variability of the

activity durations on the project’s value.

Keywords: project scheduling, uncertainty, net present value, alternative technologies, stochastic ac-

tivity durations, activity failures.

History: Submitted to EJOR August 2013; accepted November 2014.

1 Introduction

Projects in many industries are subject to considerable uncertainty, due to many possible

causes. Factors influencing the completion date of a project include activities that are

required but that were not identified beforehand, activities taking longer than expected,

activities that need to be redone, resources being unavailable when required, late deliver-

ies, etc. In research and development (R&D) projects, there is also the risk that activities

may fail altogether, requiring the project to be halted completely. This risk is often re-

ferred to as technical risk. In this text, we focus on two main sources of uncertainty in

R&D projects, namely uncertain activity durations and the possibility of activity failure:

we incorporate the concept of activity success or failure into the analysis of projects with

∗Corresponding author. Tel +32 16 32 69 67. Fax +32 16 32 66 24.

1

stochastic activity durations, where the successful completion of an activity can corre-

spond to a technological discovery or scientific breakthrough. We examine the impact of

these two factors on optimal planning strategies that maximize the project’s value, and

on its value itself.

This work is a continuation of De Reyck and Leus [12], where an algorithm is developed

for project scheduling with uncertain activity outcomes and where project success is

achieved only if all individual activities succeed. Reference [12] constituted the first

description of an optimal approach for handling activity failures in project scheduling, but

neither stochastic activity durations nor the possibility of pursuing multiple alternatives

for the same result, and the inherent possibility of activity selection, were accounted for.

Earlier work studied optimal procedures for special cases; see Chun [8], for instance. Other

references relevant to this text stem from the discipline of chemical engineering, mainly

the work by Grossmann and his colleagues (e.g., [33, 21]), who studied the scheduling of

failure-prone new-product development (NPD) testing tasks when non-sequential testing

is admitted. They point out that in industries such as chemicals and pharmaceuticals, the

failure of a single required environmental or safety test may prevent a potential product

from reaching the marketplace, which has inspired our modeling of possible activity and

project failure. Therefore, our models are also of particular interest to drug-development

projects, in which stringent scientific procedures have to be followed in distinct stages to

ensure patient safety, before a medicine can be approved for production. Such projects

may need to be terminated in any of these stages, either because the product is revealed

not to have the desired properties or because of harmful side effects. Illustrations of

modeling pharmaceutical projects, with a focus on resource allocation, can be found in

Gittins and Yu [16] and Yu and Gittins [39].

Due to the risk of activity failure resulting in overall project failure, it has been sug-

gested that R&D projects should explore multiple alternative ways for developing new

products (Sommer and Loch [35]). To mitigate the risk that an individual activity’s

failure jeopardizes the entire project, we model projects in which the same (intermediate

or final) outcome can be pursued in several different ways, where one success allows the

project to continue. The different attempts can be multiple trials of the same procedure

or the pursuit of different alternative ways to achieve the same outcome, e.g., the explo-

ration of alternative technologies. Following Baldwin and Clark [3], a unit of alternative

interdependent tasks with a distinguished deliverable will be called a module.

Project profitability is often measured by the project’s net present value (NPV), the

discounted value of the project’s cash flows. This NPV is affected by the project schedule

2

and therefore, the timing of expenditures and cash inflows has a major impact on the

project’s financial performance, especially in capital-intensive industries. The goal of this

article is to find optimal scheduling strategies that maximize the expected NPV (eNPV)

of the project while taking into account the activity costs, the cash flows generated by

a successful project, the variability in the activity durations, the precedence constraints,

the likelihood of activity failure and the option to pursue multiple trials or technologies.

Thus, this article extends the work of Buss and Rosenblatt [6], Benati [5], Sobel et al. [34]

and Creemers et al. [10], who focus on duration risk only, and of Schmidt and Grossmann

[33], Jain and Grossmann [21] and De Reyck and Leus [12], who look into technical risk

only (although Schmidt and Grossmann [33] also explore the possibility of introducing

multiple discrete duration scenarios).

Our contributions are fourfold: (1) we introduce and formulate a generic model for

optimal scheduling of R&D activities with stochastic durations, non-zero failure prob-

abilities and modular completion subject to precedence constraints; to the best of our

knowledge, such a model has never been studied before; (2) we develop a dynamic-

programming recursion to determine an optimal policy for executing the project while

maximizing the project’s eNPV, extending the algorithm of Creemers et al. [10] with ac-

tivity failures, multiple trials and phase-type (PH) distributed activity durations instead

of exponentials; (3) we conduct numerical experiments to demonstrate the computational

capabilities of the algorithm; and (4) we examine the impact of activity duration risk on

the optimal scheduling policy and project values. Interestingly, our findings indicate that

higher operational variability does not always lead to lower project values, meaning that

(sometimes costly) variance reduction strategies are not always advisable. To the best of

our knowledge, this is the first article to numerically support such a recommendation.

The remainder of this text is organized as follows. In Section 2, we provide the nec-

essary definitions and a detailed problem statement. We produce solutions by means

of a backward dynamic-programming recursion for a Markov decision process, which is

discussed in Section 3. Section 4 reports on our computational performance on a repre-

sentative set of test instances. In Section 5, a computational experiment is described in

which we examine the effect of activity duration variability on the eNPV of a project and

Section 6 evaluates two different choices for the policy class to be considered. Section 7

contains a brief summary of the text.

3

2 Definitions and problem statement

2.1 Stochastic project scheduling

A project consists of a set of activities N = {0, . . . , n}. The execution of a project

with stochastic components (in our case, stochastic activity outcomes and durations) is a

dynamic decision process. A solution, therefore, cannot be represented by a schedule but

takes the form of a policy : a set of decision rules defining actions at decision times, which

may depend on the prior outcomes. Decision times are typically the start of the project

and the completion times of activities; a tentative next decision time can also be specified

by the decision maker. An action entails the start of a precedence-feasible set of activities

(see Section 2.2 for a statement of the precedence constraints). In this way, a schedule is

constructed gradually as time progresses. Next to the information available at the start

of the project, a decision at time t can only use information on duration realizations

and activity outcomes that has become available before or at time t; this is the so-called

non-anticipativity constraint. Activities should be executed without interruption.

Each activity i ∈ N\{n} has a probability of technical success pi; we assume that

p0 = 1. We do not consider (renewable or other) resource constraints and assume the

outcomes of the different tasks to be independent. We define a success (state) vector

as an n-component binary vector x = (x0, x1, . . . , xn−1), with one component associated

with each activity in N \{n}. We let Xi represent the Bernoulli random variable with pa-

rameter pi as success probability for each activity i, and we write X = (X0, X1, . . . , Xn−1).

Information on an activity’s success (the realization of Xi) becomes available only at the

end of that activity. We say that x is a realization or scenario of X. The duration Dj ≥ 0

of each activity j is also a stochastic variable; the vector (D0, D1, . . . , , Dn) is denoted by

D. We use lowercase vector d = (d0, . . . , , dn) to represent one particular realization of

D, and we assume Pr[D0 = 0] = Pr[Dn = 0] = 1.

We assume that all activity cash flows during the development phase are non-positive,

which is typical for R&D projects: the (known) cash flow associated with the execution

of activity i ∈ N\{n} is represented by the integer value ci ≤ 0 and is incurred at the

start of the activity. We choose c0 = 0. If the project is successful (see Section 2.2 for

the specific conditions under which this is true) then the final activity n can be executed.

This corresponds with obtaining an end-of-project payoff C ≥ 0, which is received at the

start of activity n (which is also its completion time). The value si ≥ 0 represents the

starting time of activity i; we call the (n+ 1)-vector s = (s0, s1, . . . , sn) a schedule, with

si ≥ 0 for all i ∈ N . We assume s0 = 0 in what follows: the project starts at time zero.

