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ABSTRACT 

Values, rewards, uncertainty and risk play a central role in economic and psychological 

theories of decision-making. Over the past decade, numerous experiments have used 

neuroimaging techniques to uncover the neural realization of such decision variables while 

individuals engage in a range of tasks. These have led to a consensus that economic choice 

involves interplay between multiple systems that enjoy both cooperative and competitive 

relations. In this thesis, I utilize functional magnetic resonance imaging (fMRI) and 

computational formalizations of choice to explore how these different brain systems interact 

to support adaptive decision-making.  

In Chapters 4 and 5, I present data from a task in which the inclusion of a dynamic 

environment required subjects to sometimes approach an option they would normally avoid, 

or avoid an option they would normally approach. This allowed me to uncover brain systems 

that track time-varying components of the environment, or immediate reward information, 

as well as the mechanisms by which these components are integrated. I found that adaptive 

control in this context involves downstream integration, via functional coupling, of distinct 

decision components that are computed in separate, often widespread, networks. Yet, 

choice variables represented in the striatum may in some cases be resistant to modulation, 

contributing to maladaptive behaviour.  

In Chapter 6, I investigate whether task training alters the way in which these different value 

systems manifest in choice; or more broadly, whether value computations in the brain adapt 

as humans become more proficient at internalizing models of the world. To address this, I 

trained subjects on a value-guided decision-making task for 3 consecutive days. The data are 

suggestive of a shift in the implementation of value-guided planning with training, from a 
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more cumbersome, resource-dependant mechanism, to a more efficient and robust process 

that remains resistant to attentional load.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introducing neuroeconomics 

Humans and other animals are continuously required to make choices between alternative 

options or courses of action. Neuroeconomics is the study of underlying neurobiological 

processes that support such decision-making. Importantly, this field draws on economics, 

psychology, neuroscience and computational modelling, all of which are required for a full 

understanding of human behaviour. Neuroeconomics is typically studied in the context of 

behavioural tasks where subjects are provided knowledge of (or must learn about) a set of 

reinforcers and task contingencies that allow them to maximize rewards earned and 

minimize punishments or losses.  

To date, there is a broad consensus, supported by an array of both human and animal 

experiments, that choice involves assigning a ‘value’ to potential alternatives that compete 

such that the option with the highest expected value can be chosen (Basten, Biele, Heekeren, 

& Fiebach, 2010; Hunt et al., 2012; Kennerley, Dahmubed, Lara, & Wallis, 2009; D. Lee, Seo, 

& Jung, 2012; Padoa-Schioppa, 2011; Plassmann, O'Doherty, & Rangel, 2007; Rangel & Hare, 

2010; Roesch, Calu, & Schoenbaum, 2007; Schultz, 2000; Strait, Blanchard, & Hayden, 2014; 

Wunderlich, Rangel, & O'Doherty, 2009). This process can be subdivided into five arbitrary 

stages, each equally pertinent for optimal decision-making and each evoking distinct 

computations (see Figure 1.1, p. 11). Although the precise organisation of these stages is still 

debated, they provide a useful breakdown of the decision-making process into separate 

components that can be investigated in turn. In the following section I introduce these stages 
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and include a brief synopsis of our understanding of the underlying neurobiology. I then 

summarize how the work presented in this thesis contributes to that knowledge.  

 

 

Figure 1.1 Computations involved in decision-making; adapted from (Rangel, Camerer, & 

Montague, 2008). In order to initiate a decision, an agent must first identify and represent 

their internal state, the external state of the world, and the possible set of actions available. 

Next, a value must be assigned to each of these actions, which are compared so that the 

action with the highest expected utility can be selected. Once the chosen action is executed, 

the agent can then assess the desirability of the outcome. Any discrepancy between the 

expected and received outcome is used to inform future choice through learning. 
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1.2 The stages of value-guided decision-making 

1.2.1 Stage 1: Representation  

An agent wishing to make decisions within a dynamic environment must identify (and 

represent) a number of key variables that form an integral part of the decision-making 

process. First, the current set of internal states or motivations must be recognized. For 

example, an animal may assign a higher ‘value’ to water (and indeed experience it as 

intrinsically more rewarding) when in a thirsty state as opposed to a hungry state. Similarly, 

animals are more likely to exert effort for a food reward, such as pressing a lever, when 

hungry compared to when sated. Previously it has been suggested that internal states drive 

changes in behaviour through negative feedback mechanisms that aim to regulate 

homeostasis, or rather, to minimize the difference between the current state and a 

hypothetical physiological setpoint (Toates, 1986).  

While many behavioural characteristics are explained well by this framework, it has received 

wide criticism. Specifically, behaviours typically associated with discrete motivational states 

often occur in the absence of a negative feedback signal. For example, consumption of food 

or drink often precedes or anticipates physiological depletion (Toates, 1986). Further, food 

that is administered intravenously (and thus lacking any associated sensory properties) does 

not reinforce behaviours otherwise induced by motivated states. In this regard, rats do not 

learn to enact a response that results in intragastric feeding, but quickly learn to enact the 

same response when it results in the normal oral consumption of milk (N. E. Miller & Kessen, 

1952). Consequently, alternate models have been proposed which describe a more unified 

role for classical reinforcement learning and homeostatic regulation, whereby rewards are 

re-defined as action outcomes that reduce subsequent homeostatic drive (Keramati & 

Gutkin, 2011).  
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Relatively little is known about the neurobiology of how changes in internal state influence 

decision-making. The hypothalamus has long been implicated in homeostasis and in 

particular the regulation of energy intake (Dietrich & Horvath, 2013). For example, neurons 

in the arcuate nucleus and ventromedial hypothalamus regulate their activity in response to 

changes in the levels of metabolic fuels including glucose and fatty acids (Lam, Schwartz, & 

Rossetti, 2005; Minokoshi et al., 2004). But it is not yet clear whether the hypothalamus has 

a direct role in regulating decision-making. Interestingly, peripheral hormones that play an 

important role in the regulation of energy intake and appetite have been shown to act within 

key decision-making regions in addition to regulating hypothalamic function. For example, 

leptin administration alters activity levels within the human striatum (Farooqi et al., 2007), 

and it is thought that ghrelin signalling interacts with the striatal dopamine response in 

rodents (Narayanan, Guarnieri, & DiLeone, 2010). Yet the mechanism via which this might 

influence the valuation or subsequent action selection stages remains vague.  

It has recently been suggested that tonic dopamine, a neuromodulator that plays a crucial 

role in action, reward, and arousal, encodes the average reward rate of the environment, 

and is thus closely linked to motivation (Y.  Niv, Daw, & Dayan, 2005). This idea has its origin 

in a proposal that outcomes tend to have higher utilities in more deprived states, generating 

a higher average expected reward rate, and that this reward rate plays an important role in 

determining optimal response times. In brief, normative models predict that when an agent 

interacts with an environment where the average reward rate is higher, all actions should be 

performed at a faster rate, regardless of their outcomes, to preclude opportunity costs for 

future rewards induced by slow responses. The proposal that dopamine is involved in 

tracking this reward rate is corroborated by evidence that administration of L-DOPA, the 

precursor to dopamine, exacerbates the relationship between average reward and the 

vigour with which actions are emitted in humans (Beierholm et al., 2013). Yet, several open 
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questions remain, particularly regarding how internal states interact with different value 

systems to guide motivated decisions.  

In addition to the agent’s own internal state, other variables that need to be accounted for 

include the external state of the world, and the range of different possible options or actions 

that should be included in a putative value comparison process. For example, a different 

course of action may be chosen when in a volatile compared to stable environment, or in a 

high threat compared to low threat condition. Evidence from recent studies implicate 

prefrontal cortex (in addition to the parietal cortex) as important (Behrens, Woolrich, 

Walton, & Rushworth, 2007; Glascher, Daw, Dayan, & O'Doherty, 2010; Ide, Shenoy, Yu, & 

Li, 2013; Kolling, Behrens, Mars, & Rushworth, 2012; Rushworth, Noonan, Boorman, Walton, 

& Behrens, 2011), and this will be discussed in the following sections. Finally, there is a dearth 

of knowledge regarding how the brain decides which actions to assign values to at this stage 

of the decision-making process.  

1.2.2 Stage 2: Valuation 

Given a representation of both internal and external states, and a set of candidate options 

or actions, the brain then needs to assign a value to each option so that the option likely to 

maximize the total expectation of reward and minimize the expectation of punishment can 

be selected. Much of the literature in both animals and humans has focused on the valuation 

stage. Correlates of the subjective value of goods have been found in a multitude of brain 

regions including the dorsolateral prefrontal cortex (Kable & Glimcher, 2007; Plassmann et 

al., 2007; Sokol-Hessner, Hutcherson, Hare, & Rangel, 2012), anterior cingulate cortex (X. Cai 

& Padoa-Schioppa, 2012; Kennerley et al., 2009), parietal cortex (Hunt et al., 2012; Platt & 

Glimcher, 1999), amygdala (Jenison, Rangel, Oya, Kawasaki, & Howard, 2011), posterior 

cingulate cortex (Jocham et al., 2014; Kable & Glimcher, 2007), and orbitofrontal cortex 

(Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008; Kennerley, Behrens, & Wallis, 2011; 
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Padoa-Schioppa & Assad, 2006; Plassmann et al., 2007; Schoenbaum, Takahashi, Liu, & 

McDannald, 2011), with the two most reproducible regions in humans being the 

ventromedial prefrontal cortex (vmPFC) and striatum (Bartra, McGuire, & Kable, 2013). In 

the non-human primate field, vmPFC, medial orbitofrontal cortex (mOFC) and lateral 

orbitofrontal cortex (LOFC) are considered anatomically and functionally distinct (Bouret & 

Richmond, 2010; Monosov & Hikosaka, 2012; Noonan et al., 2010; Rich & Wallis, 2014), 

although far more studies have recorded from OFC than vmPFC. By contrast, in human 

studies the vmPFC and mOFC are often conflated creating confusion over the appropriate 

nomenclature. This may partly be due to the poor spatial resolution of fMRI which makes it 

difficult to define a clear-cut anatomical boundary between these regions. Therefore, from 

this point on, when using the term “vmPFC” in humans I will consider this to include regions 

from both vmPFC and mOFC, but not LOFC.          

Some accounts posit that valuations in human vmPFC signal the difference in value between 

chosen and unchosen options (Boorman, Behrens, Woolrich, & Rushworth, 2009; De 

Martino, Fleming, Garrett, & Dolan, 2013; Serences, 2008), and that vmPFC thus acts as a 

final value comparator (Hunt et al., 2012; Strait et al., 2014; Wunderlich, Dayan, & Dolan, 

2012). By contrast, others argue that the comparison process is resolved elsewhere in the 

brain (Basten et al., 2010; Morris, Dezfouli, Griffiths, & Balleine, 2014; Wunderlich et al., 

2009), and that the outcome is transferred to vmPFC, which encodes the final chosen value 

(Daw, O'Doherty, Dayan, Seymour, & Dolan, 2006; Hampton, Bossaerts, & O'Doherty, 2006b; 

Kable & Glimcher, 2007; Wunderlich et al., 2009). A recent experiment has also shown 

evidence that vmPFC may in fact encode the relative value difference between attended and 

unattended choice options (Lim, O'Doherty, & Rangel, 2011). Further, a multitude of work in 

both animals and humans now points towards the existence of at least three dissociable 

value systems: habitual, goal-directed and Pavlovian (Dayan, 2008). The neural and 
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computational basis of the valuation stage will be reviewed and discussed in detail in Chapter 

2.  

1.2.3 Stage 3: Action selection 

Once the brain has assigned a value to the options under consideration, an action must be 

initiated so that the agent can select the option deemed to generate the largest expected 

utility. Until recently, little was known about how the brain achieves this. Theoretical models 

have emerged from studies of perceptual decision-making that model binary choices in the 

perceptual domain as a race-to-barrier diffusion process (Heekeren, Marrett, & Ungerleider, 

2008). Although a variety of proposed model exist, the general principle is built upon the 

notion that evidence for each alternative option accumulates over time until one option 

surpasses a predetermined decision threshold, at which point that option is chosen. Further, 

it is thought that individual populations of neurons encoding each option inhibit each other 

such that activity only survives in the eventual winning pool.  

Indeed it has been shown these models accurately predict single neuron activity within the 

parietal cortex in non-human primates during perceptual decision-making (Shadlen & 

Newsome, 2001), though it has remained unclear whether the same mechanisms apply to 

value-guided decision-making. A recent study tested this precise hypothesis by investigating 

the temporal dynamics of valuation signals in local field potentials from 

magnetoencephalography data (Hunt et al., 2012). Interestingly, the authors found that the 

ventromedial prefrontal cortex (vmPFC) and posterior parietal cortex (PPC) matched the 

model predictions accurately, suggesting these regions engage in value comparison, whereas 

other regions associated with value matched poorly, suggesting they perform alternate 

computations that do not contribute to selection of an action. Follow-up work has shown 

that the PPC is more likely to support value comparisons during decisions under time 

pressure, whereas vmPFC takes on the role of a comparator when decisions are made 
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without time pressure, suggesting that parallel cortical mechanisms may resolve the same 

choices in differing circumstances (Jocham et al., 2014). Lastly, it is worth noting that recent 

neurophysiological recordings in animals have corroborated the notion from human 

neuroimaging experiments that vmPFC compares the value of choice options to enact 

decisions (Strait et al., 2014).  

1.2.4 Stage 4: Outcome  

Real-life decisions typically result in an immediate reward or punishment and a complex set 

of delayed consequences. Often, the outcome conveys meaningful information regarding 

how “good” the choice that led to it was, which is then used to inform future decision-

making. In human fMRI studies, activity in the ventromedial prefrontal cortex (and other 

regions such as the amygdala (LaBar et al., 2001)) has been shown to correlate with 

subjective ratings of pleasure at the time of reward delivery for primary rewards 

(Kringelbach, O'Doherty, Rolls, & Andrews, 2003). Further, it has been shown that these 

signals subside when the subject is first fed to satiation and thus experiences the outcome 

as less desirable in the context of food rewards, or images of food (Fuhrer, Zysset, & 

Stumvoll, 2008; Kringelbach et al., 2003). Other regions implicated in outcome evaluation 

include the anterior cingulate cortex, which has been shown to activate in response to 

decision errors both in single neuron recordings and fMRI studies (Braver, Barch, Gray, 

Molfese, & Snyder, 2001; Ito, Stuphorn, Brown, & Schall, 2003). Further, in non-human 

primates, neurons in anterior cingulate cortex respond to outcomes in a manner that 

depends on previous reward history, suggesting a role in the evaluation of choice outcomes 

(Seo & Lee, 2007). However, whether the ventromedial prefrontal cortex and anterior 

cingulate cortex make entirely distinct contributions to outcome evaluation, or whether 

other regions are additionally involved, remains unclear. In addition, since the majority of 
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value-guided decision-making paradigms adopt outcomes that consist of immediate rewards 

or punishments, little is known about how the brain evaluates long-term consequences.  

1.2.5 Stage 5: Learning  

In order to improve future decision-making on the basis of outcome evaluation, the brain 

must update one or more of the representations discussed at stage 1, such that “better” 

actions can be chosen in the future. This is perhaps best understood and illustrated in the 

context of the habits system, or model-free reinforcement learning (MF-RL). The theoretical 

and computational premise underpinning this type of learning is that the brain estimates the 

difference between the expected value of an outcome and the actual value of the received 

outcome, a quantity termed a prediction error. This prediction error is used to update the 

value of the action that led to the observed outcome in a manner proportional to the 

magnitude of the prediction error (governed by a learning rate). In this context, the agent 

can learn an approximation of the true value of the action after several rounds of choices 

and outcomes, and thus optimize behaviour in the face of rewards and punishments 

(Rescorla & Wagner, 1972).  

In general, reinforcement learning models, defined in terms of a Markov decision process, 

are characterized by: 

 a set of environment states, s ϵ S 

 a set of actions that transfer the agent between states, a ϵ A  

 a matrix that characterizes transitions between states, T  

 rewards, r, following state-action transitions in the environment 

 a policy, π, that assigns an action to each state (e.g. in accordance with a principle of 

reward maximization) 
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The goal of the agent is to learn a value function that predicts the sum of future rewards 

(from all forthcoming states) expected from a particular action at a particular state in the 

environment. Note that the value of arriving at a particular state has two components, the 

immediate reward or payoff associated with that state, and the value associated with the 

state change itself.  

Thus, by exploiting the recursive relationship between successive (and deterministic) states, 

one can define the value of state s1 as: 

𝑉(𝑠1) = 𝑟1 +  𝛾𝑉(𝑠2)  

where 0 < γ < 1 captures the discounting of future rewards, r1 is the immediate reward 

associated with state 1, and s2 is the sum of all future rewards associated with reaching that 

state.  

However, if state transitions are instead probabilistic, such that action a in s1 can lead to s2 

or s3, then the value of s1 depends on the values of both s2 and s3, weighted by the probability 

of reaching either state. In this context, the value of s1 can be rewritten as: 

𝑉(𝑠1) = 𝑟1 + 𝑝(𝑠2)𝛾𝑉(𝑠2) + 𝑝(𝑠3)𝛾𝑉(𝑠3)  

where p(s2) and p(s3) are transition probabilities from states 1 to 2 or 3.  

In fact, under the Markov assumption that the previous trajectory to a given state has no 

bearing on future state transition probabilities or future rewards, the value of any state 

(under a policy π) can be defined by the Bellman equation (Bellman, 1957): 

𝑉𝜋 (𝑠) = ∑ 𝜋(𝑎|𝑠) ∑ 𝑝(𝑠′|𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠′) +  𝛾𝑉(𝑠′)]

𝑠′𝑎

 

This equation can be solved by iteratively updating one state after the other until 

convergence. This requires knowledge of both T (transition functions) and R (the set of 
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rewards in the environment) so that the average reward over all actions can be computed. 

Reinforcement learning methods, most notably temporal difference (TD) learning (R. S. B. 

Sutton, A. G., 1998), attempt to approximate the Bellman equation without the need for 

explicit models of the world. To achieve this, we must revisit the notion that successive states 

retain a recursive relationship, where the value of a given state is equal to the immediate 

reward and the value of the following state. One can calculate the difference between these 

quantities and formulate the following update equation: 

𝛿 = 𝑉(𝑠𝑛) − (𝑟(𝑠𝑛) + 𝑉(𝑠𝑛+1)) 

δ, the prediction error, is used to update the value of the preceding state: 

𝑉(𝑠𝑛) = 𝑉(𝑠𝑛) +  𝛼𝛿 

where 0 ≤ ɑ ≤1 is a learning rate 

Thus, rather than storing all past rewards and performing an average every time it is 

required, temporal difference learning updates the predicted expectation of reward online 

and then simply stores, or “caches”, this representation.  

Remarkably, extremely reliable neural correlates of this prediction error signal have been 

found in both animals and humans. The first observations came from midbrain dopamine 

recordings by Schultz and colleagues in non-human primates (Schultz, Dayan, & Montague, 

1997). In this experiment, the researchers showed that single neurons increased their firing 

rate in response to unexpected rewards, but that after several consecutive outcomes the 

same neurons fired in response to the cue that predicted the same reward. Further, if the 

reward was subsequently omitted, the same neurons transiently decreased their firing rate 

in a manner predicted by a negative prediction error, or the unexpected omittance of a 

rewarding outcome. Since then, several fMRI experiments in humans have identified 

prediction error signals in the ventral striatum (Glascher et al., 2010; Hare et al., 2008; J. P. 
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O'Doherty, Dayan, Friston, Critchley, & Dolan, 2003), which receives input from the 

dopaminergic cell bodies within the ventral tegmental area of the midbrain, supporting a 

role for dopamine in habitual or model-free reinforcement learning.  

So far I have discussed learning associated with a habitual controller, which does not require 

knowledge of transition or reward functions, but instead relies on trial-and-error. Somewhat 

more complex is learning associated with goal-directed or model-based choice. In this 

scheme, an agent makes choices by searching through a decision tree whereby the 

consequences of all possible sequences of actions and outcomes are simulated so that the 

best action at any given state can be chosen (Dayan, 2008). Thus, unlike habits which are 

retrospective, model-based action is prospective. A number of recent experiments have 

begun to unravel the neural underpinnings of model-based reinforcement learning. For 

example, neural correlates of state prediction errors that report discrepancies between an 

agent’s current model of the world and the observed state transitions resulting from an 

action have been reported in the intraparietal sulcus and lateral prefrontal cortex (Glascher 

et al., 2010). Further, a recent report has questioned the classical view that the ventral 

striatum exclusively supports model-free reinforcement learning by demonstrating that the 

BOLD signal in this region integrates both model-free and model-based prediction errors 

signals (Daw, Gershman, Seymour, Dayan, & Dolan, 2011).  

There remain a number of open questions. For example, it is unknown whether the habit 

system can learn through observation without directly experiencing outcomes, or whether 

it can adopt more sophisticated computations with task training. Moreover it is unclear 

whether the habit system can learn adequately when the delay between action and outcome 

is temporally extended. Finally, the precise mechanism that supports a model-based system 

in learning action-outcome and outcome-value representations (that are needed to infer 

action values) is yet to be elucidated.  
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1.3 Summary of the work presented in this thesis  

Having described the key stages required for value-guided decision-making I now give a brief 

summary of the experiments reported in this thesis and how they address some of the open 

questions in the literature.  

In daily life humans make adaptive decisions by taking into account the current state of the 

external world and the future consequences of actions with regards to future states. 

Together these processes encompass portions of both stage 1 (representing the state of the 

external world) and stage 2 (evaluating the immediate and delayed consequences of each 

possible action). Importantly, a change in the current state of the world typically 

accompanies a change in the value of the options under consideration, which may drive 

subsequent switches in choice. In my first experiment, I characterized the computational and 

neural underpinnings supporting these aspects of decision-making. I used a novel sequential 

decision-making task where actions could bestow immediate rewards but also had delayed 

consequences. Subjects had to take into account both components when making choices 

and were often required to switch their responses based on the changing delayed 

consequences. This allowed me to investigate how the brain tracked changes in the 

environment to calculate the future costs of acting, and how these computations were 

integrated with representations of stimulus value. I used computational modelling in 

combination with a parametric fMRI design.  

In my second experiment I used a variant of the same sequential decision-making task to 

explore how subjects arbitrate between different components of value when they endorse 

opposing actions. In this version of the task, acting for a large immediate reward could have 

detrimental future consequences by diminishing the availability of reward later in a trial. 

Thus, in order to maximize monetary gain across a trial, subjects had to sometimes reject 

large immediate rewards, creating an incentive for self-control. Thus, I again focused on 
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stage 2 of the decision-making sequence, but with an emphasis on whether and how distinct 

value systems contribute to the valuation process. Importantly, the task was carefully 

designed to decorrelate the immediate reward associated with a stimulus from its overall 

value. Using computational modelling and fMRI, this allowed me to explore the neural 

correlates of each value component and their manifestation in behaviour. Importantly, I was 

able to address an ongoing debate in the literature where on the one hand choice is thought 

to be governed by a single common value system or alternatively by multiple value systems 

(Hare, Camerer, & Rangel, 2009; Kable & Glimcher, 2007; McClure, Laibson, Loewenstein, & 

Cohen, 2004).  

In my third experiment, I again investigated how multiple value systems contribute to 

decision-making, but with an emphasis on the outcome evaluation and learning stages of the 

decision-making process (see stages 4 and 5). A prominent and contemporary account of 

learning proposes that one system, the model-based (MB) system, supports goals, whereas 

a second system, the model-free (MF) system, supports habits (Dolan & Dayan, 2013). It is 

thought that these systems act in parallel but it has also been shown that MB reasoning is 

impaired when prefrontal cortex function is disrupted or when working memory demands 

increase (Otto, Gershman, Markman, & Daw, 2013; Smittenaar, FitzGerald, Romei, Wright, 

& Dolan, 2013). It is well-established that task training, particularly in the domain of working 

memory, can increase successive task performance (Jaeggi, Buschkuehl, Jonides, & Shah, 

2011). By contrast, it remains unexplored whether frequent task performance alters the 

degree to which model-free or model-based control is dominant in choice in a similar 

manner. Here, I used a previously established multi-stage decision paradigm where model-

based and model-free strategies make qualitatively different predictions about how 

outcomes are used to inform future actions. I trained subjects to perform this task for 3 days 

so as to assess the impact of choice habituation on model-based or model-free decision-

making. I hypothesized that following training subjects would adopt a model-based strategy 
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even under high working memory load, suggestive of a change in the mechanism by which 

model-based calculations are implemented with increasing task exposure. 

While a wealth of value-guided decision-making paradigms have characterized neural 

representations of stimulus value, few have used sequential paradigms. The work presented 

here therefore offers valuable insight into our understanding of how the brain signals long-

term components of value and how this contributes to adaptive decision-making. I discuss 

my findings in the broader context of decision neuroscience and the implications for both 

healthy and maladaptive decision processes.  
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CHAPTER 2 

 LITERATURE REVIEW  

2.1 Multiple value systems  

Here I return to the valuation stage of the decision-making process and provide a more 

detailed overview of the literature. As previously mentioned, there is now ample evidence 

pointing towards the existence of multiple valuation systems for decision-making, and these 

are outlined as follows. 

2.1.1 Goal-directed control  

In his seminal paper (Tolman, 1948), Tolman argued that animals negotiating a maze to 

harvest rewards develop a cognitive map of the environment (O'Keefe & Nadel, 1978), that 

enables (through mental search) a pre-emptive evaluation of the best course of action. 

Contemporary accounts refer to this type of behaviour as goal-directed (Balleine & 

Dickinson, 1998; Dolan & Dayan, 2013; Rangel & Hare, 2010). Formally, the goal-directed 

system assigns values to actions by computing action-outcome contingencies, and evaluating 

the rewards associated with each respective option. Goal-directed behaviour is thus 

computationally synonymous with model-based choice (Daw et al., 2011; Dayan, 2008). 

Because the goal-directed system requires forward planning, it is computationally 

demanding. That is, in a sequential environment, goal-directed actions need not only 

consider the immediate consequences of an action but the total expected reward that is 

likely to result from all ensuing states and actions. However, it is this very property that 

makes the goal-directed system highly flexible. The nature of prospective planning affords 

an intrinsic revaluation of actions following a change in environmental contingencies without 

the need for experiencing new outcomes.  
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Consider, for example, the scenario in Figure 2.1A (p.27), of an animal navigating around the 

branches of a maze with the aim of locating rewards. In this example, the set of possible 

outcomes following a sequence of two consecutive actions includes a block of cheese, an 

apple, a drink of water, or no reward (X). Assuming the animal is placed at the entrance of 

the maze, the aim is to perform the sequence of actions that will maximize the total 

expectation of reward overall. The challenge here (even in this relatively simple example), is 

that maximizing total reward requires planning through both actions in the sequence, rather 

than just one action-outcome. Presuming the animal knows the layout of the maze and the 

locations of the respective rewards they can simply plan through each route and choose the 

pair of actions that will yield the largest reward under a given motivational state. Suppose 

the animal is routinely placed in the maze in a hungry state. The optimal action sequence in 

this case would be L-L which results in a block of cheese, their preferred food outcome (+4 

utils of reward). In contrast, suppose the animal is first fed to satiety and then placed in the 

maze. Here the optimal action course would be R-R resulting in water (+4 utils of reward). 

This is the essence of goal-directed control. The set of outcomes and the corresponding 

actions that yield them are explicitly represented, allowing online calculation of the best 

action under the present motivational state. 
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Figure 2.1 An illustration of goal-directed versus habitual valuation in a maze-like paradigm; 

adapted from (Y. Niv, Joel, & Dayan, 2006). The goal of the animal is to acquire the outcome 

that is most valuable given the current motivation state (in this example hungry or thirsty), 

by navigating from an initial to a terminal state via an intermediate state. (A) Assuming the 

animal is familiar with the layout of the maze, it knows, under a goal-directed system, that 

choosing L-L will lead to the block of cheese, the most desirable outcome if hungry (+4 utils 

of value), but that it should choose R-R if thirsty, leading to water (+4 utils of value). In 

essence, the animal can use knowledge of action-outcome contingencies in the maze to plan 

through each route and assign a value to each action pair. (B) Supposing the animal receives 

daily training in the maze and experiences all actions and outcomes on multiple occasions, 

the animal can then calculate an expected value for each action in each state, and cache this 

value for future use. Thus, if the animal receives training in the hungry state, then choosing 

L at the maze entrance acquires a value of +4 (based on the expectation of cheese at the 

terminal state), whereas choosing R acquires a value of +3 (based on the expectation of an 

apple at the terminal state). Thus the decision to go L at the maze entrance becomes 

habitual. While computationally efficient, this can be maladaptive under a change in 

motivation state.  
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2.1.2 Habitual control 

The second value system, the habitual system, is thought to be synonymous with model-free 

decision-making (Daw, Niv, & Dayan, 2005; Dolan & Dayan, 2013; Yin & Knowlton, 2006). The 

habit system learns to assign values to stimulus-response (S-R) associations, without 

explicitly representing outcomes. Thus, actions that lead to rewards or the avoidance of 

punishments are repeated, whereas those that lead to the converse are extinguished. S-R 

accounts of learning date back to experiments conducted by Thorndike (Thorndike, 1911), 

who concluded that animals can learn instrumental contingencies that are “blind to changes 

in the environment”. Unlike the goal-directed system, the habit system learns the value of 

actions slowly through trial-and-error. Further, while the habit system may assign the same 

value to an action as the goal-directed system in a stable environment, actions may be 

incorrectly valued following a change in environmental contingency, until the correct value 

has again been learnt.  

Let us revisit the maze-task in Figure 2.1B (p. 27). Supposing both the environment (the 

locations of the rewards) and the motivational state (hungry rather than thirsty) of the 

animal are constant over a prolonged period of time, the animal can learn that the action 

sequence L-L yields the preferred result. Thus, the animal can store or ‘cache’ a value for 

going L at the maze entrance, which represents the total expectation of reward at the end 

of the sequence. This is because the animal knows from experience that going L from the left 

room results in the cheese reward, and so by extension, going L at the maze entrance has an 

eventual expected value of +4 utils of reward. By contrast, the best possible outcome from 

choosing R at the maze entrance is the apple, resulting in +3 utils of reward. Thus, the 

decision to choose L at the maze entrance becomes habitual. The animal no longer has to 

plan through each route, and ceases to represent each individual action-outcome.  



29 
 

In a stable environment, the habit system is computationally efficient and highly 

advantageous. However, suppose that on one occasion, the animal is fed to satiety before 

entering the maze, devaluing the block of cheese from +4 to +1 utils of reward. The preferred 

outcome is now water (+4 utils of reward), which requires choosing R-R. Yet under habitual 

control, the animal will draw on cached values which incorrectly motivate choosing L-L. Thus, 

the habit system relies on re-learning the set of Q-values (the value of each action in each 

state) following a change in motivational state, and is less intrinsically flexible.  

2.1.3 Pavlovian control 

The third value system is the Pavlovian system. This system assigns values to a discrete set 

of actions that are evolutionarily advantageous, such as approaching stimuli that are 

predictive of water or food, and avoiding stimuli that are predictive of threat (Dickinson, 

1980; Huys et al., 2011). However, in some cases these innate or ‘hard-wired’ responses can 

be maladaptive (Guitart-Masip, Duzel, Dolan, & Dayan, 2014). For example, in a famous 

experiment by Hershberger, a food tray was made to recede at twice the speed with which 

the animal approached, but would move towards the animal at twice the speed if the animal 

were instead to recede (Hershberger, 1986). The animals were unable to learn to overcome 

the prepotent drive to approach the tray for food, presumably demonstrating the influence 

of a Pavlovian bias. While it is thought that the Pavlovian system largely controls responses 

to a narrow set of predetermined stimuli, evidence indicates that through sufficient training, 

animals can learn to deploy Pavlovian responses to relatively novel stimuli. It is currently 

unknown whether there is a simple common Pavlovian system, or multiple systems that 

interact during choice. 
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2.1.4 Other value systems 

It is worth noting that a number of researchers have reported evidence in favour of multiple 

value systems operating in parallel in a context where it is not clear which of the three 

established value systems (if any) they map on to. For example, McClure and colleagues 

demonstrated that a different ‘value’ network is active when people choose small and 

immediate rewards compared to large but delayed rewards in a temporal discounting task 

(McClure et al., 2004). One might predict that a preference for immediate rewards would be 

subserved by brain regions previously shown to support habitual behaviour (Yin & Knowlton, 

2006) whereas a preference for delayed rewards would be subserved by brain regions 

previous shown to support goal-directed behaviour (Balleine & Dickinson, 1998; Morris et 

al., 2014; Rangel & Hare, 2010), yet the pattern of neural activations reported in the study 

did not necessarily support this account. Further, other researchers have noted that there is 

extensive overlap between the neural correlates of model-free and model-based valuation 

and that these systems may be more integrated than previously hypothesized (Doll, Simon, 

& Daw, 2012). For example, in rodents it has been shown that dorsolateral striatum is 

required for habitual control (Yin & Knowlton, 2006), whereas dorsomedial striatum is 

required for goal-directed control (Yin, Knowlton, & Balleine, 2005; Yin, Ostlund, Knowlton, 

& Balleine, 2005). Although these neighbouring regions are structurally similar, the 

expression of divergent functional computations is not surprising given their distinct 

anatomical connections (see Striatum, p 39).  

2.1.5 Arbitrating between the different systems  

A natural question that follows the preceding discussion is why are multiple value systems 

needed, and how does one arbitrate between the different systems when they promote 

divergent actions? I have already discussed that the model-based system is most useful in 

changing environments where one can update actions without the need for experiencing 
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outcomes. However, the difficulty of a tree search increases exponentially with increasing 

depth, making several model-based computations near-intractable. By contrast, the model-

free system is highly efficient in stable environments where only a limited set of values are 

cached, but can induce erroneous decisions in non-stable environments. Similarly, the 

Pavlovian system hard-codes a number of evolutionarily advantageous responses, but is 

limited to a narrow set of actions and can be maladaptive in complex environments. Given 

that each system possesses a unique set of advantages and disadvantages, it seems intuitive 

that being able to utilize all three would produce complimentary results.  

However, this still does not address how these systems interact during decision-making. One 

influential theory by Daw and colleagues proposed that the model-based and model-free 

systems trade-off according to two forms of uncertainty - knowledge and computational 

noise - which are tracked by each system (Daw et al., 2005). Then, the relative contribution 

of each system during choice should be directly proportional to their respective levels of 

uncertainty, with the system demonstrating the least uncertainty presiding. Very recently, 

this hypothesis was formally tested by Lee and colleagues using a clever behavioural 

paradigm in which on different trials the structure of the task favoured control by the model-

based or model-free system respectively (S. W. Lee, Shimojo, & O'Doherty, 2014). The 

authors demonstrated that the inferior lateral prefrontal cortex and frontopolar cortex 

encode the reliability (or uncertainty) of each system in addition to the relative comparison 

between the two quantities. Further, they reported changes in functional connectivity 

between these areas and regions within the striatum that support model-free control. Thus, 

model-free processing could be subject to top-down control by the prefrontal cortex when 

the output of a model-based system is deemed sufficiently reliable.  
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2.1.6 Summary 

In summary, there are thought to be at least three separate value systems for guiding choice 

distinguished as goal-directed (model-based), habitual (model-free) and Pavlovian. Broadly, 

goal-directed choice is thought to be subserved by the prefrontal cortex (and subregions of 

the striatum) while habitual choice is subserved by other regions within the striatum. The 

neural basis of Pavlovian valuation remains less well-understood. In section 2.3 I will review 

the neural evidence and validity of this conjectural distinction.  

