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In this work, we propose two novel classifiers for multi-class classification problems using mathematical
programming optimisation techniques. A hyper box-based classifier (Xu & Papageorgiou, 2009) that
iteratively constructs hyper boxes to enclose samples of different classes has been adopted. We firstly
propose a new solution procedure that updates the sample weights during each iteration, which tweaks
the model to favour those difficult samples in the next iteration and therefore achieves a better final solu-
tion. Through a number of real world data classification problems, we demonstrate that the proposed
refined classifier results in consistently good classification performance, outperforming the original hyper
box classifier and a number of other state-of-the-art classifiers.

Furthermore, we introduce a simple data space partition method to reduce the computational cost of
the proposed sample re-weighting hyper box classifier. The partition method partitions the original data-
set into two disjoint regions, followed by training sample re-weighting hyper box classifier for each
region respectively. Through some real world datasets, we demonstrate the data space partition method
considerably reduces the computational cost while maintaining the level of prediction accuracies.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction problems. Classification algorithms can be broadly divided into
Given a set of samples, each of which is described by certain
measurable features and labelled with a pre-determined class, data
classification concerns identifying the pattern within the sample
data and predicting the class labels of new samples. Data classifica-
tion has a wide range of applications from financial analysis (Min &
Lee, 2005; Sueyoshi, 2004; Sueyoshi & Goto, 2009), image classifi-
cation (Chi, Feng, & Bruzzone, 2008; McCann & Lowe, 2012;
Velasco-Forero & Angulo, 2013; Villa, Chanussot, Benediktsson,
Jutten, & Dambreville, 2013), medical data for disease diagnosis
or prognosis (Cascione, Ferro, Giugno, Pigola, & Pulvirenti, 2013;
Dagliyan, Uney-Yuksektepe, Kavakli, & Turkay, 2011; Guyon,
Weston, Barnihill, & Vapnik, 2002; Lee, Chuang, Kim, Ideker, &
Lee, 2008; Seera & Lim, 2014; Su, Yoon, & Dougherty, 2009; Wei,
Visweswaran, & Cooper, 2011; Yeoh et al., 2002), market price pre-
diction (Anbazhagan & Kumarappan, 2012) and document classifi-
cation (Li, Miao, & Wang, 2011; Sebastiani, 2002; Zhang & Gao,
2011).

Over the past decades, a wide range of classification algorithms
have been proposed in literature to tackle various classification
two categories: binary and multi-class classifiers. A binary classi-
fier is solely applicable to classification problems with two classes
while a multi-class classifier can deal with problems with more
than 2 classes. Compared with the large number of binary classi-
fiers, there are relatively fewer multi-class classifiers in literature
(Bal & Orkcu, 2011). Common strategies of tackling a multi-class
classification problem include either solving the problem once
using a multi-class classification algorithm or decomposing the
whole problem into a series of binary problems and solving itera-
tively the sub-problems using binary classifiers (Ou & Murphey,
2007; Wang, Chen, & Qin, 2010).

The existing classifiers in open literature are based on diverse
methodologies, including support vector machine (SVM), neural
network (NN), Naïve Bayesian, decision tree, mathematical pro-
gramming optimisation techniques, and so on. We provide below
a brief summary of some of the most popular classification
approaches, with some key classifiers shown in Fig. 1.
1.1. SVM

SVM constructs hyper plane to separate samples from different
classes. SVM builds hyper plane with the maximum soft margin,
i.e. maximising the margin between two classes while allowing

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2015.02.022&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.cie.2015.02.022
http://creativecommons.org/licenses/by/4.0/
mailto:lingjian.yang.10@ucl.ac.uk
mailto:s.liu@ucl.ac.uk
mailto:sophia.tsoka@kcl.ac.uk
mailto:l.papageorgiou@ucl.ac.uk
http://dx.doi.org/10.1016/j.cie.2015.02.022
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


Fig. 1. Some key classifiers. a: SVM; b: NN; c: decision tree; d: piece-wise linear classifier.
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misclassifications of the samples. The balance between distance of
the constructed hyper plane to different classes of samples and the
amount of misclassifications is controlled by a user-specified
trade-off parameter. One of the features that make SVM powerful
is the so-called kernel trick, which maps the dataset to higher-
dimensional inner product space, at where samples may be easier
to separate. A number of kernel functions, which greatly enhance
the suitability of SVM in identifying non-linear decision bound-
aries, can be employed, e.g., polynomial kernels and radial basis
function kernel. Solving SVM has been formulated as a convex
quadratic programming optimisation problem, which can be
solved to global optimality using a large number of non-linear sol-
vers (Carrizosa & Romero Morales, 2013; van Gestel et al., 2004).
Despite the popularity, optimal tuning of the trade-off parameter
and choice of kernel functions remain problem-specific issues that
considerably affect the predictive power of SVM (Amari & Wu,
1999; Diosan, Rogozan, & Pecuchet, 2012; Noble, 2006; Ozer,
Chen, & Cirpan, 2011).
1.2. NN

Mimicking a biological neural network, NN classifier consists of
a number of connected layers of neurons, which transforms an
input layer of features to an output layer of class labels. Each
neuron takes input as weighted summation of outputs from all
the neurons in the previous layer, and applies a non-linear activa-
tion function before passing the output to all the neurons in the
next layer (Kavzoglu, 2009). Frequently used activation functions
include: sigmoid, logarithmic and radial basis functions
(Arulampalam & Bouzerdoum, 2003). Despite its capacity to tackle
datasets with non-linear and complex decision boundaries, the
number of hidden layers, how many neurons allowed for each hid-
den layer, which activation function to use amount to a difficult
optimisation problem, which limits the generality of the method
(Hunter, Hao, Pukish, Kolbusz, & Wilamowski, 2012). In reality,
the structure of the network, i.e. the number of layers, the number
of neurons for each layer and the types of activation function, are
usually specified by the user, which reduces the problem of
training a neural network classifier to tune the weights of connec-
tions between consecutive layers of neurons to minimise the
classification error. Training a neural network is known to be time
consuming and can only guarantee local optimality.