4

The value si = +∞ means that activity i will not be executed at all.

We follow Igelmund and Radermacher [20], Möhring [27] and Stork [36], who study

project scheduling with resource constraints and stochastic activity durations, in inter-

preting every scheduling policy Π as a function Rn−1
≥ × Bn → Rn+1

≥ , with R≥ the set of

non-negative reals and B = {0, 1}. The function Π maps given samples (d,x) of activ-

ity durations and success vectors to vectors s(d,x; Π) of feasible activity starting times

(schedules). For a given duration scenario d, success vector x and policy Π, sn(d,x; Π)

denotes the makespan of the schedule, which coincides with project completion. Note that

not all activities need to be completed (or even started) by sn, nor that the realization

of all Xi’s needs to be known.

We compute the NPV for schedule s as

f(s) = Ce−rsn +
n−1∑
i=1
si 6=∞

cie
−rsi , (1)

with r a continuous discount rate chosen to represent the time value of money: the

present value of a cash flow c incurred at time t equals ce−rt, where e is the base of

the natural logarithm. Our goal in this article is to select a policy Π∗ that maximizes

E[f(s(D,X; Π))], with E[·] the expectation operator with respect to D and X; we write

E[f(Π)], for short. The generality of this problem statement suggests that optimization

over the class of all policies is probably computationally impractical. We therefore restrict

our optimization to a subclass that has a simple combinatorial representation and where

decision points are limited in number: our solution space P consists of all policies that

start activities only at the end of other activities (activity 0 is started at time 0). The

solution space also contains policy Π0, which corresponds with immediate abandonment

of the project (formally, all starting times apart from s0 are set to infinity), which will

be preferable when C is not large enough compared to the costs of the activities: then it

is better simply not to undertake the project at all, with objective value 0.

2.2 Modular projects

Modularity means splitting the design and production of technologies into independent

subparts [3]. This has benefits towards inventory management for mass-produced items

via techniques such as commonality and postponement [7], but also with respect to the

duration and chances of success of a product development project by itself: in this set-

ting, a module is a set of alternative development activities that pursue a similar target,

5

representing repeated trials or technological alternatives. Lenfle [24] provides a thorough

literature review of the management of projects via modules, and he points out that

different alternatives can be pursued either in parallel or sequentially, or following a mix

of both strategies. Obviously, management can also decide not to pursue certain alter-

natives, for instance because their cost is too high compared to their expected benefits.

Lenfle refers to the Manhattan Project as one prime example where such techniques

were applied (for instance, multiple alternative bomb assembly designs were tested simul-

taneously). Weitzman [38] brings up the evaluation and selection of alternative suppliers

for some commodity as one possible practical application. Nelson [29] cites a RAND

working paper on the development of a new microwave relay system at Bell Telephone

Laboratories, where the eventual success of the development was greatly facilitated by

running multiple approaches in parallel to solving some of the encountered development

problems. Granot and Zuckerman [17] refer to the development of nylon at DuPont, where

numerous polymers were tested one by one before the discovery of a suitable polyamide.

Abernathy and Rosenbloom [1] evaluate the merits of a parallel strategy at a critical

point in a million-dollar advanced power-supply development project. In the context

of the development of an AIDS vaccine, Ding and Eliashberg [13] note that ‘In many

new product development (NPD) situations, the development process is characterized

by uncertainty, and no single development approach will necessarily lead to a successful

product. To increase the likelihood of having at least one successful product, multiple

approaches may be simultaneously funded at the various NPD stages.’

In this text, we will take the modular structure of the project as given, assuming that

an appropriate project network design and initial selection of development alternatives

have already been set out. Formally, the set of modules is M = {0, . . . ,m}; each module

i ∈ M contains the activities Ni ⊂ N , and the set of modules constitutes a partition of

N : N =
⋃
i∈M Ni and Ni ∩ Nj = ∅ if i 6= j. A is a (strict) partial order on M , i.e., an

irreflexive and transitive relation, which represents technological precedence constraints.

(Dummy) modules 0 and m represent the start and the end of the project, respectively;

they are the (unique) least and greatest element of the partially ordered set (M,A) and

are assumed to contain only one (dummy) activity, indexed by 0 and n, respectively.

On the activities within each module i, we also impose a partial order Bi, to allow

for modeling precedence requirements between these activities. In drug development,

for example, when a certain module is needed to show the effectiveness of a drug, two

precedence-related activities could represent the repeated measurement of the beneficial

effects of the drug: the first test is performed after one week; the effects after two weeks

6

will only be measured if first the effects after one week are inconclusive [9]. Alternatively,

trials may be repeated in different doses and with different test subjects [19]. Precedence

constraints within modules may also represent fallback options for project failure, as

‘contingency plans’: plans devised for an outcome different from expected. Comparable

modeling choices were made in Coolen et al. [9] and in Huysmans et al. [19], but without

discounting the cash flows, in which case durations become irrelevant and scheduling all

activities sequentially is a dominant choice.

For convenience, we associate a completion time hi(s; d,x) with each module i, in the

following way (here and later, we omit the arguments if no misinterpretation is possible):

hi = minj∈Ni|xj=1{sj +dj}, coinciding with the earliest completion of a successful activity

contained in the module; if the min-operator optimizes over the empty set then we define

hi := +∞, meaning that the module is never successfully completed. For a given success

vector x and durations d, we then say that a schedule s is feasible if the following

conditions are fulfilled:

hi ≤ sj ∀(i, k) ∈ A, ∀j ∈ Nk (2)

si + di ≤ sj ∀k ∈M,∀(i, j) ∈ Bk (3)

Equations (2) are inter-module precedence constraints, which imply that a necessary

condition for the start of an activity j ∈ Nk is success for all the predecessor modules i

of the module k to which j belongs, where a module is said to be successful if at least

one of its constituent activities succeeds. Equations (3) are intra-module constraints: an

activity j can only be started when all predecessor activities i in the same module have

been completed, and its execution would obviously be useful only if all those predecessors

failed. An activity’s starting time equal to infinity corresponds to not executing the

activity and therefore not incurring any related expenses, or in case of activity n, not

receiving the project payoff. Consequently, the project payoff is achieved (sn 6=∞) only

if every module is successful.

The classic PERT problem [2, 14, 23, 26] aims at characterizing the random variable

sn(D,1; ΠES), where policy ΠES starts all activities as early as possible, each module

contains only one activity, and 1 is an n-vector with value 1 in all components. Con-

trary to the makespan, however, NPV is a non-regular measure of performance: starting

activities as early as possible is not necessarily optimal, since the ci are usually negative.

7

N0

4

N1 N2

N3

N4

6

5

0

1

2

3

Figure 1: Example module network

2.3 Illustration

Figure 1 illustrates the foregoing definitions and problem statement. This project consists

of seven activities, N = {0, 1, 2, 3, 4, 5, 6}, where 0 and n = 6 are dummies. There are

five modules, so m = 4 : N0 = {0} , N1 = {1, 2, 3} , N2 = {4}, N3 = {5} and N4 = {6}.
In the example, B1 = {(1, 3), (2, 3)}. Note that Figure 1 actually shows the transitive

reduction of A: the order relation A also contains elements such as (0, 2) and (1, 4), while

the arcs N0 → N2 and N1 → N4 are not included in the figure.

