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Abstract

This note studies the martingale property of a nonnegative, continuous local martin-
gale Z, given as a nonanticipative functional of a solution to a stochastic differential
equation. The condition states that Z is a (uniformly integrable) martingale if and
only if an integral test of a related functional holds.
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1 Introduction

This note addresses Girsanov’s question1 in the context of (not necessarily one-
dimensional) solutions to stochastic differential equations: Under which conditions is a
stochastic exponential a true martingale? The condition provided here is of probabilistic
nature and both sufficient and necessary. It relates the martingale property of a local
martingale to the almost sure finiteness of a certain integral functional under a related
measure.

To illustrate the condition informally, assume for a moment that the stochastic
differential equation

dXt = b(t,X)dt+ σ(t,X)dWt, X0 = x0

has a weak solution X, defined on some probability space, for some progressively
measurable functionals b and σ. Consider a progressively measurable functional µ and
the corresponding nonnegative local martingale Z, given by

Zt := exp

(∫ t

0

µ(s,X)TdXs −
∫ t

0

(
1

2
µ(s,X)Ta(s,X)µ(s,X) + µ(s,X)Tb(s,X)

)
ds

)
,

where a = σσT. (Below we will generalize this setup to allow X to explode and Z to hit
zero.)

First, Proposition 3.1 below shows that the stochastic differential equation

dYt = (b(t, Y ) + a(t, Y )µ(t, Y )) dt+ σ(t, Y )dWt, Y0 = x0
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The martingale property in the context of SDEs

also has a weak solution Y , at least up to the first time that the process

K :=

∫ ·
0

µ(s, Y )Ta(s, Y )µ(s, Y )ds

explodes. Indeed, if Z is a uniformly integrable martingale then Girsanov’s theorem,
applied to the Radon-Nikodym derivative Z∞, yields directly that a weak solution Y

exists and that K has probability zero to explode. This note shows that the reverse
direction also holds; namely, if the process K with an appropriate choice of weak solution
Y does not explode, then Z is a uniformly integrable martingale. We refer the reader to
Theorem 3.3 below for the precise statement.

The conditions in this note are sharp and hold under minimal assumptions but are
purely probabilistic and, in particular, often require additional existence and uniqueness
results to be applicable. Two examples in Section 4 illustrate these subtle points. A third
example highlights the relevance of the underlying probability space.

Related literature

The conditions in [13], [10], [1], and [3] are closely related to those discussed
here, as they also involve the explosiveness of the quadratic variation of the local
martingale’s stochastic logarithm. [5] also studies the martingale property in the context
of a martingale problem. [17], [7], and [14] work out a precise relationship between
explosions of solutions to stochastic differential equations and the martingale property
of related processes.

[9] provides analytic conditions on the functionals b, σ, and µ for the martingale
property of the local martingale Z, in the context of time-homogeneous conditions. [28]
provides further analytic conditions if the dispersion function is the identity. In the
one-dimensional case, a full analytic characterization of the martingale property of Z is
provided by [19]. In the specific setup of “removing the drift,” [25] and, in the context
of stochastic volatility models, [26] give easily verifiable conditions. [2] describes a
methodology to decide on the martingale property of a nonnegative local martingale,
based on weak convergence considerations. For further pointers to a huge amount of
literature in this area, we refer the reader to [24].

2 Setup

We now formally introduce the setup of this work. We first consider a specific
martingale problem whose solution P is the starting point of our analysis. We then
introduce a nonnegative P–local martingale Z. In Section 3 we shall then study a
necessary and sufficient condition that Z is a (uniformly integrable) P–martingale.

2.1 Generalized local martingale problem

Fix d ∈ N, an open set E ⊂ Rd, and a “cemetery state” ∆ /∈ Rd. Let Ω denote the set
of all these paths ω : [0,∞)→ E

⋃
{∆} such that ω(t) = ω(t ∧ ζ(ω)) and ω is continuous

on [0, ζ(ω)), where
ζ(ω) := inf{t ≥ 0 | ω(t) = ∆}.