1.3. Naïve Bayes

Naïve Bayes classifier belongs to the group of statistical classi-
fiers. It is based on the naive assumption that the effect of different
features on class membership predictions is independent from
each other (Martinez-Arroyo & Sucar, 2000; Rish, 2001). In general,
Naïve Bayes simply computes the support of each feature for each
class so that the maximum likelihood estimate is satisfied in the
training samples set. With the derived Bayesian rules the probabil-
ity of a sample being predicted into a class can be calculated. The
simplicity of Naïve Bayes classifiers also ensures computational
efficiency (Almeida, Almeida, & Yamakami, 2011). Although the
assumption of independence among features is more often than
not violated in practical datasets, Naïve Bayesian generally gives
comparable performance against much more sophisticated classi-
fiers (Jin, Lu, & Ling, 2003; Rish, 2001; Wong, 2012).

1.4. Decision tree

Decision tree is a recursive partitioning method that sequen-
tially splits samples into subsets. Starting from the whole dataset,
decision tree identifies one attribute and a break point, before
partitioning samples into subsets so that to improve the
homogeneity of the class label vector within the subsets. The
partitioning procedure is recurred for each child node until no fur-
ther split can result in an increase in training sample accuracy
(Chipman, George, & McCulloch, 1998; Gray & Fan, 2008). After



Table 1
Relative strength and weakness of certain classifiers.

Strength Weakness

SVM Guarantee of global
optimality; use of kernel
function to map the original
data to higher dimensional
feature space

User specified kernel
functions; user specified
tuning parameters; lack of
interpretability

NN Flexible to learn any
functional relationship

User specified network
structures; user specified
activation functions; lack of
interpretability

Naïve Bayes Simplicity Often unrealistic statistical
assumption

Decision tree Good interpretability; little
computational time

Tree structure sensitive to
slight change in training
samples

Hyper box Free of tuning parameters;
good interpretability

High computational cost
due to its use of integer
programming
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growing a large tree, small leaves that do not contribute signifi-
cantly to the training accuracy are removed to improve the
generalisation and predictive power of the constructed tree
(Chipman et al., 1998; Polat & Gunes, 2007; Rastogi & Shim,
2000). Interpretability is one of the main strengths of decision tree
classifier. The set of sequential linear rules generated are easy to
understand, providing valuable insights into the mechanism of
the underlying system. Decision tree has been shown to be
particularly vulnerable that perturbing a small proportion of train-
ing samples or re-sampling the training set are likely to result in a
very different tree structure (Gray & Fan, 2008).

1.5. Mathematical programming

Another group of classification models are built with mathe-
matical programming optimisation techniques. Sueyoshi (1999,
2001, 2004, 2006), Sueyoshi and Goto (2009), Bal and Orkcu
(2011) and Gehrlein (1986) have all proposed hyper planes-based
classifiers using either linear programming or mixed integer pro-
gramming techniques. Ryoo (2006) and Bagirov, Ugon, and Webb
(2011) propose models on piece-wise linear classifiers. In
Bertsimas and Shioda (2007), a model is presented separating sam-
ples into a number of polyhedrons, which are formed by multiple
hyper planes. The proposed formulation tries to enclose as many
samples belonging to the same class into the same polyhedrons
by optimising the positions of polyhedrons.

On the other hand, Xu and Papageorgiou (2006) and Xu and
Papageorgiou (2009) produce a mathematical programming-based
formulation modelling a hyper box (HB) classifier. A hyper box is
essentially a multi-dimensional rectangle with the number of
dimensions being equal to the total number of attributes in the
dataset. The proposed method aims to build for each class a num-
ber of hyper boxes enclosing as many samples as possible. The
hyper boxes belonging to different classes are constrained to not
overlap with each other, and each hyper box defines a distinct rule
enclosing a proportion of training samples. In Maskooki (2013), a
modified version of HB classifier has been developed which
requires only 1/3–1/2 computational time compared with the
original HB. Inspired by the promising performances of the HB
classifier, we propose two refined hyper box classifiers in this
work, aiming to improve the quality of the constructed boxes.

Many other classification algorithms based on mathematical
programming optimisation techniques exist in literature but
cannot be described here due to limited space (Armutlu,
Ozdemir, Uney-Yuksektepe, Kavakli, & Turkay, 2008; Bal, orkcu,
& Celebioglu, 2006; Bertsimas & Shioda, 2007; Glen, 2003; Kone &
Karwan, 2011; Ma, 2012; Saigo, Nowozin, Kadowaki, Kudo, &
Tsuda, 2009; Soylu & Akyol, 2014; Sun & Xiong, 2003; Turkay,
Uney, & Yilmaz, 2005; Uney & Turkay, 2006; Xanthopoulos &
Razzaghi, 2014; Zhang, Shi, & Zhang, 2009).