A policy Π12 for this project is the following: start the project at time 0 (s0 = 0) and

immediately initiate activities 1 and 2 (s1 = s2 = 0). If X1 = X2 = 0 then abandon the

project: set s3 = s4 = s5 = s6 = +∞. Otherwise, module N1 completes successfully. In

that case, start both activities 4 and 5 upon the successful completion of activity 1 or

2 (whichever is the earliest), and terminate the project if either 4 or 5 fails. Note that

under policy Π12, activity 3 is never started, and we effectively include activity selection

as part of the decisions to be made. Represented as a function, Π12 entails the following

mapping:

(d1, d2, d3, d4, d5, x0, x1, x2, x3, x4, x5)

7→
(0, 0, 0,∞, h1, h1,max{h2;h3}),

with h1 = minj=1,2;xj=1{dj} and h1 = ∞ if x1 = x2 = 0, h2 = h1 + d4 if x4 = 1 and

h2 =∞ if x4 = 0, and h3 = h1 + d5 if x5 = 1 and h3 =∞ if x5 = 0.

3 Markov decision process

3.1 Policy class

In the literature, the input parameters of the PERT problem are often referred to as a

PERT network, and a PERT network with independent and exponentially distributed

8

activity durations is also called a Markovian PERT network. For Markovian PERT net-

works, Kulkarni and Adlakha [23] describe an exact method for deriving the distribution

and moments of the earliest project completion time using continuous-time Markov chains

(CTMCs), where it is assumed that each activity is started as soon as its predecessors

are completed (an early-start schedule).

Buss and Rosenblatt [6], Sobel et al. [34] and Creemers et al. [10] investigate an

eNPV objective and use the CTMC described by Kulkarni and Adklakha as a starting

point for their algorithms. A similar problem is studied by Benati [5], who proposes

a heuristic scheduling rule. Next to stochastic durations, Buss and Rosenblatt [6] also

consider activity delays. These studies, however, all assume success in all activities and

an exponential distribution for all durations and they also imply the requirement that all

activities be executed.

De Reyck and Leus [12] study project scheduling with known activity durations but

with uncertain activity outcomes. In that article, if an activity A ends no later than

the start of another activity B then knowledge of the outcome (success or failure) of

A can sometimes be used to avoid incurring the cost for B, since a failure in A would

allow abandoning the project, but payment for B cannot be avoided when B has already

started before the outcome of A is discovered. For a given selection of such ‘information

flows’ between activities (under the form of additional precedence constraints), a late-

start schedule is then optimal when the activity durations are known. Unfortunately,

late-start scheduling is difficult to implement in case of stochastic durations, and Sobel et

al. [34] implicitly restrict their attention to scheduling policies that start activities only

at the end of other activities. Buss and Rosenblatt [6] partially relax this restriction by

starting an activity only after a fixed time interval (delay), but they do not decide which

sets of activities to start at what time (all eligible activities are started as soon as possible

after their delay). Creemers et al. [10] study the same problem as Sobel et al. [34] and

achieve significant computational performance improvements.

In this article, we also propose to restrict the attention to policies that start activities

at the completion time of other activities. This can be seen to be a dominant set of

policies for those cases in which the project payoff is sufficiently large relative to the costs

associated with the intermediate activities, because the benefit of delaying the payment

of an activity would then be more than offset by the disadvantage of the higher possibility

of delay in obtaining the payoff; this reasoning holds for any discount rate r > 0. The

generalization in which activity starting times are delayed by a fixed offset beyond their

earliest starting time poses significant computational challenges (cf. [6]). The models

9

and algorithms in this article can be extended so that activities can also be started

when other activities are ‘underway,’ and in Section 6, we describe our findings for an

experiment where we consider the possible start of new activities after each phase in the

PH distribution of each ongoing activity (a setting that gives rise to a larger policy class,

hence a larger search space). The experiment indicates that the average improvement

in the objective function is minor (up to 0.3% of the payoff at most, depending on

the settings). We recognize that the practical relevance of this larger policy class can

obviously be questioned, and the experiment should merely be seen as an approximation

of the setting where activities can be started whenever the decision maker chooses. We

conclude that only starting activities at the completion time of other activities is not a

very restrictive decision, under the settings tested.

Below, we extend the work of Creemers et al. [10] to accommodate PH-distributed

activity durations, possible activity failures and a modular project network, allowing also

for activity selection. We first study the special case of exponential activity durations

(Section 3.2), followed by an illustration (Section 3.3) and by a treatment of more general

distributions (Section 3.4).

3.2 The exponential case

For the moment, we assume each duration Di to be exponentially distributed with rate

parameter λi = 1/E[Di] (i = 1, . . . , n − 1); we consider more general distributions in

Section 3.4. At any time instant t, an activity’s status is either idle (not yet started),

active (being executed), or past (successfully finished, failed, or considered redundant

because its module is completed). Let I(t), Y (t) and P (t) represent the activities in

N that are idle, active and past, respectively; these three sets are mutually exclusive

and I(t) ∪ Y (t) ∪ P (t) = N . The state of the system is defined by the status of the

individual activities and is represented by a triplet (I, Y, P). State transitions take place

each time an activity becomes past and are determined by the policy at hand. The

project’s starting conditions are Y (0) = {0} and I(0) = N \ {0}, while the condition

for successful completion of the project is P (t∗) = N , where t∗ represents the project

completion time.

The problem of finding an optimal scheduling policy corresponds to optimizing a dis-

counted criterion in a continuous-time Markov decision chain (CTMDC) on the state

space Q, with Q containing all the states of the system that can be visited by the tran-

sitions (which are called feasible states); the decision set is described below. We apply a

backward stochastic dynamic-programming (SDP) recursion to determine optimal deci-

10

sions based on the CTMC described in Kulkarni and Adlakha [23]. The key instrument of

the SDP recursion is the value function F (·), which determines the expected NPV of each

feasible state at the time of entry of the state, conditional on the hypothesis that optimal

decisions are made in all subsequent states and assuming that all ‘past’ modules (with all

activities past) were successful. In the definition of the value function F (I, Y), we supply

sets I and Y of idle and active activities as parameters (which uniquely determines the

past activities). When an activity finishes, three different state transitions can occur:

(1) activity j ∈ Ni completes successfully; (2) activity j ∈ Ni fails and another activity

k ∈ Ni is still idle or active; (3) activity j ∈ Ni fails and all other activities k ∈ Ni have

already failed (or it is the only activity in the module).

We define the order B∗ on set N to relate activities that do not necessarily belong to

the same module, as follows:

(i, j) ∈ B∗ ⇔ (∃Bm : (i, j) ∈ Bm) ∨ (∃(l,m) ∈ A : i ∈ Nl ∧ j ∈ Nm).

We call an activity j eligible at time t if j ∈ I(t) and ∀(k, j) ∈ B∗ : k ∈ P (t). Let

E(I, Y) ⊂ N be the set of eligible activities for given sets I and Y of idle and active

activities. Upon entry of a state (I, Y, P) ∈ Q, a decision needs to be made whether or

not to start eligible activities in E(I, Y) and if so, which. If no activities are started, a

transition towards another state occurs at the first completion of an element of Y . Not

starting any activities while there are no active activities left, corresponds to abandoning

the project. Let λ̂ =
∑

k∈Y λk. The probability that activity j ∈ Y completes first among

the active activities equals λj/λ̂ (competing exponentials; see our working paper [11] for

more details). The expected time to the first completion is λ̂−1 time units (the length of

this timespan is also exponentially distributed) and the appropriate discount factor to be

applied for this timespan is λ̂/
(
r + λ̂

)
(see working paper). In state (I, Y, P) ∈ Q, the

expected NPV to be obtained from the next state on condition that no new activities are

started equals

F0(I, Y) =
λ̂

r + λ̂

∑
j∈Y

pjλj

λ̂
F (I \Ni, Y \Ni)+

λ̂

r + λ̂

∑
j∈Y :Ni\{j}6⊂P

(1− pj)λj
λ̂

F (I, Y \ {j}),
(4)

with j ∈ Ni in the summations. Our side conditions are F (I,∅) = 0 for all I.