Here and in the following we use the convention inf ∅ :=∞. Let X denote the canonical
process and M = (Mt)t≥0 the right-continuous modification of the natural filtration
generated by X and setM :=M∞ :=

∨
t≥0Mt. For all closed sets F ⊂ E, introduce the

stopping times
ρF := inf{t ≥ 0 | Xt /∈ F}.

For a probability measure P on (Ω,M) and a stopping time η, the measurable mapping
s : Ω→ Ω, ω 7→ ω(·∧η) induces the push-forward measure Pη, given by Pη(·) = P(s−1(·)).
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The martingale property in the context of SDEs

Similarly, for a stochastic process Y and a stopping time η we write Y η to denote the
stopped version of Y ; that is, Y η

t = Yη∧t for each t ≥ 0.
Call a function g : [0,∞) × Ω → Rn, for some n ∈ N, progressively measurable if

g, restricted to [0, t] × Ω, is B([0, t]) ⊗ Mt–measurable for each t ≥ 0. For example,
the function g is progressively measurable if g(·, x) = g(x(·)) for all x ∈ Ω, where
g : E

⋃
{∆} → R is measurable.

The next definition is in the spirit of Section 1.13 in [23]:

Definition 2.1 (Generalized local martingale problem). Fix an initial point x0 ∈ E. Let
a : [0,∞) × Ω → Rd×d and b : [0,∞) × Ω → Rd denote two progressively measurable
functions such that the function a is symmetric and non-negative definite.

• We call a probability measure P on (Ω,M) a solution to the generalized local
martingale problem corresponding to the quadruple (E, x0, a, b) if P(X0 = x0) = 1

and there exists a nondecreasing sequence (En)n∈N0
of closed subsets of E with

E =
⋃

n∈N0
En such that P(ρEn

= ζ <∞) = 0 and

f
(
X

ρEn
·

)
−
∫ ·∧ρEn

0

 d∑
i=1

bi(t,X)fxi(Xt) +
1

2

d∑
i,j=1

ai,j(t,X)fxi,xj (Xt)

 dt

is a P–local martingale for each n ∈ N0 and twice continuously differentiable
function f : E → R with partial derivatives fxi

and fxi,xj
.

• Given a stopping time η we say that a probability measure P is a solution to the
generalized local martingale problem corresponding to the quadruple (E, x0, a, b)

on [[0,η[[ if there exists a nondecreasing sequence of stopping times (ηn)n∈N with
limn↑∞ ηn = η, P–almost surely, such that the push-forward measure Pηn is a
solution to the generalized martingale problem corresponding to the quadruple
(E, x0, a

n, bn), for each n ∈ N. Here, an(t, x) := a(t, x)1t<ηn(x) and bn(t, x) :=

b(t, x)1t<ηn(x) for all (t, x) ∈ [0,∞)× Ω.

Observe that the initial point x0 is fixed in Definition 2.1; in particular, the solution
to a generalized local martingale problem here is not a family of probability measures
indexed over the initial point, but one probability measure only. See, for example, [8] for
this subtle point. This weaker requirement allows us to apply the characterization of
this note to a larger class of processes.

Throughout this note, fix d ∈ N, an open set E ⊂ Rd, an initial point x0 ∈ E, and
progressively measurable functions b : [0,∞) × Ω → Rd and a : [0,∞) × Ω → Rd×d,
such that a is symmetric and nonnegative definite. We shall work under the following
assumption:

Assumption 2.2. There exists a solution P to the generalized local martingale problem
corresponding to (E, x0, a, b).

Various sufficient conditions for this standing assumption to hold are provided in
Section 1.2 of [6] and in Sections 1.7–1.14 of [23].

2.2 A nonnegative local martingale

In this subsection, we introduce a P–local martingale Z as a stochastic exponential.
Towards this end, we fix a progressively measurable function µ : [0,∞)× Ω → Rd and
make the following assumption:

Assumption 2.3. We have

P

(
the function [0,∞) 3 t 7→

∫ t∧ζ

0

µ(s,X)Ta(s,X)µ(s,X)ds jumps to∞

)
= 0.
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Recall now the nondecreasing sequence (En)n∈N0
of Definition 2.1 and consider the

stopping times

τ̃n := inf

{
t ≥ 0

∣∣∣∣∫ t

0

µ(s,X)Ta(s,X)µ(s,X)ds > n

}
, θn := τ̃n ∧ ρEn

∧ n

for all n ∈ N0, and θ := limn↑∞ θn. Observe that P(θn < θ) = 1 for all n ∈ N0 thanks to
Standing Assumption 2.3. Therefore, the nondecreasing sequence (θn)n∈N of stopping
times announces θ.