2.2 Anatomy of the prefrontal cortex and striatum  

Today, there is a rich body of work in both humans and animals that implicates distinct 

regions of the prefrontal cortex and striatum in different facets of value-guided decision-

making, including goal-directed and habitual control (Balleine & Dickinson, 1998; Balleine & 

O'Doherty, 2010; Dolan & Dayan, 2013; Rangel & Hare, 2010; Valentin, Dickinson, & 

O'Doherty, 2007; Yin & Knowlton, 2006). In the following section, I will provide a brief (and 

admittedly highly simplified) anatomical description of these regions, including their 

respective delineations and projections. 

Crudely, the prefrontal cortex (PFC) can be anatomically divided into dorsolateral, 

ventrolateral, dorsomedial, ventromedial, frontopolar and orbitofrontal components, each 

with distinct anatomical projections and functions (Badre, 2008; Koechlin, Ody, & Kouneiher, 

2003; E. K. Miller & Cohen, 2001; Petrides, 2005; E. E. Smith & Jonides, 1999; Tanji & Hoshi, 

2008; Walker, 1940; Wise, 2008). Most knowledge about the anatomical connections of 

prefrontal cortex comes from experimental work in monkeys, whereas the functional 

computations subserved by these regions comes from both single unit recordings in monkeys 

and human neuroimaging studies. For this reason it is essential to have architectonic maps 

that are based on the application of similar criteria in the delineation of areas in both the 
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human and monkey cerebral cortex. One example of a contemporary numerical scheme used 

to delineate regions of PFC that is comparable between species is shown in Figure 2.2, where 

panel A shows the human brain and panel B the macaque monkey brain (Petrides & Pandya, 

1999). This work by Petrides and Pandya builds on historical cytoarchitectonic maps in the 

human and monkey brains by Brodmann (Brodmann, 1909) and then Economo and Koskinas 

(Economo & Koskinas, 1925), and later on by Walker (Walker, 1940).          

 

 

Figure 2.2 Cytoarchitectonic maps of the lateral and medial surfaces of the frontal lobe; 

taken from (Petrides & Pandya, 1999). (A) Human brain, and (B) Macaque monkey brain. 

Note that the present numerical scheme provides a basis for a closer integration of findings 

from functional neuroimaging studies in human subjects with experimental work in the 

monkey. 
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2.2.1 Lateral prefrontal cortex 

In lateral prefrontal cortex (LPFC), areas 9, 46 and 9/46 in Figure 2.2 constitute the 

dorsolateral prefrontal cortex (DLPFC) while areas 44 and 45 constitute the ventrolateral 

prefrontal cortex (VLPFC). The basic architecture and anatomical connectivity of these 

regions is thought to be similar in the human and macaque brains (Petrides & Pandya, 1999, 

2002) (for a detailed cross-species review see  (Wise, 2008)).  

DLPFC and VLPFC are often viewed as part of two distinct, large-scale networks within the 

PFC respectively. DLPFC is part of a mediodorsal network originating from the periallocortex 

in the medial PFC, whereas VLPFC is part of an orbitoventral network originating from the 

periallocortex in the orbital PFC (Tanji & Hoshi, 2008). The orbitoventral network is 

characterized by multiple sensory inputs, including visual, auditory, somatosensory, 

gustatory, and olfactory (E. K. Miller & Cohen, 2001). This pattern of connections suggests 

that this network plays a major role in receiving multiple sensory signals to retrieve and 

integrate necessary information. In contrast, the mediodorsal network receives inputs from 

multimodal areas in the temporal cortex or auditory areas in the superior temporal gyrus, 

and from the parvocellular lateral part of the mediodorsal thalamic nucleus  (Tanji & Hoshi, 

2008). This suggests that the dorsal network receives signals that are already processed and 

are multimodal in nature. Thus the dorsal and ventral parts of the LPFC seem to process 

information based on distinct inputs. Additionally, there are extensive interconnections 

between the two networks (Barbas & Pandya, 1989; Petrides & Pandya, 2002).  

The DLPFC has preferential connections to motor structures including the supplementary 

motor area (SMA), pre-supplementary motor area (pre-SMA), the rostral cingulate, the 

premotor cortex, the cerebellum and superior colliculus, which may be important for its 

control over action (Bates & Goldman-Rakic, 1993; Lu, Preston, & Strick, 1994; E. K. Miller & 

Cohen, 2001). The VLPFC by comparison is linked with the ventral premotor cortex (Petrides 
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& Pandya, 2002). Wide areas of LPFC project to the dorsal striatum of the basal ganglia. These 

connections are topographically organised such that DLPFC projects mainly to dorsal and 

central caudate nucleus whereas VLPFC projects mainly to ventral and central caudate 

nucleus (Haber, Kunishio, Mizobuchi, & Lynd-Balta, 1995; Parent & Hazrati, 1995). These 

connections, as well as other major inputs and outputs of LPFC are summarized in Figure 2.3 

(taken from (Tanji & Hoshi, 2008)).    
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Figure 2.3 Schematic of the major input-output organization and cytoarchitecture of the 

lateral prefrontal cortex; taken from  (Tanji & Hoshi, 2008). The top panel refers to the 

mediodorsal network (red), of which the DLPFC forms an integral part, whereas the bottom 

panel refers to the orbitoventral network (blue), of which the VLPFC forms an integral part. 

The middle panel (green) refers to inputs and outputs that are common to both networks, 

where areas chiefly projecting to the orbital or medial prefrontal cortex, but less to the LPFC, 

are italicized. The left column refers to input structures, the right column to output 

structures, and the middle column to cytoarchitectonic boundaries. Rs = rostral sulcus; cs = 

cingulate sulcus; cc = corpus callosum; as = arcuate sulcus; ps = principal sulcus; mos = medial 

orbital sulcus; los = lateral orbital sulcus. PF, PFG, PG, PGm, and Opt are subareas in the 

parietal cortex (see (Pandya & Seltzer, 1982)). SII = secondary somatosensory area; LIP = 

lateral intraparietal area; CMAr = rostral cingulated motor area; pre-SMA = pre-

supplementary motor area. 
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2.2.2 Medial prefrontal cortex 

The medial prefrontal cortex (mPFC) can be split into dorsal and orbital (ventral) 

components. The dorsomedial prefrontal cortex (DMPFC) spans areas 24, 32 and 33, and for 

simplicity will be considered as synonymous with the anterior cingulate cortex (ACC) in this 

thesis. Neurons in ACC receive afferent projections from the anterior medial, medial dorsal 

and parafascicular thalamic nuclei (Gabriel, Burhans, Talk, & Scalf, 2002). Other major inputs 

come from visual cortex, hippocampus, subiculum, entorhinal cortex and amygdala (Gabriel 

et al., 2002; Vogt, Rosene, & Pandya, 1979). There is also significant reciprocal connectivity 

between anterior and posterior cingulate cortices (Vogt et al., 1979). Anterior cingulate 

neurons largely project to most of the aforementioned thalamic areas, the subiculum, 

entorhinal cortex, pons, the basal ganglia (including the caudate nucleus and nucleus 

accumbens), and in primates, to multiple areas of the motor and pre-motor cortex (Gabriel 

et al., 2002). It is also worth noting that Goldman-Rakic and colleagues have demonstrated 

direct reciprocal projections of cingulate cortical neurons (in primates) to the lateral 

prefrontal and parietal cortex (Goldman-Rakic, 1988).  

The orbitofrontal cortex (OFC) has been proposed to span areas 10, 11, 12, 13 and 14 

(Walker, 1940), though more recent studies have subdivided these regions further 

(Carmichael & Price, 1994). In humans the term ventromedial prefrontal cortex (vmPFC) is 

typically used to refer to a region that spans the medial OFC (mOFC) and other areas on the 

medial wall, though not the central and lateral regions of OFC (Kringelbach, 2005). OFC 

receives sensory inputs from gustatory, olfactory, somatosensory, auditory and visual 

regions, and is perhaps the most polymodal region of the cerebral cortex (Kringelbach, 2005). 

It has direct reciprocal connections with the amygdala, cingulate cortex, insula, 

hypothalamus, hippocampus, striatum, periaqueductal grey and DLPFC (Cavada, Company, 

Tejedor, Cruz-Rizzolo, & Reinoso-Suarez, 2000; Kringelbach, 2005).  
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It has been proposed that OFC forms part of a larger functional network known as the orbital 

and medial prefrontal cortex (OMPFC), which includes parts of ACC and has unique 

anatomical connections with the rest of the brain (Carmichael & Price, 1994, 1996). Based 

on local cortico-cortical connections, two connectional systems or networks were recognized 

within OMPFC, which are referred to as the 'orbital' and 'medial prefrontal networks' 

respectively. The areas within each network are preferentially interconnected with other 

areas within the same network, and also have common connections with other parts of the 

cerebral cortex (Carmichael & Price, 1994, 1996; Ongur & Price, 2000). The orbital network 

is characterized by connections with several areas of sensory cortex, whereas the medial 

prefrontal network is characterized by its outputs to visceral control areas in the 

hypothalamus and periaqueductal grey (Price & Drevets, 2010). It also has connections with 

specific regions or cortex that include the rostral part of superior temporal gyrus, the anterior 

and posterior cingulate cortex, the entorhinal cortex and parahippocampal cortex (Price & 

Drevets, 2010; Saleem, Kondo, & Price, 2008).    

2.2.3 Frontopolar cortex 

The frontopolar cortex (FPC), commonly associated with Brodmann area 10 (though its 

precise cytoarchitectonic boundaries are debated (Ramnani & Owen, 2004)), is the anterior 

most region of PFC and one of the least well understood regions of the human brain (Christoff 

& Gabrieli, 2000). However, there is a broad consensus that FPC is important for high-level 

cognition, including the learning and representation of abstract actions and task rules, and 

influences processing in more posterior prefrontal regions (Badre & D'Esposito, 2009; 

Boschin, Piekema, & Buckley, 2015; Koechlin, Basso, Pietrini, Panzer, & Grafman, 1999). FPC 

is unique in that it seems to lack connections with ‘downstream’ regions in the way that 

other cortical regions are connected. Instead, it shares reciprocal connections with 
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supramodal cortex in the PFC, anterior temporal cortex and cingulate cortex (Ramnani & 

Owen, 2004).    

2.2.4 Striatum 

The striatum is a subcortical structure that acts as a major input station to the basal ganglia. 

Anatomically it can be divided into the dorsomedial striatum (caudate nucleus in humans), 

dorsolateral striatum (putamen in humans), and ventral striatum (nucleus accumbens and 

olfactory tubercle, though the term ventral striatum is often synonymous with the former) 

(Balleine, Delgado, & Hikosaka, 2007; Haber & Knutson, 2010; Parent & Hazrati, 1995). The 

striatum interacts with the cortex via recurrent networks referred to as corticostriatal loops, 

classically divided into four loops: motivational, executive, visual and motor (Seger, 2008). 

Almost all of the cortex sends projections to the basal ganglia (including the striatum and 

subthalamic nucleus), which themselves project to output structures of the basal ganglia 

such as the globus pallidus, internal segment and substantia nigra pars reticulata. These 

regions project to the thalamus and then back to the cortex forming “loops” (see Figure 2.4) 

(Tekin & Cummings, 2002).  

Different cortical areas have predominant connections to different striatal regions and these 

are summarised in Figure 2.5, taken from (Seger, 2008). These connectivity profiles are 

thought to underlie differences in the role of the caudate, putamen and ventral striatum in 

decision-making (Balleine et al., 2007; Haber, 2011; J. O'Doherty et al., 2004; Yin, Knowlton, 

& Balleine, 2004), and these will be explored in detail in the following section (2.3). 

Importantly, the so-called “reward circuit”, first identified by the observation that rats would 

work for electrical stimulation in specific brain sites (Olds & Milner, 1954), forms an integral 

part of the cortico-basal ganglia system. The key structures in this network are the anterior 

cingulate cortex, orbitofrontal cortex, ventral striatum, ventral pallidum and the midbrain 
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dopamine neurons. Their anatomical projections (focusing on inputs to, and outputs from 

the ventral striatum) are shown in detail in Figure 2.6, taken from (Haber & Knutson, 2010).          

 

 

Figure 2.4 Corticostriatal circuits involved in decision-making; taken from (Balleine et al., 

2007). Recurrent loops from sensorimotor (SM) and medial prefrontal cortex (MPC) to 

dorsolateral (DL) and dorsomedial (DM) striatum mediate the acquisition of habitual and 

goal-directed control respectively. These connections feed back to the cortex via the 

substantia nigra pars reticulata/internal capsule of the globus pallidus (SNr/GPi) and 

mediodorsal/posterior (MD/PO) nuclei of the thamalus. A further corticostriatal loop 

involving the ventral striatum (VS) (and tonic dopamine release) influences the performance 

of the DL and DM loops through encoding reward acquisition and reward prediction. 

VTA/SNc = ventral tegmental area / substantia nigra pars compacta.  

 



41 
 

 

Figure 2.5 Illustration of the four major corticostriatal loops; taken from (Seger, 2008). 

Cortical input from different regions is kept separate as it projects to basal ganglia output 

structures, then back to cortex. This figure summarises the projection paths of different 

regions of frontal cortex to different parts of the striatum. These anatomical distinctions may 

underlie the varying functions of these cortico-striatal loops in value-guided decision-

making.  GPi = Globus pallidus, internal portion. SNr = Substantia nigra pars reticulata.  
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Figure 2.6 Schematic illustrating key structures and pathways of the reward circuit; taken 

from (Haber & Knutson, 2010). The red arrow refers to input from the ventromedial 

prefrontal cortex (vmPFC); the dark orange arrow refers to input from the orbitofrontal 

cortex (OFC); the light orange arrow refers to input from the dorsal anterior cingulate cortex 

(dACC); the yellow arrow refers to input form the dorsal prefrontal cortex (dPFC); the brown 

arrows signal other main connections of the reward circuit. Amy = amygdala; dACC = dorsal 

anterior cingulate cortex; dPFC = dorsal prefrontal cortex; Hipp = hippocampus; LHb = lateral 

habenula; hypo = hypothalamus; OFC = orbitofrontal cortex; PPT = pedunculopontine nucleus; 

S = shell, SNc = substantia nigra, pars compacta; STN = subthalamic nucleus; Thal = thalamus; 

VP = ventral pallidum; VTA = ventral tegmental area; vmPFC = ventromedial prefrontal cortex. 
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2.3 The neural mechanisms of value-guided choice  

The investigation of the neural substrates of goal-directed and habitual control in humans 

would not have been feasible had it not been for a generation of behavioural experiments in 

animals that helped to characterize and validate these two systems.  

2.3.1 Background 

Early experiments probed goal-directed and habitual control using instrumental conditioning 

paradigms (Colwill & Rescorla, 1986). Typically, rodents learn to enact a response, such as 

pressing a lever, in order to receive a rewarding outcome, such as a food pellet. After a period 

of training, the rewarding outcome would be devalued, e.g. a food outcome could be fed to 

satiety, or paired with a noxious substance. Next, the instrumental contingency is tested in 

extinction, i.e. the animal is now free to press the lever but without delivery of the associated 

outcome, or any continued reinforcement.  

Importantly, goal-directed and habitual systems predict a different course of action following 

outcome devaluation. If the animal’s choice is guided by a stimulus-response (S-O) 

association, then the animal should continue to enact the conditioned response even if the 

outcome is undesired. In other words, the disposition to press the lever should be under 

habitual control. By contrast, if the animal has learnt an action-outcome (A-O) association, 

less instrumental responding should occur as the animal has an explicit representation of an 

outcome that is no longer motivationally salient. Thus, behaviour in the latter case is said to 

be goal-directed. It is now more than 30 years since Adams and Dickinson first showed that 

rats trained to press a lever for sucrose reduced their responding in an extinction test 

following devaluation of the sucrose, confirming that animals are indeed capable of forming 

A-O associations (C. D. Adams & Dickinson, 1981). Interestingly however, S-O (habitual) 

control prevails in a context where the instrumental contingency is over-trained prior to 
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testing in extinction (Dickinson, Nicholas, & Adams, 1983), suggesting that behaviour is 

initially goal-directed (R-O driven), but transitions to habitual (S-R driven) with increasing 

exposure.  

These experiments were not only important as a proof-of-concept for dual systems in 

decision-making, but also formed the conceptual basis for a number of lesion and 

pharmacological manipulations that aimed to uncover their neural bases. These have 

revealed strong evidence in rodents that dorsomedial striatum is required for goal-directed 

behaviour (Yin, Ostlund, et al., 2005), whereas dorsolateral striatum supports habitual 

behaviour (Yin et al., 2004). These two regions correspond to the caudate nucleus and 

putamen in primates, respectively. Interestingly, lesions of the PFC, in particular the insular 

and prelimbic regions of PFC, induce similar deficits in the ability to appropriately adapt to 

changes in outcome contingency as those seen with lesions to dorsomedial striatum (Balleine 

& Dickinson, 1998), implying these regions may form part of a common functional network. 

In this section I will provide a detailed overview of what is currently known about the neural 

basis of value-guided decision-making, taking each anatomical region in turn.    

2.3.2 Lateral prefrontal cortex  

As previously mentioned, the LPFC can be anatomically delineated into the dorsolateral 

prefrontal cortex (DLPFC, Brodmann areas 9, 46 and 9/46) and ventrolateral prefrontal 

cortex (VLPFC, Brodmann areas 44 and 45) (see Figure 2.2, p. 33). Although much of this 

section will focus on DLPFC, these regions have distinct functional roles in decision-making 

and these will be discussed in turn.  

Some of the earliest evidence relating neurobiology to human behaviour came from clinical 

observations of the effects of brain injury (Fellows, 2013), and It is well-documented that 

damage to the LPFC in humans is associated with a cascade of cognitive deficits, including an 
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impaired ability to recognize changes in the external environment, deficits in inhibitory 

control, and a reduced capacity for bridging together temporally segregated events (Manes 

et al., 2002; Owen, 1997). Further, lesion experiments in both humans and monkeys have 

revealed both a rostral-caudal axis in the organisation of cognitive control in LPFC, and a 

dorsal-ventral axis in the mid-lateral region of PFC (Petrides, 2005). These distinctions, first 

discovered in the late 1980s (Petrides, 1987) and early 1990s (Petrides, 1994) respectively, 

have since been supported by an array of functional MRI experiments in humans (Badre, 

2008; Koechlin et al., 2003; Petrides, Alivisatos, & Frey, 2002).  

Briefly, it is thought that the most caudal region of LPFC is involved in fine motor control and 

sensorimotor mappings, whereas more rostral region of LPFC are involved in higher-order 

control processes that regulate selection among multiple competing responses and stimuli 

based on conditional operations (Petrides, 2005). In this manner, posterior-anterior LPFC 

mediates progressively abstract, higher-order, and most likely hierarchical, control (Badre & 

D'Esposito, 2009). While the mid-dorsolateral PFC is thought to primary be involved in the 

monitoring of information in working memory (Petrides, 2000), the mid-ventrolateral PFC is 

thought to be involved in the active retrieval and manipulation of information held in 

posterior cortical association regions (Petrides, 1996, 2005). 

From a neuroimaging perspective, fMRI experiments suggest LPFC plays a central role in 

control processes that have a modulatory influence on decision-making and support goal-

directed behaviour (Badre & Wagner, 2004; Duncan & Owen, 2000; Johnson, 2001; Petrides, 

1996; Shallice & Burgess, 1996). These experiments have included tasks that require future 

planning and the calculation of long-term values (Balleine & Dickinson, 1998; Basten et al., 

2010; Glascher et al., 2010; van den Heuvel et al., 2003; Wallis & Miller, 2003; Wunderlich, 

Dayan, et al., 2012). Outside of the value domain, the DLPFC is recruited in tasks requiring 

executive or cognitive control (Badre, 2008; Badre & Wagner, 2004; M. M. Botvinick, Braver, 
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Barch, Carter, & Cohen, 2001; Knight, Grabowecky, & Scabini, 1995; E. E. Smith & Jonides, 

1999), and has been associated with the management of working memory (Barbey, Koenigs, 

& Grafman, 2012; Curtis & D'Esposito, 2003), attentional control (Knight et al., 1995), 

reasoning and planning (van den Heuvel et al., 2003), and action initiation (Frith, Friston, 

Liddle, & Frackowiak, 1991). While VLPFC is also implicated in executive control, it is thought 

to have a much more focused role pertaining to the inhibition of unwanted or prepotent 

actions (Aron, Robbins, & Poldrack, 2004; Braver et al., 2001). This is particularly notable in 

Go-NoGo or stop-signal tasks, in which subjects typically have to enact a speeded response 

on Go trials, but to inhibit responding when a NoGo trial is displayed (e.g. via a visual cue) or 

a stop signal is presented (e.g. via an auditory tone) (Logan, Cowan, & Davis, 1984).   

Despite a growing consensus in neuroimaging that LPFC supports executive or goal-directed 

decision-making, it is important to note that lesion studies are not always consistent with 

this. For example, damage to LPFC in humans does not reliably disrupt working memory 

performance in delayed match-to-sample tasks (D'Esposito & Postle, 1999). Further, while 

some studies report that patients with LPFC damage show impaired decision-making in the 

Iowa Gambling task (Fellows & Farah, 2005; Manes et al., 2002) (a task requiring goal-

directed inferences (Bechara, Damasio, Damasio, & Anderson, 1994)), other studies report 

unimpaired performance (Bechara, Damasio, Tranel, & Anderson, 1998). This has led to a 

degree of controversy regarding the precise role of LPFC in decision-making.  

However, it is important to remember that neuroimaging and lesion studies provide 

complimentary evidence. While neuroimaging relates measures of regional brain activation 

to behaviour, lesion studies examine whether a particular brain region is essential for a given 

process or component of behaviour. Thus, it is possible that in some cases, fMRI activations 

in LPFC represent processes that are merely correlated with those supporting goal-directed 

behaviour (Fellows, 2013). This potential criticism has at least partly been addressed by a 
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recent experiment that has provided a comprehensive mapping of multiple tasks (that 

measure both cognitive control and decision-making) in a large sample of well-characterized 

patients with focal brain lesions (including LPFC). Here, Gläscher and colleagues report that 

LPFC plays an essential role when competing responses need to be inhibited, and is recruited 

for functions such as error detection and conflict monitoring that are important for adaptive, 

goal-directed behaviour (Glascher et al., 2012).      

In a famous planning task, first designed by Shallice and known as the Tower of London task 

(Shallice, 1982), a player is presented with two configurations (a start state and a goal state) 

of three coloured balls arranged in three pins, and the objective for the player is to transform 

the balls from the start state into the goal state in the least number of moves possible (Figure 

2.2A, p. 33). While several variants of the task exist, in all cases, the player has to plan 

through the correct sequence of moves before initiating any action. It is well-established that 

the DLPFC (as well as the premotor cortex, supplementary motor area, striatum and parietal 

cortices) is recruited during the planning phase, with the BOLD response correlating with task 

difficulty (e.g. an increase in the minimum number of moves) (van den Heuvel et al., 2003) 

(Figure 2.2B, p. 33). Related to this, tasks that require switches in response or the resolution 

of conflicting responses, such as in the Stroop (Stroop, 1935) or Eriksen flanker (Eriksen & 

Eriksen, 1974) tasks, also reliably activate the DLPFC; although these tasks also famously 

recruit the anterior cingulate cortex (ACC; see 2.2.3) (M. Botvinick, Nystrom, Fissell, Carter, 

& Cohen, 1999; Kerns et al., 2004).  
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Figure 2.7 A schematic of the Tower of London (ToL) task and the associated neural networks 

recruited during planning; adapted from (Newman, Carpenter, Varma, & Just, 2003; Saper, 

Iversen, & Frackowiack, 2000; Shallice, 1982). (A) In Shallice’s original task a player must plan 

an action sequence, comprising a pre-allocated number of moves, in order to transverse 

from an initial position to a goal position. (B) Dorsolateral prefrontal cortex and superior 

parietal cortex are recruited bilaterally during planning, with the strength of activation 

increasing with task difficulty.  

A further role frequently attributed to the LPFC is the representation of abstract task rules 

(Stokes et al., 2013), such as where subjects are required to respond to colour versus 

orientation (W. Cai & Leung, 2009). For example, a number of recent studies using 

multivariate pattern analysis (MVPA; see (Haxby, 2012)) and decoding methods, have shown 

representations of task rules or contexts in distributed frontoparietal networks, including 

both the DLPFC and VLPFC (Reverberi, Gorgen, & Haynes, 2012; Waskom, Kumaran, Gordon, 

Rissman, & Wagner, 2014; Zhang, Kriegeskorte, Carlin, & Rowe, 2013). It is thought that 
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these representations provide a contextual bias on low-level perception, decision-making 

and action, allowing stimulus-response processing to align with internal goals (Waskom et 

al., 2014). Further, subjects with prefrontal cortex damage are unable to flexibly adapt to 

changes in such associative rules (Moore, Schettler, Killiany, Rosene, & Moss, 2009).  

While these data suggest that LPFC is engaged during goal-directed choice, many of these 

paradigms do not allow for attribution of specific computations to the underlying BOLD 

response, generating uncertainty regarding the precise contribution of LPFC. Recent 

experiments have attempted to address this using computational modelling and parametric 

fMRI designs to map specific neural computations relevant for goal-directed choice. For 

example, it has been shown that the DLPFC (in additional to the parietal cortex) tracks state 

prediction errors that encode discrepancies between observed state transitions and an 

agent’s current model of the world, a computation particularly relevant for model-based 

decision-making (Glascher et al., 2010). In the value domain, several recent experiments 

suggest that DLPFC supports choice by encoding goal values (Plassmann, O'Doherty, & 

Rangel, 2010), or by modulating representations of value in other valuation regions, such as 

the ventromedial prefrontal cortex (vmPFC) and striatum (Diekhof & Gruber, 2010; Hare et 

al., 2009). Of special note, representations of subjective goal values have been demonstrated 

using fMRI in both the vmPFC and DLPFC in an economic auction paradigm where subjects 

bid for the opportunity to eat or avoid foods they liked or disliked respectively, and similar 

goal values have been identified in the non-human primate DLPFC (Wallis & Miller, 2003).  

Both the DLPFC and posterior parietal cortex are engaged during intertemporal choice 

suggesting these regions form part of a value network that is able to calculate long-term 

values, and this may be related to the exercise of self-control (Kable & Glimcher, 2007). 

Interestingly, a recent study has shown that the degree of effective connectivity between 

DLPFC and vmPFC (a region associated with the computation of stimulus values; see 
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Ventromedial prefrontal / orbitofrontal cortex, p. 52) was predictive of an individual subject’s 

propensity to discount future rewards in a similar paradigm (Hare, Hakimi, & Rangel, 2014). 

Other evidence that DLPFC supports self-control comes from a recent study where dieters 

made choices between food items rated according to healthiness and taste (Hare et al., 

2009). The researchers demonstrated that vmPFC tracked goal values independent of the 

degree of self-control, but while it incorporated a representation of both health and taste in 

self-controllers, only taste was tracked in non-controllers. Importantly, self-control was 

associated with increased activity in DLPFC and an enhanced functional connectivity 

between DLPFC and vmPFC, the latter suggestive of top-down modulation of a 

representation of value in vmPFC by DLPFC (Hare et al., 2009).  

Despite these advances, there are several open questions regarding the role of LPFC in goal-

directed choice. While a majority of decision-making paradigms involve one-shot decisions, 

real life requires making sequences of choices, each conferring an immediate reward or 

punishment and a complex set of delayed consequences. We know little about what role 

LPFC plays in estimating these long-term consequences or how this contributes towards 

adaptive decision-making. Further, it is not clear whether there is a single common value 

system (Hare et al., 2009; Kable & Glimcher, 2007) that guides choice, or whether separate 

systems calculate immediate and long-term components respectively (McClure et al., 2004) 

when choice is sequential. Several lines of evidence point towards multiple value systems, 

although there are differing accounts of the computations subserved by each system 

(Balleine, 2005; Dolan & Dayan, 2013; McClure et al., 2004).  
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2.3.3 Anterior cingulate cortex  

It is worth focusing briefly on the anterior cingulate (ACC) region of dPFC and its relation to 

adaptive decision-making. It has long been known from neurophysiology studies that 

damage to the ACC results in impaired decision-making, particularly in the ability to adapt to 

fluctuations in context (Kennerley & Walton, 2011; Kennerley, Walton, Behrens, Buckley, & 

Rushworth, 2006). For example, ablation of dACC in humans results in an increase in the 

number of errors when subjects are required to flexibly respond according to a changing set 

of reward contingencies (Williams, Bush, Rauch, Cosgrove, & Eskandar, 2004). ACC is also of 

particular interest because of the myriad of roles it has been associated with, including the 

detection of decision errors (Braver et al., 2001), monitoring decision conflict (Kerns et al., 

2004), overriding prepotent responses (Liston, Matalon, Hare, Davidson, & Casey, 2006), and 

evaluating choice outcomes (Rushworth, Walton, Kennerley, & Bannerman, 2004; Walton, 

Croxson, Behrens, Kennerley, & Rushworth, 2007). More recently it has been linked to 

foraging in the context of evaluating alternative choice options (Behrens et al., 2007), and 

the coding of state prediction errors or surprising events (Ide et al., 2013).  

Interestingly, several tasks that recruit the ACC require implicit representations of 

downstream consequence, and as such it seems plausible that ACC could have a common 

role in evaluating future outcomes during sequential choice. However, to my knowledge no 

paradigm has been able to formally address this. Moreover, while it is thought that ACC 

tracks decision variables that feed into the decision process, and is thus “pre-decisional” 

(Kerns et al., 2004; Wunderlich et al., 2009), there are also proposals that ACC signals 

outcome variables that can be used to inform future choice, and is thus “post-decisional” 

(Blanchard & Hayden, 2014; X. Cai & Padoa-Schioppa, 2012). Recent data from non-human 

primates suggests a dominant role for the latter, though conflicting evidence has left the 

issue controversial.  
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For example, in a recent experiment, Blanchard and Hayden showed that dACC signalled the 

value of foregone choice options, a post-decisional variable, when monkeys were performing 

a simple foraging task (Blanchard & Hayden, 2014). Further, lesion experiments suggest that 

ACC is essential for using extended action-outcome histories to learn the value of actions and 

optimize future choices (Kennerley et al., 2006). By recording neuronal activity from the PFC 

in behaving monkeys, Kennerley and colleagues showed that a portion of ACC neurons 

encoded the probability of reward during decision-making (a likely pre-decisional 

computation) in addition to the discrepancy between expected and experienced reward 

during outcome receipt – a post-decisional prediction error signal (see Chapter 1, p. 18-20) 

(Kennerley et al., 2006; R. S. Sutton, 1988). Recent experiments using fMRI in humans have 

provided corroborative evidence that ACC indeed encodes a prediction error signal for 

driving future decisions (Ide et al., 2013). However, other studies have noted that the BOLD 

response in ACC matches the output of a putative value comparator, and may thus be 

involved in the decision process itself (Wunderlich et al., 2009). Lastly, the computational 

role played by ACC with regards to evaluating future consequences, and how this is 

distinguished from more lateral regions of PFC, remains vague.  

2.3.4 Ventromedial prefrontal / orbitofrontal cortex 

I have previously discussed that in order to execute decisions that will yield favourable 

outcomes, the brain needs to assign a value to potential options in the environment. While 

correlates of goal value have been previously found in LPFC (Kable & Glimcher, 2007; Litt, 

Plassmann, Shiv, & Rangel, 2011; Plassmann et al., 2007; Sokol-Hessner et al., 2012), this 

region is more frequently associated with other types of representations, such as the state 

of the environment (Behrens et al., 2007; Yoshida & Ishii, 2006), the set of current task rules 

(Moore et al., 2009; Stokes et al., 2013), or the agent’s hierarchical goals (Hare et al., 2009).  
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In contrast, one of the most coherent findings in the field of value-guided decision-making is 

that the more ventral portion of PFC, in particular the vmPFC, is especially tuned towards the 

representation of value in humans (Boorman et al., 2009; Hare et al., 2009; Kable & Glimcher, 

2007; Plassmann et al., 2007; Strait et al., 2014). This finding is illustrated in a recent meta-

analysis of BOLD response from an array of value-guided fMRI experiments (Bartra et al., 

2013), in which the vmPFC (in addition to the striatum) was a region most consistently 

implicated in value coding. As previously mentioned, vmPFC and medial orbitofrontal cortex 

(mOFC) are often used interchangeably in fMRI studies, and I use the term vmPFC here to 

include both regions when discussing human studies. 

Figure 2.8 (taken from (Bartra et al., 2013)) (p. 54) shows that overlapping regions of vmPFC 

and striatum reliably encode subjective value both at the time of making a decision and 

during receipt of the associated outcome. Importantly, valuations in vmPFC appear to be 

domain-general, with BOLD tracking subjective value for both primary (e.g. food) (Hare et 

al., 2009) and secondary (e.g. money) (Kable & Glimcher, 2007) rewards. This has led some 

to argue that vmPFC and striatum form part of a common currency valuation system (Hare 

et al., 2009; Kable & Glimcher, 2007), though others postulate that these regions operate on 

separate value systems that act in parallel (McClure et al., 2004). 

Further, while in some studies vmPFC appears to track the value of the chosen option (Kable 

& Glimcher, 2007; Plassmann et al., 2007) (implicating this region in value representation), 

others have reported a BOLD response in vmPFC that reflects the difference between chosen 

and unchosen options (Boorman et al., 2009; Hunt et al., 2012). The latter suggests that 

vmPFC may act as a final value comparator, thus entering the decision-making hierarchy 

further downstream. Further still, other evidence suggests that vmPFC encodes the 

difference in value between attended and unattended choice options, thereby reflecting an 

attention-modulated value signal (Lim et al., 2011). According to Lim and colleagues, since it 
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is a natural tendency to attend to options that we eventually choose for longer, it can appear 

as if vmPFC is encoding the difference in value between chosen and unchosen options in 

experiments that do not control for attention.        

 

Figure 2.8 Neural representations of subjective value; taken from (Bartra et al., 2013). (A)  

Here, Bartra and colleagues performed a whole-brain meta-analysis of BOLD activation that 

revealed neural representations of subjective value in vmPFC and striatum at the time of 

making a choice. (B) The same regions of vmPFC and striatum also response to the delivery 

of a reward at the outcome stage of a trial. (C) Conjunction effect of activation maps shown 

in panels (A) and (B).  
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While it is clear that vmPFC contributes to behaviour by signalling subjective or “economic” 

value, it is less clear how this value arises. For example, in sequential environments where 

decisions can confer both an immediate reward and a complex set of delayed consequences, 

it remains ambiguous whether vmPFC signals immediate rewards, delayed outcomes, or an 

integration of both components. Unfortunately, these components are typically correlated 

and thus indistinguishable in many value-guided decision-making paradigms. A recent study 

has attempted to address this by asking subjects to make real choices about differing food 

items (Hare et al., 2009). Here, the BOLD response in vmPFC reflected an integration of taste 

and health components, suggesting vmPFC accesses long-term, in addition to immediate, 

components of value; or in more general terms, supports goal-directed behaviour. Yet a 

value signal that reflects the calculation and integration of both immediate and future 

consequences has not been previously demonstrated in humans.  

Along similar lines, while some argue vmPFC signals value regardless of the associative basis 

of the information, others have postulated that vmPFC is crucial in contexts where value has 

to be estimated on the fly through knowledge of the causal structure of the world and the 

future consequences of actions (a model-based valuation). Recent work conducted in 

rodents has provided strong evidence for the latter (Jones et al., 2012), though evidence in 

humans is more sparse.  

Evidence from non-human primate electrophysiology studies, in which vmPFC (Brodmann 

area 14), medial orbitofrontal cortex (mPFC, Brodmann areas 11/13) and lateral orbitofrontal 

cortex (LOFC, Brodmann areas 47/12) are more easily delineated, suggest that these regions 

are anatomically and functionally distinct. For example, OFC, unlike vmPFC, receives inputs 

from sensory systems (Barbas, Ghashghaei, Dombrowski, & Rempel-Clower, 1999; Cavada et 

al., 2000), while vmPFC, unlike OFC, has dense projections to the nucleus accumbens (Haber 

et al., 1995) and hypothalamus (Ongur, An, & Price, 1998).  Although relatively few studies 
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have recorded from vmPFC, recent evidence suggests partially distinct computations in 

vmPFC and OFC during value-guided decision-making. For example, while both regions likely 

encode the subjective value of task events, neurons in OFC may be more sensitive to external 

factors that relate to value, such as visual cues, while vmPFC may be more sensitive to 

internal factors that relate to value, such as satiety (Bouret & Richmond, 2010). Further, 

others have argued for a functional subdivision between ventral vmPFC, in which neurons 

are more active during appetitive feedback, and dorsal vmPFC, in which neurons are more 

active during aversive feedback (Monosov & Hikosaka, 2012).  