The second alternative is to start a non-empty set of eligible activities S ⊆ E(I, Y)

11

when a state (I, Y, P) ∈ Q is entered. This leads to incurring a cost
∑

j∈S cj and an

immediate transition to another state, with no discounting required. The corresponding

eNPV, conditional on set S 6= ∅ being started, is

FS(I, Y) = F (I \ S, Y ∪ S) +
∑
j∈S

cj. (5)

The total number of decisions S that can be made is 2|E(I,Y)|. The decision corresponding

to the highest value in (4) and (5) determines F (·):

F (I, Y) = max

{
F0(I, Y) ; max

S 6=∅
{FS(I, Y)}

}
, (6)

for feasible state (I, Y,N \ (I ∪ Y)).

The computation of the backward SDP recursion (6) starts in state (∅, {n}, N \ {n}).
Subsequently, the value function is evaluated stepwise for all other states. The optimal

objective value maxΠ∈P E[f(Π)] is obtained as F (N \ {0}, {0}). We should note that the

policies from which one with the best objective function is chosen, do not consider the

option of starting activities at the end of activities that are redundant (past) because

another activity already made their module succeed.

3.3 Illustration

In this section, we illustrate the functioning of the SDP algorithm by analyzing the

example project with seven activities (n = 6) introduced in Section 2.3, for which the

module order A is described by Figure 1. Further input data are provided in Table 1; the

project’s payoff value C is 300 and the discount rate is 10 percent per time unit (r = 0.1).

For exponentially distributed activity durations, the SDP recursion described in Sec-

tion 3.2 can be applied to find an optimal policy. At the onset of the project (in state

Table 1: Project data for the example project

task i cash flow ci mean duration E[Di] pi
0 0 0 100%
1 −20 10 40%
2 −35 2 35%
3 −70 8 75%
4 −10 2 100%
5 −10 2 60%
6 0 100%

12

(N \ {0},∅, {0})) we can decide to start either the first activity, the second activity, or

both, from module 1. The SDP recursion evaluates the expected outcome of each of these

decisions and selects one that yields the highest expected NPV (assuming that optimal

decisions are made at all future decision times). In our example, it is optimal to start only

the first activity (corresponding to an objective function of 3.27) and we subsequently end

up in state ({2, 3, 4, 5}, {1}, {0}), in which two possibilities arise. If activity 1 succeeds,

module 1 succeeds as well and a transition occurs to state ({4, 5},∅, {0, 1, 2, 3}); otherwise

(if activity 1 fails), we end up in state ({2, 3, 4, 5},∅, {0, 1}) and have to make a decision:

either we start activity 2, corresponding to a transition to state ({3, 4, 5}, {2}, {0, 1})
and an eNPV at that time for the remainder of the project of −1.06, or we abandon the

project altogether obtaining a current value of 0. The optimal decision in this case is

obviously not to continue the project.

After a successful completion of module 1, two new activities become eligible. The

optimal decision is to start both activities 4 and 5, leading to state (∅, {4, 5}, {0, 1, 2, 3}).
Two possibilities then arise: either activity 4 or activity 5 finishes first. Irrespective of

which activity completes first, if either activity 4 or 5 fails then the entire project fails. If

activity 4 (resp. 5) finishes first and succeeds, activity 5 (resp. 4) is still in progress and

needs to finish successfully for the project payoff to be earned. We refer to this optimal

policy for exponential durations by the name Π1.

The relevant part of the corresponding decision tree is represented in Figure 2, in

which the project evolves from left to right. A decision node, represented by a square,

indicates that a decision needs to be made at that point in the process; a chance node,

denoted by a circle, indicates that a random event takes place. Underneath each decision

node, we indicate the eNPV conditional on an optimal decision being made in the node,

which applies only to the part of the project that remains to be performed. For each

decision node, a double dash // is added to each branch that does not correspond to an

optimal choice in the SDP recursion.

3.4 Generalization towards PH distributions

We now assume that the durations Dj of the activities j ∈ N \ {0, n} are mutually

independent PH-distributed stochastic variables. PH distributions were first introduced

by Neuts [30] as a means to approximate general distributions using a combination of

exponentials. We will adopt so-called acyclic PH distributions for the activity durations

in order to assess the impact of activity duration variability on the eNPV of a project.

In this section, we informally describe PH distributions and show how to determine the

13

-1.06

-5.55

3.27

{1}

{1,2}

{2}

{2}

{4}

{4,5}

0.00

-1.06

success (1)

116.36

success (4)

success (5)

300.0

0.00

0.00

106.67

{5}
110.00

success (5)

success (4)

fail (
4)

fail (
5)

fail (1)

Decision node

Chance node

Dominated decision

{ j } Decision to start activity j

Project

abandonment

D
4>D

5

D4<D5

fail (5)

fail (4)

Figure 2: Optimal paths in the decision tree for the example project

optimal eNPV of a project when activity durations are PH distributed. More details,

including a moment-matching approach, are described in [11].

Due to the properties of the acyclic PH distribution, each activity j 6= 0, n can be

seen as a sequence of zj phases where:

• each phase θju has an exponential duration with rate λju,

• each phase θju has a probability τju to be the initial phase when starting activity j,

• each phase θju is visited with a given probability πjvu when departing from another

phase θjv.

Acyclicity of the distribution implies that a state is never visited more than once. Since

the execution of a task is non-preemptive, the execution of the sequence of phases as well

as the execution of a phase itself should be uninterrupted. Therefore, upon completion

of a phase θju:

• activity j completes with probability πju0 (absorption is reached in the underlying

Markov chain),

• phase v is started with probability πjuv.

The exponential distribution for activity j ∈ N \ {0, n} is then a PH distribution with

zj = 1, τj1 = 1 and λj1 ≡ λj.

Maintaining the definition of Y (t) given in Section 3.2, define Y ◦(t) as the set of

phases of the activities in Y (t) that are being executed at time instant t. Clearly, Y can

be obtained from Y ◦. The state of the system is again fully determined by the status

of the individual activities and is now represented by a triplet (I, Y ◦, P). The SDP

recursion described in the previous subsection for computing function F is easily extended

14

to accommodate PH distributions; the most important modification is in Equation (4),

which becomes

λ̂◦

r + λ̂◦

∑
θju∈Y ◦

πju0
pjλju

λ̂◦
F (I \Ni, Y

◦ \N◦i)+

λ̂◦

r + λ̂◦

∑
θju∈Y ◦:Ni\{j}6⊂P

πju0
(1− pj)λju

λ̂◦
F (I, Y ◦ \ {θju})+

λ̂◦

r + λ̂◦

∑
θju∈Y ◦

λju

λ̂◦

zj∑
v=1
v 6=u

πjuvF (I, Y ◦ ∪ {θjv} \ {θju}),

(7)

with j ∈ Ni, λ̂
◦ =

∑
θkv∈Y ◦ λkv and N◦i = {θku : k ∈ Ni}. We use the result that the

probability that phase θju ∈ Y ◦ completes first among the active phases equals λju/λ̂
◦

and that the expected time to the first completion is λ̂◦
−1

time units.

4 Computational performance

In this section, we will briefly evaluate the computational performance of the SDP algo-

rithm. Our experiments are performed on an AMD Phenom II with 3.21 GHz CPU speed

and 2 GB of RAM. To investigate the impact of variability, we use PH distributions to

model the activity durations, which will allow us to increase or decrease the variability

and examine its impact on the project’s eNPV by changing the Squared Coefficient of

Variation (SCV) of the activity durations (for simplicity, we assume all activity durations

to have equal SCV). Setting SCV = 1 corresponds to exponentially distributed activity

durations, SCV = 0 coincides with deterministic durations.

