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ABSTRACT
Objective To demonstrate altered N-methyl-D-aspartate
(NMDA) receptor availability in patients with focal
epilepsies using positron emission tomography (PET) and
[18F]GE-179, a ligand that selectively binds to the open
NMDA receptor ion channel, which is thought to be
overactive in epilepsy.
Methods Eleven patients (median age 33 years, 6
males) with known frequent interictal epileptiform
discharges had an [18F]GE-179 PET scan, in a cross-
sectional study. MRI showed a focal lesion but
discordant EEG changes in two, was non-localising with
multifocal EEG abnormalities in two, and was normal in
the remaining seven patients who all had multifocal EEG
changes. Individual patient [18F]GE-179 volume-of-
distribution (VT) images were compared between
individual patients and a group of 10 healthy controls
(47 years, 7 males) using Statistical Parametric Mapping.
Results Individual analyses revealed a single cluster of
focal VT increase in four patients; one with a single and
one with multifocal MRI lesions, and two with normal
MRIs. Post hoc analysis revealed that, relative to
controls, patients not taking antidepressants had globally
increased [18F]GE-179 VT (+28%; p<0.002), and the
three patients taking an antidepressant drug had
globally reduced [18F]GE-179 VT (−29%; p<0.002).
There were no focal abnormalities common to the
epilepsy group.
Conclusions In patients with focal epilepsies, we
detected primarily global increases of [18F]GE-179 VT
consistent with increased NMDA channel activation, but
reduced availability in those taking antidepressant drugs,
consistent with a possible mode of action of this class of
drugs. [18F]GE-179 PET showed focal accentuations of
NMDA binding in 4 out of 11 patients, with difficult to
localise and treat focal epilepsy.

INTRODUCTION
N-methyl-D-aspartate (NMDA) receptors are ligand-
gated and voltage-gated ion channels that mediate
fast excitatory neurotransmission in the central
nervous system (CNS).1 2 NMDA receptor-
mediated neurotransmission is necessary for cogni-
tion, memory and neuronal survival, but excessive
NMDA receptor activation mediates excitotoxic
neuronal injury following acute cerebral insults,3 is
associated with cell death4 and is thought to con-
tribute to disorders of neuronal hyperexcitability,
such as epilepsy and neuropathic pain, and chronic
neurodegenerative diseases,5 depression6 7 and
schizophrenia.8 In chemical models, administration
of agonists of either the NMDA or α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/
kainate receptors induces convulsions in vivo either
by directly mediating an epileptic depolarisation
through the NMDA calcium channels or by indir-
ectly activating NMDA channels subsequent to
AMPA/kainate receptor activation9–11 (for review:
ref. 12). Blockade of NMDA receptors is neuropro-
tective,13 prevents paroxysmal depolarisation shifts,
which are the intracellular correlate of interictal
epileptiform discharges (IEDs),14–17 and blocks the
development of kindling.18–20 Several21 22 but not
all kindling model studies have shown the presence
of increased NMDA receptor availability in the
hippocampus and cerebral cortex of epileptic
animals. Autoradiography of human epileptogenic
temporal lobe tissue has revealed increased NMDA
receptor availability in the parahippocampal gyrus,
in contrast to decreased availability in the hippo-
campi, particularly in sclerotic regions.23 24 In vitro
studies in tissue resected from patients with epi-
lepsy have associated NMDA receptor-mediated
neurotransmission with epileptic activity.25–30

Receptor activation, however, can only be shown in
vivo. Human microdialysis studies have revealed
marked elevations in extracellular glutamate con-
centration preceding and during seizures,31–37

which would be expected to result in increased
NMDA receptor activation. Hence, there is interest
in the development of radioligands that allow
assessment of NMDA receptor function in humans
in vivo.
We have previously observed good brain penetra-

tion, moderately heterogeneous distribution in grey
matter and suitably rapid washout of the novel
NMDA positron emission tomography (PET) tracer
[18F]GE-179 in healthy controls.38 This ligand
binds at the phencyclidine (PCP) recognition site39

within the NMDA ion channel pore, and hence
requires receptor activation for access. This ‘pore-
blocker’ ligand could potentially allow use-
dependent imaging of the NMDA receptor in the
active/open state using PET. We report the first use
of [18F]GE-179 PET in focal epilepsies of different
focal and multifocal onset. The objective of this
proof-of-principle study was to demonstrate in vivo
a hypothesised increased NMDA receptor activa-
tion in patients with drug-resistant epilepsy.