Without attempting to comprehensively review the above clas-
sifiers, we summarise their relative strengths and weaknesses in
Table 1 below.

1.6. Ensemble classifiers

Besides the single classifiers described above, some recent
research efforts have been focusing on developing ensemble classi-
fiers, which builds a number of single classifiers and aggregate their
classification outcomes to produce the final prediction (Breiman,
1996). Given a training sample set, Bagging (Bauer & Kohavi,
1999; Rokach, 2009) creates a number of bootstrap sample sets
by uniformly sampling with replacements, and each bootstrap sam-
ple set is then learned by a classifier. The final prediction is an
aggregation of decisions made by each classifier, by simple average
or more sophisticated voting strategy that certain classifiers have
more votes in the final decision (Breiman, 1996; Strobl, Malley, &
Tutz, 2009). Another recent advance in ensemble classification
algorithm is Boosting (Niu, Jin, Lu, & Li, 2009). One of the most
recognised Boosting algorithms is Adaboost (Freund & Schapire,
1997), which trains a set of classifiers in an iterative manner so that
the subsequent classifiers are constructed in favour of those sam-
ples misclassified by the last classifier, by updating the weights of
samples. Given a new sample with unknown class label, all the sin-
gle classifiers make their own predictions of which class it belongs
to and their decisions are combined to yield a final prediction.

In this work, we introduce two new solution procedures to
improve the performance of the HB classifier. We firstly extend
our previous work of HB classifier by incorporating a sample re-
weighting scheme. For HB classifier, misclassified samples can
either be outside all the derived hype boxes or can be enclosed
in hyper boxes belonging to other classes. Our proposed sample
re-weighting scheme works by assigning higher weights to mis-
classified samples enclosed by other hyper boxes, tweaking the
model to favour those difficult samples in the next iteration. In
doing so, we aim to increase the chance of them being correctly
classified in subsequent iteration and achieving a better final solu-
tion. Furthermore, observing the generally high computational cost
of the traditional HB classifier, we have introduced a data space
splitting method that partitions the training samples into two dis-
joint regions, each one of which defines a much smaller optimisa-
tion problem and thus can be solved easier. Computational
experiments clearly demonstrate that the proposed sample
re-weighting scheme achieves consistently higher prediction
accuracy than the traditional HB classifier. Meanwhile, the sample
partitioning method reduces the computational cost by 1 or 2
orders of magnitudes on the basis of maintaining the desirable
level of prediction rates.

The rest of the paper is structured as follows: in Section 2, we
will summarise both mathematical formulation and solution
procedure of the original HB classifier (Xu & Papageorgiou, 2006,
2009), which also serves as the basis of our work. Section 3 pro-
poses a refined HB classifier. In Section 4 we further introduce a
data space partition method in a bid to ease the high com-
putational demand of constructing hyper box classifier. Results of
computational experiments on a number of real world datasets
are to appear in Section 5, with the last section concludes with
our major findings.

2. A hyper box classifier

As mentioned before, our work is based on the classification
method proposed in Xu and Papageorgiou (2006, 2009), which
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describes a mathematical programming formulation modelling
classification boundaries as multiple high dimensional rectangles.
We summarise below the original formulation before presenting
our proposed refinements.

2.1. Mathematical model of HB

The indices, parameters and variables associated with the
model are listed below:

Indices

s
 sample

m
 attribute

i, j
 hyper box

is
 hyper box i that sample s is mapped into

c, k
 class

ic
 hyper box i that belongs to class c
Parameters

Asm
 numeric value of sample s on attribute m

C
 the total number of classes

M
 the total number of attributes

U
 a large positive number

e
 a small positive number
Continuos variable

Xim
 central coordinate of hyper box i on attribute m

LEim
 length of hyper box i on attribute m
Binary variable

Es
 1 if sample s is correctly enclosed in its hyper box is; 0

otherwise

Yijm
 1 if on attribute m lower bound of hyper box i is greater

than upper bound of hyper box j and ensuring non-
overlapping between the two; 0 otherwise
Whether a sample s is enclosed in its corresponding hyper box i
or not is modelled using the following two sets of constraints:

Asm P Xim �
LEim

2
� U � ð1� EsÞ 8s; is;m ð1Þ

Asm 6 Xim þ
LEim

2
þ U � ð1� EsÞ 8s; is;m ð2Þ

If Es takes the value of 1, sample s is correctly enclosed in hyper box
is, i.e. value of Asm lies between the lower bound (Xim � LEim/2) and
upper bound (Xim + LEim/2) of its hyper box is for all attributes;
otherwise sample s is misclassified as being outside its target box.
In Fig. 2a, we present a two dimensional presentation of samples
being inside and outside their corresponding hyper boxes. Hyper
boxes of different classes are not allowed to overlap, which is rea-
lised via the following two sets of constraints:

Xim � Xjm þ U � Yijm P
LEim þ LEjm

2
þ e 8m; ic; jk; c–k ð3Þ

X
m
ðYijm þ YjimÞ 6 2M � 1 8ic; jk; c < k ð4Þ

In constraint (3), when binary variable Yijm = 0, hyper box i and j
belonging to different classes do not overlap, i.e. lower bound of
box i is greater than upper bound of box j on attribute m; when bin-
ary variable Yijm = 1 constraints (3) become redundant. To avoid
overlapping of the hyper boxes in M-dimensional space, they need
to not overlap in at least one dimension, which is modelled by con-
straints (4). In Fig. 2b, we give a graphical example of overlapping
and non-overlapping hyper boxes. The objective function is to min-
imise the number of misclassifications (i.e. Es = 0):
min
X

s

ð1� EsÞ ð5Þ

Objective function (5), sample enclosing constraints (1), (2), and
hyper box non-overlapping constraints (3), (4) form the original
mathematical formulation, named MCP, in the original HB classifier
(Xu & Papageorgiou, 2009). The combination of linear objective
function and linear constraints, and presence of binary variables
define a mixed integer linear programming (MILP) formulation,
which can be solved to global optimality using standard solution
techniques, for example branch-and-bound.