A similar functional subdivision, inspired by human neuroimaging data (for a review see 

(Kringelbach & Rolls, 2004), has been proposed for mOFC and LOFC, with the former said to 

specialize in the evaluation of rewards and the latter the evaluation of punishments, but 

neurophysiology data has largely not supported this theory (Morrison & Salzman, 2009; Rich 

& Wallis, 2014). Instead, it has been proposed that LOFC neurons encode the value of 

external stimuli, while mOFC neurons use knowledge of the task structure and environment 

to make outcome predictions (Rich & Wallis, 2014). This is consistent with other evidence in 

animals and humans that vmPFC/mOFC is recruited when values are inferred on the fly using 

a model of action-outcome contingencies (Hampton, Bossaerts, & O'Doherty, 2006a; Jones 

et al., 2012; Takahashi et al., 2013). Finally, lesion studies suggest that LOFC is required for 

reward-credit assignment and thus reward-value learning, whereas mOFC is required for 

value comparison amongst multiple competing alternatives (Noonan et al., 2010).  

2.3.5 Striatum  

Similar to vmPFC / OFC, the striatum is strongly implicated in value-guided decision-making 

(Balleine et al., 2007; Balleine & O'Doherty, 2010; Bartra et al., 2013; Brovelli, Nazarian, 

Meunier, & Boussaoud, 2011; Haber & Knutson, 2010; Kimchi & Laubach, 2009; Roesch, 

Singh, Brown, Mullins, & Schoenbaum, 2009; Stalnaker, Calhoon, Ogawa, Roesch, & 
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Schoenbaum, 2010; Yin, Ostlund, et al., 2005). As previously mentioned, the striatum 

interacts with the cortex via recurrent networks referred to as corticostriatal loops, 

classically divided into four loops: motivational, executive, visual and motor (Seger, 2008) 

(see also Figures 2.4 & 2.5). It is well-established that different striatal nuclei are associated 

with distinct loops and have distinguishable roles (Balleine et al., 2007; Basar et al., 2010; 

Daw et al., 2011; Yin & Knowlton, 2006).  

Here it is thought that the acquisition of reward-related (goal-directed) actions are mediated 

by converging projections from regions of medial prefrontal cortex (MPC) to the dorsomedial 

striatum (DM; caudate nucleus in humans), whereas the acquisition of S-O contingencies 

(habits) are mediated by projections from sensorimotor cortex (SM) to the dorsolateral 

striatum (DL; putamen in humans) (see Dorsal striatum, p. 59). These corticostriatal 

connections feed back to the cortex via the substantia nigra pars reticulata/internal segment 

of the globus pallidus (SNr/GPi) and the mediodorsal/posterior (MD/PO) nuclei of the 

thalamus. A parallel ventral circuit, mediated by the MPC and ventral striatum (VS) drives 

motivational and Pavlovian influences by feeding into the DM and DL loops (Balleine et al., 

2007).  

2.3.5.1 Ventral striatum 

Much like the vmPFC, the ventral striatum has previously been shown to track the subjective 

value of choice options (Kable & Glimcher, 2007) (see Figure 2.8, p. 54), and is an integral 

part of the reward circuit (Haber & Knutson, 2010) (see Figure 2.6, p. 42). However, the 

ventral striatum is more typically associated with temporal difference learning, and the 

encoding of reward prediction errors, as evidenced by single neuron recordings in the non-

human primate (Schultz et al., 1997) and fMRI paradigms in humans (J. P. O'Doherty, 

Buchanan, Seymour, & Dolan, 2006). In this framework, the ventral striatum is thought to 
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calculate the difference between expected and received levels of reward, a metric that is 

important for informing future choice (Rescorla & Wagner, 1972). Typically, trials that 

contain high value options are also likely to generate a positive prediction error, and thus 

these two quantities are often highly correlated. This has led to some controversy regarding 

the true quantity driving ventral striatum responses, though recent accounts claim that 

prediction errors prevail when they are decorrelated from subjective value (Hare et al., 

2008).  

While it is clear that the ventral striatum is intimately involved in reinforcement learning, it 

is less clear what learning system drives activity in this region. For example, prediction errors 

arising from a model-based system, that require evaluating actions through calling on an 

internal model of the world, can differ from those arising from a model-free system, where 

actions that are rewarded are reinforced in a retrospective fashion. While the signal in 

ventral striatum is classically thought to support model-free learning, a recent study has 

provided evidence for an integration of both model-based and model-free components of 

value in this region (Daw et al., 2011).  

The ventral striatum is also implicated in value-guided decision-making outside of learning 

paradigms, particularly in controlling ‘go’ or ‘nogo’ responses. While rewards are typically 

coupled with the requirement to ‘act’ in many value-guided paradigms, recent experiments 

in humans have shown that activity in ventral striatum more closely reflects the requirement 

for action as opposed to the anticipation of wins or losses (Guitart-Masip et al., 2011). This 

association with action has led to a view that the ventral striatum may be closely involved 

with impulsivity. For example, it has been shown that the ventral striatum is more active 

when subjects choose smaller but immediate rewards over larger but delayed rewards in 

temporal discounting tasks (McClure et al., 2004), and a reduced response in ventral striatum 

to immediate rewards promotes goal-directed choice (Diekhof & Gruber, 2010). Further, in 
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rodents value representations in ventral striatum have been shown to be insensitive to 

changes in stimulus-reward contingencies, suggesting this region promotes automatic, 

stimulus-driven actions as opposed to those that serve goals (Kimchi & Laubach, 2009).  

Yet not all the evidence is in accord. For example, lesions of the nucleus accumbens core in 

rodents induces impulsive choice (Cardinal, Pennicott, Sugathapala, Robbins, & Everitt, 

2001), a phenomenon counter to that predicted by this region promoting impulsivity, and 

ventral striatum activity appears to reflect an integration of value and action requirements 

in animals (Roesch et al., 2009). Collectively, these data suggest that the ventral striatum 

may be differentially engaged depending on subtle task differences that probe varying facets 

of impulsivity.  

2.3.5.1 Dorsal striatum 

The dorsal striatum is a thought to mediate several important aspects of value-guided 

decision-making (Balleine et al., 2007). Much like the ventral striatum, the BOLD response in 

dorsal striatum has been shown to reflect the anticipation of both primary (J. P. O'Doherty, 

Deichmann, Critchley, & Dolan, 2002) and secondary (Knutson, Adams, Fong, & Hommer, 

2001) rewards in humans. In addition the dorsal striatum is thought to be particularly 

involved in action-contingent learning (Tricomi, Delgado, & Fiez, 2004). However, evidence 

indicates that the two key sites within dorsal striatum, the caudate nucleus and putamen, 

play different roles. 

The putamen in humans is largely associated with the formation of habits (Yin & Knowlton, 

2006) and stimulus-driven responses, possibly through encoding stimulus-response 

associations (Featherstone & McDonald, 2005). This is consistent with previously discussed 

evidence from rodents, where lesioning dorsolateral striatum (corresponding to the 

putamen) disrupts habit formation such that animals remain sensitive to devaluation 
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protocols even after overtraining (Yin et al., 2004). Human studies also implicate the 

putamen in shifting choice towards acquisition of immediate rewards (Tanaka et al., 2004) 

and in the tracking of values associated with extensively trained choice (Wunderlich, Dayan, 

et al., 2012). Collectively, these studies align the putamen more closely with automatic, 

model-free processing. 

In contrast, while the caudate nucleus is associated with the learning of actions and their 

reward consequences, it is thought to support goal-directed over habitual choice. A number 

of human fMRI studies now point towards the caudate as a region coding reward prediction 

errors specifically during goal-directed behaviour (Delgado, Miller, Inati, & Phelps, 2005; J. 

O'Doherty et al., 2004). Perhaps the most direct example of model-based processing in the 

caudate comes from a recent experiment showing that the caudate tracks the value of 

individual branching steps in a decision tree (Wunderlich, Dayan, et al., 2012). The caudate 

has also been implicated in future reward prediction (Tanaka et al., 2004) and the encoding 

of both positive and negative action consequences (Tricomi et al., 2004), all suggestive that 

this region is involved in promoting goal-directed decisions. Evidence from the rodent 

literature implicating the dorsomedial striatum in goal-directed control is also largely 

consistent with neuroimaging data from humans. For example, both pre and post-training 

lesions (Yin, Ostlund, et al., 2005), muscimol-induced inactivation (Yin, Ostlund, et al., 2005), 

and the infusion of an NMDA antagonist (Yin, Knowlton, et al., 2005) within dorsomedial 

striatum abolish goal-directed behaviour and render choice insensitive to outcome 

devaluation.  
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CHAPTER 3  

METHODS  

3.1 An introduction to neuroimaging  

There are many methods available for measuring brain activity in behaving humans (Bear, 

Connors, & Paradiso, 2007). The oldest method, electroencephalography (EEG), records 

electrical activity on the scalp by measuring voltage fluctuations that result from ionic 

current flows within the neurons of the brain. Data collected via EEG, and its relative 

magnetoencephalography (MEG), has excellent temporal resolution but poor spatial 

resolution given the complexities involved with identifying the anatomical source of activity 

recorded on the scalp. In addition, EEG/MEG is almost always contaminated with artefacts.  

An alternative method that has gained great popularity since its emergence over two 

decades ago is functional magnetic resonance imaging (fMRI). With fMRI, the activity of 

neurons is not measured directly but rather is inferred through measuring regional changes 

in the concentration of oxygen within blood vessels - the blood-oxygen-level dependent 

(BOLD) response - affording a vastly improved spatial resolution. This relies on the 

fundamental property that when a region of the brain is in use, blood flow to that same 

region increases to meet metabolic demands, which in turn increases the proportion of 

oxygenated Hemoglobin and changes the magnetic property of blood. fMRI measures this 

change in magnetic property. However, these changes in blood flow lag several seconds 

behind the underlying neuronal activity, resulting in a reduced temporal resolution. 

Multiple lines of evidence point towards the implementation of functional localisation and 

specialisation in the brain. That is, neurons that perform equivalent physiological functions 

group together into anatomically separable regions (Bear et al., 2007). This is particularly 
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evident in patients with focal brain damage, where lesions to a particular region can induce 

highly specific and reproducible deficits in cognition (Alvarez & Emory, 2006; Badre, 2008; 

Bechara, Tranel, & Damasio, 2000; Lavenex, Amaral, & Lavenex, 2006). Further, 

neurophysiological recordings undertaken in non-human primates have exposed a location-

specific mapping of function within domains such as vision (D. L. Adams & Horton, 2003; 

Takechi et al., 1997). It is this property which makes fMRI a useful tool for exploring brain 

function.  

fMRI allows inferences to be made about the simultaneous activity of the whole brain during 

a task or cognitive manipulation. One can therefore infer both the magnitude of activity in 

specific regions and how this activity changes over time. In practice, the analysis of fMRI data 

involves either comparing the BOLD response in one psychological context versus another, 

e.g. viewing faces versus scenes, or testing for correlations between BOLD and a given task 

attribute. The latter is of particular relevance to the study of decision-making, as one can 

determine which regions of the brain are sensitive to variables fundamental to the 

underlying neuronal process, such as reward, uncertainty, or subjective value. This provides 

a much more powerful tool than simply reporting a list of task-related brain activations, as it 

allows for the attribution of specific computational roles. In this thesis, I employed relatively 

standard acquisition protocols and analysis pipelines, which will be reviewed in the following 

sections. However, the reader is also encouraged to consult a number of excellent reviews 

(Jezzard, Smith, & Matthews, 2003; S. M. Smith, 2004).  

3.2 Physics of MRI  

Magnetic resonance imaging (MRI) measures an electromagnetic signal from the hydrogen 

nuclei within water molecules. The positively charged protons in water act as microscopic 

compass needles that emit a small electromagnetic field, but are randomly oriented in their 

natural state. The magnet of the MRI scanner generates a strong radiofrequency 
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electromagnetic field that acts to momentarily align the nuclei with the direction of the 

magnetic field. A second magnetic field, the gradient field, is then applied to induce a higher 

magnetization level. When the gradient field is removed, the nuclei return to their original 

orientation which results in the release of an electromagnetic signal detectable by the MRI 

scanner. In echo-planar imaging, each radiofrequency excitation is followed by a train of 

gradient fields with different spatial encoding that allows for the rapid acquisition of images. 

Functional MRI (fMRI) is used to estimate the brain activity evoked by a particular task 

through measuring regional changes in oxygen concentration within blood vessels. The 

process is similar to conventional MRI but uses the change in magnetization between 

oxygen-rich and oxygen-poor blood as its basic measure. Hemoglobin is an iron-containing 

molecule, found predominantly in red blood cells, that acts to transport oxygen from the 

respiratory organs to the rest of the body, to meet the needs of metabolically active tissue. 

Oxygen binds to the heme component of Hemoglobin in the pulmonary capillaries adjacent 

to the lungs resulting in Oxyhemoglobin. When oxygen is released into cells, Hemoglobin 

becomes relatively deoxygenated.  

Importantly, external magnetic fields have negligible influences on oxygenated Hemoglobin, 

but cause local magnetic field variations with deoxygenated Hemoglobin (Figure 3.1, p. 64) 

(Ogawa, Lee, Kay, & Tank, 1990), as the four outer electrons of the iron electron are unpaired 

with oxygen. Blood-oxygen level dependent contrast (BOLD), first described by Seiji Ogawa 

in rat studies (Ogawa et al., 1990), is able to exploit this dissociation to estimate, albeit 

indirectly, underlying neuronal activity. The usual signal increases reported in BOLD fMRI 

experiments are due to the fact that neural activation induces a regional increase in cerebral 

blood flow and glucose utilization that is always larger than the oxygen consumption rate, 

since oxygen uptake is diffusion-limited. The net effect of neural excitation is thus a 
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seemingly paradoxical drop in the deoxyhemoglobin concentration, which in turn increases 

the signal strength (Logothetis, 2008).  

 

Figure 3.1 Schematic of a change in blood flow in response to a visual stimulus and the 

associated change in magnetization measured by fMRI; taken from (Saper et al., 2000). (A) 

When neurons in the visual cortex are not stimulated, a relatively large proportion of local 

Hemoglobin is in the deoxy form. Since deoxyhemoglobin promotes efficient dephasing of 

the rotating protons, the T2* curve is steep and the MRI signal is weak. (B) Conversely, when 

neurons in visual cortex are activated, blood flow increases resulting in a heightened 

proportion of oxygenated relative to deoxygenated Hemoglobin. This results in a slower 

dephasing of protons and a less steep T2* curve. (C) A heightened BOLD response in visual 

cortex results from an increase in the relative proportion of oxygenated Hemoglobin 

following presentation of the visual stimulus.  

Following action potentials in the brain, ions are actively pumped across the cell membrane 

to ensure the appropriate repolarization of the cell. This process requires glucose and 

oxygen, which is carried via blood, also acting to bring in oxygenated Hemoglobin via red 

blood cells. A higher rate of firing causes a greater rate of blood flow and a dilation of regional 

blood vessels. This results in a change in the ratio of oxygenated to deoxygenated 

Hemoglobin, and a subsequent alteration in the magnetic property of blood. It is this change 

in magnetic property that is detected during fMRI. A relative decrease in the proportion of 



65 
 

deoxyhemoglobin attenuates local susceptibility effects, and thus increased activity results 

in a higher signal intensity on T2-weighted images (Figure 3.1, p. 64).  

fMRI is susceptible to unwanted noise that originates from the scanner, from random brain 

activity, and from large blood vessels where blood flow is often highly variable due to factors 

that are not of interest (see also Chapter 7, p. 183). Consequently, fMRI studies require 

multiple repetitions of the same events to improve the signal-to-noise ratio.  

3.3 Analysis of fMRI data 

For the purposes of fMRI, the brain is divided into small cubes of volume, typically 2-3mm3, 

known as voxels. In order to make inferences about significant task-related effects, the time-

series of each individual voxel, that is, how BOLD activation throughout the scanned volume 

of the brain changes over time, needs to be assessed. In order to ensure these time-series 

are accurate and free from artefacts, a number of pre-processing steps are performed (for a 

review see (Strother, 2006)). These also serve to enable analysis across scans and subjects.  

3.3.1 Pre-processing 

Below I outline the standard pipeline for pre-processing of an fMRI dataset.  

3.3.1.1 Bias Correction (for structural scans only) 

The use of a 32-channel head coil may result in biases in signal intensity due to 

inhomogeneities in the magnetic fields of the MRI scanner. This can affect subsequent pre-

processing stages such as segmentation. Image intensities are therefore ‘flattened’ following 

acquisition by means of a multiplicative factor that changes the intensity values of image 

pixels. 
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3.3.1.2 Spatial Realignment & Unwarping 

The fMRI signal is expressed in 3-dimension space. Thus, any head movements during image 

acquisition will result in a mismatch of the location of subsequent images in the time-series. 

Even movements in the order of a few millimetres, such as those caused by swallowing or 

possibly associated task performance, can contribute significant variance to the fMRI signal, 

reducing the overall signal-to-noise ratio and decreasing the power of any subsequent 

analyses. To account for this, spatial realignment is performed by means of a 6-parameter 

rigid body transformation that minimizes the difference (typically the sum-of-squares) 

between subsequent images. Head motion estimates can subsequently be analysed as a 

quality check. EPI images also exhibit substantial signal dropout and spatial distortion in 

regions where the magnetic field is inhomogenous. By collecting field maps, which measure 

field inhomogeneity, EPIs can be unwarped by means of a field mapping distortion correction 

approach, resulting in improved coregistration between EPIs and anatomical images.  

3.3.1.3 Coregistration & Spatial Normalisation  

In order to ensure activations measured by fMRI are superimposed onto the correct 

anatomical location, functional images must be coregistered with an anatomical (T1-

weighted) scan. For images of different modality (i.e. anatomical versus functional) this is 

typically done by computing a transformational matrix that matches mutual information, or 

minimizes differences between images, and applying this to the data of interest. Next, in 

order to make comparisons between individuals with different brains, and to extrapolate 

findings to the population as a whole, scans must be normalised to a common template 

brain. This also allows the reporting of activations within an established standard space. The 

template adopted in this thesis is the standard template of the Montreal Institute of 

Neurology (MNI). During normalisation, images are warped so that functionally homologous 

regions across different subjects are as close together as possible. This involves using a 12-
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parameter affine transformation to minimize the sums of squared differences between the 

template brain and the subject-specific brain, and also the squared number of standard 

deviations away from the expected parameter values.  

3.3.1.4 Spatial Smoothing  

Smoothing involves spatially blurring functional images using a 3-dimensional Gaussian 

kernel. Smoothing can be applied at both the single-subject level and the group-level. In the 

case of the latter, smoothing the image increases the overlap of activation between subjects. 

Smoothing also helps to increase signal-to-noise ratio, because the signal from a single voxel 

in a smoothed image will also contain a signal from neighbouring voxels, reducing the 

contribution of random noise. Further, smoothing can be set to match the spatial scale of 

the data to the size of the expected effect. Researchers interested in both cortical and 

subcortical activations will typically employ an average smoothing kernel of 6-8mm.  

3.3.2 Statistical Modelling 

The pre-processing stages provide a set of voxel-based time-series of BOLD activation 

throughout the entire space of the scanned brain. The goal of any fMRI experiment is to 

relate these dynamic activations to the experimental manipulation in a statistically valid way.  

The general approach involves specifying a general linear model (GLM), in which we propose 

that our observed data (Y) is a function of our experimental manipulation (X), weighted by a 

parameter ‘beta’ that governs the size of the ‘effect’, and some residual error or noise 

(Friston et al., 1994).  

Y = βX + epsilon 

This is the basis of Statistical Parametric Mapping (SPM, Wellcome Trust Centre for 

Neuroimaging, London, UK) employed in this thesis. In fMRI, Y is the observed BOLD time-
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series and X is a matrix of explanatory variables, or regressors. The design matrix includes all 

relevant experimental manipulations that are proposed to modulate brain activity (effects of 

interest), plus any uninteresting variables that may also contribute to signal variance (effects 

of no-interest), such as session effects, movement parameters, and physiological regressors 

(e.g. pulse rate and breathing). Thus, in effect, SPM employs multiple linear regression, as 

more than one independent variable is considered in the same model: 

Y = β0 + β1X1 + β2X2… + βpXp + epsilon 

where p is the number of regressors in the design matrix.  

SPM uses a mass univariate approach and standard parametric statistics to test the null 

hypothesis that the estimated effect size of any individual regressor in the design matrix is 

zero. Thus, rather than considering variance between groups of voxels, the time-series from 

each voxel is fit to the GLM in parallel. Effects of interest relate to the influence of a single 

regressor (after accounting for all other regressors in the design matrix), calculated as the 

effect size divided by its standard deviation (to give a T-statistic), or to some linear 

combination of more than one effect with respect to their relative variances (to give an F-

statistic). In order to extrapolate inferences to the population-level, one then performs a 

random-effects analysis to estimate the variance in betas for a given regressor in the design 

matrix (or contrast map from a within-subject analysis) between subjects.  

Note that our observed data, Y, represents BOLD response, which in turn is related to our 

key interest, neural activity, in some reliable way. Thus, in order to relate any observed 

effects to the underlying neuronal response, we must model the relationship between BOLD 

and neuronal activity in our GLM. This relationship is known as the haemodynamic response 

function (HRF), and is built into the SPM framework. It is known that the peak in BOLD from 

a burst of neural activity typically has a lag of 5-6 seconds (Logothetis, 2003). Thus, in event-
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related designs, where we are interested in the neuronal response to single independent 

events in time (such as the presentation of a stimulus), onset vectors are convolved with the 

HRF before being inserted into the design matrix. Thus, we can test whether our 

experimental manipulations are influencing BOLD in a manner predicted under the 

assumption that they are influencing neural activity.  

One potential drawback of using a voxel-based mass univariate approach is the problem of 

false positives that are likely to arise with multiple comparisons. In fMRI, statistical tests are 

repeated on over 100, 000 voxels in the brain, and it is likely that several voxels will show a 

significant effect by chance. A common approach for multiple comparisons is Bonferroni 

correction, in which the level of statistical significance is equivalent to 1/n times what it 

would be if only one test was performed, where n is the number of times the test is 

performed. However, this method is too conservative for fMRI, as it relies on the assumption 

that each test is independent. Since the signal in neighbouring voxels is often correlated, we 

use principles of random field theory to construct a more appropriate method for correction 

(Kilner, Kiebel, & Friston, 2005). Random field theory assumes that the error field conforms 

to a lattice approximation with a multivariate Gaussian structure, and that these fields have 

a differentiable and invertible autocorrelation function.  

In the absence of a prior hypothesis about which region(s) might respond to a particular 

experimental manipulation, i.e. if one is interested in exploring activations across the entire 

volume of brain scanned, then random field theory should be applied to correct for multiple 

comparisons across the whole brain, and any significant effects are thereafter reported 

whole-brain corrected. However, if there is a specific interest in how a manipulation may 

affect activity in a specific region (perhaps informed by previous experiments), then one can 

predefine functional or anatomical regions of interest (ROI), and correct for comparisons by 

only taking into account the number of voxels contained within those regions. Finally, an 
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alternative approach is to derive the average effect (beta) across voxels in an ROI, and 

perform a single statistical test, bypassing the requirement for multiple comparisons and the 

associated correction. 

In practise, fMRI experiments are constructed with a specific design type in mind. The 

simplest design involves subtraction between two experimental tasks or conditions. For 

example, if a task involves reacting to a stimulus with an action that is either congruent or 

incongruent with the displayed stimulus, then subtracting those conditions will identify 

regions of the brain whose activity is up-(or down)-regulated by congruency. Similarly, one 

can use multifactorial designs to embed subtractions and allow assessment of how one 

experimental factor influences another. The most common multifactorial design is a 2 x 2 

factorial where the experimenter manipulates two independent factors, each with two 

levels, e.g. congruent versus incongruent trials, and high reward versus low reward trials. 

This allows one to assess interactions in addition to main effects.  

Perhaps more powerful than subtraction designs are parametric designs. Here, the 

magnitude of a particular task-relevant quantity is varied over events (or trials), allowing one 

to test for regions of the brain that are sensitive to that change, or where activity shows a 

linear correlation with the magnitude of the manipulated quantity. For example, in the 

context of value-guided decision-making, one can look for brain regions that might track a 

participant’s subjective value for a particular choice option. In parametric designs, the onset 

regressors in the design matrix are ‘parametrically modulated’ by the variable of interest, 

and this variable then becomes an additional regressor in the multiple linear regression. The 

resulting beta describes the steepness of the slope or correlation between BOLD and the 

given variable. Thus, if the beta is not significantly different from zero, then there is no effect. 

Parametric designs are especially useful when trying to identify brain responses that 

correlate with potentially rich and complex variables derived from computational modelling. 
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In value-guided decision-making experiments, one might dynamically manipulate a feature 

of the environment relevant for making-decisions, such as the uncertainty surrounding a 

reward outcome, and use computational modelling to characterise how participants use this 

information to make choices. One might also want to test whether the brain tracks this 

quantity. By modelling a set of key parameters that change according to the complexities of 

the task environment, one can use parametric designs to assess whether these variables are 

tracked in the brain.  

3.3.3 Computational modelling  

In recent years, cognitive neuroscience has seen a rise in the use of quantitative 

mathematical models to describe, predict and explain peoples’ behaviour (Lewandowsky & 

Farrell, 2011). In general, computational modelling requires the experimenter to conceive a 

number of possible underlying mechanisms or processes for how a particular set of choices 

or behaviours emerge. For example, in the context of reinforcement learning, one might 

conjecture that the expected value of a chosen stimulus is updated according to the 

difference between the expected outcome (based on previous trials), and the actual 

outcome, governed by a learning rate. One can then test to see whether the trial-by-trial 

choices predicted by such a model are a good match to empirical data.  

3.3.3.1 Model fitting  

Often, computational models have a degree of algorithmic flexibility, in that the parameters 

governing each algorithm are free to vary across subjects in a manner that maximizes model 

evidence. A common method for evaluating model evidence (and indeed the method 

employed in this thesis) is maximum likelihood estimation (MLE). In brief, for a given data 

point y, maximum likelihood estimation determines the probability or probability density of 

observing y given a model, M, and a vector of parameter values θ. By varying the values in 
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θ, one can characterize how the observed likelihood changes in response to changes in 

parameter values, providing a measure of likelihood for each possible parameter value. 

Importantly, this allows one to determine the set of parameters with the highest likelihood.  

The most precise method underlying this, named grid search, is to plot the likelihood surface 

(for each combination of parameter values), and determine those values that correspond to 

the peak of the surface. However, in practise, grid search can be both inefficient and 

computationally expensive, particularly when the model in question contains a large number 

of free parameters. Thus, a number of techniques have been developed that approximate 

grid search in a far more efficient manner. In this thesis, I employ the simplex method, in 

which a simplex of parameter values, which starts at a location defined by the experimenter 

(typically random), attempts to locate the minimum on the error surface (the point of 

maximum likelihood) by variously reflecting, contracting, or expanding within the parameter 

space. During a reflection, the point with the greatest discrepancy (worst fit) is flipped to the 

opposite side, which may then cause the simplex to expand (if it is in a rewarding direction). 

Conversely, in a contraction, the point with the worst fit moves closer to the centre of the 

simplex. Parameter estimation is typically performed on each individual subject (under the 

assumption that each individual is independent and drawn randomly from the population), 

and can thus be a powerful tool for assessing between-subject, or between-group variability 

in the associated processes.  

In the instance where there is more than one conceivable model, the principles of Bayesian 

statistics and maximum likelihood (Bayesian information criterion, BIC) can be applied to 

determine the ‘best’ model. In BIC, a penalty term is introduced for the number of free 

parameters within a given model (which protects for overfitting) as follows: 

𝐵𝐼𝐶 = −2 ln 𝐿 (𝜃|𝑦, 𝑀) + 𝑘 ln 𝑁 
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where L is the value that minimizes the negative log likelihood of the parameter set given 

the data (and the model), and N is the number of data points on which the likelihood 

calculation is based.  

In summary, computational models allow for detailed interpretations and insights that few 

other approaches can match, and are particularly relevant in the context of value-guided 

decision-making.  

3.3.3.2 Hierarchical Bayesian procedures  

Recently there has been a shift away from conventional (fixed-effects) approaches to model 

fitting in favour of hierarchical Bayesian (random-effects) methods. The key principle behind 

this approach is to use the population-level distribution of data to constrain unreliable 

parameter estimates at the individual level. Here I outline one approach named Expectation-

Maximization (E-M) (Huys et al., 2011). Typically, one estimates the maximum-likelihood 

hyperparameters given the data from a group of N subjects:  

𝜗̂𝑀𝐿 =  𝑎𝑟𝑔𝑚𝑎𝑥𝜗 𝑝(𝐶1 … 𝐶𝑁|𝜗) =  𝑎𝑟𝑔𝑚𝑎𝑥𝜗 ∏ 𝑝(

𝑖

𝐶𝑖|𝜗) 

where 

𝑝(𝐶𝑖|𝜗) =  ∫ 𝑑 𝜃𝑖 𝑝(𝐶𝑖|𝜃𝑖)𝑝(𝜃𝑖|𝜗) 

where 𝜗 is a parameter vector, and C is a vector of choices for each subject i 

Thus, on each iteration, the posterior distribution over the group for each parameter is used 

to specify the prior over the individual parameter fits on the next, kth, iteration:  

𝜃𝑖
(𝑘) =  𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝑝(𝐶𝑖|𝜃𝑖)𝑝(𝜃𝑖|𝜗(𝑘−1)) 

It is often assumed that the likelihood surface is normally distributed around the maximum 

a posteriori parameter estimate, in which case a Laplace approximation can be applied:  
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𝑝(𝜃𝑖|𝐶𝑖) ≈ 𝑁 (𝜃𝑖
(𝑘), ∑𝑖

(𝑘)
) 

where ∑𝑖
(𝑘)

 is the second moment around 𝜃𝑖
(𝑘), which approximates the variance. In the M-

step, the estimated hyperparameters 𝜗(𝑘)  of the normal prior distribution, mean 𝜇, and 

factorized variance, 𝜎2, are updated as follows: 

𝜇(𝑘) =  
1

𝑁
∑ 𝜃𝑖

(𝑘)

𝑖

 

(𝜎(𝑘))
2

=
1

𝑁
∑ [(𝜃𝑖

(𝑘)
)

2
+ ∑𝑖

(𝑘)
]

𝑖

− (𝜇(𝑘))
2

  

With this method, models are typically compared using integrated BIC (BICint) which penalises 

for the number of estimated free parameters: 

𝐵𝐼𝐶 = −2 ln 𝐼𝐿 (𝜃|𝐶, 𝑀) + 𝑘 ln 𝑁 

Note however, that in contrast to conventional BIC, ln 𝐼𝐿 (𝜃|𝐶, 𝑀) is a sum over the model 

evidence at the subject level by integrating over subject-level parameters.  

Random-effects model fitting has a distinct advantage over conventional fixed-effects in that 

the contribution of unreliable subjects to the group mean is effectively down-weighted, and 

is thus utilized in all experiments reported in this thesis. However, one potential pitfall of this 

method is that it relies on the assumption that parameter estimates are normally distributed 

at the group-level.  
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CHAPTER 4 

NEURAL MECHANISMS SUPPORTING ADAPTIVE DECISION-MAKING 

Actions can lead to an immediate reward or punishment and a complex set of delayed 

outcomes. Adaptive choice necessitates the brain track and integrate both of these potential 

consequences. Here, I designed a sequential task whereby the decision to exploit or forego 

an available offer was contingent on comparing immediate value and a state-dependent 

future cost of expending a limited resource. Crucially, the dynamics of the task demanded 

frequent switches in policy based on an online computation of changing delayed 

consequences. I found that human subjects choose on the basis of a near-optimal integration 

of immediate reward and delayed consequences, with the latter computed in a prefrontal 

network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to 

ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. 

The results suggest a choice architecture whereby interactions between ACC and vmPFC 

underpin an integration of immediate and delayed components of value to support flexible 

policy switching that accommodates the potential delayed consequences of an action. 

4.1 Introduction 

As actions can lead to an immediate reward or punishment and a complex set of delayed 

consequences, it follows that to ensure the outcome of an action is optimal an agent needs 

to account for both immediate rewards and delayed consequences, which together 

constitute long-term expected value. A growing understanding of how hierarchical goals 

influence value comparison (Hare et al., 2009; Hare, Malmaud, & Rangel, 2011) contrasts 

with a dearth of knowledge regarding how the brain infers and integrates downstream 

consequence when evaluating options in a changing environment.  
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Paradigms requiring calculations of long-term value recruit the prefrontal cortex (Balleine & 

Dickinson, 1998; Basten et al., 2010; Glascher et al., 2010; Rangel & Hare, 2010; Wallis & 

Miller, 2003). In particular, the dorsolateral prefrontal cortex (DLPFC) has been linked to task 

planning (van den Heuvel et al., 2003; Wunderlich, Dayan, et al., 2012), the representation 

of abstract task rules (Buschman, Denovellis, Diogo, Bullock, & Miller, 2012; Stokes et al., 

2013), as well as discounted or goal values (McClure et al., 2004; Plassmann et al., 2010). 

However, these studies do not address how the brain infers long-term value when decisions 

are sequential and integrative. It is of interest that several tasks requiring cognitive control 

implicitly evoke representations of downstream consequence, and as such it seems plausible 

that these processes could be subserved by a common neural mechanism.  

In a typical example, an external cue signals a categorical contingency switch that instantiates 

a change in action or the inhibition of a prepotent response (Kerns et al., 2004). Although 

such tasks highlight a fronto-parietal network as being central to control (Badre, 2008; M. M. 

Botvinick et al., 2001), they are seldom deployed in the value domain, and a focus on isolated 

choice neglects downstream consequences of decisions. Recent studies have touched on 

these issues implicating parietal regions and PFC in representing the state-transitions 

necessary for building a model of the world (Glascher et al., 2010; Wunderlich, Dayan, et al., 

2012). It remains unclear what computational role these regions play when action control is 

reliant a subjective inference about a change in expected value.  

Here, I tested whether a context-specific evaluation of action could explain choice in a novel 

value-guided sequential go/nogo paradigm, whereby an agent tracks time-varying 

contingencies of a dynamic environment to adapt behaviour in anticipation of future value. 

Crucially, the dynamics of the task demanded frequent switches in policy based on an online 

computation of changing delayed consequences. Building on previous studies my paradigm 

allowed comparisons between policy switches arising either from inference, or by an 
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external cue, that the environment had changed. Thus, by using functional magnetic 

resonance imaging (fMRI), I could characterize the computations tracked by the brain in a 

dynamic world. I predicted PFC would compute the downstream consequence of acting by 

tracking changing aspects of the environment, and interact with regions such as vmPFC and 

striatum, both strongly implicated in reward (Kable & Glimcher, 2007), to compute an 

integrated signal of long-term value for guiding choice policy. 

4.2 Methods 

Subjects  

21 adults participated in the experiment (9 male and 12 female; age range 19-28; mean 23.2, 

SD = 2.3 years). All were healthy, reporting no history of neurological, psychiatric or other 

current medical problems. Subjects provided written informed consent to partake in the 

study, which was approved by the local ethics board (University College London, UK). 