METHODS
The study was approved by the Research Ethics
Committees of the Royal Marsden Hospital,
Imperial College Healthcare NHS Trust and
University College London Hospitals NHS
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Foundation Trust. Permission to administer [18F]GE-179 was
obtained from the Administration of Radioactive Substances
Advisory Committee (ARSAC), UK. All participants provided
written, informed consent.

Epilepsy and control populations
This was a proof-of-principle, cross-sectional pilot study with
targets of 12 participants per group. Eleven patients with refrac-
tory focal epilepsies (median age 33 years; range 20–50 years; 6
males) were recruited from the outpatient clinics at the National
Hospital for Neurology and Neurosurgery. Demographics and
clinical details are listed in table 1. Their diagnoses were based
on history, seizure semiology, prolonged and repeated interictal
and ictal EEG recordings (where available), and MRI data.
Patients were chosen who had frequent interictal spikes on pre-
vious EEG recordings, which we hypothesised would maximise
our chances to detect increased binding to open NMDA recep-
tors. None of the patients were taking an antiepileptic drug
(AED) known to act at the NMDA receptor. Exclusion criteria
included inability to provide informed consent, claustrophobia,
standard MR contraindications, a positive urinary pregnancy
test on the day of the PET scan and history of drug abuse.
Patient 4, whose seizures consisted of a sustained fluctuation of
perception of brightness with pupillary hippus, has been pre-
sented in a detailed case report.40

The control group, 9 of whom have been described previ-
ously,38 comprised 10 healthy volunteers without history of
neurological or psychiatric illness (median age 46 years; range
25–62 years; 7 males). Additional exclusion criteria were as
described for the patients above. A further three seemingly
healthy individuals were subsequently excluded; one due to
excessive movement throughout the PET scan acquisition, one
whose MRI revealed evidence of a cerebral infarct; and one
who was discovered to have a history of benzodiazepine abuse.
The original control group data were used, rather than repeat
imaging; the patient data were acquired at approximately the
same time as those of the control group (i.e. within 12 months)
using the same imaging protocol.

Median age and body mass index (BMI) were compared
between patients and control groups by Mann-Whitney U statis-
tic in SPSS. Gender balance was compared between groups with
the (Pearson) χ2 test.

MRI data acquisition
Three-dimensional volumetric T1-weighted coronal MRI
sequences were acquired at Epilepsy Society (Chalfont St. Peter,
UK), as previously described.38 MRIs were reviewed by an
experienced neuroradiologist (CM). MRIs were not available
for one control participant, in whom 3.0 T MRI was contra-
indicated.

EEG
All patients had an EEG during the PET scan using a Trackit 18/
8 (Lifelines Limited, Hants, UK) ambulatory EEG recorder and
an ECI E1 Cap (Electro-Cap International, Eaton, Ohio, USA)
with 19 electrodes placed according to the International 10–20
system. An additional reference electrode (Fpz) was sited just
anterior to Fz. The O1 and O2 electrodes were removed from
the cap prior to scanning for several patients in order to minim-
ise discomfort. The participants were closely observed for
evidence of seizures throughout the scan. EEGs were reviewed
by an experienced clinical neurophysiologist (RMP). The
number of IEDs during the first 30 min of scan acquisition was

quantified and correlated with [18F]GE-179 global volume-of-
distribution (VT) using Spearman’s r correlation coefficient.