2.2. HB iterative solution procedure

Last section describes a mathematical programming formula-
tion for building hyper boxes to separate samples. In Xu and
Papageorgiou (2009), an iterative solution procedure has also been
developed to allow potentially multiple hyper boxes per class to
improve the quality of the solution. This old iterative procedure
is outlined in Fig. 3 below.

Initially, one hyper box is created for each class of samples (ini-
tialise is) and the MCP model is solved once to enclose as many as
possible the samples into their own hyper boxes. Starting from the
second iteration, for any class having at least one misclassified
sample (Es = 0), one additional hyper box is allowed for this
particular class, followed by updating is, i.e. the correct classified
samples are still mapped to their original hyper box while the
misclassified samples are re-mapped to the new box. For the
classes that all their samples are correctly classified in the last
iteration, their sample-box mapping is are kept. The iterative pro-
cedure terminates when the number of misclassified samples does
not decrease in two adjacent iterations or when all the samples are
correctly classified. An artificial example is given in Fig. 4 to
illustrate the old iterative solution procedure.

2.3. Predicting new samples using derived hyper boxes

After training the HB classifier the derived hyper boxes are used
to predict the class label of a new sample. The prediction procedure
is intuitive as: (1) if a new sample falls into one of the derived
boxes, it is assigned the class label of the box; (2) if a new samples
lies outside all derived hyper boxes, it is assigned the class label of
its nearest box.

After reviewing the main features of hyper box classifier pro-
posed by Xu and Papageorgiou (2009), we are going to propose a
refined HB classifier in the next section.

3. A refined hyper box classifier

Inspired by the success of boosting algorithms, which typically
consists of iteratively learning classifiers while updating the
weight distribution of samples, we have introduced a sample
reweighting scheme into the traditional hyper box classifier in a
bid to improve its performance.

As mentioned earlier in Section 2, the traditional HB inherently
involves iterative training, i.e., after each iteration any class with
misclassified samples is updated with an extra hyper box and the
MCP model is re-solved. In our proposed work, we mimic the beha-
viour of boosting algorithms by reweighting samples between
iterations. More specifically, after each iteration, we update the
weights of all samples by assigning more weights to a subset of
misclassified samples, thus putting more emphasis into correctly
classifying them in the next iteration. When a sample s is mis-
classified by its hyper box, the misclassification can fall into two
categories: (1) misclassified sample lies outside all derived boxes;
(2) misclassified sample lies inside at least one of the derived boxes



Fig. 2. Graphic explanations of mathematical formulation of HB. a: sample s1, s2 and s3 are correctly enclosed in its hyper box (i.e. Es = 1) while sample s4 lies outside the box
(i.e. Es = 0); b: hyper box non-overlapping constraints (3) and (4) ensure that hyper boxes belonging to different classes (i1–j1 and i2–j1) cannot overlap while the restriction
does not apply to boxes belonging to the same class (i1–i2). Boxes i1–j1 are non-overlapping because they do not overlap on attribute m1 (i.e. Yj1,i1,m1 = 0), while i2–j1 do not
overlap on attribute m2 (i.e. Yj1,i2,m2 = 0).

Fig. 3. HB iterative solution procedure.
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that belong to a different class. We call the two types of errors
type1 and type 2, respectively. Fig. 5 visualises the two types of
misclassifications for a two dimensional case.

In Fig. 5a, two misclassified samples lie outside both derived
hyper boxes and before the next iteration, another box will be allo-
cated for the two samples of type 1 error. In the second iteration,
the two samples will be correctly enclosed in the additional hyper
box. In Fig. 5b, however, the two type 2 misclassified samples will
still be misclassified in the next iteration despite another allocated
hyper box. In fact, type 2 misclassified samples have only slight
chance of being correctly classified in the following iterations. In
this work, we propose a sample re-weighting scheme that gives
more weights to the type 2 misclassifications, which then will
increase the chance of them being correctly classified and achiev-
ing a better final solution. In order to accommodate the different
weights of samples, the objective function (5) in the traditional
HB has been modified to the following:

min
X

s

Psð1� EsÞ ð6Þ

where Ps denote the weight of sample s, equivalent to the cost of
misclassification. Eq. (5) can be seen as a special case of Eq. (6)
where Ps = 1 for all samples. Considering the new objective function,
when different weights are assigned to different samples, the model
will prioritise those samples with higher weights for the overall
misclassification cost to reach globally minimum. We keep other



Fig. 4. HB iterative solution procedure. At the initial iteration one box is allowed
per class and after solving the MCP model, the 4 misclassified samples represented
by circles are re-assigned to an extra box while no additional box is given to the
class represented by triangle due to zero misclassifications. After solving the MCP
model for the 2nd iteration, the only misclassified sample from the circle class is
given another box, followed by solving the MCP model another time. The iterative
procedure terminates at the 3rd iteration because the total number of mis-
classifications fails to decrease from the last iteration.
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constraints (1)–(4) in the new formulation, which is named W_MCP
(Weighting_MCP). The W_MCP formulation is still an MILP. The
flowchart of the modified iterative hyper box method, called
SRW_HB (Sample Re-Weighting_Hyper Box), is constructed in
Fig. 6.