Training paradigm  

In a conditioning phase, performed outside of the scanner, subjects learnt stimulus-reward 

associations between a set of four differently coloured rectangular cues and their respective 

monetary values. Each coloured rectangle corresponded to one of four possible value 

outcomes - 1, 2, 3 or 4 tokens - randomized across individuals. Subjects were instructed that 

each token would translate into a fixed sum of money at the end of the experiment.  

Each trial began with a central fixation cross presented for 1000 ms, followed by presentation 

of a random pair of coloured boxes, one appearing to the left of the screen and one to the 

right. Subjects had a 2000 ms time-window to choose between these two boxes via a left or 

right button press, followed by presentation of the outcome of their choice for 1000 ms. The 

outcome was revealed as a written message indicating the total number of tokens won. 
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Subjects were instructed to explore all options until they were confident they had learnt all 

four associations, after which they should choose the box from the pair with the higher value. 

Each trial was defined as either correct if the subject chose the more valuable of the two 

options, and incorrect if they failed to do so. To ensure adequate learning, performance was 

calculated over six bins of twenty trials, with all subjects reaching a performance criterion of 

>= 90% by trial 60 onwards. For absolute verification, subjects were asked to verbally 

communicate the nature of the learnt associations. 

Task paradigm 

On every trial subjects were presented with a random sequence of trained stimuli (see 

training paradigm, p. 77), appearing individually and sequentially, with a variable inter-

stimulus interval (750 - 1250 ms). The sequence order was pseudo-random and thus 

unpredictable, with each stimulus having an equal probability of being one of the four 

possible colours. In addition, the precise number of stimuli to be offered on any trial was 

uncertain, fluctuating under a uniform distribution between 3 and 7. 

Each stimulus constituted an offer with a worth equivalent to its respective token value, for 

which subjects had 1500 ms to accept or reject via a go or nogo response respectively. A 

restriction was placed on the number of offers that could be exploited. In high constraint 

trials (HC), the acceptance budget was between 1 and 3 offers, whilst in low constraint (LC) 

it ranged between 4 and 6 offers, both varying under a uniform distribution independent of 

the total number of offers made on the current trial. Subjects were not explicitly told the 

bounds of the distributions from which the number of offers and total budget were drawn, 

only that they were uniform. All subjects received 30 training trials (15 per condition) in order 

to infer these distributions and familiarize themselves with the task attributes.  
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Figure 4.1 Subjects learnt stimulus-value associations, ranging from 1 to 4 tokens, for four 

collared stimuli. On every trial participants saw a random sequence of these stimuli, varying 

unpredictably in length between 3 to 7, with each stimulus representing an offer requiring 

either a go response to win the associated tokens or a nogo response for no token gain (for 

simplicity, the illustrations span 3 offers). Subjects had a predetermined go budget that 

placed a restriction on the number of offers that could be accepted. In a low constraint 

context (LC) subjects could accept between 4-6 offers, but only between 1-3 in a high 

constraint context (HC), with the exact budget being uncertain. Upon exhausting a go budget, 

nogo responses were enforced for the remainder of the trial. The context or condition was 

cued via a large (LC) or small (HC) green circle, whilst a depleted budget was signalled via the 

green circle turning red.  

HC and LC trials were pseudo-randomly interleaved. The trial type was indicated via a small 

or large green circle, in the top central portion of the screen, for HC and LC respectively. This 

appeared at trial onset and turned red upon exhaustion of the budget indicating nogo 

responses were obligatory for the remainder of the trial. After the final offer, an outcome 
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incorporating the total number of tokens won, and corresponding cue-token credit 

breakdown was revealed for 2500 ms.  

120 trials (60 per condition) were completed in the scanner across four sessions. The number 

of tokens won across sessions was summed and converted to a cash prize.  

Behavioural data analysis 

Global behaviour 

My analysis focused exclusively on choices pertaining to within-budget offers. Accepts (go 

responses) were obtained as a percentage of the total offer number at each offer value, 

conditional on HC and LC trials. These measures were entered into a two-way repeated-

measures analysis of variance (ANOVA) with factors control (HC/LC) and offer value (1, 2, 3 

or 4). The data were analysed in the statistical software package SPSS, version 20.0.  

Within-trial modulation of choice 

Within a trial, a player transitioned through a number of discrete states dependent on two 

fluctuating variables, the number of offers already seen and the number of accepts already 

utilized. To assess whether the probability of accepting a given offer was flat across the entire 

length of a given trial or fluctuated as a function of these variables, I split trials by offer index 

(i.e. 1-7) and number of offers already rejected (i.e. 0-6), re-calculating the probability of 

accepting at every possible permutation (see Figure 4.3, p. 91). For each participant, I 

summed the number of offers with a given value presented at each possible state within a 

trial, and then summed the number of accepts at each of those states. Dividing these 

measures provided a probability of acceptance at every choice point. Thus, for both HC and 

LC trials and each offer value, I generated a separate probability accept matrix with offer 

number increasing along the x-dimension, and number of rejects increasing along the y-
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dimension. These matrices were averaged across all participants. For display purposes, I 

discarded cells with less than a total of 10 data points. 

Computational modelling 

As I was interested in assaying subjects’ strategy for maximizing reward, I evaluated evidence 

for four competing choice models. Broadly, I conjectured subjects might approach trials with 

a predetermined decision rule, in effect applying a heuristic uniformly throughout a trial. 

Alternatively, owing to uncertainty surrounding the number of expected offers and the go-

budget (the number of offers they can exploit for reward in a trial), subjects might continually 

adapt their threshold for accepting offers across a trial. I outline the distinct models below, 

ordered by increasing complexity, where each model calculated the value of accepting an 

offer which was then passed through a sigmoid function to determine action probabilities as 

follows: 

𝑃𝐴 =  
1

1 + exp (−𝜏 ∙  𝑉𝐴)
 

where VA is the expected value of accepting an offer, and τ is a temperature parameter that 

governs the stochasticity of choices.  

Baseline heuristic model 

I first specified a baseline heuristic model that calculates the value of accepting (VA) by 

comparing the (face) value of every offer to a stationary decision threshold: 

𝑉𝐴 = 𝑅 − 𝑐1 

where R is the (face) value of the current offer and c1 is a value threshold. 
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Thus, this model makes choices based solely on the immediate (face) value of an offer with 

the probability of acceptance fixed throughout a trial. 

The model has 3 free parameters: the associated decision threshold for both HC and LC 

separately, and the steepness of the sigmoid function. 

Sliding offer model 

I conjectured subjects might track the number of offers seen in a trial and adjust a decision 

threshold such that an offer is more likely to be accepted if forthcoming offers were scarce. 

I added a linear slope parameter to the baseline heuristic model that governed the steepness 

of this decay across a trial, such that: 

𝑉𝐴 = 𝑅 − (𝑐1 −  𝑜 · 𝑐2) 

where R is the (face) value of the current offer, c1 is a value threshold, o is the current offer 

index and c2 governed the steepness of the associated slope. 

The model has 5 free parameters: the associated decision threshold and a slope parameter 

for both HC and LC separately, and the steepness of the sigmoid function.  

Sliding budget model 

A second variable that subjects could track in order to dynamically adjust their decision 

threshold is the number of offers already accepted in a trial. Given a limited go budget, a 

player may be less likely to accept an offer as this resource is exhausted, assuming ample 

offers. This model linearly increased the decision threshold with every additional offer 

accepted, but did not take into account the abundance of remaining offers, such that: 

𝑉𝐴 = 𝑅 − (𝑐1 +  𝑎 · 𝑐2) 
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where R is the (face) value of the current offer, c1 is a value threshold, a is the number of 

offers previously accepted and c2 governed the steepness of the associated slope. 

The model has 5 free parameters: the associated decision threshold and a slope parameter 

for both HC and LC separately, and the steepness of the sigmoid function.  

Integrated sliding model  

Combining the sliding offer and sliding budget models, subjects could track both the number 

of offers seen and the number of offers already accepted in a trial, using each source of 

information to adjust the decision threshold. The threshold should drop linearly with every 

mounting offer and rise linearly with every mounting go response. I fit separate slope 

parameters that governed the linear gradient for the number of offers and number of 

accepts, such that: 

𝑉𝐴 = 𝑅 − (𝑐1 + 𝑎 · 𝑐2 − 𝑜 · 𝑐3) 

where R is the (face) value of the current offer, c1 is a value threshold, a is the number of 

offers previously accepted, o is the current offer index, and c2 and c3 govern the steepness of 

the associated slopes. 

Interestingly, this 2-factor model predicts the optimal action with a frequency of 87% (based 

on group mean parameter fits).  

The model has 7 free parameters: the associated decision threshold, a slope parameter for 

the number of offers, a slope parameter for the number of accepts for both HC and LC 

separately, and a parameter for the steepness of the sigmoid function.  
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Model comparison 

As described previously (Guitart-Masip et al., 2012; Huys et al., 2011) I used a hierarchical 

Type II Bayesian (or random-effects) procedure using maximum likelihood to fit simple 

parameterized distributions for higher level statistics of the parameters. Since the values of 

parameters for each subject are ‘hidden’, this employs the Expectation-Maximization (EM) 

procedure. Thus, on each iteration the posterior distribution over the group for each 

parameter is used to specify the prior over the individual parameter fits on the next iteration. 

For each parameter I used a single distribution for all participants. Before inference, all 

parameters were suitably transformed to enforce constraints (log and inverse sigmoid 

transforms).  

Models were compared using the integrated Bayesian Information Criterion (iBIC), where 

small iBIC values indicate a model that fits the data better after penalizing for the number of 

parameters. Comparing iBIC values is akin to a likelihood ratio test (Kass & Raftery, 1995).  

Reaction time analysis 

I conjectured that if subjects were evaluating choice options in light of an action threshold 

that fluctuated in accordance with the number of offers already seen and accepted/rejected, 

then reaction times should be faster when the associated threshold is low and a go response 

is relatively more valuable. To test this, I utilized multiple linear regression to model the 

dependence of reaction times for all go choices on the corresponding offer values 

(immediate values) and model thresholds, separately for HC and LC trials. The two regressors 

were forced to compete for variance so as to explore dissociable contributions to the 

observed reaction times.  
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fMRI data acquisition  

fMRI was performed on a 3-Tesla Siemens Quattro magnetic resonance scanner (Siemens, 

Erlangen, Germany) with echo planar imaging (EPI) and 32-channel head coil. Functional data 

was acquired over four sessions containing 166 volumes with 48 slices (664 volumes total). 

Acquisition parameters were as follows: matrix = 64 x 74; oblique axial slices angled at -30° 

in the antero-posterior axis; spatial resolution: 3 x 3 x 3 mm; TR = 3360 ms; TE = 30 ms. The 

first five volumes were subsequently discarded to allow for steady state magnetization. Field 

maps were acquired prior to the functional runs (matrix = 64 x 64; 64 slices; spatial resolution 

= 3 x 3 x 3 mm; gap = 1 mm; short TE = 10 ms; long TE = 12.46 ms; TR = 1020 ms). Anatomical 

images of each subject’s brain were collected using multi-echo 3D FLASH for mapping proton 

density (PD), T1 and magnetization transfer (MT) at 1mm3 resolution and by T1 weighted 

inversion recovery prepared EPI (IR-EPI) sequences (spatial resolution: 1 x 1 x 1 mm) with B1 

mapping data to correct for the effect of inhomogeneous transmit fields on the T1 maps (3D 

EPI Transverse partition direction; matrix = 64 x 48; phase direction right to left; 48 partitions; 

resolution = 4 x 4 x 4 mm).  

During scanning peripheral measurements of subject pulse and breathing were made 

together with scanner slice synchronization pulses using the Spike2 data acquisition system 

(Cambridge Electronic Design Limited, Cambridge UK). The cardiac pulse signal was 

measured using an MRI compatible pulse oximeter (Model 8600 F0, Nonin Medical, Inc. 

Plymouth, MN) attached to the subject’s finger. The respiratory signal (thoracic movement) 

was monitored using a pneumatic belt positioned around the abdomen close to the 

diaphragm.  
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fMRI data analysis  

Data were analysed using SPM8 (Wellcome Trust Centre for Neuroimaging, UCL, London). 

Functional data were bias corrected for 32-channel head coil intensity inhomogeneities. Pre-

processing involved realignment and unwarpping using individual fieldmaps, co-registration 

of EPI to T1w images, and spatial normalization to the Montreal Neurology Institute (MNI) 

space using the segmentation algorithm on the T1w image with a final spatial resolution of 

1 x 1 x 1 mm. Finally, data were smoothed with an 8mm FWHM Gaussian kernel. The fMRI 

time series data were high-pass filtered (cutoff = 128 s) and whitened using an AR(1)-model.  

For each subject I used an in-house Matlab toolbox (Hutton et al., 2011) to construct a 

physiological noise model to account for artefacts that take account of cardiac and 

respiratory phase as well as changes in respiratory volume. This resulted in a total of 14 

regressors which were sampled at a reference slice in each image volume to give a set of 

values for each time point. The resulting regressors were included as confounds in all first 

level GLMs. 

In order to identify brain areas sensitive to within-trial variations in choice prescribed by my 

model, I derived an offer-wise go threshold to use as a parametric modulator of offer onsets 

in all first level GLMs. This model threshold (MT) represented an intercept value that 

increased linearly with every offer accepted and decreased linearly with every offer seen. 

The intercept and slopes were based on the mean posterior parameter fits across the group. 

If the offer value was higher than the MT the preferable decision is accepting, otherwise 

rejecting is preferred.  

Below I outline the GLM constructed for first level analyses. All imaging analyses address 

time-points when offers are within-budget and the subject has a free choice. Results are 

reported whole-brain corrected at the cluster level (FWE p =< 0.05) unless otherwise stated.  
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To explore a main effect of action constraint and value / MT (and their relevant interactions) 

I split offer onsets according to constraint (HC / LC) and offer (face) value (1, 2, 3 or 4), 

modelling each in a separate regressor parametrically modulated by MT. This resulted in 16 

regressors of interest. The four scanning sessions were concatenated into one, and a binary 

matrix was included to encode the identity of each session. Additional regressors of no 

interest included six movement-related covariates (the three rigid-body translations and 

three rotations resulting from realignment), 14-physiological regressors (6 respiratory, 6 

cardiac and 2 change in respiratory/heart rate), the onsets of the go responses (to explain 

away the effects of action), all offers outside of budget (for which ‘nogo’ responses were 

enforced) parametrically modulated by offer value, and outcome onsets parametrically 

modulated by the relevant number of tokens won. All regressors were modelled as stick 

functions with duration of zero and convolved with a canonical form of the hemodynamic 

response function (HRF) combined with time and dispersion derivatives.  

At the second level I conducted a random-effects 2 x 4 ANOVA with factors condition (HC / 

LC) and offer value (1, 2, 3 or 4), using first-level contrast images corresponding to the onset 

regressors of interest for each participant. This enabled me to explore main effects of 

condition and value, and their interaction. I generated a second 2 x 4 random-effects ANOVA 

drawing on first-level contrast images from the 8 MT parametric modulators, to explore an 

average effect of MT and a MT x value interaction. In order to obtain an average estimate of 

DLPFC activation in HC compared to LC, parameter estimates for offer values 1-4 were 

averaged in each condition, and LC was subtracted from HC.  

Functional regions of interest  

I used a functional regions of interest (f-ROI) approach to extract parameter estimates in a 

priori regions for a subset of analyses, including correlating neural and behavioural 
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measures, comparing value representations between conditions and exploring functional 

connectivity patterns. Functional ROIs were derived by identifying significant clusters of 

activation surrounding peak voxels from the relevant whole-brain mass univariate analysis. 

Given these clusters often spanned multiple regions, activations were constrained to 

corresponding anatomical ROIs from the MarsBar toolbox (V. 0.42) for SPM. For the VS, 

activations were constrained to an anatomical ROI derived from a diffusion tensor imaging 

connectivity-based parcellation of the right nucleus accumbens (NA) in humans, taken from 

(Baliki et al., 2013). The ROI consisted of both the core and shell subcomponents of NA and 

the right region was flipped along the x-dimension in the MarsBar toolbox to obtain a 

bilateral accumbens mask. 

Psycho-physiological interaction  

For each subject I defined a volume of interest (VOI) that included all active voxels (at p = 

0.2) from a first-level contrast that specified a linear effect of model thresholds across 

offered value { -2 -1 1 2 } within f-ROIs derived from the same second-level contrast (see 

Figure 4.6A, black arrows, p. 98). This allowed me to define voxels active on a subject-by-

subject basis, but confined to the cluster active at the group-level. I noted that 1 out of 21 

subjects had no active voxels when specifying both the ACC and left DLPFC (BA46) as seeds, 

while 3 out of 21 subjects had no active voxels when specifying dorsal vmPFC as a seed. These 

subjects were excluded from the corresponding PPI analysis. I used the generalized PPI 

toolbox for SPM (gPPI; http://www.nitrc.org/projects/gppi) to create a new GLM in which 

the individual seed time-course was deconvolved to construct a neuronal time-course for 

multiplication with regressors modelling all task effects, and then reconvolved with the HRF. 

Thus, the gPPI GLM includes a psychophysiological regressor for all conditions (McLaren, 

Ries, Xu, & Johnson, 2012). An indicator function for the relevant contrast, the original BOLD 
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eigenvariate, 6 motion and 12 physiological parameters were included as additional 

regressors.  

I first looked for regions in which connectivity with the seed region was modulated by MT, 

but where this modulation was greater for offers requiring adaptive control (values 1 and 2 

in HC, and value 1 in LC > values 3 and 4 in HR, and values 2, 3 and 4 in LC). I also performed 

a second PPI restricted to offers requiring adaptive choice (values 1 and 2 in HC, and value 1 

in LC), to ascertain whether connectivity increased (positive PPI) or decreased (negative PPI) 

with respect to increases in MT (compared to zero). One-sample t-tests were performed on 

the relevant contrasts at the second-level.  

4.3 Results  

Subjects reject lower value offers when a go budget is scarce  

Subjects were sensitive to both immediate (face) value and the delayed consequences arising 

from a budget constraint. Higher value offers were accepted more than lower value offers (a 

main effect of value: F(1,68, 33.63) = 277.87, MSE = 379.38, p < 0.001) and more offers were 

accepted overall in LC compared to HC (a main effect of constraint: F(1, 20) = 182.70, MSE = 

45.69, p < 0.001). Importantly, subjects were less willing to accept low value offers in HC 

compared to LC (a budget constraint x value interaction: F(1,73, 34.67) = 30.41, MSE = 

136.19, p < 0.001) (see Figure 4.2B, p.90).  
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Figure 4.2 (A) Plot shows the mean percentage of offers accepted split by token value and 

condition (HC in red, LC in blue). Subjects were less willing to accept low value offers when 

the budget was scarce. Post-hoc paired t-tests revealed significant decreases in percentage 

accept for offer values 1, 2 and 3 in HC compared to LC (all p < 0.001). Vertical lines represent 

SEM. (B) Integrated BIC scores (for the group as a whole) show that a model in which both 

the number of offers already seen and number of offers already accepted/rejected are used 

to adjust the threshold for action fits behaviour best. ISM = Integrated sliding model; SOM = 

Sliding offers model; SBM = Sliding budget model; BHM = Baseline heuristic model. The 

number of free parameters built into each model is indicated in parentheses.  

Dynamic versus fixed control 

Subjects dynamically adjusted their responses when delayed consequences fluctuated within 

a trial. These consequences depended on both the number of offers already seen and the 

number previously accepted/rejected in a trial. Figure 4.3 (p. 91) illustrates that subjects 

utilized both these components to adjust their responses.  

I next quantified this effect by comparing models accounting for the number of previous 

offers, number of previous accepts, or both (see Methods, p. 81 - 84). I found strong evidence 

that the integrated sliding model, wherein both components contribute to choice, fitted 

subject data best at the group level (lowest iBIC score). Although the sliding offer model 

performs well (in which only the number of offers seen is used to adjust choice), an addition 

of tracking the number of accepts/rejects improved the maximum likelihood across every 

subject (Wilcoxon signed rank test, p = 5.96 x 10-5). Consistent with the notion that subjects 
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used a dynamic control strategy, reaction times were faster when action (model) thresholds 

from the winning model were low (mean beta HC: 192.5, p < 0.0001; mean beta LC: 320.1, p 

< 0.0001), controlling for the immediate (face) value of the current offer (mean beta HC: -

107.3, p < 0.0001; mean beta LC: -92.0, p < 0.0001).  

 

Figure 4.3 Subjects adjust the probability of accepting less desirable offers as a function of 

the number of offers seen (x-axis) and number of offers already rejected (y-axis). The 

spectrum runs from blue (probability 0) to red (probability 1).  
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fMRI neuroimaging 

As in other control paradigms (Barber & Carter, 2005; Kerns et al., 2004), I first performed a 

categorical comparison to identify brain regions more active when the overall demand for 

control is increased (HC > LC), averaging across offer values (see Methods, fMRI data 

analysis, p. 86 ; see Table 4.1, p. 105). I found greater whole-brain corrected activity in right 

DLPFC and bilateral superior parietal lobule in HC overall compared to LC (Figure 4.4A, p. 93). 

These regions are associated with model-based planning (Owen, 1997; van den Heuvel et al., 

2003; Wunderlich, Dayan, et al., 2012), task switching and cognitive control (Badre, 2008; M. 

M. Botvinick et al., 2001; Liston et al., 2006), the resolution of uncertainty (Yoshida & Ishii, 

2006) and working memory (Barbey et al., 2012; Curtis & D'Esposito, 2003; Narayanan et al., 

2005).  
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Figure 4.4 Distinct but overlapping fronto-parietal networks are recruited when action 

constraints increase and when the expected long-term value of an option increases. (A) A 

fronto-parietal network spanning right DLPFC and bilateral parietal cortex was more active 

in HC compared to LC trials, during offers subject to go/nogo. The black arrows indicate two 

DLPFC clusters that were combined to form a DLPFC f-ROI responding to HC > LC. (B) Model 

thresholds, denoting the long-term component of expected value, correlated negatively with 

BOLD in an overlapping fronto-subcortical-parietal network, including ACC, bilateral DLPFC, 

parietal cortex and striatum. Activity in these regions was highest when the value of 

conserving a unit of budget (rejecting) was low. (C) Subjects with greater right DLPFC 

recruitment (see panel A, black arrows, for DLPFC f-ROI) in HC compared to LC showed a 

larger adjustment in willingness to accept value 2 offers between conditions (r2 = 0.33, p = 

0.007). Each point represents one participant.  
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I next hypothesized that greater right DLPFC recruitment in HC compared to LC would result 

in a larger behavioural adjustment between conditions. I focused on value 2 offers for which 

I observed the largest change in behaviour between HC and LC. I derived an average 

parameter estimate for a HC > LC contrast in a right DLPFC functional ROI, combining two 

activated right DLPFC clusters (1078 total voxels; see Figure 4.4A, middle panel, black arrows, 

p. 93), averaging the betas for the four value regressors, and then subtracting LC from HC. A 

between-subject correlation revealed a positive association between parameter estimates 

in right DLPFC for a HC > LC contrast and the change in propensity to accept value 2 offers 

between HC and LC (r2 = 0.33, p < 0.007) (Figure 4.4C, p. 93). Thus, right DLPFC is instrumental 

in the categorical adjustment of action control in my task.  

To identify correlates of value for guiding choice, I tested for a positive average linear effect 

of offer (face) value across both HC and LC conditions, revealing a value-dependent response 

in regions that included vmPFC and VS (including nucleus accumbens) (Figure 4.5A, p. 95; see 

Table 4.1 for all regions, p. 105). Importantly, this value signal was independent of any motor 

response as go responses were modelled as separate onsets in my GLM. Thus, offer values 

were tracked in regions involved in value representation (Jenison et al., 2011; Schultz, 2000). 

Further, as participants’ choices were sensitive to action constraint, I anticipated the 

representation of offer value in vmPFC and VS, two regions widely implicated in value-based 

choice (De Martino et al., 2013; Guitart-Masip et al., 2012; Hunt et al., 2012), would be 

modulated accordingly. I derived functional ROIs (see Methods, p. 88) by defining voxels 

(within whole-brain corrected clusters) in vmPFC (928 voxels; see Figure 4.5B, p. 95) and VS 

(56 voxels; see Figure 4.5C, p. 95) that showed a linear effect of offer value on average (as 

above), and then tested for an orthogonal value x condition (HC or LC) interaction. I found a 

significant interaction in vmPFC (F(2.38, 47.62) = 5.34, MSE = 1.67, p = 0.005) but not in VS 

(Figure 4.5B, p.95). In LC, vmPFC was more responsive to value 2 than value 1 (p = 0.02) and 
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value 3 than value 2 (p = 0.02), whereas in HC, neither value 2 (p = 0.35) nor value 3 (p = 0.38) 

induced greater BOLD than value 1.  

 

Figure 4.5 Value representations are modulated by context. (A) The BOLD signal in vmPFC, 

VS, right amygdala and precuneus/posterior cingulate covaries with offer value. (B) vmPFC 

tracks value linearly in LC but with a depressed slope for HC. The representation of value 2 

offers is particularly degraded, mirroring behavioural data. Vertical lines represent SEM. (C) 

A f-ROI confined to the ventral striatum was used in a constraint (HC/LC) x value (1, 2, 3 or 

4) interaction analysis.  
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Given behavioural and computational evidence that subjects used trial structure to evaluate 

options, I conjectured within-trial adaptive choice would manifest as a dynamic modulation 

of value representations in vmPFC, analogous to that observed between HC and LC trials. To 

test this I constructed a summary measure reflecting a time-varying decision threshold, as 

prescribed by the winning model, that then provided an offer-wise parametric regressor (see 

Methods, p. 86). In effect this model threshold (MT) represented the value of carrying one 

more unit of budget (the number of accepts endowed for a trial) into the next offer, 

independent of the immediate value of the current offer. The overall value of accepting was 

thus the difference between offer value and MT. Note however, in contrast to the down-

regulation of value 2 offers in HC, the time-variant adaptation in choice prescribed by the 

winning model require an up-regulation of low value offers when the future benefit of 

conserving a unit of budget is low.  

I first tested for regions where BOLD signal correlated with MTs across both conditions (see 

Methods, fMRI data analysis, p. 86) finding a fronto-subcortical-parietal network was 

modulated negatively, with no regions modulated positively. This is consistent with BOLD 

signal being highest when the expected utility of carrying a unit of budget forward was low, 

and thus a go response was more favourable. This network, that includes ACC, bilateral 

DLPFC, parietal cortex and striatum (Figure 4.4B, p. 93; see Table 4.1 for all regions, p. 105), 

is partially overlapping with that seen in the contrast of HC > LC (Figure 4.4A, p. 93), implying 

similar regions of PFC are recruited when action control is reliant on internal valuations 

versus external cues. Note that similar networks are engaged during working memory 

(Barbey et al., 2012; Curtis & D'Esposito, 2003) and in goal-directed and/or cognitive control 

paradigms (Badre, 2008; Hare et al., 2009; Rushworth et al., 2011; Yoshida & Ishii, 2006).  

In my task, the immediate reward gained from accepting value 3 or 4 offers is higher than 

the maximum MT value and thus these offers should always be accepted. In contrast, the 
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difference between the immediate reward obtainable from value 1 and 2 offers and their 

corresponding MTs fluctuates about zero, signifying choice policy, consistent with the 

observed behaviour, should shift in response to trial state. Consequently, I hypothesized that 

an independent network tracked MTs differentially dependent on offered value. To test this, 

I looked for brain regions showing a linearly increasing effect of MTs across both conditions. 

As MTs were tracked negatively this tested an hypothesis they would correlate more strongly 

with BOLD as offer value decreased. I found clusters in ACC, left DLPFC (BA46), and a dorsal 

region of vmPFC (BA10) (Figure 4.6A, p. 98; see Table 4.1 for details, p. 105) that were 

increasingly more responsive to changes in MTs as offered value decreased. The ACC cluster 

was particularly striking, with post-hoc exploratory one sample t-tests revealing MT 

representations solely for offers requiring adaptive choice, that is offer value 1 for both 

conditions (HC: p = 0.002, LC: p = 0.01) and a trend for offer value 2 for HC alone (p = 0.09) 

(Figure 4.6B, p. 98). Note that I found behavioural evidence of adaptive choice corresponding 

to these three offers (Figure 4.3, p. 91).  

Finally, I used a connectivity analysis to ask whether brain regions tracking MTs for offers 

requiring policy switches were modulating value representations in vmPFC to instigate 

adaptive switches in choice. I selected physiological responses from three f-ROI seed regions, 

showing a linear effect of MTs (reflecting the long-term component of value), that included 

ACC (739 voxels in group-level ROI), left DLPFC/BA46 (502 voxels in group-level ROI) and 

dorsal vmPFC/BA10 (179 voxels in group-level ROI) (see Figure 4.6A, black arrows, p. 98). 

Interestingly, the PFC has previously been implicated in flexible action control, and, in the 

case of DLPFC, top-down modulation of value signals (Hare et al., 2009; Walton et al., 2007). 

I performed a PPI to test a hypothesis that coupling would be modulated by fluctuations in 

MTs, and that this change would be greater for low value offers requiring adaptive choice 

(values 1 and 2 in HC, and value 1 in LC) than for high value offers (where choice is not 



98 
 

dependent on MT). The regions identified by the ensuing PPI correspond to regions whose 

connectivity with the relevant seed region depends on both the immediate value and MT of 

the current offer.  

 

Figure 4.6 Model thresholds are selectively tracked in a prefrontal network. (A) BOLD signal 

in ACC, left DLPFC (BA46) and dorsal VMPFC (BA10) increases as model thresholds decrease 

(and action is most favourable), only for offers mandating adaptive control. (B) Parameter 

estimates from the ACC cluster shown in panel A illustrate model thresholds are tracked for 

offers requiring adaptive control (value 1 in HC and LC, and a trend for value 2 in HC). Red 

corresponds to HC; blue to LC. Vertical lines represent SEM. (C) A whole-brain voxel-based 

gPPI analysis revealed ACC is more functionally connected with the vmPFC when actions cost 

are high and low offers should be rejected. This region of vmPFC overlaps with a cluster that 

tracks offer value (Figure 4.5A, p. 95) and is sensitive to categorical changes in context (Figure 

4.5B, p. 95). (D) Comparison of functional connectivity patterns between ACC (yellow; 

displayed at 0.001 uncorrected) or left DLPFC/BA46 (green; displayed at 0.005 uncorrected) 

and vmPFC. As with ACC, the left DLPFC demonstrates a functional coupling with vmPFC 

when accepting an option offering only a small immediate reward is unfavourable, but this 

effect only emerges at a more liberal threshold. 
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I found a functional coupling between ACC and vmPFC that was sensitive to fluctuations in 

MTs, that was larger on average for offers requiring adaptive choice. This effect was 

significant when using small volume correction for the vmPFC f-ROI that tracked offer value. 

Given directionality cannot be determined when comparing parametric effects across 

conditions, I performed a second PPI analysis, now confined to offers requiring adaptive 

choice, enabling me to assess whether connectivity was positively or negatively modulated 

by increasing MTs. A vmPFC f-ROI approach revealed that ACC and vmPFC were more 

functionally coupled when MTs were high (mean ppi = 3.04, p = 0.005), in other words when 

low value offers need to be rejected. Thus, connectivity between ACC and vmPFC was 

dependent on both immediate value and MT. Although the left DLPFC did not demonstrate 

functional coupling with vmPFC that depended on both MT and offer value, qualitatively I 

observed an effect in vmPFC at a more liberal threshold (p = 0.005 uncorrected). In fact, I did 

not detect any significant difference in the magnitude of the PPI effect (2-sample t-test, p = 

0.68) between ACC and DLPFC when using a vmPFC f-ROI, implying that despite a more 

prominent contribution of ACC, DLPFC also contributes to the observed connectivity. When 

dorsal vmPFC was used as a seed, no significant results were observed.  

4.4 Discussion 

This study addressed the computational implementation of context-specific action control in 

value-guided choice. I show that subjects incorporate both extrinsic constraints on action 

and intrinsic fluctuations in opportunity to adaptively switch between a go/nogo response. 

Mechanistically, a fronto-subcortical-parietal network tracks the downstream consequence 

of spending a limited action budget, whilst ACC couples to vmPFC to shift the representation 

of value in favour of long-term profit.  
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In this task, subjects track the number of offers already seen and number already 

accepted/rejected in a trial to compute the future value of expending a unit of budget. This 

model fits behaviour better than simpler candidates in which action is driven solely by 

immediate reward or where only a restricted set of environmental features is consequential. 

Of interest, the winning model produces behaviour that closely approximates optimal 

choice, which relies on back-propagating through a decision tree of all future moves in a trial. 

Although this strategy is computationally taxing (given the depth of the search tree in this 

game), subjects could be computing long-term value by recruiting a model-based system that 

searches through future states ‘on the fly’ (Dayan, 2008). Alternatively, a player could track 

aspects of the environment to index stored values, or to update values under a model-free 

regime. Although my task cannot arbitrate between these possibilities, I note the circuitry 

that tracks the MTs from the winning model overlaps with that implicated in model-based 

reinforcement learning (Daw et al., 2011; Glascher et al., 2010; Wunderlich, Dayan, et al., 

2012).  

Influential accounts of ACC propose a myriad of roles including conflict monitoring (M. M. 

Botvinick, 2007), error monitoring (Rushworth et al., 2004), overriding pre-potent responses 

(Kerns et al., 2004), evaluating outcomes (Gehring & Willoughby, 2002) and action-outcome 

learning for negative feedback (Rushworth et al., 2004). While the task lacked explicit 

negative feedback, the finding that ACC tracks the MTs necessary for implementing adaptive 

choice is consistent with the conflict monitoring account, but not with a role in error 

monitoring, given choices were closely aligned with optimality. Unlike previous paradigms 

where switches in contingency are explicitly cued (Kerns et al., 2004), I show conflict in ACC 

can arise endogenously via tracking fluctuations in downstream consequence.  

ACC is also implicated in foraging (Kolling et al., 2012) where it is proposed to track the value 

of alternative choice options during a trade-off between exploration and exploitation. I 
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found ACC activity was highest when exploiting a low value offer was more optimal. 

However, in my task ACC only tracks MTs corresponding to offers that are routinely rejected. 

In this light, my findings can be construed as in keeping with the former role. These findings 

also hint that a conflict monitoring account of ACC can be reinterpreted as reflecting a need 

to switch behaviour from the current default response, as opposed to encoding a non-

specific conflict signal (Shenhav, Botvinick, & Cohen, 2013). Indeed, recent work further 

supports the notion that ACC assumes a default frame of reference, by adapting choice from 

the best long-running option (Boorman, Rushworth, & Behrens, 2013). 

A number of studies propose ACC expresses a prediction error (Ide et al., 2013),which can be 

used to update internally-generated models (O'Reilly et al., 2013). This may explain why high-

conflict or high-volatility trials, often confounded with surprise, also induce responses in ACC. 

However, my data indicate that surprise cannot fully account for the ACC activation 

observed, as stimuli are presented with equal frequency such that surprise does not vary 

within a trial. Instead, a response to low value offers switches in line with changes in delayed 

consequence. Thus, in the context of the current study, it is likely that ACC plays a more 

general role in a strategic adjustment of behaviour that is rooted in processing or initiating 

atypical stimulus or action requirements, which also includes surprising events.  

A dynamic coupling between ACC and vmPFC was seen when MTs dictate action costs are 

high, with the greatest change in coupling evident in offers where action requirement is most 

dependent on MT. One interpretation is that ACC suppresses the representation of low value 

offers in vmPFC when the future value of conserving a unit of budget is high and the optimal 

decision is to reject. Conversely, when MTs are low, decoupling between ACC and vmPFC 

may reflect a disinhibition of value signals relating to previously unfavourable offers. This 

contrasts with other suggestions that ACC signals a need for control but plays no causal role 

in conflict resolution (Kerns et al., 2004), or that dissociable decision variables are computed 
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in vmPFC and ACC that compete for behavioural output (Boorman et al., 2013). Since ACC 

activity in the current task is not sensitive to changes in MTs corresponding to high value 

offers, it is unlikely to represent an unrelated correlate of trial time or WM content.  