PET image acquisition and data analysis
PET image acquisition has been described previously.38 Briefly,
images were acquired using a Siemens/CTI ECAT EXACT3D
962 HR+PET camera (Siemens, Erlangen, Germany) at
Hammersmith Imanet Limited. Each participant had a 90 min
dynamic emission scan with a smooth bolus intravenous injec-
tion of median 187 MBq (range 173–192 MBq) [18F]GE-179
administered 30 seconds after starting image acquisition. For cal-
culation of continuous decay-corrected and metabolite-corrected
parent plasma input functions, discrete arterial blood samples
were taken throughout the scan, with continuous arterial blood
sampling for the first 15 minutes.

The area under the metabolite model curves (AUCmetabs) was
used as a measure of the rate of metabolism for each individual.
The AUCmetabs over t=0–30 minutes and t=0–90.5 minutes was
compared between groups by multivariate general linear model
(GLM), with gender as a fixed factor, and age and BMI as cov-
ariates. The residual sum of squares (RSSmetabs) for the metabol-
ite model curve was compared between groups by univariate
GLM. The threshold for statistical significance was p=0.05.

The VT of [18F]GE-179 was computed at the voxel level for
each participant by exponential spectral analysis, as described
previously.38

Each participant’s VT image was spatially normalised using a
scanner-specific template. To enable group-wise comparisons,
images acquired from patients with an epileptogenic zone in the
right hemisphere (3 patients) were left-right flipped prior to
normalisation; three control participants’ images were also left-
right flipped prior to group-wise comparison (controls 1, 4 and
6, selected at random). For individual (1 patient vs 10 controls)
comparisons, the native (unflipped) patient and control images
were used.

The primary outcome measure, global VT, was computed as
an overall mean over the entire matrix, thresholded at 1/8 of
that value to create a brain mask, and averaged again within this
mask. The global VT values were compared between groups
using a univariate GLM, with gender as a fixed factor, and age
and BMI as covariates.

In order to identify changes in the regional distribution of
activated NMDA receptors, group-wise SPM8 analyses based on
the smoothed (12 mm Full Width at Half Maximum (FWHM)
isotropic Gaussian kernel), transformed parametric VT images,
were performed, comparing patients with focal epilepsy against
the controls. The images were compared on a voxel-by-voxel
basis using a two-sample t test, assuming unequal variances,
with global VT taken into account via an analysis of covariance
(ANCOVA) by group. The images were grey and white matter
(explicit) masked, with relative threshold masking at 0.4. We
report differences in [18F]GE-179 VT at p<0.001 (uncorrected),
clusters at p<0.05 (uncorrected) and an extent threshold of 15
voxels.

In order to identify participant-specific changes in the
regional distribution of activated NMDA receptors, individual
SPM8 analyses based on the smoothed transformed parametric
VT images were also performed for each of the patients with fre-
quent IEDs against the 10 controls. Equal variances were
assumed and global VT taken into account via an ANCOVA by
group. The unflipped VT image for each control participant was
compared with those of the nine other controls in an identical
fashion.
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Table 1 Patients with focal epilepsy and frequent IED—clinical details

ID

Age/sex/
handed-
ness

Probable
localisation
MRI/EEG

Onset/
duration
(years)

Postictal
interval Treatment Seizures EEG MEG MRI

[18F]
FDG-PET

Global [18F]
GE-179 VT

Approximately
N of observed
IEDs (t=0–
30 min)

[18F]GE-179 VT
increases

[18F]GE-179 VT
decreases

1 41/M/R L frontal 14.5/26.5 6.0 h CBZ, LEV,
LTG, ZNS

SPS, CPS,
SGS

L frontotemporal NA R IFG lesion L temporal 6.16 62 L frontal

2 22/M/R L temporal 4/18 7.5 h CBZ, LEV, LAC CPS, SGS L frontotemporal
and R temporal

NA L HS L
hemisphere

7.20 43

3 38/M/L Multifocal
MRI, EEG/
MEG

2.5/36.5 45 min CBZ, CLB,
PHT, TPM,
fexofenadine

SPS, CPS,
SGS

R frontotemporal R frontal,
L and R
temporal

Bilateral tubers:
F, P, L-O,
periventricular calc

R temporal 8.16 0

4 28/F/R Multifocal
MRI, EEG/
MEG

10/18 20.5 h LEV,
sertraline,
amlodipine

SPS
(pupillary
hippus)