The proposed SRW_HB also implements an iterative solution
procedure. The first iteration of SRW_HB is identical to the first
iteration of the traditional HB that one box per class is generated
to minimise the total cost of misclassifications while all the sam-
ples are having a weight value, Ps, of 1. If there are misclassified
samples, from the second iteration one more box is allowed for
each class with at least one misclassified sample. The sample-box
mapping is updated that correctly classified samples from the last
iteration keep their mapping from the last iteration, while the mis-
classified samples (both type 1 and type 2) are re-mapped to their
newly generated hyper boxes. The misclassification cost for cor-
rectly classified samples and type 1 misclassified samples are set
Fig. 5. Two types of hyper box misclassifications. a: Type 1 misclassification that samples
classes; b: type 2 misclassification that samples are not enclosed correctly by its hyper
to 1, while the cost for type 2 misclassified samples are set to a
higher value CT (CT > 1). The W_MCP model is re-solved and the
above procedure is repeated. The iterative solution procedure ter-
minates when the number of misclassified samples fail to improve
in 2 consecutive iterations. The testing procedure is the same as
the original HB that a new sample is allocated to its nearest derived
hyper box and then assigned the membership of the hyper box.

4. A data space partition scheme

In the original publication (Xu & Papageorgiou, 2009), it is
claimed that for some datasets, MCP models cannot be solved to
global optimality in 200s for all iterations. Note that computational
complexity of an MILP problem is dependent on the size of the
problem, we therefore propose here a simple data space partition
scheme to ease the computational burden of building hyper boxes
and attempt to identify better solutions.

Given a dataset Asm, the average value of all samples on each
attribute m is calculated as Averm, followed by computing the num-
ber of samples satisfying Asm P Averm and Asm < Averm, respec-
tively, which are denoted as RUm and RLm. Compute for each
attribute the difference between the samples placed in the two dis-
joint regions partitioned from Averm as Diffm = |RUm � RLm|. The
attribute offering the most even partition, i.e. the smallest Diffm

value is selected as the partition attribute m⁄. When there are mul-
tiple attributes offering equally low Diffm value, the partition attri-
bute is randomly chosen among them. Subsequently the original
dataset is partitioned into two disjoint regions R1 and R2, which
respectively contain samples satisfying Asm� P Averm� and
Asm� < Averm� . In each region, we train the proposed sample re-
weighting hyper box classifier (SRW_HB). It is important to note
that extra constraints are added to the W_MCP to make sure that
the derived hyper boxes from each region are not unnecessarily
large to overlap with hyper boxes derived from the other region
on the partition attribute m⁄, thus ensuring the boxes in one region
do not overlap with the boxes in the other region:

Xim �
LEim

2
P Averm 8i;m ¼ m� ð7Þ

Xim þ
LEim

2
6 Averm � e 8i;m ¼ m� ð8Þ

Eq. (7) are added to W_MCP when solving R1 while Eq. (8) are
added to W_MCP when training on samples in R2. An arbitrarily
small positive constant e is inserted in Eq. (8) to ensure the two
regions do not share the same boundary. The final decision bound-
ary is formed by all the derived hyper boxes from both regions. The
idea behind the data space partition method is that the required
computational time to solve an MILP grows exponentially with
the number of training samples, making it hard to identify optimal
solutions at feasible computational cost. Partition the dataset into
are not enclosed correctly by its hyper box and are outside all the boxes from other
box and are inside at least one of the boxes belonging to another class.



Fig. 6. Flowchart of the proposed SRW_HB. The highlighted content in red differentiates the SRW_HB from the traditional HB. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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two disjoint regions with similar numbers of samples makes both
regions equally easy to solve. We name the framework employing
the proposed simple data space partition scheme to create two dis-
joint sub-regions and construct sample re-weighting hyper box
classifiers in both regions as DR_SRW_HB, the flowchart of which
is illustrated in Fig. 7.

In this work we have tested the proposed data space partition
scheme, which splits the entire data space into two disjoint
regions, on medium-size datasets. It is important to note that for
larger size datasets, the current proposed strategy can be further
generalised, i.e., partition the data space into 3, 4 or more disjoint
parts, to accommodate more samples and attributes.

5. Computational results

In this section, the applicability and effectiveness of the pro-
posed SRW_HB and DR_SRW_HB classifiers are demonstrated
through 6 real world datasets, including Phenol (Niu et al., 2009),
Firm (Sueyoshi, 2006; Xu & Papageorgiou, 2009) and 4 datasets
downloaded from UCI machine learning repository (http://
archive.ics.uci.edu/ml/), namely Ionosphere, glass, breast tissue,
and iris. We have implemented a number of literature classifiers
to compare the classification rates with our proposed SRW_HB
and DR_SRW_HB. The group of classifiers include Naïve Bayes,
SMO (support vector machine), Logistic regression, Bagging,
Adaboost, NN and three mathematical programming-based multi-
class classifiers: HB, Gehrlein (1986) and Bal and Orkcu (2011).