In contrast to the selectivity implemented by ACC, I found that MTs were tracked 

indiscriminately within an extensive fronto-subcortical-parietal network. Though planned 

choice has only recently been studied in a value domain, a finding that this network tracks 

computations related to future value is consistent with previous work from the model-based 

reinforcement learning literature (Daw et al., 2005; Glascher et al., 2010; Wunderlich, Dayan, 

et al., 2012). Interestingly, recent evidence suggests PFC neurons can adapt their tuning 

profiles to accommodate changes in behavioural context (Stokes et al., 2013), a mechanism 

that could underlie a network-level implementation of the adaptive responses observed in 

my task. I note this fronto-parietal network also encompasses regions implicated in executive 

control (Barber & Carter, 2005; Hare et al., 2009; Wallis & Miller, 2003), exploratory 

behaviour (Daw et al., 2006; Yoshida & Ishii, 2006), intertemporal choice (McClure et al., 

2004) and WM (Barbey et al., 2012; Curtis & D'Esposito, 2003).  

One limitation of the current task is that it cannot characterize a neural correlate of the fully 

integrated value derived from my computational model (the difference between the current 

offer and the associated MT) because this is correlated with the immediate value of the offer. 

However, the observed fronto-subcortical-parietal activity may reflect a value comparison 

between offer value and MT. As MTs decrease the difference in value between go and nogo 

shifts in favour of a go response, whilst when MTs increase they approach the average worth 

of the offer value range (2.5), making the decision to accept or reject harder. Alternatively, 

given that MTs trended downwards as trials progressed (although not exclusively, as they 

are also a function of the current budget), they are anti-correlated with WM demand, 

following the contents of trial history become harder to maintain (and update) through time. 
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Since I found activity in this fronto-subcortical-parietal network tracked MTs across all offers, 

this profile may reflect a WM signature. Interestingly, it has been shown that goal-directed 

choice is dependent on WM (Otto, Gershman, et al., 2013). In this regard, there is 

considerable debate as to whether delay-period DLPFC activity, classically interpreted as a 

correlate of WM, reflects the pure maintenance of information, or instead if WM is merely 

an emergent properly of executive and attentional functions implemented in DLPFC (Postle, 

2006).  

My paradigm also incorporated high (HC) and low action constraint (LC) environments, and 

in the former subjects reject lower value options to increase the probability of capitalizing 

from larger later rewards. I found categorically switching from LC to HC correlated with the 

fMRI signal in a similar fronto-parietal network. Within this network, the more DLPFC was 

recruited in HC compared to LC, the more a subject would modulate their behavioural 

response to value 2 offers between conditions. In addition, I found widespread correlates of 

offer value in regions previously linked to value computations, including vmPFC (Hare et al., 

2009), VS (Guitart-Masip et al., 2012), posterior cingulate/precuneus (Litt et al., 2011) and 

amygdala (Jenison et al., 2011). Importantly, value representations were altered in HC in 

vmPFC, a key value-coding region.  

Interestingly, a comparable fronto-parietal network is reliably up-regulated in conditions 

requiring cognitive control or overcoming response conflict in task switching paradigms 

(Badre, 2008; Kerns et al., 2004; Mansouri, Tanaka, & Buckley, 2009; Pochon, Riis, Sanfey, 

Nystrom, & Cohen, 2008). This likeness suggests participants may be engaging cognitive 

control mechanisms to appropriately reject appetitive, though relatively less valuable, offers 

in light of increasing environmental demands in HC trials. In this framework, my data 

corroborate previous ideas of interplay between PFC and value regions, suggestive of a 

scheme whereby value signals are modulated directly to achieve adaptive choice (Diekhof & 
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Gruber, 2010; Hare et al., 2009). However, as with previous control paradigms, I note that a 

categorical difference in activity profiles between conditions does not pose any properties 

that allow attribution of specific computational roles. 
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Table 4.1 Results for all second-level contrasts (whole-brain corrected at the cluster-level, 

FWE p =< 0.05). 

 

 

Contrast Name of Region 
Cluster FWE 

p value 

MNI Coordinates Statistics 

x y z t value Z score 

HC > LC 

Right Parietal < 0.001 28 -64 48 5.70 5.39 

Right DLPFC < 0.001 40 12 30 4.75 4.56 

Left Parietal 0.002 -28 -56 46 4.53 4.37 

LC > HC 

Right V1 
< 0.001 

8 -76 6 7.38 6.77 

Left V1 -8 -84 -8 6.08 5.72 

Left 
Parahippocampal 

< 0.001 -28 -28 -12 5.80 5.48 

Left Parietal 
< 0.001 

-50 -24 24 5.77 4.46 

Left Insula -40 -6 -2 4.59 4.42 

vmPFC < 0.001 -6 44 -10 5.06 4.84 

Left Precuneus < 0.001 -10 -54 -12 4.56 4.39 

Right Parietal < 0.001 44 -34 24 4.49 4.33 

Mid Cingulate 0.001 14 -20 46 4.08 3.96 

Linear effect offer 
value 

vmPFC 
< 0.001 

4 52 14 6.31 5.91 

Bilateral 
accumbens 

-4 14 -8 5.70 5.39 

Left Mid Temporal 

< 0.001 

-52 -58 20 5.83 5.50 

Left Parietal -54 -26 22 5.62 5.33 

Left Sup Temporal -58 -18 10 4.46 4.30 

Left Mid Occipital -42 -74 32 4.15 4.02 

Left 
Parahippocampal 

< 0.001 
-28 -32 -14 5.67 5.37 

Right Lingual 14 -44 2 5.45 5.18 

Right Cuneus < 0.001 16 -82 32 5.65 5.35 

Right M1 0.004 56 -8 44 5.38 5.12 

Left M1 0.001 -44 -16 58 4.91 4.71 

Right Hippocampus 0.008 24 -18 -16 4.89 4.69 

Negative offer value 

Right Insula < 0.001 30 22 -10 5.44 5.17 

ACC < 0.001 6 24 48 5.26 5.02 

Left Insula 0.009 -34 18 -4 5.04 4.82 

Right Parietal 0.001 36 -50 50 4.47 4.31 

Negative model 
thresholds 

Left Caudate 

< 0.001 

-12 -6 18 8.23 7.42 

Right Sup Parietal 24 -56 52 7.95 7.21 

Right IFGpt 32 18 28 7.92 7.19 

Right Thalamus 12 -10 18 7.77 7.08 

Left Mid Occipital -38 -72 10 7.49 6.86 

Right Lingual 20 -74 4 7.16 6.60 

Right DLPFC 32 8 26 6.99 6.46 

Right Frontal Mid 
Orb 

34 52 -6 4.87 4.67 

Left Putamen < 0.001 -18 17 -6 4.25 4.11 

Left M1 
< 0.001 

-42 -2 52 6.40 5.99 

Left DLPFC -26 6 64 4.94 4.73 

Right IDGpo 
< 0.001 

34 26 -10 6.06 5.70 

Right Caudate 10 20 -8 4.27 4.13 

Linear effect model 
thresholds 

ACC < 0.001 -6 28 22 5.29 5.04 

Left DLPFC (BA46) < 0.001 -32 46 18 4.69 4.51 

Dorsal vmPFC 
(BA10) 

0.037 -8 56 2 4.50 4.34 
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CHAPTER 5 

 ARBITRATION BETWEEN CONTROLLED AND IMPULSIVE CHOICE 

The impulse to act for immediate reward often conflicts with more deliberate evaluations 

that support long-term benefit. The neural architecture that negotiates this conflict remains 

unclear. One account proposes a single neural circuit that evaluates both immediate and 

delayed outcomes, while another outlines separate impulsive and patient systems that 

compete for behavioural control. Here I designed a task in which a complex pay-out structure 

divorces the immediate value of acting from the overall long-term value, within the same 

outcome modality. Using model-based fMRI in humans, I demonstrate separate neural 

representations of immediate and long-term value, with the former tracked in anterior 

caudate (AC) and the latter in ventromedial prefrontal cortex (vmPFC). Crucially, when 

subjects’ choices were compatible with long-run consequences, value signals in AC were 

down-weighted and those in vmPFC were enhanced, while the opposite occurred when 

choice was impulsive. Thus, my data implicate a trade-off in value representation between 

AC and vmPFC as underlying controlled versus impulsive choice.  

5.1 Introduction 

Everyday occurrences often involve negotiating immediate temptations whose consumption 

might jeopardize long-term goals. A common instance is where the prospect of a large 

immediate reward is coupled with a harmful yet delayed consequence, such as enjoying a 

cigarette that can imperil long-term health. Behavioural findings suggest that in this context 

the desire for an hedonic payoff competes with the intent to act with foresight (Baumeister, 

Bratslavsky, Muraven, & Tice, 1998; Hare et al., 2009; Hofmann, Friese, & Strack, 2009), 

demanding self-control.  
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A longstanding notion in psychology is that resisting temptation involves a competition 

between two competing systems (Hofmann et al., 2009; Hofmann & Van Dillen, 2012). In 

support of this idea, several experiments have found evidence for a trade-off between 

separate neural systems that preferentially activate when choice is driven by immediate and 

delayed rewards respectively (McClure et al., 2004; Tanaka et al., 2004). These systems are 

thought to guide choice by encoding value on opposing time-scales, though it is unclear 

whether their selective involvement reflects the tracking of other decision components.  

An alternative perspective, particularly within neuroeconomics, suggests choice is driven by 

a single system that represents both immediate and delayed decision outcomes. In dietary 

choice paradigms, where individuals choose between foods that vary along a scale of 

healthiness and tastiness (Hare et al., 2009; Hare et al., 2011), neuroimaging supports a role 

for the ventromedial prefrontal cortex (vmPFC) in integrating both components of value 

(Hare et al., 2009; Rangel, 2013). This is reinforced by other evidence that a common vmPFC-

striatal circuit tracks the subjective value of choice options (Kable & Glimcher, 2007). The 

divergence between these two perspectives remains largely unresolved. 

Here, I designed a novel paradigm that required subjects to accept or reject offers with 

known immediate value, presented sequentially within a trial. The probability of receiving 

large or small offers depended on past actions, such that an early acceptance of a large 

immediately available offer harmed long-term earnings by diminishing the opportunity for 

future rewards. Thus, maximizing long-run earnings sometimes required rejecting seemingly 

attractive offers associated with a high immediate payoff. In contrast to previous paradigms, 

long-run consequences were fully defined within a single outcome modality based on 

knowledge of the formal structure of the task. In this way I was able to decorrelate 

immediate from long-term value across offers, where the latter includes the delayed 

consequences of acting. I used model-based functional magnetic resonance imaging (fMRI) 
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to investigate the neural representation of each value component and linked this to a 

disposition for controlled versus impulsive action.  

5.2 Methods 

Subjects  

23 adults participated in the experiment (9 male and 14 female; age range 18-26; mean 21.2, 

SD = 2.33 years). All were healthy, reporting no history of neurological, psychiatric or other 

current medical problems. Subjects provided written informed consent to partake in the 

study, which was approved by the local ethics board (University College London, UK). 

Training paradigm  

In a conditioning phase, performed outside of the scanner, subjects learnt stimulus-reward 

associations between a set of three differently coloured rectangular cues and their 

respective reward values. Each coloured rectangle corresponded to one of three possible 

outcomes involving receipt of 3, 5, or 7 tokens, randomized across individuals. Subjects were 

instructed that each token would translate into a fixed sum of money at the end of the 

experiment. Each trial began with a central fixation cross presented for 1000 ms, followed 

by presentation of a random pair of coloured cues, one appearing to the left one to the right 

of the screen. Subjects had a 2000 ms time-window to choose between these two boxes via 

a left or right button press, followed by presentation of the outcome of their choice for 1000 

ms. The outcome was a written message indicating the total number of tokens won. Subjects 

were instructed to explore all options until they were confident they had learnt all three 

associations, after which they should choose the box from the pair with the higher value. 

Each trial was defined as either correct if the subject chose the more valuable of the two 

options, and incorrect if the less valuable option was chosen. To ensure adequate learning, 
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performance was calculated over six bins of twenty trials, with all subjects reaching a 

performance criterion of >= 90% by trial 60 onwards. Subjects were asked to verbally 

communicate the nature of the learnt associations. 

Task paradigm 

On every trial subjects were presented with a random sequence of trained stimuli (see 

training paradigm), appearing individually and sequentially, with a variable inter-stimulus 

interval (750 - 1250 ms). Each stimulus, presented for 1500 ms, constituted an offer requiring 

either a go response to win the relevant number of tokens or a nogo response which lead 

the player to forego monetary gain. However, a restriction was placed on the number of 

offers that could be exploited for reward on any given trial. Specifically, subjects were 

instructed that they could receive between 7-9 offers out of which between 4-6 could be 

accepted. The precise offer number and acceptance budget were drawn randomly and 

independently on every trial under a uniform distribution, and thus every combination was 

equally likely. A green circle on the top central portion of the screen turned red to indicate 

that a player had exhausted their go budget, after which nogo responses were enforced for 

any remaining offers.  
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Figure 5.1 In pre-scanning training (not shown), subjects learnt to associate three distinct 

colour stimuli with a token value of 3, 5 or 7, with each token won translated into a cash 

prize at the end of the experiment. In the actual experiment proper (shown above), a player 

was presented with a sequence of stimuli, each constituting an individual offer. These offers 

required a go response to win or a nogo response to forego a gain. Crucially, a restriction 

was placed on the number of offers that could be exploited per trial sequence, such that on 

every trial a player could receive an overall amount of 7-9 offers but where only 4-6 (go 

budget) could be accepted, with every combination being equally likely. A green circle at the 

top central portion of the screen turned red to indicate a player had exhausted their go 

budget, after which they passively observed the remaining sequence of outstanding offers. 

At trial onset, each offer had an equal probability of being the colour associated with 3, 5 or 

7 tokens {0.33 0.33 0.33, respectively}. With the exception of the first offer, if a player 

accepted a value 7 offer before rejecting at least three previous offers, the distribution would 

shift in favour of value 3 offers for the remainder of the sequence {0.9 0.05 0.05}. Likewise, 

if a player accepted a value 5 offer before rejecting at least three previous offers, the 

distribution would modestly shift in favour of value 3 offers {0.5 0.25 0.25}. The current 

distribution was updated based on the most recent action. Thus, an optimal player had to 

track the immediate reward environment as well as calculate overall (long-term) value by 

taking account of how an immediate go response might impact on future reward abundance, 

entailing often rejecting an offer associated with a large immediate reward. 

Importantly, the value of each offer was probabilistic and governed by a set of explicitly 

instructed contingencies. At trial onset, each offer had an independent and equal probability 

of being worth 3, 5 or 7 tokens {0.33 0.33 0.33 (for 3, 5 and 7 respectively)}. Excluding the 

first offer, if a player accepted a value 7 offer before rejecting three or more previous offers 

the distribution would shift such that every future offer would have a probability distribution 
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greatly in favour of value 3 {0.9 0.05 0.05}. Similarly, excluding the first offer, if a player 

accepted a value 5 offer before rejecting three or more previous offers the distribution would 

shift such that every future offer would have a probability distribution moderately in favour 

of value 3 {0.5 0.25 0.25}. The probability distribution was updated according to the choice 

made on the most recent offer. Thus a player had to consider both the immediate and long-

term consequences of a go response in order to maximize payoff across a trial. Following the 

last offer, an outcome displaying the total number of offers won was presented on the screen 

for 2500 ms.  

All subjects received 1 block (36 trials) of training outside the scanner in order to familiarize 

themselves with the task attributes and to diminish learning in the scanner. Subsequently, 

108 trials were completed in the scanner across three sessions of 36 trials. The number of 

tokens won across sessions was summed and converted to a cash prize.  

Due to the complex nature of the task, subjects were probed to ensure they had currently 

understood the nature of the contingencies that linked actions to switches in the distribution 

of offers, prior to scanning. Specifically I constructed a written set of hypothetical trials, 

where for each trial subjects were ask to indicate their belief in the current offer distribution 

given a history of specific offers and actions. For example, “What is the probability of the 

next offer being worth 5 tokens given that a value 7 offer was accepted at the third index 

and no offers had previously been rejected?”. One subject failed to demonstrate correct 

knowledge of the task and was excluded from participating in the scanning portion of the 

experiment. This participant thus is not reflected in the remaining 23 participating subjects.  
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Behavioural data analysis 

Within-trial modulation of choice 

Within a trial, a player transitions through a number of discrete states dependent on three 

fluctuating variables, the number of offers already seen, the number of accepts already 

expended and the current offer distribution. To assess how the probability of accepting a 

given offer fluctuated as a function of these variables, I split trials by offer index (i.e. 1-9), the 

number of offers already rejected (i.e. 0-8), and the current offer distribution, calculating the 

probability of accepting at every possible permutation (Figure 5.3A, p. 124). Note that here I 

only display behaviour corresponding to offers where the probability distribution is equal 

given that choice under this contingency is most relevant to the questions of interest. The 

probability of accepting at every state was averaged across all participants. For display 

purposes, I discarded cells with less than a total of 15 data points. 

Robust logistic regression 

In order to confirm my hypothesis that both immediate and long-term value show 

independent effects on choice, I used a robust logistic regression to model the dependence 

of a go/nogo response (across all choice data) on immediate and long-term value in a model 

in which both regressors competed for variance. The algorithm implemented used iteratively 

reweighted least squares with a logistic weighting function. I performed one-sample t-tests 

on the resulting beta coefficients across subjects. A positive beta implies subjects are more 

likely to go when value is high.  

Computational modelling 

A major interest here is the extent to which subjects’ utilize estimates of immediate and 

long-term value to guide choice. I used computational modelling to evaluate evidence that 
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choice was guided purely by immediate value, purely by (the optimal) long-term value, or by 

a corresponding trade-off. Each model calculated the value of accepting an offer which was 

passed through a sigmoid function (σ) to determine action probabilities as follows: 

𝑃𝐴 =  
1

1 + exp (−𝜏 ∙  𝑉𝐴)
 

where VA is the expected value of accepting an offer, and τ is a temperature parameter that 

governs the stochasticity of choices.  

Immediate reward model  

I conjectured subjects might choose on the basis of immediate value, disregarding the 

downstream consequences associated with prematurely accepting high (face) value offers, 

whereby 

𝑉𝐴 = 𝐼𝑅 −  𝑐1  

where IR is the face value of the current offer and c1 represents a value intercept. 

IR, c1 and τ (the temperature parameter of the associated sigmoid function) were fit by 

maximum likelihood estimation (see Model fitting & comparison, p. 116).  

Optimal model  

I built a model that calculated the optimal decision at each offer, where optimal is defined 

as maximizing expectation of total reward delivery in the trial. The model assumes correct 

knowledge of the structure of the task. The current state of the task was defined by three 

belief distributions: O, over o, the number of offers remaining, A, over a, the number of 

accepts remaining, and M, the probability distribution governing the value of the 

forthcoming offer. The expected value of being in a state was: 
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𝑆𝑉(𝑶, 𝑨) = ∑ 𝐌𝑚(𝑟) ∙ max {𝑃(𝑜 > 1) ∙ 𝑆𝑉(𝑶′, 𝑨), 𝑟 + 𝑃(𝑜 > 1) ∙ 𝑃(𝑎

𝑟={3,5,7}

> 1) ∙ 𝑆𝑉(𝑶′, 𝑨′)} 

where O' is defined by 

𝑃(𝑶′ = 𝑜) =
𝑃(𝑂 = 𝑜 + 1)

∑ 𝑃(𝑂 = 𝑜 + 1)𝑜
 

and A' is defined analogously. Thus going from O to O' or A to A' updates the probability 

distribution such that it remains uniform but shifts to the left. Note that calculating the 

recursive SV function was effectively a search through a tree of all possible moves. The 

recursion ends when P(o > 1) or P(a > 1) are 0, and SV is not evaluated. 

M is defined by three discrete probability distributions as follows: 

𝑀0  =  {0.33 0.33 0.33} 

𝑀1  =  {0.50 0.25 0.25} 

𝑀2  = {0.90 0.05 0.05} 

At trial onsets, m = 0, and is updated according to the following rules: 

If we are on the first offer, or 3 offers have previously been rejected, m doesn’t change.  

Otherwise, if a value 5 offer is accepted, m = 1, and if a value 7 offer is accepted, m = 2 

At each offer the model calculated the value of rejecting, 

𝑉𝑅 = 𝑃(𝑜 > 1) ∙ 𝑆𝑉(𝑶′, 𝑨) 
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and the future value of accepting, 

𝑉𝐴𝐹 = 𝑃(𝑜 > 1) ∙ 𝑃(𝑎 > 1) ∙ 𝑆𝑉(𝑶′, 𝑨′) 

The expected value difference between accepting and rejecting, EV, was calculated as, 

𝐸𝑉 =  𝑉𝐴𝐹 +  𝐼𝑅 −  𝑉𝑅 

where IR represents the (face) value of the current offer. 

EV was passed through a sigmoid function to determine PA, the probability of a go response 

(see above).  

Tradeoff model 

Given evidence that both immediate and long-term value had dissociable influences on 

choice, I hypothesized choice might involve a trade-off between two value systems. 

Accordingly, I specified a model whereby immediate and long-term value both contributed 

independently to the calculation of expected value (TV, tradeoff value), whereby the 

associated trade-off was captured by a single parameter that governed the weight placed on 

either value as follows: 

𝑇𝑉 = (𝐸𝑉 ∙  𝑐1) +  (𝐼𝑅 − 𝑐2 )  ∙ (1 −  𝑐1) 

where EV is the expected, or long-term value, derived from the optimal model (see above), 

IR is the (face) value of the current offer, c1 governs the nature of the trade-off, and c2 

represents a value intercept.  

In addition, it seemed reasonable to assume that subjects might trade-off immediate and 

long-term value differently depending on the face value of the current offer. I therefore 
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specified a second trade-off model in which a separate trade-off parameter governed the 

weight placed on immediate and long-term value for each face value (3, 5 and 7).  

Model fitting & comparison 

As described in previous reports (Guitart-Masip et al., 2012; Huys et al., 2011) I used a 

hierarchical Type II Bayesian (or random-effects) procedure using maximum likelihood to fit 

simple parameterized distributions for higher level statistics of the parameters (see also 

Hierarchical Bayesian procedures, Chapter 3, p. 73). Since the values of parameters for each 

subject are ‘hidden’, this employs the Expectation-Maximization (EM) procedure. Thus on 

each iteration the posterior distribution over the group for each parameter is used to specify 

the prior over the individual parameter fits on the next iteration. For each parameter I used 

a single distribution for all participants. Before inference, all parameters were suitably 

transformed to enforce constraints (log and inverse sigmoid transforms).  

Models were then compared using the integrated Bayesian Information Criterion (iBIC), 

where small iBIC values indicate a model that fits the data better after penalizing for the 

number of parameters. Comparing iBIC values is akin to a likelihood ratio test (Kass & Raftery, 

1995).  

fMRI data acquisition  

fMRI was performed on a 3-Tesla Siemens Quattro magnetic resonance scanner (Siemens, 

Erlangen, Germany) with echo planar imaging (EPI) and 32-channel head coil. Functional data 

was acquired over three sessions containing 280 volumes with 48 slices (664 volumes total). 

Acquisition parameters were as follows: matrix = 64 x 74; oblique axial slices angled at -30° 

in the antero-posterior axis; spatial resolution: 3 x 3 x 3 mm; TR = 3360 ms; TE = 30 ms. The 

first five volumes were subsequently discarded to allow for steady state magnetization. Field 
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maps were acquired prior to the functional runs (matrix = 64 x 64; 64 slices; spatial resolution 

= 3 x 3 x 3 mm; gap = 1 mm; short TE = 10 ms; long TE = 12.46 ms; TR = 1020 ms) to correct 

for geometric distortions. In addition, for each participant an anatomical T1-weighted image 

(spatial resolution: 1 x 1 x 1 mm) was acquired for co-registration of the EPIs.  

During scanning peripheral measurements of subject pulse and breathing were made 

together with scanner slice synchronization pulses using the Spike2 data acquisition system 

(Cambridge Electronic Design Limited, Cambridge UK). The cardiac pulse signal was 

measured using an MRI compatible pulse oximeter (Model 8600 F0, Nonin Medical, Inc. 

Plymouth, MN) attached to the subject’s finger. The respiratory signal (thoracic movement) 

was monitored using a pneumatic belt positioned around the abdomen close to the 

diaphragm.  

fMRI data analysis  

Data were pre-processed and analysed using SPM8 (Wellcome Trust Centre for 

Neuroimaging, UCL, London). Functional data were bias corrected for 32-channel head coil 

intensity inhomogeneities, realigned to the first volume, unwarpped using individual 

fieldmaps, co-registered to T1w images, spatially normalized to the Montreal Neurology 

Institute (MNI) space (using the segmentation algorithm on the T1w image with a final spatial 

resolution of 1 x 1 x 1 mm) and smoothed with an 8mm FWHM Gaussian kernel. The fMRI 

time series data were high-pass filtered (cutoff = 128 s) and whitened using an AR(1)-model. 

For each subject I computed a statistical model by applying a canonical hemodynamic 

response function (HRF) combined with time and dispersion derivatives. Using an in-house 

Matlab toolbox (Hutton et al., 2011) I constructed a physiological noise model to account for 

artefacts that take account of cardiac and respiratory phase as well as changes in respiratory 

volume. This resulted in a total of 14 regressors which were sampled at a reference slice in 
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each image volume to give a set of values for each time point. The resulting regressors were 

included as confounds in my GLM at the first level (see below).  

GLM 1 

In order to investigate regions tracking immediate or long-term value, I designed a GLM that 

allowed me to explore the BOLD response to a subset of offers for which immediate and 

long-term value were most decorrelated, corresponding to offers between index 2 and 3 

within a trial (see Figure 5.3A, middle panel, yellow boxes, p. 124). I split these offers 

contingent on their face value, such that each value (3, 5 and 7) was modelled as a separate 

regressor. Although these offers were selected from neighbouring states (meaning that for 

any given (face) value, the long-term value of a go response was similar), each onset 

regressor was parametrically modulated by long-term value (from the optimal model) so as 

to account for variance associated with a difference in current state. Additional regressors 

included the onsets of all within-budget offers outside of the yellow box in Figure 5.3A (p. 

124), parametrically modulated by both immediate and long-term value, all out-of-budget 

offers (for which nogo responses were enforced), parametrically modulated by immediate 

value, the onset of go responses (button presses) across the entire experiment, so as to 

explain away motor-related activity, and the onset of trial outcomes (parametrically 

modulated by tokens won). Regressors of no interest included 6 movement-related 

covariates (the 3 rigid-body translations and 3 rotations resulting from realignment) and 14 

physiological regressors (6 respiratory, 6 cardiac and 2 change in respiratory/heart rate). All 

regressors were modelled as stick functions with duration of zero and convolved with a 

canonical form of the hemodynamic response function (HRF) combined with time and 

dispersion derivatives.  



119 
 

To explore the BOLD response to the onset of value 3, 5 and 7 offers when immediate and 

long-term value were decorrelated, I conducted a random-effects one-way ANOVA at the 

second level, with a single factor (face value) and 3 levels (3, 5, 7), containing individual 

subject first-level contrast images corresponding to the first three onset regressors from my 

GLM. I constructed functional ROIs (fROIs) from clusters that survived small volume 

correction for a prior volume of interest (see Anatomical volume of interest, p. 120) using the 

MarsBar toolbox (v. 0.42) for SPM. I extracted mean parameter estimates from each fROI for 

the three onset regressors of interest and performed post-hoc paired t-tests to explore 

differences in BOLD response between offer values. For display purposes, onset parameter 

estimates were normalized (mean centred). In addition, I specified the contrast {0 -1 1} 

corresponding to the onset of value 3, 5 and 7 offers to explore regions that covaried with 

the demand for control. The latter was performed as a whole-brain analysis.  

In order to test whether the BOLD response to value 7 offers in my four ROIs was related to 

choice, I correlated mean parameter estimates (corresponding to the value 7 onset 

regressor) extracted from each ROI, with the trade-off parameter captured by our model 

fitting procedure. This resulted in four independent correlations.  

GLM 2 

In order to quantify the extent to which the BOLD response was modulated by immediate 

and long-term value, I built a second GLM where I concatenated the first three regressors 

from GLM 1 (onsets of 3, 5 and 7-token offers) into a single regressor, and added a parametric 

modulator for immediate value, which was forced to compete for variance (and was thus not 

orthogonalized) with an overall (long-term) value modulator. All other regressors remained 

identical to those specified in GLM 1. 
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I extracted mean parameter estimates from each ROI for the immediate and long-term value 

parametric modulators. I conducted Grubb’s test to probe for extreme values so as to 

remove subjects who were significant outliers at a threshold of p < 0.05, and performed one 

sample t-tests at the second level on the resultant betas across subjects.  

GLM 3  

In order to look for difference in value coding during correct and incorrect responses, I split 

the regressor corresponding to the onset of value 7 offers from GLM 1 into correct (nogo) 

responses and incorrect (go) responses. All other regressors remained equivalent. 

I conducted a random-effects one-way ANOVA at the second level, with a single factor 

(accuracy) and 2 levels (correct, incorrect), containing individual subject first-level contrast 

images corresponding to the go 7 and nogo 7 onset regressors. I extracted parameter 

estimates from each ROI and performed post-hoc paired t-tests to explore a main effect of 

response accuracy. I noted that only 15 out of 23 subjects had enough variance in their ability 

to respond accurately across trials, and thus the above analysis was restricted to these 

individuals.  

Anatomical volume of interest 

I also constructed an anatomical volume of interest (VOI) that included individual valuation 

regions of a prior interest for the purposes of small volume correction, effectively reducing 

the number of voxel-wise comparisons. This consisted of the entire vmPFC, caudate nucleus, 

putamen and ventral striatum (nucleus accumbens) (see Figure 5.4, p. 127). The vmPFC and 

dorsal striatum were defined as anatomical ROIs from the MarsBar toolbox (v. 0.42) for SPM. 

For the ventral striatum I used a group-average ROI derived from a diffusion tensor imaging 

connectivity-based parcellation of the right nucleus accumbens in humans, taken from (Baliki 
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et al., 2013). This ROI consisted of both the core and shell subcomponents of nucleus 

accumbens. The right region was flipped along the x-dimension in the MarsBar toolbox to 

obtain bilateral accumbens. 

Functional regions of interest 

I defined functional regions of interest (fROIs) from clusters that survived small volume 

correction for a pre-defined VOI (see above) when testing for regions tracking IR or EV using 

GLM 1 (see GLM 1, p. 118). For the anterior caudate, I excluded voxels that fell outside of an 

anatomical ROI for bilateral caudate from the MarsBar toolbox. These fROIs were used for 

all remaining fMRI analyses. All ROI analyses were performed using the MarsBar toolbox (v. 

0.42) for SPM.  

5.3 Results 

On every trial, subjects received between 7-9 offers, but an imposition of a limited "budget" 

meant they could only accept between 4-6 offers. Importantly, I penalized acceptance of the 

largest (7-token) and second largest (5-token) offers early in a trial by impoverishing 

remaining offers in that trial, where the penalty scaled with the face value of the current 

offer (see Figure 5.1 p. 110; see Task paradigm p. 109). Here, immediate value equates to 

the face value of each offer (3, 5 or 7 tokens), whereas long-term value represents the total 

expected utility from accepting. Thus, long-term value includes the face value, the cost of 

expending a unit of budget, and the cost of changing the future probability of reward. In 

some cases, total earnings could be maximized by rejecting 7-token but not 5-token offers. 

This is because the penalty associated with an accept response can be greater than the 

immediate payoff for 7-token, but not 5-token offers. In other words, the long-term value of 

a 7-token offer can sometimes be negative while nonetheless yielding the highest immediate 
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payoff. Hence, immediate value was decorrelated from long-term value across offers, 

despite the former being a component of the latter.  

Given the complexity behind the rules governing how actions shaped future offers, subjects 

were probed prior to scanning to ensure they correctly understood the contingencies of the 

task (see Methods, p. 111). In brief, each subject was shown a series of hypothetical trials 

where they had to predict the probability of a forthcoming offer being a specific value, given 

a preceding sequence of offers and actions. All subjects demonstrated correct understanding 

of the task and were fully aware of the contingencies linking actions to states following 

careful instruction. In addition, in order to minimize effects of learning and uncertainty 

during scanning, subjects played one block (36 trials) of the task prior to performing the 

experiment in the scanner.  

Although self-control is multi-faceted, one important aspect is the ability to override one’s 

impulses or prepotent responses (Gailliot & Baumeister, 2007). In my task, the requirement 

for this form of self-control is greatest near the start of a trial, where accepting a large 

immediate offer has detrimental future consequences (see Figure 5.3A, middle panel, yellow 

boxes, p. 124). Interestingly, subjects were faster to accept 7-token offers compared to 5-

token (p < 0.001) or 3-token (p < 0.001) offers across a trial, suggesting of a prepotent 

tendency to reap large immediate rewards (see Figure 5.2, p. 123). In this part of a trial, I 

found that subjects under-chose 3-token offers and over-chose 5 and 7-token offers, as 

compared to an optimal model (Figure 5.3A, p. 124). 
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Figure 5.2 Considering all ‘go’ responses in a trial, subjects were faster to accept token-value 

7 offers compared to value 3 or 5 offers, suggestive of a prepotent attraction to 7-token cues. 

Vertical lines represent SEM. * indicates p < 0.05 (paired t-tests). 
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Figure 5.3 (A) Plotted above are subjects’ mean probability of offer acceptance as a function 

of the number of offers already seen (ranging from 1-9) and number of offers already 

rejected (ranging from 0-8) in a trial, split by offer value (3, 5, 7) (top panel). The spectrum 

runs from blue (p=0) to red (p=1). Compared to an optimal model in which choice is dictated 

by correctly inferring long-term value (middle panel), subjects under-accept value 3 offers 

and over-accept value 7 offers at the start of trials (top panel; based on group mean data, 

n=23). This discrepancy is rectified by a model in which immediate and long-term value 

trade-off for behavioural control (lower panel). Note that the lower panel illustrates choice 

predicted by the trade-off model based on mean group parameter fits (n=23). Yellow boxes 

in the middle panel demonstrate offers for which immediate and long-term value are 
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maximally decoupled, and those for which all fMRI analyses are centred on. (B) Model 

comparison showed that a model in which each offer value (3, 5, 7) is assigned a separate 

parameter that governs how much weight is placed on immediate versus long-term value in 

the associated trade-off fits behaviour better than alternatives, indicated by its lowest iBIC 

score (3 trade). These alternatives included a model in which a single parameter governs the 

trade-off (1 trade), a model dependent on optimally inferring long-term value (optimal), and 

a model driven purely by immediate value (immediate). The number of free parameters is 

indicated in brackets for each model. (C) Pair-wise scatter plots show individually fit trade-

off parameters (c1, see Methods, p. 115) from the winning model for 3 versus 5-token offers, 

3 versus 7-token offers, and 5 versus 7-token offers. A trade-off value closer to 0 indicates 

behaviour is predominantly driven by immediate value, while a value closer to 1 indicates 

behaviour is predominantly driven by long-term value. Each circle represents one 

participant.  

This pattern of choice is consistent with subjects being mindful of the future consequences 

of their actions, but nevertheless being over-susceptible to an influence of a current offer’s 

face value. I therefore predicted that both immediate and long-term value (see Methods, p. 

113, for an explanation of how these are calculated) would independently influence 

behaviour. Using a logistic regression I indeed found that immediate (mean b = 0.047; p = 

0.001) and long-term value (mean b = 0.113; P < 0.0001) were significant predictors of choice, 

implying behaviour was neither exclusively optimal nor impulsive, but incorporated features 

of both traits.  