Next, the processes

Mn :=

∫ ·∧θn

0

µ(s,X)Td

(
X(s)−

∫ s

0

b(t,X)dt

)
are well defined and indeed uniformly integrable P–martingales, for all n ∈ N0. Moreover,
for all m,n ∈ N0 with m ≤ n, we have Mm ≡ (Mn)θm , and thus, we may “stick them
together” to obtain the process

M :=

∞∑
n=1

Mn1[[θn−1,θn[[,

which satisfies Mθn ≡ Mn for all n ∈ N0 and thus, is a local martingale on [[0,θ[[. To
provide some intuition, the process M is the stochastic integral of the process µ(·, X)

with respect to the local martingale part of X up to the first time that either X or the
stochastic integral explodes. We also introduce the process 〈M〉 by

〈M〉t :=

∫ t∧θ

0

µ(s,X)Ta(s,X)µ(s,X)ds

for all t ≥ 0.
Now, define the nonnegative process Z by

Zt := exp

(
Mt −

1

2
〈M〉t

)
for all t < θ and Zt := lim

s↑θ
Zs for all t ≥ θ. (2.1)

By the supermartingale convergence theorem, the limit always exists and the process Z
is a nonnegative continuous P–local martingale; see also Lemma 4.14 and Appendix A in
[16]. Consider now the stopping times

τn := inf {t ≥ 0 |〈M〉t > n}

for all n ∈ N0. Then we have τn ≥ τ̃n and Novikov’s condition yields that the P–local
martingale Zτn is a uniformly integrable P–martingale for each n ∈ N.

3 Main result

We are interested in finding a necessary and sufficient condition for the nonnegative
P–local martingale Z to be a true P–martingale. The condition in this note is probabilistic
in nature and is formulated under a certain probability measure that is a solution to the
generalized local martingale problem corresponding to (E, x0, a, b̂) on [[0,θ[[, where

b̂(t, x) := b(t, x) + a(t, x)µ(t, x)

for all (t, x) ∈ [0,∞)× Ω. Note that if Z is a uniformly integrable P–martingale then a
solution to this generalized local martingale problem is given by Q, defined by dQ =

Z∞dP, thanks to Girsanov’s theorem. The following result yields that a solution to this
generalized local martingale problem exists even if Z is not a P–martingale:
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Proposition 3.1 (Existence of a solution to the related martingale problem). The gener-
alized local martingale problem corresponding to (E, x0, a, b̂) on [[0,θ[[ has a solution Q

that also satisfies (dQ|Mτn
)/(dP|Mτn

) = Zτn
∞ for each n ∈ N.

Proof. For any stopping time η, define the sigma algebra

Mη− := σ(X0) ∨ σ {A ∩ {η > t} | A ∈Mt, t ≥ 0} .

Here, σ(X0) ⊂M0 denotes the sigma algebra generated by X0.
Define now the sequence (Qn)n∈N of probability measures by dQn = Zτn

∞ dP and
observe that Qn(A) = Qm(A) for all A ∈M(τn∧τm)− and n,m ∈ N. Thus, the set function
Q :

⋃
n∈NMτn− → [0, 1] with A 7→ Qn(A) for all A ∈ Mτn− is well defined. A standard

extension theorem, such as Theorem V.4.1 in [21], then yields that Q can be extended to
a probability measure on

∨
n∈NMτn−; see also [11] or Appendix B in [4]. We may now

extend this measure to a probability measure on (Ω,M); see Theorem E.2 in [22] and
use

∨
n∈NMτn− =M(limn↑∞ τn)−. With a slight misuse of notation, we again write Q for

this probability measure, constructed via an extension argument.
Next, fix n ∈ N and A ∈ Mτn and note that τn(ω) < τn+1(ω) on {τn < ∞} since

〈M〉(ω) is continuous and does not jump to infinity, for any ω ∈ Ω, by construction of the
stopping time θ. This then yields

Q(A) = Q(A ∩ {τn <∞}) + Q(A ∩ {τn =∞})
= EP

[
Zτn+1
∞ 1A∩{τn<∞}

]
+ EP

[
Zτn
∞ 1A∩{τn=∞}

]
= EP [Zτn

∞ 1A]

since A ∩ {τn =∞} ∈Mτn−. The statement then follows.