To comprehensively evaluate the overall classification perfor-
mances of various classification algorithms, we use two testing
scenarios as below:
Scenario 1: perform 50 random partitions of each dataset into a
training set containing 70% samples and a testing set containing
the 30% samples. For each partition we train a classifier on training
set and test the classification performance on testing set.

Scenario 2: conduct a leave-one-out cross validation that for
each dataset hold only one sample in the testing set while using
the rest as training samples. The process is repeated until all sam-
ples are used as testing sample.

All the mathematical programming-based classification meth-
ods, including SRW_HB, HB, and approaches proposed by
Gehrlein (1986) and Bal and Orkcu (2011), are implemented in
General Algebraic Modeling System (GAMS) 24.1 (GAMS
Development Corporation, 2013) and solved using CPLEX 12.3 sol-
ver on a 2.40 GHz speed, 2393 MHz cpu computer system.
Optimality gap is set as 0 when solving MILP problems. For all
hyper box-based methods we limit the computational time per
iteration as 200 s. Other classifiers are implemented in Waikato
Environment for Knowledge Analysis (WEKA) machine learning
software (Hall et al., 2009). Default setting are retained for Naïve
Bayes, Logistic regression, SMO, Bagging and Adaboost, while for
NN the following parameters from Xu and Papageorgiou (2009)
are used: hidenLayers = 2; learning rate = 0.1; momentum = 0.7;
trainingTime = 10,000.

5.1. Real world datasets

We use 6 real world datasets to test the applicability and com-
petitiveness of the proposed classification algorithms. Ionosphere
concerns some radar data that given 34 attributes reflecting the
received signals the task is to classify free electrons in the

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/


Fig. 7. Flowchart of the proposed DR_SRW_HB.

Table 2
Summary of real world datasets.

Dataset Number of
samples

Number of
attributes

Number of
classes

Ionosphere 351 34 2
Phenol 274 9 4
Glass 214 9 6
Breast

tissue
106 9 6

Iris 150 4 3
Firm 83 13 2
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ionosphere into 2 classes. The dataset Phenol (Niu et al., 2009) con-
cerns classifying 274 phenols, characterised by 9 molecular
descriptors that quantify their compounds, into 4 possible toxicity
mechanisms including polar narcotics, respiratory uncouplers, pro-
electrophiles and soft electrophiles. Glass example downloaded is a
collection of glass samples belonging to 6 types of glass. Each glass
sample is descripted by 9 attributes, each of which corresponds to
weight percentage of a chemical compound (sodium, aluminium,
calcium, etc.) in corresponding oxide. Breast tissue dataset has
106 freshly excised tissue samples in the breast area, and are
descripted by 9 attributes such as area under spectrum, length of
the spectral curve. Iris is one of the most studied benchmark data-
sets in data classification. 150 instances from 3 types of iris plant
are characterised by 4 features, including sepal length, sepal width,
petal length and petal width. Firm dataset aims to predict the
financial performance of a number of companies, based on certain
performance indices for example cash to total assets, long-term
debt to total assets, into a class of ‘good’ firms and the other class
of firms went bankrupt between 1996 and 2002. A brief summary
of the employed real world datasets is provided in Table 2.

5.2. Sensitivity analysis of CT

In this section, a sensitivity analysis is performed to tune the
user-specific parameter CT for the proposed SRW_HB, which
denotes the cost for type 2 misclassified samples and is higher than
1. We present in Fig. 8 the results of sensitivity analysis for all the 6
datasets.

A series of values have been tested for CT, including 2, 3, 4 and 5.
It is clear from Fig. 8 that varying CT has different effects on differ-
ent datasets. For Ionosphere dataset and scenario 1, prediction
accuracy first increases from CT = 2 to CT = 3, and then falls down
when CT is equal to 4 and 5. With regards to scenario 2, the trend
is similar that prediction rate goes up from CT = 2 to CT = 3, and
then decreases later on. For Phenol, as CT increases classification
rate for scenario 2 goes up from CT = 2 to CT = 3, 4 before
decreasing when CT = 5, while classification rates for scenario 1
keep constant. Glass is the mostly affected by different values of
CT among all tested datasets that for both scenarios prediction
rates increase from CT = 2 to 4 by about 5%, which subsequently
drops down when CT = 5. With regards to Breast tissue case study,
classification rates for both scenarios fluctuate throughout the
tested CT values and both peaked at CT = 3. When it comes to Iris
dataset, increasing CT appears to have minor impact on scenario
1 while for scenario 2 prediction rate keeps constant between
CT = 2 and 4 before growing slightly with CT = 5. Lastly, for Firm
dataset, classification rate for scenario 2 keeps constant over the
tested range while for scenario 1 the accuracy goes down from
CT = 4 to 5.

Overall, it is obvious that the sensitivity analysis for SRW_HB
does not yield a clear optimal CT value, as in different datasets
and different scenarios peak prediction rates come from different
CT values. On the other hand, it appears that CT = 3 gives a robust
performance as prediction rate often peaks at or near CT = 3 (e.g.
Ionosphere, Breast Tissue). Therefore we take CT = 3 for SRW_HB
when comparing its classification performance against other
implemented classifiers in literature, which has good performance
for almost all datasets investigated.