Given evidence that immediate and long-term value exert a differential impact on action 

selection, I conjectured that a model encompassing a trade-off between each valuation 

would capture choice behaviour. I used Bayesian model comparison to evaluate whether 

group behaviour was driven exclusively by immediate value, by long-term value, or by a 

trade-off between the two (see Methods, p. 113 - 116). While subjects varied in their ability 

to prioritize long-term value in the face of high-token offers, a model in which each offer 

value (3, 5, 7) was assigned an independent trade-off parameter captured group-level choice 
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best (Figure 5.3B, p. 124). Hence, while subjects were considerate of future consequence, 

immediate rewards were (on average) overweighted across the experiment. The finding that 

subjects weight immediate and long-term value differently depending on face value is 

intuitive, as long-term value deviates from immediate value to a greater degree for some 

offers compared to others, and is thus sometimes harder to track. Indeed, the best-fitting 

trade-off parameters, which provide a measure of how strongly each player weighted 

immediate relative to long-term value for the three offers, strongly endorse this account 

(Figure 5.3C, p. 124).  

Since immediate and long-term value exert distinct influences on choice I conjectured these 

quantities would have dissociable representations in value sensitive brain regions. To test 

this, I used fMRI and implemented a GLM (see Methods, GLM 1, p. 118) in which each offer 

value (3, 5, 7) was modelled separately, but focusing on a subset of offers where immediate 

and long-term value were maximally dissociable within any given trial (see Figure 5.3A, 

middle panel, yellow boxes, p. 124). In this set of offers, optimal behaviour mandated 

strongly rejecting 7-token offers, strongly accepting 5-token offers, and weakly accepting 3-

token offers. Thus, regions representing long-term (overall) value should display a BOLD 

signal profile that is attenuated for 7-token offers, boosted for 5-token offers and modestly 

boosted for 3-token offers. In contrast, regions that track immediate rewards should show a 

BOLD signal profile that increases linearly as a function of face value. Importantly, I modelled 

go responses as an independent regressor in all GLMs, and this spanned button presses 

across the entire experiment, including those corresponding to offers outside of the yellow 

box in Figure 5.3A. Thus, any variance in activity attributed to cue onsets is independent from 

the generation of a motor response per se.  

Given an a priori interest in responses within valuation regions, I generated a volume of 

interest (VOI; see Figure 5.4, p. 127) that included the ventromedial prefrontal cortex 
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(vmPFC) (Balleine & Dickinson, 1998; Hare et al., 2009; Wunderlich, Dayan, et al., 2012), 

ventral striatum (Baliki et al., 2013; Guitart-Masip et al., 2012), caudate nucleus (Tricomi et 

al., 2004) and putamen (Brovelli et al., 2011) to constrain the search space and reduce the 

number of statistical comparisons. I used anatomical ROIs from the MarsBar toolbox (v. 0.42) 

for SPM and from previous research (see Methods, Anatomical volume of interest, p. 120). 

 

Figure 5.4 Volume of interest consisting of valuation regions of a priori interest used for small 

volume correction. Regions include vmPFC, bilateral caudate, bilateral putamen and bilateral 

ventral striatum (accumbens).  

When testing for regions that track long-term value (a contrast of {0 1 -1} for 3, 5 and 7-token 

offers) I identified two clusters that survived small volume correction (SVC) for the VOI in 

vmPFC, including a ventral (Figure 5.5A, p. 128) and more lateral portion (Figure 5.5C, p. 128). 

Although it is difficult to distinguish between small cortical subdivisions along the medial 

prefrontal cortex in imaging studies (Haber & Knutson, 2010), it is possible that the more 

lateral portion of vmPFC is in the orbitofrontal cortex (OFC). In fact, the peak voxel in both 

vmPFC clusters (Figure 5.5 A and C) falls within Brodmann area 11. Thus, I use the term 

vmPFC in a broad manner to include the medial OFC. I also note that the vmPFC itself does 

not have a universally agreed upon demarcation in humans.  

When testing for regions that track immediate value (a contrast of {-1 0 1} for 3, 5 and 7-

token offers) I identified activation in both left (Figure 5.5B, p. 128) and right (Figure 5.5D, p. 

128) anterior caudate nucleus that likewise survived SVC for the VOI. These clusters were 
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then used to define functional regions of interest (fROIs) in vmPFC and anterior caudate for 

further analysis, which correspond to the regions displayed in Figure 5.5 (below).  

 

Figure 5.5 (A) Ventral vmPFC showed greater activation in response to 5-token compared to 

3-token offers, but a deactivation in response to 7-token relative to 3 and 5-token offers, 

consistent with 7-token offers having a negative overall (long-term) value (see yellow boxes, 

Figure 5.3, panel A, p. 124). (B) BOLD in lateral vmPFC / OFC also reflected a representation 

of long-term (optimal) value. In trials where 7-token offers were impulsively accepted (7 go) 

compared to rejected (7 nogo), the representation of long-term value (for 7-token offers) 

was attenuated (less negative beta). (C) By contrast, anterior caudate exhibited a linearly 

increasing response profile to the presentation of 3, 5 and 7-token offers, consistent with 

this region showing preferential sensitivity to immediate value. Panel C shows the response 

in left anterior caudate. In trials where 7-token offers were impulsively accepted (7 go) 

compared to rejected (7 nogo), the representation of immediate value (for 7-token offers) 

was boosted in this region (more positive beta). (D) Right anterior caudate also tracks 

immediate value in this task, with BOLD response for 7-token offers being higher when these 

offers were impulsively accepted compared to when they were rejected. Vertical lines 

represent SEM. * indicates p =< 0.05; ‡  indicates p = 0.07; n.s. indicates not significant 

(paired t-tests). 
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To quantify the extent to which each fROI was preferentially driven by immediate versus 

long-term value, I constructed a second GLM that allowed me to regress both values against 

the BOLD signal within the same model, by collapsing offers into a single regressor and using 

immediate and long-term value as parametric modulators. Note these regressors, for which 

the average correlation was r2 = 0.24, were not orthogonalized in my GLM and were forced 

to compete for variance (see Methods, GLM 2, p. 119). This analysis again showed that BOLD 

response in both vmPFC fROIs was driven by long-term value (p = 0.004, p < 0.001) and was 

not explained by immediate value (p = 0.371, p = 0.795). By contrast, BOLD activity in anterior 

caudate was driven predominantly by immediate value (p < 0.001, p < 0.001), though long-

term value also contributed to signal variance (p = 0.038; p = 0.024) suggesting it represented 

mixed value components.  

It has been proposed that self-control involves a conflict between competing value systems 

(Hofmann et al., 2009; McClure et al., 2004; Tanaka et al., 2004), and this idea gains support 

from evidence that the brain draws on multiple systems when making decisions (Balleine, 

2005; Daw et al., 2005; Dolan & Dayan, 2013). However, an alternative suggestion is that 

choice is governed by a common value system embedded in vmPFC (Hare et al., 2009) or a 

vmPFC-striatal network (Kable & Glimcher, 2007). A finding here that distinct 

representations of immediate and long-term value are tracked in the brain fits better with 

the idea of two competing value systems. However, I note that long-term value in my task 

includes both immediate and delayed components of value. Thus, my data is consistent with 

the notion that both value components are integrated within vmPFC (Economides, Guitart-

Masip, Kurth-Nelson, & Dolan, 2014; Hare et al., 2009). Importantly, if the separate encoding 

of immediate and long-term value is linked to the observed trade-off between these values 

during choice, I would expect between-subject variability in self-control to correlate with the 

strength with which long-term value was represented relative to immediate value. 

Specifically, a stronger representation of long-term relative to immediate value should track 
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greater self-control. Indeed one might also expect that representations of immediate and 

long-term value would be altered in trials where subjects (incorrectly) accepted a 7-token 

offer compared to when subjects (correctly) resisted the temptation.  

To test the first prediction, I correlated parameter estimates for the onset of 7-token offers 

with the trade-off parameter which captures the weighting placed on immediate versus long-

term value (for 7-token offers), for each of the four fROIs. The parameter estimates were 

derived from GLM 1 (see Figure 5.5, p. 128) and correspond to offers early in a trial where 

accepting a 7-token offer is detrimental overall despite yielding a large immediate reward. 

The weighting parameter effectively provides a measure of self-control for each individual 

player, although my task cannot distinguish whether subjects that over-accept 7-token offers 

do so because they overweight immediate value, or alternatively because they underweight 

the future consequences of accepting a high value offer (and thus miscalculate long-term 

value). In vmPFC, a higher BOLD activation in response to 7-token offers was linked to 

impulsively accepting (trade-off parameter fit closer to 0), while a lower BOLD activation was 

linked to foregoing the option (trade-off parameter fit closer to 1). This correlation was seen 

in ventral but not lateral vmPFC (Figure 5.6, p. 131).  
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Figure 5.6 When confronted with an offer associated with a high immediate value but low 

long-term value, between-subject variability in ventral vmPFC BOLD response to 7-token 

offers was tightly coupled with choice (r2 = 0.25, p = 0.015). The higher the signal in vmPFC, 

the more choice was driven by immediate value (more positive beta, trade-off parameter 

closer to 0). In contrast, the lower the signal in vmPFC, the more choice was driven by long-

term value (more negative beta, trade-off parameter closer to 1).  
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Here, a more negative beta implies a greater weighting on future consequence and a value 

representation that resembles long-term value, while a more positive beta implies a greater 

weighting on face value and a value representation that favours immediate rewards. To my 

surprise, there was no significant correlation in either the left or right caudate fROIs. Thus, 

while the BOLD response in anterior caudate was similar in both self-controlled and 

impulsive players (on average), value representations in the most ventral and medial region 

of vmPFC were tied to each individual’s capacity for self-control.  

In addition to observing variability in self-control between subjects, players were also highly 

variable in their ability to exercise control across trials. To test the prediction that trial-by-

trial switches between controlled and impulsive choice is linked to a change in the 

representation of immediate or long-term value, I constructed a new GLM (see Methods, 

GLM 3, p. 120) where I split 7-token offers contingent upon whether they were (incorrectly) 

accepted or (correctly) resisted. This analysis once again focused on the subset of offers that 

fall inside the yellow box in Figure 5.3A (p. 124). Note that although a difference in BOLD 

between go and nogo at the time of cue onset could reflect a modulation of value 

representation, it could also be driven by the execution of a motor response in one condition 

and not the other. To control for this motor confound, I regressed out button presses using 

a motor regressor that included a large proportion of button presses from outside of the 

yellow box in Figure 5.3A. However, I cannot fully exclude the possibility that any difference 

observed might be driven by the anticipation of an upcoming action.  

Bearing in mind this caveat, I found that a BOLD response to a 7-token offer was on average 

less negative in lateral but not ventral vmPFC, and more positive in bilateral anterior caudate 

when subjects chose to incorrectly accept compared to correctly reject (Figure 5.5, p. 128). 

Thus, impulsive responses were accompanied by a weaker representation of long-term value 

within lateral vmPFC and an enhanced representation of immediate value in bilateral 



133 
 

caudate, while optimal choices followed the reverse pattern. This profile implies that the 

representational fidelity of one aspect of a value computation may be promoted at the 

expense of the other.  

Previous studies show that self-control recruits the lateral prefrontal cortex (LPFC) with 

evidence suggesting the ventrolateral prefrontal cortex (VLPFC) acts to initiate inhibitory 

control (Aron et al., 2004) or in other cases that the ateroventral prefrontal cortex (Diekhof 

& Gruber, 2010) or dorsolateral prefrontal cortex (DLPFC) (Hare et al., 2009) modulates the 

representation of value within valuation regions. While my primary interest with imaging 

was to identify the neural representations of immediate and long-term value, I conjectured 

that activity in LPFC might scale with the demand for control, and that this in turn may 

contribute towards the observed representations of value. Within a subset of offers at the 

start of each trial (yellow box in Figure 5.3A, p. 124), 7-token offers require amplified self-

control relative to 3 and 5-token offers, as the immediate value of accepting a 7-token offer 

here is most decorrelated from the overall long-term value. Thus, the BOLD response in 

regions enacting ‘control’ should be enhanced in response to 7-token offers, diminished in 

response to 5-token offers, and modestly enhanced in response to 3-token offers. Note this 

is the opposite profile to that observed in vmPFC that encodes long-term (overall) value (see 

Figure 5.5A/C, p. 124).  

I tested for this in a contrast ({0 -1 1} for 3, 5 and 7-token offers) using GLM 1 where I 

identified activation in a frontal network including anterior cingulate cortex and right inferior 

frontal gyrus that survived whole-brain correction (see Table 5.1 for all areas, p. 134). Thus, 

activity in these regions did not scale with value but instead with the demand for control 

(Figure 5.6, p. 134). Here I also note these regions are strongly implicated in cognitive control 

(Kerns et al., 2004), response inhibition (Aron et al., 2004) and self-regulated choice (Hare et 

al., 2009). 
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Figure 5.6 (A) BOLD response within a frontal network including ACC, rIFG and bilateral insula 

cortex, was enhanced for 7-token offers compared to 3 and 5-token offers, and thus scaled 

with the demand for control. (B) The betas for clusters in the ACC and rIFG (circled in red) 

are plotted for illustration. Vertical lines represent SEM. * indicates p =< 0.05; n.s. indicates 

not significant (paired t-tests); see also Table 5.1 (below).  

 

Name of Region 
Cluster FWE  

p value 

MNI Coordinates Statistics 

x y z t value Z score 

Anterior Cingulate 
< 0.001 

10 34 30 5.33 4.77 

R Supplementary Motor Area 8 16 66 3.69 3.42 

L Insula 0.013 -33 15 0 5.09 4.49 

R Insula 
< 0.001 

32 20 2 4.91 4.36 

R Inferior Frontal Gyrus 54 12 19 3.78 3.50 

R Parietal < 0.001 58 -43 34 4.23 3.85 

Table 5.1 Regions where BOLD covaried with the demand for action control ({ 0 -1 1 } for 

offers of token-value 3, 5 and 7 respectively) from GLM 1.  
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5.4 Discussion 

Both vmPFC and striatum are implicated in computing value for action selection (Brovelli et 

al., 2011; FitzGerald, Friston, & Dolan, 2012; Guitart-Masip et al., 2012; Tricomi et al., 2004; 

Wunderlich, Dayan, et al., 2012), and these regions are differentially activated when 

individuals choose immediate versus delayed rewards (McClure et al., 2004). Whether this 

distinction arises from divergent computational roles has remained unclear. Here, I used a 

computational formalization to address how vmPFC and striatum arbitrate between 

immediate and long-term value where these are dissociable and can motivate differing 

actions. Further, by contrasting incorrect and correct decisions I could map the 

computational mechanisms that contribute towards impulsive or controlled choice 

respectively.  

Previous studies have proposed that choice utilizes a common value system based in vmPFC 

(Hare et al., 2009), or in a vmPFC-striatal loop (Kable & Glimcher, 2007). Consistent with this, 

I identified a value representation in vmPFC that takes into account the immediate and 

delayed consequences of actions. However, in contrast to the common value framework, I 

identified a separate representation of immediate value in anterior caudate that likely 

impacts action selection in parallel, and in a fashion that often opposes a course of action 

endorsed by vmPFC. In this scheme, failures of self-control stem from a degraded 

representation of long-term value in lateral vmPFC and a concurrent enhancement of 

immediate value within anterior caudate. Analogously, successful control is not only 

dependent on an accurate representation of long-term value in lateral vmPFC, but also an 

attenuation of immediate value in anterior caudate.  

There are several possible explanations for the discrepancy between my finding that the 

brain represents dual values and previous accounts that it uses a single value system. In the 
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Hare choice paradigm (Hare et al., 2009), subjects chose between a reference food item and 

alternatives that varied in healthiness and tastiness. The authors then asked whether the 

BOLD response significantly correlated with taste or health ratings in subjects who 

demonstrated either high or low capacity for self-control. However, this analysis was 

confined to the vmPFC, and it is possible that activity in anterior caudate may have tracked 

taste ratings in a manner similar to the immediate value representations that I observed in 

my data. Further, while tastiness and healthiness map onto different outcome modalities, 

my task considers immediate and long-term value attributes within a single modality. A 

second prominent study closely aligned with the single value account utilized an 

intertemporal choice paradigm to probe preference for rewards at differing time-scales 

(Kable & Glimcher, 2007). Here, subjects had to choose between an immediately available 

sum of money and a larger but delayed alternative. Similar to results reported here, Kable 

and Glimcher found that vmPFC (amongst other regions) computes the subjective value of 

the chosen option. However, since the immediate reward was kept constant in their design, 

it remains unknown whether this value is tracked separately in the brain.  

Another important consideration is that unlike the previous studies, my task did not require 

a choice between two options presented simultaneously. Rather, subjects were required to 

flexibly approach or avoid an option with both immediate and delayed consequences, 

spanning both action and valence (Guitart-Masip et al., 2012). This action dependency was 

adopted so as to more closely resemble natural settings, where self-control often involves 

arbitration between approach and avoidance, and where the value of choice options often 

change dynamically. Given that the striatum is heavily implicated in both action and value 

processing (Guitart-Masip et al., 2014; Rothwell, 2011; Samejima, Ueda, Doya, & Kimura, 

2005), and that the distinction between these roles is not clearly defined, anterior caudate 

may in fact integrate value with a propensity to act during go/nogo judgments (Guitart-Masip 
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et al., 2011; Guitart-Masip et al., 2012; Roesch et al., 2009). In turn, this contribution may be 

absent in self-control tasks that do not pair the prepotent choice (accepting a large 

immediate reward) with a prepotent action (the execution of a ‘go’ response). Other 

evidence that task modality can impact value coding comes from a recent finding that 

switching the frame of reference used for decision-making alters patterns of value coding in 

the brain (Hunt, Woolrich, Rushworth, & Behrens, 2013).  

In humans, activity in vmPFC has been shown to include a representation of healthiness in 

individuals who resist temptation for unhealthy foods (Hare et al., 2009), a finding 

complimented by evidence that vmPFC acts to integrate multiple components of value 

(Wunderlich, Dayan, et al., 2012). Further, in rodents, the orbitofrontal cortex has been 

shown to compute values based on anticipation of latent outcomes (Jones et al., 2012), while 

patients with bilateral vmPFC lesions demonstrate reduced sensitivity to future consequence 

and increased reliance on immediate rewards (Bechara et al., 2000). However, to the best of 

my knowledge, no previous study has demonstrated a value signal in human vmPFC that 

reflects an overall (long-term) value that is decoupled from immediate rewards. This points 

to the likelihood that vmPFC draws on contextual information to calculate an overall 

expectation of value (Hampton et al., 2006b; Jones et al., 2012; McDannald, Lucantonio, 

Burke, Niv, & Schoenbaum, 2011; Takahashi et al., 2013), while other valuation regions may 

only be privy to immediate outcomes.  

I found value coding in a more ventral region of vmPFC is dependent on subjects’ baseline 

ability to appropriately adjust a prepotent response, raising an important question regarding 

the underlying mechanism. One conjecture is that this region lacks access to representations 

required for inferring long-term value in impulsive players. This may be related to a weaker 

functional connectivity between this region of vmPFC and more dorsal prefrontal cortex 

regions associated with goal-directed control (Hare et al., 2009; Hare et al., 2014). By 
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contrast, value coding in a more lateral region of vmPFC was predictive of upcoming choice 

in a context requiring self-control. While I can only speculate as to the functional differences 

between these regions, one possibility is that the ventral portion encodes long-term value 

regardless of context, whereas the more lateral portion integrates long-term value with 

additional components that contribute to the action selection process, and is thus more 

representative of upcoming choice. Interestingly, a recent study has identified a similar 

pattern of differential reward processing within subregions of vmPFC in non-human primates 

(Monosov & Hikosaka, 2012).  

My finding that anterior caudate predominantly tracks immediate value is surprising given 

previous accounts that this region represents the utility of actions by differentiating between 

positive and negative consequences (Tricomi et al., 2004), or computing values for planned 

choice (Wunderlich, Dayan, et al., 2012) and future reward prediction (Tanaka et al., 2004). 

A long-line of animal research has implicated the dorsomedial striatum (the caudate 

homologue in rodents) in representing the consequences of an animal’s actions, with lesions 

to this region impairing the acquisition of R-O contingencies (Yin, Ostlund, et al., 2005). Yet, 

much of the animal literature relies on devaluation paradigms that utilize immediate 

outcomes (Balleine & O'Doherty, 2010). Similarly, experiments in humans have implicated 

anterior caudate in outcome devaluation (Valentin et al., 2007) and in tracking contingencies 

between actions and outcomes (Tanaka, Balleine, & O'Doherty, 2008), yet often do not 

require valuations that integrate immediate and long-term consequences. Thus, one 

possibility is that both vmPFC and anterior caudate support goals by representing outcomes 

(Valentin et al., 2007), while vmPFC predominantly receives the input required to calculate 

long-term value. An alternative interpretation, given a finding that at least some component 

of the anterior caudate response is explained by long-term value, is that this region contains 

populations of neurons tuned to either immediate or long-term value respectively.  
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Although I used a model-based tree search to define overall value for the purposes of my 

analysis, my task cannot differentiate between model-based versus alternate choice 

strategies. For example, the use of heuristics may be more probable given the complexity of 

the tree search. Further, subjects’ probability of accepting an offer between offer index 2 

and 3 in a trial (see Figure 5.3A, yellow boxes, p. 124) is somewhat uniform, and this choice 

pattern is not well-captured by the winning model. Yet my key interest lay in exploring the 

behavioural and neural consequences of dissociating immediate from overall (long-term) 

value, and the trade-off model provides corroborative evidence that subjects take both 

quantities into account. An important follow-up question is whether long-term value is 

calculated online by projecting into the future, or whether it is cached and retrieved in a 

model-free framework following a sufficient number of trials.  

The data from this study have a number of implications. A comorbidity between impulsivity 

and selected psychiatric disorders is well-documented (Moeller, Barratt, Dougherty, Schmitz, 

& Swann, 2001), raising an interesting question as to the relationship between the biological 

substrates of these disorders and the dissociable value representations I identify. The current 

task might provide a novel avenue for probing this, including assessing the impact of both 

behavioural and pharmacological interventions. Finally, given a strong association between 

affective state and the capacity for self-control, the dual-value framework outlined could be 

useful for evaluating the impact of emotion, mood, stress, and other state-dependent factors 

on the representation of immediate and long-term value, and the resulting impact on 

decision-making in these contexts.  
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CHAPTER 6 

THE EFFECTS OF TASK TRAINING ON MODEL-BASED REASONING  

The brain has been suggested to employ multiple distinct strategies for solving problems 

using habitual (model-free) or goal-directed (model-based) algorithms. Hitherto, model-

based reasoning has been identified with slow, serial, executive processes, and model-free 

with fast, parallel, automatic processes. In a task that engages both model-based and model-

free systems, increasing cognitive load with a challenging concurrent task reduces the 

expression of model-based behaviour, consistent with the idea that a shared, limited pool of 

cognitive resources is used for model-based calculations and the concurrent task. Here, 

however, I show that this impairment in model-based reasoning under load is eliminated 

when subjects receive prior primary task training, whether or not the training is under load. 

Thus, task familiarity permits model-based reasoning even under substantial cognitive load. 

These data suggest a shift in the mechanism by which model-based calculations are 

implemented with increasing task exposure and also imply that model-based reasoning can 

be dissociated from serial executive functions.  

6.1 Introduction 

A wealth of experimental data shows that the brain makes use of at least two distinct 

decision strategies. One system prospectively reasons about action-outcome contingencies, 

while the other retrospectively links rewards to actions (Balleine & O'Doherty, 2010; Daw et 

al., 2005; Dolan & Dayan, 2013; Loewenstein, 1996). The interplay between these two choice 

strategies has substantial practical implications. For example, over-reliance on habits could 

lead to inflexible decision-making in addiction (Everitt & Robbins, 2005) and compulsion 

(Voon et al., 2014).  
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A compelling computational account of these two mechanisms draws on reinforcement 

learning (RL) theory (Daw et al., 2005). In Daw and colleagues' framework, model-free RL 

exploits temporal difference mechanisms (R. S. B. Sutton, A. G., 1998) closely associated with 

striatal dopamine signals (Montague, Dayan, & Sejnowski, 1996) to learn a preference for 

actions through direct reinforcement (Dayan & Niv, 2008). Model-based RL, on the other 

hand, prospectively evaluates actions by mapping the contingencies between actions and 

future states (Daw et al., 2005; Dayan, 2008; Dayan & Niv, 2008). This renders the model-

based system more flexible, but at a heightened computational cost.  

Contemporary theories posit that model-based reasoning engages limited-resource 

executive functions (Donald & Tim, 1986) associated with regions of prefrontal cortex (PFC), 

in particular the dorsolateral prefrontal, ventromedial prefrontal and anterior cingulate 

cortices (Alvarez & Emory, 2006; Barbey et al., 2012; M. M. Botvinick et al., 2001; Glascher 

et al., 2010; Jones et al., 2012; Kennerley et al., 2006; S. W. Lee et al., 2014; Owen, 1997; 

Valentin et al., 2007; Wunderlich, Dayan, et al., 2012). Further evidence for this view comes 

from the observations that model-based reasoning is impaired by increasing cognitive load 

(Otto, Gershman, et al., 2013), by disrupting dorsolateral prefrontal cortex function 

(Smittenaar et al., 2013) and by acute stress (Otto, Raio, Chiang, Phelps, & Daw, 2013), with 

the degree of impairment often interacting with baseline working memory capacity.  

However, studies of model-based decision-making often utilize tasks in which the stimuli, 

contingencies and other task parameters are novel to the subject. Thus, one possibility is 

that reliance on limited-resource executive functions is not an intrinsic property of model-

based reasoning, but rather a characteristic of reasoning with an unfamiliar model. This is 

consistent with the everyday experience that practice lets us perform increasingly complex 

tasks with less demand for exclusive attention, and may be important for the human ability 
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to progressively acquire more complex behaviour. Nevertheless, the effect of training on 

model-based and model-free decision making remains unexplored.  

Here, I used a two-step decision-task that engages and measures both model-free and 

model-based reasoning (Daw et al., 2011; Otto et al., 2013). Using simple behavioural 

analyses as well as more sophisticated computational modelling, I quantified the degree to 

which model-free and model-based reasoning were manifest in choice, both before and after 

task training, and with or without cognitive load. I hypothesized that a shift in the neural 

mechanism for model-based calculations, as a result of task training, could lead to a 

reduction in the detrimental effect of cognitive load on model-based reasoning. 

6.2 Methods  

Subjects 

35 adult participants formed a group (referred to as the ‘high load group’) which received 

training both with and without cognitive load, of which 22 were included in the final analysis 

(7 male and 15 female; age range 18-34; mean 21.5, SD = 3.71 years).  

30 adult participants formed a second independent group (referred to as the ‘low load 

group’) for which cognitive load was omitted from training on days 1 and 2, of which 23 were 

included in the final analysis (9 male and 14 female; age range 18-26; mean 21.2, SD = 3.61 

years). 

Inclusion criteria: In line with (Otto, Gershman, et al., 2013) I excluded 11 subjects from the 

‘high load group’ and 5 subjects from the ‘low load group’ whose accuracy on the Stroop task 

during dual-task trials was < 70% on any given day so as to ensure participants were in fact 

attempting to perform both tasks simultaneously. In addition I excluded 2 participants from 

the ‘high load group’ and 1 participant from the ‘low load group’ who chose the same first-
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stage fractal on > 90% of trials (on any given day), irrespective of events on the previous trial. 

Finally I excluded 1 participant from group two whose probability of repeating a first-stage 

action following a common-rewarded transition on the previous trial was < 0.25 on day 1 of 

training.  

General design  

Subjects in the ‘high load group’ performed alternating blocks of two-step (128 trials) and 

dual-task (64 trials) trials until two blocks of each trial type were completed (256 two-step 

trials, 128 dual-task trials in total). This protocol was repeated across three consecutive days. 

Subjects received 20 practice trials of each trial type at the start of day 1. Subjects in the ‘low 

load group’ performed 256 trials of the two-step task on each of two consecutive days. On 

day 3, they performed alternating blocks of two-step (128 trials) and dual-task (64 trials) 

trials until two blocks of each trial type were completed (256 two-step trials, 128 dual-task 

trials in total). Thus, day 3 was identical in both group protocols. Subjects received 20 

practice trials of two-step task at the start of day 1, and 20 practice trials of dual-task at the 

start of day 3.  

Task  

Subjects performed a two-step decision task based on (Daw et al., 2011) and equivalent to 

that used in (Otto, Gershman, et al., 2013). At the first stage, a player was presented with 

two fractal images presented side-by-side on a grey background and had 2000 ms to select 

one via a left or right button press. After a response was made the selected fractal was 

highlighted for the remainder of the choice period with a yellow boarder. Each first stage 

fractal lead to one of two second stage fractal pairs with a probability of 70% (common 

transition) and to the other with a probability of 30% (uncommon transition). Following the 

transition, one of two second stage pairs of fractals was displayed on a green or blue 
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background in accordance with whether a common or uncommon transition had occurred. 

In addition, the chosen first-stage fractal was minimized and moved to the top central 

portion of the screen. The player again had 2000 ms to select a fractal via a left or right button 

press, and the selected action was highlighted for the remainder of the response period. 

Finally, an outcome was presented in the form of a golden coin (to indicate a monetary gain) 

or a ‘0’ (to indicate no monetary gain), followed by an inter-trial interval (fixation cross). The 

position of each fractal (left versus right) was counter-balanced across trials for first and 

second-stage pairs. 

Dual-task trials followed the same procedure, except that subjects had to additionally 

perform a numerical Stroop task (Waldron & Ashby, 2001). At the beginning of the first-

stage, two digits were presented, one above each choice fractal, for 200 ms, and then 

covered by a white mask for a further 200 ms. After second-stage choice feedback, either 

the word ‘SIZE’ or ‘VALUE’ appeared alone in the centre of the screen on a grey background. 

The player had 1000 ms to indicate with a left or right button press which digit of the two 

that appeared at the first-stage choice was larger in size or value, respectively. In accordance 

with (Otto, Gershman, et al., 2013) and (Waldron & Ashby, 2001), the numerically larger 

number was physically smaller on 85% of trials. Thus, subjects had to hold incidental 

information in working memory whilst performing the two-step task. Following their 

response, feedback in the form of the word ‘CORRECT’ or ‘INCORRECT’ was presented a 

further 1000 ms. If participants failed to respond during the Stroop task probe, a red “X” 

appeared for 1000 ms. Trial lengths were equated across two-step and dual task trials (7200 

ms per trial).  

The reward probabilities associated with second-stage fractals were governed by 

independently drifting Gaussian random walks (SD = 0.025). I generated a pool of fifteen 

random walks for which reward probabilities did not exceed ~0.75 or fall below ~0.25. For 
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each subject, three walks were selected at random from the pool for use on each successive 

day of training. Thus, walks were continuous between blocks of two-step and dual task trials.  

Logistic regression  

In keeping with previous studies (Daw et al., 2011; Otto, Gershman, et al., 2013; Smittenaar 

et al., 2013; Wunderlich, Smittenaar, & Dolan, 2012), I first probed model-based versus 

model-free reasoning by analysing stay-switch behaviour at the first-stage of each trial. 

Model-free reinforcement learning predicts that first stage choices should be repeated if 

they lead to a reward (a main effect of reward), regardless of whether a common or 

uncommon transition is experienced on the previous trial. By contrast, a model-based 

learner is more likely to switch their choice at the first stage if a reward follows from an 

uncommon transition on the previous trials (a reward x transition interaction). This is 

because the model-based system can infer that the rewarding second-stage fractal can be 

accessed with a higher probability by choosing the alternate first-stage fractal. In short, by 

evaluating the dependence of switch-stay choice on the reward and transition status from 

the preceding trial (and their interaction), one can approximate the strength with which 

model-free and model-based reasoning are manifest in choice.  

I performed a random-effects logistic regression, implemented in the Matlab software 

package (MathWorks), in which the dependent variable was the first-stage choices in the 

current trial (coded as 0 for stay, 1 for switch), and the explanatory variables included the 

reward and transition type on the previous trial (coded as 1 or -1), and their interaction. 

Blocks of trials from the same day of training were concatenated, and trials where subjects 

failed to respond at either the first or second-stage were excluded from the analysis. When 

analysing data across all days, I included a variable for the day of training, in addition to all 

possible interactions (see Table 6.1 for all variables, p. 160). Here, my key interest lay in the 
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2-way interaction between reward and transition, and whether this interaction changes with 

training in the dual-task condition (a 3-way reward x transition x day interaction). Since these 

two regressors were highly correlated, I orthogonalized the latter with respect to the former, 

using a Gram-Schmidt process (Bjorck, 1994). Thus, any significant 3-way interaction 

represents a proportion of variance unaccounted for by a simple 2-way effect. One-sample 

t-tests were performed on all coefficients across subjects. When analysing dual-task trials 

from the ‘high load group’, I performed an additional logistic regression where I included 

Stroop task performance on the previous trial (coded as 1 for correct, -1 for incorrect), and 

all possible interactions (see Table 6.2 for all variables, p. 161), as additional predictors. Here 

my main interest was whether errors on the Stroop task would interfere with subjects’ ability 

to use reward and transition events on the previous trial to make a model-based choice on 

the following trial (a Stroop performance x reward x transition interaction). As before, 3 and 

4-way interactions were orthogonalized with respect to the simpler 2 or 3-way effect.  

In line with other recent studies that have used the two-step task, I also considered model-

free and model-based influences on choice in the current trial, with respect to events that 

occurred up to 3 trials in the past (Smittenaar, Prichard, FitzGerald, Diedrichsen, & Dolan, 

2014). Here, the dependent variable on trial t was 1 when stimulus A was chosen and 0 when 

stimulus B was chosen at the first-stage. Each regressor then described whether events on 

trial t-1, t-2 and t-3 would increase (coded as +1) or decrease (coded as -1) the probability of 

choosing A according to a model-free or a model-based system (6 regressors in total). 

Importantly, if a trial involved a common transition, both systems make identical predictions. 

However, opposing predictions emerge following uncommon transitions. I implemented a 

random-effects logistic regression in Matlab (MathWorks) and performed one-sample t-tests 

on the resulting coefficient estimates for the 6 regressors, separately for trained (day 3) 
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versus un-trained (day 1), and high load (dual-task) versus low load (two-step) (see Figure 

6.5, p. 170).  

Computational modelling  

Based on (Daw et al., 2011), the task was modelled as consisting of three states (𝑠𝐴 for the 

first-stage fractal pair; 𝑠𝐵 and 𝑠𝐶  for the second-stage fractal pairs) where two possible 

actions (𝑎𝐴, 𝑎𝐵) can be taken from each state. The goal of each RL algorithm is to learn a 

state-action value function 𝑄(𝑠,𝑎) that maps each state-action pair to its expected future 

value. In each trial t, the first and second-stage states are indicated as 𝑠1,𝑡  and 𝑠2,𝑡 

respectively, while first and second-stage choices (actions) are indicated as 𝑎1,𝑡  and 𝑎2,𝑡  . 

Since there is no reward at the first stage , 𝑟1,𝑡 is always zero, while 𝑟2,𝑡 can be zero or one. 

Model-free 

The model-free algorithm was temporal difference Q-learning (R. S. B. Sutton, A. G., 1998) in 

which the value of a given state is assumed to be equivalent to the expected reward from 

taking the best available action from that state. At each stage i of each trial t, the value of 

the chosen state-action pair was updated according to: 

𝑄𝑇𝐷(𝑠𝑖,𝑡, 𝑎𝑖,𝑡) = 𝑄𝑇𝐷(𝑠𝑖,𝑡, 𝑎𝑖,𝑡) +  𝛼𝛿𝑖,𝑡 

where 𝛿, the reward prediction error (RPE), is defined as 

𝛿𝑖,𝑡 = 𝑟𝑖,𝑡 + 𝛾 max
𝑎

[𝑄𝑇𝐷(𝑠𝑖+1,𝑡, 𝑎)] − 𝑄𝑇𝐷(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡)  

where 𝛼 is a learning rate fit for each subject and 𝛾 is a discount factor that trades off the 

importance of sooner versus later rewards (fixed at 1).  
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Note that for the first stage choice, 𝑟𝑖,𝑡  is always zero and 𝛿 is instead driven by the second-

stage value.  