We borrow the datasets that were generated by Coolen et al. [9]: these consist of

10 instances for each of various values of the number of activities n and for OS = 0.4,

0.6 and 0.8, with ‘order strength’ OS the number of comparable activity pairs according

to the induced order B∗, divided by the maximum possible number of such pairs (this

value is only approximate). Average activity durations are not used by Coolen et al. [9]

and are additionally generated for each activity, for each instance separately; each such

average duration is a uniform integer random variate between 1 and 15. In the generated

instances, all activities apart from the final one have negative cash flows and the final

activity has a positive payoff (which is also significantly larger in absolute value); we refer

to the appendix of [9] for more details.

For exponential durations, an upper bound on |Q| is 3n. Enumerating all these 3n

15

states is not recommended, as the majority of the states typically do not satisfy the prece-

dence constraints. For PH durations, the bound becomes
∏

j∈N 3zj . In order to minimize

storage and computational requirements, we adopt the techniques proposed by Creemers

et al. [10]: as the algorithm progresses, the information on the earlier generated states

will no longer be required for further computation and therefore the memory occupied

can be freed. This procedure is based on a partition of Q, allowing for the necessary

subsets to be generated and deleted when appropriate.

In our implementation, the storage requirement for 600, 000 states amounts to a max-

imum of 4.58 MB; we only generate feasible states. On our computer, a maximum state

space of 268, 435, 456 states can be stored entirely in memory. Our results with expo-

nential durations are presented in Tables 2–4, gathered per combination of values for OS

and n (all runtimes are reported in seconds). The discount rate r equals 10%. The tables

show that networks of up to 40 activities are analyzed with relative ease. When n = 51,

however, the optimal solution of most networks with low order strength (OS = 0.4) is

beyond reach when the system memory is restricted to 2 GB. When OS = 0.6, the per-

formance is limited to networks with n = 71 or less. We observe that the density of the

induced order B∗ is a major determinant for the computational effort: order strengths

and computation times clearly display an inverse relation. Additionally, the real bottle-

neck for the algorithm turns out to be memory space rather than CPU time: projects

with n = 81 and OS = 0.4 require less than five hours runtime on average (the highest

runtime over all the tested settings), which is still practical for industrial-type projects,

but larger instances with OS = 0.4 cannot be analyzed anymore due to memory limits.

From Tables 3 and 4, it may appear that sometimes the instances become easier as the

number of jobs increases. This, however, is merely a result of the fact that for larger n not

all instances can be solved and therefore the reported averages are essentially truncated,

with the largest values not being included.

As a side note, we observe that given the number of states generated, approximation

techniques might be useful, either by restricting to ‘classic’ scheduling heuristics such as

list policies, or by resorting to more mainstream approximation techniques for Markovian

decision processes (see for instance [31, 32]). This option is not further pursued in this

article.

16

Table 2: Number of successfully analyzed networks out of 10

n OS = 0.8 OS = 0.6 OS = 0.4
11 10 10 10
21 10 10 10
31 10 10 10
41 10 10 7
51 10 10 5
61 10 6 3
71 9 5 3
81 10 4 1
91 9 4 0
101 10 1 0
111 9 1 0
121 8 0 0

Table 3: average size of the state space (|Q|) for analyzed networks

n OS = 0.8 OS = 0.6 OS = 0.4
11 74 248 628
21 396 4, 303 29, 793
31 2, 174 192, 984 911, 558
41 15, 871 1, 619, 351 25, 051, 988
51 98, 559 1, 940, 598 90, 057, 422
61 177, 916 29, 540, 126 278, 145, 443
71 2, 260, 271 85, 611, 285 82, 971, 948
81 2, 070, 967 34, 261, 271 176, 976, 352
91 23, 128, 416 145, 911, 293
101 24, 804, 064 165, 306, 852
111 67, 477, 195 56, 193, 712
121 69, 245, 416

5 Impact of activity duration variability

In this section, we examine the impact of different degrees of variability of the activity

durations on a project’s value. We do this for the example project instance in Section 5.1,

and we generalize by testing with a larger-scale experimental setup in Section 5.2.

5.1 Impact of duration variability in the example instance

The policy Π1 described in Section 3.3 is optimal for exponential durations; its objective

value is 3.27 for the example. The quality of the policy changes when the variability level is

different, however. Figure 3(a) illustrates the functioning of policy Π1 with deterministic

durations: the policy first executes only activity 1, and then starts both activity 4 and

17

Table 4: average CPU time (in seconds) required to find an optimal policy

n OS = 0.8 OS = 0.6 OS = 0.4
11 0 0 0
21 0 0 0.03
31 0 0.3 1.77
41 0.02 3.54 70.93
51 0.15 5.12 298.41
61 0.32 128.31 2, 397.93
71 17.53 469.34 27, 065.53
81 5.7 1817.54 15, 605.91
91 107.61 1, 322.77
101 105.66 894.61
111 283.57 10, 540.86
121 528.81

5 if 1 succeeds, otherwise the project is abandoned. The objective function value for Π1

with deterministic durations is

E[f(Π1)] = c1 + p1e
−rE[D1]

(
c4 + c5 + p4p5Ce

−rE[D5]
)

= −1.26.

An optimal policy Π2 for this setting is described by Figure 3(b), with eNPV

E[f(Π2)] = c2 + p2e
−rE[D2]

(
c4 + c5 + p4p5Ce

−rE[D5]
)

= 1.50.

Here, activity 2 is started at the project’s initiation, and activity 1 is never selected (i.e.,

upon failure of activity 2 the project is abandoned). With exponential durations, on

the other hand, Π2 has an objective value of −1.06, significantly lower than the optimal

value of 3.27 achieved by Π1. Interestingly, the inferior policy in the case of exponential

durations becomes optimal when activity durations are deterministic. Also, the effect

of variability on the eNPV associated with a policy is not monotonic; the eNPV of

0 1 2 3 4 5 6 7 8 9 10 11 12 13 Time10

11 12 13 Time10

1-20

0
Project

abandonment

300

5-10

4-10
100%

60%

40%

60%

(a) Policy Π1

0 1 2 3 4 5 Time2

3 4 5 Time2

2-35

0
Project

abandonment

300

5-10

4-10
100%

60%

35%

65%

(b) Policy Π2

Figure 3: Policies with deterministic durations

18

deterministic exponential
Π1 −1.26 3.27
Π2 1.50 −1.06

−−−−−−−−−−→
variability increases

Figure 4: eNPV for policies Π1 and Π2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

0

2

4

6

Squared coefficient of variation of activity durations

e
N

P
V

 o
f
th

e
 e

x
a
m

p
le

 p
ro

je
c
t

Optimal policy

Policy Π
0

Policy Π
1

Policy Π
2

Figure 5: The effect of activity duration variability on the optimal eNPV for the ex-
ample project

policy 1 increases, whereas the eNPV of policy 2 decreases. Of particular interest is the

fact that the eNPV can actually increase when variability is introduced, which is quite

counterintuitive. Note also that for each of the two variability settings, the sign of the

objective of two policies is different (one policy achieves a negative NPV while the other

one has positive NPV); we summarize these values in Figure 4. This is a strong case for

incorporating all variability information into the computations and not only ‘plugging in’

the expectations into a deterministic model, since a good project might be cut from the

portfolio based only on expected values, whereas it would be able to add value with a

carefully selected scheduling strategy.

Define policy Π0 as the immediate abandonment of the project, with zero objective

value. Figure 5 depicts the eNPV of the optimal policy for each level of duration vari-

ability; for any value of SCV , either Π0, Π1 or Π2 is optimal. In particular, for a specific

range of SCV values, policy Π0 (not executing the project) is preferable, while different

optimal policies appear for other ranges. We observe that eNPV decreases with SCV

for policy Π2. Policy Π1, on the other hand, exhibits a U-shaped relationship between

SCV and project eNPV. In this particular instance, the eNPV of the project is largest

when activity durations are highly uncertain (exponentially distributed). This contrasts

with the intuition that an increase in uncertainty necessarily entails a decrease of system

performance. These findings are further explored in Section 5.2 by means of experiments

on a larger set of instances.