Note that it is a common approach to use a change of measure to prove the existence
of a solution to a given martingale problem, as in the proof of Proposition 3.1; see, for
example, [27]. However, usually only equivalent changes of measures are considered.

Remark 3.2. Observe that Proposition 3.1 does not make any assertion concerning the
uniqueness of the measure Q. In general, such uniqueness does not hold. However, after
fixing a probability measure P from the set of solutions to the generalized local martin-
gale problem corresponding to (E, x0, a, b), the probability measure Q of Proposition 3.1
is uniquely determined on

∨
n∈NMτn

.

We are now ready to state a characterization of the martingale property of the P–local
martingale Z:

Theorem 3.3 (Characterization of martingale property). With Q denoting the measure
of Proposition 3.1, the following equivalences hold: The P–local martingale Z, given in
(2.1), is a P–martingale if and only if

Q

(∫ t∧θ

0

µ(s,X)Ta(s,X)µ(s,X)ds <∞

)
= 1 (3.1)

for all t ≥ 0. The P–local martingale Z is a uniformly integrable P–martingale if and only
if

Q

(∫ θ

0

µ(s,X)Ta(s,X)µ(s,X)ds <∞

)
= 1. (3.2)

Proof. We start by assuming that Z is a P–martingale. We need to show that Q(An) = 0

for the nondecreasing sequence of events (An)n∈N, defined by

An := {〈M〉n∧θ =∞} =
⋂
k∈N

{τk < n ∧ θ} ∈ M(n∧θ)−
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for all n ∈ N. Fix n ∈ N and observe that the martingale property of Z yields a measure
QZ , defined by dQZ = ZndP = Zn∧θdP. SinceM(n∧θ)− =

∨
m∈NM(n∧τm∧θ)−, it is easy

to see that QZ |M(n∧θ)− = Q|M(n∧θ)− . Thus, we have Q(An) = QZ(An) = EP[Zn1An
] = 0

since Zn = 0 P–almost surely on An by the Dambis-Dubins-Schwarz theorem.

For the reverse direction, note that

Q(A) = lim
n↑∞

Q(A ∩ {τn > t ∧ θ}) ≤ lim
n↑∞

EP [Zτn
∞ 1A] = 0

for all t ≥ 0 and A ∈Mt∧θ with P(A) = 0. Here, we have used the assumption, namely
that (3.1) holds, in the first equality. Thus, Q is absolutely continuous with respect to P

onMt∧θ for each t ≥ 0. Define now the P–martingale R by

Rt :=
dQ|Mt∧θ

dP|Mt∧θ

for each t ≥ 0. The fact that Rτn∧n ≡ Zτn∧n for each n ∈ N and taking limits then yield
R ≡ Z. Thus, Z is a P–martingale.

The second equivalence is proven in the same way.

We refer the reader to [20], [10], [15], and [18] for analytic conditions that yield
(3.1) in the case d = 1. Theorem 3.3 extends Theorem 1 in [1] to a bigger class of
stochastic differential equations; moreover, Proposition 3.1 yields that one does not need
to assume the existence of the measure Q, as it always exists. We remark that in the
one-dimensional time-homogeneous case, under some additional regularity conditions,
an analytic characterization of the martingale property of Z has been obtained; most
notably, by [19]. This characterization is given in terms of the behavior of X under P

and Q at the boundary points of the one-dimensional interval E.

Corollary 3.4 (Pathwise integrability). If∫ t∧θ(x)

0

µ(s, x)Ta(s, x)µ(s, x)ds <∞

holds for all (t, x) ∈ [0,∞)× Ω then Z is a P–martingale. Moreover, if∫ θ(x)

0

µ(s, x)Ta(s, x)µ(s, x)ds <∞

holds for all x ∈ Ω then Z is a uniformly integrable P–martingale.