After outcome delivery, the second stage RPE is used to update the first-stage action 

𝑄𝑇𝐷(𝑠1,𝑡, 𝑎1,𝑡) according to the eligibility trace λ, which assigns credit to the first-stage action 

without the need for an additional step.  

𝑄𝑇𝐷(𝑠1,𝑡, 𝑎1,𝑡) = 𝑄𝑇𝐷(𝑠1,𝑡, 𝑎1,𝑡) +  𝛼𝜆𝛿2,𝑡 

Thus, in the event that λ=0, choice is driven by the estimated value of the second-stage state 

on the previous trial. Consistent with previous studies (Daw et al., 2011; Otto, Gershman, et 

al., 2013), this model assumes that eligibility traces are cleared between trials.  

Model-based 

A model-based RL algorithm involves learning a set of contingencies between actions and 

states (a state-transition function), estimating a reward value for each state, and then 

combining the two by iterative expectation. Here, since first-stage transitions are 

probabilistic, a player must map action-state pairs to a probability distribution over 

subsequent states.  

One can approximate subjects’ estimate of the transition probabilities by assuming they 

believe one of two alternatives: 

𝑃(𝑠𝐵| 𝑠𝐴 , 𝑎𝐴) = 0.7, 𝑃(𝑠𝐶| 𝑠𝐴 , 𝑎𝐴) = 0.3, 𝑃(𝑠𝐶| 𝑠𝐴 , 𝑎𝐵) = 0.7, 𝑃(𝑠𝐵| 𝑠𝐴 , 𝑎𝐵) = 0.3  

or 

𝑃(𝑠𝐵| 𝑠𝐴 , 𝑎𝐴) = 0.3, 𝑃(𝑠𝐶| 𝑠𝐴 , 𝑎𝐴) = 0.7, 𝑃(𝑠𝐶| 𝑠𝐴 , 𝑎𝐵) = 0.3, 𝑃(𝑠𝐵| 𝑠𝐴 , 𝑎𝐵) = 0.7 

based on the number of previous transitions from 𝑠𝐴 to 𝑠𝐵 given 𝑎𝐴 and from 𝑠𝐴 to 𝑠𝐶 given 

𝑎𝐵 (or vice versa). A previous study has shown this scheme settles on the true transition 
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matrix after the first few trials and fits subjects’ choices better than implementing a 

traditional trial-by-trial learning algorithm (Daw et al., 2011). Therefore I assume the true 

transition probabilities are learnt during practice trials and are known by the start of the first 

experimental block.  

Since the second-stage action is the only choice associated with immediate reward, and is 

the final step in a trial, an agent can learn the value of the second-stage state in a manner 

equivalent to temporal difference Q-learning (as above). Thus, 𝑄𝑇𝐷(𝑠2,𝑡, 𝑎2,𝑡) is simply an 

estimate of the immediate reward 𝑟2,𝑡 , and the model-based algorithm converges with 

model-free learning at this stage.  

By combining the transition function with the second-stage values I can define the values of 

the two first-level actions (using Bellman’s equation) as follows: 

𝑄𝑀𝐵(𝑠𝐴, 𝑎𝑗) =  𝑃(𝑠𝐵|𝑠𝐴, 𝑎𝑗) max
𝑎

[𝑄𝑇𝐷(𝑠𝐵, 𝑎)] + 𝑃(𝑠𝐶|𝑠𝐴, 𝑎𝑗) max
𝑎

[𝑄𝑇𝐷(𝑠𝐶 , 𝑎)]  

where these are computed on every trial based on the updated second-stage Q-values.  

Hybrid model  

For the hybrid model I consider contributions from both model-free and model-based RL. 

First-stage action values were defined as the weighted sum of values from the algorithms 

described above as follows: 

𝑄𝐻𝑀(𝑠𝐴, 𝑎𝑗) = 𝑤𝑄𝑀𝐵(𝑠𝐴, 𝑎𝑗) + (1 − 𝑤)𝑄𝑇𝐷(𝑠𝐴, 𝑎𝑗)  

where w is a weighting parameter.  
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When fitting data across all sessions, I included a slope parameter s that allowed w to shift 

across days: 

𝑤𝐷 = 𝑤[exp(𝑠(𝐷𝑎𝑦 − 2))] 

and used 𝒘𝑫 as the new weighting parameter.  

At the second-stage, all three models (model-free, model-based, hybrid) converge.  

Action selection 

For each model, values were converted to action probabilities using a sigmoid (softmax) 

function: 

𝑃(𝑎𝐴,𝑡) = 𝜀 +  
1 − 2𝜀

1 + exp (−𝛽[𝑄(𝑠𝑖,𝑡, 𝑎𝐴,𝑡) −  𝑄(𝑠𝑖,𝑡 , 𝑎𝐵,𝑡)])
 

where 𝜺 is a lapse rate, such that when 𝜺 > 0 the boundaries of the sigmoid function are 

compressed and deviations from the model are less harshly punished, and 𝜷 is an inverse 

temperature parameter that governs the stochasticity of choice options.  

Model sets 

When fitting data from individual days, I considered a hybrid RL model that included a single 

learning rate (α) and softmax temperature (β), a weighting parameter that governs the 

balance between model-free/model-based control (w), and a lapse rate (ε). The eligibility 

trace (λ) was fixed at 1. Model-free and model-based algorithms were nested versions of the 

hybrid model where w was set to 0 and 1 respectively.  

When fitting data across all days, I considered a family of (nested) hybrid RL models in which 

specific parameters were omitted or included as fixed versus free parameters. More complex 
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models included separate RL parameters for first and second stage choices, an eligibility 

trace, and a slope parameter that permitted the weighting between model-free and model-

based control to shift across days. See Table 6.4, p. 167, for the full model set.  

Model comparison  

As described previously in this thesis I used a hierarchical Type II Bayesian (or random effects) 

procedure using maximum likelihood to fit simple parameterized distributions for higher 

level statistics of the parameters. Since the values of parameters for each subject are 

‘hidden’, this employs the Expectation-Maximization (EM) procedure. Thus on each iteration 

the posterior distribution over the group for each parameter is used to specify the prior over 

the individual parameter fits on the next iteration. For each parameter I used a single 

distribution for all participants. Before inference, all parameters were suitably transformed 

to enforce constraints (log and inverse sigmoid transforms).  

The model fitting routine follows that previously described by Huys and colleagues (Huys et 

al., 2011). Each model yielded a parameter vector, 𝜃𝑖, for each subject, 𝑖. Before inference, 

all parameters were suitably transformed to enforce constraints (log and inverse sigmoid 

transforms). Model fitting at the individual level aimed to find the maximum a posteriori 

estimate of 𝜃𝑖, given a vector of each subject’s choices, 𝐶𝑖: 

𝜃𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝑝(𝐶𝑖|𝜃𝑖)𝑝(𝜃𝑖|𝜗) 

I used a hierarchical (random effects) model-fitting approach, with the assumption that 

parameter estimates were normally distributed at the group level, where 𝜗  are the 

parameters of the empirical normal prior distribution (hyperparameters) on 𝜃 . The 

hierarchical approach allows the population-level distribution of data to constrain unreliable 
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parameter estimates at the individual level. I estimated the maximum-likelihood 

hyperparameters, given the data from all 𝑁 subjects: 

𝜗̂𝑀𝐿 =  𝑎𝑟𝑔𝑚𝑎𝑥𝜗 𝑝(𝐶1 … 𝐶𝑁|𝜗) =  𝑎𝑟𝑔𝑚𝑎𝑥𝜗 ∏ 𝑝(

𝑖

𝐶𝑖|𝜗) 

where: 

𝑝(𝐶𝑖|𝜗) =  ∫ 𝑑 𝜃𝑖 𝑝(𝐶𝑖|𝜃𝑖)𝑝(𝜃𝑖|𝜗) 

The intractable integral above was estimated by Expectation-Maximization (EM). The E-step 

at the 𝑘th iteration sought the maximum a posteriori parameter estimates for each subject 

(given an estimate of the empirical prior  from the preceding iteration, achieved by 

unconstrained nonlinear optimization in Matlab, Mathworks, MA, USA): 

 

𝜃𝑖
(𝑘) =  𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝑝(𝐶𝑖|𝜃𝑖)𝑝(𝜃𝑖|𝜗(𝑘−1)) 

I used a Laplace approximation, which assumes that the likelihood surface is normally 

distributed around the maximum a posteriori parameter estimate: 

𝑝(𝜃𝑖|𝐶𝑖) ≈ 𝑁 (𝜃𝑖
(𝑘), ∑𝑖

(𝑘)
) 

where ∑𝑖
(𝑘)

 is the second moment around 𝜃𝑖
(𝑘), which approximates the variance. In the M-

step, the estimated hyperparameters 𝜗(𝑘)  of the normal prior distribution, mean 𝜇, and 

factorized variance, 𝜎2, were updated as follows: 

𝜇(𝑘) =  
1

𝑁
∑ 𝜃𝑖

(𝑘)

𝑖

 

(𝜎(𝑘))
2

=
1

𝑁
∑ [(𝜃𝑖

(𝑘))
2

+ ∑𝑖
(𝑘)

]

𝑖

− (𝜇(𝑘))
2
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I compared models by Bayesian model evidence, 𝑝(𝐶1 … 𝐶𝑁|𝑀), approximated as 𝐵𝐼𝐶𝑖𝑛𝑡 : 

−
1

2
𝐵𝐼𝐶𝑖𝑛𝑡 = log 𝑝( 𝐶1 … 𝐶𝑁|𝜗̂𝑀𝐿) −  

1

2
|𝑀|log (|𝐶1 … 𝐶𝑁|) 

where |𝐶1 … 𝐶𝑁| is the total number of choices made by all subjects, and |𝑀| is number of 

hyperparameters fitted. Notably here, by distinction from conventional BIC, 

log 𝑝( 𝐶1 … 𝐶𝑁|𝜗̂𝑀𝐿) is a sum over the model evidence at the subject level by integrating 

over subject-level parameters: 

log 𝑝( 𝐶1 … 𝐶𝑁|𝜗̂𝑀𝐿) =  ∑ log ∫ 𝑑𝜃 

𝑖

𝑝(𝐶𝑖|𝜃) 𝑝(𝜃|𝜗̂𝑀𝐿)  ≈  ∑ log
1

𝐾
∑ 𝑝

𝐾

𝑘=1𝑖

(𝐶𝑖|𝜃
𝑘) 

The right hand expression approximates the integral by summing over 𝐾 samples, drawn 

from the empirical prior, 𝑝(𝜃|𝜗̂𝑀𝐿). Thus the individual-level parameters intervene between 

the data and the group-level inference, but are averaged out when comparing models.  

6.3 Results 

I employed the two-step task introduced by Daw and colleagues (Daw et al., 2011), and used 

in many recent studies (Otto, Gershman, et al., 2013; Otto, Raio, et al., 2013; Skatova, Chan, 

& Daw, 2013; Smittenaar et al., 2013; Smittenaar et al., 2014; Voon et al., 2014; Wunderlich, 

Smittenaar, et al., 2012), which measures separate model-free and model-based influences 

on choice. Each trial of the task consists of two stages, where each stage involves a two-

alternative forced choice between a pair of adjacent fractal images (Figure 6.1, p. 155). 

Choice at the first-stage always involves the same two fractals, whereas choice at the second-

stage involves one of two distinct pairs of fractals. The first-stage choice is causally related 

to a transition to the second-stage, where each first-stage fractal is predominantly associated 

(with a 70% probability) with one of the second-stage pairs. The transitions with 70% 
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probability I call "common"; those with 30% "uncommon". In turn, each second-stage fractal 

is associated with a probabilistic reward. Importantly, these reward probabilities are 

different for each second-stage fractal, and fluctuate independently across a session. Thus, 

subjects have to make trial-by-trial adjustments in choice so as to maximize the current 

probability of reward.  
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Figure 6.1 On every trial of the two-step task, a choice between a pair of fractals (first-stage) 

led probabilistically to a second pair of fractals (second-stage), of which one fractal had to 

again be chosen. The second-stage choice followed either a reward (gold coin) or no reward 

(0), according to the reward probability associated with the chosen second-stage fractal, 

which fluctuated over time. Importantly, each first-stage choice led predominantly (on 70% 

of occasions) to one of the two second-stage pairs, and this transition structure could be 

exploited by the player. On dual-task trials only (displayed in this figure), two different 

numbers of physically different sizes were displayed briefly above each fractal at the start 

(first-stage) of the trial. After receiving second-stage reward feedback, either the word ‘SIZE’ 

or ‘VALUE’ was presented on the screen, and the player had to indicate whether the number 

that was larger in size, or value, respectively, had previously appeared on the left or right 

side of the screen. Correct responses were incentivized via a small monetary gain while 
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incorrect responses were unrewarded. The requirement to retain information pertaining to 

the numerical task whilst solving the two-step task bore a heightened cognitive load.  

Model-free and model-based decision strategies make different predictions about how 

choice depends on transitions and rewards from previous trials. I used a variety of analysis 

methods to estimate the relative contribution of model-free and model-based strategies 

when subjects performed the two-step task alone or in combination with a demanding 

concurrent task. I also tested whether the effect of the concurrent task changed with 

practice. I trained subjects on the two-step task for 3 consecutive days with short periods of 

concurrent task at various periods throughout the training. An initial group of 22 healthy 

subjects, referred to as the ‘high load group’, experienced the high load condition on each 

day of training. This allowed me to characterize choice under load across the entire training 

period. In contrast, a second group of 23 healthy subjects, referred to as the ‘low load group’, 

experienced the high load condition only on day 3. This allowed me to determine how 

training on the two-step task alone would impact choice under load, and thus provided a 

more conservative test of my hypothesis. 

Switch-stay choice strategy 

As with previous studies utilizing the two-step task (Daw et al., 2011; Otto, Gershman, et al., 

2013; Otto, Raio, et al., 2013; Skatova et al., 2013; Smittenaar et al., 2013; Smittenaar et al., 

2014; Voon et al., 2014; Wunderlich, Smittenaar, et al., 2012), I first examined pairs of 

successive choices in isolation. Specifically, one can estimate the contribution of model-

based versus model-free reasoning by means of a two-factor analysis of the effect of the 

previous trial’s reward and transition type on the first-stage choice (switch versus stay) in 

the current trial (Daw et al., 2011). Here, a model-free strategy predicts that a player should 

repeat first-stage choices that lead to rewards at the second-stage, regardless of the 

transition between states (a main effect of reward on the probability of repeating the 
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previous action). By contrast, a model-based strategy predicts that a player should switch 

their first-stage choice if a reward is delivered after an uncommon transition, generating a 

higher probability of reaching a rewarding second-stage state (a cross-over reward x 

transition interaction in the probability of repeating the previous action). Note these 

predictions stem from the assumption that subjects make choices based only on events 

occurring on the immediately preceding trial, and thus provide only an approximate measure 

of the balance between model-free and model-based reasoning.  

I first analysed data from the ‘high load group’. Consistent with previous research (Daw et 

al., 2011; Otto, Gershman, et al., 2013; Smittenaar et al., 2013; Wunderlich, Smittenaar, et 

al., 2012), I found that subjects’ first-stage choices on the two-step task were indicative of a 

mixture of both model-based and model-free reasoning on day 1 of training (Figure 6.2A, p. 

158). This choice strategy remained stable across days, with a logistic regression revealing 

both a main of effect of reward (all p < 0.01) and a reward x transition interaction (all p < 

0.005) on all 3 days. By contrast, both model-based and model-free reasoning were disrupted 

on day 1 of dual-task training (Figure 6.2A, p. 158). Here, first-stage choices did not reveal a 

main effect of reward, and although I identified a reward x transition interaction (p < 0.05), 

it was not characterized by a full cross-over as predicted by a model-based strategy. 

Importantly however, subjects’ behaviour in the dual-task condition shifted across days. I 

identified a reward x transition interaction (p < 0.003), but no main effect of reward, on days 

2 and 3 of dual-task performance. Thus, on these days, subjects’ choices were consistent 

with model-based control despite being under heavy cognitive load.  

When considering data from the ‘low load group’ I again observed a choice pattern indicative 

of both model-free and model-based reasoning across all 3 days of two-step training (main 

effect of reward, all p < 0.05; reward x transition interaction, all p < 0.05), but no change in 

behaviour across days (reward x transition x day, p = 0.40) (Figure 6.2B, p. 158). By contrast, 
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dual-task performance on day 3 exhibited a reward x transition interaction (p < 0.001) but 

no main effect of reward (p = 0.59). These analyses suggest that task training renders model-

based reasoning resistant to load, whether training occurs in the presence or absence of 

load. 

 

Figure 6.2 Bars plots show the average probability with which subjects chose to repeat their 

first-stage action on the subsequent trial as a function of the transition (common vs. 

uncommon) and outcome (rewarded vs. unrewarded) on the previous trial (switch-stay 

choice pairs). Data are divided according to trial type (two-step vs. dual-task), training period 

(days 1-3) and subject group (panel A, ‘high load group’; panel B, ‘low load group’). (A) A 

heightened cognitive load during dual-task trials disrupts stay-switch behaviour associated 

with a model-free or model-based choice strategy given no prior training on the two-step 

task (day 1). This deficit is largely recovered following training (day 3). (B) Training on the 

two-step task alone (i.e. without dual-task trials) permits a degree of model-based reasoning 

under load (dual-task condition). Errors bars represent SEM.  
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For completeness, I repeated the logistic regression concatenating data across all 3 days and 

including a regressor for the day of training (and all possible interactions; see Table 6.1, p. 

160). I identified a significant 3-way reward x transition x day interaction for dual-task trials 

(p < 0.05), but not two-step trials (p = 0.41), consistent with the notion that training altered 

subjects’ performance under high but not low cognitive load (see Table 6.1, p. 160).  

Finally, I performed a separate logistic regression for dual-task trials where I included 

regressors relating to Stroop task performance on the previous trial (see Table 6.2, p. 161, 

for a full list of regressors). Here, I again found a 3-way reward x transition x day interaction, 

reflective of an increase in the influence of a model-based strategy across days, but this 

effect only trended towards significance (p = 0.07), likely owing to an increase in correlation 

between regressors. Interestingly, I found a main effect of Stroop performance (p < 0.05), 

indicating that subjects were more likely to repeat their first-stage choice on the next trial if 

they performed the Stroop task correctly on the current trial. In addition, I found a Stroop 

performance x reward x transition interaction (p < 0.01), indicating that subjects were less 

likely to switch their first-stage choice on the next trial following a rewarded uncommon 

transition on the current trial if they also made a Stroop error on the current trial. Thus, 

negative feedback on the Stroop task interfered with subjects’ ability to utilize a model-based 

strategy on the next trial. One possible explanation is that when subjects make a Stroop 

error, they allocate more attentional resources to the Stroop task cues at the start of the 

following trial, hindering choice on the two-step task. Another possibility is that errors on 

the Stroop task disrupt credit assignment (the appropriate updating of action values) on the 

current trial such that subjects make a less optimal choice on the following trial.         
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Regressor 

Two-step 
Dual 

High load group Low load group 

Coef SE p Coef SE p Coef SE p 

intercept -1.123 0.199 < 0.001 -0.828 0.167 < 0.001 -0.397 0.163 0.0235 

rew -0.179 0.033 < 0.001 -0.259 0.052 0.0001 -0.058 0.030 0.0691 

trans -0.139 0.084 0.1136 0.062 0.081 0.4510   -0.084 0.073 0.2622 

day 0.056 0.066 0.406 -0.055 0.054 0.3219 -0.057 0.055 0.3124 

rew x trans -0.540 0.100 < 0.001 -0.300 0.102 0.0081 -0.278 0.052 < 0.001 

rew x day 0.018 0.035 0.6105 -0.085 0.048 0.0911 -0.024 0.036 0.5164 

trans x day 0.006 0.035 0.876 -0.062 0.050 0.2234 -0.002 0.036 0.9676 

rew x trans 

x day 
-0.019 0.037 0.606 -0.023 0.051 0.6599 -0.110 0.052 0.0480 

Table 6.1 Table shows the group-level output of a logistic regression on first-stage switch-

stay behaviour, separately for two-step (‘high load group’ and ‘low load group’) and dual-

task trials, from data concatenated across all 3 training sessions. Note that ‘reward x day’ 

was orthogonalized with respect to reward, and in turn ‘reward x transition x day’ was 

orthogonalized with respect to ‘reward x transition’. These regressors thus account for 

variance unexplained by the 2-way effect (see Methods, p. 145 - 146). Bold-face denotes p < 

0.05 uncorrected for multiple comparisons. rew = reward; trans = transition; Coef = 

regression coefficient.  
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Regressor 
Dual 

Coef SE p 

intercept -0.263 0.352 0.135 

rew -0.084 0.126 0.020 

trans -0.109 0.126 0.012 

day -0.057 0.157 0.368 

stroop acc -0.091 0.179 0.026 

rew x trans -0.249 0.127 < 0.001 

rew x day -0.025 0.157 0.512 

trans x day 0.004 0.156 0.926 

rew x trans x day -0.105 0.157 0.075 

rew x stroop acc 0.039 0.193 0.364 

rew x trans  
x stroop acc 

-0.107 0.191 0.006 

rew x trans x  
stroop acc x day 

-0.047 0.231 0.420 

Table 6.2 Table shows the group-level output of a logistic regression on first-stage switch-

stay behaviour, for ‘high load group’ data and dual-task trials only, where data is 

concatenated across all 3 training sessions. Note that ‘reward x day’ was orthogonalized with 

respect to reward, and in turn ‘reward x transition x day’ was orthogonalized with respect to 

‘reward x transition’. Similarly, ‘reward x transition x stroop accuracy’ was orthogonalized 

with respect to ‘rew x stroop accuracy’ and so on. These regressors thus account for variance 

unexplained by the simpler 2, 3 or 4-way effect (see Methods, p. 145 - 146). Bold-face 

denotes p < 0.05 uncorrected for multiple comparisons. rew = reward; trans = transition; 

stroop acc = Stroop task accuracy; Coef = regression coefficient.  
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Computational modelling  

One limitation of a switch-stay regression analysis is that it attempts to explain choice on the 

current trial by events occurring on the immediately preceding trial. Thus, ‘switching’ after 

an uncommon rewarded trial is always deemed model-based, whilst ‘staying’ is deemed 

model-free. However, a model-based player might repeat a first-stage choice after an 

uncommon rewarded trial if the expected utility of the previous first-stage action is high. 

Reinforcement learning models typically account for this by assuming a decaying influence 

of all previous trials. I therefore used computational modelling to corroborate the switch-

stay regression analysis.  

First, I used Bayesian model comparison to validate that choice in the two-step task reflects 

a hybrid of both model-free and model-based valuations (Daw et al., 2011). The hybrid model 

makes choices according to a weighted combination of model-free and model-based action 

values (with the weight governed by the parameter w), where choice is purely model-free or 

model-based when w = 0 or 1 respectively. I then fit the hybrid model to the ‘high load group’ 

and the ‘low load group’, separately for two-step and dual-task trials, treating each day of 

training as a discrete set of data. This allowed me to assess the impact of training on the two-

step task, by comparing the value of w under load on day 1 in the ‘high load group’, and day 

3 in the ‘low load group’ (a between-group comparison). Specifically, this provided a 

conservative test of my hypothesis that training on the two-step task alone would permit 

increased model-based choice under load. I also evaluated the effects of training under load 

over time, by comparing the value of w during step-task and dual-task trials in the ‘high load 

group’ across each day of training (a within-group comparison). Finally, in order to validate 

my findings within a fully Bayesian framework, I performed a second model comparison 

where I concatenated data from the full training period and tested model variants in which 

the value of w could change across days.  
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Between-group comparison  

I fit a hybrid RL model, in addition to reduced (nested) versions that describe pure model-

free and model-based choice respectively, to ‘high load group’ data from day 1 of training, 

and to ‘low load group’ data from day 3 of training, separately for two-step (low load) and 

dual-task (high load) trials. Using Bayesian model comparison, I found that the hybrid model 

provided a better fit to subject data in both groups and both trial types, as indicated by a 

lower iBIC score (see Table 6.3, below). Importantly however, w was significantly higher in 

the two-step condition compared to the dual-task condition (p < 0.01) in the ‘high load group’ 

on day 1, consistent with previous evidence that model-based reasoning is impaired under 

high cognitive load in untrained subjects (Otto, Gershman, et al., 2013) (Figure 6.3A, p. 164). 

Conversely, I found no difference in the value of w between two-step and dual-task trials 

when fitting ‘low load group’ data from day 3 of training (Figure 6.3B, p. 164). This suggests 

that prior training on the two-step task permitted a strong degree of model-based reasoning 

under load, despite subjects having no prior experience with performing a task under load.  

Models 

iBIC Two-step (x 104) iBIC dual (x 103) 
No. 

Parameters 
High load 

group 
(day 1) 

Low load 
group 
(day 3) 

High load 
group  
(day 1) 

Low load 
group  
(day 3) 

α β ε       (model-free) 1.3831 1.4605 7.2260 7.8552 3 

α β ε       (model-based) 1.3688 1.4589 7.3056 7.8471 3 

α β ε w   (hybrid) 1.3491 1.4195 7.1863 7.8143 4 

Table 6.3 Results of a Bayesian model comparison that accounts for differences in model 

complexity. The hybrid model, which incorporates influences from both model-free and 

model-based control, fit subject data better than pure model-free and model-based RL 

algorithms across both trial types (two-step versus dual-task) and both groups (‘high load 

group’ day1, ‘low load group’ day 3). Bold-face denotes the winning model (lowest iBIC score) 

for each condition.  
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Figure 6.3 (A) Mean best-fitting parameters from the hybrid model for ‘high load group’ data 

from day 1 (i.e. before task training). The weighting parameter w, which represents a 

measure of model-based (w = 1) relative to model-free (w = 0) control, was lower in the dual-

task (high load) condition compared to the two-step (low load) condition. (B) By contrast, w 

did not differ between dual-task and two-step trials in the ‘low load group’ on day 3, who 

had received prior training on the two-step task over two consecutive days. Vertical bars 

represent SEM. * denotes p < 0.05.  

Within-group comparison 

Next, I fit the hybrid model to data from days 2 and 3 of training in the ‘high load group’, 

separately for two-step and dual-task trials. This allowed me to characterize the temporal 

dynamics of a shift in the balance of model-free or model-based control with increasing task 

exposure (i.e. across all 3 days). Here, I was principally interested in whether I would observe 

an abrupt switch in subjects’ strategy at the start of a given training day, or alternatively, 

whether a gradual shift in behavioural control would emerge across days (as suggested by 

subjects’ switch-stay choices; see Figure 6.2, p. 158). To test these hypotheses, I performed 

paired t-tests on parameter estimates from Bayesian model inference. In the two-step task, 

I found evidence for a moderate shift towards more model-based choice, as indexed by 



165 
 

higher w values, on days 2 and 3 of training compared to day 1 (both p < 0.01) (Figure 6.4A, 

below). During dual-task trials, I found a more pronounced shift towards model-based 

choice, with an approximately linear increase in the value of w across days (all p < 0.001) 

(Figure 6.4B, below). Thus, consistent with the regression analysis, training increased the 

relative contribution of model-based reasoning to a greater degree during high load trials, 

suggesting that the addition of load is necessary to expose training-induced changes in 

behaviour in the two-step task.  

 

Figure 6.4 Mean best-fitting parameters from the hybrid model for ‘high load group’ data 

from days 1-3 of training. The weighting parameter w represents a measure of model-based 

(w = 1) relative to model-free (w = 0) control. (A) At the group level, model parameters 

remained relatively stable across two-step trials, indicating that performance in the absence 

of load was not largely affected by training. (B) By contrast, performance under load shifted 

across days, with higher learning rates and higher w values as task exposure increased. 

Vertical bars represent SEM.  
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Multi-day model comparison 

To corroborate the finding that w changes with training within a fully Bayesian framework, I 

fit a full hybrid RL model (in addition to various nested alternatives) to ‘high load group’ data 

across all 3 days (combined), separately for two-step and dual-task trials. Importantly, I 

tested model variants in which w could shift across days, governed by a slope parameter σ, 

allowing the balance between model-free and model-based control to vary with each 

consecutive day of training. Bayesian model comparison revealed that the slope parameter 

σ was supported for the dual-task condition but not for the two-step condition, with the 

latter result replicating in both the ‘high load group’ and the ‘low load group’ (see Tables 6.4 

& 6.5, p. 167). Thus, training influenced the balance between model-free and model-based 

control across each day of training in dual-task trials but not in two-step trials (however, w 

was higher on days 2 and 3 compared to day 1 of training during two-step blocks, a subtlety 

not captured by the slope model). Importantly, the value of σ was negative at the group-

level, indicating a higher degree of model-based control on day 3 compared to day 1 (see 

Table 6.5, p. 167). Thus, subjects’ ability to perform model-based reasoning gradually 

became immune to cognitive load when training included both the two-step and dual-task 

conditions, both within a fully Bayesian framework, and when fitting behaviour from each 

day individually.  
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Models 

iBIC Two-step (x 104) 

 
iBIC dual  

(x 104) 
No. Parameters High load 

group 

Low load  

group 

α β ε w 3.9598 4.2879 2.1602 4 

α β ε w λ 3.9544 4.2880 2.1598 5 

α β ε w σ 3.9703 4.2917 2.1598 5 

α β ε w λ σ 3.9563 4.2912 2.1608 6 

α1 α2 β ε w 3.9592 4.2877 2.1498 5 

α1 α2 β ε w λ 3.9494 4.2887 2.1507 6 

α1 α2 β ε w σ 3.9612 4.2907 2.1490 6 

α1 α2 β ε w λ σ 3.9459 4.2906 2.1494 7 

α β1 β2 ε w 3.9153 4.2556 2.1494 5 

α β1 β2 ε w λ 3.9072 4.2494 2.1472 6 

α β1 β2 ε w σ 3.9214 4.2612 2.1476 6 

α β1 β2 ε w λ σ 3.9120 4.2541 2.1476 7 

α1 α2 β1 β2 ε w 3.9134 4.2586 2.1449 6 

α1 α2 β1 β2 ε w σ 3.9196 4.2632 2.1433 7 

α1 α2 β1 β2 ε w λ 3.9055 4.2501 2.1442 7 

α1 α2 β1 β2 ε w λ σ 3.9111 4.2569 2.1462 8 

Table 6.4 Results of a Bayesian model comparison that accounts for differences in model 

complexity. More complex model variants include those that have separate RL parameters 

for first and second stage choices, eligibility traces, and a parameter for capturing shifts in 

model-free versus model-based control across days. Bold-face denotes the winning model 

(lowest iBIC score) for each condition.  

Condition 

 

α1 

 

α2 

 

β1 

 

β2 

 

ε 

 

 

w 

 

λ 

 

σ 

 High load group: 
two-step  

0.442 0.405 6.682 2.734 4.97 x10-5 0.723 0.546 0* 

High load group: 
dual-task 

0.097 0.355 3.981 2.250 0.021 0.899 1* -0.306 

Low load group: 
two-step 

0.510 4.752 2.560 6.66 x 10-5 0.566 0.628 0* 

Table 6.5 Best-fitting parameter estimates shown separately for each group and condition 

(two-step versus dual-task), using data concatenated across all 3 days of training. Values 

represent mean parameter fits across all subjects. * represents fixed parameter values.  
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Other learning parameters 

In addition to differences in the value of w between two-step and dual-task trials, I also found 

differences in a number of other learning parameters. When fitting data from the ‘high load 

group’ on day 1, and the ‘low load group’ on day 3, I found subjects were less considerate of 

the most recent reward information (as indexed by a lower learning rate) and chose more 

stochastically (as indicated by a lower inverse temperature) during dual-task trials compared 

to two-step trials (all p < 0.05) (Figure 6.3, p. 164). I identified similar differences when fitting 

data across all training days consecutively (Table 6.5, p. 167). However, when subjects were 

able to practice the dual-task condition on each day (‘high load group’), both the learning 

rate and inverse temperature under load increased across days (all p < 0.001 comparing day 

1 to day 3) (Figure 6.4B, p. 165).  

3-Back Logistic Regression  

Computational modelling characterizes subject behaviour in the two-step task by integrating 

over a history of choices. In this modelling, I quantified the relative degree of model-free and 

model-based control by fitting w to subjects’ choices. However, this approach also relies on 

fitting several other model parameters that may exhibit a degree of shared variance. This has 

the potential to complicate interpretation when the true value of more than one parameter 

differs between two conditions.  

I therefore employed a second logistic regression, to capture the main effects of the model, 

in a manner that more closely approximates a modelling approach. Here, rather than 

consider pairs of isolated choices, I quantified the degree to which choice on the current trial 

reflected a model-free and model-based influence relative to events occurring on the 

preceding 3 trials (see Methods, Logistic regression, p. 146) (Smittenaar et al., 2014). For 

example, if a player received a reward following an uncommon transition 3 trials in the past, 



169 
 

a model-free system would be more likely to choose the same first-stage fractal on the 

current trial, whereas a model-based system would be more likely to choose the opposite 

first-stage fractal on the current trial.  

During two-step trials, I identified a significant model-free and model-based influence on 

choice extending up to 3 trials in the past (all p < 0.05), consistent with a notion that subjects 

utilized a hybrid of both systems (Figure 6.5A, p. 170). However, I found a reduction in model-

based control in the dual-task condition compared to the two-step condition in the ‘high load 

group’ on day 1, an effect that spread up to 2 trials in the past (pared t-tests, all p < 0.05). 

Importantly, this difference was reduced following task training (on day 3), independent of 

whether training included (‘high load group’, Figure 6.5A, p. 170) or excluded (‘low load 

group’, Figure 6.6, p. 171) the high load condition. To help visualize these effects, I derived 

single indices of model-free and model-based learning by summing the coefficients that 

correspond to an influence of events on 1, 2 or 3 trials in the past respectively (see Figure 

6.5B, p. 170). Further, to my surprise, I was unable to identify a significant model-free 

influence in either group in the high load condition. However, model-free coefficients were 

not significantly different when comparing the two-step and dual-task conditions (with 

paired t-tests). Thus, I do not wish to draw strong inferences from this subtle dissimilarity. In 

summary, these results replicate my computational modelling in a format that is slightly less 

powerful but is also freer from parametric assumptions.  
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Figure 6.5 I performed a logistic regression to estimate the relationship between choice on 

trial t and events occurring on trial t-1 up to t-3. Here, regression coefficients can be 

interpreted as reflecting a model-free or model-based influence on choice, where larger 

coefficients indicate a stronger influence. (A) In the two-step condition, model-free and 

model-based coefficients were significantly different from 0 (up to 3 trials in the past), 

suggesting that subjects used a hybrid of both strategies (upper panel). In the dual-task 

condition, I observed no significant influence of a model-free system, and a diminished 

influence of a model-based system in untrained subjects. This impairment in model-based 
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reasoning was suppressed following task training (day 3), while the absence of a model-free 

influence remained insensitive to training (lower panel). (B) For each condition, and 

separately for days 1 and 3, I summed (individually) the coefficients corresponding to trial t-

1, t-2 and t-3, and derived single estimates of the degree to which model-free and model-based 

control were dominant in choice. I observed a larger relative shift towards model-based 

control with training in the dual-task condition compared to the two-step condition, 

consistent with the previously discussed analyses. Vertical lines represent SEM. * denotes p 

< 0.05, ‡ denotes p = 0.09.  