R temporoparietal R parieto-occipital
>R temporal
>L occipital

Bilateral tubers:
L and R frontal,
L temporal,
R parieto-occipital,
L occipital

NA 4.53 EEG data
corrupted

Brainstem;
L temporal;
R temporal

R parietal

5 50/F/R MRI negative
Multifocal
EEG/MEG

11/39 39 days LEV, PHT,
lofepramine

CPS SGS L>R temporal L and R
temporal

Neg L temporal 5.32 26 R frontal

6 33/M/L MRI negative
Unifocal EEG/
MEG

19/14 NA CLN, RUF,
fluoxetine

CPS L temporal L frontotemporal Neg Neg 3.90 168

7 23/M/L MRI-negative
Unifocal EEG

16/7 3 days CBZ, VAL SPS, SGS R frontal NA Neg Neg 7.72 86 L frontal;
R frontal

L temporal; R
frontal

8 40/F/L MRI negative
PET/MEG L
Frontal

12.5/28 11 days CLB, LAC,
OXC

SGS L>R frontal L F Neg L frontal 8.40 42

9 24/M/R MRI negative
Multifocal
EEG/MEG

7/17 6.5 h LAC, LEV,
LTG, OXC,
CLB

CPS, SGS R frontocentral L frontal
>L insula.
>L frontotemporal

Neg Neg 8.44 9

10 50/F/R MRI negative
Multifocal
EEG/MEG

13/37 10+years LEV, LAC, LTG CPS L>R temporal L and R T Neg NA 8.17 Cont epileptiform
activity*

11 20/F/R MRI negative
Multifocal
EEG

14/6 39.5 h CLB, OXC, CPS, SGS R>L temporal NA Neg Neg 8.88 3

Antidepressant drugs (patients 4–6) are displayed in bold font.
*EEG revealed continuous ongoing focal epileptiform activity in patient 10, who had not shown clinically evident seizure activity within the preceding 10 years. Underline indicates concordance between the cluster of increase and the location of the
presumed epileptogenic zone, where known.
Calc, calcification; CBZ, carbamazepine; CLB, clobazam; CLN, clonazepam; CPS, complex partial seizures; EEG, electroencephalography; F, frontal lobe; F/M, female/male; [18F]FDG-PET, [18F]fluorodeoxyglucose positron emission tomography; HS,
hippocampal sclerosis; ID, identifying number; IED, interictal epileptiform discharges; IFG, inferior frontal gyrus; L/R, left/right; LAC, lacosamide; LEV, levetiracetam; LTG, lamotrigine; MEG, magnetoencephalography; MRI, magnetic resonance imagining;
NA, not available; Neg, negative, that is, no significant findings; O, occipital; OXC, oxcarbazepine; P, parietal lobe; PHT, phenytoin; RUF, rufinamide; SGS, secondary generalised seizures; SPS, simple partial seizures; TPM, topiramate; VAL, valproate;
VT, volume-of-distribution; ZNS, zonisamide.
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RESULTS
There was no difference between patient and control group in
terms of age (p=1.00), BMI (p=1.00) or gender mix (p=0.47).

There were no significant differences in the AUCmetabs or the
RSSmetabs between the groups (p=0.19 and p=0.47, respect-
ively). Age, BMI and gender also did not significantly influence
the AUCmetabs (all p>0.09).

Global changes in VT
Global VTwas higher in the focal epilepsy group (median 7.51,
range 3.77–8.66) than in controls (median 6.21, range 5.37–
7.56), although this did not reach statistical significance
(p=0.40). There were two distinct subgroups of patients with
higher (n=8) and lower (n=3) than normal global VT. To
explore this distribution in patients further, post hoc analysis
revealed large and significant differences in global VT between
patients with focal epilepsy who were not taking antidepressant
drugs (median 7.97, range 6.04–8.66; +28% relative to con-
trols), and those who were taking antidepressant drugs (median
4.40, range 3.77–5.15; −29% relative to controls), and controls
(6.21, range 5.37–7.56; all p<0.002; figure 1).