19

Even with exponential durations, it is not a trivial matter to analytically evaluate

the entire distribution of a project’s NPV; in fact, we are not aware of any studies

that have attempted to achieve this directly. More work is available on the analytical

evaluation of project makespan in the context of the PERT problem. It turns out that,

with discrete independent durations, computing the expected makespan, and computing

a single point of the distribution function, are both #P-complete (any #P-complete

problem is polynomially equivalent to counting the number of Hamiltonian cycles of a

graph and thus in particular NP-complete) [18, 28]. Since project NPV is a function of

project makespan, this is at least a clear indication that evaluating NPV analytically is

probably highly intractable for general duration distributions, and we therefore resort to

simulation as a means to approximate the NPV distribution.

For policies Π1 and Π2 for the example instance, Figure 6 shows the NPV distribution

(cdf) for a number of different values for SCV ; these plots were obtained via simulation.

From module 1, policy Π1 only executes activity 1 while Π2 only executes activity 2,

which is longer but less expensive, and has a slightly higher success probability. We

observe that Π2 has both a higher upside potential (higher probability of achieving high

NPV) as well as a higher downside risk (larger chance of low NPV realizations); the

net effect of this comparison is favorable towards policy Π1 when SCV goes beyond the

value of 0.2 (approximately). Apparently, the higher success probability and lower cost of

activity 1 become more attractive (compared to activity 2) when the duration variability is

higher, such that low duration realizations for D1 can also be achieved, while higher-than-

average realizations of D1 will probably not affect the eNPV with the same magnitude

because of the concave and non-increasing dependence of the discount factor with time.

In other words, this example indicates that the interplay between activity costs, success

probabilities, average durations and the discount factor induces the different dependence

of Π1 and Π2 on SCV .

5.2 Impact of variability: experiments

Ward and Chapman [37] argue that all current project risk-management processes induce

a restricted focus on the management of project uncertainty. In part, this is because the

term ‘risk’ encourages a ‘threat’ perspective: we refer the reader to the examples of risk

events in the model for variability reduction by Ben-David and Raz [4] and Gerchack [15].

Ward and Chapman state that a focus on ‘uncertainty’ rather than risk could enhance

project risk management, providing an important difference in perspective, including,

but not limited to, an enhanced focus on opportunity management, an ‘opportunity’

20

−50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

Hypo−exponential (Π
1
)

Hypo−exponential (Π
2
)

(a) SCV = 0.01

−50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

Hypo−exponential (Π
1
)

Hypo−exponential (Π
2
)

(b) SCV = 0.5

−50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

Exponential (Π
1
)

Exponential (Π
2
)

(c) SCV = 1

−50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

x
F

(x
)

Two−phase Coxian (Π
1
)

Two−phase Coxian (Π
2
)

(d) SCV = 1.5

−50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

Two−phase Coxian (Π
1
)

Two−phase Coxian (Π
2
)

(e) SCV = 2

Figure 6: cdf of NPV associated with policies Π1 and Π2 for various activity duration
distributions and various levels of variability

being a ‘potential welcome effect on project performance.’ Ward and Chapman suggest

that management strive for a shift from a threat focus towards greater concern with

understanding and managing all sources of uncertainty, with both up-side and down-side

consequences, and explore and understand the origins of uncertainty before seeking to

manage it. They suggest using the term ‘uncertainty management,’ encompassing both

‘risk management’ and ‘opportunity management.’ See also Loch et al. [25] for examples

of how downside risks can sometimes be turned into upside opportunity (e.g., p. 5 and

p. 20).

In order to examine the impact of duration variability on the value of a project

in a more structured fashion, we have generated new instances in line with [9], with

n ∈ {11, 21} and OS ∈ {0.4, 0.6, 0.8} but now we generate 100 instances per combina-

21

tion of parameter settings, and there is no activity failure nor modular completion of the

project (each activity constitutes a separate module). The payoff value C is (uniform)

randomly chosen from interval [0.9C0; 2C0], where C0 is the payoff value that associates

objective value 0 (break-even) with the early-start policy ΠES for SCV = 1. We consider

a wide range of SCV values; for more details on the generation of the duration distri-

butions, see [11]. The results are graphically summarized in Figure 7 for r = 10% and

in Figure 8 for r = 1%. We investigate the effect of different variability levels (different

values of SCV) on the value of the project. We observe that variability reduction is sys-

tematically not beneficial for the project’s value as measured by eNPV in the cases where

the precedence network is rather dense and the discount rate is high; this corresponds

with Figures 7(a), 7(b) and 7(c).

These results may be explained by: (1) the likelihood of serial execution, and (2) the

concaveness of the discount function e−rt. With high OS , the precedence network is close

to serial, and an increase in duration variability results in an increase in the probability

of completing the activity after a short amount of time. Due to the concave shape of the

discount function, the gain in the objective associated with low duration realizations can

offset the loss associated with higher duration realizations, and this is more pronounced

for higher r. Low OS , by contrast, will imply that activities are more often executed in

parallel, and then the start of new activities is more frequently defined by the maximum

of multiple activity durations, the so-called merge (bias) effect [22]. This merge effect

is less likely to give rise to short completion times even in the event that some activity

durations are low, and thus reduces the benefits associated with the concave discount

function. Optimal scheduling policies will indeed tend to execute some of the activities

in parallel rather than serially when possible (low OS), because this reduces the project

makespan and thus leads to earlier project payoff.

Thus, investing in variability reduction becomes more interesting if: (1) r is low,

(2) OS is low, and (3) variability can almost be eliminated. With a higher number n

of activities, ceteris paribus, the project duration will also typically also be higher and

there will be more chances for merge bias, so we would expect variability reduction to

be more beneficial; this is also confirmed by the experimental results. The figures also

show that very high variability often exhibits increased eNPV, but this phenomenon

only occurs for unrealistically high SCV values (SCV = 10) in some of the settings.

Similar patterns arise when activity failures are included and when there may be more

than one activity in the same module (which is not the case in the datasets to which

the plots pertain). The effects are also not dependent on the PH-type character of the