 

Figure 6.6 I performed a logistic regression on data from ‘low load group’ and day 3 of 

training to estimate the relationship between choice on trial t and events occurring on trial 

t-1 up to t-3. Here, regression coefficients can be interpreted as reflecting a model-free or 

model-based influence on choice, where larger coefficients indicate a stronger influence. In 

the two-step condition (blue bars), model-free and model-based coefficients were 

significantly different from 0 (up to 3 trials in the past), suggesting that subjects used a hybrid 

of both strategies. In the dual-task (high load) condition (orange bars), I observed a 

significant influence of a model-based system, that did not differ from the two-step 

condition, up to 3 trials in the past. In contrast, I found no significant influence of a model-

free system. These results are consistent with data from the ‘high load group’ (see Figure 

6.5, p. 170). Vertical lines represent SEM. * denotes p =< 0.05, ‡ denotes p = 0.08.  
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Numerical Stroop performance 

Mean numerical Stroop accuracy during dual-task trials was 81.9% on day 1, 85.5% on day 2, 

and 89.5% on day 3 for the ‘high load group’. Thus, performance on the secondary task 

demonstrated an approximately linear increase across training days (all p < 0.05). Mean 

numerical Stroop accuracy for the ‘low load group’, in which subjects only experienced the 

dual-task condition on day 3 of training, was 83.2%, and thus comparable to the ‘high load 

group’.  

Despite performance on the Stroop task being high overall (~80 - 90%), I hypothesized that 

the ability for subjects to respond accurately would depend on, or interact with, events 

occurring on the two-step task. To explore this I performed a logistic regression, using data 

from the ‘high load group’, to quantify whether Stroop task performance on the current trial 

(coded as ‘0’ for incorrect and ‘1’ for correct) could be explained by choice or events related 

to the concurrent two-step task. The explanatory factors in this model included whether the 

numbers presented on the current trial were congruent or incongruent with respect to ‘SIZE’ 

and ‘VALUE’, whether subjects choose to repeat or switch their first-stage choice with 

respect to the previous trial, the response time at the first-stage, whether the transition on 

the current trial was common or uncommon, whether the current trial was rewarded or not, 

and whether the data were from day 1, 2 or 3 of training. The resulting coefficients are 

presented in Table 6.6 (p. 173).  
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Regressors 
High load group 

Coef SE p 

intercept 1.5854 0.3084 < 0.001 

switch/stay -0.1122 0.0958   0.255 

rew -0.0094 0.1068 0.931 

trans 0.1592 0.0831 0.069 

congruency -0.0613 0.1991 0.761 

RT -0.0004 0.0002 0.020 

day 0.3377 0.0766 < 0.001 

Table 6.6 Group-level output of a logistic regression on the probability of performing the 

Stroop task correctly. Bold-face denotes p < 0.05 uncorrected for multiple comparisons. rew 

= reward; trans = transition; RT = first-stage reaction time; Coef = regression coefficient.  

This regression analysis revealed that subjects were more likely to perform the Stroop task 

correctly with increasing task experience (a main effect of day). Performance was also more 

accurate when they were faster to make their first-stage choice on the two-step task. This 

could imply that deploying more cognitive resources to the two-step task (or for a longer 

period of time) - owing to reduced decision confidence - might negatively impact on the 

encoding or maintenance of distracting information. Alternatively, subjects may have 

generally been more aroused and attentive on trials where they were faster to respond on 

the two-step task. Further, I identified a main effect of transition that trended towards 

significance (p = 0.07). This suggests that subjects may have been less likely to perform the 

Stroop task correctly on trials where they experienced an uncommon transition on the two-

step task. The Stroop task requires maintaining spatial information about numerical cues in 

working memory. Thus, one possibility is that the experience of an uncommon transition 

interfered with subjects’ ability to correctly maintain location-specific (left versus right) 

information required for the Stroop task, perhaps because it increased the likelihood of 

mentally switching these locations. However, subjects had no explicit reason to map 
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common or uncommon transitions onto specific spatial locations since they did not transition 

through the Markov structure “spatially” when performing the task. A more likely 

explanation is that uncommon transitions utilize more cognitive resources than common 

transitions. For example, it is feasible that subjects prepare a second-stage response 

following their first-stage choice based on the fractal pair that would result from a common 

transition. In the event of an uncommon transition, subjects might have to deploy additional 

cognitive resources to retrieve and compare cached values at the second stage on the fly.   

6.4 Discussion  

A prominent account of decision-making posits that humans and other animals use (at least) 

two distinct strategies for making choices (Balleine & O'Doherty, 2010; Daw et al., 2005; 

Dolan & Dayan, 2013; van der Meer, Kurth-Nelson, & Redish, 2012). In this view, a habitual 

or model-free decision system resides primarily in the basal ganglia and does not depend on 

limited executive resources (Stalnaker et al., 2010; Yin & Knowlton, 2006). Meanwhile, a 

goal-directed or model-based decision system engages prefrontal cortical areas with 

capacity limits that might arise from serial processing (Alvarez & Emory, 2006; Glascher et 

al., 2010; Jones et al., 2012; Sigman & Dehaene, 2008; Smittenaar et al., 2013; Wunderlich, 

Dayan, et al., 2012).  

Here, I asked whether reliance on a limited pool of executive resources is a universal property 

of model-based choice, or whether, as task familiarity increases, the brain can execute 

model-reasoning in a way that depends less on these limited-resource functions. I found that 

model-based choice was preserved under load in subjects that had acquired familiarity, 

through prior training, with the structure of a two-stage Markov decision task (Daw et al., 

2011), suggesting a change in the implementation of model-based behaviour. This finding 

was independently replicated in two cohorts of subjects (who received training either with 

or without load) and using different methodological approaches.  
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There are several possible explanations for this result. First, following training, subjects may 

become more efficient at using the task structure to plan ahead. From a neural perspective, 

this might entail shifting model calculations away from executive brain areas that are limited 

by serial processing (Dux, Ivanoff, Asplund, & Marois, 2006; Glascher et al., 2010; Sigman & 

Dehaene, 2008; Smittenaar et al., 2013; Valentin et al., 2007; Wunderlich, Dayan, et al., 

2012). Interestingly, task training has previously been shown to cause "off-loading" to other 

neural circuits in tasks requiring executive resources, including a shift from the prefrontal 

cortex to parietal and striatal regions (Kelly & Garavan, 2005; Yildiz & Beste, 2014). In 

particular, recent evidence suggests the striatum, in contrast to the prefrontal cortex, may 

be more optimized for parallel processing in dual-task conditions (Yildiz & Beste, 2014). If 

model calculations remain in the same brain areas, it is possible that the coding within these 

areas becomes more efficient with experience, for example, if only a fraction of neurons are 

required to fire in order to achieve the same representational fidelity (Beauchamp, Dagher, 

Aston, & Doyon, 2003; Bush et al., 1998; Poldrack, 2000). 

Second, resilience to load could emerge with training if other implicitly necessary processes 

(other than reasoning with the Markov transition matrix of the task itself) become more 

efficient. For example, some cognitive resources may be required for identifying the various 

fractals and remembering which is which, for maintaining events that occurred on the 

previous trial in working memory, and for retrieving cached values at the second-stage 

during planning. There may also be resources involved in maintaining belief distributions 

over meta-parameters, such as whether the task structure might change or new fractals 

might appear, what appropriate learning rates are, when model-based reasoning should be 

deployed (Daw et al., 2005; Keramati, Dezfouli, & Piray, 2011) and how attentional resources 

should be allocated within a trial. Since all these processes are likely dependent on executive 

brain regions to some degree (Badre, 2008; Behrens et al., 2007; Knight et al., 1995; E. E. 

Smith & Jonides, 1999; Waskom et al., 2014), gaining efficiency in any of these domains may 
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free resources for model-based computations, or for maintaining task-relevant content in 

working memory.  

Third, subjects could learn to perform model-based calculations at the end of each trial (i.e., 

"offline"), rather than the beginning of the next trial. The results of this calculation could 

update a cached or habitual value accessed for the next choice, relieving the need to store 

the current reward in memory until the beginning of the next trial. In turn this could allow 

increased allocation of executive resources to the concurrent task. Further, choice under 

load after training may not be truly model-based. Increasingly sophisticated choice heuristics 

(for example, applying Q-value updates to the opposite first-stage transition following an 

uncommon transition), permit behaviour that is increasingly difficult to distinguish from fully 

model-based in the simple two-step task (K. J. Miller, Erlich, Kopec, Botvinick, & Brody, 2013). 

Although not realizing the full Markov model of the task, these strategies implicitly embody 

partial models of the task structure.  

While my data cannot currently disambiguate between these divergent mechanisms (many 

of which are at least to some degree overlapping and by no means mutually exclusive), it 

seems likely that task training could instigate a combination of the above. Future 

experiments could aim to investigate their respective predictions, for example via the use of 

neuroimaging. In the remainder of the discussion I will elaborate on a number of more subtle 

features of the data that, while not affecting the main conclusions of the paper, are 

nevertheless of interest.  

Using computational modelling, I found that w (a parameter indexing the balance between 

model-based and model-free control) was reduced by load, and this deficit was eliminated 

by prior task training. However, a subsequent 3-back regression analysis suggests the 

possibility that the observed reduction in w under load could reflect a marginal weakening 

of model-free reasoning, in addition to a more pronounced disruption of model-based 
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reasoning. This contrasts with previous studies showing that model-based, but not model-

free learning, is prone to interference in a range of contexts (Otto, Gershman, et al., 2013; 

Otto, Raio, et al., 2013; Smittenaar et al., 2013; Voon et al., 2014; Wunderlich, Smittenaar, 

et al., 2012). One possibility is that this subtle difference may be a consequence of 

dissimilarities in task design. For example, while Otto and colleagues utilized interleaved 

trials of low and high load (Otto, Gershman, et al., 2013), I employed alternating blocks of 

either condition. If subjects make choices by integrating over a history of trials, then 

enforcing a high load over a longer history of trials could have more diffuse consequences 

on choice. Similarly, I found that task training boosted model-based but not model-free 

reasoning under load. While I do not wish to draw strong conclusions, one possibility is that 

subjects were encouraged to overcompensate for load during dual-task trials, and that this 

suppressed the influence of a model-free system following training.  

Through computational modelling, I found that load affected not just w but also learning 

rates and choice noise parameters. These changes were not eliminated by prior task training. 

Slower learning rates and more stochastic choice appeared during high load trials, 

independent of training (in the ‘low load group’). Slower learning rates raise the possibility 

that subjects under load inferred lower environmental volatility (perhaps placing stronger 

weight on priors) (Behrens et al., 2007). Alternatively, it may reflect a tradeoff between 

executive processes, such as updating the contents of working memory, and more 

incremental learning processes that exhibit longer time-constants. Noisier choice might be 

associated with a reduction in decision-making confidence (De Martino et al., 2013; Kepecs, 

Uchida, Zariwala, & Mainen, 2008). It is also possible that the underlying choice strategy used 

by subjects was not fully captured by the winning model, leading some other form of 

variability to be absorbed by the model parameters. In addition, although prior task training 

had a large effect on behaviour under load, it had little effect on behaviour without load 

(comparing day 3 to day 1 in the 'low load group'). This suggests that training induced latent 
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changes that were made apparent by the addition of load, for example, due to an effective 

ceiling on model-based choice.  

I found slightly higher w values on day 3 of training in the ‘high load group’ (who received 

training both with and without load), than the ‘low load group’ (who only received training 

on the two-step task), in both trial types, indicating a higher degree of model-based relative 

to model-free control. This could in part be explained by the fact that subjects in the ‘high 

load group’ received more overall training (256 additional trials; 4 blocks of 64 dual-task 

trials) than the ‘low load group’. However, it is also possible that training under load induced 

neural adaptations that permitted improved dual-task performance independent from a 

change in the implementation of model-based choice (Hazeltine, Teague, & Ivry, 2002). 

Finally, I cannot exclude the possibility that a component of the behavioural change I 

observed across days in the ‘low load group’ was unrelated to familiarity with the primary 

decision-task. For example, subjects may have simply become more comfortable in the 

laboratory setting after consecutive visits. Further, by merely practicing a cognitively 

demanding task, subjects’ working memory capacity may have improved, reducing the 

burden associated with concurrent task performance. However, evidence that working 

memory training generalizes to novel tasks or contexts remains at best controversial (Melby-

Lervag & Hulme, 2013).  

In summary, I present data that challenge a prominent notion in decision-making that goal-

directed or model-based reasoning is necessarily reliant on a finite pool of executive 

resources. Instead, I show this reliance is linked to the degree of prior experience with the 

model of the world, where more experience may enable different (and potentially less costly) 

neural mechanisms for the implementation of model-based choice. These data may have 

implications for therapies to restore normal decision-making in psychiatric disorders, where 

deficits in model-based reasoning are thought to play a key role.  
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CHAPTER 7 

 GENERAL CONCLUSIONS 

A major focus of the work presented in this thesis has been the contribution of multiple 

neural systems to decision-making in an adaptive context. My first two experiments focused 

on the processes supporting value encoding and action selection, while the latter experiment 

investigated learning. In the following sections I will give an overview of the significance of 

my findings within the broader context of neuroeconomics and proceed to discuss the 

limitations of the work and relevant future directions.  

7.1 Overview, limitations, and further work 

Contemporary theories formalize decision-making in terms of an evaluation of the predicted 

rewards, punishments and costs associated with different choice options, which are then 

compared so that the best option can be chosen. Over the last decade, a number of 

influential experiments have sought to reveal the neural correlates of such valuations by 

combining behavioural paradigms, in which individuals choose between options that differ 

in value, with neuroimaging techniques such as fMRI, or single-unit recordings.  

Although a wide array of brain regions have been implicated, two ubiquitous regions include 

the ventromedial prefrontal cortex (vmPFC) and the striatum. For example, in a set of studies 

by Padoa-Schioppa and colleagues (Padoa-Schioppa & Assad, 2006, 2008), activity in the 

orbitofrontal cortex of non-human primates correlated with the subjective value of different 

rewards or “goods”. Here, monkeys were made to choose between a set of two or three 

juice options where the types and amounts of juices varied across trials and sessions. This 

allowed the experimenters to infer the subjective value of different options based upon each 
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monkey’s actual choices. Within the orbitofrontal cortex, neurons were identified that 

encoded the subjective value of one of the offered rewards, or alternatively the chosen 

reward, or the type of juice chosen. This led the authors to conclude that this region in the 

brain is a good candidate for the type of value assignment that is thought to underlie 

economic choice. Similarly, Kable and Glimcher (Kable & Glimcher, 2007) showed that 

comparable brain areas encode subjective value in humans. In their experiment, subjects 

were required to choose between an immediately available sum of money and a larger but 

delayed sum. Here, the subjective value of a delayed outcome typically declines as the 

imposed delay to its delivery increases, a phenomenon termed delay discounting. By 

estimating a discounting factor for each individual subject, Kable and Glimcher were able to 

show that the BOLD response in regions including the vmPFC and striatum correlated with 

the subjective value of the delayed choice option. Thus, the authors similarly concluded that 

these regions form a common valuation system that assigns values to choice options in the 

environment and ultimately guides action selection. 

Many value-guided decision-making paradigms involve discrete, binary decisions between 

two or more choice options, where the outcome of each decision (or trial) is independent. 

Thus, rewards and punishments accumulate discretely over time, or alternatively, a single 

random trial is realized at the end of the experiment. Although this approach is highly 

efficient, it fails to capture several components of real-life decision-making, where choice is 

often sequential and highly context-dependent. For example, drinking coffee may have a 

high utility in the morning (due to increased alertness), but a low utility in the evening (as 

one’s sleep is likely to be disrupted). Similarly, actions that lead to an immediate reward or 

punishment may also generate a complex set of delayed consequences. For instance, 

smoking a cigarette may bestow immediate rewards but may also imperil long-term health 

and confer negative social consequences. Bearing in mind these complexities, we know less 
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about how vmPFC and other valuations regions encode different components of value in 

different contexts, or how this contributes towards adaptive decision-making.  

In this thesis I took the relatively novel approach of designing sequential decision-making 

paradigms in which the value of a given choice option can fluctuate according to changes in 

context. The data I present in Chapters 4 and 5 support a notion that vmPFC (and other 

valuation regions) represent the immediate or stimulus-driven value of choice options in 

such contexts. These low-level representations are then moderated by higher-order 

prefrontal (and possibly parietal) networks that track specific contextual or task-related 

computations, in a manner that allows individuals to overcome prepotent responses, 

maintain hierarchical goals, and adaptively switch their choices. These results are consistent 

with previous computational theories that decision values reflect the accumulation and 

integration of multiple sources of information in the brain (Ratcliff & McKoon, 2008), and 

with empirical evidence that dorsal prefrontal cortex incorporates more abstract decision 

components within vmPFC (Hare et al., 2009; McClure et al., 2004). However, it should not 

be overlooked that in some cases, there may be substantial inter-individual variability in the 

degree to which stimulus-driven valuations are modulated, and consequently, in the extent 

to which individuals are able to dynamically adjust their behaviour (as shown in Chapter 5). 

Future experiments could address whether this variability stems from an impaired 

representation of context, or from a deficit in in the functional integration of multiple 

decision components.  

Importantly, while several previous studies have shown that dorsal prefrontal cortex is 

involved in flexible decision-making when changes in context are externally cued (Aron et al., 

2004; Badre & Wagner, 2004; Kerns et al., 2004), few paradigms have explored the 

mechanisms underpinning switches in choice when the agent has to infer that the context 

has changed, a decision process important in real life. Here, I show that both instances recruit 
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similar regions of prefrontal cortex and likely utilize equivalent choice architectures. 

Although I used a computational approach, it remains unclear to what extent the functional 

contribution of dorsal prefrontal cortex generalizes to other tasks, or how it relates to other 

executive functions supported by the neocortex, such as working memory (Curtis & 

D'Esposito, 2003). These issues are discussed more fully in Chapter 4.  

Further, in Chapter 5, I showed that value representations within some brain regions (such 

as the striatum) remain insensitive to changes in context, and that this may lead to 

suboptimalities in decision-making. In this framework, choice might instigate a competition 

between value systems supporting short-term gains and long-term goals respectively. This 

dual-system framework is analogous, albeit computationally distinct, to other dual-system 

theories in the brain, such as the increasingly evident division between model-free and 

model-based reinforcement learning (Daw et al., 2011; Dolan & Dayan, 2013; Doll et al., 

2012). Further work is needed to understand, i) how these “short-term” reward 

representations in striatum manifest in choice, ii) whether they are in fact ‘functional’ as 

opposed to merely ‘content’ representations (deCharms & Zador, 2000), iii) whether they 

are exaggerated in impulsive individuals, iv) whether they are enhanced by stress or fatigue, 

and v) whether they can be suppressed through training. Further, we currently know little 

about how the brain resolves competition between systems supporting short-term and long-

term goals respectively, or put differently, why one system prevails on some trials but not 

others.  

Finally, in Chapter 6 I asked whether the mechanism by which the brain uses feedback to 

learn how to make optimal decisions in a given environment changes with experience. 

Laboratory-based experiments that probe learning and planning often utilize tasks in which 

the underlying structure -that is, the relationship between actions and their future 

trajectories - are entirely novel to the subject. Thus, the neural implementation of learning 
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in this context may represent a special case that is less commonly encountered in everyday 

life. To address this, I trained subjects on a value-guided decision-making task for 3 

consecutive days. The data were suggestive of a shift in the implementation of value-guided 

planning with training, from a more cumbersome, resource-dependant mechanism, to a 

more efficient and robust process that remained resistant to attentional load.  

While very few previous studies have explored the effects of task-experience on value-

guided choice, I believe the data speak as an important reminder that the brain is a dynamic 

machine, and that by reporting averaged data we are merely taking a snapshot of the 

underlying cognitive processes and could thus be overlooking important subtleties. 

Naturally, a vital follow-up will be to use neuroimaging techniques to identify the underlying 

changes in neural representations that occur with training. In addition, given these data, it 

may be important to determine whether equivalent changes in the neural architecture 

supporting value-guided choice occur outside of learning tasks. Even in experiments not 

designed to probe the effects of training, one could contrast fMRI activation maps obtained 

from the first and last session of a task (albeit at more liberal thresholds), and test a null 

hypothesis that no differences would be observed in a more explorative manner. Finally, a 

highly pertinent follow-up would be to determine whether similar training effects would 

generalize to other planning (model-based) tasks, as this may have implications for 

enhancing model-based reasoning in psychiatric disorders.  

7.2 Challenges in fMRI 

Although fMRI has become a widely used tool for understanding the association between 

brain activity and cognition, it is not without limitations. Whilst providing a detailed account 

goes beyond the scope of this thesis (for an excellent review see (Constable, 2012)), I outline 

some of the major and more general challenges.  
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Firstly, fMRI measures changes in cerebral blood flow (the BOLD signal) and is thus merely a 

correlative measure of neuronal activity. Here, the change in the MR signal from neuronal 

activity is called the hemodynamic response (HR) and lags the neuronal event triggering it by 

1-2 seconds, typically rising to a peak 5-6 seconds after event onset, and dropping back to 

baseline some 16-20 seconds later. During fMRI analysis, task-relevant cues are convolved 

with an HR function so as to capture the time-course of the BOLD response in the brain. 

Action potentials on the other hand, fire over the course of milliseconds. Since the BOLD 

response cannot capture detailed aspects of evoked responses or specific spike timings, it 

has poor temporal resolution. The relationship between neural activity and BOLD response 

is also a complex one. It is typically assumed that an increase or decrease in BOLD signal 

stems from an equivalent increase or decrease in the spiking of many task or stimulus-

specific neurons. While this may be true in many cases, it is also important to consider that 

cortical microcircuits consist of multiple interacting neuronal populations, each with a 

specific set of excitatory and inhibitory connections (Douglas & Martin, 2004). Thus, 

activation of a microcircuit sets in motion a sequence of excitation and inhibition in every 

neuron of the module, and the proportional changes in this excitation-inhibition will likely 

impact the haemodynamic response. In some cases, this can lead to an increase in BOLD 

response without a net excitatory increase in task-related cortical output (Logothetis, 2008).  

Further, as previously mentioned, fMRI is susceptible to multiple sources of unwanted noise. 

Consequently, fMRI studies require multiple repetitions of the same events to improve the 

signal-to-noise ratio. Common sources of noise include the scanner, random brain activity, 

and large blood vessels where blood flow is often highly variable due to factors of no interest. 

Other physiological sources include signal changes as a function of both the cardiac cycle and 

respiration pattern. Lastly, head movement by the subject is an invariable problem in fMRI 

experiments. Although one can attempt to rectify this using spatial realignment algorithms 
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(see Chapter 3, Pre-processing, p. 65), improved motion-correction methods and motion-

limiting devices are needed as the field moves towards higher spatial resolution imaging.  

In addition to the practical limitations of fMRI, it is important to also consider 

interpretational difficulties. A common phenomenon from electrophysiological studies that 

measure the activity of single neurons in non-human primates is that of opponent encoding 

schemes. Thought to be a fundamental feature of decision-making networks, opponent 

encoding describes the phenomenon that individual neurons within a given population 

frequently encode the same neural computation with opposing signs. For example, in the 

context of value-guided decision-making, a neuron in the orbitofrontal cortex (OFC) may 

increase its firing rate as the probability of reward goes up, whilst a neighbouring neuron 

may decrease its firing rate under the same conditions (Kennerley et al., 2009). Thus, 

averaging across the activity of these neurons within a given brain region may average away 

meaningful signals. A related issue is that spatially adjacent neurons may track distinct 

computations. Returning to the example of value-guided decision-making, neighbouring 

neurons in OFC may track the probability or the magnitude of an expected reward 

respectively. fMRI relies on voxel-based analyses, and typically hundreds of thousands of 

neurons are included in a single voxel. Thus, different groups of neurons may be activated 

by different tasks within a single voxel, making it difficult to distinguish different functional 

roles.  

Related to several of these concepts, significant attention has recently been given towards 

the notion that many neuroimaging experiments may be under-powered. Low statistical 

power not only reduces the chances of detecting true effects but also increase the chances 

of finding statistically significant effects that are in fact false positives. Recently, Button and 

colleagues used meta-analytic studies to estimate the ‘true’ power of a given effect, and then 

prospectively calculated the power of each individual study in the meta-analysis based on 
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the associated sample size (Button et al., 2013). The authors reported that the mean 

statistical power across 461 neuroimaging studies (from 41 separate meta-analyses 

published from 2006-2009) was as low as 8%. While other researchers claim this statistic may 

be inflated, it nevertheless highlights the need for increasingly efficient designs, sufficient 

numbers of subjects, a shift from univariate to multivariate methods, and (where possible) 

paradigms that allow for replications.  

7.3 Challenges in computational modelling  

Classical behavioural analyses rely on averaging data over a number of trials to achieve a 

reasonable statistical power with which to quantify a given metric of human performance, 

such as a reaction time, a preference for action A over action B, or the number of correctly 

executed choices. However, it is evident that the complexities of the human mind cannot be 

understood strictly though observing human behaviour. Computational models on the other 

hand, seek to address how human performance comes about. That is, they represent a 

description of the underlying representations, mechanisms and processes that result in 

cognition. By considering how (latent) variables in the environment influence behavioural 

responding on a trial-by-trial basis, computational models offer a much more fine-grained 

explanation of the processes underlying flexible decision-making.  

The use of model-based analyses is becoming increasingly popular in fMRI studies of value-

based learning and decision-making. Here, the goal is to capture key aspects of behaviour 

with a computational model, and then to investigate whether different components of the 

model are realized in the brain. Unlike subtraction analyses which merely report increases 

or decreases in the BOLD signal in one condition with respect to another, model-based fMRI 

analyses allow attribution of specific computational processes to the underlying neural 

activations. For example, this approach has been used to show that the ventral striatum 
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tracks prediction errors associated with temporal difference reinforcement learning 

(Rutledge, Dean, Caplin, & Glimcher, 2010), that the anterior cingulate cortex tracks the 

volatility of the environment during foraging (Behrens et al., 2007), and that the dorsolateral 

prefrontal cortex supports model-based reasoning by encoding the underlying task structure 

(Glascher et al., 2010). Further, rather than exclusively trying to reason backwards from 

behaviour to the underlying processes, modelling affords the opportunity to simulate large 

amounts of data, to adjust small components of the model, and to observe how these 

changes influence the output of the model. This process can be extremely useful for 

generating new hypotheses, and for providing novel insights into the interpretation of real 

experimental data (Sun, 2008).  

Computational modelling faces a number of important challenges and limitations. For 

example, models often encompass a number of free parameters - variables that have to be 

set a certain value in order for the model to make practical predictions. Since it is assumed 

that these values can differ between individuals, parameters are often fit to each individuals’ 

choices (e.g. via maximum likelihood estimation), with the resulting parameters then being 

used to predict the neural data. Of course, this relies on a critical assumption that the 

behavioural and neural data are fitted accurately by the same parameters, which may not 

necessarily hold true. Further, many of the optimization (parameter-estimation) procedures 

(such as the Simplex method) are susceptible to converging on local minima that do not 

represent the true global minimum. This typically occurs when the error surface is not 

smooth but rather contains dimples, valleys or plateaus, compromising any meaningful 

interpretation of parameter values and obscuring the true power of the model 

(Lewandowsky & Farrell, 2011). This latter problem can be somewhat alleviated by repeating 

the fitting procedure using multiple random starting values, or using population-level data 
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to constrain unreliable parameter estimates at the individual level (both of which are 

employed in this thesis).  

It is customary when performing computational modelling to not just consider the fit of a 

single model, but rather to compare the performance of a number of competing models. This 

raises an obvious question of how to specify which models to include in the set? Given a free 

choice from a wide range of models that are a priori possible, selected models should be 

informed by factors such as how successful they are at predicting performance in related 

tasks, although such data is not always available. Further, model comparison is only 

meaningful in the extent to which the models tested are plausible, yet falsifiable; in other 

words, that there are hypothetical outcomes, that if observed, would falsify a candidate 

model (Lewandowsky & Farrell, 2011). A further complication arises in the instance when 

more than one model does an equality effective job at explaining the data. For example, the 

striatal prediction error discussed above is in some cases similar to Shannon surprise 

(Shannon, 1948). This presents the danger that the result of a model comparison could 

represent a bias in a particular data set, as opposed to a true preference for one or the other 

algorithm. Thus the output of the comparison process warrants, in this case, a more general, 

as opposed to specific, conclusion about the type of algorithm implemented in the brain.  

A related issue is that at the behavioural level, model-based analyses often remain neutral 

about how, or even whether, some components of the model are realized in neural 

algorithms, or whether the implementation of a given model is biophysically plausible (Mars, 

Shea, Kolling, & Rushworth, 2012). Further, in the event that a clear winning model emerges, 

there is no guarantee that there does not exist a better model that was simply not conceived 

of by the experimenter. In fact, it has been argued that the number of factors influencing any 

given cognitive process are far too great to ever allow for a full specification of the “true” 

underlying model (Burnham & Anderson, 1998). Perhaps most clearly stated by MacCallum, 
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“Regardless of their form or function, or the area in which they are used, it is safe to say that 

these models all have one thing in common: They are all wrong” (MacCallum, 2003). Thus it 

is important that researchers remain aware of these limitations when drawing conclusions 

from their data.  

A final problem worth discussion is the issue of overfitting. In general, overfitting occurs 

when a model is excessively complex (owing to too many free parameters), such that it 

captures elements of the data that are likely driven by random error as opposed to the cause 

that is of interest. The potential for overfitting is common in the field of decision-making 

where data are inherently noisy. In our experiments, subjects typically have to perform 

multiple repetitions of the same trial type in which their response latency, attention span, 

alertness, and action selection will vary. The problem is illustrated in Figure 7.1 (taken from 

(Pitt & Myung, 2002)) (p. 190). Plotted on the y-axis is a measure of goodness-of-fit (such as 

root mean squared error (RMSE), or percentage error accounted for). A common occurrence 

is that goodness-of-fit will increase in tandem with model complexity (x-axis), but at the risk 

of fitting noise. The three graphs along the x-axis represent data points (dots) and the 

corresponding fits (solid lines), as model complexity increases. In the leftmost graph, the 

model is not complex enough to capture the data. In the second graph, the model and data 

are well matched, with model generalizability peaking at this point. Here, generalizability 

refers to the ability of the model to fit all data samples (such as those obtained from a 

different experimental cohort) generated by the same cognitive process, as opposed to just 

the current sample. In contrast, the rightmost graph is more complex than the data, and 

despite providing the best objective fit, is capturing elements of random error.  

 



190 
 

 

Figure 7.1 Tradeoff between goodness-of-fit and generalizability in cognitive modelling; 

taken from (Pitt & Myung, 2002). Increasing model complexity improves the objective model 

fit (y-axis), as a higher percentage of variance is accounted for. By contrast, whilst model 

generalizability initially follows the same trajectory, peaking when the complexity of the 

model and the data are well matched (middle graph on the x-axis), it declines with increasing 

complexity due to fitting of variance (noise) unrelated to the underlying cognitive process.  

Pitt and Myung further demonstrated the importance of overfitting using the principles of 

model recovery (Pitt & Myung, 2002). Here, the authors used a one-parameter model, Mx, 

to generate a sample of data, and added some sampling noise. Next, they fit the original 

model, Mx, to the data, in addition to a more complex model, My, which contained three 

parameters. The authors then asked whether the simulated data was fit best by Mx, the true 

model, or the competing alternative, My. To their surprise, Pitt and Myung found the data 

were better accommodated by the more complex model, as measured by RMSE, compared 

to the true underlying model. In this scenario, Mx and My were equally probable a priori, and 
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the simulation thus serves to demonstrate the potential dangers of overfitting. One can at 

least partially safeguard from these dangers but deriving measures of model fit that account 

for complexity (the number of free parameters), such as the Bayesian Information Criterion. 

However, Pitt and Muyng argue that a model’s data-fitting abilities are also affected by other 

properties of the model, such as its functional form, which are often too easily overlooked 

(Pitt & Myung, 2002).  

7.4 Concluding remarks 

In this thesis, I combined economic paradigms with computational modelling (and 

neuroimaging) to draw conclusions about the cognitive and neural mechanisms that support 

adaptive economic choice. Behavioural, neural and computational data contribute 

differentially towards our understanding of individual components of decision-making. Yet, 

when combined, these divergent methodologies form a largely unified framework which 

speaks to the usefulness of this approach. I have extensively reviewed previous evidence that 

humans and other animals make choices by assigning ‘values’ to potential choice options 

which then compete for action selection. I then presented data in support of a framework 

where multiple interacting neural systems contribute to this valuation. In chapter 6, I focus 

on how the behavioural manifestation of these systems evolves with task training.  

In chapters 4 and 5, I show that one system, involving the striatum (and possibly 

ventromedial prefrontal cortex), is short-sighted and responds to basic and immediate 

outcomes. This system appears insensitive to context-dependent information and may 

contribute towards choices that are inconsistent with higher-order goals. On the other hand, 

a second system, likely involving the ventromedial and dorsal prefrontal cortex 

(vmPFC/dPFC), is far-sighted and is associated with abstract or delayed outcomes and goals. 

One possibility is that dPFC modulates value representations within vmPFC, enacting 
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controlled choice. In this framework, an enhancement of the representation of long-term (or 

context-specific) value in vmPFC, and a suppression of a representation of short-term (or 

prepotent) value in striatum, may contribute to more controlled choice, while impulsive 

choice may arise from the reverse. Further, a finding that anterior cingulate cortex (ACC) 

modulates value representations in vmPFC in response to a change in environmental context 

(see Chapter 4) contributes to an ongoing debate regarding the precise role of this region in 

decision-making. In particular, while previous work proposes ACC signals a non-specific 

conflict signal (or Bayesian surprise) (Ide et al., 2013; Shenhav et al., 2013), my data suggests 

this interpretation could instead be re-framed as signalling a need to switch behaviour away 

from a default or prepotent action. Future work might expand on this idea by re-examining 

previous data in light of such a framework.  

Further experiments are also needed to elucidate exactly how these dual systems interact 

during choice, and why the representation of long-term value is disrupted in impulsive 

individuals. For example, one could use magnetoencephalography (MEG) to better 

characterize the temporal dynamics of value representation in vmPFC and striatum during 

decisions that require self-control. Imaging of deep or superficial structures using MEG is 

becoming increasingly feasible with more advanced signal processing techniques (Kanal, Sun, 

Ozkurt, Jia, & Sclabassi, 2009). Further, it is unclear whether long-term value computations 

in vmPFC can arise without a modulatory influence from dPFC. One could test this by 

disrupting dPFC function with transcranial magnetic stimulation (TMS), and assessing 

whether choice becomes increasingly impulsive.  

In chapter 6, I draw on a parallel dual-systems account of value-based decision-making in the 

context of reinforcement learning. In this framework, one system is thought to be model-

free (favourable actions are memorized and not flexibly updated with new information) and 

resource-independent, while the other system is thought to be model-based (flexibly 
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transforming new information through a model of the world) and resource-dependent (Daw 

et al., 2005). Although these systems are computationally distinct from those discussed in 

Chapters 4 and 5, it is likely that their implementation involves overlapping neural substrates 

and mechanisms. Here, I provide at least provisional evidence that the implementation of 

model-based choice changes as task familiarity increases, raising the possibility that model-

based reasoning becomes less reliant on executive resources over time. An alternative 

interpretation is that the model-free system is able to instigate increasingly complex 

heuristics that progressively resemble a model-based computation, perhaps by 

incorporating increasingly sophisticated models of the world. Given a mounting interest in 

model-free versus model-based decision-making, including a growing number of 

experiments utilizing tasks that dissociate both systems (Daw et al., 2011; S. W. Lee et al., 

2014; K. J. Miller et al., 2013; Otto, Gershman, et al., 2013; Otto, Raio, et al., 2013; Skatova 

et al., 2013; Smittenaar et al., 2013; Smittenaar et al., 2014; Wunderlich, Smittenaar, et al., 

2012), and evidence that model-based reasoning is disrupted in psychiatric disorders (Voon 

et al., 2014), the data I present provides strong incentive for follow-up experiments (perhaps 

using neuroimaging) with the aim of teasing apart these divergent mechanisms.  
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