Fig. 8. Sensitivity analysis of CT for the proposed SRW_HB on two testing scenarios. Blue line with triangle markers denotes scenario 1 and red line with round markers
denotes scenario 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5.3. Classification performance comparison

In this section, we evaluate the classification performance of 10
classifiers, including the proposed SRW_HB and traditional HB. For
the proposed SRW_HB classifier, we set CT = 3 for all datasets to
offer a fair comparison. The results are presented in Tables 3 and
4 for scenario 1 and 2, respectively.

For both testing scenarios, no classifiers are showing dominant
classification rates against others, as different datasets play to the
strengths of different classification methodologies. This observa-
tion is consistent with the previous findings (Adem & Gochet,
2006; Lam & Moy, 2002). A good classifier should maintain consis-
tently good performance across many different classification prob-
lems. The proposed SRW_HB, showing this desired consistency, is
usually among the top 3 out of the 10 classifiers. Note that the pro-
posed SRW_HB outperforms the traditional HB for most scenarios.

We summarise here the overall classification performance of
the 10 implemented classifiers by using a scoring scheme,
employed also in Xu and Papageorgiou (2009). Briefly, for each sce-
nario and a particular dataset, the classifiers are ranked in descend-
ing order according to their prediction accuracies, i.e. the classifier
with the highest classification rate is awarded a score of 10; the
classifier with the second highest classification rate is assigned a
score of 9, and so on. For each scenario, the average score across
all datasets is taken as the indication of the overall competitiveness
of a particular classifier. The higher the average score, the better
the performance of the classifier.

The score ranking is presented in Fig. 9, which shows that in
both scenarios the proposed SRW_HB classifier not only gives
improved classification accuracy from the traditional HB, but also
outperforms other state-of-the-art classifiers.

5.4. DR_SRW_HB significantly reduces computational cost while
maintaining the classification accuracy compared with SRW_HB

In the last section, we demonstrate that the proposed SRW_HB
classifier, which modifies the traditional HB classifier by updating
the misclassification costs for samples with type 2 errors after each
iteration, gives overall better prediction accuracy compared with a
number of state-of-the-art classifiers. Recall that we have proposed
in Section 4 a DR_SRW_HB method that implements a simple data
space partition scheme to split the original data space into two dis-
join regions, followed by training the SRW_HB for both regions.
The idea is that each region contains about half samples of the
entire problem, which is then much easier to solve.

We now test the effectiveness of the DR_SRW_HB against
SRW_HB for both scenarios. With regard to the proposed
SRW_HB method, W_MCP model cannot be solved to global
optimality for at least one iteration (within 200 s) on 4 datasets
(either scenario), including Phenol, Glass, Breast tissue and



Table 3
Classification rate comparison for scenario 1.

Classifiers/dataset Ionosphere (%) Phenol (%) Glass (%) Breast tissue (%) Iris (%) Firm (%)

SRW_HB 90.69 89.41 71.09 66.32 95.64 93.84
HB 89.37 87.02 68.53 63.16 94.76 93.92
Gehrlein (1986) 84.55 86.05 56.68 52.32 93.64 86.67
Bal and Orkcu (2011) 89.15 84.80 61.59 59.23 86.93 89.20
Naïve Bayesian 82.52 86.29 48.13 67.34 96.00 92.61
SMO 87.94 81.29 55.84 54.31 96.67 93.16
Logistic regression 86.48 88.07 62.16 64.56 95.56 86.73
Bagging 90.96 90.17 68.69 66.75 94.67 92.43
Adaboost 90.36 77.85 42.78 36.19 94.36 93.16
NN 88.77 87.99 59.97 60.66 95.11 93.23

For each dataset, the highest classification accuracy achieved is marked in bold.

Table 4
Classification rate comparison for scenario 2.

Classifiers/dataset Ionosphere (%) Phenol (%) Glass (%) Breast tissue (%) Iris (%) Firm (%)

SRW_HB 91.17 92.34 66.36 67.92 96.00 95.18
HB 89.74 90.51 65.89 66.98 94.00 95.18
Gehrlein (1986) 85.47 85.77 56.07 64.15 94.00 81.93
Bal and Orkcu (2011) 87.18 87.59 64.95 68.87 88.67 98.80
Naïve Bayesian 82.62 86.50 49.53 66.04 95.33 91.57
SMO 88.03 79.56 54.67 56.60 96.67 95.18
Logistic regression 89.17 89.05 62.62 68.87 98.00 84.34
Bagging 92.02 91.24 72.90 65.09 94.00 90.36
Adaboost 90.88 78.47 44.86 40.57 97.33 93.98
NN 89.46 88.69 59.35 60.38 95.33 91.57

For each dataset, the highest classification accuracy achieved is marked in bold.

Fig. 9. Overall standing of classifiers. We give scores to competing classifiers according to the ranking of their classification rates in each dataset and average the scores over
all dataset to comprehensively evaluate their relative competitiveness. In both scenarios, the proposed SRW_HB leads to the most robust classification performance across all
implemented classifiers.

Table 5
Classification rate comparison between two proposed classifiers DR_SRW_HB and
SRW_HB.