22

0

100

200

300

400

500

0
.1

2
5

0
.2

5
0

0
.3

7
5

0
.5

0
0

0
.6

2
5

0
.7

5
0

0
.8

7
5

1
.0

0
0

1
.1

2
5

1
.2

5
0

1
.3

7
5

1
.5

0
0

1
.6

2
5

1
.7

5
0

1
.8

7
5

2
.0

0
0

e
N

P
V

(a) OS = 0.8 and n = 11

0

100

200

300

400

500

600

700

0
.1

2
5

0
.2

5
0

0
.3

7
5

0
.5

0
0

0
.6

2
5

0
.7

5
0

0
.8

7
5

1
.0

0
0

1
.1

2
5

1
.2

5
0

1
.3

7
5

1
.5

0
0

1
.6

2
5

1
.7

5
0

1
.8

7
5

2
.0

0
0

e
N

P
V

(b) OS = 0.8 and n = 21

0

100

200

300

400

500

600

0
.1

2
5

0
.2

5
0

0
.3

7
5

0
.5

0
0

0
.6

2
5

0
.7

5
0

0
.8

7
5

1
.0

0
0

1
.1

2
5

1
.2

5
0

1
.3

7
5

1
.5

0
0

1
.6

2
5

1
.7

5
0

1
.8

7
5

2
.0

0
0

e
N

P
V

(c) OS = 0.6 and n = 11

0

200

400

600

800

1000

1200

1400

1600

1800

0
.2

5
0

0
.3

7
5

0
.5

0
0

0
.6

2
5

0
.7

5
0

0
.8

7
5

1
.0

0
0

1
.1

2
5

1
.2

5
0

1
.3

7
5

1
.5

0
0

1
.6

2
5

1
.7

5
0

1
.8

7
5

2
.0

0
0

5
.0

0
0

e
N

P
V

(d) OS = 0.6 and n = 21

0

200

400

600

800

1000

0
.1

2
5

0
.2

5
0

0
.3

7
5

0
.5

0
0

0
.6

2
5

0
.7

5
0

0
.8

7
5

1
.0

0
0

1
.1

2
5

1
.2

5
0

1
.3

7
5

1
.5

0
0

1
.6

2
5

1
.7

5
0

1
.8

7
5

2
.0

0
0

5
.0

0
0

e
N

P
V

(e) OS = 0.4 and n = 11

0

200

400

600

800

1000

1200

1400

1600

1800

0
.3

7
5

0
.5

0
0

0
.6

2
5

0
.7

5
0

0
.8

7
5

1
.0

0
0

1
.1

2
5

1
.2

5
0

1
.3

7
5

1
.5

0
0

1
.6

2
5

1
.7

5
0

1
.8

7
5

2
.0

0
0

5
.0

0
0

e
N

P
V

(f) OS = 0.4 and n = 21

Figure 7: Boxplots of eNPV for different values of SCV , n and OS with r = 0.1

23

2000

4000

6000

8000

10000

0
.1

2
5

0
.2

5
0

0
.3

7
5

0
.5

0
0

0
.6

2
5

0
.7

5
0

0
.8

7
5

1
.0

0
0

1
.1

2
5

1
.2

5
0

1
.3

7
5

1
.5

0
0

1
.6

2
5

1
.7

5
0

1
.8

7
5

2
.0

0
0

1
0
.0

0
0

e
N

P
V

(a) OS = 0.8 and n = 11

2

4

6

8

10

12

14

x 10
4

0
.1

2
5

0
.2

5
0

0
.3

7
5

0
.5

0
0

0
.6

2
5

0
.7

5
0

0
.8

7
5

1
.0

0
0

1
.1

2
5

1
.2

5
0

1
.3

7
5

1
.5

0
0

1
.6

2
5

1
.7

5
0

1
.8

7
5

2
.0

0
0

1
0
.0

0
0

e
N

P
V

(b) OS = 0.8 and n = 21

2000

4000

6000

8000

10000

0
.1

2
5

0
.2

5
0

0
.3

7
5

0
.5

0
0

0
.6

2
5

0
.7

5
0

0
.8

7
5

1
.0

0
0

1
.1

2
5

1
.2

5
0

1
.3

7
5

1
.5

0
0

1
.6

2
5

1
.7

5
0

1
.8

7
5

2
.0

0
0

1
0
.0

0
0

e
N

P
V

(c) OS = 0.6 and n = 11

1

2

3

4

5

6

7

8

x 10
4

0
.2

5
0

0
.3

7
5

0
.5

0
0

0
.6

2
5

0
.7

5
0

0
.8

7
5

1
.0

0
0

1
.1

2
5

1
.2

5
0

1
.3

7
5

1
.5

0
0

1
.6

2
5

1
.7

5
0

1
.8

7
5

2
.0

0
0

1
0
.0

0
0

e
N

P
V

(d) OS = 0.6 and n = 21

1000

2000

3000

4000

5000

6000

7000

8000

0
.1

2
5

0
.2

5
0

0
.3

7
5

0
.5

0
0

0
.6

2
5

0
.7

5
0

0
.8

7
5

1
.0

0
0

1
.1

2
5

1
.2

5
0

1
.3

7
5

1
.5

0
0

1
.6

2
5

1
.7

5
0

1
.8

7
5

2
.0

0
0

1
0
.0

0
0

e
N

P
V

(e) OS = 0.4 and n = 11

1

2

3

4

5

x 10
4

0
.3

7
5

0
.5

0
0

0
.6

2
5

0
.7

5
0

0
.8

7
5

1
.0

0
0

1
.1

2
5

1
.2

5
0

1
.3

7
5

1
.5

0
0

1
.6

2
5

1
.7

5
0

1
.8

7
5

2
.0

0
0

1
0
.0

0
0

e
N

P
V

(f) OS = 0.4 and n = 21

Figure 8: Boxplots of eNPV for different values of SCV , n and OS with r = 0.01

24

distributions: we have found comparable behavior in simulations with lognormal and

gamma distributions. As a final remark, we underline that all the observations made in

this section pertain exclusively to expected NPV; obviously, lower duration variability is

likely to induce lower variability in the NPV realizations as well, which may or may not

be of significant importance to management, depending for instance on whether an entire

portfolio of projects or rather only one individual project is being managed.

6 Policy class: experiments

Following up on the discussion in Section 3.1, we further examine the possible choices for

the policy class. Table 5 contains the results for an experiment with which we evaluate

whether the consideration of policies that start activities only at the end of other activi-

ties, is very restrictive. The experiments were run on the datasets with n = 11 and 21 that

were used in Section 5.2. We consider SCV ∈ {0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1}.
For n = 21 and OS = 0.4, we do not report results for networks with SCV ∈ {0.125, 0.25},
and we also do not cover the combination n = 21, OS = 0.6 and SCV = 0.125. The

reason for excluding some combinations is that lower SCV requires more phases to model

the activity durations: SCV = 0.25, for instance, requires four phases for each activity,

which results in a network of 4n phases. With r = 0.1 and for each value of SCV and

OS , Table 5 reports the decrease in the objective value by optimizing over the restricted

policy class as compared to the more general class that also considers starting new activi-

ties after the completion of each phase of each ongoing activity; the decrease is expressed

as a proportion of the payoff C and averaged over the 100 instances.

We conclude that the benefits of allowing activity start also at other times than only

at the completion of other activities are minor, and nowhere higher than around 0.3% of

the payoff. The benefits are higher especially when variability is low; this is logical, since

there are more phases and hence more decision times with lower SCV . The observation is

also in line with the fact that for deterministic durations, late-start scheduling is optimal

(see Section 3.1). When SCV = 1, the two classes coincide. At the same time, there

were no significant differences in the computational effort for finding an optimal member

in the larger policy class. In other words, from a computational viewpoint, there is no

real downside to allowing decisions to be made during the execution of activities, but

the benefits are also quite limited. Other values of r have also been tested, with similar

findings.

25

Table 5: Comparison of policy classes: average difference in eNPV as a proportion of
the payoff

SCV
0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

OS = 0.8 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000
n = 11 OS = 0.6 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000

OS = 0.4 0.003 0.002 0.002 0.001 0.002 0.001 0.001 0.000

OS = 0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n = 21 OS = 0.6 — 0.000 0.000 0.000 0.000 0.000 0.000 0.000

OS = 0.4 — — 0.000 0.000 0.000 0.000 0.000 0.000

7 Summary and outlook on research perspectives

Project planning with traditional tools typically ignores technological and duration uncer-

tainty. In this article, we have explained how to model scheduling decisions in a practical

environment with considerable uncertainty, and we have illustrated how decision making

based only on expected values can lead to inappropriate decisions. We have developed a

generic model for optimally scheduling R&D projects with stochastic activity durations,

possible activity failures and modular project completion. We have assessed the effect of

different degrees of activity duration variability on the expected NPV of a project. Fi-

nally, we have illustrated that higher operational variability does not always lead to lower

project values, meaning that (sometimes costly) variance reduction strategies are not al-

ways advisable. This contradicts the intuition that an increase in uncertainty necessarily

entails a decrease of system performance.

For future research, there are a number of topics that have been brought up in this

article and that deserve further exploration. In particular, an analytical study of the

different determinants of the effect of varying duration variability on the expected NPV

would be highly interesting; in this article, this analysis was mainly computational. This

pertains to project characteristics such as network density, which influences the impor-

tance of phenomena such as the merge bias effect, but it can also include the impact of

the discount factor. Additionally, higher moments of the duration distributions, such as

skewness and kurtosis, might also play a role. As a final interesting research avenue, we

mention the study of the variability of a project’s NPV rather than only the expected

value.