There were no differences (in gender, age, AUCmetabs,
RSSmetabs, BMI, number of IEDs in the first 30 min postinjec-
tion) to explain the occurrence of high-VT and low-VT patients
other than their use of antidepressants.

Frequent IEDs were noted in the EEG of eight patients
throughout the first 30 min of scan acquisition. Global VT did
not correlate with the frequency of IEDs measured in the first
30 min after radiotracer injection.

In the following analyses, in order to detect focal increases in
activated NMDA receptors over and above global increases, the
contribution of global VT to variance was removed by an
ANCOVA by group.

Focal changes—group comparisons
There were no common areas of relative focal decrease or focal
accentuations of the globally increased [18F]GE-179 VT in the
patient group compared with controls.

Relative decreases in VT—individual comparisons
A focal decrease in [18F]GE-179 VT was seen in two healthy
control participants (control 3 mid-parietal; control 4 frontal
pole). A relative focal decrease in [18F]GE-179 VT was seen in
two patients (table 2). None of these changes reached significance
after correction for multiple comparisons. In one patient (patient
10), the area of relatively decreased VTwas concordant with one
of the multiple tubers seen on MRI.

Relative increases in VT—individual comparisons
Focal increases in [18F]GE-179 VTwere seen in one control par-
ticipant (control 4), maximal in the left parieto-occipital region.
A focal increase above global baseline increase in [18F]GE-179
VT was seen in four patients (table 3 and figure 2). Where
known, the largest cluster was localised to the lobe of the pre-
sumed epileptogenic zone in one, as was the second largest
cluster of a further two patients.

DISCUSSION
Using [18F]GE-179 PET, we identified global increases in
NMDA receptor ion channel availability for patients with focal
epilepsies who were not taking antidepressants, whereas tracer
binding was globally decreased in those patients with epilepsy
who were also taking antidepressant drugs. Increases in [18F]
GE-179 VT are consistent with an increase in activated/open
NMDA receptors in actively discharging cortex as shown in pre-
clinical work.21 22 We suggest that increased NMDA activation
in patients with chronic focal epilepsy extends beyond the pre-
sumed epileptogenic zone and is a global phenomenon, as
reflected in the increased global VT.

Our group analyses did not identify any focal redistribution
of activated NMDA receptor availability in this group of hetero-
geneous patients with focal epilepsies arising from different cor-
tical locations; this is perhaps not surprising given the
heterogeneity and small sample size. For this pilot study, patients
were selected based on the frequency of IEDs on previous
EEGs, to maximise our chances of detecting increases in NMDA
binding. Concordance of [18F]GE-179 foci with EEG, structural
and functional imaging in individual patients is difficult to assess

Figure 1 [18F]GE-179 VT by subgroup. The top row (A) depicts the mean [18F]GE-179 VT patients with focal epilepsy who were taking an
antidepressant drug; the middle row (B) for the controls; and the bottom row (C) for the patients with focal epilepsy who were not taking an
antidepressant drug. Images are displayed according to radiological convention (ie, ‘left is right’). L, left; R, right; VT, volume-of-distribution.
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given that some of our cohort had normal or EEG-discordant
MRI and poorly defined epileptogenic zones: the epilepto-
genic zone could not be localised using high-resolution MRI,
ictal EEG recordings, magnetoencephalography and fluoro-
deoxyglucose PET (FDG-PET) in four patients, and could
only be lateralised to one lobe in four of the remaining seven
patients. In contrast, our individual [18F]GE-179 PET ana-
lysis identified focal clusters of increased NMDA receptor
activation in four patients with focal epilepsy, and these were
concordant with the location of the presumed epileptogenic
zone in two of those three patients, in whom this
could be lateralised to one lobe. Patient 1 was one of the
best-localised cases in our cohort, having concordant scalp
EEG, [18F]FDG-PET and ictal single-photon emission CT
findings. An intracranial EEG recording over the left tem-
poral lobe revealed a diffuse ictal onset, consistent with
spread from a nearby lobe. Consistent with these data, a
large cluster of increased VT was observed in the left frontal
lobe for this participant.