Ionosphere (%) Phenol (%) Glass (%) Breast tissue (%)

Scenario 1
DR_SRW_HB 90.08 90.41 69.19 63.55
SRW_HB 90.69 89.41 71.09 66.32

Scenario 2
DR_SRW_HB 89.74 92.34 73.36 67.92
SRW_HB 91.17 92.34 66.36 67.92

For each dataset, the highest classification accuracy achieved is marked in bold.
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Ionosphere. We therefore run DR_SRW_HB on those 4 datasets and
compare the prediction accuracy with that achieved by SRW_HB.
The results are presented in Table 5. For scenario 1, DR_SRW_HB
leads to higher classification rate on Phenol while SRW_HB is more
accurate on Glass, Breast tissue and Ionosphere. It should be noted
that compared other literature classifiers, DR_SRW_HB still shows
better overall performance. When it comes to scenario 2,
DR_SRW_HB offers much higher prediction rates on Glass example,
ties with SRW_HB on Phenol and Breast Tissue while losing on
Ionosphere example. We can see that DR_SRW_HB performs better
in scenario 2 than scenario 1, because scenario 2 requires more
computational effort than scenario 1 as a result of more samples
involved in training of scenario 2. Considering both two scenarios,
it is therefore conclusive that the proposed data space partition
scheme can maintain the overall prediction rates of SRW_HB on
complex examples.
Recall that the DR_SRW_HB has been proposed to overcome the
high computational cost of tackling complex classification prob-
lems, we report here, for scenario 2, the average computational



Fig. 10. Computational cost comparison between HB, SRW_HB and DR_SRW_HB. In the figure, average computational time per run of scenario 2 is reported for traditional HB,
SRW_HB and DR_SRW_HB on 4 datasets Phenol, Glass, Breast tissue and Ionosphere. It is obvious that the DR_SRW_HB, which solves two sub-problems of smaller sizes,
requires significantly lower computational cost.
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time per run consumed by three variants of hyper box-based
classifiers, namely HB, SRW_HB and DR_SRW_HB. The results,
presented in Fig. 10, show clearly that by partitioning a complex
problem into two sub-problems and solving two relatively easy
problems, the computational cost dramatically decreases. On
Phenol and Breast tissue, DR_SRW_HB constructs hyper boxes in
a matter of seconds while the CPU time consumed by HB and
SRW_HB are significantly higher. While it takes hundreds of sec-
onds for DR_SRW_HB to train hyper boxes on Glass and
Ionosphere, the actual computational time is still small fractions
of the consumption of HB and SRW_HB. For scenario 1, the trend
is similar that the proposed data space partition method con-
siderably reduces computational cost (data not shown). We also
compare our proposed DR_SRW_HB with an alternative solution
procedure proposed in literature for hyper box classifier
(Maskooki, 2013), in which after each iteration, correctly classified
training samples are removed and the dimensions of established
hyper boxes are fixed before optimising the hyper boxes for the
next iteration. It has been shown that the proposed solution proce-
dure results in the computational cost saving of 2–3-fold and gen-
erally decreased classification accuracy. Our proposed DR_SRW_HB
classifier clearly outperforms (Maskooki, 2013) by offering much
higher computational cost reduction. Thus, it is concluded that
DR_SRW_HB results in huge CPU savings of 1 or 2 orders of magni-
tude, compared with HB and SRW_HB. Overall, we propose here a
strategy that for a classification problem which SRW_HB struggles
to identify globally optimal solutions for all iterations, the
DR_SRW_HB is used instead; otherwise for an easy classification
problem, the SRW_HB is used.

Despite the significant reduction in computational time,
DR_SRW_HB, based on mixed integer programming, is still gener-
ally consuming more computational resource than the existing
methods in literature. We note here that the prediction accuracy
remains the most important aspect of many real world data classi-
fication problems, for example medical disease classification prob-
lems (Dagliyan et al., 2011; Nguyen & Rocke, 2002; West et al.,
2001). The classifiers proposed in this work are aimed to achieve
higher prediction accuracy for offline classification problems
where computational time is not of major concern.

6. Concluding remarks

Data classification is an important data mining area subject to
extensive on-going research interest. Inspired by the promising
classification rates of a hyper box classifier (Xu & Papageorgiou,
2006, 2009) in literature, we propose in this work two new solu-
tion procedures that aim to improve the performance of hyper
box classifier. The first improvement, SRW_HB, updates the sam-
ples weights during each iteration of the training process so that
the type 2 misclassified samples, i.e. misclassified samples
enclosed in one of the hyper boxes from another class, are given
more weights than the other samples. Through 6 binary and
multi-class real world datasets, it is demonstrated that the pro-
posed SRW_HB can provide consistently good classification rates,
outperforming the traditional HB and other state-of-the-art classi-
fiers for example SVM, NN and Logistic regression.

We further introduce a data space partition method to reduce the
computational cost of SRW_HB, which works by splitting the data-
set into two disjoint regions, each of which is then solved indepen-
dently using SRW_HB. On the 4 complex datasets, the proposed
DR_SRW_HB appears to consume dramatically less computational
time than the original HB and SRW_HB, often in 1 to 2 orders of mag-
nitude, on the basis of maintaining the desirable level of prediction
accuracy compared with the proposed SRW_HB classifier.

A natural extension of this work in the near future is to investi-
gate a more generic data space partition scheme. The sample
partition scheme presented and used for DR_SRW_HB proves to
significantly reduce computational cost but can only perform
binary partition. For large-scale data classification problems, the
proposed DR_SRW_HB may struggle to identify quality solution
in training procedure. Therefore, a generic data space partition
method, which splits data into multiple regions and each one of
which is easy to solve, can help scale up the hyper box classifiers
to large-size problems.
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