26

References

[1] W. J. Abernathy and R. S. Rosenbloom, “Parallel strategies in development projects,”

Management Science, vol. 15, no. 10, pp. 486–505, 1969.

[2] V. G. Adlakha and V. G. Kulkarni, “A classified bibliography of research on stochastic

PERT networks,” INFOR, vol. 27, no. 3, pp. 272–296, 1989.

[3] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of Modularity. Cambridge,

MA, USA: The MIT Press, 2000.

[4] I. Ben-David and T. Raz, “An integrated approach for risk response development in

project planning,” Journal of the Operational Research Society, vol. 52, no. 1, pp.

14–25, 2001.

[5] S. Benati, “An optimization model for stochastic project networks with cash flows,”

Computational Management Science, vol. 3, no. 4, pp. 271–284, 2006.

[6] A. H. Buss and M. J. Rosenblatt, “Activity delay in stochastic project networks,”

Operations Research, vol. 45, no. 1, pp. 126–139, 1997.

[7] S. Chopra and P. Meindl, Supply Chain Management: Strategy, Planning, and Oper-

ation, New Jersey, USA: Prentice Hall, 2013.

[8] Y. H. Chun, “Sequential decisions under uncertainty in the R&D project selection

problem,” IEEE Transactions on Engineering Management, vol. 41, no. 4, pp. 404–

413, 1994.

[9] K. Coolen, W. Wei, F. Talla Nobibon, and R. Leus, “Scheduling modular projects on

a bottleneck resource,” Journal of Scheduling, vol. 17, no. 1, pp. 67–85, 2014.

[10] S. Creemers, R. Leus, and M. Lambrecht, “Scheduling Markovian PERT networks

to maximize the net present value,” Operations Research Letters, vol. 38, no. 1, pp.

51–56, 2010.

[11] S. Creemers, B. De Reyck, and R. Leus, “Project planning with alternative tech-

nologies in uncertain environments,” KU Leuven, Faculty of Business and Economics,

Department of Decision Sciences and Information Management working paper #1314,

2013.

[12] B. De Reyck and R. Leus, “R&D-project scheduling when activities may fail,” IIE

Transactions, vol. 40, no. 4, pp. 367–384, 2008.

27

[13] M. Ding and J. Eliashberg, “Structuring the new product development pipeline,”

Management Science, vol. 48, no. 3, pp. 343–363, 2002.

[14] S. Elmaghraby, Activity Networks: Project Planning and Control by Network Models,

New York, NY, USA: John Wiley & Sons Inc, 1977.

[15] Y. Gerchak, “On the allocation of uncertainty-reduction effort to minimize total

variability,” IIE Transactions, vol. 32, no. 5, pp. 403–407, 2000.

[16] J. Gittins and J. Y. Yu, “Software for managing the risks and improving the prof-

itability of pharmaceutical research,” International Journal of Technology Intelligence

and Planning, vol. 3, no. 4, pp. 305–316, 2007.

[17] D. Granot and D. Zuckerman, “Optimal sequencing and resource allocation in re-

search and development projects,” Management Science, vol. 37, no. 2, pp. 140–156,

1991.

[18] J. N. Hagstrom, “Computational complexity of PERT problems,” Networks, vol. 18,

pp. 139–147, 1988.

[19] M. Huysmans, K. Coolen, F. Talla Nobibon and R. Leus, “A fast greedy heuristic

for scheduling modular projects,” KU Leuven, Faculty of Business and Economics,

Department of Decision Sciences and Information Management working paper #1227,

2012.

[20] G. Igelmund and F. J. Radermacher, “Preselective strategies for the optimization of

stochastic project networks under resource constraints,” Networks, vol. 13, no. 1, pp.

1–28, 1983.

[21] V. Jain and I. E. Grossmann, “Resource-constrained scheduling of tests in new prod-

uct development,” Industrial & Engineering Chemistry Research, vol. 38, no. 8, pp.

3013–3026, 1999.

[22] A.R.Jr. Klingel, “Bias in Pert project completion time calculations for a real net-

work,” Management Science, vol. 13, no. 4, pp. B-194–B-101, 1966.

[23] V. Kulkarni and V. Adlakha, “Markov and Markov-regenerative PERT networks,”

Operations Research, vol. 34, no. 5, pp. 769–781, 1986.

[24] L. Lenfle, “The strategy of parallel approaches in projects with unforeseeable uncer-

tainty: The Manhattan case in retrospect,” International Journal of Project Manage-

ment, vol. 29, no. 4, pp. 359–373, 2011.

28

[25] C. H. Loch, A. DeMeyer, and M. T. Pich, Managing the Unknown: A New Approach

to Managing High Uncertainty and Risk in Projects, Hoboken, NJ, USA: Wiley, 2006.

[26] A. Ludwig, R. M. Möhring, and F. Stork, “A computational study on bounding the

makespan distribution in stochastic project networks,” Annals of Operations Research,

vol. 102, pp. 49–64, 2001.

[27] R. H. Möhring, “Scheduling under uncertainty: Optimizing against a randomizing

adversary,” Lecture Notes in Computer Science, vol. 1913, pp. 15–26, 2000.

[28] R. H. Möhring, “Scheduling under uncertainty: Bounding the makespan distribu-

tion,” Lecture Notes in Computer Science, vol. 2122, pp. 79–97, 2001.

[29] R. R. Nelson, “Uncertainty, learning, and the economics of parallel research and

development efforts,” The Review of Economics and Statistics, vol. 43, no. 4, pp.

351–364, 1961.

[30] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models, Baltimore, MD, USA:

Johns Hopkins University Press, 1981.

[31] W. B. Powell, “What you should know about Approximate Dynamic Programming,”

Naval Research Logistics, vol. 56, pp. 239–249, 2009.

[32] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming, John Wiley & Sons Inc, 1994.

[33] C. W. Schmidt and I. E. Grossmann, “Optimization models for the scheduling of

testing tasks in new product development,” Industrial & Engineering Chemistry Re-

search, vol. 35, no. 10, pp. 3498–3510, 1996.

[34] M. J. Sobel, J. G. Szmerekovsky, and V. Tilson, “Scheduling projects with stochas-

tic activity duration to maximize expected net present value,” European Journal of

Operational Research, vol. 198, no. 1, pp. 697–705, 2009.

[35] S. C. Sommer and C. H. Loch, “Selectionism and learning in projects with complexity

and unforeseeable uncertainty,” Management Science, vol. 50, no. 10, pp. 1334–1347,

2004.

[36] F. Stork, “Stochastic resource-constrained project scheduling,” Technische Univer-

sität Berlin, PhD Thesis, 2001.

29

[37] S. Ward and C. Chapman, “Transforming project risk management into project

uncertainty management,” International Journal of Project Management, vol. 21, pp.

97–105, 2003.

[38] M. L. Weitzman, “Optimal search for the best alternative,” Econometrica, vol. 47,

no. 3, pp. 641–654, 1979.

[39] J. Y. Yu and J. Gittins, “Models and software for improving the profitability of

pharmaceutical research,” European Journal of Operational Research, vol. 189, no. 2,

pp. 459–475, 2008.

30

	Introduction
	Definitions and problem statement
	Stochastic project scheduling
	Modular projects
	Illustration

	Markov decision process
	Policy class
	The exponential case
	Illustration
	Generalization towards PH distributions

	Computational performance
	Impact of activity duration variability
	Impact of duration variability in the example instance
	Impact of variability: experiments

	Policy class: experiments
	Summary and outlook on research perspectives