Interestingly, a focal increase in [18F]GE-179 VT was seen in
the brainstem of the patient with ictal pupillary hippus in add-
ition to left and right temporal lobe increases (patient 423). The
patient is now seizure-free after resection of the tuber in the
right parieto-occipital region. Our finding suggests the unusual
ictal manifestation might result from a broad epileptogenic
network that encompassed the brainstem in close proximity to
the nuclei of the oculomotor (III) nerve.

The proportion of NMDA receptors that are active in the
resting physiological state is unknown, and the power to detect
subtle regional changes in channel opening superimposed on
global differences in binding, induced by the epileptic brain or
reduced by concomitant use of antidepressants, was limited by
our small sample size and conservative thresholds. Studies of
unequivocally unifocal epilepsies are now needed to determine
whether focal increases of [18F]GE-179 binding may be appar-
ent at epileptic foci. If these initial findings are replicated,

[18F]GE-179 PET might find clinical application in the presurgi-
cal localisation of epileptogenic foci in patients with refractory
focal epilepsy with non-contributory MRI.

Interictal regional cerebral blood flow (rCBF) studies usually
show reduced perfusion in focal epilepsy,41 and significant
increases in rCBF scans were only seen with prolonged dis-
charges of 8–105 seconds after electrostimulation.42 Our find-
ings are unlikely to reflect changes in cerebral blood flow (ie,
altered [18F]GE-179 availability) as decreased perfusion in the
epileptogenic zone would likely result in decreased [18F]GE-179
availability and thus VT. While NMDA receptor ion channel
opening and the excitatory postsynaptic current are extremely
rapid events,43 44 grey matter uptake and the metabolism of
[18F]GE-179 occurs over minutes.38 Hence, we interpret the VT

data as indicative of the integrated extent of NMDA receptor
activation during the tracer uptake phase (first 30 min) of the
scan.

The lack of focal increases in VT for 7 of the 11 patients with
focal epilepsy did not appear to relate to the frequency of scalp-
detected IEDs. Global [18F]GE-179 VTwas not significantly cor-
related with the number of IEDs in the first 30 min following
injection. The true extent of epileptic activity will not be detect-
able on scalp EEG, which may explain the lack of correlation
between focal spike activity and global [18F]GE-179 uptake.
Moreover, it would be oversimplistic to assume a linear relation
between global [18F]GE-179 VT and IED frequency. We expect
that NMDA receptors involved in generation of the IED would
rapidly internalise45–47 or desensitise following their activa-
tion.48–50 Individual short IEDs would be very difficult to visu-
alise over a 90 min PET scan with [18F]GE-179. We assume any
observed increase of [18F]GE-179 binding to be related to
underlying generalised baseline overactivity, rather than to tran-
sient NMDA channel opening over a few milliseconds.

In the only other in vivo PET study of NMDA ion channel
activity in epilepsy, Kumlien51 did not detect focal increases in
receptor availability using (S)-[N-methyl-11C]ketamine.

Table 2 Focal decreases in [18F]GE-179 VT—individual patients versus 10 controls

Patient ID
Probable
localisation (EEG) MRI

[18F]GE-179
VT decreases

Cluster size
(mm3/voxels)

Peak voxel coordinates
(x, y, z; mm) Zmax

Cluster level
p (uncorrected)

4 Multifocal Multiple tubers R parietal 4864/608 62–32 38 3.62 0.002
7 R frontal Negative L temporal 3968/496 −58–20–22 4.32 0.003

R frontal 1704/213 10 20–20 3.89 0.040

The cluster(s) reaching significance at p<0.05 uncorrected are listed. The contribution of global VT to variance was removed by an ANCOVA by group.
ANCOVA, analysis of covariance; EEG, electroencephalography; ID, identifying number; L/R, left/right; mm, millimeters; MRI, magnetic resonance imaging; VT, volume-of-distribution.