Proof. The statement follows directly from Thereom 3.3.

Remark 3.5. We emphasize certain caveats concerning Theorem 3.3:

• The choice of a solution to the generalized local martingale problem correspond-
ing to (E, x0, a, b) matters for the question whether the local martingale Z is a
martingale. Indeed, as Example 4.1 illustrates, the local martingale Z might be
a true martingale under one measure and a strict local martingale under another
measure.

• However, the choice of measure Q among the ones that satisfy the conditions in
Proposition 3.1, namely the ones that agree on

∨
n∈NMτn

, is not relevant. This is
due to the fact that (3.1) and (3.2) hold either for all such probability measures
with the prescribed “local” distribution or for none. (See also Remark 3.2.)
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• The generalized local martingale problem corresponding to (E, x0, a, b̂) might have
a solution that is unique among the subset of non-explosive solutions, but that is
not unique among all solutions. Nevertheless, Theorem 3.3 may be applied, but
the probability measure Q needs to be chosen carefully. See Example 4.2 for an
illustration.

• We have not assumed that the P–local martingale Z is strictly positive. For example,
consider the parameter constellation d = 1, E = (0,∞), x0 = 1, and

a(t, x) = 1, b(t, x) = 0, µ(t, x) = 1ζ(x)>t
1

x(t)

for all (t, x) ∈ [0,∞)× Ω. The solution to the generalized local martingale problem
corresponding to (E, x0, a, b) = ((0,∞), 1, 1, 0) then is Brownian motion killed when
hitting zero and is unique. In particular, the stopping time θ of Subsection 2.2
is the first time that the Brownian motion leaves E; that is, θ = ζ. Note that the
P–local martingale Z is a P–Brownian motion stopped in zero. Now, under Q,
the unique solution to the generalized local martingale problem corresponding
to (E, x0, a, µ), the process X is a three-dimensional Bessel process. In particular,
argued for example via Feller’s test of explosions, we have Q(ζ =∞) = 1 and thus

Q

(∫ t

0

1

X2
s

ds <∞
)

= 1

for all t ≥ 0, which yields (3.1). However, (3.2) fails. Thus we obtain the obvious
statement that the P–local martingale Z is a true P–martingale, but not uniformly
integrable.

• The statement of Corollary 3.4 is wrong, in general, if we replace the underlying
filtered space (Ω,M,M) by the space of E–valued continuous paths, along with
the right-continuous modification of the canonical filtration. This is illustrated in
Example 4.3.

4 Examples

The examples of this section illustrate the subtle points in the application of Theo-
rem 3.3 and Corollary 3.4.

Example 4.1 (Non-uniqueness). Let d = 1, E = (0,∞), and x0 = 1. Set

a(t, x) = 1x(t)6=1, b(t, x) = 1ζ(x)>t1x(t)6=1
1

x(t)
, µ(t, x) = −b(t, x)

for all (t, x) ∈ [0,∞)×Ω. The generalized local martingale problem corresponding to the
quadruple (E, x0, a, b) has a solution P1; indeed P1(X· ≡ 1) = 1 satisfies all conditions.
However, the solution is not unique. Another solution P2 would be the one corresponding
to the three-dimensional Bessel process, started in one.

Observe that the process Z is a local martingale in each case. In the first case, it is
almost surely constant, that is, P1(Z· ≡ 1) = 1, and thus the process Z is a (uniformly
integrable) P1–martingale. In the second case, Itô’s formula yields that Z is distributed
as the reciprocal of a three-dimensional Bessel process and thus, a strict P2–local
martingale.

Consider now the generalized local martingale problem corresponding to the quadru-
ple (E, x0, a, b + aµ) = ((0,∞), 1, a, 0), which also has a solution according to Proposi-
tion 3.1. Indeed, it has several solutions, in particular Q1 ≡ P1 and the Brownian motion
measure Q2. Note that (3.1) with Q = Q1 holds but with Q = Q2 fails. This observation
is consistent with the fact that Z is a P1–martingale but a strict P2–local martingale.
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The next example illustrates that the choice of the probability measure Q in Theo-
rem 3.3 is highly relevant if several solutions exist to the generalized local martingale
problem corresponding to the quadruple (E, x0, a, b+ aµ).