Table 3 Focal increases in [18F]GE-179 VT—individual patients versus 10 controls

Patient ID
Probable localisation
(EEG) MRI

[18F]GE-179 VT
increases

Cluster size
(mm3/voxels)

Peak voxel coordinates
(x, y, z; mm) Zmax

Cluster level
p (uncorrected)

1 L frontotemporal R IFG lesion L frontal 7000/875 −322 234 4.46 <0.001

4 Multifocal Multiple tubers Brainstem 5152/644 08–28–38 4.58 0.001
L temporal 3264/408 −32 04–36 4.09 0.007
R temporal 1720/215 18 04–30 3.97 0.039

5 Bilateral temporal L>R Negative R frontal 3360/420 381 024 4.43 0.006
7 R frontal Negative L frontal 5904/738 −122 242 4.23 0.001

R frontal 4512/564 061 840 4.23 0.002

The cluster(s) reaching significance at p<0.05 uncorrected are listed. The contribution of global VT to variance was removed by an ANCOVA by group. Underline indicates concordance
between the cluster of increase and the location of the presumed epileptogenic zone, where known.
ANCOVA, analysis of covariance; EEG, electroencephalography; ID, identifying number; IFG, inferior frontal gyrus; L/R, left/right; mm, millimeters; MRI, magnetic resonance imaging;
VT, volume-of-distribution.
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Interestingly, each participant in that temporal lobe epilepsy
(TLE) cohort showed temporal hypometabolism on [18F]
FDG-PET, so the results could have been significantly con-
founded by cerebral hypoperfusion. Four of our patients had
normal [18F]FDG-PET, one of whom had a focal increase in
[18F]GE-179 VT. The absence of hypometabolism may have
facilitated visualisation of activated NMDA receptors in our
cohort. Alternatively, our cohort might have had more actively
spiking cortex, and thus possibly greater NMDA receptor
activation.

A striking and unanticipated finding of our study was reduced
VT in the small number of patients with focal epilepsies who
were taking antidepressants, suggesting that either depression or
the use of antidepressant drug constituted an additional con-
founder. Our finding is in keeping with the mounting evidence
for the action of antidepressant drugs at NMDA receptors
including tricyclics52–56 and serotonin-selective reuptake inhibi-
tors54 55 57 58 such as fluoxetine,57 59–61 the two classes used by
patients in this study. While our finding may represent the first
in vivo evidence of an NMDA-mediated mechanism of action of
antidepressants (the extent of which is likely to vary between
drugs), caution is warranted as, given the sample size, the result
could be due to random chance. Hence, in order to better
understand [18F]GE-179 binding, a larger study is required,
which would compare [18F]GE-179 binding between unmedi-
cated patients with depression and those taking antidepressants.
It will also be of interest to ascertain whether AEDs that are
characterised by use-dependent inhibition of NMDA receptor
function (such as felbamate62 63), or certain combinations of
AEDs, affect NMDA receptor binding.

A recent multicentre review concluded that administration of
the NMDA receptor antagonist ketamine ‘likely’ or ‘possibly’
contributed to the achievement of control in 32% of (19 of 60)
episodes, whereas treatment was discontinued due to adverse
events in approximately 8%.64 Smaller series have reported
greater success.65 66 Similarly to [18F]GE-179,38 ketamine binds
to the PCP site in the NMDA ion channel pore.67 Hence, the

demonstration of increased NMDA receptor activation via [18F]
GE-179 PET might aid the stratification of patients with refrac-
tory status epilepticus.

Limitations of this proof-of-principle study include the small
and heterogeneous population. While [18F]GE-179 has a low
affinity for other CNS receptors in vitro,38 we cannot exclude
the possibility that non-specific binding confounded the ana-
lyses. Further studies are needed to confirm our findings, and to
quantify reproducibility and specificity of [18F]GE-179 binding
in vivo.

In conclusion, our results provide in vivo evidence for wide-
spread increases in activated NMDA receptor availability in
patients with focal epilepsies. A PET radioligand that reliably
demonstrates focal increases in NMDA receptor activity in
humans in vivo would hold potential as a method to investigate
epileptogenesis in vivo after brain injury, to investigate the role
of activated NMDA receptor availability in other conditions,
and possibly in the presurgical investigation of patients with
refractory focal epilepsy.
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