Example 4.2 (Uniqueness of non-explosive solution). Let d = 1, E = R, and x0 = 0. Set

a(t, x) = 1− 1mins≤t{x(s)}=0=maxs≤t{x(s)}, b(t, x) = 0, µ(t, x) = (x(t))21ζ(x)>t

for all (t, x) ∈ [0,∞)×Ω. Again, the generalized local martingale problem corresponding
to the quadruple (E, x0, a, b) has several solutions; for example P1 such that P1(X· ≡
0) = 1 and the Brownian motion measure P2.

Consider now the generalized local martingale problem corresponding to the quadru-
ple (E, x0, a, b + aµ) = (R, 0, a, aµ). Clearly, it has several solutions, in particular the
constant process with Q1 ≡ P1 and, moreover, Q2, under which X satisfies the stochastic
differential equation

Xt =

∫ t

0

X2
sds+Wt

for each t ≥ 0 for some Q2–Brownian motion W up to an explosion time, which is finite
Q2–almost surely by Feller’s test of explosions. Indeed, it is easy to see that the choice of
parameters in this example implies that any solution to the generalized local martingale
problem corresponding to the quadruple (R, 0, a, aµ) is a process that is either constant
zero or explodes almost surely. Thus, this generalized local martingale problem has a
unique non-explosive solution.

However, note that Theorem 3.3 does rely on a certain choice of solution Q, which
does not always correspond to Q1. In particular, Z here is a (uniformly integrable)
P1–martingale but a strict P2–local martingale.

Example 4.3 (Role of the underling probability space). We consider now, instead of the
filtered space (Ω,M,M) of Subsection 2.1 the filtered probability space (Ω′,M′,M′),
where Ω′ = C([0,∞), E) denotes the space of E–valued continuous paths with canonical
process X ′, M′ = (M′t)t≥0 denotes the right-continuous modification of the natural
filtration generated by X ′, andM′ =

∨
t≥0M′t denotes the smallest sigma algebra that

makes X ′ measurable. Note that Ω′ ( Ω. Exactly as in Subsection 2.1, we can now
introduce the notions of progressive measurability and solutions P′ to the generalized
local martingale problem. Moreover, given such a solution P′, we can introduce a
P′–local martingale Z ′ exactly as in Subsection 2.2.

Let now d = 1, E = R, and x0 = 0. Moreover, for some fixed T > 0 set

a(t, x′) = 1, b(t, x′) = 0, µ(t, x′) = (x′(t))21t≤T

for all (t, x′) ∈ [0,∞) × Ω′. Then, there exists a unique solution P′ to the generalized
local martingale problem corresponding to (E, x0, a, b) = (R, 0, 1, 0) on (Ω′,M′). Indeed,
P′ corresponds to the Wiener measure on (Ω,M′).

Next, the P′–local martingale Z ′, given by

Z ′t = exp

(∫ t

0

(X ′s)
2dX ′s −

1

2

∫ t

0

(X ′s)
4ds

)
for all t ≥ 0, is not a P′–martingale (see Section 3.7 in [17]). Thus, there exists u > 0

such that EP′ [Zu] < 1 and we set T = u. Note that∫ ∞
0

µ(s, x′)Ta(s, x′)µ(s, x′)ds =

∫ T

0

(x′(s))4ds <∞
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by continuity of the path x′, for all x′ ∈ Ω′. This shows that the assertion of Corollary 3.4
is wrong, in general, if we replace (Ω,M,M) by (Ω′,M′,M′).

To understand, why the assumption of Corollary 3.4 is not satisfied if we replace Ω′

by Ω fix the path x ∈ Ω \ Ω′ with x(t) = tan(tπ/(2T ))1t<T + ∆1t≥T for all t ≥ 0. Then, we

have
∫ T

0
(µ(t, x))2dt =∞.
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[18] Aleksandar Mijatović and Mikhail Urusov, Convergence of integral functionals of one-
dimensional diffusions, Electron. Commun. Probab. 17 (2012), no. 61, 13. MR-3005734
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